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Abstract. We show that risk-sensitive control problems and deterministic dynamic games can be
connected, under rather mild assumptions, by a small noise limit. In order to control this limit, new
techniques are developed to study propagation of large deviations through conditional probabilities.
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1. Introduction. Properties of risk-sensitive control problems and their connec-
tions with dynamic games have been widely investigated in recent years [16, 18, 11,
8, 9, 12, 13, 14, 6, 4], in part inspired by seminal results for linear quadratic models
contained in [10, 17, 1]. In particular, it has been shown [8, 9, 12, 13, 4] that under
a suitable small parameter limit (small noise limit) a family of risk-sensitive stochas-
tic control problems becomes equivalent to a deterministic dynamic game. In other
words, this means that optimal risk-sensitive control with small noise and suitably
rescaled risk parameter is almost equivalent to deterministic robust control (worst-case
approach).

Although this result is conceptually natural, its proof usually involves rather
sophisticated mathematical techniques, and fairly strong requirements on the model.
For continuous-time, totally observable systems a quite satisfactory theory has been
developed in [8, 9] by using viscosity solution techniques to analyze the Hamilton–
Jacobi equation associated to the optimal control problem. It has been shown, in
particular, that the value function of the risk-sensitive control problem converges, as
the noise parameter goes to zero, to the upper value function of a related two players,
zero-sum differential game.

The analysis of the small parameter limit for nonlinear, partially observed, risk-
sensitive control problems has been initiated by P. Whittle [18], whose mostly nonrig-
orous results have inspired most of the further development. A considerable advance-
ment in the understanding of these models is represented by the results in [12, 13],
where the information state approach is used. This approach consists in reformulating
the partially observed control problem as a completely observed one, in a way that,
in a suitable sense, is “preserved” in the small parameter limit. One consequence of
this method is that it provides a natural notion of information state for the limiting
dynamic game. In [12] the information state approach is applied to discrete-time
systems. The result obtained is parallel to the one given in [8], i.e., the connection
with partially observed dynamic game is established in terms of the convergence of
the value function of the equivalent totally observed model. This value function is the
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solution of a dynamic programming equation in an infinite-dimensional space. The
small parameter limit of this equation is obtained by using large deviation techniques.

The corresponding result in continuous time has been obtained, at a nonrigorous
level, in [13]. In this context, one has to deal with the small parameter limit of
a Hamilton–Jacobi equation (Mortensen’s equation) with infinite-dimensional state
space; the current mathematical understanding of this problem has not allowed a
complete proof yet. A different approach to the small parameter limit in continuous
time is used in [3], where, rather than the convergence of the value function, it is
(rigorously) shown the convergence of the cost functional for any control u in a suitably
defined admissible class. This requires considerable work for controlling the small
parameter limit of the information state, but avoids the use of Mortensen’s equation.

In this paper we consider discrete-time, finite time-horizon partially observed
systems, and we develop further some large deviation techniques that were introduced
in [4] for totally observed systems. The models for which we can analyze the small
parameter limit include those of type

xn+1 = fn(xn, un, wn),
yn = φn(xn, vn)

(1.1)

for n = 0, . . . , N − 1, with xn ∈ X , un ∈ U , wn ∈ W, yn, vn ∈ Rd, where X ,W are
metric spaces and U is a compact metric space. Moreover, wn, vn are independent ran-
dom variables, wn ∼ µεn, vn ∼ νεn, where (µεn)ε>0, (νεn)ε>0 are families of probability
measures satisfying a large deviation principle (see section 2). Some further regularity
assumptions will be needed for φn and νεn (see section 4), while fn is supposed only
to be continuous. We associate with (1.1) a cost functional of the form

Jε(u) = ε logE
{

exp
[
ε−1
(N−1∑
n=0

gn(xn, un) + gN (xN )
)]}

(1.2)

defined for the control sequences u = (u0, . . . , uN−1) that are nonanticipative func-
tions of the output sequence (y0, . . . , yN ). Note that the parameter ε appears both
in the noise distribution and in (1.2), where it can be interpreted as a risk parameter,
a measure of controller’s aversion to risk. We show that, as ε → 0, the risk-sensitive
control problem (1.1), (1.2) converges, in a suitable sense, to the deterministic game
with dynamics (1.1) (where wn, vn are thought of as deterministic but unknown dis-
turbances) and cost

J(u) = sup
v,w

[N−1∑
n=0

(
gn(xn, un)− hn(wn)− kn+1(vn+1)

)
+ gN (xN )

]
,(1.3)

where hn, kn are rate functions (see section 2) associated with µεn, ν
ε
n. This conver-

gence is expressed, similarly to [8] and [12], in terms of the convergence of the value
function for an equivalent totally observed problem, so that our result can be seen as
a generalization of [12]. In fact, models of type (1.1), (1.2) include the ones studied
in [12], but we can deal with fairly more general noise distribution, state-space and
dynamical equations. The results of this paper have been, in part, announced in [5],
where, however, much stronger conditions were required.

This paper is organized as follows. In sections 2 and 3 we develop some new
large deviation techniques that are suitable for the problem we deal with. Section 4,
which contains the main results of this paper, is devoted to the analysis of the small
parameter limit for risk-sensitive control problems.
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2. Preliminary notions. In this section we recall some notions from large de-
viation theory that will be used throughout the paper, and introduce some new ones.
We let X be a metric space. All measures on X are intended to be defined on its
Borel σ-field.

Definition 2.1. A family of probability measures {P ε : ε > 0} on X is said to
satisfy a large deviation principle (LDP) with rate function H : X → [0,+∞] if

i) H is lower semicontinuous and {x : H(x) ≤ l} is compact for every l ≥ 0;
ii) for every A ⊂ X measurable

− inf
x∈Å

H(x) ≤ lim inf
ε→0

ε logP ε(A)

≤ lim sup
ε→0

ε logP ε(A) ≤ − inf
x∈Ā

H(x),

where Å, Ā denote respectively the interior and the closure of A.
In [4] a modification of the above definition has been introduced for the case of a

family of probability measures depending on a further parameter.
Definition 2.2. Let Θ be a set. A family of probability measures {P ε(dx; θ) :

ε > 0, θ ∈ Θ} on X is said to satisfy a uniform large deviation principle (ULDP) with
rate function H : X ×Θ→ [0,+∞] if

i) for every fixed θ ∈ T, H(·, θ) is lower semicontinuous and {x : H(x, θ) ≤ l}
is compact for every l ≥ 0,

ii) for every A ⊂ X measurable and M > 0,

lim sup
ε→0

sup
θ∈Θ

[
ε logP ε(A; θ) + min

(
M, inf

x∈Ā
H(x; θ)

)]
≤ 0

and

lim inf
ε→0

inf
θ∈Θ

[
ε logP ε(A; θ) + inf

x∈Å
H(x; θ)

]
≥ 0.

One of the main consequences of an LDP is the well known Varadhan’s lemma [15].
In [4] the following version of Varadhan’s lemma has been proved.

Lemma 2.3. Suppose the family {P ε(dx; θ) : ε > 0, θ ∈ Θ} satisfies a ULDP.
Then for every F : X → R bounded and continuous,

lim
ε→0

ε log

∫
eε
−1F (x)P ε(dx; θ) = sup

x∈X

[
F (x)−H(x, θ)

]
(2.1)

uniformly for θ ∈ Θ.
Remark 2.1. Identity (2.1) is the crucial large deviation property in applications

to risk-sensitive control. When Θ is a singleton (and therefore pointwise in θ) it is well
known [7, Bryc’s theorem] that, under rather mild assumptions (namely, exponential
tightness, see definition below), identity (2.1) is equivalent to the LDP. It is natural
to ask whether, for general Θ, (2.1) implies the ULDP. The answer is no. A simple
counterexample is the following: X = R, Θ = [0, 1], P ε(dx; θ) = 1

2εχ[θ−ε,θ+ε](x)dx,
where χ denotes the characteristic function of a set. As we will see later in Remark 2.3,
the family P ε(dx; θ) satisfies (2.1) with H(x; θ) = +∞ for x 6= θ, and H(θ, θ) = 0.
Now take A = (−∞, 0]. If P ε(dx; θ) satisfied a ULDP, then limε→0 ε logP ε(A; ε/2) =
−∞, since infx∈AH(x; ε/2) = +∞ for all ε > 0. However it holds that P ε(A; ε/2) =
1/4.
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We introduce now a notion which is weaker than the one of ULDF. For the rest
of this section we assume Θ to be a metric space.

Definition 2.4. A family {P ε(dx; θ) : ε > 0, θ ∈ Θ} of positive finite measures
on X is called a weakly uniform large deviation family (WULDF ) with rate function
H : X ×Θ→ (−∞,+∞] if

i) for every fixed θ ∈ Θ, H(·, θ) is lower semicontinuous and {x : H(x, θ) ≤ l}
is compact for every l ∈ R;

ii) the map θ → infx∈X H(x, θ) is real valued and is bounded on the compact
subsets of Θ;

iii) for every F : X → R bounded and continuous

lim
ε→0

ε log

∫
eε
−1F (x)P ε(dx; θ) = sup

x∈X

[
F (x)−H(x, θ)

]
(2.2)

uniformly for θ in the compact subsets of Θ.
Remark 2.2. For reasons that will become apparent later, we have chosen to

allow P ε in Definition 2.4 to be a positive finite measure, not necessarily a probability
measure. For technical reasons, we will need condition ii) in Definition 2.4, which
roughly says that P ε(X ; θ) does not either go to zero or grow too fast as ε → 0.
Indeed, by using ii) and letting F ≡ 0 in iii) the following statement is easy to prove:
for each K ⊂ Θ compact, there exists M(K) > 0 such that, for ε sufficiently small,

e−ε
−1M(K) ≤ P ε(X ; θ) ≤ eε−1M(K)(2.3)

for all θ ∈ K. Note that, if all P ε(dx; θ) are probability measures, then ii) is auto-
matically satisfied, since infx∈X H(x, θ) ≡ 0 (see [7]).

We now state a proposition that serves both as a technical lemma for later use
and as a preliminary justification of the notion of WULDF. Its proof will be given in
section 3.

Proposition 2.5. Let W be a metric space, f : Θ×W → X a continuous map,
and {µε : ε > 0} a family of probability measures on W that satisfy an LDP with rate
function h(w). Define P ε(dx; θ), a probability measure on X, by

P ε(A; θ) = µε{w : f(θ, w) ∈ A}.(2.4)

Then {P ε(dx; θ) : ε > 0, θ ∈ Θ} is a WULDF with rate function

H(x; θ) = inf{h(w) : f(θ, w) = x}.(2.5)

Remark 2.3. The family of probability measures in (2.4) does not necessarily
satisfy a ULDP, even if Θ is compact. For example, consider Θ = [0, 1], X =W = R,
µε(dw) = 1

2εχ[−ε,ε](w)dw, f(θ, w) = θ+w, and we end up with the counterexample in
Remark 2.1. Note that this shows that the family P ε(dx; θ) is a WULDF, since it is
easy to prove that {µε(dw) : ε > 0} satisfies an LDP with rate function H(w) = +∞
if w 6= 0, and H(0) = 0.

We now introduce a further notion that will be useful later.
Definition 2.6. A family {P ε(dx; θ) : ε > 0, θ ∈ Θ} of positive finite measure

on X is called exponentially tight if, for every L > 0 and every K ⊂ Θ compact, there
exists C ⊂ X compact such that

P ε(Cc; θ) ≤ e−ε−1L(2.6)

for all θ ∈ K and ε sufficiently small, where Cc is the complement of C.
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Note that when the measures are probability measures and Θ is a singleton, the
above definition reduces to the usual one of exponential tightness of large deviation
theory [7].

We conclude this section by stating three easy lemmas that will be used in sec-
tion 3.

Lemma 2.7. Under the assumptions of Proposition 2.5, let P ε(dx; θ) be defined
by (2.4). If {µε} is exponentially tight then so is {P ε(dx; θ)}.

Proof. The proof is straightforward, since compactness is preserved by continuous
mapping.

Lemma 2.8. Suppose that {P ε(dx; θ) : ε > 0, θ ∈ Θ} is a WULDF with rate
function H, and it is exponentially tight. Then the rate function is proper, i.e., for
every L > 0 and every K ⊂ Θ compact, there exists C ⊂ X compact such that
H(x; θ) ≥ L for all (x, θ) ∈ Cc ×K.

Proof. Let L > 0 be given, M > L and C be a compact subset of X such that
(2.6) holds for all θ ∈ K. Also, let Cδ denote the δ-neighborhood of C. Consider the
bounded continuous function

F (x) = min

{
M

δ
d(x,C)−M, 0

}
.(2.7)

It is easily seen that F (x) = −M for x ∈ C, F (x) = 0 on Ccδ and F ≤ 0. By using
the definition of WULDF we have, for all θ ∈ K,

inf
x∈Cc

δ

H(x, θ) ≥ − sup
x∈X

[F (x)−H(x, θ)] = − lim
ε→0

ε log

∫
eε
−1F (x)P ε(dx; θ)

= − lim
ε→0

ε log
[ ∫

C

eε
−1F (x)P ε(dx; θ) +

∫
Cc
eε
−1F (x)P ε(dx; θ)

]

≥ − lim inf
ε→0

ε log
[
e−ε

−1MP ε(X; θ) + e−ε
−1L
]

= min
[
M − inf

x∈X
H(x, θ), L

]
.

Thus, if we choose M large enough, using ii) of Definition 2.4, we have that, for all
θ ∈ K and δ > 0

inf
x∈Cc

δ

H(x, θ) ≥ L(2.8)

that clearly concludes the proof.
Lemma 2.9. Under the assumptions of Lemma 2.8, let F ε : X → R, ε ≥ 0, be

such that supε≥0 ‖F ε‖∞ < ∞, F ε → F 0 as ε → 0 uniformly on the compact subsets
of X and F 0 is continuous. Then

lim
ε→0

ε log

∫
eε
−1F ε(x)P ε(dx; θ) = sup

x∈X

[
F 0(x)−H(x, θ)

]
(2.9)

uniformly on the compact subsets of Θ.
Proof. If F ε → F 0 uniformly in all X then the conclusion follows by (2.2) and by∣∣∣ε log

∫
eε
−1F ε(x)P ε(dx; θ)− ε log

∫
eε
−1F 0(x)P ε(dx; θ)

∣∣∣ ≤ ‖F ε − F 0‖∞.(2.10)

By using exponential tightness one easily reduces to this case.



6 FRANCESCA ALBERTINI AND PAOLO DAI PRA

3. Propagation of WULDFs. In our analysis of the small parameter limit for
risk-sensitive control problems the filtering probabilities and the information states
will play a key role. They are both families of positive measures that satisfy recursive
relations. To prove that they form WULDFs we show that the property of being
a WULDF is preserved under four basic operations, namely, 1. state augmentation;
2. composition; 3. contraction; 4. conditioning.

In the rest of this section X ,Y, and Θ are metric spaces.
Proposition 3.1 (state augmentation). Let {P ε(dx; θ) : ε > 0, θ ∈ Θ} be an

exponentially tight WULDF on X with rate function HP (x; θ). Define the measures
on X ×Θ

Qε(dx, dζ; θ) = P ε(dx; θ)⊗ δθ(dζ),

with δ denoting the Dirac measure. Then {Qε(dx, dζ; θ) : ε > 0, θ ∈ Θ} is an expo-
nentially tight WULDF with rate function

HQ(x, ζ; θ) =

{
HP (x; θ) if ζ = θ,
+∞ if ζ 6= θ.

Proof. First we prove that the measures Qε(dx, dζ; θ) form a WULDF. It is easy
to see that the function HQ(x, ζ; θ) satisfies properties i) and ii) in Definition 2.4, so
we only prove that property iii) holds.

Let K ⊆ Θ be a compact set, and F : X ×Θ→ R be a continuous and bounded
function. Let L > 0 be such that |F (x, ζ)| ≤ L, and M(K) = supθ∈K | infxHP (x; θ)|,
which is finite by ii) of Definition 2.4. Notice that, by the definition of HQ, we have

sup
(x,ζ)∈X×Θ

[
F (x, ζ)−HQ(x, ζ; θ)

]
= sup

x∈X

[
F (x, θ)−HP (x; θ)

]
.

Since HP is proper (see Lemma 2.8), there exists a compact set C ⊆ X such that
HP (x; θ) ≥ 3L + M(K) for all x ∈ Cc and all θ ∈ K. Moreover, for all θ ∈ K, we
have

sup
x∈X

(F (x, θ)−HP (x; θ)) ≥ −L−M(K),

F (x, θ)−HP (x; θ) ≤ −2L−M(K) for all x ∈ Cc.
Thus

sup
x∈X

[
F (x, θ)−HP (x; θ)

]
= sup

x∈C

[
F (x, θ)−HP (x; θ)

]
.(3.1)

Let β > 2L+2M(K). Since {P ε(dx; θ)} is exponentially tight, there exists a compact
set CM ⊆ X such that

P ε(CcM ; θ) ≤ exp{−ε−1β}(3.2)

for all θ ∈ K. Without loss of generality, we may assume that C ⊆ CM and that for
ε small enough P ε(CM ; θ) ≥ e−2ε−1M(K) for all θ ∈ K (see (2.3)). We have

ε log

∫
exp{ε−1F (x, θ)}P ε(dx; θ)

= ε log

(∫
CM

exp{ε−1F (x, θ)}P ε(dx; θ) +

∫
Cc
M

exp{ε−1F (x, θ)}P ε(dx; θ)

)

≤ ε log

∫
CM

exp{ε−1F (x, θ)}P ε(dx; θ) + ε log
(
1 + 2 exp{ε−1(2L+ 2M(K)− β)}) .
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Now choose an arbitrary δ > 0. Since 2L+ 2M(K)−β < 0, there exists ε0 such that,
for all ε ≤ ε0 and for all θ ∈ K, we have∣∣∣∣ε log

∫
exp{ε−1F (x, θ)}P ε(dx; θ) − ε log

∫
CM

exp{ε−1F (x, θ)}P ε(dx; θ)

∣∣∣∣ ≤ δ.(3.3)

Since F |CM×K is uniformly continuous, we have that for each θ ∈ K there exists an
open neighborhood Uθ of θ such that |F (x, θ1)− F (x, θ2)| < δ for all θ1, θ2 ∈ Uθ and
all x ∈ CM . K being compact, there exists θ1, . . . , θn such that K ⊆ ∪ni=1Uθi .

Let θ ∈ K; then there exists ī such that θ ∈ Uθī . Since |F (x, θ) − F (x, θī)| < δ
for all x ∈ CM , we have∣∣∣∣ε log

∫
CM

exp{ε−1F (x, θ)}P ε(dx; θ)−ε log

∫
CM

exp{ε−1F (x, θī)}P ε(dx; θ)

∣∣∣∣<δ,(3.4)

and ∣∣∣∣ sup
x∈CM

[F (x, θī)−HP (x; θ)]− sup
x∈CM

[F (x, θ)−HP (x; θ)]

∣∣∣∣ < δ.(3.5)

Moreover, by definition of WULDF, we also have∣∣∣∣ε log

∫
exp{ε−1F (x, θī)}P ε(dx; θ)− sup

x∈X
[F (x, θī)−HP (x; θ)]

∣∣∣∣ < λi(ε),(3.6)

where limε→0 λi(ε) = 0.
Now let λ(ε) = supi=1,... ,n λi(ε), and note that limε→0 λ(ε) = 0. Using (3.1),

(3.3), (3.4), (3.5), and (3.6), for all ε ≤ ε0, we have∣∣∣∣∣ε log

∫
exp{ε−1F (x, ζ)}Qε(dx, dζ; θ)− sup

(x,ζ)∈X×Θ

[F (x, ζ)−HQ(x, ζ; θ)]

∣∣∣∣∣
=

∣∣∣∣ε log

∫
exp{ε−1F (x, θ)}P ε(dx; θ)− sup

x∈X
[F (x, θ)−HP (x; θ)]

∣∣∣∣
≤ δ +

∣∣∣∣ε log

∫
CM

exp{ε−1F (x, θ)}P ε(dx; θ)− sup
x∈CM

[F (x, θ)−HP (x; θ)]

∣∣∣∣
≤ δ +

∣∣∣∣ε log

∫
CM

exp{ε−1F (x, θ)}P ε(dx; θ)− ε log

∫
CM

exp{ε−1F (x, θī)}P ε(dx; θ)

∣∣∣∣
+

∣∣∣∣ε log

∫
exp{ε−1F (x, θī)}P ε(dx; θ)− ε log

∫
CM

exp{ε−1F (x, θī)}P ε(dx; θ)

∣∣∣∣
+

∣∣∣∣ε log

∫
exp{ε−1F (x, θī)}P ε(dx; θ)− sup

x∈X
[F (x, θī)−HP (x; θ)]

∣∣∣∣
+

∣∣∣∣ sup
x∈CM

[F (x, θī)−HP (x; θ)]− sup
x∈CM

[F (x, θ)−HP (x; θ)]

∣∣∣∣
≤ δ + δ + δ + λ(ε) + δ.

Note that to get the last inequality we used the fact that equation (3.3) still holds
when we replace F (x, θ) by F (x, θī). Thus

lim sup
ε→0

sup
θ∈K

∣∣ ε log
∫

exp{ε−1F (x, ζ)}Qε(dx, dζ; θ)

− sup
(x,ζ)∈X×Θ

[
F (x, ζ)−HQ(x, ζ; θ)

]∣∣ ≤ 4δ.
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Since δ is arbitrary, the previous limit must be zero. Thus we have proved that the
measures Qε(dx, dζ; θ) form a WULDF. It remains to show that this family is also
exponentially tight. Let K ⊆ Θ be a compact set. Since P ε is exponentially tight, for
every L > 0 there exists C ⊆ X compact such that

P ε(Cc; θ) ≤ e−ε−1L

for every θ ∈ K. Let C̃ = C ×K. Clearly C̃ ⊆ X ×Θ is compact, and

Qε(C̃c; θ) = P ε(Cc; θ).

The exponential tightness is therefore easily proved.
The next corollary restates in a different but equivalent way the result of the

previous proposition. We give it explicitly for further reference.
Corollary 3.2. Let {P ε(dx; y, θ) : ε > 0, (y, θ) ∈ Y × Θ} be an exponentially

tight WULDF on X with rate function HP (x; y, θ). Define the measures on X × Y,
Qε(dx, dz; y, θ) = P ε(dx; y, θ) ⊗ δy(dz), with δ denoting the Dirac measure. Then
{Qε(dx, dz; y, θ) : ε > 0, (y, θ) ∈ Y × Θ} is an exponentially tight WULDF with rate
function

HQ(x, z; y, θ) =

{
HP (x; y, θ) if z = y,
+∞ if z 6= y.

As a simple application of Proposition 3.1, we give the proof of Proposition 2.5.
Proof of Proposition 2.5. By Proposition 3.1 the following identities are easily

obtained:

lim
ε→0

ε log

∫
eε
−1F (x)P ε(dx; θ) = lim

ε→0
ε log

∫
eε
−1F (f(θ,w))µε(dw)

= lim
ε→0

ε log

∫
eε
−1F (f(γ,w))µε ⊗ δθ(dw, dγ)

= sup
w∈W

[
F (f(θ, w))− h(w)

]
= sup
x∈X

[
F (x)−H(x; θ)

]
,

where the limit is uniform in the compact subsets of Θ. Moreover, property i) of
Definition 2.4 is easily shown for H(x; θ), while property ii) comes automatically from
the fact that the P ε are probability measures.

The next lemma presents an easy technical fact that we will need in the proof of
Proposition 3.4.

Lemma 3.3. Let F : X × Θ → R be a continuous and bounded map, and H :
X × Θ → R+ be the rate function of an exponentially tight WULDF whose elements
are probability measures. Moreover, suppose H satisfies the following properties.

(i) Let A = {(x, θ) : H(x; θ) < +∞}. Then for every (x, θ) ∈ A and every
sequence θn → θ there exists a sequence xn → x such that H(xn; θn) →
H(x; θ).

(ii) H is lower semicontinuous as a function of (x, θ).
Then

G(θ) = sup
x∈X

[F (x, θ)−H(x; θ)](3.7)

is a bounded and continuous function.
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Proof. Assume that |F (x, θ)| ≤ L for all (x, θ). Since H is the rate function for
a family of probability measures, we have (see Remark 2.2) infxH(x, θ) = 0 for all
θ ∈ T . This easily implies |G(θ)| ≤ L for all t ∈ Θ.

We now show that G is upper semicontinuous. First of all we note that, for any
θ ∈ Θ, there exists x ∈ X such that G(θ) = F (x, θ) − H(x, θ), i.e., the supremum
in (3.7) is attained. In fact, that supremum can be equivalently taken for x ∈ C, where
C = {x : H(x, θ) ≤ 3L}. Since C is compact and F − H is upper semicontinuous,
then it follows that F (·, θ)−H(·, θ) has maximum in C. Now let θn → θ, and xn be
such that G(θn) = F (xn, θn)−H(xn, θn). We have to prove that

lim supG(θn) ≤ G(θ).(3.8)

Since the lim sup is the limit along a subsequence, we can assume, without loss of
generality, that the sequence G(θn) has a limit. Due to the fact that {θn : n ≥ 0}∪{θ}
is compact, and the properness of H, it follows that the sequence xn is relatively
compact, so it has a convergent subsequence xnk → x. Thus

limG(θn) = limG(θnk) = lim
[
F (xnk , θnk)−H(xnk , θnk)

]
≤ F (x, θ)−H(x, θ) ≤ G(θ),

where we have used the (joint) upper semicontinuity of F −H.
Now we prove lower semicontinuity, i.e., that lim inf G(θn) ≥ G(θ). Let x be such

that G(θ) = F (x, θ)−H(x; θ). By property (i), there exists a sequence xn → x, with
H(xn; θn)→ H(x, θ). So we get

lim inf G(θn) ≥ lim inf [F (xn, θn)−H(xn; θn)] = G(θ).

Proposition 3.4 (composition). Let {P ε(dx; y, θ) : ε > 0, (y, θ) ∈ Y × Θ} and
{Qε(dy; θ) : ε > 0, θ ∈ Θ} be two exponentially tight WULDF in X and Y, respectively,
with rate functions HP (x; y, θ) and HQ(y; θ). Assume that the measures P ε are all
probability measures. Moreover, assume that the rate function HP (x; y, θ) satisfies
assumptions (i)–(ii) of Lemma 3.3 (with Y ×Θ in place of Θ). Then {Rε(dx, dy; θ) :
ε > 0, θ ∈ Θ} defined by∫

f(x, y)Rε(dx, dy; θ) =

∫ [∫
f(x, y)P ε(dx; y, θ)

]
Qε(dy; θ)

is an exponentially tight WULDF with rate function

HR(x, y; θ) = HP (x; y, θ) +HQ(y; θ).

Proof. First we prove that Rε is a WULDF. Since HP (·; y, θ) is positive and
has minimum zero, property ii) of Definition 2.4 for HR is easily derived from the
corresponding property for HQ. We now show that i) of Definition 2.4 holds. Since
lower semicontinuity is obvious, we need only to prove that for all L ∈ R and for each
θ, the set Z = {(x, y) |HR(x, y; θ) ≤ L} is compact. Notice that if (x, y) ∈ Z then
y ∈ W = {y |HQ(y; θ) ≤ L}, and W is compact. Since HP is proper, there exists a
compact set V ⊆ X such that HP (x; y, θ) ≥ L+ 1 for all x ∈ V c and all y ∈W (note
that W × {θ} is compact). Thus we have that

Z ⊆ V ×W,
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and so Z is compact, as desired.
Now we must show that also iii) of Definition 2.4 holds for Rε. Let F (x, y) be a

continuous and bounded function, and let K ⊆ Θ be compact. We need to prove that

lim
ε→0

sup
θ∈K

[
ε log

∫
exp{ε−1F (x, y)}Rε(dx, dy; θ)

− sup
(x,y)∈X×Y

[F (x, y)−HR(x, y; θ)]

]
= 0.

(3.9)

Notice that∫
exp{ε−1F (x, y)}Rε(dx, dy; θ) =

∫
exp{ε−1Gε(y, θ)}Qε(dy, θ),

where

Gε(y, θ) = ε log

∫
exp{ε−1F (x, y)}P ε(dx; y, θ).

Clearly, the functions Gε are uniformly bounded. By Corollary 3.2

Gε(y, θ)→ G(y, θ) ≡ sup
x∈X

[F (x, y)−HP (x; y, θ)]

uniformly on the compact subsets of Y ×Θ. Moreover, by Lemma 3.3, G is a bounded
continuous function. Thus (3.9) follows as an application of Lemma 2.9 and Proposi-
tion 3.1.

It remains to show that the family Rε is exponentially tight. Let K ⊆ Θ be a
compact set, and M > 0. Since Qε is exponentially tight, there exists a compact set
C1 ⊆ Y such that for all θ ∈ K and for all ε small enough,

Qε(Cc1; θ) ≤ e−ε
−1M

2
.

Moreover, since P ε(dx; y, θ) is also exponentially tight, there exists a compact set
C2 ⊆ X such that

P ε(Cc2; y, θ) ≤ e−ε
−1M

2

for all (y, θ) ∈ C1 ×K and for all ε small enough. Let C = C1 × C2. Then

Rε(Cc; θ) ≤ Rε(Cc2 × C1; θ) +Rε(C2 × Cc1; θ) ≤ sup
y∈C1

P ε(Cc2; y, θ) +Qε(Cc1; θ).

Thus, for all ε small enough, and for all θ ∈ K, we get

Rε(Cc; θ) ≤ e−ε−1M ,

which completes the proof.
Lemma 3.5. Let {P ε(dx; θ) : ε > 0, θ ∈ Θ} be a WULDF, with rate function

H(x; θ), and f : X → Y be a continuous function. Then {P εf (dy; θ) : ε > 0, θ ∈ Θ}
defined by

P εf (B; θ) = P ε(f−1(B); θ), B ⊆ Y,
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is again a WULDF with rate function

Hf (y; θ) = inf{H(x; θ) : f(x) = y}.

Moreover if the family P ε(dx; θ) is exponentially tight then also the family P εf (dy; θ)
is exponentially tight.

The proof of Lemma 3.5 is easy, and is omitted. From Lemma 3.5 the following
Proposition follows.

Proposition 3.6 (contraction). Let {Rε(dx, dy; θ) : ε > 0, θ ∈ Θ} be a WULDF
on X ×Y with rate function HR(x, y; θ). Then {P ε(dx; θ) : ε > 0, θ ∈ Θ}, defined by:

P ε(A; θ) := Rε(A× Y; θ),

is a WULDF with rate function

HP (x; θ) = inf
y∈Y

HR(x, y; θ).

Moreover if the family Rε(dx, dy; θ) is exponentially tight then also the family P ε(dx; θ)
is exponentially tight.

Proposition 3.7 (conditioning). Let {P ε(dx; θ) : ε > 0, θ ∈ Θ} and {Qε(dy;x) :
ε > 0, x ∈ X} be two exponentially tight WULDF’s on X and Y, respectively, with
rate functions HP (x; θ) and HQ(y;x). Assume that the measures Qε(dy;x) are all
probability measures and that both families of kernels are exponentially tight. Moreover
assume that the rate function HQ(y;x) is always finite and continuous, and that the
following properties hold.

1. The measure Qε(dy;x) is of the form

Qε(dy;x) = qε(y;x)α(dy),

where qε(y;x) > 0 and the measure α(dy) satisfies

inf
y∈K

α (B(y, γ)) > 0

for every K ⊂ Y compact and γ > 0, where B(y, γ) is the ball centered at y
with radius γ.

2. For any compact sets K ⊆ Y, C ⊆ X and any δ > 0 there exist δ1 > 0 and
ε(δ) such that

|ε log qε(y1;x) − ε log qε(y2;x)| < δ

for all y1, y2 ∈ K such that d(y1, y2) < δ1, for all ε ≤ ε(δ), and for all x ∈ C.
3. For any compact sets K ⊆ Y, C ⊆ X there exists nK,C > 0 such that

ε log qε(y;x) ≥ −nK,C
for all y ∈ K, x ∈ C, and ε > 0.

4. For any compact set K ⊆ Y, there exists NK > 0 such that

ε log qε(y;x) ≤ NK
for all y ∈ K, for all x ∈ X , and for all ε > 0.
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Then the measures on X
Rε(dx; y, θ) = qε(y;x)P ε(dx; θ)

form an exponentially tight WULDF with rate function

HR(x; y, θ) = HQ(y;x) +HP (x; θ).

Proof. First we prove that the family Rε is exponentially tight. Let K̃ ⊆ Y×Θ be
a compact set, and denote by K1 and K2 its projection on Y and Θ respectively. By
property 4 there exists a constant NK1

such that qε(y;x) ≤ eε
−1NK1 for all y ∈ K1,

all x ∈ X , and all ε > 0. Given any M > 0, since P ε is exponentially tight, there
exists a compact set C ⊆ X such that

sup
θ∈K2

P ε(Cc; θ) ≤ e−ε
−1(M+NK1

).

We have

sup
(y,θ)∈K̃

Rε(Cc; y, θ) = sup
(y,θ)∈K̃

∫
Cc
qε(y;x)P ε(dx; θ)

≤ eε−1NK1 sup
θ∈K2

P ε(Cc; θ) ≤ e−ε−1M ,

which proves exponential tightness. To show that the family {Rε(dx; y, θ)} is a
WULDF with rate function HR, we define

MP
θ = inf

x∈X
HP (x; θ).

Notice that, since the measures Qε(dy;x) are all probability measures, it holds that
HQ(y;x) ≥ 0. Then it is clear that HR(x; y, θ) ≥ MP

θ , so the map HR satisfies
property ii) of Definition 2.4. Moreover, since

{x | HR(x; y, θ) ≤ L } ⊆ {x | HP (x, θ) ≤ L },
property i) of Definition 2.4 holds also.

Now we need to establish property iii) of Definition 2.4. First we prove an inter-
mediate step, which consists of approximating the density qε(y;x) with an average on
the form

1

α(B(y, δ1))

∫
Y

eε
−1h(η)qε(η;x)α(dη),

h(η) being a function suitably concentrated about η = y.
For any y ∈ Y, δ > 0, 0 < δ̃ < δ, and M > 0, let gy,δ,δ̃,M (η) be a continuous and

bounded function such that
1. gy,δ,δ̃,M (η) ≤ 0 for all η ∈ Y, and gy,δ,δ̃,M (η) = 0 for all η ∈ B(y, δ̃);
2. gy,δ,δ̃,M (η) = −M if η 6∈ B(y, δ).

For each given y ∈ Y, 0 < δ̃ < δ, and M > 0, the existence of a function gy,δ,δ̃,M (·)
satisfying the previous requirements is easily proved. For example one may take

gy,δ,δ̃,M (η) = − M

δ − δ̃
(

min{dist(η,B(y, δ̃)), δ − δ̃}
)
.
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Claim 1. For any K ⊆ Y, and C ⊆ X compact sets, and any δ > 0, M > 0, let
δ1 > 0 and ε(δ) > 0 be such that

qε(y;x)e−ε
−1δ ≤ qε(η;x) ≤ qε(y;x)eε

−1δ(3.10)

for all x ∈ C, y, η ∈ K such that η ∈ B(y, δ1) and for all ε ≤ ε(δ) (use property 2).
Fix any δ̃ < δ1, and let h(η) = gy,δ1,δ̃,M (η). Then there exists a constant C(δ1) > 0
such that

e−ε
−1δ
(
1 + C(δ1)−1e−ε

−1(M−NK+δ)
)−1 1

α(B(y, δ1))

∫
Y
eε
−1h(η)qε(η;x)α(dη)

(3.11)

≤ qε(y;x) ≤ eε−1δ 1

α(B(y, δ̃))

∫
Y
eε
−1h(η)qε(η;x)α(dη)

for all y ∈ K, for all x ∈ C, ∀ δ̃ < δ1, and ∀ ε ≤ ε(δ), where NK is defined in Property 4
in the assumptions.

Proof of the claim. Let C(δ1) = infy∈K α(B(y, δ1)). It is easy to see that the
following inequalities hold:∫
Y
eε
−1h(η)qε(η;x)α(dη) ≥

∫
B(y,δ̃)

e−ε
−1δqε(y;x)α(dη) = e−ε

−1δqε(y;x)α
(
B(y, δ̃)

)
,

∫
Y
eε
−1h(η)qε(η;x)α(dη) ≤

∫
B(y,δ1)

eε
−1δqε(y;x)α(dη)

+

∫
B(y,δ1)c

e−ε
−1Mqε(η;x)α(dη)

≤ eε−1δqε(y;x)α (B(y, δ1))
[
1 + C(δ1)−1e−ε

−1(M−NK+δ)
]
,

from which (3.11) follows easily. So Claim 1 is proved.
Fix any K ⊆ Y, and C ⊆ X compact sets, and any δ > 0, M > 0. Combining

equations (3.11) and (3.10) we get that for all x ∈ C, and all ỹ ∈ K such that
|ỹ − y| < δ1:

e−ε
−12δ γ(δ1)−1

α(B(y, δ1))

∫
Y
eε
−1h(η)qε(η;x)α(dη)

≤ qε(ỹ;x) ≤ eε−12δ 1

α(B(y, δ̃))

∫
Y
eε
−1h(η)qε(η;x)α(dη)

(3.12)

where h(η) = gy,δ1,δ̃,M (η) and γ(δ1) = 1 + 1
C(δ1)e

−ε−1(M−NK+δ). Since K ⊂
∪y∈KB(y, δ1) andK is compact, there exist h1(η), . . . , hl(η) all of the type gyi,δ1,δ̃,M (η)
for some yi ∈ K, such that for all y ∈ K and for all x ∈ C there exists an index
i ∈ {1, . . . , l} such that

e−ε
−12δ γ(δ1)−1

α(B(yi, δ1))

∫
Y
eε
−1hi(η)qε(η;x)α(dη) ≤ qε(ỹ;x)

≤ eε−12δ 1

α(B(yi, δ̃))

∫
Y
eε
−1hi(η)qε(η;x)α(dη),

(3.13)

where (3.13) holds for all δ̃ < δ1, ε ≤ ε(δ).
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Now we prove that iii) of Definition 2.4 also holds. Fix a compact set K̃ ⊆ Y×Θ.
Let K1 ⊆ Y be its first projection (i.e., K1 = Π1(K̃)) and K2 ⊆ Θ be its second
projection. Moreover, let NK1

be the positive constant given by property 4. For any
continuous and bounded function F (x), we need to show that

lim
ε→0

sup
(y,θ)∈K̃

[
ε log

∫
X
eε
−1F (x)Rε(dx; y, θ)− sup

x∈X
(F (x)−HR(x; y, θ))

]
= 0.

We let
• |F (x)| ≤ L1,
• xθ ∈ X be such that HP (xθ; θ) = MP

θ = infxHP (x; θ),
• MP (K2) be such that |MP

θ | ≤MP (K2) for all θ ∈ K2,
• C1 ⊆ X be a compact set such that xθ ∈ C1 for all θ ∈ K2 (such compact set

exists by properness of the rate function),
• L2 be such that |HQ(y;x)| ≤ L2 for all y ∈ K1 and all x ∈ C1 (notice that

this constant exists since HQ is continuous).
Now consider a compact set C2 ⊂ X and a constant Λ > 0 such that, for ε sufficiently
small,

P ε(C2; θ) ≥ e−ε−1Λ(3.14)

for every θ ∈ K2. Note that this can be done by (2.3) and exponential tightness of
P ε. Moreover, by property 3, there is a constant n such that

−n ≤ ε log qε(y;x)(3.15)

for all x ∈ C2, y ∈ K1.
Fix any positive constants M , T and M̃ such that:

M > 2L1 + L2 + 2MP (K2) +NK1
, T > 2L1 + Λ + n,

M̃ > 2L1 + L2 +MP (K2) +M + Λ.
(3.16)

Since HP is proper and P ε, Rε are exponentially tight, we have that there is a compact
set C3 ⊆ X , which satisfies the following inequality for ε small enough:

HP (x; θ) > M̃ for all x ∈ Cc3 and all θ ∈ K2,(3.17)

P ε(Cc3; θ) ≤ e−ε−1M̃ for all θ ∈ K2,(3.18)

Rε(Cc3; y, θ) ≤ e−ε
−1T for all (y, θ) ∈ K̃.(3.19)

Notice that without loss of generality, we may assume that C1, C2 ⊆ C3. Fix any
δ > 0. Let δ2 > 0 be such that

|HQ(y;x)−HQ(y′;x′)| ≤ δ(3.20)

for all x, x′ ∈ C3, and y, y′ ∈ K1, such that dist(x, x′) < δ2 and dist(y, y′) < δ2.
Now, fix (y, θ) ∈ K̃, x ∈ C3. We have seen that there exist δ1 ≤ δ, ε(δ) > 0,

y1, . . . , yl ∈ K1 and i ∈ {1, . . . , l} such that (3.13) holds for all x ∈ C3, y ∈ K1,
δ̃ ≤ δ1, and ε ≤ ε(δ).
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Upper bound.

ε log

∫
eε
−1F (x)Rε(dx; y, θ)

= ε log

∫
C3

eε
−1F (x)Rε(dx; y, θ) + ε log

1 +

∫
Cc3
eε
−1F (x)Rε(dx; y, θ)∫

C3
eε−1F (x)Rε(dx; y, θ)


≤ ε log

∫
C3

eε
−1F (x)Rε(dx; y, θ) + ε log

(
1 + eε

−1(2L1+Λ+n−T )
)
,

where we have used the inequalities∫
Cc3

eε
−1F (x)Rε(dx; y, θ) ≤ eε−1(L1−T ),∫

C3

eε
−1F (x)Rε(dx; y, θ) ≥

∫
C2

eε
−1F (x)Rε(dx; y, θ) ≥ e−ε−1(L1+Λ+n)

for every (y, θ) ∈ K̃. Therefore, using (3.13),

ε log

∫
eε
−1F (x)Rε(dx; y, θ)

≤ ε log
(

1 + eε
−1(2L1+Λ+n−T )

)
+ 2δ

− ε logα(B(yi, δ̃)) + ε log

∫
C3×Y

eε
−1(F (x)+hi(η))Qε(dη;x)P ε(dx; θ)

≤ ε log
(

1 + eε
−1(2L1+Λ+n−T )

)
+ 2δ − ε logC(δ̃)

+ ε log

∫
X×Y

eε
−1(F (x)+hi(η))Qε(dη;x)P ε(dx; θ)

≤ ε log
(

1 + eε
−1(2L1+Λ+n−T )

)
+ 2δ − ε logC(δ̃)

+ sup
x∈X ,η∈Y

[F (x) + hi(η)−HQ(η;x)−HP (x; θ)] + λi(ε)

with λi(ε) → 0 as ε → 0. Note that for the last inequality Proposition 3.4 has been
used. Now observe that

sup
x∈X ,η∈Y

[
F (x) + hi(η)−HQ(η;x)−HP (x; θ)

]
(3.21)

≥ F (xθ) + hi(yi)−HQ(yi;xθ)−HP (xθ; θ) ≥ −L1 − L2 −MP (K2).

On the other hand, for x 6∈ C3

F (x) + hi(η)−HQ(η;x)−HP (x; θ) ≤ L1 − M̃,(3.22)

and, for dist(η, yi) > δ1,

F (x) + hi(η)−HQ(η;x)−HP (x; θ) ≤ L1 −M +MP (K2).(3.23)
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By (3.16), it follows that the right-hand side (RHS) of (3.22) and (3.23) are smaller
than the RHS of (3.21). Therefore

sup
x∈X ,η∈Y

[
F (x) + hi(η)−HQ(η;x)−HP (x; θ)

]
= sup
x∈C3,η∈B(yi,δ1)

[
F (x) + hi(η)−HQ(η;x)−HP (x; θ)

]
≤ sup
x∈C3

[
F (x)−HQ(y;x)−HP (x; θ)

]
+ δ

= sup
x∈X

[
F (x)−HQ(y;x)−HP (x; θ)

]
+ δ

where the last equality comes from an argument analogous to (3.21)–(3.23). Summing
up,

ε log

∫
eε
−1F (x)Rε(dx; y, θ)

≤ ε log
(

1 + eε
−1(2L1+Λ+n−T )

)
+ 2δ − ε logC(δ̃)

+ sup
x∈X

[
F (x)−HQ(y;x)−HP (x; θ)

]
+ λ(ε)

with λ(ε) = maxi=1,... ,l λi(ε). By using again (3.16), the last inequality implies

lim sup
ε→0

sup
(y,θ)∈K̃

ε log

∫
eε
−1F (x)Rε(dx; y, θ)

(3.24)
− sup
x∈X

[
F (x)−HQ(y;x)−HP (x; θ)

]
≤ 0.

Lower bound. By (3.13)

ε log

∫
eε
−1F (x)Rε(dx; y, θ) ≥ ε log

∫
C3

eε
−1F (x)Rε(dx; y, θ)

≥ −2δ − ε log γ(δ1)− ε logα(B(yi, δ1))(3.25)

+ ε log

∫
C3×Y

eε
−1(F (x)+hi(η))Qε(dη;x)P ε(dx; θ).

Note that ∫
Cc3×Y

eε
−1(F (x)+hi(η))Qε(dη;x)P ε(dx; θ) ≤ eε−1(L1−M̃)

and ∫
X×Y

eε
−1(F (x)+hi(η))Qε(dη;x)P ε(dx; θ) ≥ e−ε−1(L1+M+Λ),
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which implies

ε log

∫
C3×Y

eε
−1(F (x)+hi(η))Qε(dη;x)P ε(dx; θ)

= ε log

∫
X×Y

eε
−1(F (x)+hi(η))Qε(dη;x)P ε(dx; θ)

+ ε log

1−
∫
Cc3×Y e

ε−1(F (x)+hi(η))Qε(dη;x)P ε(dx; θ)∫
X×Y e

ε−1(F (x)+hi(η))Qε(dη;x)P ε(dx; θ)


≥ ε log

∫
X×Y

eε
−1(F (x)+hi(η))Qε(dη;x)P ε(dx; θ)

+ ε log
[
1− eε−1(2L1+M+Λ−M̃)

]
.

Thus

ε log

∫
eε
−1F (x)Rε(dx; y, θ) ≥ −2δ − ε log γ(δ1)− ε logα(B(yi, δ1))

+ ε log

∫
X×Y

eε
−1(F (x)+hi(η))Qε(dη;x)P ε(dx; θ) + ε log

[
1− eε−1(2L1+M+Λ−M̃)

]
.

After having noticed that, by (3.16), 2L1 + M + Λ − M̃ < 0, the proof of the lower
bound proceeds by repeating the arguments in the proof of the upper bound, yielding

lim inf
ε→0

inf
(y,θ)∈K̃

ε log

∫
eε
−1F (x)Rε(dx; y, θ)

(3.26)
− sup
x∈X

[
F (x)−HQ(y;x)−HP (x; θ)

]
≥ 0,

which, together with (3.24), completes the proof.
Note that, if in Proposition 3.7 we interpret qε(y;x)α(dy)P ε(dx; θ) as a measure

in X × Y, the measure Rε has the meaning of unnormalized conditional measure.
An analogous statement for the normalized version, whose proof follows easily from
Proposition 3.7, is given below.

Corollary 3.8. Under the assumptions of Proposition 3.7, define

Rε(dx; y, θ) =
qε(y;x)P ε(dx; θ)∫
X q

ε(y;x)P ε(dx; θ)
.

Then {Rε(dx; y, θ) : ε > 0, (y, θ) ∈ Y ×Θ} is an exponentially tight WULDF with rate
function

HR(x; y, θ) = HQ(y;x) +HP (x; θ)− inf
x∈X

[HQ(y;x) +HP (x; θ)] .

4. The small parameter limit for partially observed, risk-sensitive con-
trol problems.

4.1. The model. Let (Ω,F , P ) be a probability space, X ,Y metric spaces, and
U a compact metric space. Moreover, let (Fn)Nn=0, (Gn)Nn=0 be given filtrations on
(Ω,F , P ). We construct a controlled, partially observed stochastic system with state
space X , observation space Y, and control space U . The (discrete) time will vary in
{0, 1, . . . , N}.
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Now, let M1(X ) (M1(Y)) denote the set of probability measures on X (Y),
provided with the weak topology and the corresponding Borel σ-field. Suppose that,
for n = 0, . . . , N−1 and ε > 0, we are given measurable functions (probability kernels)

X × U → M1(X ),
(x, u) → P εn(·;x, u),

(4.1)

X → M1(Y),
x → Qεn+1( · ;x).

(4.2)

We assume there exists a σ-finite measure α on Y such that for all x ∈ X , Qεn+1(·;x)
has a density with respect to α,

Qεn+1(dy;x) = qεn+1(y;x)α(dy),(4.3)

and we assume qεn+1(y;x) to be strictly positive everywhere.
For n = 0, . . . , N − 1 we let un : Yn+1 → U be a measurable function. The se-

quence (u0, . . . , uN−1) will be denoted by u, and the set of such sequences (admissible
controls) will be denoted by ad(U).

For every given u ∈ ad(U) we now define (Xε,u
n )Nn=0, (Y ε,un )Nn=0 to be, respectively,

X - and Y-valued stochastic processes, defined on (Ω,F , P ), having the following prop-
erties:

i) Xε,u
n is Fn-measurable, and Y ε,un is Gn-measurable;

ii) for n = 0, . . . , N − 1,

P{Xε,u
n+1 ∈ · |Fn ∨ Gn} = P εn(· ;Xε,u

n , un(Y ε,u0 , . . . , Y ε,un ));(4.4)

iii) for n = 1, . . . , N,

P{Y ε,un ∈ · |Fn ∨ Gn−1} = Qεn(· ;Xε,u
n ).(4.5)

Note that i), ii), and iii) completely determine the law of the processes Xε,u
n

and Y ε,un up to the initial condition Xε,u
0 , Y ε,u0 . For simplicity, we assume Xε,u

0 = ξ,
Y ε,u0 = η, deterministic and (ε,u)-independent. It is clear that for given probability
kernels as in (4.1) and (4.2), one can construct on a suitable probability space a
stochastic process satisfying i), ii), and iii). The dependence on ε of the probability

kernels in (4.1)(4.2) will be specified later. From now on, the index (ε,u) in X
(ε,u)
n

and Y
(ε,u)
n will be omitted, and we write un for un(Y ε,u0 , . . . , Y ε,un ).

Now we define the cost functional for the optimal control problem. Suppose we
are given bounded measurable functions

gn : X × U → R, n = 0, . . . , N − 1, gN : X → R.(4.6)

For u ∈ ad(U) define

Jε(u) = ε logE
{

exp
[
ε−1
(N−1∑
n=0

gn(Xn, un) + gN (XN )
)]}

.(4.7)

The optimal control problem associated with Jε consists in computing Jε∗ = inf{Jε(u) :
u ∈ ad(U)} and determining a u∗ ∈ ad(U) such that Jε(u∗) = Jε∗.
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4.2. Information vector, information measure, and dynamic program-
ming. In this section the dependence on ε of the objects defined in section 2.1 is not
relevant. So the index ε will be dropped.

It is a standard procedure in stochastic control to analyze optimal control prob-
lems with partial observation through a redefinition of the model as a completely
observed one. Let n = 0, . . . , N . The information vector at time n is defined by

Zn = (Y0, . . . , Yn, u0, . . . , un−1) ∈ Yn+1 × Un ≡ Zn.(4.8)

In the following we often identify Zn+1 with the triple (Zn, un, Yn+1).

Note that an admissible control at time n can be thought of as a function of
Zn. The stochastic dynamics of (Xn, Yn) described in i)–iii) induces the following
stochastic dynamics for the information vector:

P{Zn+1 ∈ · |Gn} = δY0
⊗ · · · ⊗ δYn ⊗ POn (dyn+1;Zn, un)⊗ δu0

⊗ · · · ⊗ δun .(4.9)

The probability kernels

POn : Zn × U →M1(Y)(4.10)

can be recursively constructed following the procedure below. We also construct an
auxiliary sequence of kernels

P fn : Zn →M1(X ) (filtering probabilities).(4.11)

a) Initialize P f0 = δξ.

b) Define POn by

POn (A; zn, un) =

∫ (∫
Qn+1(A;xn+1)Pn(dxn+1;xn, un)

)
P fn (dxn; zn)(4.12)

for A ⊂ Y measurable.

c) Define P fn+1 by

P fn+1(B; zn+1) =

∫
X
( ∫

B
qn+1(yn+1, xn+1)Pn(dxn+1;xn, un)

)
P fn (dxn; zn)∫

X
( ∫
X qn+1(yn+1, xn+1)Pn(dxn+1;xn, un)

)
P fn (dxn; zn)

(4.13)

for B ⊂ X measurable.

Remark 4.1. Equation (4.13) is the well-known discrete Zakai equation for the
filtering probability. Indeed, P fn is a version of the conditional probability of Xn

given Zn, and POn is a version of the conditional probability of Yn+1 given Zn. We
assume implicitly that all integrals in (4.13) are finite; this will be guaranteed by later
assumptions on the model (Assumption A, section 4.3) where the function qn(yn; · )
is assumed to be bounded.

Note that POn+1 has a density with respect to α given by

ρn(yn+1; zn, un) = ρn(zn+1)
(4.14)

=

∫ (∫
qn+1(yn+1, xn+1)Pn(dxn+1;xn, un)

)
P fn (dxn; zn).



20 FRANCESCA ALBERTINI AND PAOLO DAI PRA

The next step consists of writing the cost function J(u) in terms of the information
vector Zn. The main tool is provided by what we define to be the information measure.
The information measure at time n is a map

P In : Zn →M(X ),(4.15)

where M(X ) is the space of positive finite measures on X . The maps P In are recur-
sively defined as follows:

P I0 (dx0) = δξ,

P In+1(A; zn+1)

=

∫
X
( ∫

A
egn(xn,un)qn+1(yn+1, xn+1)Pn(dxn+1;xn, un)

)
P In(dxn; zn)

ρn(zn+1)
.

(4.16)

An important property of the information measure is given in the next lemma.
Lemma 4.1. The following identity holds for n = 0, . . . , N, for any f : X ×Zn →

R bounded and measurable and every u ∈ U :

E
{∫

f(xn, Zn)P In(dxn;Zn)
}

= E
{
f(Xn, Zn) exp

[ n−1∑
k=0

gk(Xk, uk)
]}
.(4.17)

Proof. For n = 0 there is nothing to prove. The inductive step is proved as
follows:

E

{∫
f(xn+1, Zn+1)P In+1(dxn+1;Zn+1)

}
= E

{
E

{∫
f(xn+1, Zn+1)P In+1(dxn+1;Zn+1)

∣∣∣∣Zn, un}}
= E

{
E

{∫
f(xn+1, Zn, un, Yn+1)P In+1(dxn+1;Zn, un, Yn+1)

∣∣∣∣Zn, un}}
= E

{∫ [∫
f(xn+1, Zn, un, yn+1)P In+1(dxn+1;Zn, un, yn+1)

]
× ρn(yn+1, Zn, un)α(dyn+1)

}
(by (4.16))

= E

{∫ [∫ (∫
f(xn+1, Zn, un, yn+1)qn+1(yn+1;xn+1)Pn(dxn+1;xn, un)

)
× α(dyn+1)

]
egn(xn,un)P In(dxn;Zn)

}
(by inductive assumption)

= E

{∫ [∫
f(xn+1, Zn, un, yn+1)qn+1(yn+1;xn+1)Pn(dxn+1;Xn, un)

]
α(dyn+1)

× exp

[ n∑
k=0

gk(Xk, uk)

]}
= E

{
E

{
f(Xn+1, Zn+1)

∣∣∣∣Fn ∨ Gn} exp

[ n∑
k=0

gk(Xk, uk)

]}
= E

{
f(Xn+1, Zn+1) exp

[ n∑
k=0

gk(Xk, uk)

]}
,

(4.18)
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where we have used elementary properties of conditional expectation.
By using the recursive definition (4.16) it is easily checked that the information

measures are indeed finite measures. A bound on P In(X; zn) which is uniform in zn
will be useful later, and is given in the following lemma.

Lemma 4.2. For every n = 0, . . . , N and every zn ∈ Zn we have

| logP In(X; zn)| ≤
n−1∑
k=0

‖gk‖∞.(4.19)

Proof. Since the filtering measures are probability measures, it is enough to show
that for any n = 0, . . . , N and every positive measurable function f∫

f(xn)P fn (dxn; zn)e−
∑n−1

k=0
‖gk‖∞ ≤

∫
f(xn)P In(dxn; zn)

≤
∫
f(xn)P fn (dxn; zn)e

∑n−1

k=0
‖gk‖∞ .

(4.20)

The proof of (4.20) comes from an easy induction and is omitted.
By using Lemma 4.1, we can rewrite the cost functional J(u) as follows:

J(u) = logE
{

exp
[
GN (ZN )

]}
,(4.21)

where

GN (ZN ) = log

∫
egN (xN )P IN (dxN ;ZN ).(4.22)

The partially observed stochastic control problem described in section 4.1 has
now been transformed into a totally observed one, with state variable Zn and cost
functional (4.21). For this system the variables Yn should be thought of as noise
variables.

The value function associated with (4.22) is defined by

Vn(zn) = inf
u∈ad(U)

logE
{

exp
[
GN (ZN )

]∣∣∣Zn = zn

}
.(4.23)

It can be shown (see, e.g., [2]) that Vn satisfies the following recursion:

VN (zN ) = GN (zN ),

Vn(zn) = inf
u∈U

log

∫
exp[Vn+1(yn+1, zn, u)]POn (dyn+1; zn, u).

(4.24)

Remark 4.2. By using (4.24) and Lemma 4.2 it is easily seen that the functions
Vn are bounded.

Remark 4.3. The stochastic control problem (4.21)–(4.22) is somewhat implicitly
stated, since the cost function is given in terms of the solution of the recursion (4.16).
Indeed, the cost functional J(u) can be written only in terms of the measures (P fn , P

I
n).

To see this, consider the stochastic dynamics on M1(X)×M(X ) given by

P fn+1(B) =

∫
X
( ∫

B
qn+1(Yn+1, xn+1)Pn(dxn+1;xn, un)

)
P fn (dxn)∫

X
( ∫
X qn+1(Yn+1, xn+1)Pn(dxn+1;xn, un)

)
P fn (dxn)

,(4.25)
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P In+1(A) =

∫
X
( ∫

A
egn(xn,un)qn+1(Yn+1, xn+1)Pn(dxn+1;xn, un)

)
P In(dxn)∫

X
( ∫
X qn+1(Yn+1, xn+1)Pn(dxn+1;xn, un)

)
P fn (dxn)

,(4.26)

or, in short,

(P fn+1, P
I
n+1) = F (P fn , P

I
n , un, Yn+1).(4.27)

In (4.27) the Yn’s play the role of disturbances, whose distribution is determined by

P (Yn+1 ∈ A|u0, . . . , un, Y0, . . . , Yn)

=

∫ (∫
Qn+1(A;xn+1)Pn(dxn+1;xn, un)

)
P fn (dxn).

(4.28)

If we define the cost functional

K(u) = logE
{
egN (x)P IN (dx)

}
(4.29)

then we have that K(u) = J(u) for every u ∈ ad(U). This shows that, in a very
precise sense, the pair (P fn , P

I
n) is a sufficient statistic for the risk-sensitive control

problem or, in terms more commonly used in control theory, it is an information state.
As a consequence, it follows that the value function Vn can be thought of as a

function of the information state. In [12, Theorem 3.2], the ε → 0 limit of the value
function is studied by looking at the value function as a function of the information
state (which is not the same as here, see Remark 4.4 below). In the generality of our
model a statement of the type of Theorem 3.2 in [12] does not seem to make sense,
and so we prefer to analyze the value function as a function of the information vector.
In our construction the information state is only an auxiliary object that allows us to
express the cost functional J(u) in terms of the information vector.

Remark 4.4. The information state for risk-sensitive control problems, which is
a rather recent achievement in stochastic control theory, was first introduced in [1]
and is usually defined (see [12]) through a measure transformation that decouples the
observation from the state. The notion of information state in [12] has the advantage,
among others, that in the ε→ 0 limit it induces a quite natural notion of information
state for the limit dynamic game. However, when the partially observed control
problem is transformed into a totally observed one by means of the information state
in [12] one gets a value function which is, in general, unbounded. In order to use large
deviation techniques to control the ε → 0 limit of the value function, some growth
bounds are needed, and these bounds come from assumptions on the dynamics of the
model. The assumptions that will be given in section 4.3 would not imply any growth
bound. Our construction guarantees boundedness of the value function, and appears
to be more robust in terms of assumptions on the model.

4.3. Small parameter limit. In this section we investigate the limit of the
value function in (4.23) as ε → 0. We first introduce the basic assumptions on the
model that are needed to study the small parameter limit.

Assumption A.
1. For n = 0, . . . , N−1 the families of probability measures {P εn(dxn+1;xn, un) :
ε > 0, (xn, un) ∈ X ×U} are WULDF’s with rate functions HP

n (xn+1;xn, un),
and they are exponentially tight. In addition, the map (xn, un) →
P εn(dxn+1;xn, un) is weakly continuous.
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2. Let An = {(x, ξ, u) ∈ X × X × U : HP
n (x, ξ, u) < +∞}. Then for every

sequence (ξn, un)→ (ξ, u) there exists a corresponding sequence xn → x such
that HP

n (xn, ξn, un) → HP
n (x, ξ, u).

3. HP
n is jointly lower semicontinuous in (xn+1, xn, un).

4. For n = 1, . . . , N the families of probability measures {Qεn(dyn;xn) : ε > 0,
xn ∈ X} are WULDFs with finite and continuous rate functions HQ

n (yn;xn),
and they are exponentially tight.

5. The reference measure α on Y such that Qεn(dyn;xn) = qεn(yn;xn)α(dyn)
satisfies

inf
y∈K

α (B(y, γ)) > 0,

for every K ⊂ Y compact and γ > 0, where B(y, γ) is the ball centered
at y with radius γ. Moreover the density qεn(yn;xn) is jointly continuous in
(yn;xn).

6. For every K ⊂ Y compact, C ⊂ X compact and every δ > 0 there exist
δ′ > 0 and ε′ > 0 such that if y, y′ ∈ K and d(y, y′) < δ′ then |ε log qεn(y, x)−
ε log qεn(y′, x)| < δ for all x ∈ C and ε < ε′.

7. For every K ⊂ Y, C ⊂ X compact the functions ε log qεn(y, x) are uniformly
bounded from above on K×X and uniformly bounded from below on K×C
(uniformly means that the bound is independent of ε).

8. The functions gn appearing in the cost functional J(u) are continuous and
bounded.

Note that conditions 2–3 and 5–7 correspond to the assumptions of Proposi-
tions 3.4 and 3.7 respectively.

A sufficient condition for Assumption A to hold is provided by the following.
Assumption B.
1. Let W be a metric space. For n = 0, . . . , N − 1 let fn : X × U × W → X

be continuous functions and {µεn : ε > 0} be an exponentially tight family of
probability measures on W satisfying an LDP with rate function hn(w). The
probability measures P εn(dxn+1;xn, un) are defined by

P εn(A;xn, un) = µεn{w : fn(xn, un, wn) ∈ A}.
2. Let Y = Rd, and, for n = 1, . . . , N , let φn : X × Rd → Rd be continuous

functions. Moreover, let {νεn : ε > 0}, n = 1, . . . , N , be exponentially tight
families of probability measures satisfying an LDP with rate function kn(v),
that is finite and continuous. Suppose the following conditions are satisfied:
a) for every fixed x ∈ X the map v → φn(x, v) is a diffeomorphism in Rd.
Moreover the inverse map φ−1

n (x, y) and Dyφ
−1
n (x, y) are continuous on X ×

Rd, where Dy denotes differentiation with respect to y.
b) For every K ⊂ Rd compact, the map det(Dyφ

−1
n ) is bounded on X ×K.

c) νεn � dv, and {ε log
dνεn
dv : ε > 0} is a family of functions that, when

restricted to any compact subset of Rd, are equicontinuous and uniformly
bounded from below, and are uniformly bounded from above on all Rd.
The probability measures Qεn(dyn;xn) are defined by

Qεn(B;xn) = νεn{v : φn(xn, v) ∈ B}.
3. The functions gn appearing in the cost functional J(u) are continuous and

bounded.
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Note that, under Assumption B, the dynamics for Xn, Yn have the form

Xn+1 = fn(Xn, un,Wn),
Yn = φn(Xn, Vn),

where {W0, . . . ,WN−1, V1, . . . , VN} are independent random variables with Wn ∼ µεn
and Vn ∼ νεn.

The following fact will be proved in the Appendix.
Proposition 4.3. Assumption B implies Assumption A.
Example 4.5.
1. We give first some examples where Assumption B holds. Assume W = Rm.

Suppose also that, for n = 0, 1, . . . , N − 1, we are given Borel measurable
functions h̃n : Rm → R, k̃n : Rd → R such that
i) h̃n(w), k̃n(v)→ +∞ as ‖w‖ → +∞, ‖v‖ → +∞;

ii) e−h̃n , e−k̃n are integrable with respect to the Lebesgue measure;
iii) h̃n is almost everywhere (a.e.) bounded from below, and k̃n is continuous.
Then we can define

µεn(dw) =
e−ε

−1h̃n(w)dw∫
e−ε−1h̃n(w)dw

, νεn(dw) =
e−ε

−1k̃n(v)dv∫
e−ε−1k̃n(v)dv

.

Then µεn, ν
ε
n satisfy the requirements given in Assumption B, with correspond-

ing rate functions hn(w) = h̃n(w)− inf h̃n, kn(v) = k̃n(v)− inf k̃n. Note that
this example includes the Gaussian noise considered in [12].
To complete the description of the model we can assign any continuous func-
tions fn : X × U ×W → X for the state dynamic equations, while examples
of output functions φn satisfying Assumption B are provided by functions of
type

φn(x, v) = βn(x) + γn(x)v,

where βn : X → Rd, γn : X → L(Rd,Rd) are continuous functions and, for all
v ∈ Rd, the inequality ‖γn(x)v‖2 ≥ δ‖v‖2 holds for a constant δ independent
of x ∈ X . Note that no boundedness or growth assumptions on βn are
required.

2. Assumption A has the advantage of being more general than Assumption B,
and somewhat more directly usable in the proofs. Besides technical conve-
nience, the description of the model in terms of transition probabilities, rather
than difference equations with noise, may be more natural in some contexts,
e.g., when X and/or Y are finite sets. For instance, in the case of X finite,
one may consider transition probabilities of the form

P εn(xn+1;xn, un) =
e−ε

−1HPn (xn+1;xn,un)∑
z∈X e

−ε−1HPn (z;xn,un)
.(4.30)

If HP
n is finite and continuous in un, then (4.30) automatically satisfies 1–3 of

Assumption A. A similar transition mechanism can be defined for the output,
when Y is finite; if X and Y are both finite, conditions 4–7 of Assumption A
are trivially satisfied.
Dynamics of type (4.30) appear naturally in statistical mechanical models
of particle systems; in that context ε is a temperature parameter, while the
control un may be seen as an external field perturbing some “free” evolution.
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In what follows we will use objects defined in section 4.2. We find convenient to
give a list of all identities we are going to use, showing explicitly the dependence on ε:

P f,εn+1(B; zn+1) =

∫
X
( ∫

B
qεn+1(yn+1, xn+1)P εn(dxn+1;xn, un)

)
P f,εn (dxn; zn)∫

X
( ∫
X q

ε
n+1(yn+1, xn+1)P εn(dxn+1;xn, un)

)
P f,εn (dxn; zn)

,(4.31)

ρεn(zn+1) =

∫ (∫
qεn+1(yn+1, xn+1)P εn(dxn+1;xn, un)

)
P f,εn (dxn; zn),(4.32)

P I,εn+1(A; zn+1)

=

∫
X

(∫
A
eε
−1gn(xn,un)qεn+1(yn+1, xn+1)P εn(dxn+1;xn, un)

)
P I,εn (dxn; zn)

ρεn(zn+1)
,

(4.33)

Jε(u) = ε logE
{

exp ε−1
[
GεN (zN )

]}
,(4.34)

GεN (zN ) = ε log

∫
eε
−1gN (xN )P I,εN (dxN ; zN ),(4.35)

V εn(zn) = inf
u∈U

ε log

∫
exp ε−1[V εn+1(zn, u, yn+1)]PO,εn+1(yn+1; zn, u).(4.36)

Remark 4.6. By using Assumption B one checks by rather standard arguments
that the value functions V εn(zn) are continuous. By Remark 4.2 we know that they
are also bounded, and it is clear that the bound does not depend on ε.

We now give the main result of this section.
Theorem 4.4. There are functions Vn : Zn → R, for n = 0, . . . , N , such that

V εn → Vn uniformly on the compact subsets of Zn. Moreover the functions Vn satisfy
the following recursion.

VN (zN ) = supx

[
gN (x)−HI

N (x; zN )
]
,

Vn(zn) = infun supyn+1

[
Vn+1(zn, un, yn+1)−HO

n (yn+1; zn, un)
]
,

(4.37)

where HI
N , H

O
n are determined by the following recursions:

HI
0 (x) = Hf

0 (x)

{
0 if x = ξ,
+∞ otherwise,

HO
n (yn+1; zn, un) = inf

xn+1,xn

[
HQ
n+1(yn+1;xn+1) +HP

n (xn+1;xn, un)

+Hf
n(xn; zn)

]
,

(4.38)
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Hf
n+1(xn+1; zn+1) = HQ

n+1(yn+1;xn+1)

+ inf
xn

[
HP
n (xn+1;xn, un) +Hf

n(xn; zn)
]

(4.39)

−HO
n (yn+1; zn, un),

HI
n+1(x; zn+1) = HQ

n+1(yn+1;x)

+ inf
η∈X

[
HP
n (x, η, un) +HI

n(η, zn)− gn(η, un)
]

(4.40)

−HO
n (yn+1; zn, un).

Remark 4.7. We have observed above that the functions V εn are continuous and
bounded. It follows by Theorem 4.4 that also the functions Vn are continuous
and bounded. Indeed, in any metric space, uniform convergence on compact subsets
preserves continuity.

The proof of Theorem 4.4 is based on the following result, whose proof is given
at the end of this section.

Proposition 4.5. The three families {PO,εn (dyn+1; zn, un)}, n = 0, . . . , N − 1,
{P f,εn (dxn; zn)}, and {P I,εn (dxn, zn)}, n = 0, . . . , N, are WULDF with rate functions
HO
n , H

f
n , H

I
n, respectively.

In the proof of Theorem 4.4 we also use the following technical result, which we
prove in the appendix.

Lemma 4.6. Let E be a metric space, F be a compact metric space, and f ε :
E × F → R, ε ≥ 0, be a family of continuous functions such that f ε → f0 uniformly
on the compact subsets of E × F . Define gε : E → R by

gε(x) = inf
y∈F

f ε(x, y).

Then gε → g0 uniformly on the compact subsets of E.
Proof of Theorem 4.4. We prove the convergence V εn → Vn by backward induction

on n. For n = N the claim is an immediate consequence of (4.35) and Proposition 4.5.
We now prove the inductive step. Define

T εn(zn, u) = ε log

∫
exp ε−1[V εn+1(zn, u, yn+1)]PO,εn+1(yn+1; zn, u),(4.41)

so that

V εn(zn) = inf
u∈U

T εn(zn, u).(4.42)

By inductive assumption V εn+1(zn, u, yn+1) → Vn+1(zn+1) uniformly on the compact
subsets of Zn+1. Thus, by using Lemma 2.9 and Proposition 4.5,

T εn(zn, u)→ sup
yn+1∈Y

[
Vn+1(zn, u, yn+1)−HO

n (yn+1; zn, un)
]
.(4.43)

By (4.42) and Lemma 4.6 the conclusion follows.
Proof of Proposition 4.5. We prove by induction that HI

n and Hf
n are the rate

functions for P I,εn and P f,εn , respectively. The n = 0 case is clear, since the singleton

{δξ} is a WULDF with rate function HI
0 = Hf

0 . The inductive step, in both cases,
is a simple application of (4.31), (4.33), and Propositions 3.4 and 3.7. The fact that
HO
n is the rate function for PO,εn also follows for (4.12) and Proposition 3.4.
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4.4. Interpretation of the limit value function. In this section we show that
the limit value function Vn can be interpreted as the value function for a partially
observed dynamic game. Although this would not be necessary, for conceptual sim-
plicity Assumption B will be assumed throughout this section. Thus, the stochastic
dynamics for the risk-sensitive control problem are given, in short, by{

xn+1 = fn(xn, un, wn),
yn = φn(xn, vn)

(4.44)

with wn ∼ µεn and vn ∼ νεn. Now, consider the deterministic, zero-sum dynamic game
with dynamics given by (4.44) and cost functional

J(u) = sup
v,w

[N−1∑
n=0

(
gn(xn, un)− hn(wn)− kn+1(vn+1)

)
+ gN (xN )

]
(4.45)

defined for u ∈ ad(U). The supremum in (4.45) is over all sequences w = (w0, . . . , wN−1)
∈ WN , v = (v1, . . . , vN ) ∈ (Rd)N . Note that, for u ∈ ad(U) fixed, the expression in
(4.45) within square brackets is a function of w, v.

Proposition 4.7. The following identity holds for n = 0, . . . , N − 1:

sup

[ n∑
l=0

(
gl(xl, ul)− hl(wl)− kl+1(vl+1)

)
: (4.44) holds, and

w0, . . . , wn, v1, . . . , vn+1 are such that

(y0, . . . , yn+1, u0, . . . , un) = zn+1, xn+1 = x

]
= −HI

n+1(x; zn+1)−
n∑
k=0

HO
k (yk+1; zk, uk).

(4.46)

Proof. Under Assumption B, we can rewrite (4.40) as

HI
n+1(x; zn+1) = inf

η∈X
inf
w∈W

inf
v∈Rd

[
kn+1(v) + hn(w) +HI

n(η, zn)− gn(η, un)
(4.47)

: fn(η, un, w) = x, φn+1(x, v) = yn+1

]
−HO

n (yn+1; zn, un).

We prove (4.46) by induction on n. For n = 0 the claim follows using (4.47). Other-
wise, by using the inductive assumption and (4.47), we get

sup

[ n∑
l=0

(
gl(xl, ul)− hl(vl)− kl+1(vl+1)

)
: (4.44) holds, and

w0, . . . , wn, v1, . . . , vn+1 are such that (y0, . . . , yn+1, u0, . . . , un) = zn+1, xn+1 = x

]
= sup
η∈X

sup
w∈W

sup
v∈Rd

[
gn(η, un)− kn+1(v)− hn(w)−HI

n(η, zn) : fn(η, un, w) = x,

φn+1(x, v) = yn+1

]
−
n−1∑
k=0

HO
k (yk+1; zk, uk)

= −HI
n+1(x; zn+1)−

n∑
k=0

HO
k (yk+1; zk, uk).(4.48)
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Proposition 4.7 allows us to transform the dynamic game (4.44), (4.45) into a
totally observed one, in terms of the information vector

zn+1 = (zn, un, yn+1),(4.49)

J(u) = sup
y

[N−1∑
n=0

Gn(zn, un, yn+1) +GN (zN )

]
(4.50)

with

GN (zN ) = sup
x∈X

[
gN (x)−HI

N (x; zN )
]
,(4.51)

Gn(zn, un, yn+1) = −HO
n (yn+1; zn, un),(4.52)

and where the supremum in (4.50) is over all sequences y = (y1, . . . , yN ) ∈ YN . We
recall that the standard definition of the upper value function Vn(zn) for the dynamic
game (4.49), (4.50) is the infimum of

sup
yn+1,... ,yN

N−1∑
k=n

Gk(zk, uk, yk+1) +GN (zN )

over u ∈ ad(U) where the dynamics (4.49) start at time n from zn. A simple dynamic
programming argument yields the following.

Proposition 4.8. The upper value function Vn for the zero-sum, two-player
dynamic game (4.49), (4.50) is given by (4.37).

Remark 4.8. We have seen that the pair (P f,εn , P I,εn ) is an information state for the
risk-sensitive control problem. The corresponding pair (Hf

n , H
I
n) can be interpreted

as an information state for the limit dynamic game. In fact, the following totally
observed dynamic game with state variables (Hf

n , H
I
n) is equivalent to (4.49), (4.50):

Hf
n+1(x) = HQ

n+1(yn+1;x) + inf
η

[
HP
n (xn+1; η, un) +Hf

n(η)
]

(4.53)

− inf
x

{
HQ
n+1(yn+1;x) + inf

ξ

[
HP
n (xn+1; ξ, un) +Hf

n(ξ)
]}
,

HI
n+1(x) = HQ

n+1(yn+1;x) + inf
η∈X

[
HP
n (x, η, un) +HI

n(η)− gn(η, un)
]

(4.54)

− inf
x

{
HQ
n+1(yn+1;x) + inf

ξ

[
HP
n (xn+1; ξ, un) +Hf

n(ξ)
]}
,

J(u) = sup
y

{
−
N−1∑
n=0

inf
x

{
HQ
n+1(yn+1;x) + inf

ξ

[
HP
n (xn+1; ξ, un) +Hf

n(ξ)
]}

(4.55)

+ sup
x∈X

[
gN (x)−HI

N (x)
]}
.

It should be noticed that there is a simpler notion of information state for the dynamic
game (4.44)–(4.45), given by the real valued function Kn : X → R, evolving according
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to the equation

Kn+1(x) = HQ
n+1(yn+1;x) + inf

η∈X

[
HP
n (x, η, un) +Kn(η)− gn(η, un)

]
.(4.56)

It can be shown that

J(u) = sup
y

sup
x∈X

[
gN (x)−KN (x)

]
.(4.57)

It can be proved that the function Kn(x) is the rate function of a WULDF that is
recursively defined as in (4.33) where the denominator ρεn is dropped. The measure
obtained in this way is closely related to the information state in [12]; the use of
this measure in place of P In gives rise to an unbounded value function, posing serious
difficulty to the small parameter analysis.

Example 4.9. In the case X = Rp,

µεn(dw) =
1

(2πε)p/2
e−

1
2ε ||w||2dw, and νεn(dv) =

1

(2πε)d/2
e−

1
2ε ||v||2dv,

we have hn(w) = 1
2 ||w||2 and kn(w) = 1

2 ||v||2, and we recover the model in [12], but
with much more general equations for the dynamics.

5. The completely observed case. The risk-sensitive control problems satis-
fying Assumption A do not include the completely observed case (Yn = Xn). It is
clear, however, that the method used in this paper can easily be directly applied to
the dynamic programming equation of a completely observed problem.

Consider a probability space (Ω,F , P ) with a filtration (Fn)Nn=0. Define ad(U),
the set of admissible controls, to be the set of the Fn-adapted U-valued processes.
For u ∈ ad(U), we let Xε,u

n be the Fn-adapted X -valued process such that

P{Xε,u
n+1 ∈ · |Fn} = P εn(· ;Xε,u

n , un).

The cost functional is as in (4.7), but defined in this new set of admissible controls.
Consider the value function

V εn(x) = inf
u∈ ad(U)

ε logE

{
exp

[
ε−1

(N−1∑
k=n

gk(Xn, un) + gN (XN )

)]}
.

The following result is proved by induction as in Theorem 4.4. Note that the assump-
tions needed are much weaker than those of a similar result given in [4].

Theorem 5.1. Assume that part 1 of either Assumption A or B holds. Then
there are functions Vn such that V εn → Vn as ε → 0, uniformly on compact subsets
of X .

Moreover, if part 1 of Assumption B holds, then Vn is the upper value function
for the deterministic dynamic game with dynamic given by

xn+1 = fn(xn, un, wn),

and with cost functionals given by

J(u) = sup
w

[N−1∑
n=0

(
gn(xn, un)− hn(wn)

)
+ gN (xN )

]
.
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6. Appendix.

6.1. Proof of Proposition 4.3. Properties 1 and 4 of Assumption A follow
from Proposition 2.5 and Lemma 2.7.

In the rest of the proof we drop the index n everywhere.
Proof of property 2. Suppose (x, ξ, u) ∈ A, i.e., HP (x; ξ, u) < ∞. First note

that since the set {w : f(ξ, u, w) = x} is closed, then there is w ∈ W such that
f(ξ, u, w) = x and h(w) = HP (x; ξ, u).

Suppose now that we have a sequence (ξk, uk)→ (ξ, u). We construct a sequence
xk → x such that HP (xk; ξk, uk) → HP (x; ξ, u). Define xk = f(ξk, uk, w). By
continuity of f , we have that xk → x. Then let wk be such that xk = f(ξk, uk, wk)
and h(wk) = HP (xk; ξk, uk). Clearly h(wk) ≤ h(w), and therefore the sequence wk
has a convergent subsequence wnk → w′. By lower semicontinuity of h we have

h(w′) ≤ lim inf h(wnk) ≤ h(w).(6.1)

But, again by continuity of f , we also have x = f(ξ, x, w′), and therefore

h(w′) ≥ h(w).(6.2)

By (6.1) and (6.2) we have

lim
k
h(wk) = h(w)

as desired.
Proof of property 3. Consider a sequence (xk, ξk, uk) → (x, ξ, u). We must show

that

lim inf HP (xk; ξk, uk) ≥ HP (x; ξ, u).(6.3)

It is enough to prove this statement: Suppose there is a subsequence (xnk , ξnk , unk)
such that

lim
k
HP (xnk ; ξnk , unk) = l <∞;(6.4)

then l ≥ HP (x; ξ, u).
To prove this, let wnk be such that xnk = f(ξnk , unk , wnk) and h(wnk) = HP (xnk ;

ξnk , unk). By (6.4), the sequence wnk has a limit point w. By continuity of f ,
f(ξ, u, w) = x, and therefore h(w) ≥ HP (x; ξ, u). Finally, by lower semicontinuity
of h,

l = lim
k
h(wnk) ≥ h(w) ≥ HP (x; ξ, u)

which completes the proof of property 3.
Proof of properties 5 and 6. Letting

ρε =
dνε

dv

we easily get

ε log qε(y;x) = ε log ρε(φ−1(x, y)) + ε log
∣∣∣det

(
Dyφ

−1(x, y)
)∣∣∣.(6.5)
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Property 5 follows from (6.5), equicontinuity of ε log ρε, continuity of φ−1, and the
fact that the function log |det(Dyφ

−1)|, being continuous, is bounded on the compact
subsets of X × Rd. Property 6 follows from (6.5) and boundedness of ε log ρε and
det(Dyφ

−1).
The only things left to prove are the finiteness and continuity of the rate function

HQ. This follows from finiteness and continuity of k and the identity

HQ(y;x) = k(φ−1(x, y)).

6.2. Proof of Lemma 4.6. We first show that, for ε ≥ 0, gε is continuous. We
omit the index ε in this part of the proof. Upper semicontinuity is obvious. To prove
lower semicontinuity, observe that, due to the compactness of F , for every x ∈ E
there is a “minimizer” y ∈ F such that g(x) = f(x, y). So let xn → x, and yn be the
corresponding sequence of minimizers. We have to show that

lim inf g(xn) ≥ g(x).

To do so, it is not restrictive to assume that the sequence g(xn) has limit. Moreover,
let y be a limit point of {yn}. We have:

lim g(xn) = lim f(xn, yn) = f(x, y) ≥ g(x).

Thus the functions gε, ε ≥ 0, are continuous.
Now, let K ⊂ E be compact. Let δ > 0 be arbitrary, and let ε′ > 0 be such that

for every ε < ε′ ∣∣∣f ε(x, y)− f0(x, y)
∣∣∣ < δ(6.6)

for any x ∈ K, y ∈ F . Given x ∈ K, let yε be such that gε(x) = f ε(x, yε). By (6.6),
for ε < ε′ and x ∈ K,

gε(x) = f ε(x, yε) ≥ f0(x, yε)− δ ≥ g0(x)− δ.
To complete the proof we have to show that there exists ε′′ such that for any ε < ε′′

gε(x) ≤ g0(x) + δ(6.7)

for all x ∈ K. Suppose, by contradiction, that there is no such ε′′. Then there is a
sequence εn → 0 and a corresponding sequence xn in K such that

gεn(xn) > g0(xn) + δ(6.8)

for all n. Denote by x a limit point of {xn} and by y a limit point of the sequence of
minimizers yεnn . By possibly passing to subsequences, we may assume that {xn} → x
and yεnn → y. Thus

lim
n
gεn(xn) = lim

n
f εn(xn, y

εn
n ) = f0(x, y).(6.9)

On the other hand, by continuity of g0,

lim
n
g0(xn) = g0(x).(6.10)

Thus, by (6.8), (6.9), and (6.10) we have f0(x, y) ≥ g0(x) + δ. Therefore, there is a
y′ with f0(x, y) ≥ f0(x, y′) + δ. This implies

lim
n

[f εn(xn, y
εn
n )− f εn(xn, y

′)] ≥ δ,
which is impossible since f εn(xn, y

εn
n ) = infz f

εn(xn, z).
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Abstract. In this paper we derive generalized necessary conditions for optimality for an op-
timization problem with equality and inequality constraints in a Banach space. The equality con-
straints are given in operator form as Q = {x ∈ X : F (x) = 0} where F : X → Y is an operator
between Banach spaces; the inequality constraints are given by smooth functionals or by closed con-
vex sets. Models of this type are common in the optimal control problem. The paper addresses
the case when the Fréchet-derivative F ′(x∗) is not onto and hence the classical Lyusternik theorem
does not apply to describe the tangent space to Q. In this case the classical Euler–Lagrange type
necessary conditions are trivially satisfied, generating abnormal cases. A high-order generalization of
the Lyusternik theorem derived earlier [U. Ledzewicz and H. Schättler, Nonlinear Anal., 34 (1998),
pp. 793–815] is used to calculate high-order tangent cones to the equality constraint at points x∗ ∈ Q
where F ′(x∗) is not onto. Combining these with high-order approximating cones related to the other
constraints of the problem (feasible cones respectively cones of decrease) a high-order generalization
of the Dubovitskii–Milyutin theorem is given and then applied to derive generalized necessary condi-
tions for optimality. These conditions reduce to classical conditions for normal cases, but they give
new and nontrivial conditions for abnormal cases.

Key words. Lyusternik theorem, high-order necessary conditions, high-order tangent sets,
high-order necessary conditions for optimality, abnormal processes
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1. Introduction. We consider the problem of minimizing a functional I : X →
R in a Banach space X under both equality and inequality constraints. The inequality
constraints are of two types, described by smooth functionals f : X → R as P = {x ∈
X : f(x) ≤ 0} or described by closed convex sets C. The equality constraints are
given in operator form as Q = {x ∈ X : F (x) = 0} where F : X → Y is an operator
between Banach spaces. Lagrange multiplier type necessary conditions for optimality
at the point x∗ in the form of an Euler–Lagrange equation,

λ0I
′(x∗) +

m∑
j=1

λjf
′
j(x∗) + F ′∗(x∗)y∗ = 0,(1.1)

while not all of the multipliers λ0, . . . , λm, y
∗ are zero, can be derived (see, for in-

stance, [8, 11]) from approximations to the equality constraints (tangent sets, respec-
tively, tangent cones), the inequality constraints (feasible sets/cones) and the direc-
tions of decrease for the functional to be minimized (sets/cones of decrease). However
this necessary condition can be satisfied in a trivial way for any point x∗ ∈ Q, where
the equality constraints are not regular in the sense that F ′(x∗) is not onto. Assuming
that ImF ′(x∗) is closed, then it is possible simply to choose a nontrivial multiplier
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which annihilates ImF ′(x∗) and set all other multipliers to zero, and this choice will
satisfy the Euler–Lagrange equation. But clearly this describes only the equality
constraint degeneration without any relation to optimality.

One method to overcome the difficulty of abnormality known as “weakening equal-
ity constraints” was introduced by Milyutin in [20] and was investigated further by
Dmitruk in [7]. In this method, which applies to extremum problems where the degen-
erate part of the operator F has a finite-dimensional image, a penalty-type approach
is pursued where the degenerate equality constraints are replaced by inequality con-
straints. Here we pursue a different approach based on a p-order generalization of
the Lyusternik theorem derived earlier [16] which determines the precise structure
of polynomial approximations to Q at x∗ when the surjectivity condition on F ′(x∗)
is not satisfied but when instead a certain operator Gp which takes into account all
derivatives up to and including order p is onto. The order p can be arbitrary, and it
will be chosen precisely as the minimum number for which the operator Gp becomes
onto. If Gp is onto, then the precise structure of q-order polynomial approximations
to Q at x∗ for any q ≥ p can be determined. Thus our result can be used in connection
with appropriate approximations to inequality constraints and directions of decrease
for the functional I to derive generalized necessary conditions for optimality based on
expansions of increasing orders q. In this paper we describe this framework and the
relevant structures for q = p. Extensions to q ≥ p are rather straightforward and will
not be pursued here.

First results of this type have been obtained in the work of Avakov [3, 4, 5] and
in our own work [13, 14] for the case of p = 2. Some of these conditions have been an-
alyzed further by Arutyunov [1, 2]. The paper by Izmailov [12] also analyzes the case
p = 2, but for inequality constraints. In our own previous work we have embedded
Avakov’s results into a second order Dubovitskii–Milyutin theory within the frame-
work of second-order approximating cones [14]. This was achieved by introducing a
reparametrization variable. However, this approach does not directly generalize to an
arbitrary order p. In this paper we present a different approach which for any order
p generates approximating cones in the extended state-space X × R and is equiva-
lent to the reparametrization for p = 2. Based on these p-order approximating cones
we then formulate a p-order version of the Dubovitskii–Milyutin theorem, which we
use to derive necessary conditions for optimality. These conditions for optimality are
nontrivial also for nonregular constraints or abnormal processes due to the use of the
p-order generalization of the Lyusternik theorem proved in [16]. Although derived
by means of general p-order approximations, the conditions generalize the classical
Euler–Lagrange equation and provide a nonnegativity condition to distinguish be-
tween minimizing and maximizing extremals. We therefore call them generalized
necessary conditions for optimality rather than high-order conditions. They reduce
to classical conditions for normal cases, but they are generalized in the sense that
they give new and nontrivial conditions for abnormal cases.

The paper is organized as follows: In section 2 we define p-order approximating
sets and cones. The definitions of p-order approximations are by standard polynomial
expansions and are similar to the variational sets of order p defined in [9] or to its
nonsmooth extensions considered in [21]. Our idea is to embed them into a conical
structure which has the advantage that classical and well-known results can be used
in the calculation of dual and polar cones thus simplifying the analysis. In this section
we also give a p-order version of the Dubovitskii–Milyutin theorem [8] which we use to
derive the necessary conditions for optimality. In section 3 we describe p-order tangent
cones for nonregular equality constraints while we analyze p-order sets and cones of
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decrease in section 4. In section 5 we include a brief derivation of the generalized
necessary conditions for optimality for a minimization problem in a Banach space
with smooth operator equality constraints. For this problem there is an equivalence
between the occurrence of abnormal points and points at which the equality constraint
is nonregular. Also this derivation does not use the Dubovitskii–Milyutin framework,
but is based on the geometry of the approximations and thus gives insight into the
geometric meaning of the necessary conditions. In section 6 we then consider p-order
feasible sets and cones to inequality constraints. We include the cases of inequality
constraints described both by smooth functionals as well as inequality constraints
given by closed convex sets to create a model which can be applied to the optimal
control problem.

Then in section 7 we implement all these results on p-order approximating cones
into the Dubovitskii–Milyutin framework and formulate generalized necessary con-
ditions for optimality for our problem. Our results differ from existing first- and
second-order necessary conditions for optimality like, for instance, those in [6, 9, 10,
19, 21, 22, 23] by giving conditions which are nontrivial for both regular and nonreg-
ular cases. Probably the closest results to ours among the long list of publications
which derive necessary conditions for extremum problems assuming regularity of the
equality constraints are the maximum principles of pth order by Hoffmann and Korn-
staedt in [9, Theorems 5.1 and 5.2]. These results are also derived using p-order
approximations, but they become trivial in the case of nonregular constraints. Our
results developed here give a general (i.e., p-order) version of our results in [14] which
were based on second-order approximations. Like this earlier version, the new re-
sults directly apply to the optimal control problem [15], but this formulation will be
pursued elsewhere [17].

2. A high-order formulation of the Dubovitskii–Milyutin theorem. In
this paper we derive generalized necessary conditions for optimality based on general
p-order approximations for smooth extremum problems in Banach spaces with op-
erator equality constraints and inequality constraints given both by functionals and
closed convex sets. We recall that a constraint is called an inequality constraint if the
set of admissible points has nonempty interior, while it is called an equality constraint
otherwise. In this section we formulate a version of the Dubovitskii–Milyutin theorem
which gives general abstract necessary conditions for optimality based on high-order
approximations and corresponding high-order approximating cones to the constraints
and to the objective. The motivation is to consider p-order polynomial approximations
along a given (p − 1)-order polynomial approximating curve for which the necessary
conditions were still inconclusive or even trivially satisfied as for abnormal points.
The order p itself can be arbitrary.

Let X and Y be Banach spaces, let I : X → R be a functional, F : X → Y an
operator, fj : X → R, j = 1, . . . ,m, functionals and let C ⊂ X be a closed convex
set with nonempty interior. We assume that I, the functionals fj , and the operator
F are sufficiently often continuously Fréchet-differentiable and consider the following
problem.

Problem (M).
Minimize I over all x ∈ X which satisfy
· the inequality constraints x ∈ Pj = {x ∈ X : fj(x) ≤ 0} for j = 1, . . . ,m,
· the equality constraint x ∈ Q = {x ∈ X : F (x) = 0}, and
· the convex inequality constraint x ∈ C.

The set A = ∩mj=1Pj ∩ Q ∩ C is called the admissible domain. We investigate
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the structure of high-order polynomial approximations to A. We denote sequences
(h1, . . . , hk) ∈ Xk by Hk with the subscript giving the length of the sequence. The
following definition is standard (see, for instance, [9]).

Definition 2.1. Let Hp−1 = (h1, . . . , hp−1) ∈ Xp−1 and set x(ε)
.
= x∗ +∑p−1

i=1 ε
ihi. We call Hp−1 a (p − 1)-order approximating sequence to a set S ⊆ X

at x∗ ∈ Clos S; respectively, we call x : ε 7−→ x(ε) a (p − 1)-order approximating
curve if there exist an ε0 > 0 and a function r defined on [0, ε0] with values in X,
r : [0, ε0]→ X, with the property that for ε > 0

x(ε) + r(ε) = x∗ +

p−1∑
i=1

εihi + r(ε) ∈ S(2.1)

and

lim
ε→0

||r(ε)||
εp−1

= 0.(2.2)

Using the standard Landau notation we say that the function r is of order o(εp−1)
as ε → 0. Also, we call a (p − 1)-order approximating sequence/curve (p − 1)-order
feasible if S is an inequality constraint (respectively, (p − 1)-order tangent if S is an
equality constraint).

Let x∗ ∈ F and assume as given a (p− 1)-order approximating sequence Hp−1 =
(h1, . . . , hp−1) ∈ Xp−1 with corresponding (p − 1)-order approximation x(ε)

.
= x∗ +∑p−1

i=1 ε
ihi. It is implicitly assumed that x∗ has not been ruled out for optimality.

(For instance, since the functional I was decreasing along the corresponding (p −
1)-order approximating curve or simply by using other approximating sequences.)
Then we would like to extend the existing (p − 1)-order approximations to p-order
approximations and derive the corresponding necessary conditions for optimality. In
this section we give the general definitions and formulate these ideas precisely. In
the following sections we will describe how these extensions are done. The following
definitions are direct generalizations of standard existing definitions as can be found
in [8], for instance.

Definition 2.2. We call v0 a p-order vector of decrease for a functional I : X →
R at x∗ ∈ X in the direction of the sequence Hp−1 = (h1, . . . , hp−1) ∈ Xp−1 if there
exist a neighborhood V of v0 and a number α < 0 so that for all v ∈ V we have

I

(
x∗ +

p−1∑
i=1

εihi + εpv

)
= I(x(ε) + εpv) ≤ I(x∗) + αεp.(2.3)

The collection of all p-order vectors of decrease for I at x∗ in the direction of the
sequence Hp−1 will be called the p-order set of decrease to I at x∗ in the direction of
the sequence Hp−1 and will be denoted by DS(p)(I;x∗, Hp−1).

Definition 2.3. We call v0 a p-order feasible vector for an inequality constraint
P at x∗ ∈ X in direction of Hp−1 if there exist an ε0 > 0 and a neighborhood V of v0

so that for all 0 < ε ≤ ε0

x∗ +

p−1∑
i=1

εihi + εpV = x(ε) + εpV ⊂ P.(2.4)

The collection of all p-order feasible vectors v0 for P at x∗ in the direction of the
sequence Hp−1 will be called the p-order feasible set to P at x∗ in the direction of the
sequence Hp−1 and will be denoted by FS(p)(P ;x∗, Hp−1).
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Note that by definition the p-order set of decrease to I and the p-order feasible
set to P, both at x∗ in direction of the sequence Hp−1, are open.

Definition 2.4. We call hp a p-order tangent vector to an equality constraint
Q at x∗ in the direction of the sequence Hp−1 if Hp = (h1, . . . , hp−1, hp) ∈ Xp is a
p-order approximating sequence to the set Q at x∗ ∈ Q. The collection of all p-order
tangent vectors to Q at x∗ in the direction of the sequence Hp−1 will be called the p-
order tangent set to Q at x∗ in the direction of the sequence Hp−1 and will be denoted
by TS(p)(Q;x∗, Hp−1).

Rather than working with approximating sets as is done for instance by Ben-
Tal and Zowe in [6], we prefer to embed these approximating sets into cones in the
extended state-space X × R. This has the advantage that many classical results
like the Minkowski–Farkas lemma or the annihilator lemma can be directly applied
in calculating dual cones (see also [14]). Let us generally refer to p-order sets of
decrease, feasible sets and tangent sets as p-order approximating sets and denote
them by AS(p)(Z;x∗, Hp−1). Then we define the corresponding approximating cones
as follows.

Definition 2.5. Given a p-order approximating set AS(p)(Z;x∗, Hp−1) to a set
Z ⊂ X at x∗ in direction of the sequence Hp−1, the p-order approximating cone to Z
at x∗ in direction of Hp−1, AC

(p)(Z;x∗, Hp−1), is the cone in X×R generated by the
vectors (v, 1) ∈ AS(p)(Z;x∗, Hp−1)× R, i.e.,

AC(p)(Z;x∗, Hp−1) =
⋃
γ>0

γ
(
AS(p)(Z;x∗, Hp−1)× {1}

)
.(2.5)

Thus we talk of the p-order cone of decrease for the functional I, p-order feasible
cones for inequality constraints and p-order tangent cones for equality constraints, all
at x∗ in direction of the sequence Hp−1.

Definition 2.6 (see [8]). Let C ⊆ Z be a cone in a Banach space Z with apex at
0. The dual (or polar) cone to C consists of all continuous linear functionals λ ∈ Z∗
which are nonnegative on C, i.e.,

C∗ = {λ ∈ Z∗ : 〈λ, v〉 ≥ 0 for all v ∈ C}.(2.6)

We are now ready to state and prove a general p-order formulation of the classical
Dubovitskii–Milyutin theorem [8, Lemma 5.11].

Theorem 2.7. Suppose the functional I attains a local minimum for problem
(M) at x∗ ∈ A. Let Hp−1 = (h1, . . . , hp−1) ∈ Xp−1 be a (p− 1)-order approximating
sequence such that the p-order cone of decrease for the functional I, the p-order feasible
cones for the inequality constraints Pj , j = 1, . . . ,m, and C, and the p-order tangent
cone to the equality constraint Q, all at x∗ in direction of the sequence Hp−1, are
nonempty and convex. Then there exist continuous linear functionals

Ψ0 = (λ0, µ0) ∈
(
DC(p)(I;x∗, Hp−1)

)∗
,(2.7)

Ψj = (λj , µj) ∈
(
FC(p)(fj ;x∗, Hp−1)

)∗
, j = 1, . . . ,m,(2.8)

Ω = (λm+1, µm+1) ∈
(
FC(p)(C;x∗, Hp−1)

)∗
(2.9)
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and

Φ = (λm+2, µm+2) ∈
(
TC(p)(Q;x∗, Hp−1)

)∗
,(2.10)

all depending on Hp−1, such that the generalized Euler–Lagrange equation

m+2∑
j=0

λj ≡ 0(2.11)

and the condition

m+2∑
j=0

µj ≡ 0(2.12)

hold. Furthermore, not all the λj , j = 0, 1, . . . ,m+ 2, vanish identically.
Proof. By assumption all p-order approximating cones at x∗ in direction of the

sequence Hp−1 are nonempty and convex. Since x∗ is optimal, the intersection of
these cones must be empty. For, if (w, γ) lies in this intersection, then setting v = w

γ

we have in particular that H = (h1, . . . , hp−1,v) is a p-order approximating sequence
to the equality constraint Q at x∗ ∈ Q. Hence there exists an ε0 > 0 and a function
r defined on [0, ε0] with values in X, r : [0, ε0] → X, which is of order o(εp) as

ε → 0, with the property that γ(ε)
.
= x∗ +

∑p−1
i=1 ε

ihi + εpv + r(ε) ∈ Q. But this
curve is admissible for problem (P) since it also satisfies the inequality constraints
and the functional I decreases along the curve γ(ε). This contradicts the optimality
of x∗.

Since by definition the p-order cones of decrease for I, DC(p)(I;x∗, Hp−1), the
p-order feasible cones FC(p)(Pj ;x∗, Hp−1) for j = 1, . . . , p, and the p-order feasible
cone FC(p)(C;x∗, Hp−1) are open, it therefore follows from the classical Dubovitskii–
Milyutin lemma [8, Lemma 5.11] that there exist linear functionals in the respective

dual cones Ψ0 ∈
(
DC(p)(I;x∗, Hp−1)

)∗
, Ψj ∈

(
FC(p)(fj ;x∗, Hp−1)

)∗
, j = 1, . . . ,m,

Ω ∈ (FS(p)(C;x∗, Hp−1)
)∗

and Φ ∈ (TC(p)(Q;x∗, Hp−1)
)∗
, which are not all identi-

cally zero, so that

Ψ0 +

m∑
j=1

Ψj + Ω + Φ ≡ 0.(2.13)

Writing Ψj = (λj , µj), j = 0, 1, . . . ,m, Ω = (λm+1, µm+1), and Φ = (λm+2, µm+2),
(2.11) and (2.12) follow. Furthermore, the nontriviality of the multipliers Ψj , j =
0, . . . ,m, Ω, and Φ is actually equivalent to the nontriviality of the multipliers λj , j =
0, 1, . . . ,m + 2. For, if λj vanishes identically, then µj ≥ 0 since (λj , µj) lies in the
dual to a cone in X × R+. Thus, if all the λj , j = 0, . . . ,m + 2, vanish identically,

then µj ≥ 0 for all j = 0, . . . ,m+ 2. But by (2.12) also
∑m+2
j=0 µj ≡ 0, and thus all µj

are zero as well contradicting the nontriviality of the multipliers Ψj , j = 0, . . . ,m, Ω
and Φ.

This theorem provides the general mechanism to derive generalized necessary
conditions for optimality. In the next sections we derive the structure of general p-
order approximating cones and their duals, starting in section 3 with the most difficult
construction, p-order tangent cones.
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3. High-order approximations for equality constraints.

3.1. A high-order generalization of the Lyusternik theorem. We briefly
recall the p-order Lyusternik theorem [16] and the required notation: X and Y are
Banach spaces, F : X → Y is an operator, and Q = {x ∈ X : F (x) = F (x∗)}.
Assuming that F : X → Y is sufficiently often continuously Fréchet differentiable in
a neighborhood of x∗, we consider the Taylor expansion of F along a curve γ(ε) =
x∗ +

∑m
i=1 ε

ihi. We have

F (x∗ +
m∑
i=1

εihi) = F (x∗) +
m∑
i=1

εi∇iF (x∗)(h1, . . . , hi) + r̃(ε),(3.1)

where

∇iF (x∗)(h1, . . . , hi)
.
=

i∑
r=1

1

r!

 ∑
j1+...+jr=i

F (r)(x∗)(hj1 , . . . , hjr )

(3.2)

and r̃(ε) is a function of order o(εm) as ε → 0. We call the quantities the ith-order
directional derivatives along the sequence Hi = (h1 . . . , hi), 1 ≤ i ≤ m. The higher-
order directional derivative no longer acts linearly, but ∇iF (x∗) is homogeneous of
degree i in the sense that

∇iF (x∗)(εh1, . . . , ε
ihi) = εi∇iF (x∗)(h1, . . . , hi).

In particular, no indices j1and j2 with j1 + j2 > i can occur together as argu-
ments in any of the terms in ∇iF (x∗). Thus all the vectors hj whose index sat-
isfies 2j > i appear linearly and in separate terms. There are linear operators
Gk = Gk[F ](x∗;Hk−1), k ∈ N, depending on the derivatives up to order k of F
in the point x∗ (i.e., the k-jet of F in x∗) and the vectors Hk−1 = (h1, . . . , hk−1),
which describe the contributions of these components. In fact, for k ∈ N we have
Gk = Gk[F ](x∗;Hk−1) : X → Y, v 7−→ Gk(v), defined by

Gk[F ](x∗;Hk−1)(v) =
k−1∑
r=0

1

r!

 ∑
j1+...+jr=k−1

F (r+1)(x∗)(hj1 , . . . , hjr , v)

 .(3.3)

For simplicity of notation we often suppress the arguments. For example, we write

G1 (v) = F ′(x∗)v, G2 (v) = F ′′(x∗)(h1, v),

G3(v) = F ′′(x∗)(h2, v) +
1

2
F ′′′(x∗)(h1, h1, v).

Given an order p we can therefore separate the linear contributions of the vectors
hp, . . . , h2p−1 in derivatives of orders p through 2p− 1 and have for i = 1, . . . , p that

∇p−1+iF (x∗)(h1, . . . , hp−1+i) =

(
i∑

k=1

Gk[F ](x∗;Hk−1)(hp+i−k)

)
+Rp−1,i[F ](x∗;Hp−1).(3.4)

Here the sum gives all the terms which contain a vector hp, . . . , hp−1+i, and the
remainder R combines all the remaining terms which only include vectors of index
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≤ p−1. Similar to the operators Gk the remainders R depend on the (p−1 + i)-jet of
the operator F at x∗, but if the map is clear we omit it in the notation. The general
structure of these remainders is given by

R`,i[F ](x∗;H`) =
`+i∑
r=2

1

r!


∑

j1 + · · ·+ jr = `+ i
1 ≤ jk ≤ `, 1 ≤ k ≤ r

F (r)(x∗)(hj1 , . . . , hjr )

 .(3.5)

Thus R`,i consists of the terms which are homogeneous of degree ` + i, but only
involve vectors from H`. In particular, the remainders only have contributions from
derivatives of at least order two. In our applications ` = p − 1 and i = 1, . . . , p, but
the structure above is general.

Definition 3.1. We say the operator F is p-regular at x∗ in direction of the
sequence Hp−1 ∈ Xp−1if the following conditions are satisfied:

(A1) F : X → Y is (2p − 1)-times continuously Fréchet differentiable in a neigh-
borhood of x∗.

(A2) The subspaces Yi, i = 1, . . . , p,

Yi =
i∑

k=1

ImGk =
i∑

k=1

ImGk[F ](x∗;Hk−1)

are closed. Also let Y0 = {0}.
(A3) The map Gp = Gp[F ](x∗;Hp−1)

Gp : X → Z
.
= Y1 × Y2/Y1 × · · · × Y/Yp−1,(3.6)

v 7→ Gp(v) = (G1(v), π1G2(v), . . . , πp−1Gp(v)) ,

where the πi : Yi+1 → Yi+1/Yi denote the canonical projections into the
quotient space, is onto.

In the sense of this definition 1-regularity then corresponds to the classical Lyusternik
condition, while 2-regularity is similar to Avakov’s definition [3].

The p-order Lyusternik theorem proven in [16] gives a precise description of the
p-order approximating sequences for a p-regular operator.

Theorem 3.2 (p-order Lyusternik theorem). Let Hp−1 = (h1, . . . , hp−1) ∈ Xp−1

be given such that the ith directional derivatives of F vanish along Hi for i =
1, . . . , p− 1,

∇iF (x∗)(Hi) = 0 for i = 1, . . . , p− 1,(3.7)

and suppose the operator F is p-regular at x∗ in direction of the sequence Hp−1. Then
Hp = (h1, . . . , hp) ∈ Xp is a p-order approximating sequence to the set Q at x∗ ∈ Q
if and only if the following conditions hold for i = 1, . . . , p:

Gi[F ](x∗;Hi−1)hp +Rp−1,i[F ](x∗;Hp−1) ∈ Yi−1.(3.8)

We include a brief motivation of Theorem 3.2 and an outline of its proof. Full
details are given in [16]. The conditions can be understood by looking at the Taylor
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expansion of F along a curve x(ε) = x∗ + εh1 + ε2h2 + · · · . For reasons of simplicity,
we consider the case p = 2:

F (x(ε)) = F (x∗) + εF ′(x∗)h1 + ε2(F ′(x∗)h2 +
1

2
F ′′(x∗)(h1, h1))

+ε3(F ′(x∗)h3 + F ′′(x∗)(h1, h2) +
1

6
F ′′′(x∗)(h1, h1, h1)) + o(ε3).

Clearly we must have F ′(x∗)h1 = 0. This term cannot be affected by choosing higher-
order directions and therefore must vanish generating (3.7). But if F is not regular
at x∗, then F ′(x∗)h1 = 0 is no longer sufficient for h1 to be a tangent vector to Q
at x∗. For, if F ′′(x∗)(h1, h1) /∈ ImF ′(x∗), then it is not possible to choose h2 to
make the term at ε2 vanish. Even stronger, we need to be able to choose h2 so that
it simultaneously cancels the quadratic term and reduces the cubic term to a vector
which lies in ImF ′(x∗). Only then it is possible to choose h3 to make the term at ε3

zero. This generates the two conditions in (3.8). The necessity of the conditions in
Theorem 3.2 follows along these lines in general.

In order to prove sufficiency if F is p-regular at x∗ in direction of the sequence
Hp−1, we construct the remainder term r in the definition of p-order approximating
sequences using Newton’s method. This is the essential step of the argument and we
briefly outline how it is done.

By (A2) the spaces Yi, i = 1, . . . , p − 1, are closed and therefore are Banach
spaces. So then are the quotient spaces Yi+1/Yi, i = 1, . . . , p − 1, and their product
Z

.
= Y1 × Y2/Y1 × · · · × Y/Yp−1. By (A3) the linear and continuous operator Gp :

X → Z has a bounded right inverse Hp : Z → X, i.e., Gp(x∗, Hp−1) ◦ Hp = idZ , and
there exists a constant C such that ||Hp(z)|| ≤ C||z|| for all z ∈ Z. Let U = {x ∈
X : ||x − x∗|| < δ} be a sufficiently small neighborhood of x∗ so that F is p-times
continuously differentiable on U . By choosing ε0 sufficiently small the entire curve
x (ε) = x∗ +

∑p
i=1 ε

ihi, 0 ≤ ε ≤ ε0 lies in U . Henceforth we consider one point x (ε)
on this curve; i.e., ε will be fixed. The desired function r is found by constructing
a solution to the equation F (x) = F (x∗) using Newton’s method. To this end set

x0 = x(ε), z
(i)
0 = εp+iyi, for i = 1, . . . , p− 1, and then define

ς0 = z
(p)
0 = F (x0)− F (x∗)−

p−1∑
i=1

z
(i)
0 .(3.9)

It is convenient to have a separate label ς for the pth component and we use z
(p)
n and

ςn interchangeably. Then inductively define sequences {xn}n∈N ⊂ X, and {z(i)
n }n∈N ⊂

Yi, i = 1, . . . , p, as

xn
.
= xn−1 −Hp

z(1)
n−1,

π1

(
z

(2)
n−1

)
ε

,
π2

(
z

(3)
n−1

)
ε2

, · · · ,
πp

(
z

(p)
n−1

)
εp−1

 ,(3.10)

and for i = 1, . . . , p− 1 define

z(i)
n

.
= z

(i+1)
n−1 + εiGi+1(xn − xn−1)(3.11)

while

ςn = z(p)
n

.
= F (xn)− F (x∗)−

p−1∑
i=1

z(i)
n .(3.12)
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Note that these sequences are well defined: applying the operator Gp to (3.10) we
get that

G1(xn − xn−1) = F ′(x∗)(xn − xn−1) = −z(1)
n−1(3.13)

and for i = 1, . . . , p− 1 that

εiπi (Gi+1(xn − xn−1)) = −πiz(i+1)
n−1 .(3.14)

Thus we have πi

(
z

(i)
n

)
= 0, so that z

(i)
n ∈ Yi for all i = 1, . . . , p− 1.

In the proof [16] the following inequalities are shown by induction for all n ≥ 0
and i = 1, . . . , p− 1:

||z(i)
n || ≤M

(
1

2

)n
εp+i(3.15)

and

||ςn|| ≤M
(

1

2

)n
ε2p−1α(ε),(3.16)

||xn+1 − xn|| ≤ pMC

(
1

2

)n
εpα(ε),(3.17)

where M = max (1, ||yi||, i = 1, . . . , p) and α is a fixed function of order o(1) as ε→ 0.

Therefore the sequences {z(i)
n }n∈N, i = 1, . . . , p, all converge to 0 and {xn}n∈N is

Cauchy and hence convergent to some limit, which we call l(ε). By the continuity of
F in x∗ and (3.12) it follows that

F (l(ε)) = lim
n→∞F (xn) = F (x∗).

Defining

r(ε) = l(ε)− x(ε) =
(

lim
n→∞xn

)
− x0,

we therefore have

F (x∗) = F (x(ε) + r(ε))

and

||r(ε)|| =
∥∥∥∥∥
∞∑
n=1

(xn − xn−1)

∥∥∥∥∥ ≤ pMC
∞∑
n=1

(
1

2

)n−1

εpα(ε) = pMCεpα(ε)

is of order o(εp) as ε→ 0. This verifies the theorem.

3.2. High-order tangent cones. Note that (3.8) implies as necessary con-
dition for the existence of a p-order approximating sequence along Hp−1 that for
i = 1, . . . , p− 1, we have the following compatability conditions:

Rp−1,i[F ](x∗;Hp−1) ∈ Yi.(3.18)

For i = p this condition is satisfied under our assumption that Gp is onto. We can
therefore restate Theorem 3.2 as follows.
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Corollary 3.3. Let Hp−1 be a sequence so that ∇iF (x∗)(Hi) = 0 for i =
1, . . . , p−1, and suppose the operator F is p-regular at x∗ in direction of Hp−1. Then
TS(p)(Q;x∗, Hp−1) is nonempty if and only if for i = 1, . . . , p− 1 we have

Rp−1,i[F ](x∗;Hp−1) ∈ Yi.(3.19)

In this case TS(p)(Q;x∗, Hp−1) is the closed affine subspace of X given by the solutions
to the linear equation

Gp[F ](x∗;Hp−1)(v) +Rp−1[F ](x∗, Hp−1) = 0,(3.20)

where Rp−1[F ](x∗, Hp−1) ∈ Z is the point with components

(Rp−1,1[F ](x∗;Hp−1), π1Rp−1,2[F ](x∗;Hp−1), . . . , πp−1Rp−1,p[F ](x∗;Hp−1)) .(3.21)

This formulation of the result clearly brings out the geometric structure of the
p-order tangent sets as closed affine linear subspaces of X generated by the kernel of
Gp, kerGp.

Corollary 3.4. Let Hp−1 be a sequence such that the operator F is p-regular at
x∗ in direction of Hp−1, that the first (p−1) directional derivatives ∇iF (x∗)(Hi) van-
ish for i = 1, . . . , p−1, and that the compatability conditions Rp−1,i[F ](x∗;Hp−1) ∈ Yi
are satisfied for i = 1, . . . , p. Then the p-order tangent cone to Q = {x ∈ X :
F (x) = F (x∗)} at x∗ in direction of Hp−1, TC

(p)(Q;x∗, Hp−1), consists of all solu-
tions (w, γ) ∈ X × R+ (i.e., γ > 0) of the linear equation

Gp[F ](w) + γRp−1[F ](x∗, Hp−1) = 0.(3.22)

For applications to optimization problems we need the subspace of continuous
linear functionals which annihilate kerGp. Since the operator Gp is onto by assumption
(A3), it follows by the annihilator lemma or the closed-range theorem [11] that

(kerGp)⊥ = Im
(G∗p) ,(3.23)

where

G∗p : Z∗ = Y ∗1 × (Y2/Y1)
∗ × · · · × (Y/Yp−1)

∗ → X∗

denotes the adjoint map. Let

τi : (Yi+1/Yi)
∗ → Y

⊥i+1

i(3.24)

denote the canonical isomorphism. Here ⊥i+1 denotes the annihilator in Yi+1, i.e.,

Y
⊥i+1

i = {z∗ ∈ Y ∗i+1 : 〈z∗, v〉 = 0 ∀ v ∈ Yi},

and we formally set Y0 = {0}, so that Y ⊥1
0
∼= Y ∗1 . Then, more specifically, we get the

following.
Proposition 3.5. A functional λ ∈ X∗ lies in (kerGp)⊥ if and only if it can be

represented in the form

λ =

p∑
i=1

G∗i [F ](x∗;Hi−1)y∗i(3.25)

for some functionals y∗i ∈ Y ⊥ii−1, i = 1, . . . , p.
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Proof. By the annihilator lemma, λ ∈ (kerGp)⊥ if and only if there exists a
continuous linear functional ỹ∗ = (ỹ∗1 , . . . .ỹ

∗
p) ∈ Z∗, i.e., ỹ∗i ∈ (Yi/Yi−1)

∗
, so that

λ = G∗p ỹ∗ = G∗p
(
ỹ∗1 , ỹ

∗
2 , . . . , ỹ

∗
p

)
.(3.26)

Thus we have for every v ∈ kerGp
0 = 〈λ, v〉 =

〈G∗p ỹ∗, v〉 = 〈ỹ∗,Gpv〉
=
〈(
ỹ∗1 , ỹ

∗
2 , . . . , ỹ

∗
p

)
, (G1(v), π1G2(v), . . . , πp−1Gp(v))

〉
=

p∑
i=1

〈ỹ∗i , πi−1Gi(v)〉 .

Define y∗1
.
= ỹ∗1 and y∗i

.
= τi−1 ◦ ỹ∗i for i = 2, . . . , p. Since τi−1 : (Yi/Yi−1)

∗ → Y ⊥ii−1 is
the canonical isomorphism, we have that τi−1◦ z∗ = z∗ ◦πi−1 for every z∗ ∈ Yi. Hence

p∑
i=1

〈ỹ∗i , πi−1Gi(v)〉 =

p∑
i=1

〈y∗i , Gi(v)〉 =

p∑
i=1

〈G∗i y∗i , v〉 .

Since this holds for all v ∈ kerGp, (3.25) follows.
Proposition 3.6. The dual or polar p-order tangent cone consists of all linear

functionals (λ, µ) ∈ X∗ × R which can be represented in the following form: There
exist functionals y∗i ∈ Y ⊥ii−1, i = 1, . . . , p, and a number r ≥ 0 such that

λ =

p∑
i=1

G∗i [F ](x∗;Hi−1)y∗i ,(3.27)

µ =

p∑
i=1

〈y∗i , Rp−1,i[F ](x∗;Hp−1)〉+ r.(3.28)

Proof. This proof is analogous to the proof of [14, Theorem 2.2] and thus we
indicate only the main steps. Define the operator

K : X × R→ Z = Y1 × Y2/Y1 × · · · × Y/Yp−1,

(w, γ) 7→ K(w, γ) = Gp[F ](w) + γRp−1[F ](x∗, Hp−1).

Then

TC(p)(Q;x∗, Hp−1) = kerK(w, γ) ∩ {(w, γ) ∈ X × R : γ > 0}

and thus (
TC(p)(Q;x∗, Hp−1)

)∗
= (kerK)

∗
+ {0} × {r ∈ R : r ≥ 0}.

Since kerK is a linear space, the continuous functionals which are nonnegative on
kerK are given by (kerK)⊥ and by the annihilator lemma

(kerK)
⊥

= ImK∗.

Now the result follows analogously as in the proof of Proposition 3.5.
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4. High-order cones of decrease. In this section we determine the p-order
sets of decrease of a functional I : X → R. These results also apply to p-order feasible
sets to inequality constraints defined by smooth functionals. We assume as given a
(p − 1)-order sequence Hp−1 and we calculate the p-order set of decrease of I at x∗
along Hp−1. Trivial cases arise if there exists a first non-zero directional derivative
∇iI(x∗)(Hi) of I with i ≤ p− 1. In this case we have either DS(p)(I;x∗, Hp−1) = ∅ if
∇iI(x∗)(Hi) > 0 or DS(p)(I;x∗, Hp−1) = X if ∇iI(x∗)(Hi) < 0. In the first case the
sequence Hp−1 cannot be used to exclude optimality of x∗ since indeed x∗ is a local
minimum along the approximating curve generated by Hp−1. In the second case hi is
an ith-order direction of decrease alongHi−1 and thus every vector v ∈ X is admissible
as a pth-order component. The only nontrivial case arises if ∇iI(x∗)(Hi) = 0 for all
i with i ≤ p− 1 and if I ′(x∗) 6= 0. Then replacing the operator F with the functional
I in (3.4) for i = 1, it follows that DS(p)(I;x∗, Hp−1) consists of all vectors v ∈ X
which satisfy

∇pI(x∗)(Hp−1, v) = I ′(x∗)v +Rp−1,1[I](x∗;Hp−1) < 0.

Here we indicate in the notation that the operator Rp−1,1 is taken for the functional
I. If I ′(x∗) = 0, then DS(p)(I;x∗, Hp−1) is still the full space or empty set depending
on whether Rp−1,1[I](x∗;Hp−1) is negative or positive. Thus, if I ′(x∗) 6= 0, then
DS(p)(I;x∗, Hp−1) is an open half-space with normal vector I ′(x∗). Summarizing we
have (see also [14, Proposition 3.1])

Proposition 4.1. Suppose I ′(x∗) 6= 0 and ∇iI(x∗)(Hi) = 0 for all i with
i ≤ p− 1. Then the p-order cone of decrease for the functional I at x∗ in direction of
Hp−1, DC

(p)(I;x∗, Hp−1), is given by

DC(p)(I;x∗, Hp−1) = {(w, γ) ∈ X × R : γ > 0,

I ′(x∗)w + γRp−1,1[I](x∗;Hp−1) < 0} .(4.1)

Thus DC(p)(I;x∗, Hp−1) is nonempty, open, and convex. The dual or polar cone to
DC(p)(I;x∗, Hp−1) can easily be calculated using the Minkowski–Farkas lemma [8].

Proposition 4.2. Suppose I ′(x∗) 6= 0 and ∇iI(x∗)(Hi) = 0 for all i with
i ≤ p− 1. Then(

DC(p)(I;x∗, Hp−1)
)∗

=

{
(λ, µ) ∈ X∗ × R : ∃ α1 ≤ 0, α2 ≥ 0 such that(

λ
µ

)
=

(
I ′(x∗) 0

Rp−1,1[I](x∗;Hp−1) 1

)(
α1

α2

)}
.(4.2)

Proof. Define a linear operator H : X × R→ R2 by

H(w, γ) =

(
I ′(x∗) Rp−1,1[I](x∗;Hp−1)

0 1

)(
w
γ

)
and let K denote the open cone K = {(α1, α2) ∈ R2 : α1 < 0, α2 > 0}. The polar
cone K∗ can be identified with the closure of K. Then

DC(p)(I;x∗, Hp−1) = {(v, γ) ∈ X × R : H(w, γ) ∈ K}.
This cone is nonempty and open. Hence it follows by the Minkowski–Farkas lemma
[8, Thm. 10.4(a)] that(

DC(p)(I;x∗, Hp−1)
)∗

= H∗K∗=̃H∗ ClosK.
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This proves the proposition.
Remark. The formulas give the general formulations of well-known formulas for

the cone of decrease [8] or the expressions for second-order cones of decrease derived
in [14].

5. Generalized necessary conditions for optimality for a problem with
equality constraints. We include a brief derivation of the generalized necessary
conditions for optimality for the minimization problem under equality constraints
which does not use the Dubovitskii–Milyutin framework of Theorem 2.7. Instead
this argument is based on the geometry of p-order tangent sets/cones and clearly
brings out the geometric meaning of the necessary conditions. Also for this problem
nonregularity of the equality constraint is equivalent to the occurrence of abnormal
points.

Consider the problem (E) to minimize a functional I : X → R over the set
Q = {x ∈ X : F (x) = 0} where F : X → Y is an operator between Banach spaces.
We assume the following:

(B0) x∗ ∈ Q is a local minimum for problem (E).
(B1) The functional I and the operator F are sufficiently often continuously Fréchet

differentiable in a neighborhood of x∗.
Naturally, a p-order approximation along Hp−1 = (h1, . . . , hp−1) ∈ Xp−1 would

be considered only if a (p − 1)-order approximation remained inconclusive. Thus we
also assume as given a sequence Hp−1 = (h1, . . . , hp−1) ∈ Xp−1 with the following
properties:

(B2) The first p− 1 directional derivatives of F along Hp−1 vanish,

∇iF (x∗)(Hi) = 0 for all i = 1, . . . , p− 1.

(B3) The compatability conditions are satisfied for i = 1, . . . , p

Rp−1,i(x∗;Hp−1) ∈ Yi.
(B4) The operator F is p-regular at x∗ in direction of the sequence Hp−1.
(B5) ∇iI(x∗)(Hi) = 0 for all i = 1, . . . , p− 1.

Remark. By Theorem 3.2 and assumptions (B2)–(B4) there exist vectors v ∈ X
such that H = (h1, . . . , hp−1, v) is a p-order approximating sequence to the set Q
at x∗ ∈ Q. Hence there exists an ε0 > 0 and a function r defined on [0, ε0] with
values in X, r : [0, ε0] → X, which is of order o(εp) as ε → 0 with the property that

x(ε)
.
= x∗+

∑p−1
i=1 ε

ihi+εpv+r(ε) ∈ Q. By assumption (B0) the function ϕ: [0, ε0]→
X, ε→ ϕ(ε) = I(x(ε)), has a local minimum at ε = 0 and by assumption (B1) ϕ is p-
times differentiable at ε = 0 from the right. Modulo a factorial multiplicative constant
these derivatives are precisely the ith-order directional derivatives ∇iI(x∗)(Hi) of I
along the sequence Hi, 1 ≤ i ≤ p. The first (p − 1) derivatives only depend on
the sequence Hp−1 = (h1, . . . , hp−1) and do not involve the p-order approximating
vector v. Since x∗ is optimal for problem (E), the first nonvanishing derivative must
be positive. If this happens for a derivative i < p, then the necessary condition for
minimality along H = (h1, . . . , hp−1, v) is satisfied and indeed x∗ is the minimum
of I along x(ε) for ε > 0 small enough. No further information can then be gained
by considering a p-order approximating sequence along Hp−1. The only nontrivial
situation therefore arises under assumption (B5).

Also suppose that I ′(x∗) 6= 0. It then follows from Proposition 4.1 that the
p-order set of decrease DS(p)(I;x∗, Hp−1) consists of all vectors v ∈ X which satisfy

I ′(x∗)v +Rp−1,1[I](x∗;Hp−1) < 0(5.1)



GENERALIZED NECESSARY CONDITIONS 47

Fig. 5.1. Geometry of the p-order tangent set and p-order set of decrease.

and thus is a half-space with normal vector I ′(x∗). As in the proof of Theorem 2.7
the optimality of x∗ implies that

DS(p)(I;x∗, Hp−1) ∩ TS(p)(Q;x∗, Hp−1) = ∅,(5.2)

where TS(p)(Q;x∗, Hp−1)denotes the p-order tangent set to Q at x∗ in direction of
the sequence Hp−1.

Let Wc = {w ∈ X : I ′(x∗)w = c}, c ∈ R, denote the family of hyperplanes in
X parallel to ker I ′(x∗). The empty intersection property (5.2) is then geometrically
equivalent to the fact that there exists a c ∈ R such that

TS(p)(Q;x∗, Hp−1) ⊆ Wc(5.3)

and

c+Rp−1,1[I](Hp−1) ≥ 0.(5.4)

Condition (5.3) states that TS(p)(Q;x∗, Hp−1) is contained in a parallel transla-
tion of the boundary hyperplane of DS(p)(I;x∗, Hp−1), while (5.4) enforces that
TS(p)(Q;x∗, Hp−1) lies to the right side of DS(p)(I;x∗, Hp−1) (see Fig. 5.1).

Analytically, (5.3) is equivalent to

kerGp ⊆ ker I ′(x∗) =W0(5.5)

and thus

I ′(x∗) ∈ (kerGp)⊥ .(5.6)

Hence there exist multipliers y∗i ∈ Y ⊥ii−1, i = 1, . . . , p, so that

I ′(x∗) +

p∑
i=1

G∗i y
∗
i ≡ 0.(5.7)

Furthermore, we can evaluate the constant c by substituting an arbitrary vector v ∈
TS(p)(Q;x∗, Hp−1). Using the same notation as in the proof of Proposition 3.5, we



48 URSZULA LEDZEWICZ AND HEINZ SCHÄTTLER

obtain

c = 〈I ′(x∗), v〉 = − 〈G∗p ỹ∗, v〉 = −〈ỹ∗,Gpv〉
= 〈ỹ∗,Rp−1[F ](x∗;Hp−1)〉

=

p∑
i=1

〈ỹ∗i , πi−1Rp−1,i[F ](x∗;Hp−1)〉

=

p∑
i=1

〈y∗i , Rp−1,i[F ](x∗;Hp−1)〉 .(5.8)

Thus we have proven the following result.
Theorem 5.1. Suppose assumptions (B0)–(B5) are satisfied and I ′(x∗) 6= 0.

Then there exist multipliers y∗i ∈ Y ⊥ii−1, i = 1, . . . , p, so that the following generalized
Euler–Lagrange equation and inequality condition are satisfied:

0 ≡ I ′(x∗) +

p∑
i=1

G∗i y
∗
i ,(5.9)

0 ≤ Rp−1,1[I](x∗;Hp−1) +

p∑
i=1

〈y∗i , Rp−1,i[F ](x∗;Hp−1)〉 .(5.10)

The case when I ′(x∗) = 0 is trivial in the sense that the necessary conditions are
either trivially satisfied or violated.

6. High-order feasible cones.

6.1. High-order feasible cones to inequality constraints given by smooth
functionals. In this section we calculate the form of the p-order feasible cones,
FC(p)(P ;x∗, Hp−1), introduced in section 2, for inequality constraints P described
by smooth functionals

P = {x ∈ X : f(x) ≤ 0}.
As with sets of decrease, if there exists a first index i ≤ p−1 such that ∇if(x∗)(Hi) 6=
0, then the constraint will either be satisfied for any p-order vector v ∈ X if
∇if(x∗)(Hi) < 0 or it will be violated if ∇if(x∗)(Hi) > 0. This leads to the defi-
nition of p-order active constraints.

Definition 6.1. The inequality constraint P is said to be p-order active along
the sequence Hp−1 if for all i, i = 1, . . . , p− 1, we have ∇if(x∗)(Hi) = 0.

Only p-order active constraints enter the necessary conditions for optimality de-
rived via p-order approximations along an admissible sequence Hp−1; p-order inactive
constraints generate zero multipliers since DS(p)(P ;x∗, Hp−1) = X (p-order comple-
mentary slackness conditions). If the constraint P = {x ∈ X : f(x) ≤ 0} is p-order
active along the sequence Hp−1, then v is a p-order feasible vector for P at x∗ in the
direction of Hp−1, v ∈ FS(p)(P ;x∗, Hp−1), if and only if

∇pf(x∗)(h1, . . . , hp−1, v) = f ′(x∗)v +Rp−1,1[f ](x∗;Hp−1) < 0.(6.1)

Correspondingly the p-order feasible cone, FC(p)(P ;x∗, Hp−1), consists of all vectors
(w, γ) ∈ X × R+ which satisfy

f ′(x∗)w + γRp−1,1[f ](x∗;Hp−1) < 0.(6.2)
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Thus, if f ′(x∗) 6= 0, then

FC(p)(P ;x∗, Hp−1) = {(w, γ) ∈ X × R : γ > 0,

f ′(x∗)w + γRp−1,1[f ](x∗;Hp−1) < 0}(6.3)

and thus FC(p)(P ;x∗, Hp−1) is nonempty, open, and convex.

6.2. High-order feasible cones to closed convex inequality constraints.
We also incorporate nonoperator inequality constraints described by closed convex
sets with nonempty interior into the problem formulation. This is needed for instance
for the application of the results to optimal control problems.

Let C ⊂ X be a closed convex set with nonempty interior. Again we assume
that Hp−1 is a (p − 1)-order feasible sequence. Note that it follows from Definition
2.3 that FS(p)(C;x∗, Hp−1) is open (since any vector in the neighborhood V of v
also lies in FS(p)(C;x∗, Hp−1)). It is also clear that FS(p)(C;x∗, Hp−1) is convex,
since C is. Thus FC(p)(C;x∗, Hp−1) is an open, convex cone. Furthermore, if there
exists an integer j < p so that hj ∈ FS(j)(C;x∗, Hj−1), then any vector v is allowed
as a p-order feasible direction and thus trivially FS(p)(C;x∗, Hp−1) = X, i.e., the
convex constraint x ∈ C is not p-order active. In this case the necessary conditions
for optimality along Hp−1 are exactly the same as without C.

The dual or polar cone FC(p)(C;x∗, Hp−1)∗ can be identified with all supporting
hyperplanes to FS(p)(C;x∗, Hp−1) at x∗. More precisely, we have

FC(p)(C;x∗, Hp−1)∗ = {(λ, µ) ∈ X∗ × R : 〈λ, v〉+ µ ≥ 0 ∀ v ∈ FS(p)(C;x∗, Hp−1)}.

An important property of p-order feasible sets to convex sets relates them to the
classical feasible cones as they are defined in [8]: Given a set S ⊂ X with nonempty
interior, a vector w ∈ X is called a feasible direction to S at x∗ if there exist an
ε0 > 0 and a neighborhood W of w so that for all 0 < ε ≤ ε0

x∗ + εW ⊂ S.(6.4)

It is clear that the set of feasible directions to S at x∗ is a cone, called the feasible
cone to S at x∗ and denoted by FC(S;x∗).

Proposition 6.2. Let C ⊂ X be a closed convex set with nonempty interior,
and let Hp−1be a (p− 1)-order feasible sequence. If FS(p)(C;x∗, Hp−1) is nonempty,
then we have that

FC(C;x∗) + FS(p)(C;x∗, Hp−1) ⊆ FS(p)(C;x∗, Hp−1)(6.5)

and

FC(C;x∗)× {0} ⊆ Clos FC(p)(C;x∗, Hp−1).(6.6)

Proof. Both statements hold trivially if FC(C;x∗) is empty. Otherwise, let
w ∈ FC(C;x∗) and take any v ∈ FS(p)(C;x∗, Hp−1). Since FC(C;x∗) is a cone,
given λ, 0 ≤ λ < 1, also 1

1−λw ∈ FC(C;x∗). Thus it is possible to choose ε0 > 0 and
a neighborhood V of v so that for all 0 < ε ≤ ε0 we have

x∗ +

p−1∑
i=1

εihi + εpV ⊂ intC
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and

x∗ + εp
1

1− λw ∈ C.(6.7)

Here we use the fact that without loss of generality we can rescale ε as εp in the
definition of feasible directions. Since C is convex, we therefore get that

x∗ + λ

p−1∑
i=1

εihi + εp(λV + w) ⊂ intC.(6.8)

This holds for all λ, 0 ≤ λ < 1, and thus taking the limit as λ → 1 we obtain
v + w ∈ FS(p)(C;x∗, Hp−1).

Since FC(C;x∗) is a cone, we thus have for all ρ > 0 that

(ρw + v, 1) ∈ FC(p)(C;x∗, Hp−1).(6.9)

Equivalently, (
w +

1

ρ
v,

1

ρ

)
∈ FC(p)(C;x∗, Hp−1)

and taking the limit ρ→∞
(w, 0) ∈ Clos FC(p)(C;x∗, Hp−1).

Corollary 6.3. Let C ⊂ X be a closed convex set with nonempty interior
and suppose the p-order feasible set FS(p)(C;x∗, Hp−1) is nonempty. If (λ, µ) ∈
FC(p)(C;x∗, Hp−1)∗, then λ ∈ FC(C;x∗)∗ and thus λ is a supporting hyperplane to
C at x∗.

Proof. If (λ, µ) ∈ FC(p)(C;x∗, Hp−1)∗, then for all w ∈ FC(C;x∗)

0 ≤
〈

(λ, µ),

(
w
0

)〉
= 〈λ,w〉

and thus λ ∈ FC(C;x∗)∗.

7. Generalized necessary conditions for optimality. In this section we give
generalized first- and second-order necessary conditions for optimality for problem (P)
based on general p-order approximations. We assume as given a sequence Hp−1 =
(h1, . . . , hp−1) ∈ Xp−1 with the following properties:

(P1) The first p− 1 directional derivatives of F along Hp−1 vanish,

∇iF (x∗)(Hi) = 0 for all i = 1, . . . , p− 1,

the compatability conditions

Rp−1,i[F ](x∗;Hp−1) ∈ Yi
are satisfied for i = 1, . . . , p − 1, and the operator F is p-regular at x∗ in
direction of the sequence Hp−1.

(P2) Either the first nonvanishing derivative ∇iI(x∗)(Hi) is negative or

∇iI(x∗)(Hi) = 0 for i = 1, . . . , p− 1.
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(P3) If the jth constraint is not p-order active, then the first nonzero derivative
∇if(x∗)(Hi) is negative.

(P4) FS(p)(C;x∗, Hp−1) is nonempty.
These conditions guarantee respectively that the corresponding p-order approxi-

mating cones to the constraints or the functional I are nonempty and convex. The
next theorem is a generalization of results in [14] for p = 2 to a general order p. It
gives a generalized version of the classical first-order necessary conditions for optimal-
ity for a mathematical programming problem with convex inequality constraints [8,
Thm. 11.4].

Theorem 7.1. If x∗ is optimal for problem (P), then given any sequence Hp−1 =
(h1, . . . , hp−1) ∈ Xp−1 for which conditions (P1)–(P4) are satisfied, there exist La-

grange multipliers νi ≥ 0, i = 0, 1, . . . ,m, functionals y∗i ∈ Y ⊥ii−1, i = 1, . . . , p, and

a supporting hyperplane 〈λ, v〉+ µ ≥ 0 for all v ∈ FS(p)(C;x∗, Hp−1), all depending
on the sequence Hp−1, such that the multipliers νi, i = 0, 1, . . . ,m, and λ do not all
vanish, and

λ ≡ ν0I
′(x∗) +

m∑
j=1

νjf
′
j(x∗) +

p∑
i=1

G∗i y
∗
i ,(7.1)

µ ≤ ν0Rp−1,1[I](x∗;Hp−1) +
m∑
j=1

νjRp−1,1[fj ](x∗;Hp−1)(7.2)

+

p∑
i=1

〈y∗i , Rp−1,i[F ](Hp−1)〉 .

Furthermore, the following p-order complementary slackness conditions hold:
· ν0 = 0 if DS(p)(I;x∗, Hp−1) = X,
· νj = 0 if FS(p)(Pj ;x∗, Hp−1) = X for j = 1, . . . ,m,
· λ = 0 if FS(p)(C;x∗, Hp−1) = X.
Proof. Let Hp−1 = (h1, . . . , hp−1) ∈ Xp−1 be a sequence for which conditions

(P1)-(P4) are satisfied. We first take care of some special cases. For simplicity of no-
tation set I = f0 and suppose that f ′j(x∗) = 0 for some index j ∈ {0, 1, . . . ,m}. If also
Rp−1,1[fj ](x∗;Hp−1) ≥ 0, then the conditions of the theorem can trivially be satisfied
by taking νj = 1 and setting all other multipliers equal to zero. On the other hand, if
Rp−1,1[fj ](x∗;Hp−1) < 0, then the corresponding p-order feasible cone (respectively
cone of decrease) will be the full space (with dual cone given by C∗ = {0}). Since
this will not put any restrictions on admissible p-order directions we may drop the
corresponding constraint along with all the inactive constraints. The corresponding
multipliers must be zero and this already implies the p-order complementary slackness
conditions.

Without loss of generality (or after dropping the inactive constraints) we may
therefore assume that all the constraints are p-order active and that none of the
gradients f ′j(x∗), j = 0, 1, . . . ,m, vanishes. In this case the p-order cone of decrease is
open, nonempty and convex given by Proposition 4.1 with dual given by Proposition
4.2. These formulas also describe the p-order feasible cones and their duals for the
constraints j = 1, . . . ,m. Furthermore, under assumption (P1) the p-order tangent
cone is a closed nonempty subspace described in Corollary 3.4 with dual given in
Proposition 3.6.

The assertions of the theorem therefore follow from Theorem 2.7 using the specific
forms of the functionals given in these results: Using Propositions 3.6 and 4.2 it follows
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that there exist nonnegative constants νj and ζj , j = 0, 1, . . . ,m, functionals y∗i ∈
Y ⊥ii−1, i = 1, . . . , p, a constant r ≥ 0, and a functional (λ, µ) ∈ FC(p)(C;x∗, Hp−1)∗

such that

0 = −ν0I
′(x∗)−

m∑
j=1

νjf
′
j(x∗)−

p∑
i=1

G∗i y
∗
i + λ(7.3)

and

0 = −ν0Rp−1,1[I](x∗;Hp−1) + ζ0 −
m∑
j=1

(νjRp−1,1[fj ](x∗;Hp−1) + ζj)

−
p∑
i=1

〈y∗i , Rp−1,i[F ](Hp−1)〉+ r + µ.(7.4)

The first equation gives the generalized Euler–Lagrange equation (7.1) and the in-
equality condition (7.2) is obtained by dropping the nonnegative terms arising in the
R-components of the functionals in the duals to the feasible cones and the tangent
cone.

It remains to verify the nontriviality of the multipliers νj , j = 0, 1, . . . ,m, and
λ. If all of these vanish, then by (7.1)

∑p
i=1G

∗
i y
∗
i ≡ 0. It follows from the proof of

Proposition 3.5 that there exists a ỹ∗ = (ỹ∗1 , . . . .ỹ
∗
p) ∈ Z∗ such that with y∗1

.
= ỹ∗1 and

y∗i
.
= τi−1 ◦ ỹ∗i for i = 2, . . . , p, we have for all v ∈ X that

〈ỹ∗,Gpv〉 =

p∑
i=1

〈G∗i y∗i , v〉 = 0.

Under assumption (P1) the operator Gp is onto and thus ỹ∗ = 0 and consequently also
y∗i = 0 for i = 1, . . . , p. But this contradicts the statement about the nontriviality of
the multipliers λj in Theorem 2.7.

Remark. Theorem 2.7 gives the formulation for the case which is nondegenerate
in the sense that the operator Gp is onto. If Gp is not onto, but still closed, while
all the other conditions of Theorem 7.1 remain in effect, then a degenerate version of
this theorem can easily be obtained by choosing a nontrivial multiplier ỹ∗ ∈ (ImGp)⊥
which then gives rise to nontrivial multipliers y∗i ∈ Y ⊥ii−1 which have the property that∑p
i=1G

∗
i y
∗
i ≡ 0. Thus (7.1) still holds if we set νj = 0 for j = 0, 1, . . . ,m, and λ = 0.

Thus the difference is that it can only be asserted that not all of the multipliers
νj , j = 0, 1, . . . ,m, y∗i ∈ Y ⊥ii−1, i = 1, . . . , p, and λ do vanish.

Remark. It follows from Corollary 6.3 that λ is also a supporting functional to
C at x∗. However, this is weaker than the statement that (λ, µ) defines a supporting
hyperplane to FS(p)(C;x∗, Hp−1).

8. Conclusion. In this paper we derived necessary conditions for optimality for
extremum problems in the presence of nonregular equality constraints. Our results
are based on a generalized version of the Lyusternik Theorem which describes the
structure of p-order approximating sequences if the operator Gp is onto. Coupled with
p-order approximations to inequality constraints, the Dubovitskii–Milyutin framework
was then used to derive the results. In this paper we present only the result for the
general mathematical programming problem with inequality constraints described by
smooth functionals, but we also include inequality constraints described by convex
sets. This allows us to apply these results to the optimal control problem. For the
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case of second-order approximations this is done in [15]; for the general case this is
outlined in [17, 18].
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Abstract. In the present paper we elaborate on the underlying Hamiltonian structure of inter-
connected energy-conserving physical systems. It is shown that a power-conserving interconnection
of port-controlled generalized Hamiltonian systems leads to an implicit generalized Hamiltonian
system, and a power-conserving partial interconnection to an implicit port-controlled Hamiltonian
system. The crucial concept is the notion of a (generalized) Dirac structure, defined on the space of
energy-variables or on the product of the space of energy-variables and the space of flow-variables in
the port-controlled case. Three natural representations of generalized Dirac structures are treated.
Necessary and sufficient conditions for closedness (or integrability) of Dirac structures in all three
representations are obtained. The theory is applied to implicit port-controlled generalized Hamilto-
nian systems, and it is shown that the closedness condition for the Dirac structure leads to strong
conditions on the input vector fields.

Key words. Hamiltonian systems, Dirac structures, implicit systems, external variables, inte-
grability, actuated mechanical systems, kinematic constraints, interconnections
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1. Introduction. Most of the current modelling and simulation approaches to
(complex) physical systems (e.g., multibody systems) are based on some sort of net-
work representation, where the physical system under consideration is seen as the
interconnection of a (possible large) number of simple subsystems. This way of mod-
elling has several advantages. From a physical point of view it is usually natural to
regard the system as composed of subsystems, possibly from different domains (me-
chanical, electrical, and so on). The knowledge about subsystems can be stored in
libraries, and is reusable for later occasions. Because of the modularity the modelling
process can be performed in an “iterative” manner, gradually refining—if necessary—
the model by adding other subsystems. Further, the approach is suited to general
control design where the overall behavior of the system is sought to be improved by
the addition of other subsystems or controlling devices. From a system-theoretic point
of view this modular approach naturally emphasizes the need for models of systems
with external variables, e.g., inputs and outputs.

In this paper we concentrate on the mathematical description of network repre-
sentations of (lumped-parameter) energy-conserving physical systems. In our previous
work we have shown how energy-conserving physical systems with independent energy
variables can be naturally described as generalized Hamiltonian systems (with exter-
nal variables). However, a general power-conserving interconnection of such systems
will lead to a system described by differential and algebraic equations, that is, an
implicit dynamical system, which can no longer be directly described as an explicit
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generalized Hamiltonian system. This motivates the definition of implicit generalized
Hamiltonian systems, as introduced in [SM2, SM3]. The main ingredient in this defi-
nition is that of a (generalized) Dirac structure. The relevance of Dirac structures in
the Hamiltonian modelling of electrical LC-circuits with dependent storage elements
(a clear example of interconnected energy-conserving systems) was already recognized
in [C2].

The notion of Dirac structures was introduced by Courant and Weinstein [CW]
and further investigated by Courant in [C1] as a generalization of Poisson and (pre)-
symplectic structures. Dorfman [D1, D2] developed an algebraic theory of Dirac struc-
tures in the context of the study of completely integrable systems of partial differential
equations, with the aim of describing within a Hamiltonian framework certain sets of
PDEs which do not admit an easy Hamiltonian formulation in terms of Poisson or
symplectic structures, due to nonlocality of the involved operators. The conceptual
novelty in the approach initiated in [C2, SM2, SM3] is to use Dirac structures for the
direct Hamiltonian description of differential-algebraic equations resulting from the in-
terconnection of energy-conserving systems, including constrained systems. Although
the terminology Dirac structure is derived from the “Dirac bracket” introduced by
Dirac in his study of constrained Hamiltonian systems arising from degenerate La-
grangians [D3], our use of Dirac structures determining, together with the stored
energy (Hamiltonian), the algebraic constraints as well as the dynamical equations of
motion seems to be new. Furthermore, we stress the “physical” relevance of Dirac
structures as naturally capturing the geometric structure of the system as arising from
the interconnection of subsystems (see e.g., Proposition 2.2).

In Courant and Dorfman [C1, D2] the definition of a Dirac structure includes
a closedness (or integrability) condition generalizing the Jacobi-identity for Poisson
brackets or the closedness of two-forms defining symplectic structures. This condition
is naturally satisfied for constant Dirac structures (as in the case of LC-circuits) and for
Dirac structures arising from holonomic kinematic constraints in mechanical systems,
but not for the generalized Dirac structures arising from nonholonomic kinematic
constraints [SM1, SM3] or from general kinematic pairs in multibody systems [M2].

The structure of this paper is as follows. In section 2 we will recall the defini-
tions of a (generalized) Dirac structure and of an implicit Hamiltonian system, and
we will show how the power-conserving interconnection of port-controlled (explicit)
Hamiltonian systems leads to such an implicit Hamiltonian system. In section 3 we
will investigate various useful ways of representing generalized Dirac structures and
consequently of representing implicit Hamiltonian systems, and we will study their
relationship. Then in section 4 the closedness (or integrability) condition for Dirac
structures will be worked out for the three different representations obtained. Both
sections 3 and 4 use extensively techniques and results from the work of Courant and
Dorfman, although the emphasis is rather different. The results of sections 3 and 4
are applied in section 5 to Dirac structures as arising in implicit generalized Hamil-
tonian systems with external variables. In particular it is shown that the closedness
condition translates into strong conditions on the input vector fields.

A main motivation for the Hamiltonian modelling of interconnected energy-conser-
ving physical systems is, apart from the clear motivation from a general modelling
and simulation point of view, the generalization of the theory of “passivity-based con-
trol” to complex interconnected physical systems. Key concepts in this theory (see,
e.g., [TA, OS, S]) are the use of the internal energy as candidate Lyapunov function,
the shaping of the internal energy via state feedback, and the injection of “damping”
in order to achieve asymptotic stability. This approach has shown to be very powerful
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in the robust and/or adaptive control of physical systems described by Euler–Lagrange
or Hamiltonian equations of motion (such as robot manipulators, mobile robots, and
electrical machines) and can be expected to be equally powerful for interconnected
physical systems. Although it is not the topic of the present paper to demonstrate
this, we indicate at the end of section 4 how the usual stability theory of Hamiltonian
systems based on the Hessian matrix of the Hamiltonian can be naturally extended
to implicit Hamiltonian systems. Moreover, at the end of section 5 we show the link
between results in this paper and “passivity-based control” of actuated mechanical
systems with kinematic constraints.

In the control design of interconnected physical systems also the system-theoretic
properties (such as controllability and observability) of implicit port-controlled Hamil-
tonian systems will prove to be instrumental (e.g., in the analysis how much damping
injection is needed for asymptotic stabilization). For explicit port-controlled gener-
alized Hamiltonian systems some of these topics already have been studied in our
previous work [SM2, MS1, MS2]. Section 5 provides only a basic framework for a
study of these issues. Apart from “passivity-based control”, the further exploitation
of the structure of symmetries and conservation laws also has a great potential (see,
e.g., [BKMM] for related developments). All this is a large area for further research.

2. Generalized Hamiltonian modelling of interconnected systems. In
our previous work [MS1, MS2, MBS, MSB1, MSB2, SM1, SM2, SM3] we have ar-
gued that the basic dynamic building blocks in the network representation of energy-
conserving physical systems are systems of the form

ẋ = J(x)∂H∂x (x) + g(x)f,

e = gT (x)∂H∂x (x).
(2.1)

Here x = (x1, . . . , xn) denotes the vector of (independent) energy variables, defining
local coordinates for the state space manifold X , H(x1, . . . , xn) is the total stored
energy in the system, with ∂H

∂x (x) denoting the column-vector of partial derivatives
of H, and the n × n skew-symmetric structure matrix J(x) is associated with the
network topology of the system. The columns gj(x), j = 1, . . . ,m, of the matrix g(x)
define the (state modulated) transformers describing the influence of the external flow
sources (or inputs) fj , j = 1, . . . ,m. The components ej of e are the corresponding
conjugated (with respect to the power) efforts (or outputs). Since the matrix J(x) is
skew-symmetric we immediately obtain the energy balance

d

dt
H = eT f(2.2)

expressing that the increase in energy equals the externally supplied power (ejfj is the
power of the jth source). Thus (2.1) describes an energy-conserving physical system
with internal variables x1, . . . , xn (associated with energy storage) and external (or
port) variables f1, . . . , fm, e1, . . . , em (associated with power), which can be regarded,
respectively, as input and output variables.

The system (2.1) is called a port-controlled generalized Hamiltonian system be-
cause of the following. We may define a generalized Poisson bracket operation on the
real functions on X as

{F,G}(x) =

[
∂F

∂x
(x)

]T
J(x)

∂G

∂x
(x), F,G : X → R,(2.3)
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Clearly, this bracket is skew-symmetric and satisfies the Leibniz identity

{F,G1G2}(x) = {F,G1}(x)G2(x) +G1(x){F,G2}(x) for all F,G1, G2 : X → R
(2.4)

and thus ẋ = J(x)∂H∂x (x) can be seen as the generalized Hamiltonian vector field
corresponding toH and the generalized Poisson bracket { , }. This generalized Poisson
bracket is a true Poisson bracket if additionally the Jacobi-identity is satisfied, that
is,

{F, {G,K}}+ {G, {K,F}}+ {K, {F,G}} = 0 for all F,G,K : X → R.(2.5)

If (and only if) the Jacobi-identity holds, there exist in a neighborhood of every
point x0 ∈ X where J(x) has constant rank local canonical coordinates (q, p, r) =
(q1, . . . , qk, p1, . . . , pk, r1, . . . , rl) for X in which J(x) takes the form (see e.g., [O])

J(q, p, r) =

 0 Ik 0
−Ik 0 0

0 0 0

 ,(2.6)

implying that the Hamiltonian vector field ẋ = J(x)∂H∂x (x) takes the form

q̇ = ∂H
∂p (q, p, r),

ṗ = −∂H∂q (q, p, r),

ṙ = 0

(2.7)

which are almost the standard Hamiltonian equations of motion except for the ap-
pearance of the conserved quantities r1, . . . , rl. Although in many cases of interest
the Jacobi-identity is satisfied, there are clear examples where it is not satisfied (e.g.,
mechanical systems with nonholonomic kinematic constraints; see [SM1]).

The overall energy-conserving physical system is now obtained by interconnecting
the various port-controlled generalized Hamiltonian subsystems as above in a power-
continuous fashion (e.g., by using Kirchhoff’s laws). In general this will result in a
mixed set of differential and algebraic equations, which nevertheless is expected to
be again Hamiltonian in some sense. Indeed, it can be seen that it is an implicit
generalized Hamiltonian system, as defined in [SM2, SM3]. The key concept in the
definition of an implicit generalized Hamiltonian system is the notion of a generalized
Dirac structure, as introduced (in a rather different context) in [C1, D2].

First we concentrate on interconnected energy-conserving physical systems with-
out any remaining external sources; see section 5 for the general case. In this case
the Dirac structure for the interconnected system is defined solely on the space of
energy-variables. Let X be an n-dimensional manifold with tangent bundle TX and
cotangent bundle T ∗X . We define TX ⊕ T ∗X as the smooth vector bundle over X
with fiber at each x ∈ X given by TxX ×T ∗xX . Let X be a smooth vector field and α
a smooth one-form on X respectively. Then we say that the pair (X,α) belongs to a
smooth vector subbundle D ⊂ TX⊕T ∗X (denoted (X,α) ∈ D) if (X(x), α(x)) ∈ D(x)
for every x ∈ X . Furthermore for a smooth vector subbundle D ⊂ TX ⊕ T ∗X we
define the smooth vector subbundle D⊥ ⊂ TX ⊕ T ∗X as

D⊥ = {(X,α) ∈ TX ⊕ T ∗X | 〈α | X̂〉+ 〈α̂ |X〉 = 0, for all (X̂, α̂) ∈ D}(2.8)
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with 〈 | 〉 denoting the natural pairing between a one-form and a vector field. In
(2.8) and throughout in the sequel the pairs (X,α), (X̂, α̂) are assumed to be pairs of
smooth vector fields and smooth one-forms.

Definition 2.1 (see [C1, D2]). A generalized Dirac structure on an n-dimen-
sional manifold X is a smooth vector subbundle D ⊂ TX ⊕ T ∗X such that D⊥ = D.

If D satisfies an additional closedness (or integrability) condition, then D defines
a Dirac structure; see section 4. Later on we will see that the dimension of the fibers
of a generalized Dirac structure on an n-dimensional manifold is equal to n. By taking
α̂ = α, X̂ = X in (2.8) we obtain

〈α |X〉 = 0 for all (X,α) ∈ D.(2.9)

Conversely, if (2.9) holds, then for every (X,α), (X̂, α̂) ∈ D
0 = 〈α+ α̂ |X + X̂〉 = 〈α |X〉+ 〈α | X̂〉+ 〈α̂ |X〉+ 〈α̂ | X̂〉

= 〈α | X̂〉+ 〈α̂ |X〉,(2.10)

and thus D ⊂ D⊥. Hence a Dirac structure is a smooth vector subbundle of TX⊕T ∗X
which is maximal with respect to property (2.10) or (2.9).

Let now X be an n-dimensional manifold with a generalized Dirac structure D,
and let H : X → R be a Hamiltonian (energy function). Then the implicit generalized
Hamiltonian system on X corresponding to D and H is given by the specification (see
[SM2]) (

ẋ,
∂H

∂x
(x)

)
∈ D(x).(2.11)

By (2.9) we immediately obtain the energy conservation property dH
dt =〈∂H∂x (x)|ẋ〉

= 0. Note that in general the specification (2.11) puts algebraic constraints on X ,
since in general there will not exist for every x ∈ X a tangent vector ẋ ∈ TxX such
that (2.11) is satisfied. Thus (2.11) is in general a set of differential algebraic equations
(DAEs). It can be seen that (2.11) generalizes the notion of an (explicit) generalized
Hamiltonian system

ẋ = J(x)
∂H

∂x
(x), J(x) = −JT (x),(2.12)

by noting that

D = {(X,α) ∈ TX ⊕ T ∗X |X(x) = J(x)α(x), x ∈ X}
defines a generalized Dirac structure. (If αT (x)J(x)α̂(x) + α̂T (x)X(x) = 0 for all α̂,
then X(x) = J(x)α(x).)

A special case of a Dirac structure is that of a constant Dirac structure on a linear
space.

Definition 2.2. A constant Dirac structure on a linear n-dimensional space V
is a linear subspace D ⊂ V × V∗ with the property that D⊥ = D, where

D⊥ = {(v, v∗) ∈ V × V∗ | 〈v∗ | v̂〉+ 〈v̂∗ | v〉 = 0 for all (v̂, v̂∗) ∈ D}
where 〈 | 〉 denotes the natural pairing between V and V∗.

The following proposition is derived straightforwardly.
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Proposition 2.1. Let V be an n-dimensional linear space. A linear subspace
D ⊂ V × V∗ defines a constant Dirac structure if and only if dimD = n and

〈v∗ | v〉 = 0 for all (v, v∗) ∈ D.(2.13)

Proof. (Sketch; see [SM3] for details.) As in (2.9) and (2.10) we see that if
D defines a constant Dirac structure, then (2.13) holds, while if (2.13) holds, then
equivalently

〈v∗ | v̂〉+ 〈v̂∗ | v〉 = 0 for all (v̂, v̂∗) ∈ D.(2.14)

Furthermore, a subspace D of V × V∗ defines a Dirac structure if it is maximal
with respect to property (2.14), which is equivalent (see [C1]) to the property dimD
= n.

Now let us consider k port-controlled generalized Hamiltonian systems as in (2.1),
i.e., for i = 1, . . . , k

ẋi = Ji(xi)
∂Hi
∂xi

(xi) + gi(xi)fi,

ei = gTi (xi)
∂Hi
∂xi

(xi),

xi ∈ Xi, fi ∈ Fi := Rmi , ei ∈ Ei := F∗i = Rmi ,

(2.15)

with Xi an ni-dimensional state space. Consider a general power-conserving intercon-
nection of these systems given by an (m1 + . . .+mk)-dimensional subspace (possibly
parametrized by x1, . . . , xk)

I(x1, . . . , xk) ⊂ F1 × · · · × Fk × E1 × · · · × Ek(2.16)

with the property

(f1, . . . , fk, e1, . . . , ek) ∈ I(x1, . . . , xk) ⇒
k∑
i=1

eTi fi = 0.(2.17)

Remark 2.1. By Proposition 2.1 it follows that I(x1, . . . , xk) defines a constant
Dirac structure on F1 × . . .×Fk, parameterized by (x1, . . . , xk).

Proposition 2.2. Consider k port-controlled generalized Hamiltonian systems
(2.15) subject to an interconnection (2.16) satisfying (2.17). Then the resulting in-
terconnected system is an implicit generalized Hamiltonian system with state space
X := X1 × · · · × Xk, Hamiltonian H(x1, . . . , xk) := H1(x1) + · · · + Hk(xk), and
generalized Dirac structure D on X given as

(X,α) = (X1, . . . , Xk, α1, . . . , αk) ∈ D ⇐⇒

for all xi ∈ Xi, i = 1, . . . , k, ∃(f1, . . . , fk, e1, . . . , ek) ∈ I(x1, . . . , xk) such that

Xi(xi) = Ji(xi)αi(xi) + gi(xi)fi,

ei = gTi (xi)αi(xi).

(2.18)
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Proof. The main point is in proving that D given by (2.18) defines a generalized
Dirac structure. Let (X,α) = (X1, . . . , Xk, α1, . . . , αk) be in D⊥, that is, 〈α̂ |X〉 +
〈α | X̂〉 = 0 for all (X̂, α̂) = (X̂1, . . . , X̂k, α̂1, . . . , α̂k) satisfying (2.18). This means

0 =

k∑
i=1

[
α̂Ti (xi)Xi(xi) + αTi (xi)X̂i(xi)

]
=

k∑
i=1

[
α̂Ti (xi)Xi(xi) + αTi (xi)Ji(xi)α̂i(xi) + αTi (xi)gi(xi)f̂i

]
=

k∑
i=1

(
α̂Ti (xi) [Xi(xi)− Ji(xi)αi(xi)] + αTi (xi)gi(xi)f̂i

)
(2.19)

for all α̂i, f̂i such that êi = gTi (xi)α̂i(xi) satisfies (f̂1, . . . , f̂k, ê1, . . . , êk) ∈ I(x1,

. . . , xk). Letting first f̂i = 0 and êi = 0, we obtain

k∑
i=1

α̂Ti (xi) [Xi(xi)− Ji(xi)αi(xi)] = 0(2.20)

for all α̂i(xi) such that gTi (xi)α̂i(xi) = 0. This means that there exist vectors
f1, . . . , fk such that

Xi(xi) = Ji(xi)αi(xi) + gi(xi)fi.(2.21)

Substitution into (2.19) yields

0 =

k∑
i=1

(
α̂Ti (xi)gi(xi)fi + αTi (xi)gi(xi)f̂i

)
=

k∑
i=1

(
êTi fi + eTi f̂i

)
(2.22)

for all f̂i and êi = gTi (xi)α̂i(xi) satisfying (f̂1, . . . , f̂k, ê1, . . . , êk) ∈ I(x1, . . . , xk).
If gTi (xi) is surjective for all i = 1, . . . , k, this means that (2.22) is satisfied for all

(f̂1, . . . , f̂k, ê1, . . . , êk) ∈ I(x1, . . . , xk), and by Proposition 2.1 and Remark 2.1 this
implies that (f1, . . . , fk, e1, . . . , ek) ∈ I(x1, . . . , xk) and thus (X,α) ∈ D. In general
we proceed as follows. Define the space of achievable flows and efforts

C(x1, . . . , xk) := {(f̂1, . . . , f̂k, ê1, . . . , êk) | f̂i ∈ Fi, êi ∈ Im gTi (xi), i = 1, . . . , k}.
Then (2.22) implies that

(f1, . . . , fk, e1, . . . , ek) ∈ (I(x1, . . . , xk) ∩ C(x1, . . . , xk))⊥

= I⊥(x1, . . . , xk) + C⊥(x1, . . . , xk)

where ⊥ denotes orthogonal complement with respect to property (2.22). By Propo-
sition 2.1 it follows that I⊥(x1, . . . , xk) = I(x1, . . . , xk), while C⊥(x1, . . . , xk) is seen
to be given as

C⊥(x1, . . . , xk) = {(f1, . . . , fk, e1, . . . , ek) | fi ∈ ker gi(xi), ei = 0, i = 1, . . . , k}.
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Thus there exist flow vectors f ′1, . . . , f
′
k such that (f ′1, . . . , f

′
k, e1, . . . , ek) ∈ I(x1,

. . . , xk), with Xi(xi) = Ji(xi)αi(xi) + gi(xi)f
′
i , ei = gTi (xi)αi(xi), showing that

(X,α) ∈ D. Hence D⊥ ⊂ D. Since it is easily seen that D ⊂ D⊥, this shows that D
defines a Dirac structure.

We note that the definition of a power-conserving interconnection is very general
and for example includes Kirchhoff’s laws for electrical systems, the interconnection
relations for generalized velocities and forces for interconnected mechanical systems
(Newton’s third law), as well as transformers in electrical circuits and kinematic pairs
in multibody systems.

From a classical control point of view an important example of a power-conserving
interconnection is the standard feedback interconnection.

Example 2.1. Consider two input-state-output systems (“plant” and “con-
troller”)

ẋi = gi(xi, ui),
yi = hi(xi), ui, yi ∈ Rm, i = 1, 2,

(2.23)

and impose the (negative) feedback interconnection

u2 = y1,
u1 = −y2,

(2.24)

leading to the explicit system

ẋ1 = g1(x1,−h2(x2)),
ẋ2 = g2(x2, h1(x1)).

(2.25)

If we equate the input vectors ui with flow vectors, and the output vectors yi with effort
vectors, then (2.24) is a power-conserving interconnection. Proposition 2.2 applied to
this particular case says that if both systems in (2.23) are Hamiltonian, then also
(2.25) is Hamiltonian. This can be regarded as a special instance of the passivity
theorem in input-output stability theory.

3. Representations of generalized Dirac structures and implicit gener-
alized Hamiltonian systems. There are different ways of representing generalized
Dirac structures, and consequently of writing the equations of an implicit generalized
Hamiltonian system. These representations each have their own advantages and are
connected to different but equivalent ways of mathematically modelling the energy-
conserving physical systems.

Before going into these representations we first note that a generalized Dirac
structure D on an n-dimensional manifold X defines the smooth distributions

G0 = {X ∈ TX | (X, 0) ∈ D},

G1 = {X ∈ TX | ∃α ∈ T ∗X s.t. (X,α) ∈ D}
(3.1)

and the smooth codistributions

P0 = {α ∈ T ∗X | (0, α) ∈ D},

P1 = {α ∈ T ∗X | ∃X ∈ TX s.t. (X,α) ∈ D}.
(3.2)

Define for any smooth distribution G the smooth codistribution annG as

annG = {α ∈ T ∗X | 〈α |X〉 = 0 for all X ∈ G}(3.3)
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and for any smooth codistribution P the smooth distribution ker P as

ker P = {X ∈ TX | 〈α |X〉 = 0 for all α ∈ P}.(3.4)

The smooth (co)distributions G0, G1 and P0, P1 are related as follows.
Proposition 3.1. Let D be a generalized Dirac structure on X and define G0,

G1, P0, P1 as in (3.1), (3.2). Then
1. G0 = ker P1, P0 = ann G1;
2. P1 ⊂ ann G0, G1 ⊂ ker P0, with equality if G1, respectively, P1, is constant-

dimensional.
Proof.
1. Z ∈ G0 if and only if (Z, 0) ∈ D, if and only if

〈0 |X〉+ 〈α |Z〉 = 0 for all (X,α) ∈ D
or equivalently 〈α |Z〉 = 0 for all α ∈ P1. Thus G0 = ker P1. Similarly
β ∈ P0 if and only if (0, β) ∈ D, if and only if 〈β |X〉 = 0 for all X ∈ G1,
which implies P0 = annG1.

2. This follows from property 1 and the inequalities P ⊂ ann ker P , G ⊂
ker annG, for any smooth (co)distribution P and G, with equality if P and
G are constant-dimensional [NS].

Remark 3.1. The distribution G1 and the co-distribution P1 have the following
interpretation. Consider the implicit generalized Hamiltonian system (2.11) corre-
sponding to a generalized Dirac structure D and a Hamiltonian H. Then the distri-
bution G1 describes the set of admissible flows ẋ. In particular, if G1 is constant-
dimensional and involutive then there are (n− dimG1) independent conserved quan-
tities for (2.11). Dually the codistribution P1 describes the set of algebraic constraints
of (2.11), i.e.,

∂H

∂x
(x) ∈ P1(x).(3.5)

Definition 3.1. A point x ∈ X is a regular point for the Dirac structure D on X
if the dimension of G1 and P1 (and hence, see Proposition 3.1, of G0, P0) is constant
in a neighborhood of x.

At every regular point x ∈ X we have

D⊥(x) = {(v, v∗) ∈ TxX × T ∗xX | 〈v∗ | v̂〉+ 〈v̂∗ | v〉 = 0 for all (v̂, v̂∗) ∈ D(x)},(3.6)

and since D⊥(x) = D(x), we may regard D(x) ⊂ TxX × T ∗xX as a constant Dirac
structure on TxX (see Definition 2.2). Invoking Proposition 2.1 we deduce that
dimD(x) = n for every regular point x ∈ X . Since the set of regular points is
open and dense in X , and D is a vector subbundle, it thus follows that

dimD(x) = n for all x ∈ X ,(3.7)

and therefore we may regard D(x) ⊂ TxX×T ∗xX as a constant Dirac structure on TxX
for every x ∈ X . In particular it follows, since D is a smooth vector subbundle, that
locally about every point in X we may find n×n matrices E(x) and F (x), depending
smoothly on x, such that locally

D(x) = {(v, v∗) ∈ TxX × T ∗xX |F (x)v = E(x)v∗},

rank[F (x) : −E(x)] = n.
(3.8)
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Furthermore, because D = D⊥ necessarily (see [SM2])

E(x)FT (x) + F (x)ET (x) = 0.(3.9)

We will refer to this local representation (3.8), (3.9) of a Dirac structure as repre-
sentation I. Given a Hamiltonian H : X → R the corresponding implicit generalized
Hamiltonian system in representation I is locally given as

F (x)ẋ = E(x)
∂H

∂x
(x).(3.10)

Example 3.1 ([SM2]; see also [MSB2]). An LC-circuit is composed of a set of
(multiport ) inductors and capacitors interconnected through their ports by the network
graph. An n-port inductor is defined by flux linkage variables φ ∈ Rn (the energy
variables) and an energy function HL(φ). The port variables are the voltages vL ∈ Rn
and the currents iL ∈ Rn defined as

vL = φ̇, iL =
∂HL

∂φ
.(3.11)

Similarly, an n-port capacitor is defined by charge variables q ∈ Rn and energy func-
tion HC(q), with port variables the currents iC ∈ Rn and voltages vC ∈ Rn defined as

iC = q̇, vC =
∂HC

∂q
.(3.12)

By Kirchhoff’s laws we obtain nL + nC independent equations

FCiC + ECiL = 0, FLvL + ELvC = 0(3.13)

for certain matrices FC , FL, EC , and EL satisfying (Tellegen’s theorem)

ECF
T
L + FCE

T
L = 0.(3.14)

Using (3.11), (3.12) and defining the total energy H(q, φ) = HL(φ) +HC(q), we may
rewrite (3.13) as the implicit generalized Hamiltonian system[

FC 0
0 FL

]
︸ ︷︷ ︸

F

[
q̇

φ̇

]
=

[
0 −EC
−EL 0

]
︸ ︷︷ ︸

E

[
∂H
∂q

∂H
∂φ

]
,(3.15)

where EFT + FET = 0 by (3.14).
Two other useful types of representations of generalized Dirac structures, which

admit a global and coordinate-free definition, can be given provided an extra regularity
condition is satisfied. We will denote them as representation II and representation III,
respectively.

Theorem 3.1 (representation II). Let X be an n-dimensional manifold. Let G
be a constant-dimensional distribution on X , and J(x) : T ∗xX → TxX , x ∈ X , a
skew-symmetric vector bundle map. Then

D = {(X,α) ∈ TX ⊕ T ∗X |X(x)− J(x)α(x) ∈ G(x), x ∈ X , α ∈ ann G}(3.16)

defines a generalized Dirac structure. Conversely, let D be any generalized Dirac struc-
ture having the property that the codistribution P1 (see (3.2)) is constant-dimensional.
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Then there exists a skew-symmetric vector bundle map J(x) : P1(x) → (P1(x))∗,
x ∈ X , which locally can be extended to a skew-symmetric vector bundle map J(x) :
T ∗xX → TxX , x ∈ X , such that D is given by (3.16) with G := ker P1.

Proof (see also [C1] for the constant case). Let D be given by (3.16). We have to
show that D⊥ = D.

1. Take (X,α) = (Jα + Z,α) ∈ D, with Z ∈ G. Then for all (X̂, α̂) = (Jα̂ +
Ẑ, α̂) ∈ D, Ẑ ∈ G

〈α | X̂〉+ 〈α̂ |X〉 = 〈α |Jα̂〉+ 〈α̂ |Jα〉+ 〈α | Ẑ〉+ 〈α̂ |Z〉 = 0

because J(x) is skew-symmetric, and α, α̂ ∈ annG.
2. Take (X,α) ∈ D⊥, that is for all (X̂, α̂) = (Jα̂+Ẑ, α̂) ∈ D, Ẑ ∈ G, α̂ ∈ annG

0 = 〈α | X̂〉+ 〈α̂ |X〉 = 〈α |Jα̂〉+ 〈α | Ẑ〉+ 〈α̂ |X〉

First let Ẑ = 0. Then

0 = 〈α |Jα̂〉+ 〈α̂ |X〉 = 〈α̂ |X − Jα〉

for all α̂ ∈ annG, implying that X−Jα ∈ ker annG = G, since G is constant-
dimensional. Now let α̂ = 0. Then

0 = 〈α | Ẑ〉

for all Ẑ ∈ G, implying that α ∈ annG.
Conversely, letD be a generalized Dirac structure on X , with P1 constant-dimensional.
Then we define for every x ∈ X a linear map

J(x) : P1(x) ⊂ T ∗xX → (P1(x))∗ ⊂ TxX

as follows. Let v∗ ∈ P1(x), that is, there exists v ∈ TxX such that (v, v∗) ∈ D(x).
Then define

J(x)v∗ = v ∈ (P1(x))∗.(3.17)

To see that J(x) is well-defined, let also (v̂, v∗) ∈ D(x). Then (v− v̂, 0) ∈ D(x), which
means v − v̂ ∈ G0(x) = ker P1(x), and thus v and v̂ define the same linear function
on P1(x). Skew-symmetry of the map J(x) : P1(x)→ (P1(x))∗ follows from

〈v̂∗ | v〉+ 〈v∗ | v̂〉 = 0.

for all (v, v∗), (v̂, v̂∗) ∈ D(x). Finally we may locally extend J(x) to a skew-symmetric
map from TxX to T ∗xX . Now, let (v, v∗) ∈ D(x). Then by (3.17) v = J(x)v∗ modulo
G(x) := ker P1(x), while v∗ ∈ P1(x), and thus D is indeed given by (3.16).

Remark 3.2. Note (see (3.17)) that the kernel of J(x) : P1(x) → (P1(x))∗ is
given by P0(x).

Given a Hamiltonian H : X → R the equations of the implicit generalized Hamil-
tonian system corresponding to representation II now take the form

ẋ = J(x)∂H∂x (x) + g(x)λ,

0 = gT (x)∂H∂x (x),
(3.18)
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where g(x) is any full rank matrix such that Im g(x) = G(x). The variables λ can be
seen as Lagrange multipliers, required to keep the constraint equations gT (x)∂H∂x (x) =
0 to be satisfied for all time. Note that (3.18) can be also interpreted as a port-
controlled generalized Hamiltonian system (see section 2) with the efforts (or outputs)
e set equal to zero.

“Dualizing” representation II we obtain the following.

Theorem 3.2 (representation III). Let X be an n-dimensional manifold. Let P
be a constant-dimensional codistribution on X , and ω(x) : TxX → T ∗xX , x ∈ X , a
skew-symmetric vector bundle map. Then

D = {(X,α) ∈ TX ⊕ T ∗X |α(x)− ω(x)X(x) ∈ P (x), x ∈ X , X ∈ ker P}(3.19)

defines a generalized Dirac structure. Conversely, let D be any generalized Dirac struc-
ture having the property that the distribution G1 (see (3.1)) is constant-dimensional.
Then there exists a skew-symmetric vector bundle map ω(x) : G1(x) → (G1(x))∗,
x ∈ X , which locally can be extended to a skew-symmetric vector bundle map ω(x) :
TxX → T ∗xX , x ∈ X , such that D is given by (3.19) with P := ann G1.

Proof. The proof is completely dual to the proof of Theorem 3.1

Remark 3.3 (see Remark 3.2). The kernel of ω(x) : G1(x)→ (G1(x))∗ is given
by G0(x).

The equations of an implicit generalized Hamiltonian system corresponding to
Representation III and a Hamiltonian H take the form

∂H
∂x (x) = ω(x)ẋ+ pT (x)λ,

0 = p(x)ẋ,
(3.20)

where p(x) is any full rank matrix such that Im p(x) = P (x). A main feature of (3.20)
in comparison with (3.18) is that in (3.20) the flow constraints pT (x)ẋ = 0 are made
explicit, while in (3.18) the algebraic constraints gT (x)∂H∂x (x) = 0 are distinguished.

Example 3.2. Let Q be an n-dimensional configuration manifold of a mechan-
ical system. Classical (kinematic) constraints are given in local coordinates q =
(q1, . . . , qn) for Q as

AT (q)q̇ = 0(3.21)

with A(q) an n × k matrix, k ≤ n, with entries depending smoothly on q. We will
assume that A(q) has rank equal to k everywhere. The constrained Hamiltonian equa-
tions on T ∗Q are classically given as (see, e.g., [SM1])

[
q̇
ṗ

]
=

[
0 In
−In 0

]
︸ ︷︷ ︸

J

[
∂H
∂q (q, p)

∂H
∂p (q, p)

]
+

[
0

A(q)

]
λ,

0 =
[

0 AT (q)
] [ ∂H

∂q (q, p)

∂H
∂p (q, p)

]
.

(3.22)

Here the constraint forces A(q)λ, with λ ∈ Rk, are uniquely determined by the require-
ment that the constraints (3.21) have to be satisfied for all time. It is straightforward
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to see that an equivalent description of the equations (3.22) is given as follows[
∂H
∂q (q, p)

∂H
∂p (q, p)

]
=

[
0 −In
In 0

]
︸ ︷︷ ︸

ω

[
q̇
ṗ

]
+

[
A(q)

0

]
λ,

0 =
[
AT (q) 0

] [ q̇
ṗ

]
.

(3.23)

Let G and P be the distribution and the codistribution, respectively, on T ∗Q spanned

by the columns of the matrix [ 0
A(q) ] and the rows of the matrix [AT (q) 0], respec-

tively. Then, since both J and ω are skew-symmetric, it follows from Theorems 3.1
and 3.2 that the pairs (J,G) and (ω, P ) define representation II and representation III,
respectively, of the same generalized Dirac structure. We will refer to this generalized
Dirac structure as DA.

As the last part of this section we will now briefly show how we can directly go
from representation I to a local version of representation II or III, and vice versa. This
is particularly useful in analysis, where some aspects may be more easily studied in one
representation, while others are easier to address in a different representation. The
transformation from representation II or III to I is direct and consists of eliminating
the Lagrange multipliers λ. Indeed, consider the implicit generalized Hamiltonian
system (3.18) corresponding to representation II. Since rank g(x) = k for all x ∈ X ,
we can locally find an (n − k) × n matrix s(x) of constant rank n − k such that
s(x)g(x) = 0. Premultiplying the first n equations of (3.18) by s(x) then transforms
(3.18) into the following n equations:[

s(x)
0

]
ẋ =

[
s(x)J(x)
gT (x)

]
∂H

∂x
(x),(3.24)

which is easily seen to be of the form (3.10) with F (x) = [ s(x)
0

] and E(x) =

[ s(x)J(x)
gT (x)

] satisfying (3.8), (3.9). The transformation from Representation III to

I is completely similar.
Example 3.3. Consider again the mechanical system with kinematic constraints

in Example 3.2. Since rankA(q) = k for all q ∈ Q, we can locally find an (n− k)× n
matrix S(q) of constant rank n − k such that S(q)A(q) = 0. Premultiplying the first
2n equations of (3.22) by the (2n− k)× 2n matrix[

In 0
0 S(q)

]
(3.25)

of constant rank 2n− k then transforms (3.22) into the following 2n equations:In 0
0 S(q)
0 0

[ q̇
ṗ

]
=

 0 In
−S(q) 0

0 AT (q)

[∂H∂q (q, p)

∂H
∂p (q, p)

]
.(3.26)

The transformation from representation I to II or III is more substantial. Consider
representation I as given by (3.8), (3.9). Since

ker [F (x) : −E(x)] = Im

[
ET (x)
−FT (x)

]
(3.27)
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we deduce that locally

G1(x) = ImET (x), P1(x) = ImFT (x)(3.28)

(while G0(x) = ker F (x), P0(x) = ker E(x) if F (x) (respectively, E(x)) has constant
rank). In order to obtain representation II we need to assume that P1 has constant
dimension (see Theorem 3.1), or equivalently by (3.28), F (x) has constant rank. Then
we may always locally transform the equations F (x)v = E(x)v∗ into the form[

F1(x)
0

]
v =

[
E1(x)
E2(x)

]
v∗,(3.29)

where F1(x) has full row rank for every x in this neighborhood. Since

0 = E(x)FT (x) + F (x)ET (x) =

[
E1(x)FT1 (x) + F1(x)ET1 (x) F1(x)ET2 (x)

E2(x)FT1 (x) 0

]
(3.30)

it follows that

E1(x)FT1 (x) + F1(x)ET1 (x) = 0(3.31)

and ET2 (x)F1(x) = 0, or actually since rank [F (x) : −E(x)] = n

ker F1(x) = ImET2 (x).(3.32)

By injectivity of FT1 (x) it follows that there exists an n × n matrix J(x) satisfying
J(x)FT1 (x) = −ET1 (x), which is by (3.31) skew-symmetric on ImFT1 (x), and extend-
able to a skew-symmetric matrix on Rn. Thus the equations (3.29) can be written as

v − J(x)v∗ ∈ kerF1(x) = ImET2 (x),
0 = E2(x)v∗(3.33)

or equivalently, defining the constant rank matrix g(x) := ET2 (x),

v = J(x)v∗ + g(x)λ,
0 = gT (x)v∗(3.34)

which is representation II. Representation III can be obtained similarly by manipu-
lating instead of F (x) the constant rank matrix E(x).

4. Closedness of generalized Dirac structures. The Dirac structures D of
Definition 2.1 are called generalized because they do not necessarily satisfy the fol-
lowing closedness (or integrability) condition.

Definition 4.1 (see [D2]). A generalized Dirac structure D on X is called closed
(or simply a Dirac structure) if for arbitrary (X1, α1), (X2, α2), and (X3, α3) ∈ D
there holds

〈LX1α2 |X3〉+ 〈LX2α3 |X1〉+ 〈LX3α1 |X2〉 = 0.(4.1)

The following theorem gives a very useful characterization of closedness of a gen-
eralized Dirac structure.

Theorem 4.1 (cf. [D2, Theorem 2.1]; see also [C1]). D is closed if and only if

([X1, X2], iX1
dα2 − iX2

dα1 + d〈α2 |X1〉) ∈ D for all (X1, α1), (X2, α2) ∈ D.(4.2)
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Proof. First note that the identities (see, e.g., [AMR])

LXα = diXα+ iXdα,(4.3)

i[X,Y ]α = LX iY α− iY LXα(4.4)

are satisfied for all vector fields X,Y and k-forms α on X . (The formula (4.3) is also
known as Cartan’s magic formula.) Hence,

〈LXα |Y 〉 = 〈d〈α |X〉 |Y 〉+ dα(X,Y ),(4.5)

〈α | [X,Y ]〉 = −〈d〈α |X〉 |Y 〉+ 〈LY α |X〉(4.6)

for all vector fields X,Y and one-forms α on X .
Now take arbitrary (X1, α1), (X2, α2), (X3, α3) ∈ D. Then

〈iX1
dα2 − iX2

dα1 + d〈α2 |X1〉 |X3〉+ 〈α3 | [X1, X2]〉
= 〈iX1

dα2 |X3〉 − 〈iX2
dα1 |X3〉+ 〈d〈α2 |X1〉 |X3〉+ 〈α3 | [X1, X2]〉

= dα2(X1, X3) + 〈d〈α2 |X1〉 |X3〉 − dα1(X2, X3) + 〈α3 | [X1, X2]〉
= 〈LX1

α2 |X3〉+ dα1(X3, X2) + 〈LX2
α3 |X1〉 − 〈d〈α3 |X1〉 |X2〉

= 〈LX1
α2 |X3〉+ 〈LX2

α3 |X1〉+ 〈LX3
α1 |X2〉(4.7)

since dα1(X2, X3) = −dα1(X3, X2), and d〈α3 |X1〉+d〈α1 |X3〉 = 0 because (X1, α1),
(X3, α3) ∈ D. Thus,

D is closed
m

〈LX1α2 |X3〉+ 〈LX2
α3 |X1〉+ 〈LX3

α1 |X2〉 = 0
for all (X1, α1), (X2, α2), (X3, α3) ∈ D

m
〈iX1

dα2 − iX2
dα1 + d〈α2 |X1〉 |X3〉+ 〈α3 | [X1, X2]〉 = 0

for all (X1, α1), (X2, α2), (X3, α3) ∈ D
m

([X1, X2], iX1
dα2 − iX2

dα1 + d〈α2 |X1〉) ∈ D
for all (X1, α1), (X2, α2) ∈ D,

where the last equivalence follows from the fact that D = D⊥.
Remark 4.1. Courant [C1] uses property (4.2) as the definition of closedness (or

integrability) of a generalized Dirac structure.
Closedness needs only to be checked on a set of pairs (Xi, αi) which span the

generalized Dirac structure D, as follows from the following lemma.
Lemma 4.1. Consider a generalized Dirac structure D on a manifold X . Let

(X1, α1), . . . , (Xn, αn) ∈ D
and suppose that(

[Xi, Xj ], iXidαj − iXjdαi + d〈αj |Xi〉
) ∈ D, i, j = 1, . . . , n.(4.8)

Then also ([X,Y ], iXdβ − iY dα+ d〈β |X〉) ∈ D, where

(X,α) =

n∑
i=1

ζi(Xi, αi), (Y, β) =

n∑
i=1

ηi(Xi, αi)(4.9)

for arbitrary ζi, ηi ∈ C∞(X ), i = 1, . . . , n.
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Proof. Let γ = iXdβ− iY dα+ d〈β |X〉. A straightforward calculation then gives

[X,Y ] =

n∑
i,j=1

[ζiXi(ηj)Xj + ζiηj [Xi, Xj ]− ηjXj(ζi)Xi],

(4.10)

γ =

n∑
i,j=1

[ζiXi(ηj)αj + ζiηj(iXidαj − iXjdαi + d〈αj |Xi〉)− ηjXj(ζi)αi].(4.11)

Thus, from (4.8) it follows that ([X,Y ], γ) ∈ D.
A smooth function H ∈ C∞(X ) is said to be admissible (see [C1]) if there ex-

ists a (smooth) vector field X such that (X,dH) ∈ D. From the definition of the
codistribution P1 in (3.2) we see that the space of all admissible functions is given by

AD = {H ∈ C∞(X ) |dH ∈ P1}.(4.12)

There is a well-defined generalized Poisson bracket on AD given by the formula

{H1, H2}D = 〈dH1 |X2〉 = −〈dH2 |X1〉,(4.13)

where (X1,dH1), (X2,dH2) ∈ D. To show that { , }D as defined in (4.13) is a gen-
eralized Poisson bracket is straightforward. Bilinearity of { , }D follows from bilin-
earity of 〈 | 〉. Skew-symmetry is a consequence of (4.13). Finally, take arbitrary
(X1,dH1), (X2,dH2), (X3,dH3) ∈ D. Then

(4.14) {H1, H2H3}D = −〈d(H2H3) |X1〉 = −〈H3dH2 +H2dH3 |X1〉
= H3{H1, H2}D +H2{H1, H3}D

so { , }D also satisfies the Leibniz identity. For a Dirac structure given by represen-
tation II (see Theorem 3.1), { , }D is given as follows:

{H1, H2}D(x) =

[
∂H1

∂x
(x)

]T
J(x)

∂H2

∂x
(x), H1, H2 ∈ AD.(4.15)

We will now characterize closedness of a generalized Dirac structure D in terms of the
bracket { , }D and the admissible functions AD. The following necessary conditions
for closedness follow from Theorem 4.1.

Corollary 4.1 (cf. [C1, D2]). If D is closed, then
1. G0 and G1 are involutive distributions;
2. {H1, H2}D ∈ AD;
3. {H1, {H2, H3}D}D + {H2, {H3, H1}D}D + {H3, {H1, H2}D}D = 0

for all H1, H2, H3 ∈ AD.
Proof.
1. Let X1, X2 ∈ G0, i.e., (X1, 0), (X2, 0) ∈ D. Then by Theorem 4.1 ([X1, X2], 0)
∈ D, which means that [X1, X2] ∈ G0. Involutivity of G1 also follows directly
from Theorem 4.1.

2. Take H1, H2∈AD so that (X1,dH1), (X2,dH2)∈D. Then we have ([X1, X2],
d〈dH2 |X1〉) ∈ D, which means that

d〈dH2 |X1〉 = d{H2, H1}D ∈ P1 ⇒ {H1, H2}D ∈ AD.(4.16)
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3. Take H1, H2, H3 ∈ AD so that (X1,dH1), (X2,dH2), (X3,dH3) ∈ D. Then

0 = 〈LX1
dH2 |X3〉+ 〈LX2

dH3 |X1〉+ 〈LX3
dH1 |X2〉

= 〈d〈dH2 |X1〉 |X3〉+ 〈d〈dH3 |X2〉 |X1〉+ 〈d〈dH1 |X3〉 |X2〉
= 〈d{H2, H1}D |X3〉+ 〈d{H3, H2}D |X1〉+ 〈d{H1, H3}D |X2〉(4.17)

= {{H2, H1}D, H3}D + {{H3, H2}D, H1}D + {{H1, H3}D, H2}D
= {H1, {H2, H3}D}D + {H2, {H3, H1}D}D + {H3, {H1, H2}D}D.

If in addition the codistribution P1 (see (3.2)) is constant-dimensional, the follow-
ing theorem gives necessary and sufficient conditions for closedness in terms of { , }D
and AD.

Theorem 4.2. Consider a generalized Dirac structure D on a manifold X . Let
P1 denote the codistribution on X defined by (3.2). Assume that P1 is constant-
dimensional. Then D is closed if and only if the following three conditions are satisfied:

1. G0 = ker P1 is involutive;
2. {H1, H2}D ∈ AD;
3. {H1, {H2, H3}D}D + {H2, {H3, H1}D}D + {H3, {H1, H2}D}D = 0

for all H1, H2, H3 ∈ AD.
Proof. The necessity of these three conditions follows from Corollary 4.1 so we

have to show only the sufficiency part here. First note that by using Proposition
3.1 we have that P1 = annG0. Since G0 = ker P1 is involutive and P1 is constant-
dimensional, by Frobenius’s theorem in a neighborhood of any point x0 ∈ X there
exist local coordinates x = (x1, . . . , xn) such that

P1 = annG0 = span {dx1, . . . ,dxn−m},(4.18)

where m = dim ker P1 (= dimG0). In the following, every computation is done in
such a neighborhood using local coordinates.

Take now arbitrary (X1, α1), (X2, α2) ∈ D. Then, since α1, α2 ∈ P1, we have that

α1 =
n−m∑
i=1

ζidxi,(4.19)

α2 =

n−m∑
i=1

ηidxi,(4.20)

where ζi, ηi are smooth functions. Now, let the vector fields Y1, . . . , Yn−m be such
that

(Yi,dxi) ∈ D, 1 ≤ i ≤ n−m.(4.21)

Since also (X1, α1) ∈ D it follows that

〈dxk |X1〉+

〈
n−m∑
i=1

ζidxi |Yk
〉

= 0(4.22)

so

〈dxk |X1〉 = −
n−m∑
i=1

ζi{xi, xk}D(4.23)
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for 1 ≤ k ≤ n−m. Define the vector fields Z1, Z2 as

Z1 = X1 −
n−m∑
i=1

ζiYi,(4.24)

Z2 = X2 −
n−m∑
i=1

ηiYi.(4.25)

Then

〈dxk |Z1〉 =

〈
dxk

∣∣∣∣X1 −
n−m∑
i=1

ζiYi

〉

= −
n−m∑
i=1

ζi{xi, xk}D −
n−m∑
i=1

ζi{xk, xi}D

= 0(4.26)

for all 1 ≤ k ≤ n−m since {xi, xk}D = −{xk, xi}D. This means that Z1 ∈ kerP1 = G0

and

X1 =
n−m∑
i=1

ζiYi + Z1,(4.27)

X2 =

n−m∑
i=1

ηiYi + Z2,(4.28)

where Z1, Z2 ∈ G0.
Now we want to calculate the term

α12 = iX1dα2 − iX2dα1 + d〈α2 |X1〉.(4.29)

We have dα2 = d(
∑n−m
i=1 ηidxi) =

∑n−m
i=1 dηi ∧ dxi, so

iX1
dα2 = iX1

(n−m∑
i=1

dηi ∧ dxi

)

=

n−m∑
i=1

[iX1
dηi ∧ dxi − dηi ∧ iX1

dxi]

=

n−m∑
i=1

[〈
dηi

∣∣∣∣ n−m∑
j=1

ζjYj + Z1

〉
dxi −

〈
dxi

∣∣∣∣ n−m∑
j=1

ζjYj + Z1

〉
dηi

]

=

n−m∑
i,j=1

[
ζjYj(ηi)dxi − ζj{xi, xj}Ddηi

]
+

n−m∑
i=1

Z1(ηi)dxi,(4.30)

where we used the fact that 〈dxi |Z1〉 = 0 since dxi ∈ annG0. Similarly we obtain

iX2dα1 =
n−m∑
i,j=1

[ηjYj(ζi)dxi − ηj{xi, xj}Ddζi] +
n−m∑
i=1

Z2(ζi)dxi.(4.31)
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Moreover,

d〈α2 |X1〉 = d

〈
n−m∑
i=1

ηidxi

∣∣∣∣ n−m∑
j=1

ζjYj + Z1

〉

= d

n−m∑
i,j=1

ηiζj

〈
dxi |Yj

〉
= d

n−m∑
i,j=1

ηiζj{xi, xj}D


=

n−m∑
i,j=1

[ηiζjd{xi, xj}D + {xi, xj}D(ζjdηi + ηidζj)]

=

n−m∑
i,j=1

[ηiζjd{xi, xj}D + {xi, xj}D(ζjdηi − ηjdζi)],(4.32)

where the last equation follows from skew-symmetry of { , }D. Inserting (4.30), (4.31),
and (4.32) in (4.29) gives

α12 = iX1
dα2 − iX2dα1 + d〈α2 |X1〉

=

n−m∑
i,j=1

[(ζjYj(ηi)− ηjYj(ζi))dxi + ηiζjd{xi, xj}D]

+

n−m∑
i=1

(Z1(ηi)− Z2(ζi))dxi.(4.33)

From (4.33) we immediately see that α12 ∈ P1 since d{xi, xj}D ∈ P1 when 1 ≤ i, j ≤
n−m.

Now we have to take a closer look at the term [X1, X2]. A direct calculation
yields

(4.34) [X1, X2] =

n−m∑
i=1

ζiYi + Z1,
n−m∑
j=1

ηjYj + Z2


=

n−m∑
i,j=1

{(ζjYj(ηi)− ηjYj(ζi))Yi + ηiζj [Yj , Yi]}+
n−m∑
i=1

(Z1(ηi)− Z2(ζi))Yi + Z12,

where the vector field Z12 is given by

Z12 =
n−m∑
i=1

(ζi[Yi, Z2]− ηi[Yi, Z1]) + [Z1, Z2].(4.35)

Now take arbitrary Z ∈ G0 and consider d{xi, xj}D ∈ annG0 for 1 ≤ i, j ≤ n −m.
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Then

0 = 〈d{xi, xj}D |Z〉
= −Z({xj , xi}D)

= −Z(Yi(xj))

= −Yi(Z(xj)) + [Yi, Z](xj)

= 〈dxj | [Yi, Z]〉(4.36)

for all 1 ≤ i, j ≤ n−m, which means that [Yi, Z] ∈ ker P1 = G0 for all 1 ≤ i ≤ n−m.
Since G0 is involutive we immediately see from (4.35) that also Z12 ∈ G0.

Now we want to show that ([Yj , Yi],d{xi, xj}D) ∈ D. We know that {xi, xj}D ∈
AD, which means that there exist vector fields Yij such that (Yij ,d{xi, xj}D) ∈ D,
i, j = 1, . . . , n−m. Then

〈dxk | [Yj , Yi]− Yij〉 = [Yj , Yi](xk)− Yij(xk)

= Yj(〈dxk |Yi〉)− Yi(〈dxk |Yj〉)− 〈dxk |Yij〉
= 〈d{xk, xi}D |Yj〉 − 〈d{xk, xj}D |Yi〉 − {xk, {xi, xj}D}D
= {{xk, xi}D, xj}D − {{xk, xj}D, xi}D − {xk, {xi, xj}D}D
= {xj , {xi, xk}D}D + {xi, {xk, xj}D}D + {xk, {xj , xi}D}D
= 0(4.37)

when 1 ≤ i, j, k ≤ n−m, which means that [Yj , Yi]− Yij ∈ ker P1 = G0. Thus,

([Yj , Yi],d{xi, xj}) ∈ D, i, j = 1, . . . , n−m,(4.38)

and by inspection of (4.33) and (4.34) we see that ([X1, X2], α12) ∈ D, and closedness
of D follows from Theorem 4.1.

In the following we will explicitly characterize closedness in the three different
representations of a Dirac structure.

Theorem 4.3 (representation I). Consider a generalized Dirac structure D on a
manifold X given locally in representation I (see (3.8), (3.9)). Define (Xi, αi) ∈ D in
local coordinates by

Xi = ETi (x),(4.39)

αi = −FTi (x),(4.40)

where ETi (x) and FTi (x) denote the ith column of the matrices ET (x) and FT (x),
respectively. Then D is closed if and only if

(4.41)
(
[Xi, Xj ], iXidαj − iXjdαi + d〈αj |Xi〉

) ∈ D(x)

for all x ∈ X , i, j = 1, . . . , n.

Proof. The proof follows from (3.27), Theorem 4.1, and Lemma 4.1.
Theorem 4.4 (representation II). Let X be an n-dimensional manifold. Let

G be a constant-dimensional distribution on X , and J(x) : T ∗xX → TxX , x ∈ X ,
be a skew-symmetric vector bundle map. Moreover, let { , } denote the generalized
Poisson bracket corresponding to J . Then the generalized Dirac structure given by
(see Theorem 3.1)

D = {(X,α) ∈ TX ⊕ T ∗X |X(x)− J(x)α(x) ∈ G(x), x ∈ X , α ∈ ann G}(4.42)

is closed if and only if
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1. G is involutive;
2. {H1, H2} ∈ AD;
3. {H1, {H2, H3}}+ {H2, {H3, H1}}+ {H3, {H1, H2}} = 0

for all H1, H2, H3 ∈ AD = {H ∈ C∞(X ) |dH ∈ ann G}.
Proof. The result follows from Theorem 4.2 using the facts that G0 = G and that

{H1, H2}D = {H1, H2} for all H1, H2 ∈ AD.
Theorem 4.5 (representation III). Let X be an n-dimensional manifold. Let P

be a constant-dimensional codistribution on X , and ω(x) : TxX → T ∗xX , x ∈ X , be
a skew-symmetric vector bundle map. Then the generalized Dirac structure given by
(see Theorem 3.2)

D = {(X,α) ∈ TX ⊕ T ∗X |α(x)− ω(x)X(x) ∈ P (x), x ∈ X , X ∈ ker P}(4.43)

is closed if and only if
1. kerP is involutive;
2. dω(X1, X2, X3) = 0 for all X1, X2, X3 ∈ kerP .

Proof. Let (X1, α1), (X2, α2) ∈ D, i.e.,

αi = iXiω + pi, pi ∈ P, Xi ∈ kerP, i = 1, 2.(4.44)

Define as in (4.29) the one-form α12 = iX1
dα2 − iX2

dα1 + d〈α2 |X1〉. Now, using
Cartan’s magic formula, we get

diX1
ω = LX1

ω − iX1
dω,(4.45)

diX1
iX2

ω = LX1
iX2

ω − iX1
LX2

ω + iX1
iX2

dω(4.46)

for all vector fields X1, X2 on X . Hence

α12 = iX1
dα2 − iX2

dα1 + d〈α2 |X1〉
= iX1

d(iX2
ω + p2)− iX2

d(iX1
ω + p1) + diX1

(iX2
ω + p2)

= iX1
diX2

ω + iX1
dp2 − iX2

diX1
ω − iX2

dp1 + diX1
iX2

ω + diX1
p2

= −iX2
LX1

ω + LX1
iX2

ω + iX1
dp2 − iX2

dp1 + iX2
iX1

dω

= i[X1,X2]ω + iX1
dp2 − iX2

dp1 + iX2
iX1

dω(4.47)

since i[X1,X2]ω = LX1
iX2

ω− iX2
LX1

ω. Thus, using Theorem 4.1 and the definition of
D, we have that

D is closed

m
([X1, X2], i[X1,X2]ω + iX1

dp2 − iX2
dp1 + iX2

iX1
dω) ∈ D

for all p1, p2 ∈ P, for all X1, X2 ∈ kerP.

m
[X1, X2] ∈ kerP
iX1

dp2 − iX2
dp1 + iX2

iX1
dω ∈ P

}
for all p1, p2 ∈ P, for all X1, X2 ∈ kerP.

Now, if P is a constant-dimensional codistribution and kerP is involutive, it follows
that for every p ∈ P there exists p̄ ∈ P and a one-form η such that dp = η ∧ p̄. Thus,
iXdp = η(X)p̄ ∈ P for all X ∈ kerP . Moreover, iX2

iX1
dω(X3) = dω(X1, X2, X3)

which means that iX2
iX1

dω ∈ P if and only if dω(X1, X2, X3) = 0 for all X3 ∈ ker P
since P is constant-dimensional.
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Remark 4.2. In [C1] it is shown that closedness of D implies condition 2 in
Theorem 4.5.

We will now apply the above theory to mechanical systems with kinematic con-
straints (see Example 3.2).

Proposition 4.1. Consider the mechanical system with kinematic constraints
AT (q)q̇ = 0 as given in Example 3.2. Let { , } denote the Poisson bracket defined
(locally) by the structure matrix J . Then the following statements are equivalent:

1. DA is closed;
2. the constraints (3.21) are holonomic;
3. d{H1, H2} ∈ ann G for all H1, H2 such that dH1,dH2 ∈ ann G.

Proof. 1⇔ 2: From Theorem 4.5 it follows that DA is closed if and only if ker P is
involutive which is equivalent to the constraints (3.21) being holonomic. 1⇔ 3: This
follows from Theorem 4.4 since G is involutive and { , } satisfies the Jacobi identity
in this case.

The next proposition gives an interesting interpretation of closedness of general-
ized Dirac structures that come up in connection with Lie-Poisson structures.

Proposition 4.2. Let G be any n-dimensional Lie group (e.g., SE(3)), with Lie
algebra g, and the dual Lie algebra g∗ with the Lie-Poisson bracket { , }. Consider
a constant distribution on g∗, that is a linear subspace V ⊂ g∗. Define the Dirac
structure D on g∗ as

D = {(X,α) ∈ Tg∗ ⊕ T ∗g∗ |X(x)− J(x)α(x) ∈ V, α(x) ∈ V⊥, x ∈ g∗},(4.48)

where J(x) is the structure matrix of the Lie-Poisson bracket { , }. Then D is closed
if and only if V⊥ ⊂ g is a subalgebra.

Proof. The proof follows more or less directly from results obtained in
[MR, p. 287].

Example 4.1 (X = se∗(3) w R6). The motion of a rigid body with respect to a
body-fixed rotation reference frame in the center of mass is given (in the absence of
gravity) by

Mω̇ + ω ×Mω = τ,(4.49)

mv̇ + ω ×mv = F,(4.50)

where v, ω ∈ R3 are, respectively, the linear and the angular velocities, M is the
inertia tensor, and τ, F ∈ R3 are, respectively, the torques and the forces. By defining
Π, p ∈ R3 as

Π = Mω, Π = [Πx,Πy,Πz]
T ,(4.51)

p = mv, p = [px, py, pz]
T(4.52)

and the Hamiltonian H(Π, p) as

H(Π, p) =
1

2
ΠTM−1Π +

1

2m
pT p,(4.53)

it follows that (4.49) and (4.50) can be written as[
Π̇

ṗ

]
=

[
S(Π) S(p)

S(p) 0

]
︸ ︷︷ ︸

J(Π,p)

[
∂H
∂Π
∂H
∂p

]
+

[
τ

F

]
.(4.54)
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Here Π = [Πx,Πy,Πz]
T and p = [px, py, pz]

T are the body angular and linear mo-
mentum, respectively. S( · ) is defined by S(a)b = a × b for a, b ∈ R3. J(Π, p) is the
structure matrix of the Lie-Poisson bracket on X = se∗(3) w R6.

Assume that the following constraints are imposed on the system:

py = pz = 0.(4.55)

Let ex = [1 0 0]T , ey = [0 1 0]T , ez = [0 0 1]T . Then

V⊥ = ker

[
0 0
ey ez

]
,(4.56)

which is not a subalgebra of se(3) w R6 (see, e.g., [MR]). Hence, the corresponding
generalized Dirac structure is not closed in this case. However, if the additional con-
straint px = 0 is imposed on the system (fixed center of mass), it is easy to see that
closedness of the corresponding generalized Dirac structure follows.

Similarly to the case when the Jacobi-identity is satisfied for a generalized Pois-
son structure, one can show that if the closedness condition (4.1) is satisfied for a
generalized Dirac structure then there exist local canonical coordinates around any
regular point in which the geometric picture simplifies considerably (see Proposition
4.1.2 in [C1]). In our context (i.e., for generalized Dirac structures arising from phys-
ical systems) constant-dimensionality of the codistribution P1 is often a reasonable
assumption. Thus, in the next proposition we will draw attention to the existence
and construction of canonical coordinates for Dirac structures that may be given in
representation II (cf. Theorem 3.1). In essence, the proof of this proposition comes
down to using Frobenius’s theorem and a generalized version of Darboux’s theorem
and proceeds along the same general line as the proof of Proposition 4.1.2 in [C1].
However, we show directly how local canonical coordinates may be found for a Dirac
structure in representation II. In addition, we show more explicitly where the three
necessary conditions in Corollary 4.1 come into play which is interesting in itself.

Proposition 4.3. Let D be a generalized Dirac structure on an n-dimensional
manifold X . Assume that the codistribution P1 (see (3.2)) is constant-dimensional so
that D can always be given in representation II as follows:

D = {(X,α) ∈ TX ⊕ T ∗X |X(x)− J(x)α(x) ∈ G0(x), x ∈ X , α ∈ ann G0},(4.57)

where J(x) : T ∗xX → TxX , x ∈ X , is a skew-symmetric vector bundle map. Then, if
D is closed, there exist around every regular point x0 ∈ X local canonical coordinates

(q, p, r, s) = (q1, . . . , qk, p1, . . . , pk, r1, . . . , rl, s1, . . . , sm), 2k + l +m = n

for X in which J(x) and G0 take the simple form

J(x) =


0 Ik 0 ∗
−Ik 0 0 ∗

0 0 0 ∗
∗ ∗ ∗ ∗

 , G0 = span

{
∂

∂s1
, . . . ,

∂

∂sm

}
,(4.58)

where ∗ denotes unspecified elements, m = n− dimP1 and l = n− dimG1(x0).
Conversely, if D is given by (4.57), (4.58) in a neighborhood of x0 ∈ X , then D

is closed in this neighborhood.
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Proof. If D is closed, it follows from condition 1 in Corollary 4.1 that G0 is in-
volutive. Since P1 = annG0 is constant-dimensional, also G0 is constant-dimensional
with dimension equal to m. Thus, by Frobenius’ theorem in a neighborhood Nx0

of
any point x0 ∈ X there exist local coordinates (y, s) = (y1, . . . , yn−m, s1, . . . , sm),
such that

G0 = span

{
∂

∂s1
, . . . ,

∂

∂sm

}
(4.59)

and

P1 = annG0 = span {dy1, . . . ,dyn−m} .(4.60)

Now, { , }D is given in terms of J(x) as follows:

{F,G}D(x) =

[
∂F

∂x
(x)

]T
J(x)

∂G

∂x
(x)(4.61)

for all F,G ∈ C∞(X ) such that dF,dG ∈ annG0. Moreover, since D is closed, it
follows from condition 2 in Corollary 4.1 that

d{yi, yj}D ∈ annG0, i, j = 1, . . . , n−m,(4.62)

which means that

∂{yi, yj}D
∂sk

= 0, k = 1, . . . ,m, i, j = 1, . . . , n−m.(4.63)

Hence, J(x) takes the following form in the local coordinates (y, s):

J(y, s) =

[
J̄(y) ∗
∗ ∗

]
(4.64)

where J̄(y) = [{yi, yj}D] is the (n−m)× (n−m) upper-left submatrix of J(y, s). In
addition, the distribution G1 is given locally in the coordinates (y, s) as

G1(y, s) = Im

[
J̄(y) 0

0 Im

]
.(4.65)

If x0 ∈ X is a regular point, then G1 is by definition constant-dimensional in a
neighborhood of x0 which implies that J̄(y) has constant rank 2k = n− (l +m) in a
neighborhood N̂x0 ⊂ Nx0 of x0. Define (without loss of generality) the submanifold
Y ⊂ X as

Y = {(y, s) ∈ N̂x0 | s = s(x0)}.(4.66)

y = (y1, . . . , yn−m) are local coordinates for Y around y0 = y(x0). Since D is closed,
it follows from condition 3 in Corollary 4.1 that { , }D defines a Poisson structure
on Y with structure matrix J̄(y). Now, using the fact that J̄(y) has constant rank
2k ≤ n−m for all y ∈ Y, it follows from Theorem 6.22 in [O] (called the generalized
Darboux’s theorem; see also [W]), that around y0 ∈ Y there exist local coordinates
(q, p, r) = (q1, . . . , qk, p1, . . . , pk, r1, . . . , rl) in which J̄(y) takes the form

J̄(p, q, r) =

 0 Ik 0
−Ik 0 0

0 0 0

 .(4.67)
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Now (q, p, r, s) are local coordinates for X around x0 ∈ X in which J(x) and G0 take
the simple form (4.58).

Conversely, it is easy to check that a generalized Dirac structure given by (4.57),
(4.58) in a neighborhood of x0 ∈ X , satisfies the sufficient conditions for closedness
as given in Theorem 4.2 in this neighborhood.

The equations of an implicit generalized Hamiltonian system corresponding to
the local representation (4.57), (4.58) and a Hamiltonian H take the form

q̇ = ∂H
∂p (q, p, r, s),

ṗ = −∂H∂q (q, p, r, s),

ṙ = 0,
0 = ∂H

∂s (q, p, r, s).

(4.68)

Comparing (4.68) with (2.7) we see that while (2.7) makes explicit the conserved
quantities, (4.68) also makes explicit the algebraic constraints

0 = ∂H
∂s1

(q, p, r, s),
...

0 = ∂H
∂sm

(q, p, r, s).

(4.69)

If H is nondegenerate in the energy-variables s1, . . . , sm, that is,

rank

[
∂2H

∂si∂sj

]
= m,(4.70)

then by the implicit function theorem one may locally express the variables s1, . . . , sm
as functions of q, p, r, i.e., si = si(q, p, r), i = 1, . . . ,m. Defining the constrained
Hamiltonian

Hc(q, p, r) := H(q, p, r, s(q, p, r))(4.71)

it follows that (4.68) reduces to the same format as (2.7):

q̇ = ∂Hc
∂p (q, p, r),

ṗ = −∂Hc∂q (q, p, r),

ṙ = 0,

(4.72)

which is an explicit Hamiltonian dynamics on the constrained state space Xc =
{(q, p, r, s) | ∂H∂si (q, p, r, s) = 0, i = 1, · · · ,m}. Also note that while under the as-
sumption (4.70) the variables s1, . . . , sm together with the Hamiltonian H define a
(constraint) submanifold Xc of X , dually the level sets of the variables r1, . . . , r` define
a foliation of X . Both the constraint submanifold Xc and the foliation are invariant
for the Hamiltonian dynamics. However, as shown in this section, there are cases of
interest where the generalized Dirac structure does not satisfy the closedness condition
(e.g., mechanical systems with nonholonomic constraints). Furthermore, also if the
closedness condition is satisfied the actual construction of the canonical coordinates
qi, pi, ri, si, may be very involved, and preferably should be avoided.

We remark that the representation (4.68) of an implicit Hamiltonian system with
regard to a closed Dirac structure is quite amenable for stability analysis, at least
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when the nondegeneracy condition (4.70) is satisfied. Indeed, let (q0, p0, r0, s0) be an
equilibrium of (4.68), that is,

∂H

∂q
(q0, p0, r0, s0) = 0,

∂H

∂p
(q0, p0, r0, s0) = 0,

∂H

∂s
(q0, p0, r0, s0) = 0,(4.73)

and let us also assume that ∂H
∂r (q0, p0, r0, s0) = 0 (see later). Under the nondegeneracy

condition (4.70) the implicit function theorem allows us to express the variables s
locally around q0, p0, r0, s0 as functions of q, p, r leading as above to the explicit
Hamiltonian dynamics (4.72). Note that in general the implicit function theorem only
provides an existence result, and that finding the actual expression of s as function
of q, p, r is in general not possible or preferably should be avoided.

Now, if the Hessian matrix of Hc at (q0, p0, r0) is positive (or negative) definite it
follows that (q0, p0, r0) is a stable equilibrium of (4.72) (see, e.g., [MR]). On the other
hand, this Hessian matrix of Hc can be easily expressed in the original Hamiltonian
H as 

∂2H
∂q2

∂2H
∂q∂p

∂2H
∂q∂r

∂2H
∂p∂q

∂2H
∂p2

∂2H
∂p∂r

∂2H
∂r∂q

∂2H
∂r∂p

∂2H
∂r2

−


∂2H
∂q∂s

∂2H
∂p∂s

∂2H
∂r∂s

[∂2H

∂s2

]−1 [
∂2H
∂s∂q

∂2H
∂s∂p

∂2H
∂s∂r

]
(4.74)

evaluated at (q0, p0, r0, s0). Thus this way of checking stability can be performed
without the actual computation of Hc. Furthermore, note that for checking definite-
ness of (4.74) only the variables s need to be explicitly computed; we may use other
coordinates instead of q, p, r.

Since the variables r1, . . . , rl are invariants (or Casimirs) we may also replace in
the stability analysis the constrained Hamiltonian Hc by Hc(q, p, r) + Φ(r), with Φ
any function of r = (r1, . . . , rl). Hence we may also replace H(q, p, r, s) with

H̄Φ(q, p, r, s) := H(q, p, r, s) + Φ(r)(4.75)

and substitute H̄Φ into (4.74) in order to check definiteness. (The addition of a
function Φ(r) to Hc when checking the definiteness of the Hessian is known as the
energy-Casimir method; see, e.g., [MR].)

5. Implicit port-controlled generalized Hamiltonian systems. As already
alluded to in section 2, if we interconnect port-controlled Hamiltonian systems (2.1)
in such a way that some of the external variables remain free port variables, then we
will end up with an implicit generalized Hamiltonian system with external (or port)
variables. In order to make this precise we give the following definition (see [SM2]).

Definition 5.1. Let X be an n-dimensional manifold of energy variables, and let
H : X → R be a Hamiltonian. Furthermore, let F be the linear space Rm of external
flows f, with dual the space F∗ of external efforts e. Consider a Dirac structure on
the product space X ×F , only depending on x. The implicit port-controlled generalized
Hamiltonian system corresponding to X , H, D, and F is defined by the specification(

ẋ, f,
∂H

∂x
(x),−e

)
∈ D(x).(5.1)

Remark 5.1. The minus sign in front of the effort e comes from the natural
identification (α, e) ∈ T ∗X × F∗ → (α,−e) ∈ (TX × F)∗. Physically this means that
the ingoing power is counted positively.
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Since by definition of a Dirac structure (cf. (2.9)) 〈α |X〉 − 〈e | f〉 = 0 for all
(X, f, α,−e) ∈ D, it follows that an implicit port-controlled Hamiltonian system sat-
isfies the energy balance

dH

dt
= eT f.(5.2)

Definition 5.1 generalizes the notion of an (explicit) port-controlled generalized Hamil-
tonian system (2.1) by noting that in this case the Dirac structure D on X × F is
given by the specification (X, f, α,−e) ∈ D iff

X(x) = J(x)α(x) + g(x)f,

e = gT (x)α(x), x ∈ X .
(5.3)

Indeed, let (X, f, α,−e) ∈ D⊥; that is,

〈α̂ |X〉+ 〈α | X̂〉 − 〈ê | f〉 − 〈e | f̂〉 = 0(5.4)

for all (X̂, f̂ , α̂,−ê) satisfying (5.3). By first taking f̂ = 0 we obtain

α̂T (x)X(x) + αT (x)J(x)α̂(x)− α̂T (x)g(x)f = 0(5.5)

for all α̂, and thus X(x) = J(x)α(x) + g(x)f , and substitution in (5.4) yields

α̂T (x)g(x)f + αT (x)g(x)f̂ − α̂T (x)g(x)f − eT f̂ = 0(5.6)

for all f̂ , implying that e = gT (x)α(x), and thus that (X, f, α,−e) ∈ D.
Now let us consider, as in section 2, k port-controlled generalized Hamiltonian

systems, see (2.15), with Ej = F∗j , j = 1, . . . , k. A power-conserving partial intercon-
nection is obtained by writing a direct sum decomposition

F1 × · · · × Fk = F i ⊕Fp(5.7)

with the subspace F i denoting the flows to be interconnected, and Fp the remaining
flows at the external ports of the partially interconnected system. By defining E i :=
(Fp)⊥ and Ep := (F i)⊥ we obtain the dual direct sum decomposition

E1 × · · · × Ek = E i ⊕ Ep.(5.8)

Proposition 5.1. Consider as in (2.15) k port-controlled generalized Hamilto-
nian systems, with direct sum decomposition (5.7), (5.8). Consider a power-conserving
partial interconnection given by a subspace (possibly parametrized by x1, . . . , xk)

I(x1, . . . , xk) ⊂ F i × E i(5.9)

with dim I(x1, . . . , xk) = dim F i, having the property

(f i, ei) ∈ I(x1, . . . , xk) ⇒ 〈ei | f i〉 = 0.(5.10)

Then the resulting partially interconnected system is an implicit port-controlled gener-
alized Hamiltonian system with state space X := X1 × · · · × Xk, Hamiltonian
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H(x1, . . . , xk) := H1(x1) + · · ·+Hk(xk), and generalized Dirac structure on X × Fp
given as

(X, fp, α,−ep) = (X1, . . . , Xk, f
p, α1, . . . , αk,−ep) ∈ D ⇐⇒

Xj(xj) = Jj(xj)αj(xj) + gj(xj)fj ,

ej = gTj (xj)αj(xj), xj ∈ Xj , j = 1, . . . , k,

(f1, . . . , fk, e1, . . . , ek) = (f i, fp, ei, ep) such that (f i, ei) ∈ I(x1, . . . , xk).

(5.11)

Proof. The proof is very similar to the proof of Proposition 2.2. Let (X, fp, α,−ep)
be in D⊥, that is,

〈α̂ |X〉+ 〈α | X̂〉 − 〈êp | fp〉 − 〈ep | f̂p〉 = 0(5.12)

for all (X̂, f̂p, α̂,−êp) satisfying (5.11). First, letting f̂j = êj = 0 for all j = 1, . . . , k
we obtain (2.21), and by substitution in (5.12) we obtain, similar to (2.22),

0 =

k∑
j=1

(
êTj fj + eTj f̂j

)
− 〈êp | fp〉 − 〈ep | f̂p〉 = 〈êi | f i〉+ 〈ei | f̂ i〉(5.13)

for all f̂ i, êi. By definition of I(x1, . . . , xk) in (5.10) this implies, as in Proposi-
tion 2.2 (adding if necessary flow vectors in the kernel of gj(xi)) that (f i, ei) ∈
I(x1, . . . , xk), and thus (X, fp, α,−ep) ∈ D. Since it is readily seen that D ⊂ D⊥ it
follows that D defines a Dirac structure.

Remark 5.2. An interesting open problem is the variational interpretation of
Proposition 5.1 (and Proposition 2.2). Indeed, if all the Hamiltonian subsystems ad-
mit a variational characterization (as Euler–Lagrange equations) one could conjec-
ture that also the (partially) interconnected Hamiltonian system admits “some kind
of ” variational characterization. It is to be expected, however, that the closedness
conditions as treated in this and the previous section will play an important role in
such a characterization, since already for classical mechanical systems with kinematic
constraints it is known (see e.g., [AKN, BC]) that they cannot be formulated as stan-
dard Euler–Lagrange equations in case the constraints are nonholonomic. Also, the
formulation (4.68) of an implicit Hamiltonian system satisfying the closedness condi-
tion suggests a connection with variational principles via the first-order condition of
Pontryagin’s maximum principle. In the case of electrical circuits, where the inter-
connections are defined by Kirchhoff’s laws and the closedness conditions are trivially
satisfied (see Example 3.1), some important work concerning a variational formulation
of Kirchhoff’s laws and the resulting variational characterization of the overall circuit
has been done (see, e.g., [JE, M1]), and it seems of interest to extend these ideas to
the general situation considered in Proposition 5.1.

In the rest of this section we will not elaborate on general implicit port-controlled
Hamiltonian systems and their different representations, but instead concentrate on a
special subclass which arises naturally in the control of mechanical systems. Consider
the following port-controlled generalized Hamiltonian system with constraints given
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by

ẋ = J(x)∂H∂x (x) + g(x)f + b(x)λ,

e = gT (x)∂H∂x (x),

0 = bT (x)∂H∂x (x),

(5.14)

where x ∈ X , f ∈ F := Rm and g(x) = [g1(x) . . . gm(x)] is the n×m matrix of input
vector fields gj . b(x) = [b1(x) . . . bk(x)] is the n× k matrix of constraint vector fields.
Throughout this section we will assume that b(x) has rank equal to k everywhere.
It is easily seen that, e.g., an actuated mechanical system with kinematic constraints
will fit into the description (5.14). By rewriting (5.14) as[

ẋ
f

]
=

[
J(x) 0

0 0

]
︸ ︷︷ ︸

J̃(x)

[
∂H
∂x (x)
−e

]
+

[
g(x) b(x)
Im 0

]
λ̃,

0 =

[
gT (x) Im
bT (x) 0

] [
∂H
∂x (x)
−e

]
,

(5.15)

where λ̃ ∈ Rm+k, it follows from Theorem 3.1 that (5.15) defines representation II of
a generalized Dirac structure D on X ×F . Thus (5.14) is an implicit port-controlled
generalized Hamiltonian system.

We will now study D further as given in representation (5.15). In what follows
we will use { , } and { , }X×F to denote the generalized Poisson brackets on X and
X ×F , respectively, with structure matrices J(x) and J̃(x) (see (5.15)), respectively.
In addition we will let B denote the constant-dimensional distribution on X given by

B(x) = Im b(x), x ∈ X .(5.16)

From (5.15) we immediately see that the distribution G0 on X ×F defined by D
(see (3.1)) is given by

G0(x, y) = Im

[
g(x) b(x)
Im 0

]
, (x, y) ∈ X × F .(5.17)

Note that G0 is constant-dimensional with dimension equal to m+k since rank b(x) =
k for all x ∈ X . The following lemma, for which a proof is straightforward, gives
necessary and sufficient conditions for G0 being involutive.

Lemma 5.1. G0 is involutive if and only if [X,Y ] ∈ B for all X,Y
∈ {g1, . . . , gm, b1, . . . , bk}.

The next lemma gives three necessary conditions for the closedness of D.
Lemma 5.2. If the generalized Dirac structure D on X × F is closed, then
1. {H1, {H2, H3}}+ {H2, {H3, H1}}+ {H3, {H1, H2}} = 0;
2. Lgj{H1, H2} = {LgjH1, H2}+ {H1, LgjH2}, j = 1, . . . ,m;
3. d{H1, H2} ∈ annB

for all H1, H2, H3 ∈ C∞(X ) such that dH1,dH2,dH3 ∈ annB.
Proof. Assume that D is closed, i.e., satisfies (4.1). Using Cartan’s magic formula,

the closedness condition (4.1) can be written as

(5.18) 〈d〈α2 |X1〉 |X3〉+ 〈d〈α3 |X2〉 |X1〉+ 〈d〈α1 |X3〉 |X2〉
+ dα2(X1, X3) + dα3(X2, X1) + dα1(X3, X2) = 0.
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Consider H1, H2, and H3 ∈ C∞(X ), where dHi ∈ annB, i = 1, 2, 3. Let j ∈
{1, . . . ,m} and define

X1(x, y) =

[
XH1

(x)
0

]
, α1(x, y) =

[
∂H1

∂x (x)

−LTgH1(x)

]
,(5.19)

X2(x, y) =

[
XH2(x)

0

]
, α2(x, y) =

[
∂H2

∂x (x)

−LTgH2(x)

]
,(5.20)

X3(x, y) =

[
XH3(x) + ρgj(x)

ρYj

]
, α3(x, y) =

[
∂H3

∂x (x)

−LTgH3(x)

]
(5.21)

for (x, y) ∈ X × F , where Yj = ∂
∂yj

, ρ ∈ R and

XHi(x) = J(x)
∂Hi

∂x
(x), LTgHi(x) = gT (x)

∂Hi

∂x
(x).(5.22)

Thus, (Xi, αi) ∈ D, i = 1, 2, 3. Now, it is easy to see that 〈αi |Xj〉 = {Hi, Hj},
i, j = 1, 2, 3, which implies that

〈d〈α2 |X1〉 |X3〉 = {{H2, H1}, H3}+ ρLgj{H2, H1},(5.23)

〈d〈α3 |X2〉 |X1〉 = {{H3, H2}, H1},(5.24)

〈d〈α1 |X3〉 |X2〉 = {{H1, H3}, H2}.(5.25)

Moreover, we have that

αi =
∂Hi

∂x1
dx1 + · · ·+ ∂Hi

∂xn
dxn − Lg1Hidy1 − · · · − LgmHidym, i = 1, . . . , 3,

(5.26)

which means that

dαi = −
m∑
l=1

n∑
k=1

∂LglHi

∂xk
dxk ∧ dyl, i = 1, . . . , 3.(5.27)

Hence,

dα2(X1, X3) = −ρ
[
∂LgjH2

∂x

]T
XH1

= −ρ{LgjH2, H1}(5.28)

and similarly

dα1(X3, X2) = −dα1(X2, X3) = ρ{LgjH1, H2} = −ρ{H2, LgjH1}.
(5.29)

In addition, it follows that dα3(X2, X1) = 0. Therefore, from the integrability condi-
tion (5.18) we have that

(5.30) {{H2, H1}, H3}+ {{H3, H2}, H1}+ {{H1, H3}, H2}
+ ρ

(
Lgj{H2, H1} − {LgjH2, H1} − {H2, LgjH1}

)
= 0

for all ρ ∈ R, implying condition 1 for ρ = 0 and condition 2 for ρ = 1.
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Now, a direct calculation yields

α12 = iX2
dα1 − iX1

dα2 + d〈α1 |X2〉(5.31)

= −
m∑
l=1

({LglH1, H2}+ {H1, LglH2}) dyl +
n∑
k=1

∂{H1, H2}
∂xk

dxk,

from which condition 3 (and condition 2) follows directly since α12 ∈ annG0 (see
Theorem 4.1).

Before being able to give the sufficient and necessary conditions forD being closed,
we also need the following result.

Lemma 5.3. If for arbitrary H1, H2 ∈ C∞(X ) such that dH1,dH2 ∈ ann B there
holds

1. Lgj{H1, H2} = {LgjH1, H2}+ {H1, LgjH2}, j = 1, . . . ,m,
2. d{H1, H2} ∈ annB,

then {H̃1, H̃2}X×F ∈ AD for all H̃1, H̃2 ∈ AD.
Proof. Take arbitrary H̃2, H̃2 ∈ AD. From (5.17) we see that this is equivalent to

0 = bT (x)
∂H̃i

∂x
(x, y),(5.32)

∂H̃i

∂y
(x, y) = −gT (x)

∂H̃i

∂x
(x, y)(5.33)

for i = 1, 2. Let j ∈ {1, . . . ,m} and define

ĝj(x, y) =

[
gj(x)

0

]
.(5.34)

Then (5.33) can be written as

∂H̃i

∂yk
= −LĝkH̃i, k = 1, . . . ,m,(5.35)

for i = 1, 2. Now,

{H̃1, H̃2}X×F =
n∑

k,l=1

Jkl(x)
∂H̃1

∂xk

∂H̃2

∂xl
,(5.36)

so

∂{H̃1, H̃2}X×F
∂yj

= − {Lĝj H̃1, H̃2}X×F − {H̃1, Lĝj H̃2}X×F .(5.37)

Since

{H1, H2} =

n∑
k,l=1

Jkl(x)
∂H1

∂xk

∂H2

∂xl
, H1, H2 ∈ C∞(X ),(5.38)

it follows from condition 1 that

Lĝj{H̃1, H̃2}X×F = {Lĝj H̃1, H̃2}X×F + {H̃1, Lĝj H̃2}X×F ,(5.39)



MATHEMATICAL STRUCTURES IN PHYSICAL SYSTEMS 85

which inserted in (5.37) yields

∂{H̃1, H̃2}X×F
∂yj

= −Lĝj{H̃1, H̃2}X×F .(5.40)

Moreover, from condition 2 it follows that

bT (x)
∂{H̃1, H̃2}X×F

∂x
= 0.(5.41)

Thus, from (5.40) and (5.41) we see that {H̃1, H̃2}X×F ∈ AD.
We are now ready to present the necessary and sufficient conditions for (5.15)

defining a Dirac structure on X × F .
Theorem 5.1. The generalized Dirac structure D on X ×F as defined by (5.15)

is closed if and only if
1. [X,Y ] ∈ B for all vector fields X,Y ∈ {g1, . . . , gm, b1, . . . , bk};
2. Lgj{H1, H2} = {LgjH1, H2}+ {H1, LgjH2}, j = 1, . . . ,m;
3. d{H1, H2} ∈ ann B;
4. {H1, {H2, H3}}+ {H2, {H3, H1}}+ {H3, {H1, H2}} = 0

for all H1, H2, H3 ∈ C∞(X ) such that dH1,dH2,dH3 ∈ ann B.
Proof. The necessary and sufficient conditions for closedness of D follows immedi-

ately by combining the results in Lemma 5.1, Lemma 5.2, Lemma 5.3 and then using
Theorem 4.4.

Corollary 5.1 (B = 0). Let b(x) = 0 (no constraints) in (5.14). Then the
generalized Dirac structure D on X ×F as defined by (5.15) (with b(x) = 0) is closed
if and only if

1. [gi, gj ] = 0, i, j = 1, . . . ,m;
2. Lgj{H1, H2} = {LgjH1, H2} + {H1, LgjH2} for all H1, H2 ∈ C∞(X ),
j = 1, . . . ,m;

3. { , } satisfies the Jacobi identity.
Hence, the closedness condition (4.1) for the generalized Dirac structure on X ×

F arising from the constrained port-controlled Hamiltonian system (5.14) translates
(among other things) into strong conditions on the input vector fields gj .

Conditions 2–4 in Theorem 5.1 may be succinctly expressed by requiring that
the generalized Poisson bracket { , } of F,G ∈ C∞(X ) where dF , dG ∈ annB is
preserved by the dynamics of (5.14) for every choice of internal energy H such that
dH ∈ annB and for every f ∈ F . Indeed, requiring that

d

dt
{F,G} =

{
d

dt
F,G

}
+

{
F,

d

dt
G

}
(5.42)

for all F,G ∈ C∞(X ) such that dF,dG ∈ annB, where d
dt denotes the time-derivative

along (5.14), is equivalent to

(5.43) {{F,G}, H}+ Lg{F,G}f + Lb{F,G}λ
= {{F,H}, G}+ {(LgF )f,G}+ {F, {G,H}}+ {F, (LgG)f}

for all H ∈ C∞(X ) such that dH ∈ annB and f ∈ F . Letting H = 0 and f = 0, we
obtain

Lb{F,G}λ = 0 for all λ ∈ Rk,(5.44)



86 MORTEN DALSMO AND ARJAN VAN DER SCHAFT

which means that d{F,G} ∈ annB. Moreover, letting f = 0 leads to

{{F,G}, H} = {{F,H}, G}+ {F, {G,H}},(5.45)

which is none other than the Jacobi-identity. Thus, (5.43) amounts to

Lg{F,G}f = {(LgF )f,G}+ {F, (LgG)f} for all f ∈ F ,(5.46)

which is equivalent to

Lgj{F,G} = {LgjF,G}+ {F,LgjG}, j = 1, . . . ,m.(5.47)

The next example should give an idea of what the conditions in Theorem 5.1 imply
for the (local) mathematical structure of system (5.14).

Example 5.1. Consider the port-controlled generalized Hamiltonian system with
constraints given in (5.14). Assume that conditions 1–4 in Theorem 5.1 are all satis-
fied. By condition 1 it follows that the constant-dimensional distribution B is involu-
tive. Hence, by Frobenius’ theorem in a neighborhood of any point x0 ∈ X there exist
local coordinates (y, s) = (y1, . . . , yn−k, s1, . . . , sk), such that

annB = span {dy1, . . . ,dyn−k}(5.48)

and

B = span

{
∂

∂s1
, . . . ,

∂

∂sk

}
.(5.49)

Condition 3 implies that

∂{yi, yj}
∂sl

= 0, l = 1, . . . , k, i, j = 1, . . . , n− k.(5.50)

Hence, J(x) takes the following form in the local coordinates (y, s):

J(y, s) =

[
Jyy(y) ∗
∗ ∗

]
,(5.51)

where Jyy(y) = [{yi, yj}] is the (n−k)× (n−k) upper-left submatrix of J(y, s). From
condition 1 it also follows that [bi, gj ] ∈ B which implies that in the coordinates (y, s)
the matrix of input vector fields takes the form

g(x, y) =

[
gy(y)
gs(y, s)

]
.(5.52)

Furthermore, since

[gi, gj ](y, s) =

[
[gyi, gyj ](y)

∗
]

(5.53)

while [gi, gj ] ∈ B, it follows that [gyi, gyj ] = 0, i, j = 1, . . . ,m. Assume additionally
that the distribution B + G is constant-dimensional with dimension equal to m + k.
Then the submatrix gy(y) of g(x, y) has constant rank equal to m ≤ n − k. Thus



MATHEMATICAL STRUCTURES IN PHYSICAL SYSTEMS 87

(see e.g., Theorem 2.36 in [NS]), there exists a local transformation (y1, . . . , yn−k)→
(ỹ1, . . . , ỹn−k) such that

gyj =
∂

∂ỹj
, j = 1, . . .m.(5.54)

In these coordinates condition 2 amounts to

∂{ỹi, ỹj}
∂ỹl

=

{
∂ỹi
∂ỹl

, ỹj

}
+

{
ỹi,

∂ỹj
∂ỹl

}
= 0, l = 1, . . . ,m, i, j = 1, . . . n− k,(5.55)

which means that {ỹi, ỹj} is independent of the first m local coordinates ỹ1, . . . , ỹm.
Let now z = (ỹm+1, . . . , ỹn−k) and w = (ỹ1, . . . , ỹm). Then from the discussion above
we can conclude that (z, w, s) are local coordinates for X around x0 in which (5.14)
takes the form ż

ẇ

 =

[
Jzz(z) Jzw(z)

−JTzw(z) Jww(z)

][
∂H
∂z (z, w, s)

∂H
∂w (z, w, s)

]
+

[
0
Im

]
f,(5.56)

ṡ = Jsz(z, w, s)
∂H
∂z (z, w, s) + Jsw(z, w, s)∂H∂w (z, w, s)

+ gs(z, w, s)f + bs(z, w, s)λ,

e = ∂H
∂w (z, w, s),

0 = ∂H
∂s (z, w, s),

where the last equation follows from the fact that the k × k matrix bs(z, w, s) has full
rank. Note that the equation for ṡ can be left out from (5.56) because it is needed only
to determine the Lagrange multipliers λ ∈ Rk. Finally from condition 4 it follows that
the matrix [

Jzz(z) Jzw(z)
−JTzw(z) Jww(z)

]
(5.57)

satisfies the Jacobi-identity (in the (z,w)-coordinates).
Finally, in the next example we will relate the results in this paper (in partic-

ular this section) to “passivity-based control” of actuated mechanical systems with
kinematic constraints.

Example 5.2. Consider a mechanical system with kinematic constraints AT (q)q̇
= 0 as in Example 3.2. Additionally, let the system be actuated by generalized ex-
ternal forces u = (u1, . . . , um) corresponding to generalized configuration coordinates
C1(q), . . . , Cm(q). The dynamical equations of motion are given as

[
q̇
ṗ

]
=

[
0 In
−In 0

][ ∂H
∂q (q, p)

∂H
∂p (q, p)

]
+
∑m
i=1

[
0

∂Ci
∂q (q)

]
ui +

[
0

A(q)

]
λ,

yi =
[
∂Ci
∂q (q)

]T
∂H
∂p (q, p)

(
= dCi

dt (q)
)
, i = 1, . . . ,m,

0 = AT (q)∂H∂p (q, p) (= AT (q)q̇).

(5.58)
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This is a port-controlled generalized Hamiltonian system with constraints as in (5.14)
with external flows the vector (u1, . . . , um) of external forces, and external efforts the
vector (y1, . . . , ym) of corresponding generalized velocities. It can be verified, as in
Proposition 4.1, that the underlying generalized Dirac structure satisfies the conditions
of Theorem 5.1 (that is, is closed) if and only if the kinematic constraints AT (q)q̇ = 0
are holonomic.

Now, consider an additional port-controlled Hamiltonian system (the “controller ”)

ξ̇ = uc,

yc = ∂P
∂ξ (ξ), ξ, uc, yc ∈ Rm,

(5.59)

with Hamiltonian P . (Note that this is of the type (2.1) with J = 0, g = identity
matrix, x = ξ, f = uc, and e = yc.) Feedback interconnection as in Example 2.1 leads
to the implicit generalized Hamiltonian system q̇

ṗ

ξ̇

 =

 0 In 0
−In 0 −∂C∂q (q)

0 ∂TC
∂q (q) 0




∂H
∂q (q, p)

∂H
∂p (q, p)

∂P
∂ξ (ξ)

+

 0
A(q)

0

λ,
0 = AT (q)∂H∂p (q, p),

(5.60)

with ∂C
∂q (q) denoting the matrix with ith column ∂Ci

∂q (q). The codistribution P0 of the
underlying generalized Dirac structure can be readily seen to be given as

P0 = span {dCi − dξi | i = 1, . . . ,m}(5.61)

expressing the fact (see also Remark 3.1) that the functions

Ci(q)− ξi, i = 1, . . . ,m,(5.62)

are independent conserved quantities for the closed-loop dynamics (5.60). It follows
that along (5.60)

ξi(t) = Ci(q(t)) + ci, for all t, i = 1, . . . ,m,(5.63)

with the constants ci solely depending on the initial conditions of the “controller”
(5.59).

Substituting (5.63) into (5.60) and noting that

∂C

∂q
(q)

∂P

∂ξ
(C1(q) + c1, . . . , Cm(q) + cm) =

∂P

∂q
(C1(q) + c1, . . . , Cm(q) + cm),

(5.64)

it follows that the dynamics of the (q, p)-part of (5.60) (the original mechanical system)
are given as [

q̇
ṗ

]
=

[
0 In
−In 0

][ ∂Hnew
∂q (q, p)

∂Hnew
∂p (q, p)

]
+

[
0

A(q)

]
λ,

0 = AT (q)∂Hnew∂p (q, p),

(5.65)
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where Hnew is the “new” Hamiltonian defined by

Hnew(q, p) = H(q, p) + P (C1(q) + c1, . . . , Cm(q) + cm).(5.66)

Thus by appropriately choosing the Hamiltonian P (ξ) of the “controller sub-system”
(5.59), we may shape the Hamiltonian H(q, p) of the constrained mechanical sys-
tem (5.58) by addition of the potential energy P (C1(q) + c1, . . . , Cm(q) + cm), with
c1, . . . , cm only depending on the initial condition of (5.59) (that is, with properly ini-
tialization we may set c1 = . . . = cm = 0). This idea of shaping the internal energy is
one of the main ideas of “passivity-based control.” We have thus demonstrated that
this can be accomplished by power-conserving (in fact, feedback) interconnection of
(5.58) with a controller sub-system (5.59).

In particular, if H and C1, . . . , Cm are such that P can be chosen in such a man-
ner that Hnew as defined by (5.66) has a strict minimum at some desired equilibrium
point (q0, p0), then (q0, p0) will be a (Lyapunov) stable equilibrium of (5.65) (and, be-
cause of (5.63), also the ξ-dynamics will be stable). To be more precise we only need
the function Hnew restricted to the constraint manifold {(q, p) |AT (q)∂Hnew∂p (q, p) = 0}
to have a strict minimum at (q0, p0).

It can be verified that the underlying generalized Dirac structure of (5.60) is closed
if and only if the kinematic constraints AT (q)q̇ = 0 are holonomic. If this happens to
be the case then checking that Hnew restricted to the constraint manifold has a strict
minimum may be performed as indicated at the end of section 4.

Within the same philosophy one may pursue asymptotic stability by adding, apart
from the energy-shaping Hamiltonian controller (2.24), energy-dissipating elements
to the system. In particular, one may replace the feedback interconnection uc = y,
u = −yc as above by the power-conserving partial interconnection (with free external
flow v and external effort y)

uc = y,
u = −yc + v,

(5.67)

and then terminate this port by an energy-dissipating element

v = −∂R
∂y

(y)(5.68)

for some (Rayleigh) dissipation function R. For the asymptotic stability analysis of
the resulting closed-loop system one again must distinguish between holonomic and
nonholonomic kinematic constraints AT (q)q̇ = 0. (In fact, in the nonholonomic case
there is a fundamental obstruction to asymptotic stabilization, since Brockett’s neces-
sary conditions are not satisfied; see, e.g., [MS3] for the references.)

6. Conclusions. It has been shown that a power-conserving interconnection
of port-controlled generalized Hamiltonian systems leads to an implicit generalized
Hamiltonian system, and a power-conserving partial interconnection to an implicit
port-controlled Hamiltonian system. The crucial concept is the notion of a (gener-
alized) Dirac structure, defined on the space of energy-variables or on the product
of the space of energy-variables and the space of flow-variables in the port-controlled
case. Three natural representations of generalized Dirac structures have been treated.
Necessary and sufficient conditions for closedness of a Dirac structure in all three rep-
resentations have been obtained. This has been illustrated on mechanical systems
with kinematic constraints and constrained systems on dual Lie algebras. Canonical
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coordinates for (closed) Dirac structures have been discussed, as well as their use for
stability analysis of implicit Hamiltonian systems. Finally the theory has been ap-
plied to implicit port-controlled generalized Hamiltonian systems, such as actuated
mechanical systems with kinematic constraints, and it has been shown in particular
that the closedness condition for the Dirac structure leads to strong conditions on the
input vector fields.
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Abstract. The nonlinear space of signals allowing Wiener’s generalized harmonic analysis
(GHA), the linear bounded power signal spaces of Beurling, Marcinkiewicz, and Wiener, and a new
linear bounded power space are studied from a control and systems theory perspective. Specifically,
it is shown that the system power gain is given by the H∞ norm of the system transfer function
in each of these spaces for a large class of (power) stable finite and infinite dimensional systems.
The GHA setup is shown to possess several limitations for the purpose of robustness analysis which
motivates the use of the other more general (nonstationary) signal spaces. The natural double-sided
time axis versions of bounded power signal spaces are shown to break the symmetry between Hardy
space H∞ methods and bounded power operators; e.g., the system transfer function being in H∞
does not imply that a causal-linear time-invariant (LTI) system is bounded as an operator on any of
the double-sided versions of the studied bounded power signal spaces.

Key words. bounded power signals, generalized harmonic analysis, robust control, infinite
dimensional systems, H∞

AMS subject classifications. 93A30, 93B36, 93D09, 43A15, 47B35

PII. S0363012997316664

1. Introduction. It is popular to use bounded power signals (Boyd and Bar-
ratt (1991); Doyle, Francis, and Tannenbaum (1992); Zhou, Doyle, and Glover (1996);
Gardner (1988)) as a physically well-motivated persistent signal setup in control and
system identification studies. These provide also an alternative to finite energy L2

signal spaces for introducing robust H∞ control (Zames (1981)). Unfortunately, the
most common definitions of the set of signals with bounded power do not result in
a linear vector space setup as pointed out by Mari (1996). It is possible to elimi-
nate this problem by considering some appropriate subset of the set of all bounded
power signals, such as periodic or almost periodic signals; (see, e.g., Mäkilä (1990),
Partington and Mäkilä (1996)). In this way, however, some generality is lost. An
attractive alternative is to generalize the usual definition of the power size measure of
a signal. It turns out that several interesting generalizations are possible and have in
fact been treated in the functional analytic literature by famous mathematicians, such
as Marcinkiewicz and Beurling (see Chen and Lau (1989) for some historical back-
ground). It is the purpose of this paper to treat both the standard setup and some of
the generalizations of bounded power signals from a control and systems perspective.

A milestone in the development of rich nonprobabilistic signal models is the work
of Wiener on GHA summarized in his book (Wiener (1933)); see also Wiener (1979).
In his work the now standard definition of bounded power signals for the continuous-
time case is given using the notion of autocorrelation function. This work generalizes
essentially the Fourier integral to a large class of persistent signals in a rigorous way
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and gives a functional analytic basis for spectral analysis. In Wiener (1927) GHA is
considered for sequences (i.e., the discrete-time case is covered). It was well known
to Wiener that the set of bounded power signals as introduced by him (the set S in
Wiener (1933)) is not a linear space; see, e.g., his treatment of so-called coherency
issues (Wiener, (1930), (1949)). Wiener’s work on GHA has inspired Gardner (1988)
to develop a complete nonprobabilistic paradigm for spectral analysis.

Robust H∞ control is fundamental to modern feedback control theory and control
engineering. Due to mathematical difficulties with standard bounded power signal set-
ups, robust H∞ control and estimation theory have been developed mostly based on a
finite energy L2 (`2) signal space setting, although much of the engineering motivation
for robust disturbance rejection and estimation comes from persistent bounded power–
like (stationary and nonstationary) signal settings; see, e.g., the seminal paper by
Zames (1981). Several recent books and papers (Boyd and Barratt (1991); Doyle,
Francis, and Tannenbaum (1992); Zhou et al. (1994); Zhou, Doyle, and Glover (1996))
on robust control emphasize the importance of persistent bounded power signal setups
for robust control but give only results for finite dimensional systems using some subset
of the set of signals allowing GHA. In the present paper we generalize, among other
things, system gain results to full GHA setups and beyond to Marcinkiewicz and
related spaces for large classes of stable finite dimensional and infinite dimensional
systems. Furthermore, we introduce a new bounded power–like signal space. The
equivalency between the Hardy space H∞ of bounded analytic transfer functions and
spaces of power stable causal LTI operators is lost in the double-sided time axis case.

The paper is organized as follows. In section 2 GHA methods are studied. Several
results are proved here on discrete- and continuous-time GHA analysis, including
Theorems 2.1–2.4. Technical difficulties restricting the generality of GHA methods
in, e.g., robustness analysis are demonstrated. More general bounded power signal
spaces are studied in section 3. Specifically, bounded power signal spaces that can
be traced back to Marcinkiewicz, Wiener, and Beurling are studied here. It is shown
that for a large class of stable, causal, LTI finite and infinite dimensional systems, the
system power gain is given by the H∞ norm of the system transfer function in each
of the considered generalized bounded power signal spaces. Conclusions are drawn in
section 4.

2. The average power setup—autocorrelation function.

2.1. Discrete-time case. Consider now the standard form of the bounded
power signal setup, which is based on an average power measure. A (real or complex)
sequence x = {xk}∞k=−∞ is said to have average (symmetric) bounded power if

‖x‖A =

(
lim
n→∞

1

2n+ 1

n∑
k=−n

|xk|2
)1/2

<∞.(2.1)

This is the discrete analogue of the continuous-time definition in Doyle, Francis, and
Tannenbaum (1992); Zhou, Doyle, and Glover (1996). It has been recently pointed
out in a control context in Mari (1996) that the set of all finite power signals is not a
linear vector space in the continuous-time case. The same is true in the discrete case
(Mäkilä and Partington (1996)), even if it is required that the allowable signals must,
in addition, have bounded amplitude (i.e., must belong to `∞) and be such that they
possess a well-defined autocorrelation function.

A well-motivated starting point for a reexamination of such issues is to study
Wiener’s GHA (Wiener (1927), (1930), (1933)). It is appropriate to start by stating
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some results related to GHA but which actually apply under more general assumptions
than those used in GHA. To do this we introduce a seminorm which coincides with
the seminorm ‖u‖A given in (2.1), whenever that exists. Furthermore, we introduce a
norm which will turn out to be most useful later. Let {uk} denote a real or complex
sequence. Introduce the seminorm

‖u‖B =

(
lim sup
n→∞

1

2n+ 1

n∑
k=−n

|uk|2
)1/2

(2.2)

and the norm

‖u‖BP =

(
sup
n

1

2n+ 1

n∑
k=−n

|uk|2
)1/2

.(2.3)

We use the notations uk and u(k) to denote the general element of the sequence
u = {uk} = {u(k)}.

Note that the seminorm ‖u‖B is finite if and only if the norm ‖u‖BP is finite.
Usually, in the single-sided time axis case, it will be more natural to replace 2n+1 with
n+ 1 in the above definitions, since we take summation from 0 to n (see Mäkilä and
Partington (1996), where this was done for BP). The new seminorms are uniformly
equivalent to the corresponding old ones.

In a certain sense, a more appropriate seminorm to take on the space of bounded
power signals would be

‖u‖BL =

(
Blimn→∞

1

2n+ 1

n∑
k=−n

|uk|2
)1/2

,(2.4)

where Blim denotes any Banach or generalized limit (see Rudin (1973)). However,
the existence of such limits is not constructive, and this definition would be useless
for most practical purposes, so we reject it.

Theorem 2.1. Let u = {uk} be a (double-sided) sequence of complex (or real)
numbers.

(a) If ‖u‖BP <∞, then

|u(0)|2 +
∑
k 6=0

|u(k)|2
k2

≤ 6‖u‖2BP .(2.5)

(b) If ‖u‖B <∞, then

|u(0)|2 +
∑
k 6=0

|u(k)|2
k2

<∞.(2.6)

Furthermore, there does not exist any bound of the form

|u(0)|2 +
∑
k 6=0

|u(k)|2
k2

≤ C‖u‖2B(2.7)

for some constant C > 0.
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Proof. Consider part (a). Write

|u(0)|2 +
n∑

k=−n,k 6=0

|u(k)|2
k2

=
n∑
k=1

|u(k)|2 + |u(−k)|2 + δ(k − 1)|u(0)|2
k2

,(2.8)

where δ(·) is the Kronecker function, i.e., δ(i) = 1 if i = 0, and δ(i) = 0 otherwise.
Now apply Abel’s partial summation formula (Apostol (1967)). This gives

|u(0)|2 +
n∑

k=−n,k 6=0

|u(k)|2
k2

=
1

(n+ 1)2

n∑
k=−n

|u(k)|2 +
n∑
k=1

k∑
l=−k

|u(l)|2
(

1

k2
− 1

(k + 1)2

)

≤ 2n+ 1

(n+ 1)2

1

2n+ 1

n∑
k=−n

|u(k)|2 +
n∑
k=1

(
1

2k + 1

k∑
l=−k

|u(l)|2
)

2(2k + 1)

k(k + 1)2

≤ 2n+ 1

(n+ 1)2
‖u‖2B + 2

(
n∑
k=1

2k + 1

k(k + 1)2

)
‖u‖2B ≤ 6‖u‖2B(2.9)

for sufficiently large n. This proves part (a). We could prove part (b) by first noting
that ‖u‖B <∞ implies that ‖u‖BP <∞ and then rely on part (a). Or, independently
of this, we could split the sum

|u(0)|2 +
n∑

k=−n,k 6=0

|u(k)|2
k2

(2.10)

into two parts, the latter part being∑
m<|k|≤n

|u(k)|2
k2

,(2.11)

choosing n and m sufficiently large, applying Abel’s partial summation formula to the
latter part, so that one does not need a uniform bound on

1

2n+ 1

n∑
k=−n

|uk|2,(2.12)

and estimate terms otherwise in an analogous manner to part (a). This idea of proof
makes it plausible that no bound analogous to the bound in part (a) can be found.
In fact, as we can find u with u(0) 6= 0 but ‖u‖B = 0, it follows that the latter claim
of part (b) is true. This completes the proof of the theorem.

Wiener (1927) gives a weaker form of part (a) of the above result. Using this
result it follows that if {uk} satisfies the condition ‖u‖B <∞ (or ‖u‖BP <∞), then

{u0, u(±1)/(±1), u(±2)/(±2), . . . , u(±k)/(±k), . . .}(2.13)

is a square summable sequence, and hence the function s(ω) defined by

s(ω) =
1

2π
u(0)ω +

1

2π

∑
k 6=0

u(k)

−ik e
−ikω, ω ∈ [−π, π](2.14)
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is square integrable on [−π, π], i.e., s ∈ L2(−π, π). Note that (2.14) also defines s
outside the interval [−π, π].

We have the following result. (Wiener (1949) mentions this result in a more
general form without proof. We add here a proof for completeness.)

Theorem 2.2. Let u = {uk} be such that ‖u‖A <∞. Then

‖u‖2A = lim
ε→0

1

2ε

∫ π

−π
|s(ω + ε)− s(ω − ε)|2 dω.(2.15)

Proof. We have that

s(ω + ε)− s(ω − ε) =
1

π
u(0)ε− i

π

∑
k 6=0

u(k)e−ikω
sin kε

k
.(2.16)

By Parseval’s theorem

(2.17)

1

2π

∫ π

−π
|s(ω + ε)− s(ω − ε)|2dω =

(
1

π
u(0)ε

)2

+

(
1

π

)2∑
k 6=0

|u(k)|2
(

sin kε

k

)2

.

Define the continuous-time signal u(t) as u(t) = u([t]), where [t] denotes the largest
integer satisfying [t] ≤ t. We now proceed to show that

lim
ε→0

1

ε

∑
k 6=0

|u(k)|2
(

sin kε

k

)2

= lim
ε→0

1

ε

∫ ∞
−∞
|u(t)|2

(
sin εt

t

)2

dt.(2.18)

Note that we can neglect here in the left-hand side (LHS) sum the terms corresponding

to k = −1, 0, and in the right-hand side (RHS) integral the part
∫ 1

−1
, as these tend to

zero when ε→ 0. We thus need to estimate (taking ε > 0 to simplify the notation)∣∣∣∣∣∣1ε
∑

k 6=−1,0

|u(k)|2
(

sin kε

k

)2

− 1

ε

∫
|t|>1

|u(t)|2
(

sin εt

t

)2

dt

∣∣∣∣∣∣
≤ 1

ε

∑
k 6=−1,0

|u(k)|2
∫ k+1

k

∣∣∣∣∣
(

sin εk

k

)2

−
(

sin εt

t

)2
∣∣∣∣∣ dt

≤ 1

ε

−n≤k≤n∑
k 6=−1,0

|u(k)|2
∫ k+1

k

+
1

ε

∑
|k|>n

|u(k)|2
∫ k+1

k

,(2.19)

where n > 1 and the RHS expression is divided into two separate parts to facilitate
the remaining size estimation. Substitute in the integrals above t = k+ x, 0 ≤ x ≤ 1.
It is convenient to estimate (for k 6= −1, 0)∫ k+1

k

∣∣∣∣∣
(

sin εk

k

)2

−
(

sin εt

t

)2
∣∣∣∣∣ dt

=

∫ 1

0

|(k + x)2 sin2 kε− k2 sin(k + x)ε|
k2(k + x)2

dx

≤
∫ 1

0

(x2 + 2kx) sin2 kε

k2(k + x)2
dx+

∫ 1

0

sin2 xε sin2 kε

(k + x)2
dx

+
1

2

∫ 1

0

| sin 2kε sin 2xε|
(k + x)2

dx+

∫ 1

0

cos2 kε sin2 xε

(k + x)2
dx.(2.20)
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Now we continue estimating terms in (2.19). Consider first the term with |k| ≤ n.
Using (2.20) and the relationships | sin y| ≤ |y| (for any real y) and |k + x| ≥ 1, we
then get

1

ε

−n≤k≤n∑
k 6=−1,0

|u(k)|2
∫ k+1

k

∣∣∣∣∣
(

sin εk

k

)2

−
(

sin εt

t

)2
∣∣∣∣∣ dt

≤ ε

[
1

3
+ n+ n2 +

1

2
n+

1

3

] n∑
k=−n

|u(k)|2.(2.21)

Similarly, we get for the term with |k| > n in (2.19), taking n > 10

1

ε

∑
|k|>n

|u(k)|2
∫ k+1

k

∣∣∣∣∣
(

sin εk

k

)2

−
(

sin εt

t

)2
∣∣∣∣∣ dt ≤ (2 + ε)

∑
|k|>n

|u(k)|2
k2

→ 0(2.22)

when n → ∞ by Theorem 2.1. Hence this, (2.21), and (2.19) imply the relationship
(2.18). Observe that

lim
T→∞

1

2T

∫ T

−T
|u(t)|2 dt = lim

n→∞
1

2n+ 1

n∑
k=−n

|u(k)|2(2.23)

by construction. Hence the RHS integral in (2.18) is equal to π/2 times ‖u‖2A by an
application of Theorem 21 in Wiener (1933). The result then follows by (2.18).

Let us assume for the moment that the sequence u = {uk} is such that the
autocorrelation function (or covariance sequence) defined by

Ruu(ν) = lim
n→∞

1

2n+ 1

n∑
k=−n

u(k + ν)u(k)(2.24)

exists for any ν = 0,±1,±2, . . .. (This is not always the case, as Example 2.2 below
shows.) Note that this is essentially the same definition as used in Wiener (1927).

We shall state here for later reference a necessary condition for the existence of
the limit defining Ruu(0).

Proposition 2.1. A necessary condition for Ruu(0) to exist is that

lim
n→±∞

|u(n)|2
n

= 0.(2.25)

Proof. This is easy, as a necessary condition for the existence of the required limit
is given by

lim
n→∞

(
1

2n+ 3

n+1∑
k=−n−1

|u(k)|2 − 1

2n+ 1

n∑
k=−n

|u(k)|2
)

= 0.(2.26)

The result then follows readily.
Let SA denote the set of all sequences having an autocorrelation function. Note

that Ruu(0) = ‖u‖2A. Furthermore, let the notation PX mean the set defined by

PX = {u | ‖u‖X <∞},(2.27)
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where X denotes a signal size symbol, e.g., X = B in the case of the seminorm (2.2).
Therefore we have the set inclusions SA ⊂ PA ⊂ PB = PBP . Note that the space PB
is the discrete analogue of the Marcinkiewicz space (Chen and Lau (1989)); see also
section 2.2. Furthermore, PBP is the discrete analogue of an important Banach space
usually credited (Chen and Lau (1989)) to Beurling (1964); see also section 2.2.

Introduce for u ∈ SA the function

Fu(ω) =
1

2π
Ruu(0)ω +

1

2π

∑
k 6=0

Ruu(k)

−ik e−ikω, ω ∈ [−π, π].(2.28)

(Again this is essentially the same definition as used in Wiener (1927).) It is easily seen
that |Ruu(k)| ≤ Ruu(0) (using Schwarz’s inequality). Hence {Ruu(k)} is a bounded
sequence. It therefore follows that Fu(ω) is a square integrable function, i.e., Fu(ω) ∈
L2(−π, π). Following Wiener’s terminology (Wiener (1927), (1930), (1933)), Fu will
be called the spectrum of u. (The term spectral distribution function is often used
instead, especially in the stochastic literature.) We just state some fairly standard
properties of Ruu and Fu.

Fact 2.1. Let u ∈ SA. Then
(a) Ruu(−ν) = Ruu(ν).
(b) Ruu is positive semidefinite; i.e., for any complex sequence {xi}

n∑
i=1

n∑
j=1

xix̄jRuu(i− j) ≥ 0, n = 1, 2, . . . .(2.29)

(c) Fu is real-valued.
It can be shown (Wiener (1927)) that Fu can be defined to be a nondecreasing

function (note that our choice of interval of definition for Fu from −π to π means that
Fu can obtain both negative and positive values) so that

Ruu(ν) =

∫ π

−π
eiνωdFu(ω)(2.30)

holds. Then furthermore,

Ruu(0) = Fu(π)− Fu(−π).(2.31)

Note that the essential property for the existence of the spectrum, i.e., of a nonde-
creasing function satisfying (2.30), is the positive semidefiniteness of the covariance
sequence. This is the same property that shows up in spectral analysis of stationary
stochastic processes (Caines (1988)). Hence Herglotz’s theorem (Caines (1988)) in
the theory of positive semidefinite sequences proves the existence of the spectrum
(spectral distribution).

Now (2.31) shows that it is possible to recover the signal size ‖u‖A from the
spectrum in the discrete case (the continuous case is more difficult). However, it is
common to use the so-called spectral density function fu(ω) introduced as

fu(ω) =
1

2π

∞∑
k=−∞

Ruu(k)e−ikω, −π ≤ ω ≤ π(2.32)

in spectral analysis. The recovery of the signal size ‖u‖A from the spectral density
function fu is, however, a rather technical issue. The fact below illustrates that
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smoothness of the spectral density function guarantees recovery of the signal size
‖u‖A from fu.

Fact 2.2. Let u ∈ SA. If
∑∞
k=−∞ |Ruu(k)| <∞, then the spectral density fu(ω)

is a continuous function and ∫ π

−π
fu(ω)dω = Ruu(0).(2.33)

Unfortunately, in general

Ruu(0) = Fu(π)− Fu(−π) ≥
∫ π

−π
fu(ω)dω,(2.34)

where strict inequality applies if Fu contains a singular part (i.e., a part that is
continuous but has vanishing derivative almost everywhere) (Kolmogorov and Fomin
(1970), Wiener (1927)), even if jumps in Fu are accounted for in fu by allowing fu to
include impulses (Dirac delta functions).

We thus see that it need not be possible to recover the signal size correctly (Ruu(0)
is equal to ‖u‖2A) from the spectral density fu. This provides yet another motivation
for studying alternative formulations of bounded power–like signals.

Input-output analysis for LTI (causal) systems is the topic of the next result with
SA as the signal set.

Theorem 2.3. Let G be a causal LTI system with (unit) impulse response
{g(k)}k≥0. Let y = Gu denote the output of G to the input u defined by y(t) =∑
k≥0 g(k)u(t− k). Let u ∈ SA and suppose that∑

k≥0

k1/2|g(k)| <∞.(2.35)

Then y ∈ SA, and the covariance sequence of the output y is given by

Ryy(ν) =
∑

k≥0,l≥0

g(k)g(l)Ruu(ν − k + l), ν = 0,±1,±2, . . . .(2.36)

Furthermore, Ryy(ν) can be expressed in terms of the spectrum Fu of u as

Ryy(ν) =

∫ π

−π
eiνω|G(e−iω)|2 dFu(ω),(2.37)

where G(z) =
∑
k≥0 g(k)zk.

Remark 2.1. Note that it is easy to see that condition (2.35) cannot be relaxed
here to

∑
k≥0 |g(k)| < ∞; cf. Mäkilä and Partington (1996). The condition of strict

stability, i.e., ∑
k≥0

k|g(k)| <∞(2.38)

(see Ljung (1987) for the terminology) would at first inspection appear more natural
than condition (2.35) here because we get for an arbitrary u ∈ SA, by an application
of Schwarz’s inequality,

|y(t)| ≤
∑
k≥0

|g(k)||u(t− k)|

≤ |g(0)||u(t)|+
∑
k≥1

k2|g(k)|2
1/2∑

k≥1

|u(t− k)|2
k2

1/2

,(2.39)
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where the RHS is finite by Theorem 2.1 and by (2.38) (this is easy to verify). Hence
strict stability guarantees that the output y is well defined. Obviously strict sta-
bility implies (2.35). Note that strict stability implies that the frequency response
G(eiθ) of the system is continuously differentiable, while (2.35) does not even imply
differentiability of G(eiθ).

Proof of Theorem 2.3. Introduce the quantity

ryy(ν) =
∑

k≥0,l≥0

g(k)g(l)Ruu(ν − k + l), ν = 0,±1,±2, . . . .(2.40)

Now ryy(ν) clearly exists for any ν as {g(k)} is absolutely summable and {Ruu(τ)}
is a bounded sequence. We now show that the output covariance sequence {Ryy(ν)}
is given by {ryy(ν)} when (2.35) holds. We can take

‖G‖1 ≡
∑
k≥0

|g(k)| > 0,(2.41)

as otherwise there is nothing to prove. We estimate∣∣∣∣∣ 1

2n+ 1

n∑
t=−n

y(t+ ν)y(t)− ryy(ν)

∣∣∣∣∣
=

∣∣∣∣∣∣
∑

k≥0,l≥0

g(k)g(l)

[
1

2n+ 1

n∑
t=−n

u(t+ ν − k)u(t− l)−Ruu(ν − k + l)

]∣∣∣∣∣∣
≤
∣∣∣∣∣∣
k=N,l=N∑
k=0,l=0

g(k)g(l)

[
1

2n+ 1

n∑
t=−n

u(t+ ν − k)u(t− l)−Ruu(ν − k + l)

]∣∣∣∣∣∣
+

∣∣∣∣∣∣
∑

max(k,l)>N

g(k)g(l)

[
1

2n+ 1

n∑
t=−n

u(t+ ν − k)u(t− l)−Ruu(ν − k + l)

]∣∣∣∣∣∣ .(2.42)

Consider the last term in (2.42). Clearly∑
max(k,l)>N

g(k)g(l)Ruu(ν − k + l)→ 0(2.43)

when N → ∞ (recall that |Ruu(ν − k + l)| ≤ Ruu(0)). Furthermore, by Schwarz’s
inequality∣∣∣∣∣∣

∑
max(k,l)>N

g(k)g(l)
1

2n+ 1

n∑
t=−n

u(t+ ν − k)u(t− l)
∣∣∣∣∣∣

≤
∑

max(k,l)>N

|g(k)||g(l)|
(

1

2n+ 1

n∑
t=−n

|u(t+ ν − k)|2
)1/2

×
(

1

2n+ 1

n∑
t=−n

|u(t− l)|2
)1/2
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≤
∑

max(k,l)>N

|g(k)||g(l)|
(

2(n+ |ν|+ k) + 1

2n+ 1

)1/2(
2(n+ l) + 1

2n+ 1

)1/2

×
 1

2(n+ |ν|+ k) + 1

n+|ν|+k∑
t=−n−|ν|−k

|u(t)|2
1/2

×
(

1

2(n+ l) + 1

n+l∑
t=−n−l

|u(t)|2
)1/2

.(2.44)

Now the RHS of the last inequality above tends to zero when N →∞ by (2.35) and
as

1

2n+ 1

n∑
t=−n

|u(t)|2(2.45)

tends to Ruu(0) (i.e., to a finite limit) when n→∞.
It therefore remains only to show that the first term on the RHS of the inequality

(2.42) tends to zero when n tends to infinity for any finite N , for the first part of the
theorem to follow. Hence we need to estimate∣∣∣∣∣∣

k=N,l=N∑
k=0,l=0

g(k)g(l)

[
1

2n+ 1

n∑
t=−n

u(t+ ν − k)u(t− l)−Ruu(ν − k + l)

]∣∣∣∣∣∣
≤
∣∣∣∣∣∣
k,l=N∑
k,l=0

g(k)g(l)

[
1

2n+ 1

(
n∑

t=−n
u(t+ ν − k)u(t− l)

−
n∑

τ=−n
u(τ + ν − k + l)u(τ)

)]∣∣∣∣∣
+

∣∣∣∣∣∣
k,l=N∑
k,l=0

g(k)g(l)

[
1

2n+ 1

n∑
t=−n

u(t+ ν − k + l)u(t)−Ruu(ν − k + l)

]∣∣∣∣∣∣ .(2.46)

Consider the last term above. Let ε > 0 be given. As u ∈ SA it follows that there
exists a positive integer n(ε,N, ν) such that∣∣∣∣∣ 1

2n+ 1

n∑
t=−n

u(t+ ν − k + l)u(t)−Ruu(ν − k + l)

∣∣∣∣∣
≤ ε/(2‖G‖21), 0 ≤ k, l ≤ N,(2.47)

for any n ≥ n(ε,N, ν). Letting n ≥ n(ε,N, ν) we thus get∣∣∣∣∣∣
k,l=N∑
k,l=0

g(k)g(l)

[
1

2n+ 1

n∑
t=−n

u(t+ ν − k + l)u(t)−Ruu(ν − k + l)

]∣∣∣∣∣∣
≤
k,l=N∑
k,l=0

|g(k)||g(l)|ε/(2‖G‖21) ≤ ε/2.(2.48)
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Consider now the first term on the RHS of the inequality (2.46). Take n1 > min[N +
|ν|, n(ε,N, ν)] such that

|u(n)|2 ≤ ε n

2‖G‖21N(N + |ν|)(2.49)

for any n ≥ n1. This is possible by Proposition 2.1. Take n ≥ n1. Then∣∣∣∣∣
n∑

t=−n
u(t+ ν − k)u(t− l)−

n∑
τ=−n

u(τ + ν − k + l)u(τ)

∣∣∣∣∣
≤ l {ε[n+ |ν|+ max(k, l)]}/[2‖G‖21N(N + |ν|)].(2.50)

Therefore, finally,∣∣∣∣∣∣
k,l=N∑
k,l=0

g(k)g(l)

[
1

2n+ 1

(
n∑

t=−n
u(t+ ν − k)u(t− l)−

n∑
τ=−n

u(τ + ν − k + l)u(τ)

)]∣∣∣∣∣∣
≤
k,l=N∑
k,l=0

|g(k)||g(l)|[εN(n+ |ν|+N)]/[2‖G‖21N(N + |ν|)(2n+ 1)]

≤ ‖G‖21[εN(|ν|+N)]/[2‖G‖21N(N + |ν|)] ≤ ε/2.(2.51)

As ε > 0 is arbitrary, it follows that it is possible to make the RHS of the inequality
in (2.46) as small as one likes by choosing n large enough. As this conclusion holds
for any N , this concludes the proof of the first part of the theorem; i.e.,

Ryy(ν) = lim
n→∞

1

2n+ 1

n∑
t=−n

y(t+ ν)y(t)(2.52)

exists and is given by ryy(ν). The latter part of the theorem, i.e., (2.37), follows
readily by properties of Lebesgue–Stieltjes integrals by directly computing∫ π

−π
eiνω|G(e−iω)|2dFu =

∫ π

−π
eiνω

∑
k,l≥0

g(k)g(l)e−ikωeilωdFu

=
∑
k,l≥0

g(k)g(l)

∫ π

−π
ei(ν−k+l)ω dFu

=
∑
k,l≥0

g(k)g(l)Ruu(ν − k + l) = Ryy(ν),(2.53)

where we have used absolute summability of {g(k)}, which implies continuity of the
transfer function G(e−iω), (2.30), and finally (2.36).

Theorem 2.3 shows that it is the set SA, not the larger set PA, that is natural
in input-output analysis when the limit operation is used in the signal set definition.
Note that if we restrict the input to the intersection SA ∩ `∞(Z), the condition of
strict stability can be relaxed to the condition

∑
k≥0 |g(k)| < ∞. This we see easily

following the steps of the proof above; cf. also Theorem 2.2 in Ljung (1987). Ljung
(1987) defines a setup of quasi-stationary signals which reduces to the single-sided
time axis variant of SA ∩ `∞(Z) (Ljung (1987) considers the single-sided time axis
case) when deterministic signal modeling is used only.
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Theorem 2.3 has the following important corollary.

Corollary 2.1. Let the conditions of Theorem 2.3 hold. Then

‖G‖SA ≡ sup
u∈SA,‖u‖A 6=0

‖Gu‖A
‖u‖A = ‖G‖∞,(2.54)

where ‖G‖∞ = supω |G(e−iω)|.
This result is obvious from Theorem 2.3. It guarantees that the H∞ norm of

the system transfer function gives the induced system gain in SA under mild as-
sumptions, e.g., for strictly stable systems and hence for exponentially stable sys-
tems specifically. Note that this result is obtained with the help of the machinery of
Lebesgue–Stieltjes integrals. In the literature (Boyd and Barratt (1991); Doyle, Fran-
cis, and Tannenbaum (1992); Zhou et al. (1994)) similar results have been derived
for stable finite dimensional systems in some subset of SA only, e.g., for signals such
that Ruu(0) =

∫ π
−π fu(ω) dω.

Remark 2.2. An equivalent problem to that of determining the ‖ · ‖A gain is the
following. Let vm = [g(0), . . . , g(m)]T and consider the optimization problem

sup
T

vHmTvm
T11

,(2.55)

where the symbol H denotes complex conjugate transpose and where the supremum
is taken over all positive semidefinite Hermitian Toeplitz matrices with T11 > 0.
This supremum is given by the square of the H∞ norm of Gm(z) =

∑m
k=0 g(k)zk,

since the supremization problem is equivalent to the problem of determining ‖Gm‖2A.
(It suffices to observe that a finite segment of the covariance sequence of u ∈ SA
generates a positive semidefinite Hermitian Toeplitz matrix and to each such positive
semidefinite Hermitian Toeplitz matrix there corresponds a ũ ∈ SA, e.g., by standard
results from the theory of stationary stochastic processes (Karlin and Taylor (1975)).)

Let us now study whether we could get linear vector space setups by changing
from a quadratic norm to some other norm (as we observed that in the quadratic
case we needed cross-correlations (i.e., generalizations, Ruv, of the autocorrelation
function Ruu to signal pairs u and v in a natural way) to exist to get a subset of SA,
which is a linear vector space).

We get the following result.

Proposition 2.2. Consider signals u = {uk} satisfying

lim
n→∞

1

2n+ 1

n∑
k=−n

|u(k)| <∞.(2.56)

There exist signals u and v satisfying (2.56) whose sum u + v does not have a limit
of the form in (2.56). Hence, the set defined by condition (2.56) is not a linear vector
space.

Proof. Define the sequence u ∈ SA as u(k) = +1 for all k, and the sequence
v ∈ SA as v(0) = −1, v(k) = +1 for |k| = 21 − 1 to 2(21 − 1), v(k) = −1 for
|k| = 22 − 1 to 2(22 − 1), v(k) = +1 for |k| = 23 − 1 to 2(23 − 1), etc. Evaluating

sn(u, v) =
1

2n+ 1

n∑
k=−n

|u(k) + v(k)|(2.57)
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for different n, we see that the generated sn has two points of accumulation (4/3 and
2/3), and so sn does not tend to any limit when n→∞. The result follows.

It is easy to generalize this result to other `p norms. Our conclusion is that the
problem is in the use of the limit operation in the definition of the signal set, so the
natural remedy is to study more general operations on signals.

The lack of linear vector space structure is a disturbing property of formulations of
bounded power signals using the limit operation, and there are some other difficulties
as well.

Let y = Gu denote the output of the system G to the input u = [u1, . . . , um]T

(each ui is a complex (or real) sequence). Furthermore, let the size of u be measured
by some function ‖u‖ of ‖ui‖A, i = 1, . . . ,m, with the property that in the single-
variable case this function reduces to the ‖ · ‖A function. Let the size of y be measured
with the same function as u.

Fact 2.3. There is a causal, stable, finite dimensional, LTI multivariable system
G for which ‖u‖ <∞ does not imply that ‖y‖ exists, where y = Gu.

To get an example of such a multivariable system it suffices to consider the two-
input and one-output system G = [1, 1]. The output y = Gu is then given by y =
u1 + u2. Hence the claim of the fact follows as SA is not a linear vector space.

Note that this result is true for any function ‖ · ‖ as defined above. The only way
to get around this property would be to require that in order that u be an admissible
input signal, the cross-covariances of the elements of u must exist. However, there does
not seem to be any good physical reason to make such a restriction. Anyway, in the
standard GHA formulation for the multivariable case (Wiener (1949)) the existence
of the covariance matrix sequence

Ruu(ν) = lim
n→∞

1

2n+ 1

n∑
k=−n

u(k + ν)u(k)
T
, ν = 0,±1,±2, . . .(2.58)

is required. This is, however, somewhat counterintuitive as a basis for a signal set
for robustness analysis, e.g., as the existence of cross-covariances between the compo-
nents of an input vector means that different components must know what the other
components are for them to be admissible (which is not a very natural requirement in
many applications, although technically not very restrictive). For example, if m = 2
(i.e., the input is two-dimensional) and we take u1 = 0 and u2 = v, where v is defined
in the proof of Proposition 2.2, then u = [u1, u2] has a covariance matrix sequence,
but if u1 = 1 and u2 = v, then u has not, and so this input is not admissible from the
GHA point of view.

We shall now consider an example demonstrating that a more serious shortcoming
of the standard GHA signal setup for robustness analysis is that, in general, it is not
appropriate for non-LTI systems or when non-LTI system perturbations are present.

Example 2.1. Consider the causal linear time-varying system

y(t) =
∑
k≥0

g(t, k)u(t− k).(2.59)

Let u ∈ SA have the constant value 1. Define g(0, 0) = 1, g(t, 0) = 0 for |t| = 21 − 1
to 2(21 − 1), g(t, 0) = 1 for |t| = 22 − 1 to 2(22 − 1), g(t, 0) = 0 for |t| = 23 − 1 to
2(23 − 1), etc. Let g(t, k) = 0 for any k > 0 and any t. (Obviously, g(t, k) = 0 for
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k < 0 by causality.) Then the sequence

sn(y) =
1

2n+ 1

n∑
t=−n

y(t)y(t)(2.60)

has two points of accumulation (1/3 and 2/3), and so y does not belong to SA.

2.2. Continuous-time case. Let u denote a real- or complex-valued signal
which is locally square integrable on the real axis. Let us specify two signal norms as
follows:

‖u‖S =

(
sup
T>0

1

2T

∫ T

−T
|u(t)|2 dt

)1/2

,(2.61)

‖u‖BP =

(
sup
T≥1

1

2T

∫ T

−T
|u(t)|2 dt

)1/2

,(2.62)

and the seminorm

‖u‖B =

(
lim sup
T→∞

1

2T

∫ T

−T
|u(t)|2 dt

)1/2

.(2.63)

As in the discrete case, a further seminorm could be defined using Banach limits, but
it would not be of practical use.

Wiener (1933) gave several results related to GHA in terms of a boundedness
condition on ‖ · ‖S . Using an analogous notation as in the discrete-time case, we let
PX mean the set defined by

PX = {u ∈ L2
loc(R) | ‖u‖X <∞},(2.64)

where X denotes a signal size symbol and L2
loc(R) the set of all locally square inte-

grable functions on the real axis. PS and PBP are Banach spaces. Many functional
analytic results related to these spaces are given in Beurling (1964) and Chen and
Lau (1989).

The continuous-time analogue of the B-seminorm, i.e., ‖u‖B as defined above, is
discussed in Wiener (1979, p. 334), where Masani refers to the vector space that it
defines as the Marcinkiewicz vector space. It is worth noting that taking the comple-
tion of the space of almost periodic functions under ‖ · ‖B , which is a norm on it,
produces some objects which are not functions in the usual sense (cf. Jacob, Larsen,
and Zwart (1996); Larsen (1996)). See also Chen and Lau (1989) for further historical
remarks and additional references.

The following set inclusions are clearly valid: PS ⊂ PBP = PB . We get the
following result.

Theorem 2.4. Let u be a locally square integrable function on the real axis.
(a) If ‖u‖S <∞, then ∫ ∞

−∞

|u(t)|2
1 + t2

dt ≤ π‖u‖2S .(2.65)

(b) If ‖u‖BP <∞, then∫ ∞
−∞

|u(t)|2
1 + t2

dt ≤
(

2 +
π

2

)
‖u‖2BP .(2.66)
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(c) If ‖u‖B <∞, then ∫ ∞
−∞

|u(t)|2
1 + t2

dt <∞.(2.67)

Furthermore, there does not exist any bound of the form∫ ∞
−∞

|u(t)|2
1 + t2

dt ≤ C‖u‖2B(2.68)

for some constant C > 0.
Proof. Note that part (a) above is Theorem 20 in Wiener (1933) with a somewhat

tighter bound. Integration by parts gives∫ A

−A

|u(t)|2
1 + t2

dt =
1

1 +A2

∫ A

−A
|u(t)|2 dt+

∫ A

0

2t

(1 + t2)2
dt

∫ t

−t
|u(τ)|2 dτ.(2.69)

Hence∫ A

−A

|u(t)|2
1 + t2

dt ≤
(

2A

1 +A2
+

∫ A

0

(
2t

1 + t2

)2

dt

)
‖u‖2S = 2(arctanA)‖u‖2S ≤ π‖u‖2S .

(2.70)

To prove part (b) we partition the interval of integration in the last term in (2.69)
into two intervals as follows:∫ A

0

2t

(1 + t2)2
dt

∫ t

−t
|u(τ)|2 dτ =

∫ 1

0

+

∫ A

1

(2.71)

for A > 1. Then we notice that∫ t

−t
|u(τ)|2 dτ ≤ 2‖u‖2BP(2.72)

for 0 ≤ t ≤ 1. Inserting these relationships in (2.69) and proceeding otherwise as in
part (a) gives∫ A

−A

|u(t)|2
1 + t2

dt ≤
(

2A

1 +A2
+ 2− π

2
+ 2 arctanA− 2A

1 +A2

)
‖u‖2BP(2.73)

from which part (b) follows. Part (c) follows in a rather analogous manner, so we omit
the proof here. The nonexistence of a bound of the form indicated follows as there
are nontrivial signals with ‖u‖B = 0, while the integral on the LHS of the bound is
greater than zero.

Introduce the autocovariance function (Wiener (1933)) of u by

Ruu(τ) = lim
T→∞

1

2T

∫ T

−T
u(t+ τ)u(t)dt.(2.74)

when the indicated limit exists. Let SA denote the set of all signals u for which
Ruu(τ) exists for all real τ . Wiener (1933) has shown that |Ruu(τ)| ≤ Ruu(0) for all
τ for any u ∈ SA. Let us define the average power signal measure in analogy with
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the discrete-time case by ‖u‖A =
√
Ruu(0). The following example shows that there

exist signals u which have a bounded average power but for which the autocovariance
function is not always well defined.

Example 2.2. Let u(t) be constructed to be real and to take the constant value
εk = ±1 on each interval of the form (k, k + 1), k ∈ Z, where ε−1 = ε0 = ε1 = 1 and
εk is defined by induction on |k| to satisfy

εkεk+1 =

{
+1 if 32n ≤ |k| < 32n+1,
−1 if 32n+1 ≤ |k| < 32n+2(2.75)

for each n ≥ 0. It is easily checked that u has unit average power but that if Ruu(1)
existed it would be given by

Ruu(1) = lim
N→∞

1

2N

N−1∑
k=−N

εkεk+1.(2.76)

However, this limit does not exist.
This example can clearly be adapted to hold in the discrete-time case as well.
Wiener (1933) has shown that there exists for any u ∈ SA a nondecreasing func-

tion σu(ω) of bounded variation such that almost everywhere

Ruu(τ) =
1

2π

∫ ∞
−∞

eiωτdσu(ω),(2.77)

where the integral should be interpreted as a Lebesgue–Stieltjes integral. (It is worth
noting here that the validity of this result does not require that ‖u‖S <∞; it is enough
to assume that ‖u‖B <∞. This is important as SA is not a subset of PS .) This result
follows also by Bochner’s theory for positive semidefinite functions (Bochner (1959)).
The function σu is called the spectrum of u.

It is also possible to introduce the spectral density fu of u ∈ SA by

fu(ω) =

∫ ∞
−∞

Ruu(τ)e−iωτdτ, ω ∈ R.(2.78)

The correct interpretation of fu is a bit technical in the general case but can be given
in terms of generalized functions or distributions. Under certain conditions it can
simply be interpreted as the derivative of the spectrum σu(ω).

The problem of recovery of the average power of a signal in SA from its spectrum
or from its spectral density is highly nontrivial. However, a fairly complete answer
has been given by Wiener (1933). We state Wiener’s results on this below. Let TA
denote the subset of SA consisting of those signals having a continuous autocorrelation
function. (Wiener (1933) shows that the autocorrelation function is continuous for all
τ if it is continuous for τ = 0, a remarkable result!)

Fact 2.4 (Wiener (1933)).
(a) If u ∈ SA, then

σu(∞)− σu(−∞) ≤ Ruu(0).(2.79)

(b) Let u ∈ SA. Then

σu(∞)− σu(−∞) = Ruu(0)(2.80)
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if and only if u ∈ TA.

Conditions for recovery of the average power of a signal from the power density
function are even trickier than those given above. Note that, e.g., in Zhou et al.
(1994), it is suggested that one could use the formula

Ruu(0) =
1

2π

∫ ∞
−∞

fu(ω)dω,(2.81)

but unfortunately Fact 2.4 shows that this formula does not apply when the autocor-
relation function of Ruu lacks continuity.

The problem in general is that the spectrum and the spectral density have
smoothed out certain information about the signal u. Let us provide an example
of this phenomenon.

Example 2.3. Consider the static nonlinearity y = G(u) = |u|. Introduce the
system gain by

‖G‖ = sup
u∈SA,‖u‖A 6=0

‖G(u)‖A
‖u‖A .(2.82)

Clearly ‖G‖ = 1. Now consider what one could conclude by applying formula (2.81).

Let us choose the signal u(t) = eit
2 ∈ SA. The autocorrelation function of u is given

by (Wiener (1933)) Ruu(0) = 1, Ruu(τ) = 0, elsewhere. But formula (2.81) gives
erroneously that Ruu(0) = 0 as the spectral density function is identical to zero (the
same result is obtained by evaluating the total variation of the spectrum). However,
y = G(u) is now the constant signal y(t) = 1, so its spectrum has a jump of 1 at ω = 0
and its spectral density is the Dirac delta function (i.e., a generalized function). So
now both the total variation of the spectrum and formula (2.81) give the correct value
1 for the average power of the output. Hence one could erroneously conclude that the
system gain for the static nonlinearity must be unbounded!

We would now like to determine the induced system gain in a GHA (SA) setup
for some fairly large class of continuous-time LTI systems; cf. Corollary 2.1 for the
discrete-time case. One such result is as follows. Let G map SA into SA. Define the
induced system gain

‖G‖SA = sup
u∈SA,‖u‖A 6=0

‖Gu‖A
‖u‖A .(2.83)

Note that we use here (for simplicity) the same notation as in the discrete-time case.

Theorem 2.5 (Mäkilä (1990)). Let G be a causal LTI system given by con-
volution with a (unit) impulse response function g(t), such that tg(t) is absolutely
integrable (on the nonnegative reals) and such that (1 + t)g(t) is square integrable (on
the nonnegative reals). Then

‖G‖SA = ‖G‖∞,(2.84)

where ‖G‖∞ = supRe s≥0 |G(s)| denotes the H∞ norm of the transfer function G(s)
of the system, the latter being defined by

G(s) =

∫ ∞
0

e−stg(t) dt.(2.85)
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Proof. The proof of this result was sketched in Mäkilä (1990). We shall give a
slightly more detailed proof here. This result follows from some important results in
Wiener (1933). The output y of the system G to the input u ∈ SA is defined by

y(t) =

∫ ∞
0

g(τ)u(t− τ) dτ.(2.86)

By Lemma 296 in Wiener (1933), it follows by the assumptions on G that the output
y has a continuous autocorrelation function; i.e., it belongs to TA. This means that
the autocorrelation function of y can be exactly recovered from the spectrum σy of y,
and in particular that σy(∞)− σy(−∞) = ‖y‖2A. Thus by Fact 2.4 and Theorems 30
and 31 in Wiener (1933)

‖G‖2SA ≤ sup
σu(∞)−σu(−∞)>0

∫∞
−∞ |G(jω)|2 dσu∫∞

−∞ dσu
,(2.87)

where σu(ω) denotes the spectrum of u. (Note that we can take the supremum here
over signals u with spectra having nonzero total variation; as for signals with ‖u‖A 6= 0
but having zero spectrum, the signal amplification is zero, i.e., then ‖y‖A = 0 under
the assumptions of the theorem.) Here the integrals are Lebesgue–Stieltjes integrals.
To see how (2.87) can be utilized, observe that, by the Schwarz inequality,

∫ ∞
0

|g(t)| dt ≤
(∫ ∞

0

|g(t)|2(1 + t)2 dt

)1/2(∫ ∞
0

1

(1 + t)2
dt

)1/2

<∞.(2.88)

Hence g is absolutely integrable on the nonnegative reals, i.e., belongs to L1(R+). It
follows that the frequency response G(jω) is a continuous function tending to zero
when |ω| → ∞ (by the Riemann–Lebesgue lemma). We see then readily that the
RHS of (2.87) is bounded from above by the square of the H∞ norm of the transfer
function of G. As there exists a periodic signal u in SA, with frequency equal to a finite
frequency at which |G(jω)| attains its maximum, having the signal gain amplification
ratio ‖Gu‖A/‖u‖A = ‖G‖∞, the proof of the theorem is completed.

Remark 2.3. Note that it is not possible to relax the conditions on G to absolute
integrability of g on the nonnegative reals. This is seen easily by a counterexample
analogous to the discrete-time example given in Mäkilä and Partington (1996). The
above result means that the induced system gain in an SA setup is given by the H∞
norm of the system transfer function for a large class of systems, including, e.g., LTI
systems having an exponentially decaying impulse response function.

3. Generalized bounded power signal setups. In this section we shall con-
sider several generalized bounded power signal setups. There are several subtle issues
when analyzing bounded power signals and corresponding induced input-output norms
for LTI causal systems. Some of these subtle issues are related to differences between
the two-sided (double-sided) time axis case and the single-sided time axis case.

3.1. Discrete-time case. Let F be a causal LTI operator mapping sequences
{u(k)}k≥0 to {y(k)}k≥0.

Theorem 3.1. An operator F as above has finite gain with respect to the semi-
norm ‖ · ‖B if and only if it is bounded with respect to the BP norm; this happens if
and only if F is `2 bounded and thus corresponds to a transfer function in H∞.
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Proof. If F is `2 bounded, then it has finite ‖ · ‖B gain, since, as in Mäkilä and
Partington (1996),

1

n+ 1

n∑
k=0

|y(k)|2 ≤ ‖F‖22
1

n+ 1

n∑
k=0

|u(k)|2,(3.1)

and the result follows on taking the limit superior of each side as n→∞.
For the converse we show the following “automatic continuity” result. Any causal

LTI operator that maps each one-sided sequence in BP into a sequence in BP is
bounded as an operator on the one-sided BP space. This will give the result, since,
if F is ‖ · ‖B bounded, then F maps BP into BP ; then, by Mäkilä and Partington
(1996), F is `2 bounded. The method we use is a standard one and similar to the
proof of Theorem 1 of Loy (1974).

Suppose to the contrary that there exist u(n) with ‖u(n)‖BP = 1 but ‖y(n)‖BP ≥
n. We shall establish a contradiction by constructing an input u with bounded power
mapping to an output y with unbounded power, so we can certainly assume that each
y(n) has bounded power.

We write S for the right shift so that S(a0, a1, a2, . . .) = (0, a1, a2, . . .), and con-
sider u(2). There will be a constant K1 such that the corresponding output y satisfies(

1

K1

K1−1∑
k=0

|yk|2
)1/2

> 1.(3.2)

We express this by saying that the power at time K1 − 1 is greater than 1.
Now let N1 > 2, consider u(2) + SK1u(N1)/2, and estimate the power of the

corresponding output y. It is the same as before at time K1 − 1, and at time K1 + n
it is (

1

K1 + n+ 1

K1+n∑
k=0

|yk|2
)1/2

≥ −p1 + q,(3.3)

where p1 is the output power due to the first input and q is that due to the second
one. We assumed that p1 was finite and we can make q−p1 > 2 by choosing N1 large
since it requires (

n+ 1

K1 + n+ 1

)1/2
N1

2
> p1 + 2,(3.4)

which holds, whatever n is, once (1/(K1 + 1))1/2N1/2 > p1 + 2.
So let K2 be such that, with input u(2) + SK1u(N1)/2 the corresponding output

has power at least 2 by time K2 − 1. Repeat, and now consider u(2) + SK1u(N1)/2 +
SK2u(N2)/4, where N2 is large enough that the inequality (1/(K2 + 1))1/2N2/4 >
p2 + 3, where p2 is the maximum output power due to the first two inputs.

Repeating this way we obtain an input u(2) +
∑∞
j=1 S

Kju(Nj)/2j , whose power
is bounded but which gives an output with unbounded power. This completes the
proof.

Remark 3.1. A natural question here is whether for some C > 0 there holds
an inequality of the form ‖F‖BP→BP ≤ C‖F‖B→B . For systems with `1 impulse
responses, this is easily seen to be the case, since they map periodic sequences of
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the form (u, u, u, u, . . .), where u is a finite-length vector, into sequences of the form
(y1, y1 + y2, y1 + y2 + y3, . . .), where each yk is a vector of the same length as u and
where

∑ ‖yk‖2 <∞. The gain of F with respect to ‖ · ‖B is now at least

‖y1‖2 −
∑∞
k=2 ‖yk‖2

‖u‖2 ,(3.5)

which can be made arbitrarily close to the H∞ norm of the transfer function corre-
sponding to F , by a suitable choice of u. In general, however, such an inequality is not
known to hold, and it is not possible to use the closed graph theorem (cf. Kolmogorov
and Fomin (1970)) to deduce the existence of a constant, because the norm ‖F‖B→B
is not known to be complete.

We now consider the two-sided case, where our inputs and outputs are defined on
Z. Let us define a signal size measure as follows. Let u = {u(k)} denote an arbitrary
(real or complex) sequence. Consider the set of all signals u defined by the condition

‖u‖2C = lim sup
n→∞

[
sup
t0

1

2n+ 1

n+t0∑
k=−n+t0

|u(k)|2
]
<∞.(3.6)

Introduce the notation PC = {u | ‖u‖C < ∞}. Our first observation is that the
definition in (3.6) can be simplified.

Proposition 3.1. Whenever the norm ‖u‖C is finite, then the limit superior in
the defining equation (3.6) can be replaced by an infimum over n ≥ 0 or a limit as
n→∞.

Proof. Suppose that n ≥ 0 and let

A = sup
t0

1

2n+ 1

n+t0∑
k=−n+t0

|u(k)|2.(3.7)

Then, for m > n we can write 2m + 1 = q(2n + 1) + r, where q and r are integers
with q ≥ 1 and 0 ≤ r < 2n+ 1. Now for any t ∈ Z we have

1

2m+ 1

m+t∑
k=−m+t

|u(k)|2 ≤ (q + 1)
2n+ 1

2m+ 1
sup
t0

1

2n+ 1

n+t0∑
k=−n+t0

|u(k)|2,(3.8)

as we see by splitting the block of 2m + 1 terms into at most q + 1 blocks of length
2n+ 1. Thus

lim sup
m→∞

[
sup
t

1

2m+ 1

m+t∑
k=−m+t

|u(k)|2
]
≤ lim sup

m→∞
(q + 1)A

2n+ 1

2m+ 1

≤ lim sup
q→∞

(q + 1)A/q = A.

Hence we have “lim sup ≤ inf,” and since we always have “inf ≤ lim inf ≤ lim sup,”
the limit exists and equals the infimum, as required.

We are now ready for the following result.
Theorem 3.2. The set PC is a linear vector space, on which ‖ · ‖C is a seminorm.

Furthermore, u ∈ PC if and only if u ∈ `∞(Z). One has ‖u‖C = ‖u‖A whenever u is
periodic.
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Proof. We shall show that ‖ · ‖C satisfies the triangle inequality in PC . This is
the only nontrivial part to establish that PC is a linear vector space and that ‖ · ‖C
is a seminorm. Thus we estimate by Schwarz’s inequality

(3.9)

‖u+ v‖2C = lim sup
n→∞

sup
t0

1

2n+ 1

n+t0∑
k=−n+t0

|u(k) + v(k)|2

≤ lim sup
n→∞

sup
t0

1

2n+ 1

[ n+t0∑
k=−n+t0

|u(k)|2 +

n+t0∑
k=−n+t0

|v(k)|2 + 2

n+t0∑
k=−n+t0

|u(k)||v(k)|
]

≤ lim sup
n→∞

[
sup
t0

1

2n+ 1

n+t0∑
k=−n+t0

|u(k)|2 + sup
t0

1

2n+ 1

n+t0∑
k=−n+t0

|v(k)|2

+ 2 sup
t0

1

2n+ 1

(
n+t0∑

k=−n+t0

|u(k)|2
)1/2( n+t0∑

k=−n+t0

|v(k)|2
)1/2]

≤ ‖u‖2C + ‖v‖2C + 2 lim sup
n→∞

[
sup
t0

(
1

2n+ 1

n+t0∑
k=−n+t0

|u(k)|2
)1/2

× sup
t0

(
1

2n+ 1

n+t0∑
k=−n+t0

|v(k)|2
)1/2]

≤ ‖u‖2C + ‖v‖2C + 2‖u‖C‖v‖C = (‖u‖C + ‖v‖C)
2
.

Hence PC is a linear vector space on which ‖ · ‖C is a seminorm. The validity of the
latter part of the theorem is seen as follows. Clearly if u ∈ `∞(Z), then u ∈ PC as
‖u‖C ≤ ‖u‖∞ (= supt |u(t)|) for any u ∈ `∞(Z). Suppose now that u ∈ PC but that
u 6∈ `∞(Z). Clearly if u 6∈ `∞(Z), then

sup
t0

1

2n+ 1

n+t0∑
k=−n+t0

|u(k)|2 =∞(3.10)

so that u 6∈ PC , which is a contradiction. Hence u ∈ PC must imply that u ∈ `∞(Z).
Finally, let u be a periodic signal, with period p, say. Then it is easily seen that

‖u‖2A =
1

p

p∑
j=1

|u(j)|2.(3.11)

Suppose now that 2n + 1 = pq + r, where q and r are nonnegative integers with
0 ≤ r < p. Then summing any 2n + 1 consecutive values |u(k)|2 gives a total of at
least q

∑p
j=1 |u(j)|2 and at most (q + 1)

∑p
k=1 |u(k)|2. Thus

q

2n+ 1

p∑
j=1

|u(j)|2 ≤ sup
t0

1

2n+ 1

n+t0∑
k=−n+t0

|u(k)|2 ≤ q + 1

2n+ 1

p∑
j=1

|u(j)|2.(3.12)

The result now follows, since q/(2n + 1) and (q + 1)/(2n + 1) both tend to 1/p as
n→∞.



BOUNDED POWER SIGNAL SPACES 113

If G takes PC into PC we may introduce the system gain, induced by ‖ · ‖C , as
follows:

‖G‖C = sup
u∈PC ,‖u‖C 6=0

‖Gu‖C
‖u‖C(3.13)

when it exists.
It is known (see Loy (1974), Maté (1989)) that any shift-invariant linear system

on Z+ that takes bounded inputs to bounded outputs is automatically continuous
as an operator on `∞, and hence it has an impulse response in `1. For systems on
Z, such an automatic continuity result does not hold, even for causal operators. We
have not found this stated explicitly anywhere in the literature, but it follows from
the observation that the closure of the set of all vectors of the form u−Su in `∞(Z+)
is a subspace Y of infinite codimension which contains c0(Z+). The quotient space
X = `∞(Z+)/Y therefore supports a discontinuous linear functional φ, and then
defining (Fu)(k) = φ(PXRu), where

(Ru)(k) =
{
u(−k) if k ≥ 0,
0 if k < 0

(3.14)

and PX : `∞(Z+) → X is the projection, produces a discontinuous operator which
is easily seen to be causal since it is zero on all sequences u such that u(k) → 0 as
k → −∞. Similar ideas can be found in the book of Sinclair (1976).

Returning to PC we consider the case with signals defined on Z. Let G be a
bounded input bounded output stable, causal, LTI system. To avoid pathological
situations such as those given above we shall assume now that G is defined by a
convolution kernel such that ‖G‖1 ≡

∑
k≥0 |g(k)| < ∞. Consider G as an operator

from PC into PC . (Here g = {g(k)} denotes the unit impulse response of G.) Then

‖G‖∞ ≤ ‖G‖C ≤ ‖G‖1,(3.15)

where ‖G‖∞ denotes the H∞ norm of the transfer function G(z) =
∑
k≥0 g(k)zk of

G, i.e., ‖G‖∞ = sup|z|<1 |G(z)|.
This is seen as follows. Let u ∈ PC . Let y = Gu. We estimate, using Schwarz’s

inequality,

(3.16)

1

2n+ 1

n+t0∑
t=−n+t0

|y(t)|2 =
1

2n+ 1

n+t0∑
t=−n+t0

∣∣∣∣∑
k≥0

g(k)u(t− k)

∣∣∣∣2

≤ 1

2n+ 1

∑
k,l≥0

|g(k)g(l)|
n+t0∑

t=−n+t0

|u(t− k)u(t− l)|

≤
∑
k,l≥0

|g(k)||g(l)|
(

1

2n+1

n+t0∑
t=−n+t0

|u(t−k)|2
)1/2(

1

2n+1

n+t0∑
t=−n+t0

|u(t−l)|2
)1/2

.

This gives

‖y‖2C ≤ lim sup
n→∞

∑
k,l≥0

|g(k)||g(l)|

×
[
sup
t0

(
1

2n+ 1

n+t0∑
t=−n+t0

|u(t)|2
)1/2

sup
t0

(
1

2n+ 1

n+t0∑
t=−n+t0

|u(t)|2
)1/2]

= ‖G‖21‖u‖2C .(3.17)
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This in turn gives the RHS inequality in (3.15). The LHS inequality in (3.15) is
obtained by observing that y(t) = G(e−iω)u(t) for u(t) = eiωt so that ‖G‖C ≥ ‖G‖∞.

A further argument is needed to establish the following important improvement
of (3.15).

Theorem 3.3. Let G be a causal LTI system defined by a convolution kernel,
satisfying ‖G‖1 <∞. Consider G as an operator from PC into PC . Then

‖G‖C = ‖G‖∞.(3.18)

Proof. Suppose that G has a finite impulse response (g(0), . . . , g(m), 0, 0, . . .),
say, so that

y(t) =

m∑
k=0

g(k)u(t− k)(3.19)

for t ∈ Z. It will be notationally convenient to suppose that m is even—say, m = 2p.
For each t0 ∈ Z we have

t0+n∑
k=t0−n

|y(t)|2 ≤ ‖G‖2∞
t0+n∑

k=t0−n−m
|u(k)|2,(3.20)

since the output that would result from the input u(t0−n−m), . . . , u(t0 +n) includes
the terms y(t0 − n), . . . , y(t0 + n). Thus

(3.21)

sup
t0

1

2n+ 1

n+t0∑
k=−n+t0

|y(k)|2 ≤ 2n+ 1 + 2p

2n+ 1
‖G‖2∞ sup

t1

1

2n+ 1 + 2p

t1+n+p∑
k=t1−(n+p)

|u(k)|2,

where t1 = t0 − p. Now, taking limit superiors of both sides of (3.22), as n and n+ p
go to infinity, we obtain ‖y‖2C ≤ ‖G‖2∞‖u‖2C . The general case now follows, since we
can approximate the general convolution kernel G by finite impulse response kernels
G(m) and then use (3.15) to show that for each input u the corresponding sequence
y(m) of outputs converges in the seminorm ‖ · ‖C .

An alternative proof of the above result can also be given, based on Remark 2.2.
Note that in the double-sided axis case the assumption ‖G‖1 <∞ is necessary as

otherwise the output y(t) may become infinite even for finite t.

3.2. Continuous-time case. Let F be a causal time-invariant operator map-
ping functions on (0,∞) to functions on (0,∞). The following result is the analogue
of the discrete-time theorem proven in Mäkilä and Partington (1996), and the proof
is the same.

Theorem 3.4. For an operator F as above there is a constant K > 0 such
that ‖Fu‖BP ≤ K‖u‖BP for all u such that ‖u‖BP < ∞, if and only if F is a
bounded operator on L2(0,∞) and thus corresponds to a transfer function in H∞(C+).
Moreover ‖F‖ is the same whether we consider F as acting on the space BP or
L2(0,∞).

It will also be noted that the proof goes through to yield the similar result for
‖ · ‖S .

The continuous-time version of Theorem 3.1 is also valid, and we state it here for
completeness.
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Theorem 3.5. An operator F as above has finite gain with respect to the semi-
norm ‖ · ‖B if and only if it is bounded with respect to the BP norm; this happens if
and only if F is L2 bounded and thus corresponds to a transfer function in H∞(C+).

Proof. The proof is the same as that of Theorem 3.1, replacing sums by integrals.
For example, if F is L2 bounded, then

1

T

∫ T

0

|y(t)|2 dt ≤ ‖F‖22
1

T

∫ T

0

|u(t)|2 dt,(3.22)

and thus F has finite ‖ · ‖B gain, as we see on taking limit superiors as T →∞.
Conversely, the automatic continuity result stated in the proof of Theorem 3.1

(any causal LTI operator that maps each one-sided sequence in BP into a sequence
in BP is bounded as an operator on the one-sided BP space) still holds in continuous
time. The same proof holds, with the obvious replacement of sums by integrals.
Theorem 3.4 then completes the proof of the equivalence of finite B-gain and finite
L2-gain.

Some recent work on the representation of shift-invariant operators on function
spaces on (0,∞) by transfer functions can be found in Partington and Ünalmış (1997).

Remark 3.2. For systems with L1 impulse responses we again have the identity

‖F‖BP→BP = ‖F‖B→B ,(3.23)

as in Remark 3.1. This is because periodic functions of the form u+STu+S2
Tu+ · · · ,

where u ∈ L2(0, T ) and ST denotes the right shift by an amount T , are mapped to
functions of the form y1+ST (y1+y2)+S2

T (y1+y2+y3)+· · · , where each yk ∈ L2(0, T )
and

∑∞
k=1 ‖yk‖2 <∞. The gain of F with respect to ‖ · ‖B is now at least

‖y1‖2 −
∑∞
k=2 ‖yk‖2

‖u‖2 ,(3.24)

which can be made arbitrarily close to the H∞ norm of the transfer function corre-
sponding to T , by a suitable choice of u. Alternatively one could base a proof on
the lemma of Amerio and Prouse (1971, p. 72), which asserts that an L1 convolu-
tion kernel maps almost periodic functions to almost periodic functions, and gives a
representation of the operator in terms of the corresponding transfer function.

Similarly for the case of signals defined on the whole of R, we can define a semi-
norm ‖u‖C in continuous time, analogously to equation (3.6). Namely, for locally L2

functions for which the quantity below is finite, we define

‖u‖2C = lim sup
T→∞

[
sup
t0

1

2T

∫ T+t0

k=−T+t0

|u(t)|2 dt
]
.(3.25)

Again the limit superior is actually a limit and equals the infimum over T > 0.
There is one difference here from the discrete-time case, in that for any function which
is in L2(R), including ones not in L∞(R), the quantity given in (3.25) will still be
finite.

The proof of (3.15) can be extended in the obvious way to show that in this
case operators defined by convolution with L1 impulse responses give systems with
finite gain. It can also be shown, by methods analogous to those used in the proof of
Theorem 3.3, that in this case the ‖ · ‖C gain is equal to the H∞ norm of the Laplace
transform of the impulse response.
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4. Conclusions. Bounded power signal spaces due to Wiener, Marcinkiewicz,
and Beurling have been studied from a control and systems perspective. Further-
more, a new bounded power signal space has been introduced. Specifically, it has
been shown that for a large class of stable finite and infinite dimensional systems, the
system power gain is given by the H∞ norm of the system transfer function. This
means that robust H∞ control can be rigorously motivated based on very general,
physically attractive, persistent signal spaces, which allow both stationary and non-
stationary signals (nonstationarity meaning here signals with time-dependent spectral
properties).

In the double-sided time axis case some care must be taken when using H∞
methods to analyze robust control and estimation for bounded power signals. It
follows from our results that, e.g., in the double-sided time axis case, the causal
LTI system G with the H∞ transfer function G(z) = z exp[−(1 + z)/(1 − z)] is not
power stable (actually not even stabilizable by any controller with transfer function
of the form C(z) = X(z)/Y (z), where Y 6= 0 and X and Y are transfer functions
of power stable causal LTI systems, by an application of a result in Partington and
Mäkilä (1994). It is believed that the bounded power signal spaces studied here
will turn out to be important in the active research area of system identification for
robust control (see, e.g., Partington (1997)), as they allow for very rich and realistic
nonprobabilistic signal models.

Acknowledgments. The authors would like to thank H. G. Dales for helpful
discussions on automatic continuity theory.

REFERENCES

L. Amerio and G. Prouse (1971), Almost-Periodic Functions and Functional Equations, Van Nos-
trand, New York.

T. M. Apostol (1967), Calculus, Vol I, 2nd ed., Ginn & Blaisdell, Waltham, MA.
A. Beurling (1964), Construction and analysis of some convolution algebras, Ann. Inst. Fourier

(Grenoble), 14, pp. 229–260.
S. Bochner (1959), Lectures on Fourier Integrals, Princeton University Press, Princeton, NJ.
S. P. Boyd and C. H. Barratt (1991), Linear Controller Design. Limits of Performance, Prentice-

Hall, Englewood Cliffs, NJ.
P. E. Caines (1988), Linear Stochastic Systems, John Wiley, New York.
Y.-Z. Chen and K.-S. Lau (1989), Some new classes of Hardy spaces, J. Funct. Anal., 84, pp.

255–278.
J. C. Doyle, B. A. Francis, and A. R. Tannenbaum (1992), Feedback Control Theory, Macmillan,

New York.
W. A. Gardner (1988), Statistical Spectral Analysis. A Nonprobabilistic Theory, Prentice-Hall,

Englewood Cliffs, NJ.
B. Jacob, M. Larsen, and H. Zwart (1996), Corrections and extensions of “Optimal control of

linear systems with almost periodic inputs” by G. Da Prato and A. Ichikawa, SIAM J. Control
Optim., 36 (1998), pp. 1473–1480.

S. Karlin and H. M. Taylor (1975), A First Course in Stochastic Processes, 2nd ed., University
of California Press, Berkeley.

A. N. Kolmogorov and S. V. Fomin (1970), Introductory Real Analysis, Prentice-Hall, Englewood
Cliffs, NJ.

M. Larsen (1996), H∞ Control of Linear Systems with Almost Periodic Inputs, Technical University
of Denmark, Lyngby, Denmark, preprint.

L. Ljung (1987), System Identification, Prentice-Hall, Englewood Cliffs, NJ.
R. J. Loy (1974), Continuity of linear operators commuting with shifts, J. Funct. Anal., 16, pp.

48–60.
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L. Maté (1989), On the continuity of causal operators, Publicationes Math., 36, pp. 191–198.
J. R. Partington (1997), Interpolation, Identification and Sampling, Oxford University Press, New

York.
J. R. Partington and P. M. Mäkilä (1994), Worst-case analysis of identification–BIBO robustness

for closed-loop data, IEEE Trans Automat. Control, AC-39, pp. 2171–2176.
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Abstract. Within a linear algebraic framework, we present a new characterization of the class of
nonlinear systems which are equivalent to a prime system. We then introduce a class of generalized
output transformations that can be thought of as a generalization to the nonlinear setting of a
unimodular transformation in the output space. Our main result gives necessary and sufficient
conditions for equivalence to a prime system under a certain group of transformations that includes
generalized output transformations.

Key words. nonlinear systems, output transformation, prime systems, differential forms

AMS subject classifications. 93C10, 93B17, 58A10

PII. S0363012996307060

1. Introduction. The problem of characterizing the class of linear systems that
are equivalent to prime systems was first posed and solved by Morse [12]. The group of
transformations considered in [12] included, besides state space change of coordinates
and linear state feedback, output space change of coordinates. Marino, Respondek,
and van der Schaft [10] generalized this result to the nonlinear case. They showed that
the class of smooth affine nonlinear systems that are locally equivalent to prime sys-
tems can be characterized by the properties of two families of involutive distributions
defined on the state manifold.

In this paper we consider the problem of equivalence to a prime system under
a group of transformations that consist of state space diffeomorphism, regular static
state feedback, and generalized output transformation (GOT). In the case where we
restrict ourselves to the output space change of coordinates used by Marino, Respon-
dek, and van der Schaft [10], we obtain a new and simpler characterization for the
class of nonlinear systems which are (locally) equivalent to prime systems. We then
introduce the notion of GOT to identify a larger class of systems equivalent to prime
systems. We proceed in two steps. First, we enlarge the output space by considering
a finite number of the time derivatives of the output as coordinates of new output
space. Then we define a new set of outputs on this enlarged space. This transforma-
tion is invertible in the sense that the new outputs can be expressed as functions of
a finite number of the time derivatives of the original output, and vice versa. That
is, we can recover the original output without any integration. By analogy with the
linear case, these transformations could be called unimodular, in the sense that their
inverse belongs to the same class of transformations. This approach finds a natural
application in control problems such as output tracking and output regulation.

The goal of this paper is to develop a framework and sound theory to study this
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new group of transformations and then identify those systems which are equivalent
to a prime system under this group of transformations.

Of course, a necessary condition for this equivalence is that the system be lineariz-
able by static state feedback. It will be shown that the crucial step is the requirement
that certain linear forms on the extended output space can be constructed such that
their pull-back under the output map coincide with some suitable forms on the state
space. In that respect, it is worth mentioning that the pull-back of a form is always a
well-defined object, as opposed to the push-forward of a distribution, which may fail
to be well defined. Therefore, one completely avoids the projectability-type conditions
as stated in [10].

We present our results within the linear algebraic framework introduced by Di
Benedetto, Grizzle, and Moog [6]. However, it will be shown that our results can be
given a meaningful geometric interpretation in terms of jet bundles [15]. Finally, let us
mention that this work was partially motivated by some results previously obtained
for discrete-time systems [1]. One advantage of our formalism is that it allows a
completely parallel treatment of both the continuous- and the discrete-time cases.

The paper is organized as follows. In section 2 we recall some basic definitions
from the so-called linear algebraic approach [2, 6]. Our main results are contained
in section 3. In subsection 3.1 we obtain new necessary and sufficient conditions
for equivalence to prime system under regular static state feedback, state space dif-
feomorphism, and output space diffeomorphism. In subsection 3.2 we introduce the
notion of GOT and study some of its properties. In subsection 3.3 we derive necessary
and sufficient conditions for equivalence to prime system under regular static state
feedback, state space diffeomorphism, and GOT. Finally, some conclusions and final
remarks are offered in section 4.

2. Linear algebraic framework. To begin with, we recall some basic defini-
tions from [2, 6]. Consider a nonlinear system Σ, described by equations of the form

Σ :

{
ẋ = f(x) +

∑m
i=1 uigi(x) = f(x) + g(x)u,

y = h(x),
(1)

where the state x ∈ M , an open and connected subset of Rn, the control u ∈ Rm,
and the output y ∈ Y , an open and connected subset of Rm. Throughout the paper
the following standing assumptions are made:

A1. The vector fields f(x) and gi(x) and the mapping h(x) are real analytic.
A2. For almost all x ∈M , rank g(x) = rank dh(x) = m.
Let K denote the field of meromorphic functions of a finite number of the variables

{x, u(j), j ≥ 0}. The time derivative of a function ϕ ∈ K is defined by

ϕ̇ =
d

dt
ϕ =

∂ϕ

∂x
[f(x) + g(x)u] +

∑
j≥0

∂ϕ

∂u(j)
u(j+1).(2)

Notice that the sum in (2) involves only finitely many terms. Let E denote the
K-vector space spanned by {dx,du(j), j ≥ 0}, where dx and du(j) stand, respectively,

for {dx1, . . . ,dxn} and {du(j)
1 , . . . ,du

(j)
m }. The elements of E are differential forms of

degree one, or simply one-forms. The operator d
dt : K → K induces a derivation in E

by

ω =
∑
j

ajdvj 7→ ω̇ =
∑
j

(ȧjdvj + ajdv̇j).
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The relative degree r of a one-form ω ∈ E is defined to be the least integer such that
ω(r) 6∈ spanK{dx}. If such an integer does not exist, set r =∞.

Introduce a sequence of subspaces {Hk} of E by

H1 = spanK{dx},
Hk+1 = spanK{ω ∈ Hk | ω̇ ∈ Hk}, k ≥ 1.

(3)

This sequence of subspaces was first introduced in [2, 3] to address the dynamic
feedback linearization problem. It is clear that the sequence (3) is decreasing. Denote
by k∗ the least integer such that

H1 ⊃ H2 ⊃ · · · ⊃ Hk∗ ⊃ Hk∗+1 = Hk∗+2 = · · · =: H∞.(4)

Assume that H∞ = 0. We shall explain below the significance of this assumption. In
[2] it was proven that there exists a set of one-forms W = {ω1, . . . , wm} and a list of
integers {r1, . . . , rm} such that, for 1 ≤ k ≤ k∗,

Hk = spanK{ω(j)
i , | ri ≥ k, 0 ≤ j ≤ ri − k}.(5)

The integer ri associated to the one-form wi coincides with its relative degree. A set
of one-forms satisfying (5) is called a system of linearizing one-forms.

According to (2), define

h(1) = h(1)(x, u)

=
∂h

∂x
[f(x) + g(x)u],

h(k+1) = h(k+1)(x, u, . . . , u(k))

=
∂h(k)

∂x
[f(x) + g(x)u] +

k−1∑
i=0

∂h(k)

∂u(i)
u(i+1).

Therefore, associated to the system Σ, we can define two sequences of subspaces {Ek}
and {Fk} of E defined by

Ek = spanK{dx,dh, . . . ,dh(k)}, k ≥ 0,
Fk = spanK{dh, . . . ,dh(k)}, k ≥ 0.

These two sequences of subspaces were first introduced in [6] to unify different notions
of invertibility for nonlinear systems. The number ρ∗ = dim En − dim En−1 is called
the rank of the system Σ. It can be shown [6] that ρ∗ = dim En − dim En−1 =
dimFn − dimFn−1. This characterization of rank was introduced in [6] and agrees
with Fliess’s definition [7]. Finally, for notational convenience, define X = spanK{dx}.

Remark 2.1. In paper [6] the notation y(k+1)(x, u, . . . , u(k)) was used instead of

h(k+1)(x, u, . . . , u(k)). We use the latter notation because, in the next section, the y
(k)
j

will be used to denote the canonical system of coordinates of the extended output
space.

Remark 2.2. Throughout the paper we use the notion of pull-back of a differential
form, as well as the differential forms version of Frobenius theorem. For details, the
reader is referred to [4].
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3. Main results.

3.1. Equivalence to prime systems. In this section we present new necessary
and sufficient conditions for equivalence to prime system under state diffeomorphism,
regular static state feedback, and output space diffeomorphism. In a sense, this result
is a particular case of the more general notion of equivalence that we introduce below
and provides a new linear algebraic characterization of the class of systems already
identified in [10].

Definition 3.1. A system Π is said to be a prime system if it is of the form

Π :


żi1 = zi2,

...
żiκi = vi,
ỹi = zi1, 1 ≤ i ≤ m,

(6)

where z = (z11, . . . , z1κ1 , . . . , zm1, . . . , zmκm) ∈ Rn and n =
∑m
i=1 κi for some integers

{κi}mi=1.
Definition 3.2. The system Σ is said to be equivalent to the prime system Π if

there exist
(i) A state diffeomorphism

φ : M → Rn,
x 7→ z = φ(x);

(ii) a regular static state feedback u = α(x) + β(x)v; that is, β(x) is a square
nonsingular matrix;

(iii) an output space diffeomorphism

ψ : Y → Rm,
y 7→ ỹ = ψ(y)

such that the transformation of Σ under (φ, (α, β), ψ) equals Π.
In order to state our first result, we need to introduce some notation. First define

Ḣk = spanK{ω̇ | ω ∈ Hk}. If {ω1, . . . , ωs} is a basis of Hk, it is easy to check that
Ḣk = spanK{ω1, . . . , ωs, ω̇1, . . . , ω̇s}. However, in general, {ω1, . . . , ωs, ω̇1, . . . , ω̇s} is
not a basis of Ḣk, because it may happen that the latter set is not linearly independent.
Also, recall that F0 = spanK{dh(x)}.

Theorem 3.3. Consider the square nonlinear system Σ and suppose that it
satisfies A1 and A2. Then Σ is equivalent to prime system Π if and only if the
following conditions are satisfied:

(i) H∞ = 0;
(ii) for k = 1, . . . , k∗, Hk is completely integrable;

(iii) for k = 1, . . . , k∗, Hk = Ḣk+1 ⊕ spanK{Wk}, where Wk ⊂ F0;
(iv) for k = 1, . . . , k∗, Hk ∩ F0 is completely integrable.
Remark 3.4. Theorem 3.3 can be seen as a dual version of Theorem 4 in [10]. In

particular, conditions (i), (ii), and (iv) of Theorem 3.3 are equivalent, respectively,
to conditions (ii), (i), and (iv) of Theorem 4 in [10]. Also, notice that our conditions
require the construction of a single sequence of subspaces or codistributions.

Remark 3.5. In [2, 3] it has been shown that conditions (i) and (ii) are the
necessary and sufficient conditions for the system Σ without outputs to be linearizable
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by state diffeomorphism and regular static state feedback. In particular, condition (i)
is a necessary and sufficient condition for strong accessibility.

Remark 3.6. In the event that the conditions of Theorem 3.3 are satisfied, the
decoupling matrix [9, p. 263], [13, p. 254] of the transformed output ỹ = ψ(y) has
full rank m. Therefore, the problem of asymptotically tracking a desired output
yd is transformed into the problem of asymptotically tracking the desired output
ỹd = ψ(yd), which is a linear problem in the transformed coordinates.

Proof of Theorem 3.3. Necessity . First notice that the subspaces Hk are invariant
under state diffeomorphism and under regular static state feedback [2, 3]. Moreover,
they are independent of the output map. Next we show that the subspace F0 ⊂ X is
invariant under output space diffeomorphism. Suppose that ỹ = h̃(x) = ψ ◦ h(x). By
the chain rule, we have

dh̃(x) =
∂ψ

∂y

∣∣∣∣
y=h(x)

dh(x).

This shows that spanK{dh̃(x)} ⊂ spanK{dh(x)}. Since y 7→ ψ(y) is a diffeomor-
phism, a similar argument shows that spanK{dh(x)} ⊂ spanK{dh̃(x)}, and hence
spanK{dh̃(x)} = spanK{dh(x)}. In a similar manner, one can show that F0 is invari-
ant under state space diffeomorphism. Finally, it is clear that F0 remains unchanged
under state feedback. Thus conditions (i)–(iv) are invariant under all the considered
transformations.

An easy computation shows that conditions (i)–(iv) are satisfied for a prime sys-
tem Π. Therefore, if system Σ is equivalent to a prime system Π, conditions (i)–(iv)
necessarily hold true.

Sufficiency . We proceed by induction, going down from k = k∗ to k = 1. First
notice that Hk∗+1 = H∞ = 0, and hence Ḣk∗+1 = 0. Therefore, when k = k∗,
condition (iii) means that Hk∗ = spanK{Wk∗}, where

Wk∗ = {ωk∗1, . . . , ωk∗ρk∗ } ⊂ F0.(7)

Moreover, by condition (iv) we can assume without loss of generality that the forms
ωk∗i are exact, say ωk∗i = dϕk∗i. By (7), the forms ωk∗i can also be written as follows:

ωk∗i = dϕk∗i =
m∑
j=1

aijdhj(x),(8)

where aij ∈ K.
Even though the forms ωk∗i are linear combinations of the differentials dhj(x),

it is not possible to assert a priori that they are the pull-back of some forms on
the output space. This assertion holds true if and only if the coefficients aij can be
expressed as functions of the scalar outputs yj . The following lemma states that this
is the case indeed.

Lemma 3.7. The coefficients aij, for 1 ≤ i ≤ ρk∗ , 1 ≤ j ≤ m, in (8) can be
expressed as functions of y1, . . . , ym only; that is, aij = aij(y) = aij ◦ h(x).

Proof. Since the forms ωk∗i are exact, we have that

dωk∗i =
m∑
j=1

daij ∧ dhj(x) = 0, i = 1, . . . , ρk∗ .(9)
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Now, taking the exterior product of (9) with the (m−1)-form dh1(x)∧· · · d̂hj(x) · · ·∧
dhm(x), where d̂hj(x) means that that factor is omitted, yields

daij ∧ dh1(x) ∧ · · · ∧ dhj(x) ∧ · · · ∧ dhm(x) = 0, 1 ≤ i ≤ ρk∗ , 1 ≤ j ≤ m.(10)

Since rank dh(x) = m, it follows that the linear forms dhj(x) are independent. Con-
sequently, (10) implies that daij ∈ spanK{dh(x)}. The latter means that aij are
constant on each submanifold h−1(K), K ∈ Rm. Again, since rank dh(x) = m, there
are coordinates (y1, . . . , ym, q1, . . . , qn−m) of M such that h : M → Y becomes the
canonical submersion (y, q) 7→ (y). Therefore,

aij(x) = aij(y, q) = aij(y, 0) = aij(y).

By Lemma 3.7, we can define ρk∗ forms on the output space Y by ηk∗i =∑m
j=1 aij(y)dyj , i = 1, . . . , ρk∗ . Then it is clear that the pull-back (see [4]) of the

form ηk∗i under the map h : M → Y coincides precisely with the form ωk∗i; that is,

ωk∗i = h∗(ηk∗i), i = 1, . . . , ρk∗ .(11)

Now suppose that through steps ` = k∗ to ` = k + 1 we have constructed sets of
forms W` = {ω`1, . . . , ω`ρ`} (some of them possibly empty) such that ωij = h∗(ηij)
and

Hk+1 = spanK{W(j)
i , k + 1 ≤ i ≤ k∗, 0 ≤ j ≤ i− k − 1},

where the notation W(j)
i should be understood elementwise. Therefore, by condition

(iii), we can choose a set of forms Wk = {ωk1, . . . , ωkρk} ⊂ F0 such that

Hk = spanK{W(j)
i , k ≤ i ≤ k∗, 0 ≤ j ≤ i− k}.

Moreover, condition (iv) means that we can assume, without loss of generality, that
ωki are exact, say ωki = dϕki, and that there are forms ηki defined on the output
space such that, for i = 1, . . . , ρk, ωki = h∗(ηki).

Repeat the above construction from k = k∗ to k = 1, and let W = ∪k∗i=1Wi =
{ω1, . . . , ωs} and ri = {k | ωi ∈ Wk}. Notice that, by construction, each ωi be-
longs to one and only one set Wk, whence the integer ri is well-defined. Therefore,
W = {ω1, . . . , ωs} is a system of linearizing forms whose list of relative degrees is
{r1, . . . , rs}. As a matter of fact, it can be shown (see, e.g., [2, 3]) that s = m
and that

∑m
i=1 ri = n. Recall that, by construction, the forms ωi are exact, say

ωi = dϕi(x). Define

zij = φij(x) = ϕ
(j−1)
i (x), 1 ≤ i ≤ m, 1 ≤ j ≤ ri.

It follows that the map x 7→ φ(x) is a diffeomorphism. In coordinates zij , system Σ
becomes

żi1 = zi2,
...

żiri = ai(z) + bi(z)u, 1 ≤ i ≤ m,
y = h ◦ φ−1(z).
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The fact that the forms ω
(j)
i are independent implies that the matrix B(z), whose rows

are bi(z), has full rank. Therefore, the static state feedback u = [B(z)]−1[v − a(z)] is
well defined and yields

żi1 = zi2,
...

żiri = vi, 1 ≤ i ≤ m,
y = h ◦ φ−1(z).

(12)

To conclude the proof, we just need to construct a suitable output space diffeomor-
phism. In order to do so, we need the following result.

Lemma 3.8. Let {η1, . . . , ηm} be the collection of forms defined on the output
space which satisfy ωi = h∗(ηi). Then, for i = 1, . . . ,m, dηi = 0.

Proof. As in the proof of Lemma 3.7, it is possible to choose a coordinates system
(y1, . . . , ym, q1, . . . , qn−m), so that h : M → Y becomes the canonical projection
(y, q) 7→ y. Let wi =

∑m
j=1 aijdhj . We have already shown that the aij can be

expressed as functions of yj only. Since ωi = h∗(ηi), we have that necessarily ηi =∑m
j=1 aijdyj . Define τ ijk = ∂aik

∂yj
− ∂aij
∂yk

. Then, the two-form dηi can be written as dηi =∑
j<k τ

i
jkdyj ∧ dyk. Now, recall that dωi =

∑m
j=1 daij ∧ dhj so that, in coordinates

(y, q), the two-form dωi becomes dωi =
∑
j<k τ

i
jkdyj ∧ dyk. By construction, the

forms ωi are exact, so that dωi ≡ 0. Therefore, the coefficients τ ijk must be identically
zero.

By virtue of Lemma 3.8, we can assume, without loss of generality, that, for
i = 1, . . . ,m, ηi = dψi(y). Finally, define the output space diffeomorphism y 7→ ψ(y).
In coordinates ỹ = ψ(y), the system (12) is in prime form.

Example 3.9 (see [10]). Consider the system

ẋ1 = u1,
ẋ2 = x3,
ẋ3 = u2,
ẋ4 = x5,
ẋ5 = x6,
ẋ6 = u3,

y1 = x1,
y2 = x2 + x1x5,
y3 = x4,

(13)

defined on M = R6, Y = R3. For system (13) we easily compute

H2 = spanK{dx2,dx4,dx5},
H3 = spanK{dx4},
H∞ = 0.

Therefore, conditions (i) and (ii) of Theorem 3.3 are satisfied. Moreover, if we choose
W1 = {dx1}, W2 = {dx2 + x1dx5}, and W3 = {dx4} we see also that condition (iii)
is satisfied. However, spanK{W2} = H2 ∩F0 is not completely integrable. Therefore,
system (13) is not equivalent to prime system.

3.2. Generalized output transformations. Next we introduce the notion of
GOT. As we point out below, the notion of equivalence studied in the previous section
is a particular case of this new class of transformations.

Definition 3.10. Given two finite nonnegative integers d and d′, a GOT consists
of two smooth maps ψ : Y × (Rm)d → Rm and χ : Rm × (Rm)d

′ → Y such that

ỹ = ψ(y, ẏ, . . . , y(d)),(14)

y = χ(ỹ, ˙̃y, . . . , ỹ(d′)).(15)
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Even though y = h(x), in general we have ỹ = h̃(x, u, . . . , u(d−1)). A GOT is called
proper if h̃ is a function of x only; i.e., ỹ = h̃(x).

In the case when d = d′ = 0, the GOT (14)–(15) reduces to an output space
diffeomorphism. Notice, however, that in general d 6= d′.

Example 3.11. Let Y = R3, and let y = (y1, y2, y3) and z = (z1, z2, z3) be two
systems of coordinates of R3. Consider the maps

ψ : Y × R3 → R3,
(y, ẏ) 7→ (y1, y2 + y1ẏ1, y3 + ẏ2),

χ : R3 × (R3)2 → Y,
(z, ż, z̈) 7→ (z1, z2 − z1ż1, z3 − ż2 + z1z̈1 + ż2

1).

It is easy to verify that the pair (ψ, χ) is a GOT with d = 1 and d′ = 2.
Remark 3.12. Parallel to the algebraic definition of GOT given by Definition 3.10,

a more geometric interpretation of this class of transformations can be given in terms
of jet bundles (see, e.g., [15]). Consider the output y ∈ Y as a function of time and
assume that it is of class C∞. Then, every trajectory y(t) in the output space defines
a section of the d-jet bundle Jd(R, Y ) by t 7→ jdt = (t, y(t), ẏ, . . . , y(d)(t)). Similarly,
every smooth curve z(t) on Rm defines a section of the d′-jet bundle Jd

′
(R,Rm).

Therefore, the maps ψ and χ can be interpreted as bundle maps such that the following
diagrams commute:

Jd(R, Y )
ψ−−−−−→ J0(R,Rm)

π

y
y π

R −−−−−→
idR

R

Jd
′
(R,Rm)

χ−−−−−→ J0(R, Y )

π

y
y π

R −−−−−→
idR

R

where π : Jk(R, N) → R is the source map and idR is the identity map. Roughly
speaking, this means that to every smooth trajectory y(t) ∈ Y corresponds one and
only one trajectory z(t) ∈ Rm.

Several types of invariants have been associated with the input-output map of the
system Σ, e.g., the relative degrees [9, 13], the structure at infinity [11], the essential
orders [8], and the rank of the system [6, 7]. Among them, the most fundamental is,
without doubt, the rank ρ∗ (see section 2). Theorem 3.13 below states that the rank
is invariant under proper GOTs.

Theorem 3.13. Let (ψ, χ) be a proper GOT, and let ρ∗ and ρ̃∗ denote, respec-
tively, the rank of the system Σ with respect to the output y = h(x) and with respect
to the new output ỹ = ψ(y, ẏ, . . . , y(d)) = h̃(x). Then ρ̃∗ = ρ∗.

Proof. Let {Fk} and {F̃k} denote, respectively, the sequences of subspaces asso-
ciated to the system Σ with the output y = h(x) and with the new output ỹ = h̃(x).
Next note that, according to Definition 3.10, we have

˙̃
hi =

m∑
k=1

d∑
`=0

∂ψi

∂y
(`)
k

∣∣∣∣∣
h

(`)

k

h
(`+1)
k ,

h̃
(j+1)
i =

m∑
k=1

d+j∑
`=0

∂h̃
(j)
i

∂h
(`)
k

h
(`+1)
k , j ≥ 1.(16)
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Pick an arbitrary form ω ∈ F̃k, say ω =
∑m
i=1

∑k
j=0 ãijdh̃

(j)
i . By (16), it follows that

there are coefficients aij such that ω =
∑m
i=1

∑k+d
j=0 aijdh

(j)
i . This shows that, for

every integer k ≥ 0, we have F̃k ⊂ Fk+d. Similarly, it is easily seen that, for k ≥ 0,
Fk ⊂ F̃k+d′ . Let s = max{d, d′}. Then the subspaces {Fk} and {F̃k} satisfy

F̃k ⊂ Fk+s ⊂ F̃k+2s ⊂ Fk+3s ⊂ · · · .(17)

Now suppose that ρ̃∗ < ρ∗, say ρ∗ = ρ̃∗ + r, for some integer r > 0. We will show
that this leads to contradiction. First note that, for every k ≥ n, we have

dimFk − dimFk−1 = ρ∗ = ρ̃∗ + r,

dim F̃k − dim F̃k−1 = ρ̃∗.
(18)

Next let Θi = {θji , j = 1, . . . , `i} denote some sets of linear forms such that Θ0 is a
basis of F̃n, Θ0 ∪Θ1 is a basis of Fn+s, Θ0 ∪Θ1 ∪Θ2 is a basis of F̃n+2s, etc. Note
that, by construction, `i ≥ 0 for every integer i ≥ 1.

By definition of the sets Θi and by (18), we have that

dimFn+(2k+1)s =
∑2k+1
i=0 `i = `0 + `1 + 2ksρ∗ = `0 + `1 + 2ksρ̃∗ + 2ksr,

dim F̃n+(2k+2)s =
∑2k+2
i=0 `i = `0 + (2k + 2)sρ̃∗.

Solving for `2k+2 we obtain

`2k+2 = 2sρ̃∗ − `1 − 2ksr.(19)

By (19), `2k+2 becomes negative for k large enough, which is a contradiction. This
concludes the proof.

3.3. Equivalence under generalized transformations.
Definition 3.14. The system Σ is said to be equivalent to the prime system Π

under proper GOT if there exist
(i) a state diffeomorphism

φ : M → Rn,
x 7→ z = φ(x);

(ii) a regular static state feedback u = α(x) + β(x)v;
(iii) a proper GOT (ψ, χ)

such that the transformation of Σ under (φ, (α, β), (ψ, χ)) equals Π.
Remark 3.15. We restrict ourselves to proper GOTs because we are study-

ing equivalence to prime systems, for which the output is a function of the state
only.

Theorem 3.16. Consider the square nonlinear system Σ and suppose that it
satisfies A1 and A2. Then Σ is equivalent to prime system Π under proper GOT if
and only if the following conditions are satisfied:

(i) H∞ = 0;
(ii) for k = 1, . . . , k∗, Hk is completely integrable;

(iii) X ∩ Fn−1 = X ;
(iv) ρ∗ = m.
Remark 3.17. A system which satisfies the hypothesis of Theorem 3.3 (and

hence is equivalent to prime system Π) also satisfies conditions (i)–(iv) above. Clearly,
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conditions (i)–(ii) hold. Next, note that condition (iii) of Theorem 3.3 implies Hk∗ ⊂
F0, Hk∗−1 ⊂ F1, etc., and thus X = H1 ⊂ Fk∗−1 ⊂ Fn−1. Therefore condition (iii)
holds. Finally, from Remark 3.6 we can see that condition (iv) holds as well.

In order to prove Theorem 3.16, we need to introduce some notation. For a given
nonnegative integer d, the extended state space, extended output space, and extended
output map are defined, respectively, by Md = M × (Rm)d+1, Y d = Y × (Rm)d, and

he : M × (Rm)(d+1) → Y × (Rm)d,
(x, u, . . . , u(d)) 7→ (y, . . . , y(d)) = (h(x), . . . , h(d)(x, . . . , u(d−1))).

Also, we will need the following technical result.
Proposition 3.18. The rank ρ∗ of the system Σ is equal to m if and only if, for

every integer N > 0, dim FN = mN .
Proof. First suppose that ρ∗ = m but that for some integer N we have

dim FN < mN . Then, necessarily, there is a form dh
(N)
i and coefficients ckij such

that

dh
(N)
i =

m∑
j=1

(N−1)∑
k=0

ckijdh
(k)
j +

∑
j 6=i

cNijdh
(N)
j .

The latter implies that for every integer N̄ > N we have

dh
(N̄)
i =

m∑
j=1

(N̄−1)∑
k=0

c̄kijdh
(k)
j +

∑
j 6=i

c̄N̄ijdh
(N̄)
j .(20)

Let us recall [6] that, for N > n, dim EN − dim EN−1 = dimFN − dimFN−1. Thus,
(20) implies that dim EN̄ − dim EN̄−1 < m. In particular, if we choose N̄ > n, we
have that ρ∗ = dim EN̄ − dim EN̄−1 < m, which is a contradiction. The converse is
obvious.

Proof of Theorem 3.16. Necessity . It is clear that conditions (i)–(iv) are satisfied
for a system in prime form. Moreover, conditions (i)–(ii) are invariant under state
diffeomorphism and regular static state feedback. On the other hand, Theorem 3.13
states that the rank ρ∗ is invariant under proper GOTs. It remains to prove that
condition (iii) is also invariant under proper GOTs. This part of the proof will be
broken down into two lemmas.

Lemma 3.19. Let F∞ = spanK{dh(j)
i , 1 ≤ i ≤ m, j ≥ 0}. Then we have

X ∩ F∞ = X ∩ Fn−1.
Proof. Pick an arbitrary linear form ω ∈ X ∩ F∞. Then there are coefficients bij

and an integer N ≥ 0 such that

ω =

m∑
i=1

N∑
j=0

bijdh
(j)
i .

Next note that, by Proposition 3.18, the forms {dh(j)
i , 1 ≤ i ≤ m, 0 ≤ j ≤ N} are

linearly independent. Then, necessarily, dh
(j)
i 6∈ X for j > n − 1. Since ω ∈ X , one

concludes that N < n − 1, whence ω ∈ X ∩ Fn−1. We have shown that X ∩ F∞ ⊂
X ∩ Fn−1. On the other hand, it is obvious that X ∩ Fn−1 ⊂ X ∩ F∞.

Lemma 3.20. Let (ψ, χ) be a proper GOT, and let {Fk} and {F̃k} denote, respec-
tively, the sequences of subspaces associated with the system Σ with the output y = h(x)
and with the new output ỹ = ψ(y, ẏ, . . . , y(d)) = h̃(x). Then F̃n−1 ∩ X = Fn−1 ∩ X .
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Proof. In the proof of Theorem 3.13 we have shown that, for every integer k ≥ 0,
we have F̃k ⊂ Fk+d. Pick an arbitrary form ω ∈ F̃n−1 ∩X . Lemma 3.19 implies that

ω ∈ Fn+d−1 ∩ X ⊂ F∞ ∩ X = Fn−1 ∩ X .
This proves that F̃n−1∩X ⊂ Fn−1∩X . Since (ψ, χ) is a GOT, a symmetric argument
shows that Fn−1 ∩ X ⊂ F̃n−1 ∩ X .

Sufficiency . Conditions (i)–(ii) imply that the system Σ is linearizable by regular
static state feedback. Therefore, we can assume, without loss of generality, that Σ is
in the form (12). Next notice that condition (iii) implies that, for i = 1, . . . ,m,

dzi1 = dφi1(x) =
m∑
j=1

d∑
k=0

akijdh
(k)
j ,(21)

where 0 ≤ d ≤ n− 1.
Lemma 3.21. The coefficients akij appearing in (21) can be expressed as functions

of {y(j)
i , 1 ≤ i ≤ m, 0 ≤ j ≤ d} only.

Proof. By Proposition 3.18, the forms {dh(j)
i , 1 ≤ i ≤ m, 0 ≤ j ≤ d} are

independent. Therefore, a similar argument to that used in Lemma 3.7 can be used
to conclude the proof.

By Lemma 3.21, we can define m one-forms on the extended output space Y d by

ηi =
m∑
j=1

d∑
k=0

akijdy
(k)
j .

Then it is clear that the pull-back of the forms ηi under the extended output map
he : Md → Y d coincides precisely with the forms dzi1; that is, dzi1 = h∗e(ηi).

Lemma 3.22. Let {η1, . . . , ηm} be the collection of forms defined on the extended
output space Y d which satisfy dzi1 = h∗e(ηi). Then, for i = 1, . . . ,m, dηi = 0.

Proof. By Proposition 3.18, the extended output map he : Md → Y d has full rank
equal to m(d + 1). Therefore, there exists a system of coordinates of the extended
state space Md such that he : Md → Y d becomes the canonical projection. A similar
construction as in Lemma 3.8 shows then that dηi = 0.

By virtue of Lemma 3.22, we can assume, without loss of generality, that, for
i = 1, . . . ,m, ηi = dψi(y, ẏ, . . . , y

(d)). Finally define a new output function ỹ by
ỹi = ψi(y, ẏ, . . . , y

(d)). With this change of output variables, system (12) is in prime
form. It remains to prove that there is an inverse map y = χ(ỹ, . . . , ỹ(d′)). Notice that

y = h(x) = h ◦ φ−1(z) and that, by construction, zij = ỹ
(j−1)
i . Therefore, it follows

that necessarily

y = h ◦ φ−1(z) = χ(ỹ, . . . , ỹ(d′))

for some integer d′ ≥ 0.
Example 3.23 (Example 3.9, continued). We have shown that system (13) is

not equivalent to a prime system under standard output space transformations, i.e.,
output space diffeomorphism. We shall show that system (13) is equivalent to prime
system under proper GOTs. We have already shown that conditions (i)–(ii) are sat-
isfied. It is easy to check that

F0 = spanK{dx1,dx2 + x1dx5,dx4},
F1 = spanK{dx1,dx2,dx3 + x1dx6,dx4,dx5,du1},
F2 = spanK{dx1,dx2,dx3,dx4,dx5,dx6,du1,du̇1,du2 + x1du3}.
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Note that X ⊂ F2 and, since F2 ⊂ F5, we have X ∩ F5 = X , and thus condition
(iii) is also satisfied. Finally, lengthy but straightforward computations show that
ρ∗ = dimF6 − dimF5 = 3. Consequently, system (13) is equivalent to prime system.

Since the state equations are already in the form (1), in order to transform system
(13) into prime form, we just need to find a suitable GOT. This can be accomplished
as follows: first note that

dx1 = dh1 = h∗e(dy1),

dx2 = dh2 − x5dh1 − x1dḣ3 = h∗e(dy2 − ẏ3dy1 − y1dẏ3),
dx4 = dh3 = h∗e(dy3).

(22)

By integrating the right sides of (22), we find the GOT (y, ẏ) 7→ ỹ = (y1, y2 −
y1ẏ3, y3). In coordinates (ỹ1, ỹ2, ỹ3), system (13) is in prime form. The inverse output
transformation is obviously given by (ỹ, ˙̃y) 7→ y = (ỹ1, ỹ2 + ỹ1

˙̃y3, ỹ3).
As pointed out before, one immediate application of Theorems 3.3 and 3.16 is the

possibility of (asymptotically or exactly) tracking a desired output trajectory yd(t).
This is best illustrated by the following example.

Example 3.24 (Example 3.23, continued). The decoupling matrix [9, 13] associ-
ated with the original output y = h(x) of system (13) is given by

B(x) =

 1 0 0
x5 0 0
0 0 1

 .
Since rankB(x) = 2, noninteracting control cannot be achieved by regular static state
feedback.

On the other hand, the output functions which bring system (13) to prime form
are given, as functions of x, by

ỹ1 = y1 = x1,
ỹ2 = y2 − y1ẏ3 = x2,
ỹ3 = y3 = x4.

The decoupling matrix B̃(x) associated with the output ỹ = h̃(x) is simply
B̃(x) = I3. Therefore the standard noninteracting feedback [9, 13] can be used to
decouple the scalar output components ỹi, i = 1, . . . , 3. Now suppose that we want
to asymptotically track a smooth output trajectory yd(t) = (yd1(t), yd2(t), yd3(t)) for
system (13). Such trajectory is transformed in the new coordinates into ỹd(t) =
(yd1(t), yd2(t) − yd1(t)ẏd3(t), yd3(t)). Since (13) has been transformed into a prime
system, the asymptotic output tracking problem is solved by linear state feedback in
the transformed coordinates, namely

u1 = ˙̃yd1 − k1
0(x1 − ỹd1),

u2 = ¨̃yd2 − k2
1(x3 − ˙̃yd2)− k2

0(x2 − ỹd2),

u3 = ỹ
(3)
d3 − k3

2(x6 − ¨̃yd3)− k3
1(x5 − ˙̃yd3)− k3

0(x4 − ỹd3),

where s+ k1
0, s2 + k2

1s+ k2
0 and s3 + k3

2s
2 + k3

1s+ k3
0 are Hurwitz polynomials.

4. Conclusion and final remarks. We have introduced the notion of GOT
for nonlinear systems and have shown that the linear algebraic framework introduced
by Di Benedetto, Grizzle, and Moog [6] provides a rather convenient tool to study
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their properties. In particular, it has been shown that the rank of a system remains
unchanged under such transformations.

It is worth mentioning that the class of GOT that we have introduced can be seen
as the “dual” transformation of the class of generalized state feedbacks introduced in
[14] and studied from the differential algebraic viewpoint in [5], where they were called
quasi–static state feedbacks.

As an important application of this new class of transformations, a larger class
of systems which are equivalent to prime systems has been identified. In turn, this
result is applicable to control problems where output transformations are naturally
allowed, such as output tracking and output regulation.

Of course, the conditions of Theorems 3.3 and 3.16 imply that the system Σ is
invertible [6, 7], and hence noninteracting control can be achieved by dynamic state
feedback. In that respect, Theorems 3.3 and 3.16 avoid the addition of extra dynamics
to the system, as pointed out in [10].

An open issue for further research is the study of the notion of equivalence of
nonlinear systems under GOTs, not necessarily proper.
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[7] M. Fliess, Automatique et corps différentiels, Forum Math., 1 (1989), pp. 227-238.
[8] A. Glumineau and C. H. Moog, The essential orders and nonlinear decoupling, Internat. J.

Control, 50 (1989), pp. 1825–1834.
[9] A. Isidori, Nonlinear Control Systems, 2nd ed., Springer-Verlag, Heidelberg, 1989.

[10] R. Marino, W. Respondek, and A. J. van der Schaft, Equivalence of nonlinear systems to
input-output prime forms, SIAM J. Control Optim., 32 (1994), pp. 387–407.

[11] C. H. Moog, Nonlinear decoupling and structure at infinity, Math. Control Signals Systems,
1 (1988), pp. 257–268.

[12] A. S. Morse, Structural invariants of linear multivariable systems, SIAM J. Control Optim.,
11 (1973), pp. 446–465.

[13] H. Nijmeijer and A.J. van der Schaft, Nonlinear Dynamical Control Systems, Springer-
Verlag, New York, 1990.

[14] A. M. Perdon, G. Conte, and C. H. Moog, Some canonical properties of nonlinear systems,
in Realization and Modelling in System Theory, M.A. Kaashoek, J. H. van Schuppen,
A.C.M. Ran, eds., Progress in Systems and Control Theory, Vol. 3, Birkhäuser, Boston,
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Abstract. We study the infinite horizon quadratic cost minimization problem for a well-posed
linear system in the sense of Salamon and Weiss. The quadratic cost function that we seek to
minimize need not be positive, but it is convex and bounded from below. We assume the system to
be jointly stabilizable and detectable and give a feedback solution to the cost minimization problem.
Moreover, we connect this solution to the computation of either a (J, S)-inner or an S-normalized
coprime factorization of the transfer function, depending on how the problem is formulated. We
apply the general theory to get factorization versions of the bounded and positive real lemmas. In
the case where the system is regular it is possible to show that the feedback operator can be expressed
in terms of the Riccati operator and that the Riccati operator is a stabilizing self-adjoint solution of
an algebraic Riccati equation. This Riccati equation is nonstandard in the sense that the weighting
operator in the quadratic term differs from the expected one, and the computation of the correct
weighting operator is a nontrivial task.
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Key words. spectral factorization, (J, S)-inner-outer factorization, (J, S)-inner coprime factor-
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1. Introduction. This work treats the infinite horizon quadratic cost minimiza-
tion problem for a time-invariant well-posed linear control system in the sense of Sala-
mon and Weiss and extends the results presented in [23] to unstable systems. The
approach is the same as in [22]: we first employ a preliminary state feedback to stabi-
lize the system, and then we apply the theory developed in [23] to solve the quadratic
cost minimization problem for the stable system. Working backwards we then obtain
a solution to the original problem.

We consider two different types of cost functions. In the standard case both the
control and the observation are equally penalized; we show that this leads to a prob-
lem that is equivalent to the computation of a normalized coprime factorization of
the transfer function (see Corollary 4.9). It is possible to embed this type of problem
into a more general class of problem where there is no cost on the control itself, only
on the observation. In this setting the problem of quadratic cost minimization be-
comes equivalent to the computation of an inner coprime factorization of the transfer
function, i.e., a coprime factorization with an inner numerator (see Theorem 4.4).

The infinite horizon quadratic cost minimization problem is also associated with
an algebraic Riccati equation. Indeed, we show that in the case where the optimally
controlled system and its adjoint are regular in the sense of Weiss, the Riccati operator
satisfies an algebraic Riccati equation, and the feedback operator can be computed
from the Riccati operator. However, in this connection we encounter a very interesting
phenomenon: the weighting operator in the quadratic term of the Riccati equation
differs from the expected one, and the computation of the correct weighting operator
is a nontrivial task. The same operator is present in the formula that connects the
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Riccati operator to the feedback operator. This phenomenon was first reported in [18]
in a stable setting for a more restricted class of transfer functions. Examples where
this phenomenon occurs are given in [21], [22], [30], and [33].

We have based the discussion above on transfer functions rather than input/out-
put maps since we believe that the former concept is more familiar to most readers.
However, in the main body of the text we phrase our results in terms of input/output
maps instead. In our opinion, this formulation is both easier and more intuitive than
the transfer function formulation, and it has the advantage that generalizations to
nonlinear and time-dependent systems are more immediate.

For a more detailed account of the existing Riccati equation theory for various
classes of systems we refer the reader to [14] (and its forthcoming new version) and to
the review [13]. However, we have to mention the very interesting paper by Flandoli,
Lasiecka, and Triggiani [5]. In that paper the observation operator is bounded, but
the authors have told us that the results of that paper can be extended to some
classes of unbounded observation operators. Their approach is quite different from
ours. They do not assume that the system is stabilizable and detectable. On the
other hand, they also do not prove that the optimal system is well posed in our sense.
They make no study of the input/output behavior of the closed loop system, and
in particular, they do not mention the all-pass property of the optimal closed loop
system (see Remark 2.8). In our opinion, this is the most characteristic property of
the closed loop system.

The results presented here were originally obtained in the spring of 1995, and they
were circulated in the form of two preprints [18, 19] with the titles “Coprime factoriza-
tions and optimal control of abstract linear systems” and “The nonstandard quadratic
cost minimization problem for abstract linear systems.” The former preprint treated
the “standard” cost minimization problem and the latter a “nonstandard” cost min-
imization problem, where the cost function contains a possibly indefinite weighting
operator but is still bounded from below. The latter was a straightforward modi-
fication of the former, and it was not included in the original submission to SIAM.
However, later work on the H∞ minimax problem has proved that the inclusion of the
indefinite weighting operator would improve the future reference value of this work
significantly.1 This was one of the reasons for a major revision that was carried out in
late 1996.2 In the meantime we received preprints of [32] and [33], which overlap our
section 2. The problem studied in [33] is essentially the same as in [23], summarized
here in section 2, plus a Riccati equation theory for stable systems. However, neither
paper fully contains the other.

This work is very closely related to [24]; in fact, they were both part of the same
original submission to SIAM. We expect the reader to have access to [24] and refer
freely to results in that paper. In particular, we send the reader to [24] for a short
presentation of the basic theory of well-posed linear systems.

We use the following notation:

L(U ;Y ), L(U): The set of bounded linear operators from U into Y or from U into
itself, respectively.

I: The identity operator.

A∗: The (Hilbert space) adjoint of the operator A.

1This is due to the fact that it makes the formulae look identical to those that are valid in the
H∞-case, although the underlying assumptions are different. See [25] and [26].

2At the same time [24] was separated into an independent paper.
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A ≥ 0: A is (self-adjoint and) positive definite.

A� 0: A ≥ εI for some ε > 0, hence A is invertible.

dom(A): The domain of the (unbounded) operator A.

range(A): The range of the operator A.

R, R+, R−: R = (−∞,∞), R+ = [0,∞), and R− = (−∞, 0].

L2(J ;U): The set of U -valued L2-functions on the interval J .

L2
ω(J ;U): L2

ω(J ;U) =
{
u ∈ L2

loc(J ;U)
∣∣ (t 7→ e−ωtu(t)) ∈ L2(J ;U)

}
.

H∞ω (U ;Y ): The set of L(U ;Y )-valued H∞ functions over the half-plane <z > ω.

TIω(U ;Y ), T Iω(U): The set of bounded linear time-invariant operators from
L2
ω(R;U) into L2

ω(R;Y ) or from L2
ω(R;U) into itself.

TICω(U ;Y ), T ICω(U): The set of causal operators in TIω(U ;Y ) or TIω(U).

TIC(U ;Y ), T IC(U): TIC(U ;Y ) = TIC0(U ;Y ) and TIC(U) = TIC0(U).

〈·, ·〉H : The inner product in the Hilbert space H.

τ(t): The time-shift group τ(t)u(s) = u(t + s) (this is a left shift when t > 0
and a right shift when t < 0).

πJ : (πJu)(s) = u(s) if s ∈ J and (πJu)(s) = 0 if s /∈ J . Here J ⊂ R.

π+, π−: π+ = πR+ and π− = πR− .
We extend a L2

ω-function u defined on a subinterval J of R to the whole real line
by requiring u to be zero outside of J , and we denote the extended function by πJu.
We use the same symbol πJ both for the embedding operator L2

ω(J) → L2
ω(R) and

for the corresponding projection operator L2
ω(R)→ L2

ω(J). With this interpretation,
πJL

2
ω(R;U) = L2

ω(J ;U) ⊂ L2
ω(R;U) for each interval J ⊂ R.

2. The stable quadratic cost minimization problem. Before looking at the
general quadratic cost minimization problem for unstable systems, let us recall some
basic results valid for stable systems.

Definition 2.1. Let Ψ = [A BC D ] be a stable well-posed linear system on (U,H, Y )
[23, Definition 1], and let J = J∗ ∈ L(Y ). The quadratic cost minimization problem
for Ψ with cost operator J consists of finding, for each x0 ∈ H, the infimum over all
u ∈ L2(R+;U) of the cost

Q(x0, u) = 〈y, Jy〉L2(R+;Y ) ,(2.1)

where y = Cx0 +Dπ+u is the observation of Ψ with initial value x0 ∈ H and control
u ∈ L2(R+;U). If there exists an operator Π = Π∗ ∈ L(H) such that the optimal cost
is given by

inf
u∈L2(R+;U)

Q(x0, u) = 〈x0,Πx0〉H ,

then Π is called the Riccati operator of Ψ with cost operator J .
We have studied this problem in [23], but unfortunately, at that time we took the

operator J to be the identity operator throughout. If J is positive definite, then it is
possible to reduce J to the identity by a simple change of variable in the output space
Y , but many applications, such as the positive (real) lemma and the bounded (real)
lemma, require the use of a nondefinite J .3 Fortunately, it turns out that the results

3We shall return elsewhere to the H∞ theory which requires both a nondefinite cost operator J
and a nondefinite sensitivity operator S.
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presented in [23] remain valid with trivial modifications as long as the input/output
map D of Ψ is J-coercive in the following sense:

Definition 2.2. Let J = J∗ ∈ L(Y ).
(i) The operator D ∈ TIC(U ;Y ) is J-coercive iff D∗JD � 0, that is,
〈Du, JDu〉L2(R;Y ) ≥ ε‖u‖2L2(R;U) for all u ∈ L2(R;U) and some ε > 0.

(ii) A stable well-posed linear system Ψ = [A BC D ] is J-coercive iff its input-output
map D is J-coercive.

Indeed, this is the case that is important in the applications to the bounded and
positive (real) lemmas in section 8.

Since the solution to the cost minimization problem in the stable J-coercive case
is almost identical to the one in [23] we simply present this solution below, leaving
the proofs to the reader (it is done by inserting the operator J or S after each adjoint
operator defined on Y or U , respectively).

Definition 2.3 (see [23, Definitions 16 and 17]). Let J = J∗ ∈ L(Y ), and let
S = S∗ ∈ L(U).

(i) The operator N ∈ TIC(U ;Y ) is (J, S)-inner iff N ∗JN = S.
(ii) An operator X ∈ TIC(U ;Y ) is outer if the image of L2(R+;U) under Xπ+

is dense in L2(R+;Y ).
(iii) An operator X ∈ TIC(U) is an (invertible) S-spectral factor of D∗JD ∈

TI(U) iff X is invertible in TIC(U) and D∗JD = X ∗SX .
(iv) The factorization D = NX is a (J, S)-inner-outer factorization of D ∈

TIC(U ;Y ) if N ∈ TIC(U ;Y ) is (J, S)-inner and X ∈ TIC(U) is outer.
(v) In each case S is called the sensitivity operator of N or of the factorization.
Lemma 2.4 (see [23, Lemmas 13 and 18]). Let D ∈ TIC(U ;Y ), J = J∗ ∈ L(Y ),

S ∈ L(U), S � 0, S̃ ∈ L(U), and S̃ � 0.
(i) D∗JD has an S-spectral factor X iff D is J-coercive.
(ii) If X is an S-spectral factor of D∗JD, then NX =

(DX−1
)X is a (J, S)-

inner-outer factorization of D. Conversely, if D is J-coercive and NX is a
(J, S)-inner-outer factorization of D, then X is an S-spectral factor of D∗JD.

(iii) The set of all possible S-spectral factors X of D∗JD can be parameterized

as X = E−1X̃ and S = E∗S̃E, where X̃ is a fixed S̃-spectral factor and
E ∈ L(U) is an arbitrary invertible operator.

(iv) If D is J-coercive, then the Toeplitz operator π+D∗JDπ+ is invertible, and
its inverse can be written in the form (π+D∗JDπ+)−1 = X−1S−1π+(X ∗)−1.
Here X is an arbitrary S-spectral factor of D∗JD. (X−1S−1π+(X ∗)−1 does
not depend on the particular factorization, only on D and J .)

Lemma 2.5 (see [23, Lemma 13 and Theorem 27]). Let J = J∗ ∈ L(Y ), and
let Ψ = [A BC D ] be a stable J-coercive well-posed linear system on (U,H, Y ). Then, for
each x0 ∈ H, there is a unique control uopt(x0) ∈ L2(R+;U) that minimizes the cost
function Q(x0, u) in Definition 2.1. This control uopt is given by

uopt(x0) = −X−1S−1π+N ∗JCx0,

where NX is an arbitrary (J, S)-inner-outer factorization of D (cf. Lemma 2.4). The
corresponding state xopt(x0), output yopt(x0), and the minimum Q(x0, u

opt(x0)) of
the cost function are given by

xopt(x0) = Ax0 − BX−1τS−1π+N ∗JCx0,

yopt(x0) = (I − P )Cx0,

Q(x0, u
opt(x0)) = 〈x0, C∗J (I − P ) Cx0〉H ,
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where

P = Dπ+(π+D∗JDπ+)−1π+D∗J = I −NS−1π+N ∗J
is the projection onto the range of Dπ+ along the null space of π+D∗J . In particular,
Ψ has a Riccati operator, namely

Π = C∗J (I − P ) C,
and yopt(x0) belongs to the null space of the projection P, i.e.,

π+D∗Jyopt(x0) = π+D∗J
(Cx0 +Dπ+u

opt(x0)
)

= 0.

We remark that, although the factorization D = NX and the operator S are not
unique, the formulas given above produce the same result independently of how the
factorization is chosen. This follows from Lemma 2.4 (see, in particular, part (iv)).

Theorem 2.6 (see [23, Theorem 27]). Let J = J∗ ∈ L(Y ), and let Ψ =
[A BC D ] be a stable J-coercive well-posed linear system on (U,H, Y ). Let x0 ∈ H,
let xopt(x0), yopt(x0), and uopt(x0) be the optimal state, output, and control for the
quadratic cost minimization problem, and let Π be the corresponding Riccati operator
(see Lemma 2.5).

(i) Let D = NX be a (J, S)-inner-outer factorization of D, and defineM = X−1.
Then [K F] =

[−S−1π+N ∗JC (I −X )
]

is a stable and stabilizing state feedback pair for Ψ [23, Definition 22] andxopt(t, x0)
yopt(x0)
uopt(x0)

 =

Aª(t)
Cª
Kª

x0 =

A(t) + BMτ(t)K
C +NK
MK

x0

=

A(t)
C
0

x0 −
BMτ(t)
N
M

S−1π+N ∗JCx0

is equal to the state and output of the closed loop system Ψª defined by

Ψª =

 Aª Bª[Cª
Kª
] [Dª

Fª
] =

A+ BτMK BM[C +NK
MK

] [ N
M− I

]
with initial value x0, initial time zero, and zero control uª (see Figure 2.1).
The Riccati operator Π of Ψ can be written in the following alternative forms:

Π = C∗JC − K∗SK = C∗JCª = C∗ªJCª = C∗ªJC.

(ii) Conversely, suppose that [
yopt(x0)
uopt(x0)] is equal to the observation of some stable

state feedback perturbation Ψª of Ψ with initial value x0, initial time zero, zero
control uª, and some admissible stable state feedback pair [K F ]. Then there
exists an operator S ∈ L(U), S � 0, such that NX is a (J, S)-inner-outer

factorization of D, where N = D (I −F)
−1

and X = (I −F). Moreover, K
is given by K = −S−1π+N ∗JC.
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A Bτ[C
K
] [D

F
]?

x0

�x

�y

�z r
?c++-π+uª -ur6

Fig. 2.1. Optimal state feedback connection Ψª in Theorem 2.6.

(iii) If y = Cªx0 + Dªπ+uª is the first output of the optimal closed loop system
Ψª with initial state x0 ∈ H and control uª ∈ L2(R+;U) (see Figure 2.1),
then the closed loop cost Qª(x0, uª) is given by

Qª(x0, uª) = 〈y, Jy〉L2(R+;Y ) = 〈x0,Πx0〉H + 〈uª, Suª〉L2(R+;Y ) .(2.2)

Proof. Only (iii) requires a proof, since this identity is not found in [23]. This
proof goes as follows (the last equality follows from Lemma 2.5):

〈y, Jy〉L2(R+;Y ) =
〈
(yopt(x0) +Nπ+uª)(s), J(yopt(x0) +Nπ+uª)(s)

〉
L2(R+;Y )

=
〈
yopt(x0), Jyopt(x0)

〉
L2(R+;Y )

+ 2< 〈Xπ+uª(s),D∗Jyopt(x0)
〉
L2(R+;U)

+ 〈uª,N ∗JNπ+uª〉L2(R+;U)

= 〈x0,Πx0〉H + 〈uª, Suª〉L2(R+;U) .

Remark 2.7. This theorem is actually true under weaker stability assumptions.
It suffices if C and D are stable, i.e., A and B need not be stable [24, Definition 2.11].
Of course, the corresponding closed loop Aª and Bª need not be stable in this case.
Stability of A was not assumed in [23], and the stability of B was never used in a
nontrivial way in the proofs (although it was assumed). See also [33] which requires
no stability of A and B.

Remark 2.8. The conclusion of part (iii) of Theorem 2.6 says that the frequency
response of the input/output map from the closed loop control uª in Figure 2.1 to
the original output is completely flat, i.e., this input/output map is all-pass, with a
power amplification level equal to S. Thus, S measures the sensitivity of the closed
loop system with respect to deviations from the optimal strategy. This is the reason
why we call S the sensitivity operator of the closed loop system.

3. Quadratic cost minimization: Reduction to the stable case. We are
now ready to attack the unstable quadratic cost minimization problem. The definition
of the problem is essentially the same as in the stable case.

Definition 3.1. Let Ψ = [A BC D ] be a well-posed linear system on (U,H, Y ), and
let J = J∗ ∈ L(Y ). The (nonstandard) quadratic cost minimization problem for Ψ
with cost operator J consists of finding, for each x0 ∈ H, the infimum of the cost
Q(x0, u) defined in (2.1) over all those u ∈ L2(R+;U) for which the corresponding
observation y = Cx0 +Dπ+u of Ψ satisfies y ∈ L2(R+;Y ). If there exists an operator
Π = Π∗ ∈ L(H) such that the optimal cost is given by

inf
u∈L2(R+;U)

Q(x0, u) = 〈x0,Πx0〉H ,
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then Π is called the Riccati operator of Ψ with cost operator J .
Clearly, Q is a quadratic, possibly unbounded, function of u ∈ L2(R+;U) due

to the fact that Dπ+ is a linear, possibly unbounded, operator in L2(R+;U). The
latter operator is not bounded on L2(R+;U) unless Ψ is input-output stable, but it
is always closed.

Lemma 3.2. Let D ∈ TICα(U ;Y ) for some α ≥ 0. Then the restriction D0 of
the Toeplitz operator Dπ+ to the domain

dom(D0) =
{
u ∈ L2(R+;U) | Dπ+u ∈ L2(R+;Y )

}
is a closed (possibly unbounded) linear operator from dom(D0) ⊂ L2(R+;U) into
L2(R+;Y ).

Proof. This follows directly from the fact that L2(R+) is continuously imbedded
in L2

α(R+).
We can say something more about how D0 maps L2(R+;U) into L2(R+;Y ) in

the case where D has a right coprime factorization.4

Lemma 3.3. Let D ∈ TICα(U ;Y ) for some α ≥ 0, and suppose that D has a
right coprime factorization (N ,M) [24, Definition 4.2].

(i) If u ∈ L2
loc(R+;U), u[ ∈ L2

loc(R+;Y ), and y ∈ L2
loc(R+;Y ) satisfy

u =Mπ+u[ and y = Nπ+u[,

then u[ ∈ L2(R+;U) iff both u ∈ L2(R+;U) and y ∈ L2(R+;Y ). Thus,
dom(D0) is equal to the image of L2(R+;U) under Mπ+, and range(D0) is
equal to the image of L2(R+;U) under Nπ+. In particular, dom(D0) is dense
in L2(R+;U) iff M is outer.

(ii) With u, u[, and y as above, there exist strictly positive constants ε and M
such that

ε
(‖u‖2L2(R+;U) + ‖y‖2L2(R+;Y )

) ≤ ‖u[‖2L2(R+;U)

≤M(‖u‖2L2(R+;U) + ‖y‖2L2(R+;Y )

)
.

Proof. Clearly, if u[ ∈ L2(R+;U), then both u ∈ L2(R+;U) and y ∈ L2(R+;Y ).
Conversely, if both u ∈ L2(R+;U) and y ∈ L2(R+;Y ), then we can use the right
coprimeness of N and M to write

u[ =
(ỸN + X̃M)π+u[ = Ỹy + X̃u,

and this implies that u[ ∈ L2(R+;U). The claims about the domain and range of D0

follow immediately, and so does claim (ii).
As a special case of this result (take N = D and M = I) we get the following

(trivial) estimate.
Lemma 3.4. For each D ∈ TIC(U ;Y ) there exist strictly positive constants ε

and M such that, for all u ∈ L2(R;U),

ε
(‖u‖2L2(R;U) + ‖Du‖2L2(R;Y )

) ≤ ‖u‖2L2(R;U) ≤ ‖u‖2L2(R;U) + ‖Du‖2L2(R;Y ).

A necessary and sufficient condition for the existence of a finite infimum for
the nonstandard quadratic cost minimization problem is that the cost function Q
is bounded from below as a function of u. This should be true for each fixed x0 ∈ H.
We shall actually impose a slightly stronger condition on Q which implies that not
only does the infimum exist, but it is in fact a minimum.5 However, before intro-

4This is true, e.g., when D is the input-output map of a jointly stabilizable and detectable
well-posed linear system. See [24, Theorem 4.4].

5See Lemma 3.9.



138 OLOF J. STAFFANS

ducing this condition, let us make the following simple observation about the stable
case.

Lemma 3.5. Let J = J∗ ∈ L(Y ). The operator D ∈ TIC(U ;Y ) is J-coercive
iff D∗JD ≥ ε(D∗D + I) for some ε > 0, i.e., 〈Du, JDu〉L2(R;Y ) ≥ ε

(‖u‖2L2(R;U) +

‖Du‖2L2(R;U)

)
for all u ∈ L2(R;U).

Proof. This follows from Definition 2.2 and Corollary 3.4.
In the unstable case we turn the characterization of J-coercivity given in this

lemma into a definition.
Definition 3.6. Let J = J∗ ∈ L(Y ), and let α ≥ 0.
(i) The operator D ∈ TICα(U ;Y ) is J-coercive iff there exists a constant ε > 0

such that

〈Dπ+u, JDπ+u〉L2(R+;Y ) ≥ ε
(
‖u‖2L2(R+;U) + ‖Dπ+u‖2L2(R+;Y )

)
for all those u ∈ L2(R+;U) for which Dπ+u ∈ L2(R+;Y ).

(ii) The system Ψ = [A BC D ] on (U,H, Y ) is J-coercive if there exist constants
M > 0 and ε > 0 such that the cost function Q defined in (2.1) satisfies

Q(x0, u) ≥ ε
(
‖u‖2L2(R+;U) + ‖y‖2L2(R+;Y )

)
−M ‖x0‖2H(3.1)

for all those x0 ∈ H and u ∈ L2(R+;U) for which y = Cx0 + Dπ+u ∈
L2(R+;Y ).

By Lemma 3.5, part (i) of Definition 2.2 is consistent with part (i) of Definition
3.6. That the second half of these definitions is also consistent follows from the next
lemma.

Lemma 3.7. A stable system is J-coercive in the sense of Definition 3.6 iff its
input-output map is J-coercive.6

Proof. Trivially, the J-coercivity of an arbitrary system (stable or not) implies
that its input-output map is J-coercive (take x0 = 0).

Conversely, suppose that D is J-coercive, e.g., in the sense of Definition 2.2. For
each u ∈ L2(R+;U) we have

〈Dπ+u+ Cx0, J(Dπ+u+ Cx0)〉Y
≥ 〈Dπ+u, J(Dπ+u)〉Y − 2 ‖J‖ ‖D‖ ‖C‖ ‖u‖ ‖x0‖ − ‖J‖ ‖C‖2 ‖x0‖2 .

Combining this with Lemma 3.5 and with the fact that for all positive constants a,
b, and δ it is true that 2ab ≤ δa2 + (1/δ)b2, we find that for some sufficiently large
constant M , independent of u and x0,

〈Dπ+u+ Cx0, J(Dπ+u+ Cx0)〉Y ≥ ε/2(‖u‖2 + ‖y‖2)−M ‖x0‖2 .
Thus, the system is J-coercive in the sense of Definition 3.6.

Lemma 3.8. Let J = J∗ ∈ L(U ;Y ), and let D ∈ TICα(U ;Y ) for some α ≥ 0. If
D has a right coprime factorization (N ,M), then D is J-coercive iff N is J-coercive.

Proof. This follows from Lemmas 3.3 and 3.5 and Definition 3.6.
Our approach to the quadratic cost minimization problem is to first use a prelim-

inary stabilizing feedback and to then minimize the stabilized problem. It is based on
the following result.

6The same statement is actually true for all jointly stabilizable and detectable systems. See
Lemma 3.9(iii).
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Lemma 3.9. Let J = J∗ ∈ L(Y ), and let Ψ = [A BC D ] be a well-posed linear system
on (U,H, Y ) with jointly stabilizing feedback and output injection pairs [K1 F1] and
[HG ] [24, Definition 3.15]. Let

Ψ[ =

 A[ B[[ C[
K1
[

] [D[
F1
[

]
=

 A+ Bτ (I −F1
)−1K1 B (I −F1

)−1[
C +D (I −F1

)−1K1(
I −F1

)−1K1

] [
D (I −F1

)−1(
I −F1

)−1 − I

]
be the state feedback perturbed version of Ψ [24, Lemma 3.13] with feedback pair
[K1 F1].

(i) The output y = Cx0 + Dπ+u of Ψ with initial value x0 ∈ H and control
u ∈ L2

loc(R+;U) is equal to the first output y = C[x0 +D[π+u[ of Ψ[ with the
same initial value x0 ∈ H and control u[ ∈ L2

loc(R+;U) if we choose u and
u[ to satisfy

u =
(
I −F1

)−1 (K1x0 + π+u[
)

= K1
[x0 +

(
I + F1

[

)
π+u[,(3.2)

or equivalently,7

u[ = −K1x0 +
(
I −F1

)
π+u.

With this choice of u and u[, the states x(t) = A(t)x0 + Bτ(t)π+u and
x(t) = A[(t)x0 +B[τ(t)π+u[ of the two systems are also equal for all t ∈ R+.
Moreover, u[ ∈ L2(R+;U) iff both y ∈ L2(R+;Y ) and u ∈ L2(R+;U), and
there exists a constant M (independent of x0, u, and u[) such that

‖u‖2L2(R+;U) ≤M
(
‖x0‖2H + ‖u[‖2L2(R+;U)

)
,

‖u[‖2L2(R+;U) ≤M
(
‖x0‖2H + ‖y‖2L2(R+;Y ) + ‖u‖2L2(R+;U)

)
.

(ii) The original system Ψ is J-coercive iff the feedback stabilized system Ψ[ is so.
(iii) The original system Ψ is J-coercive iff its input/output map D is J-coercive.
(iv) If either (hence both) of the two systems is J-coercive, then the controls u ∈

L2(R+;U) of Ψ and u[ ∈ L2(R+;U) of Ψ[ are uniquely determined by the
initial state x0 and the (first) output y. In particular, if the output y =
Cx0 + Dπ+u of Ψ with initial value x0 and control u ∈ L2(R+;U) is equal
to the first output C[x0 + D[π+u[ of Ψ[ with initial value x0 and control
u[ ∈ L2(R+;U), then u and u[ must satisfy (3.2).

Proof. (i) The output of Ψ is given by y = Cx0 + Dπ+u and the first output
of Ψ[ is given by y = C[x0 + D[u[ = (C + D(I − F1)−1K1)x0 + D(I − F1)−1π+u[,
so we get the same output if we let u and u[ satisfy (3.2). By [24, Theorem 4.4],
(D[, (I + F1

[ )) is a right coprime factorization of D. Since it is possible to write the
equations connecting u, u[, and y in the form

u =
(
I + F1

[

)
π+u[ +K1

[x0,

y = D[π+u[ + C[x0,

7See the equivalent [24, Figures 3.4 and 3.7].
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and since (by the stability of Ψ[) K[x0 ∈ L2(R+;U) and C[x0 ∈ L2(R+;Y ), it follows
from Lemma 3.3 that u[ ∈ L2(R+;U) iff both y ∈ L2(R+;Y ) and u ∈ L2(R+;U).
Moreover, the listed inequalities are true.

(ii) Suppose that Ψ is J-coercive. By the second of the two inequalities in part (i),

ε/2 ‖u‖2L2(R+;U) + ε/2 ‖y‖2L2(R+;Y ) ≥ −ε/2 ‖x0‖2H + ε/(2M) ‖u[‖2L2(R+;U) ,

and this combined with (3.1) implies that Ψ[ is J-coercive (replace M by M + ε/2
and ε by min{ε/2, ε/(2M)}). The proof of the converse part is similar but simpler.

(iii) This follows from part (ii) and Lemmas 3.7 and 3.8.
(iv) If the two controls u1

[ and u2
[ produce the same output y = C[x0 + D[u1

[ =
C[x0 + D[u2

[ , then their difference u1
[ − u2

[ satisfies D[π+(u1
[ − u2

[ ) = 0. As D[ is
J-coercive, D[π+ is one-to-one on L2(R+;U), and we find that π+(u1

[ − u2
[ ) = 0.

Similarly, if the two controls u1 and u2 produce the same output y = Cx0 +Dπ+u
1 =

Cx0 + Dπ+u
2, then their difference u1 − u2 satisfies Dπ+(u1 − u2) = 0. Define

z = (I + F1
[ )−1π+(u1 − u2). Then (I + F1

[ )z = u1 − u2 and D[z = D(u1 − u2) = 0.
Recall that (D[, (I + F1

[ )) is a right coprime factorization of D [24, Theorem 4.4].
From Lemma 3.3 we conclude that z ∈ L2(R+;U), which combined with the J-
coercivity of D[ implies that z = 0. Thus, u1 − u2 = 0 also.

4. The solution to the unstable quadratic cost minimization problem.
Lemma 3.9 gives us the following preliminary solution to the general quadratic cost
minimization problem.

Lemma 4.1. Let J = J∗ ∈ L(Y ), and let Ψ = [A BC D ] be a jointly stabilizable
and detectable J-coercive well-posed linear system on (U,H, Y ). Then the quadratic
cost minimization problem with cost operator J has a unique minimizing solution
uopt(x0) ∈ L2(R+;U). This solution can be computed as follows: We first feed-
back stabilize Ψ as described in Lemma 3.9, and we then apply Lemma 2.5 with
Ψ replaced by the stabilized system Ψ[ to get an optimal control uopt

[ (x0), an opti-
mal output yopt(x0), and an optimal state trajectory xopt(x0) for the stabilized sys-
tem. The optimal control for the original system Ψ is then given by uopt(x0) =
K1
[x0 + (I + F1

[ )π+u
opt
[ (x0), and the optimal output and state for the original min-

imization problem is equal to the optimal output yopt(x0) and state xopt(x0) for the
stabilized minimization problem. In particular, the original problem and the stabilized
problem have the same Riccati operator.

The solution given by Lemma 4.1 is not yet complete in the sense that it does
not contain the same type of feedback description as Theorem 2.6 does for the stable
case. Our next task will be to develop such a feedback description. This description
will be given in terms of a right coprime factorization of the input/output map D
with the special property that its numerator is (J, S)-inner. This notion is defined as
follows.

Definition 4.2. Let J = J∗ ∈ L(Y ), let S = S∗ ∈ L(U) be invertible, let
D ∈ TICα(U ;Y ) for some α ≥ 0, and let (N ,M) be a right coprime factorization of
D in TIC.

(i) If N is (J, S)-inner, then (N ,M) is a (J, S)-inner right coprime factorization
of D.

(ii) If [ NM ] is (I, S)-inner, i.e., if N ∗N +M∗M = S, then (N ,M) is an S-
normalized right coprime factorization of D.

Lemma 4.3. Let J = J∗ ∈ L(Y ), and let S ∈ L(U), S � 0, S̃ ∈ L(U), and

S̃ � 0. Let D ∈ TICα(U ;Y ) for some α ≥ 0, and suppose that D has a right coprime
factorization (N ,M) in TIC(U ;Y ).
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(i) If D is stable, then (N ,M) is a (J, S)-inner right coprime factorization of D
iff NM−1 is a (J, S)-inner-outer factorization of D, or equivalently, iff M−1

is an S-spectral factor of D∗JD.
(ii) D has a (J, S)-inner right coprime factorization iff D is J-coercive.
(iii) The set of all possible (J, S)-inner right coprime factorizations (N ,M) of D

(where J and D are fixed while N , M and S vary) can be parameterized as

N = ÑE, M = M̃E, and S = E∗S̃E, where (Ñ ,M̃) is a fixed (J, S̃)-inner
right coprime factorization of D and E ∈ L(U) is an arbitrary invertible
operator.

Proof. (i) It is easy to see that if X is an S-spectral factor of D∗JD, and if
we define M = X−1 and N = DX , then (N ,M) is a (J, S)-inner right coprime
factorization of D (it is coprime since M is invertible in TIC(U)). Conversely, if
(N ,M) is a (J, S)-inner right coprime factorization of D, then (D, I) is another right
coprime factorization of D, and it follows from [24, Lemma 4.3(i)] that M has an
inverse in TIC(U). It is then obvious that X = M−1 is an S-spectral factor of
D∗JD.

(ii) If D is J-coercive, then by Lemmas 3.8 and 2.4(i), N is J-coercive and has a

(J, S)-inner-outer factorizationN = ÑX . According to Lemma 2.4(ii), X is invertible,

and by [24, Lemma 4.3(i)], (Ñ ,M̃) = (NX−1,MX−1) is a (J, S)-inner right coprime
factorization of D.

On the other hand, if D has a (J, S)-inner right coprime factorization (N ,M),
then N is (J, S)-inner, hence J-coercive (since we assume that S � 0). By Lemma
3.8, D is J-coercive.

(iii) This follows from [24, Lemma 4.3(i)] and Lemma 2.4(iii).
The following is our first main result.
Theorem 4.4. Let J = J∗ ∈ L(Y ), let S ∈ L(U), S � 0, and let Ψ = [A BC D ] be

a J-coercive jointly stabilizable and detectable well-posed linear system on (U,H, Y )
[24, Definition 3.16]. Let xopt(x0), yopt(x0), and uopt(x0) be the optimal state, out-
put, and control for the quadratic cost minimization problem for Ψ, and let Π be the
corresponding Riccati operator (cf. Lemma 4.1).

(i) Let (N ,M) be a (J, S)-inner right coprime factorization of D. Then there is a
unique feedback map K such that [K F ] = [K (I −M−1)] is an admissible
stabilizing state feedback pair for Ψ andxopt(t, x0)

yopt(x0)
uopt(x0)

 =

Aª(t)
Cª
Kª

x0 =

A(t) + BMτ(t)K
C +NK
MK

x0

is equal to the state and output of the closed loop system Ψª defined by

Ψª =

 Aª Bª[Cª
Kª
] [Dª

Fª
] =

A+ BτMK BM[C +NK
MK

] [ N
M− I

]
with initial value x0, initial time zero, and zero control uª (see Figure 2.1).
The feedback map K is uniquely determined by the fact that Cª = C +NK ∈
L(H;L2(R+;Y )), Kª = MK ∈ L(H;L2(R+;U)), and π+N ∗JCª = 0.
Moreover, the Riccati operator of Ψ is given by

Π = C∗ªJCª = (C +NK)∗J(C +NK).
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(ii) If y = Cªx0 + Dªπ+uª is the first output of the optimal closed loop system
Ψª in (i) with initial state x0 ∈ H and control uª ∈ L2(R+;U) (see Figure
2.1), then the closed loop cost Qª(x0, uª) is given by

Qª(x0, uª) = 〈y, Jy〉L2(R+;Y ) = 〈x0,Πx0〉H + 〈uª, Suª〉L2(R+;Y ) .(4.1)

(iii) If Ψ is jointly ω-stabilizable and detectable for some ω < 0 [24, Definition
3.16], and if N and M in (i) are right ω-coprime [24, Definition 4.1], then
the closed loop system Ψª is ω-stable.

(iv) If (N ,M) are given, then the feedback map K, the Riccati operator Π, the
closed loop semigroup Aª, and the closed loop controllability and feedback
maps Cª and Kª can be computed as follows: Choose some arbitrary jointly
stabilizing feedback and output injection pairs [K1 F1] and [ HG ]. Then

K =M−1K1
[ − S−1π+N ∗JC[,AªCª

Kª

 =

A[C[
K1
[

−
BMτ
N
M

S−1π+N ∗JC[,

Π = C∗[ JC[ −
(K −M−1K1

[

)∗
S
(K −M−1K1

[

)
= C∗[

(
J − JNS−1π+N ∗J

) C[ = C∗[ JCª = C∗ªJC[,
where A[ = A + BτK1

[ , C[ = C + DK1
[ , and K1

[ = (I − F1)−1K1. (If Ψ is
stable, then we can can take K1

[ = 0, A[ = A, and C[ = C and get the same
formulae as in Theorem 2.6).

Proof. Let us first show that the conditions on K in (i) determine K uniquely. Sup-
pose that we have two feedback maps K1 and K2 such that both C+NK1 and C+NK2

belong to L(H;L2(R+;Y )), both MK1 and MK2 belong to L(H;L2(R+;U)), and
π+N ∗J(C + NK1) = π+N ∗J(C + NK2). Then, for each x ∈ H, N (K1 − K2)x ∈
L2(R+;Y ), M(K1 − K2)x ∈ L2(R+;U), and π+N ∗J(N (K1 − K2)x) = 0. By
Lemma 3.3, (K1 −K2)x ∈ L2(R+;U), hence

0 = π+N ∗J(N (K1 −K2)x) = π+(N ∗JN )(K1 −K2)x = Sπ+(K1 −K2)x.

As (K1 − K2)x is supported on R+ and S invertible, we must have (K1 − K2)x = 0
for all x ∈ H.

In order to prove the remainder of (i) we proceed as suggested by (iv); i.e., we
choose preliminary jointly stabilizing feedback and output injection pairs [K1 F1]
and [ HG ] with interaction operator E1. The output injection pair and the interaction

operator E1 play a very nonsignificant role below; they are only needed so that we can
apply [24, Theorem 4.4] in order to show that (D(I −F1)−1, (I −F1)−1) is a right
coprime factorization of D. We shall therefore ignore the output injection part of the
system for the rest of this proof, but we return to this question at the end of the
section.

We add the state feedback pair [K1 F1] to the system Ψ and close the state
feedback loop as in Lemma 3.9 to get the stable system Ψ[ given in that lemma.
According to Lemma 4.1, the quadratic cost minimization problems for Ψ and Ψ[

have the same optimal state xopt(x0) and output yopt(x0) and the optimal controls
uopt(x0) and uopt

[ (x0) are related to each other as in (3.2).
We want to apply Theorem 2.6 to solve the quadratic cost minimization problem

for the closed loop system Ψ[. By Lemmas 3.7 and 3.9, D[ is coercive. Since both
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(D[, (I + F1
[ )) and (N ,M) are right coprime factorizations of D, it follows from [24,

Lemma 4.3] that the operator

X =M−1
(
I + F1

[

)
=
((
I −F1

)M)−1
(4.2)

belongs to TIC(U) and is invertible in TIC(U). Thus, NX is a (J, S)-inner-outer
factorization of D[. By Theorem 2.6, the solution to the quadratic cost minimization
problem for Ψ[ is of state feedback type. More precisely, the pair[K\ F\] =

[−S−1π+N ∗JC[ (I −X )
]

is a stable stabilizing state feedback pair for Ψ[, and if we further extended the system
Ψ[ into 

A[ B[ C[K1
[

K\

 D[F1
[

F\




by adding the extra state feedback pair, and then close the new state feedback loop
to get the stable closed loop system [24, Lemma 4.5]

Ψ[ª =


A[ª B[ªC[ªK1
[ª
K\ª

 D[ªF1
[ª
F\ª




=


A[ + B[τX−1K\ B[X−1 C[ +D[X−1K\
K1
[ + F1

[ X−1K\
X−1K\

  D[X−1

F1
[ X−1

X−1 − I




=


A+ Bτ (K1

[ +MK\
) BMC +D (K1

[ +MK\
)

K1
[ + F1MK\(
I −F1

)MK\
  N

F1M(
I −F1

)M− I

 ,

then xopt(x0), yopt(x0), and uopt
[ (x0) are given byxopt(x0)

yopt(x0)

uopt
[ (x0)

 =

A[ªC[ª
K\ª

x0 =

A+ Bτ (K1
[ +MK\

)
C +D (K1

[ +MK\
)(

I −F1
)MK\

x0

and C[ª satisfies

N ∗JC[ª = 0.

From this result we are able to derive the conclusions listed in (i) and (iv). Most
of the proof is ready. In particular, the formulae for the Riccati operator Π given in
(iv) follow from Lemma 3.9 and the corresponding formulae in Theorem 2.6. It only
remains to return to the original system Ψ and the original control uopt(x0).

The optimal control uopt
[ (x0) for Ψ[ corresponds to the optimal control

uopt(x0) =
(
I −F1

)−1 (K1x0 + uopt
[ (x0)

)
=
(K1

[ +MK\
)
x0
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for the original system Ψ. We observe that uopt(x0) is equal to the sum of the two
last outputs of Ψ[ª with zero control. Let us add these two rows and combine them
into one to get the system

Ψª =

 Aª Bª[Cª
Kª
] [Dª

Fª
] =

A+ BτMK BM[C +NK
MK

] [ N
M− I

] ,
where K =M−1Kª = K\ +M−1K1

[ . We then havexopt(t, x0)
yopt(x0)
uopt(x0)

 =

Aª(t)
Cª
Kª

x0 =

A(t) + BMτ(t)K
C +NK
MK

x0.

Moreover, since Cª = C[ª, we have N ∗JCª = 0, and Ψª is the system that we get by
closing the state feedback loop in the system A B[C

K
] [D

F
] ,

where K is the feedback map defined above and F = I −M−1. This completes the
proofs of both (i) and (iv).

The proof of (ii) is identical to the proof of Theorem 2.6(iii).
Finally, let us prove (iii). Under the assumption of (iii) we can throughout work

with the notion of ω-stability instead of just plain stability (the latter notion is the
same as ω-stability with ω = 0). The only part of the extended optimal system Ψ[ª
whose ω-stability is not obvious is the state feedback map K\; all the other parts of
the system are bounded linear operators on the correct spaces. Thus, we must show
that K\ ∈ L(H;L2

ω(R+;U)). Recalling the definition of K\, we realize that it suffices
to show that the anticausal operator N ∗ belongs to TIω(Y ;U). Here the duality
is with respect to the inner product in the unweighted L2, so by standard duality
theory N ∗ ∈ TI−ω(Y ;U). However, since N ∗ is anticausal, this implies that N ∗ can
be extended to an anticausal operator in TIβ(Y ;U) for all β ≤ −ω [24, Lemmas 2.4
and 2.9]. In particular, since ω ≤ 0, N ∗ ∈ TIω(Y ;U). Thus, K\ ∈ L(H;L2

ω(R+;U)),
and Ψ[ª is stable.

Remark 4.5. An inspection of the proof of Theorem 2.6 shows that if the system
Ψ is jointly strongly stabilizable and detectable, then the optimal closed loop system
Ψª will be strongly stable, too [24, Lemma 3.5].

Theorem 4.4 does not contain a converse part like the one found in Theorem
2.6(ii), since we have been able to prove only the following partial converse.

Theorem 4.6. Make the same hypothesis as in Theorem 4.4. Suppose that
the solution to the quadratic cost minimization problem is of state feedback type in

the sense that [ yopt(x0)
uopt(x0) ] is equal to the output of the closed loop system Ψª with

initial value x0, initial time zero, zero input uª, and some stabilizing state feedback
pair [K F ]. Define M = (I − F)−1 and N = DM. Then there exists a positive
invertible operator S = S∗ ∈ L(U) such that N is (J, S)-inner, and the claim (ii) in
Theorem 4.4 is true for this closed loop system. If, moreover, N and M are right
coprime, then (N ,M) is a (J, S)-inner right coprime factorization of D. This is true,
in particular, whenever Ψ is exponentially stabilizable.



QUADRATIC OPTIMAL CONTROL 145

Proof. We suppose that the solution to the quadratic cost minimization problem
for Ψ is of state feedback type and claim that this implies that the solution to the
quadratic cost minimization problem for the system Ψ[ considered in the proof of
Theorem 4.4 is also of state feedback type. The proof of this is based on [24, Lemma
4.5] and Lemma 3.9. We consider the combined system

A B CK1

K

  DF1

F


 ,

where (K1,F1) is the same preliminary feedback pair that we used in the proof of
Theorem 4.4 and [K F ] is the optimal feedback pair. By [24, Lemma 4.5], [K F ]
is a stabilizing feedback pair for this combined system (due to the coprimeness of
D(I −F1)−1 and (I −F1)−1). Moreover, the pair[K\ F\] =

[K − (I −F)(I −F1)−1K1 I − (I −F)(I −F1)−1
]

is a stabilizing feedback pair for Ψ[. By combining this fact with Lemma 3.9, we
find that the optimal solution to the quadratic cost minimization problem for the
system Ψ[ is of state feedback type. However, in contrast to the situation covered by
the converse part of Theorem 2.6, we do not know that the feedback pair [K\ F\]
itself is stable, and this causes some additional complications and prevents us from
applying part (ii) of Theorem 2.6. Instead we argue directly, examining the proof of
the converse part of Theorem 2.6 as presented in [23].

We know that F\ ∈ TICα(U) for some α ≥ 0 (but not necessarily for α = 0) and
that (I−F\)−1 ∈ TIC(U). Fortunately, it was the latter property that was important
for a major part of the proof of Theorem 2.6(ii). By repeating the argument in [23]
we find that if we define M\ = (I −F\)−1, then

M∗\D∗[JD[M\ = S

for some nonnegative S = S∗ ∈ L(U). However, the proof given there of the invert-
ibility of S was based on the boundedness of F\, so it does not apply.

SinceM\ is invertible in TICα(U), we know thatM\ is one-to-one. This together
with the invertibility of D∗[JD[ (which is a consequence of the J-coercivity) implies
that S is one-to-one. Its inverse S−1 is a nonnegative, possibly unbounded, self-
adjoint operator which has a nonnegative self-adjoint square root S−1/2. Denote
the domain of S−1/2 by W . Then M\S

−1/2 ∈ TIC(W ;U), and it can be extended
to an operator on TIC(U) since S−1/2M∗\D∗[JD[M\S

1/2 can be extended to the

identity operator on TIC(U). We denote this extension of M\S
−1/2 by M̃. Then

S−1/2 =M−1
\ M̃ ∈ TICα(W ;U), and it can be extended to an operator in TICα(U)

since the right-hand side of this equation belongs to TICα(U). But this means that
S−1/2 can be extended to an operator in L(U), hence S1/2 and S must be invertible.

Since N = DM = D(I −F)−1 = D[M−1
\ , and since M∗\D∗[JD[M\ = S, we find

that N is (J, S)-inner as claimed. The proof of the statement given in part (ii) of
Theorem 4.4 remains the same as before.

We have not been able to prove that N and M must always be right coprime.
This will be true if and only if the feedback pair [K1 F1] stabilizes the original
system extended with the feedback pair [K F ], cf. [24, Lemma 4.5]. In particular,
it is true whenever [K1 F1] is exponentially stabilizing; see [24, Lemma 3.20].
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A Bτ[C
K̃
] [D

F̃
]

E

?
x0

�x

�y

�z̃ r
?c++-π+uª - -ur6

Fig. 4.1. Externally parameterized optimal state feedback system.

According to Lemmas 2.4 and 4.3, Theorems 2.6 and 4.4 contain a hidden free
invertible parameter E ∈ L(U).8 For example, the set of all possible (J, S)-inner
coprime factorization of D in Theorem 4.4 can be parameterized as follows.

Proposition 4.7. Let (Ñ ,M̃) be a particular (J, S̃)-inner coprime factorization
of D. Then the set of all possible sensitivity operators S and all possible (J, S)-inner
coprime factorizations (N ,M) of D (where J and D are fixed while N , M, and S
vary) can be parameterized as

S = E∗S̃E, N = ÑE, M = M̃E,

where E varies over the set of all invertible operators in L(U). The corresponding
feedback pair [K F ] in Theorem 4.4 is given by

K = E−1K̃, (I −F) = E−1(I − F̃),

where K̃ = −S̃π+Ñ ∗JC and F̃ = (I − M̃−1); i.e., [K̃ F̃ ] is the feedback pair in
Theorem 4.4 corresponding to the factorization (Ñ ,M̃). The parameterized version
of the formula for the closed loop system in Theorem 4.4 is

Ψª =

 Aª Bª[Cª
Kª
] [Dª

Fª
] =

A+ BM̃τK̃ BM̃E[C + Ñ K̃
M̃K̃

] [ ÑE
M̃E − I

] .
The first column is independent of E (but the second is not).

This follows from Lemma 4.3.
The operator E has a very simple interpretation: it represents a coordinate change

in the input space for the closed loop system.
Proposition 4.8. Introduce the same notation as in Proposition 4.7. Then

the two diagrams drawn in Figures 2.1 and 4.1 are equivalent in the sense that the
relationships between all the signals with identical names are identical in the two
diagrams (but z differs in general from z̃.)

Proof. Clearly, if we can show that the relationships between uª and u are the
same in both the diagrams, then all the other relationships will be the same, too,
since both diagrams say that

x = Ax0 + Bτu,
y = Cx0 +Du.

8In [23] this parameter was written out explicitly and it was explained why it cannot be avoided:
it represents an undetermined feed-forward term inside the feedback loop.
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In Figure 2.1 we have

u = Kx0 + Fu+ π+u[,

from which we can solve u in the form

u = (I −F)
−1

(Kx0 + π+u[)

= (I − F̃)
−1
E
(
E−1K̃x0 + π+u[

)
= (I − F̃)

−1
(K̃x0 + Eπ+u[) .

On the other hand, Figure 4.1 says that

u = K̃x0 + F̃u+ Eπ+u[,

and this equation is equivalent to the one above.
The minimization problem considered in Theorem 4.4 leads to an inner coprime

factorization. If instead we use the different cost function

Q1(x0, u) = ‖y‖2L2(R+;Y ) + ‖u‖2L2(R+;U) ,(4.3)

then we get a normalized coprime factorization.
Corollary 4.9. Let Ψ = [A BC D ] be a jointly stabilizable and detectable well-posed

linear system on (U,H, Y ). Let xopt(x0), yopt(x0), and uopt(x0) be the optimal state,
output, and control for the quadratic cost minimization problem described in Defini-
tion 3.1, but with the cost function Q(x0, u) replaced by the cost function Q1(x0, u) in
(4.3). If S = S∗ ∈ L(U) and (N ,M) is an S-normalized right coprime factorization
of D (in the sense of Definition 4.2), then there is a unique feedback map K such that
[K F ] = [K (

I −M−1
)
] is an admissible stabilizing state feedback pair for Ψ andxopt(t, x0)

yopt(x0)
uopt(x0)

 =

Aª(t)
Cª
Kª

x0 =

A(t) + BMτ(t)K
C +NK
MK

x0

is equal to the state and output of the closed loop system Ψª defined by

Ψª =

 Aª Bª[Cª
Kª
] [Dª

Fª
] =

A+ BτMK BM[C +NK
MK

] [ N
M− I

]
with initial value x0, initial time zero, and zero input uª (see Figure 2.1). The feedback
map K is uniquely determined by the fact that Cª = C + NK ∈ L(H;L2(R+;Y )),
Kª =MK ∈ L(H;L2(R+;U)), and

π+ (N ∗Cª +M∗Kª) = 0.

Moreover, the Riccati operator of Ψ is given by

Π = C∗ªCª +K∗ªKª = (C +NK)∗(C +NK) + (MK)∗(MK).

Proof. Apply Theorem 4.4 with Ψ replaced by the augmented system

Ψaug =

 A B[C
0

] [D
I

] ,
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and use the fact that (N ,M) is an S-normalized right coprime factorization of D
iff ([ NM ],M) is an (I, S)-inner right coprime factorization of [ DI ]. Also observe

that the augmented system is always coercive. The net effect is that throughout one

replaces J by I, D by [DI ], N by [ NM ], C by [ C0 ], C[ by [
C[
K1
[

], and Cª by [
Cª
Kª ] in

Theorem 4.4.
Let us end this section with a discussion of the joint stabilizability and detectabil-

ity assumption in Theorem 4.4. This assumption was needed so that we could apply
[24, Theorem 4.4] and conclude that the preliminary feedback gives us a coprime
factorization of the input/output map. The optimal feedback given by Theorem 4.4
gives us another stabilizing feedback pair. However, we are not able to prove that
the optimal feedback pair and the original stabilizing output injection pair [HG ] are
jointly stabilizing (and we do not even expect this to be true in full generality). The
problem is that these two pairs need not have a well-defined interaction operator E .

By using the fact that the interaction operator E is determined (modulo a static
part) by its Hankel operator KH, it is possible to construct E (whenever such an
interaction operator exists). To do this we have to take a closer look at the proof of
Theorem 4.4. The critical step in the proof is the addition of the state feedback row
to the preliminary stabilized system Ψ[. Let us redo this part of the proof, restoring
the omitted output injection column  HG

E1


to the system Ψ1; i.e., let us start with the full system

Ψext =

 A [H B][ C
K1

] [G D
E1 F1

]
and close the state feedback loop to get the stable system

Ψ[ =

 A[ [H[ B[][ C[
K1
[

] [G[ D[
E1[ F1

[

]

=


A+ Bτ (I −F1

)−1K1
[
H+ B (I −F1

)−1 E1 B (I −F1
)−1
][

C +D (I −F1
)−1K1(

I −F1
)−1K1

] [
G +D (I −F1

)−1 E1 D (I −F1
)−1(

I −F1
)−1 E1

(
I −F1

)−1 − I

] .
To this system we want to add a new state feedback row [K\ E\ F\]. To see how
this row should be constructed we examine the feedback pair[K\ F\] =

[−S−1π+N ∗JC[ (I −X )
]

that we used in the proof of Theorem 4.4. Since

X =M−1(I −F1)−1 = S−1N ∗JNM−1(I −F1)−1

= S−1N ∗JD(I −F1)−1 = S−1N ∗JD[,
this pair can be rewritten in the alternative form[K\ F\] =

[
0 I

]− S−1
[
π+N ∗JC[ N ∗JD[

]
,
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which gives us a clue to the correct definition of E\.
Lemma 4.10. Let Ψ = [A BC D ] be a stable well-posed linear system on (U,H, Y ),

and let N ∗ ∈ TI(Y ;Z) be anticausal. Define

K = π+N ∗C, E = N ∗D.

(i) The map K satisfies

KA(t) = π+τ(t)K, t ∈ R+,

and the Hankel operator of E is given by

π+Eπ− = KB.

(ii) If E can be written as a sum E = E− + E+, where both E− and E+ belong to
TI(Y ;Z) and E+ is causal and E− anticausal, then A B[C

K
] [D

E+
]

is a stable well-posed linear system on (U,H, Y × Z).
(iii) Conversely, if there exists some E+ for which the system above is a stable well-

posed linear system on (U,H, Y × Z), then we get a splitting E = E− + E+
of the type described above by defining E− = E − E+. This splitting is unique
modulo a static operator E.

Proof. (i) To compute KA(t) we use the anticausality and time invariance of N ∗
and part (iii) of [24, Definition 2.1] to get

KA(t) = π+N ∗CA(t)

= π+N ∗π+τ(t)C
= π+N ∗τ(t)C
= π+τ(t)N ∗C
= π+τ(t)π+N ∗C
= π+τ(t)K.

Almost the same argument, but with part (iii) of [24, Definition 2.1] replaced by part
(iv), gives

π+Eπ− = π+N ∗Dπ−
= π+N ∗π+Dπ−
= π+N ∗CB
= KB.

(ii) This follows immediately from part (i) and [24, Definition 2.1] (the Hankel
operator of E− is zero).

(iii) Clearly E− is anticausal, since E and E+ have the same Hankel operator. The
uniqueness statement follows from [23, Lemma 6].

By applying this lemma to the crucial step in the proof of Theorem 4.4 (and using
[24, Lemma 3.5]) we get the following addition to Theorem 4.4.
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Corollary 4.11. Let [HG ] and E1 be the output injection pair and the inter-
action operator used in the proof of Theorem 4.4. Then the optimal state feedback
pair [K F ] and the output injection pair [HG ] are jointly stabilizing iff N ∗JG[ =
N ∗J(G + (I −F1)−1E1) can be split into a causal and an anticausal part that both
belong to TI(Y ;U).

We shall not need this result here and leave the proof to the reader.
For completeness, let us also mention the following “dual” result, where one uses

an anticausal time-invariant operator to construct a new output injection pair for a
well-posed linear system. This result is needed in the solution to the “dual” quadratic
optimal filtering problem.

Lemma 4.12. Let Ψ = [A BC D ] be a stable well-posed linear system on (U,H, Y ),
and let Ñ ∗ ∈ TI(Z;U) be anticausal. Define

H = BÑ ∗π−, E = DÑ ∗.

(i) The map H satisfies

A(t)H = Hτ(t)π−, t ∈ R+,

and the Hankel operator of E is given by

π+Eπ− = CH.

(ii) If E can be written as a sum E = E− + E+, where both E− and E+ belong to
TI(Z;U) and E+ is causal and E− anticausal, then[A [H B]

C [E+ D]
]

is a stable well-posed linear system on (Z × U,H, Y ).
(iii) Conversely, if there exists some E+ for which the system above is a stable well-

posed linear system on (Z × U,H, Y ), then we get a splitting E = E− + E+
of the type described above by defining E− = E − E+. This splitting is unique
modulo a static operator E.

The proof of this lemma is very similar to the proof of Lemma 4.10, and we leave
it to the reader.

Remark 4.13. Theorem 4.4 and Corollary 4.9 remain true in the case where we
minimize 〈y, Jy〉L2

β(R+;Y ) instead, where β ∈ R is arbitrary. We must then throughout

replace the unweighted space L2 by the weighted space L2
β. In particular, the notion

of an inner operator should be redefined so that it refers to the weighted space L2
β ,

and the adjoints should be computed with respect to the inner product in the weighted
space L2

β.
Remark 4.14. The results of this section remain valid if throughout we replace

the algebra of time-invariant bounded linear operators from L2(R;U) into L2(R;Y )
by various subalgebras, for example, the algebra of convolution operators induced by
measures with finite total variation. The main exception is that spectral factoriza-
tions and inner-outer factorizations need not exist in all subalgebras. In particular,
Theorem 4.4 remains valid. In the algebra studied in [18] spectral factorizations and
inner-outer factorizations do exist and the input/output maps can always be decom-
posed into causal and anticausal parts, as required by Lemmas 4.10 and 4.12.



QUADRATIC OPTIMAL CONTROL 151

5. The optimal problem on a finite time interval. Our next goal is to
show that the Riccati operator in Theorem 4.4 satisfies an algebraic Riccati equation
involving the generating operators of the system Ψ. Two such algebraic Riccati equa-
tions were given in [23], namely the open loop and the closed loop algebraic Riccati
equations. The derivation of the closed loop Riccati equation was based entirely on
the properties of the optimal closed loop system, and that argument remains valid
since the optimal closed loop system is stable. However, the open loop system can be
unstable, and in order to derive the open loop Riccati equation we have to study the
behavior of the optimal system on a finite time interval.

Lemma 5.1. Make the same assumption and introduce the same notations as in
Theorem 4.4. Then, for all x0 ∈ H and all t ≥ 0,

π[0,t]

(D∗Jπ[0,t]Cª + τ(−t)B∗ΠAª(t)
)

= 0,(5.1)

π[0,t]

(N ∗Jπ[0,t]Cª + τ(−t)M∗B∗ΠAª(t)
)

= 0,(5.2)

C∗ªJπ[0,t]Cª +A∗ª(t)ΠAª(t) = Π,(5.3)

C∗Jπ[0,t]Cª +A∗(t)ΠAª(t) = Π.(5.4)

Proof. Fix t ≥ 0. Let us perform the minimization of the cost function Q(x0, u)
separately with respect to u1 = π[0,t]u and u2 = π[t,∞)u. To do this we write Q(x0, u)
in the form

Q(x0, u) =

∫ t

0

〈y(s), Jy(s)〉Y ds+

∫ ∞
t

〈y(s), Jy(s)〉Y ds,

where y is the output of Ψ with initial time zero, initial value x0, and control u. Let
x be the corresponding state of Ψ. Since

π[0,t]y = π[0,t]Cx0 + π[0,t]Dπ[0,t]u and π[t,∞)y = τ(−t)Cx(t) +Dπ[t,∞)u,

we observe that the first term depends only on x0 and u1 and the second term only
on x(t) and u2. If we fix u1 and minimize with respect to u2, then, because of the
time invariance of the problem, the minimum is equal to 〈x(t),Πx(t)〉H . Thus, we are
left with the problem of minimizing the cost function

Q(x0, u) =

∫ t

0

〈y(s), Jy(s)〉Y ds+ 〈x(t),Πx(t)〉H(5.5)

with respect to u1, where π[0,t]y is the function given above and x(t) = A(t)x0 +
Bτ(t)u1. Differentiating (5.5) with respect to u1 and setting the result to be zero we
get (5.1). That also (5.2) holds follows from the time invariance and anticausality of
M∗ and the fact that M∗D∗ = N ∗.

By replacing y and x in (5.5) by yopt(x0) and xopt(x0) we find that

〈x0,Πx0〉H =

∫ t

0

〈
yopt(x0, s), Jy

opt(x0, s)
〉
Y
ds+

〈
xopt(t, x0),Πxopt(t, x0)

〉
Y
,

from which (5.3) follows since yopt(x0) = Cªx0 and xopt(t, x0) = Aª(t)x0. This
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Fig. 5.1. Primal-dual connection with primal feedback.

combined with (5.1) implies that for all x0 and x1 in H,

〈x1,Πx0〉H =

∫ t

0

〈(Cªx1)(s), J(Cªx0)(s)〉Y ds+ 〈Aª(t)x1,ΠAª(t)x0〉H

=

∫ t

0

〈
(Cx1 +Duopt(x1))(s), Jyopt(x0, s)

〉
Y
ds

+
〈A(t)x1 + Bτ(t)uopt(x1),Πxopt(x0, t)

〉
H

=

∫ t

0

〈(Cx1)(s), JCªx0(s)〉Y ds+ 〈A(t)x1,Aª(t)x0〉H ,

which gives us (5.4).
We remark that Lemma 5.1 has been proved independently by Hans Zwart [35]

under weaker assumptions.
The preceding lemma can be interpreted as a result concerning the state and

output of the adjoint system Ψ∗ if we use the state x multiplied by Π and the output
y multiplied by J of the original system as initial value and control for Ψ.

Corollary 5.2. Make the same assumption and introduce the same notations as
in Theorem 4.4. Let xopt(x0) and yopt(x0) denote the optimal state and optimal output
in the quadratic cost minimization problem for Ψ, and let x∗ and u∗ denote the state
and output of the adjoint system Ψ∗ with initial time t > 0, initial value Πxopt(t, x0),
and control yopt(x0) (see Figure 5.1 with uª = 0). Then x∗(s) = Πxopt(x0, s) for all
s ∈ [0, t] and π[0,t]u

∗ = 0. The same formulae are true if instead x∗ and u∗ denote
the state and output of the optimal adjoint system Ψ∗ª with initial time t > 0, initial
value Πxopt(t, x0), and control yopt(x0).

Proof. Fix 0 ≤ s ≤ t. By the definition of the state of the adjoint system Ψ∗, we
have

x∗(s) = A∗(t− s)Πxopt(t, x0) + C∗Jτ(s)π[s,t]y
opt(x0)

=
(A∗(t− s)ΠAª(t− s) + C∗Jτ(s)π[s,t]τ(−s)Cª

)
xopt(x0, s)

=
(A∗(t− s)ΠAª(t− s) + C∗Jπ[0,t−s]Cª

)
xopt(x0, s)

= Πxopt(x0, s),

where the last equality follows from (5.4). The same computation is valid if we replace
Ψ∗ by Ψ∗ª.
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The restriction of the output of Ψ∗ to [0, t] is given by

π[0,t]u
∗ = π[0,t]

(
τ(−t)B∗Πxopt(t, x0) +D∗Jπ[0,t]y

opt(x0)
)
,

and this is zero according to (5.1). To prove the same result with Ψ∗ replaced by the
optimal closed loop adjoint system Ψ∗ª we argue in the same way, but replace (5.1)
by (5.2).

Remark 5.3. A similar result is true for nonzero inputs uª to the primal and
Suª to the dual system (see Figure 5.1). This follows from Corollary 5.7 below, since
the connection in Figure 5.3 becomes identical to the one in Figure 5.1 if we replace
u in Figure 5.3 by uª + z.

Up to now we have in this section made only marginal use of Theorem 4.4, but
the remaining results depend heavily on the characterization of the optimal feedback
pair given in that theorem. We begin with the following key lemma.

Lemma 5.4. Make the same assumption and introduce the same notations as in
Theorem 4.4. Then, for all t ≥ 0,

π+τ(−t)B∗ªΠBªτ(t)π+ + π[0,t]D∗ªJπ[0,t]Dªπ[0,t] = Sπ[0,t].

Proof. To prove this we compute, using the facts that Π = C∗ªJCª and π+Dªπ− =
π+Nπ− = CªBª,

π+τ(−t)B∗ªΠBªτ(t)π+ + π[0,t]D∗ªJπ[0,t]Dªπ[0,t]

= π+τ(−t)B∗ªC∗ªJCªBªτ(t)π+ + π[0,t]D∗ªJπ[0,t]Dªπ[0,t]

= π[0,t]τ(−t)π−N ∗Jπ+Nπ−τ(t)π+ + π[0,t]D∗ªJπ[0,t]Dªπ[0,t].

The combination of operators in the first term on the last row satisfies

π+Nπ−τ(t)π+ = π+N τ(t)π[0,t]

= π+τ(t)Nπ[0,t]

= τ(t)π[t,∞)Nπ[0,t],

so we can continue the computation above as (recalling that N ∗JN = S)

π+τ(−t)B∗ªΠBªτ(t)π+ + π[0,t]D∗ªJπ[0,t]Dªπ[0,t]

= π[0,t]N ∗Jπ[t,∞)τ(−t)τ(t)π[t,∞)Nπ[0,t] + π[0,t]D∗ªJπ[0,t]Dªπ[0,t]

= π[0,t]N ∗Jπ[t,∞)Nπ[0,t] + π[0,t]N ∗Jπ[0,t]Nπ[0,t]

= π[0,t]N ∗JNπ[0,t]

= Sπ[0,t],

from which the claim follows.
Lemma 5.5. Make the same assumption and introduce the same notations as in

Theorem 4.4. Then, for all t ≥ 0,

Sπ[0,t]K = −π[0,t]

(N ∗Jπ[0,t]C + τ(−t)M∗B∗ΠA(t)
)

(5.6)

= −π[0,t]

(D∗ªJπ[0,t]C + τ(−t)B∗ªΠA(t)
)
,

Sπ[0,t]M−1π+ = π[0,t]

(N ∗Jπ[0,t]D + τ(−t)M∗B∗ΠBτ(t)
)
π[0,t](5.7)

= π[0,t]

(D∗ªJπ[0,t]D + τ(−t)B∗ªΠBτ(t)
)
π[0,t],

Π = A∗(t)ΠA(t) + C∗Jπ[0,t]C − K∗Sπ[0,t]K.(5.8)
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Fig. 5.2. Primal-dual connection with dual feedback.

Proof. Since yopt(x0) = (C +DªK)x0 and xopt(x0, t) = (A(t) +Bªτ(t)K), we get
from (5.2) and Lemma 5.4

0 = π[0,t]D∗ªJπ[0,t]y
opt(x0) + π[0,t]τ(−t)B∗ªΠxopt(x0, t)

= π[0,t]D∗ªJπ[0,t] (C +DªK)x0

+ π[0,t]τ(−t)B∗ªΠ (A(t) + Bªτ(t)K)x0

= π[0,t]D∗ªJπ[0,t]Cx0 + π[0,t]τ(−t)B∗ªΠA(t)x0

+ π[0,t]D∗ªJπ[0,t]DªKx0

+ π[0,t]τ(−t)B∗ªΠBªτ(t)Kx0

= π[0,t]D∗ªJπ[0,t]Cx0 + π[0,t]τ(−t)B∗ªΠA(t)x0

+ π[0,t]SKx0.

This is (5.6).
The proof of (5.7) is very similar, and we leave it to the reader.
The identity (5.8) follows from (5.4) and (5.6) since they give

Π = A∗ª(t)ΠA(t) + C∗ªJπ[0,t]C
= (A∗(t) +K∗M∗τ(−t)B∗) ΠA(t) + (C∗J +K∗N ∗J)π[0,t]C
= A∗(t)ΠA(t) + C∗Jπ[0,t]C − K∗Sπ[0,t]K.

Lemma 5.5 can be used to derive the following result.
Corollary 5.6. Make the same assumption and introduce the same notations

as in Theorem 4.4. Let x and y denote the state and output of Ψ with initial time zero,
initial state x0, and control u, and let x∗ and u∗ denote the state and output of the
closed loop optimal adjoint system Ψ∗ª with initial time t > 0, initial value Πx(t), and
control Jy (see Figure 5.2). Then x∗(s) = Πx(s) for all s ∈ [0, t] and u∗ is given by

π[0,t]u
∗ = −Sπ[0,t]

(Kx0 − (I −F)π[0,t]u
)
.

Thus, apart from the factor −S and the different feed-through term, this is the same
signal that is produced by the optimal state feedback output of Ψ.

We leave the proof of this corollary to the reader since it is essentially the same
as the proof of Corollary 5.2, with Lemma 5.1 replaced by Lemma 5.5.

It is possible to reformulate the preceding result in a way that does not involve
any feedback, only feed-forward.
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Fig. 5.3. Feed-forward primal-dual connection.

Corollary 5.7. Make the same assumption and introduce the same notations
as in Theorem 4.4. Let x, y, and z denote the state, the output, and the state feedback
output of Ψ with initial time zero, initial state x0, and control u, and let x∗ and u∗

denote the state and output of the adjoint system Ψ∗ with initial time t > 0, initial
value Πx(t), control Jy, and output injection signal S(u − z) (see Figure 5.3). Then
x∗(s) = Πx(s) for all s ∈ [0, t] and u∗ is given by

π[0,t]u
∗ = −Sπ[0,t]

(Kx0 − (I −F)π[0,t]u
)
.

Proof. This follows from Corollary 5.6, which tells us that all the input signals
(and initial states) in Figures 5.2 and 5.3 are identical; hence the outputs are also
identical.

6. The algebraic Riccati equation. With the aid of the formulae in the pre-
ceding section we can repeat the computations in [23, Sections 9 and 10] with the
following results. (We refer the reader to [2], [23, Sections 7 and 8], and [29] for
discussions on the generating operators of well-posed linear systems.)

Theorem 6.1. Make the same assumptions and introduce the same notations as
in Theorem 4.4. Extend the system Ψ into

Ψ =

 A B[C
K
] [D

F
]

by adding the optimal state feedback pair (K,F). Let

Ψª =

 Aª Bª[Cª
Kª
] [Dª

Fª
] =

A+ BτMK BM[C +NK
MK

] [ N
M− I

]
be the optimal closed loop system given by Theorem 4.4. Denote the generating oper-
ators of Ψ and Ψª by the same letters as the corresponding operators [23, Sections 7
and 8].
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(i) The Riccati operator Π of Ψ satisfies the Lyapunov equations

〈Ax0,Πx1〉H + 〈x0,ΠAx1〉H = −〈Cx0, JCx1〉Y + 〈Kx0, SKx1〉U ,
x0, x1 ∈ dom(A),

〈Ax0,Πx1〉H + 〈x0,ΠAªx1〉H = −〈Cx0, JCªx1〉Y ,
x0 ∈ dom(A), x1 ∈ dom(Aª),

〈Aªx0,Πx1〉H + 〈x0,ΠAªx1〉H = −〈Cªx0, JCªx1〉Y ,
x0, x1 ∈ dom(Aª).

(ii) The Lyapunov equations in (i) can be rewritten in the form

ΠAx = − (A∗Π + C∗JC −K∗SK)x

= − (A∗ªΠ + C∗ªJC
)
x, x ∈ dom(A),

ΠAªx = − (A∗Π + C∗JCª)x

= − (A∗ªΠ + C∗ªJCª
)
x, x ∈ dom(Aª).

(iii) In addition, suppose that the extended system Ψ is regular together with its
adjoint [28, Theorem 5.8]. Denote the feed-through operators with the same
letters as their corresponding input/output maps [23, Sections 7 and 8], and let
an over-line denote the strong Weiss extension of an observation map (see [23,
Proposition 36], for example, Cx = limλ→∞ Cλx, where Cλ = λC(λI −A)−1

is the “Yosida approximation” of C). Then Aª Bª[
Cª
Kª

] [
Dª
Fª

] =

A+BMK BM[
C +NK
MK

] [
N

M − I
] ,

where the equation for Bª should be interpreted as B∗ª = M∗B∗.
(iv) In the regular case (iii) above, the operator B∗Π satisfies the equations

SKx = −M∗ (B∗Π +D∗JC)x, x ∈ dom(A),

0 = (B∗Π +D∗JCª)x, x ∈ dom(Aª).

(v) In the regular case (iii) above, the Riccati operator Π satisfies the algebraic
Riccati equation

〈Ax0,Πx1〉H + 〈x0,ΠAx1〉H + 〈Cx0, JCx1〉Y
=
〈
M∗ (B∗Π +D∗JC)x0, S

−1M∗ (B∗Π +D∗JC)x1

〉
U
,

x0, x1 ∈ dom(A).

In particular, if M = I,9 then

〈Ax0,Πx1〉H + 〈x0,ΠAx1〉H + 〈Cx0, JCx1〉Y
=
〈
(B∗Π +D∗JC)x0, S

−1 (B∗Π +D∗JC)x1

〉
U
,

x0, x1 ∈ dom(A).

9This means that the feed-through operator of F is taken to be zero; i.e., there is “no feed-forward
term inside the feedback loop.” See the discussion after [23, Theorem 27].
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Proof. (i) Take x0 and x1 in the indicated domains, apply (5.3), (5.4), or (5.8)
to x1, take the inner product with x0, differentiate with respect to t, and substitute
t = 0.

(ii) This follows from (i).
(iii) These formulae are found in [23, Sections 7 and 8] and proved in [29].
(iv) Let x = Ax0 and y = Cx0 denote the state and output of Ψ with initial

time zero, initial state x0, and zero control u. Referring to Corollary 5.6, we let
x∗ = Πx and u∗ = −SKx0 be the state and output of the optimal adjoint system Ψ∗ª
with initial time t > 0, initial value Πx(t), and control Jy (restricted to the interval
[0, t]). Take x0 ∈ dom(A). Then all the inputs and outputs belong to W 1,2([0, t]),
x(t) ∈ dom(A), and, for all s ∈ [0, t],

y(s) = Cx(s), u∗(s) = −SKx(s)

(the proofs of these claims are analogous to the proofs of [23, Propositions 29 and 36]).
By part (ii), the initial values of the state x∗(t) = Πx(t) and control Jy(t) = JCx(t)
satisfy

A∗ªx
∗(t) + C∗ªJy(t) = (A∗ªΠ + C∗ªJC)x(t) = ΠAx(t) ∈ H.

Thus, by [23, Proposition 36(ii)], the output u∗ of Ψ∗ª is related to the input y and
the state x∗ through the formula

u∗(s) = B∗ªx
∗(s) +D∗ªJy(s),

which combined with (iii) gives us

−SKx(s) = u∗(s) = M∗B∗Πx(s) +N∗JCx(s) = M∗(B∗Π +D∗JC)x(s).

Taking s = 0 we get the first formula in (iv). We get the second formula by replacing
Corollary 5.6 by Corollary 5.2.

(v) Combine (i) and (iv).

7. Computation of the sensitivity operator. Looking at the different for-
mulae involving B∗Π in part (iv) of Theorem 6.1, a natural question to ask is whether
it is possible to compute B∗Πx for all x in the Hilbert space WB defined in [23,
Section 7]. This is the space of all possible initial values x0 satisfying the equation
Ax0 +Bu0 ∈ H for some u0 ∈ U [23, Lemma 32]. It is invariant in the sense that the
controlled state x(t) of Ψ stays in WB under the action of a control u in W 1,2(R+;U),
provided the initial values x0 and u0 = u(0) satisfy Ax0 +Bu0 ∈ H [23, Remark 34].
Moreover, it contains both the domains dom(A) and dom(Aª); in fact, it contains
all the domains of the generators of any state feedback perturbed version of A [23,
Proposition 37]. Another related question is whether it is possible to write all the dif-
ferent Lyapunov equations given in part (ii) of Theorem 6.1 into one common form.
A third related question concerns the crucial sensitivity operator S appearing in The-
orem 6.1: is it possible to give a formula for this operator in terms of the original
data and the Riccati operator Π? The answers to all these questions are affirmative,
as can be shown with the aid of Corollary 5.7.

Theorem 7.1. Make the same assumptions and introduce the same notations
as in Theorem 4.4. Denote the generating operators of Ψ by the same letters as the
corresponding operators [23, Section 7], and let D̂ and F̂ be the transfer functions of
D and F [24, Lemma 2.9]. Let x0 ∈ H and u0 ∈ U satisfy Ax0 +Bu0 ∈ H.



158 OLOF J. STAFFANS

(i) If α ∈ C has real part bigger than the growth rate of Ψ, then the vectors
y0 ∈ Y and w0 ∈ U defined by10

y0 = C(αI −A)−1(αx0 −Ax0 −Bu0) + D̂(α)u0,(7.1)

w0 = −K(αI −A)−1(αx0 −Ax0 −Bu0) + (I − F̂(α))u0(7.2)

are independent of α. Moreover,

A∗Πx0 + C∗Jy0 +K∗Sw0 = −Π (Ax0 +Bu0) ∈ H,(7.3)

and, for all β ∈ C with real part bigger than the growth rate of Ψ,

(I − F̂(β))∗Sw0 = B∗(βI −A∗)−1Π(βx0 +Ax0 +Bu0) + (D̂(β))∗Jy0.

(7.4)

In particular, Π maps the space WB defined in [23, Section 7] continuously
into the space V ∗(C,K) defined in [23, Proposition 39].

(ii) If Ψ is regular, then (7.1) and (7.2) can be written in the alternative forms

y0 = Cx0 +Du0,(7.5)

w0 = −Kx0 + (I − F )u0 = −Kx0 +Xu0,(7.6)

which substituted into (7.3) gives

(A∗Π + C∗JC −K∗SK)x0 + Π(Ax0 +Bu0)(7.7)

= −(C∗JD +K∗SX)u0.

(iii) If Ψ∗ is regular, then (7.4) can be written in the alternative form

(I − F ∗)Sw0 = X∗Sw0 = B∗Πx0 +D∗Jy0.(7.8)

(iv) If both Ψ and Ψ∗ are regular, then (7.5) and (7.6) combined with (7.8) give

(B∗Π +D∗JC +X∗SK)x0 = (X∗SX −D∗JD)u0.(7.9)

In particular, if X = I (i.e., F = 0 and there is “no feed-forward term inside
the feedback loop”), then

(B∗Π +D∗JC + SK)x0 = (S −D∗JD)u0.

A special case of the last formula is found in [18, Formula (60)]. (The setting in
[18] is different, and that formula is actually valid in a much larger (Banach) space
than WB .)

Proof. (i) Take some x0 ∈ H and u0 ∈ U satisfying Ax0 +Bu0 ∈ H. Choose some
u ∈W 1,2([0, t];U) with u(0) = u0. Consider the connection described in Corollary 5.7.
As in that corollary, we let x = Ax0 +Bτπ+u, y = Cx0 +Dπ+u, and z = Kx0 +Fπ+u
denote the state, the output, and the state feedback output of Ψ with initial time
zero, initial state x0, and control u. Furthermore, let w = (u − z). Then, by [23,
Proposition 29], all the inputs and and outputs of the extended primal system Ψ

10For notational simplicity we have in this theorem replaced uª in Figure 5.3 by w. It represents
the input to the optimal closed loop system; cf. Figure 5.1.
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belong to W 1,2([0, t]) and the state x is continuously differentiable in H. It follows
from, for example, [16, Formula (2.1;2)] combined with [23, Proposition 29] that (7.1)
and (7.2) hold with x0, u0, y0, and w0 replaced by x(t), u(t), u(t), and w(t) for all
t ≥ 0. In particular, defining y0 = y(0) and w0 = w(0) we get (7.1) and (7.2).

Let us continue with a discussion of the dual system Ψ∗ in Corollary 5.7. We
fix some t > 0 and let x∗(s) = A∗(t − s)Πx(t) + C∗Jτ(s)π[0,t]y + K∗Sτ(s)π[0,t]w,
0 ≤ s ≤ t, be the state and u∗ = τ(−t)B∗Πx(t) + D∗Jπ[0,t]y + F∗Sπ[0,t]w be the
output of Ψ∗ with initial time t > 0, initial value Πx(t), control Jy, and output
injection signal Sw (throughout restricting all the functions to the interval [0, t]).
According to Corollary 5.7, x∗ = Πx and u∗ = Sw. The former equation implies that
x∗ is continuously differentiable in H (since x is continuously differentiable in H). The
derivative of x is x′ = Ax+Bu (see [23, Proposition 29]), and the derivative of x∗ is
(x∗)′ = −A∗x∗ −C∗Jy −K∗Sw (this equation is always true in the larger space W ∗

defined in [23, Section 7], but this time we know that the derivative actually belongs
to the smaller space H). Equating the derivative of x∗ with the derivative of Πx we
get (7.3). Equation (7.4) is derived in the same way as equations (7.1) and (7.2) were
derived above, except that we also have to use the additional fact that u∗ = Sw (and
we have used (7.3) to slightly simplify the result).

(ii) If Ψ is regular, then (7.5) and (7.6) are the limits of (7.1) and (7.2) as α→∞.
(iii) If Ψ∗ is regular, then (7.8) is the limit of (7.4) as β →∞.
(iv) This is immediate.
The preceding theorem provides us with the following formula, among others, for

the sensitivity operator S.
Corollary 7.2. In the case where both the extended system Ψ and its adjoint

are regular and X = I11 the following additional claims are true:
(i) For all u0 ∈ U, we have

Su0 = D∗JDu0 + lim
α→∞B

∗Π(αI −A)−1Bu0.

In particular, S = D∗JD iff the limit above is zero for all u0 ∈ U .
(ii) If for some u0 ∈ U it is true that Bu0 ∈ H, then

Su0 = D∗JDu0.

(iii) If S = D∗JD, then, for all x0 ∈WB ,

Kx0 = −S−1 (B∗Π +D∗JC)x0.

Proof. To prove part (i) it suffices to apply (7.9) with x0 = (αI − A)−1Bu0, let
α → ∞, and use the regularity of the system. Part (ii) follows directly from (7.9)
with x0 = 0. The final claim is obvious (see (7.9)).

Remark 7.3. As we shall prove elsewhere [25], the difference S−D∗JD is positive
(negative) definite whenever Π is positive (negative) definite on the reachable subspace.
(The proof is a fairly straightforward application of Lemma 5.4.) This is related to the
fact that the factorization is (J, S)-lossless iff Π is positive on the reachable subspace.

8. Applications: The bounded and positive real lemmas. By applying
the preceding theory we can derive the first available versions of the strict bounded
and positive (real) lemmas for general well-posed linear systems.

11We lose no generality by assuming that X = I; see Proposition 4.7.
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In the positive real lemma and the bounded real lemma we need a cost function
containing both the output y and the control u. For this reason we do in the same
way as in Corollary 4.9 and adjoin a copy of the control to the output; i.e., we study
the augmented system

Ψaug =

 A B[C
0

] [D
I

] .(8.1)

By replacing the identity cost operator in Corollary 4.9 by a more general cost operator
J defined on U × Y, we get the following result.

Corollary 8.1. Let J = J∗ = [QL
L∗
R ] ∈ L(Y ×U), let S = S∗ ∈ L(U), S � 0,

and let Ψ = [A BC D ] be a jointly stabilizable and detectable well-posed linear system on
(U,H, Y ).

(i) The extended system Ψaug in (8.1) is J-coercive iff D has a right coprime
factorization (N ,M) for which [ NM ] is (J, S)-inner.

(ii) Assuming J-coercivity, let xopt(x0), yopt(x0), and uopt(x0) be the optimal
state, output, and control for the quadratic cost minimization problem de-
scribed in Definition 3.1, but with the original system Ψ replaced by the ex-
tended system Ψaug. Let (N ,M) be a right coprime factorization of D of
the type described in (i). Then there is a unique feedback map K such that
[K F ] = [K (I −M−1)] is an admissible stabilizing state feedback pair for
Ψ and xopt(t, x0)

yopt(x0)
uopt(x0)

 =

Aª(t)
Cª
Kª

x0 =

A(t) + BMτ(t)K
C +NK
MK

x0

is equal to the state and output of the closed loop system Ψª defined by

Ψª =

 Aª Bª[Cª
Kª
] [Dª

Fª
] =

A+ BτMK BM[C +NK
MK

] [ N
M− I

]
with initial value x0, initial time zero, and zero input uª (see Figure 2.1).
The feedback map K is uniquely determined by the fact that Cª = C +NK ∈
L(H;L2(R+;Y )), Kª =MK ∈ L(H;L2(R+;U)), and

π+

[N ∗ M∗]J [CªKª
]

= 0.

Moreover, the Riccati operator of Ψ is given by

Π =
[C∗ª K∗ª

]
J

[Cª
Kª
]
.

(iii) If Ψ is stable, then

K = −S−1π+

[N ∗ M∗]J [C
0

]
= −S−1π+ (N ∗Q+M∗L) C

and

Π = C∗QC − K∗SK.
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(iv) In the case where the extended system Ψ is regular together with its adjoint
the formulae connecting K and Π in Theorem 6.1(iv)–(v) become (with the
normalization M = I)

Kx0 = −S−1
(
B∗Π + (D∗Q+ L∗)C

)
x0,

〈Ax0,Πx1〉H + 〈x0,ΠAx1〉H + 〈Cx0, QCx1〉Y = 〈Kx0, SKx1〉U ,
x0, x1 ∈ dom(A)

and the sensitivity operator S is given by the strong limit (for each fixed
u0 ∈ U)

Su0 =
[
D∗ I

]
J

[
D
I

]
u0 + lim

α→∞B
∗Π(αI −A)−1Bu0.

Proof. Part (i) follows from Lemma 4.3(ii). Part (ii) follows from Theorem 4.4 in
the same way as Corollary 4.9 does. Part (iii) follows from Theorem 2.6. Part (iv)
follows from Theorem 6.1 and Corollary 7.2(i).

From this result we can obtain a factorization version of the strict bounded (real)
lemma as follows: We let Ψ be stable and choose J to be

J =

[−I 0
0 γ2I

]
,

where γ is a real constant. Then the extended system is J-coercive iff the input/output
map D satisfies

‖D‖TIC(U ;Y ) < γ.(8.2)

Thus, Corollary 8.1 applies iff (8.2) holds. In this case the formulae in Corollary
8.1(ii)–(iii) become

D = NM−1, γ2M∗M−N ∗N = S,

K = S−1π+N ∗C, γ2π+M∗Kª = π+N ∗Cª,[Cª
Kª
]

=

[C
0

]
+

[N
M
]
K =

[C
0

]
+

[N
M
]
S−1π+N ∗C,

Π = γ2K∗ªKª − C∗ªCª = −C∗ (I +NS−1π+N ∗
) C.

The connecting and Lyapunov equations in Corollary 8.1(iv) become (for x0 and
x1 ∈ dom(A))

Kx0 = −S−1 (B∗Π−D∗C)x0,

〈Ax0,Πx1〉H + 〈x0,ΠAx1〉H = 〈Cx0, Cx1〉Y + 〈Kx0, SKx1〉U .
Observe that the parameter γ enters these equations only through the sensitivity
operator S, which is given by the strong limit (for each fixed u0 ∈ U)

Su0 =
(
γ2I −D∗D)u0 + lim

α→∞B
∗Π(αI −A)−1Bu0.

We remark that in our setting Π is negative definite; to get the standard setting where
Π is positive [12, Theorem 3.7.1], we must replace J by −J and maximize instead of
minimize. This will replace S by −S and Π by −Π.
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The strictly positive (real) lemma is a statement about a stable system Ψ = [A BC D ]
on (U,H,U) (i.e., the output space of this system is equal to its input space). The
input/output map D of Ψ is strictly positive iff∫

R+

(〈(Dπ+u)(s), u(s)〉U + 〈u(s), (Dπ+u)(s)〉U ) ds ≥ ε ‖u‖2L2(R+;U)

for all u ∈ L2(R+;U) and some ε > 0. Clearly, D is strictly positive iff the extended
system Ψaug is J-coercive with respect to the operator

J =

[
0 I
I 0

]
.

Thus, Corollary 8.1 applies with this J iff D is strictly positive. The formulae of
Corollary 8.1(ii)–(iii) become in this case

D = NM−1, M∗N +N ∗M = S,

K = −S−1π+M∗C, π+ (M∗Cª +N ∗Kª) = 0,[Cª
Kª
]

=

[C
0

]
+

[N
M
]
K =

[C
0

]
−
[N
M
]
S−1π+M∗C,

Π = K∗ªCª + C∗ªKª = −K∗SK = −C∗MS−1π+M∗C.
The connecting and Lyapunov equations in Corollary 8.1(iv) become (for x0 and
x1 ∈ dom(A))

Kx0 = −S−1 (B∗Π + C)x0,

〈Ax0,Πx1〉H + 〈x0,ΠAx1〉H = 〈Kx0, SKx1〉U
and the sensitivity operator S is given by the strong limit (for each fixed u0 ∈ U)

Su0 = (D +D∗)u0 + lim
α→∞B

∗Π(αI −A)−1Bu0.

Again Π is negative; to get a positive Π we should change the sign of J and maximize
instead of minimize [12, Problem 3.25].

In the Pritchard–Salamon case the applications to the bounded and positive (real)
lemmas that we have presented above are found in [31, Remark 4.34].
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Abstract. We present a technique for approximating sequences of linear programs with varying
right-hand sides and study the geometric properties of this approximation. Our approximation has
an efficiency advantage over optimal solutions. When applied to deterministic control problems,
the suggested technique outperforms the linear feedback model and provides accurate results (error
of 5.8% in our numerical example). Numerical experience with stochastic models indicates that
this approach may outperform the limited lookahead policies while maintaining low computational
requirements.
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1. Introduction. In most stochastic optimal control applications, dynamic pro-
gramming fails to solve the given model due to the lack of a closed form solution for
the cost-to-go problem at each stage (see, for example, chapter 4 of [2]). These mod-
els are usually simplified by discretizing the continuous variables and applying the
dynamic programming algorithm to the resulting finite-dimensional state and control
spaces. Even then, a solution can be obtained only in the cases in which the dimen-
sion of the state-space is small. When an on-line solution is required, things become
more complicated and one has to settle for an approximation that provides a subop-
timal control for the given problem. Many of these approximations, such as certainty
equivalent control and open-loop feedback control, require repeated solutions of an op-
timization model with varying parameters. When the parameters change quickly and
the computational cost is large, the computed solution may become obsolete. In such
situations, great emphasis is placed on reducing the calculation time. Unfortunately,
this may reduce the quality of the solution obtained.

An example of the need for a quick solution is that of controlling the movements
of a surface ship in restrained waters [6]. A manual control system places severe
demands on the crew’s skills, making the use of a more automated control highly
desirable. A feedback control continuously measures the state of the vessel (location,
velocity, and acceleration) and then makes a decision that maintains optimal or near-
optimal performance. The performance of such systems is evaluated using a function
of the state variables. In general, the goal is to minimize or maximize that function
subject to linear system dynamics. Quantities to be minimized can be time, fuel, cost,
etc., while those to be maximized include speed, efficiency, and profit.

With time discretized to simplify the calculations, the model becomes a discrete-
time linear system [1, 5]. In this case, the state of the controlled system at stage i+ 1
is assumed to be a linear function of its state at stage i and of the decision made
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at that stage. If the performance measure is a linear function of the states and the
controls, then a linear program is necessary to find an optimal control. In this linear
case, the states can be described using the linear equations

xi+1 = Axi + Bui, i = 0, . . . , T − 1.

Here, A is the state-transition matrix, ui is the control input vector of the system at
stage i, and Bui represents the contribution of the control variables to the change in
the state vector. We compute an optimal control by minimizing a linear function of
the states and the decisions over a horizon of T periods. That is,

infx,u

T∑
i=0

cixx
i +

T−1∑
i=0

ciuu
i

subject to x0 = t,
xi+1 = Axi + Bui, i = 0, . . . , T − 1,

x ≥ 0,

(1)

where cx and cu are row vectors representing the cost associated with x and u. The
vector t is the initial state of the system. One may also impose other linear constraints
on the control vector u. Note that when the initial conditions vary, the only difference
between the linear programs solved is in the first m′ entries of the right-hand side,
where m′ is the dimension of t. Our intent is to develop fast methods that take
advantage of this structure.

Using the right-hand side of (1), we partition the equality constraints into two
sets. The first is the set of constraints for which the right-hand side vector varies.
In (1), for example, this set is x0 = t. The second is the set of constraints for which
the right-hand side is known in advance. In our model, this set is Axi +Bui−xi+1 =
0, i = 0, . . . , T −1. We denote the constraints of the first set by A, the constraints of
the second set by B, the right-hand side vectors by t and b, and the objective function
by c. Our discussion is general in that we do not make any assumptions regarding
the structure of A and B.

To simplify notation, we denote the decision variables—state and control—by x.
Therefore, the control problem is to evaluate the mathematical program

ψ(t) = infx c
Tx

subject to Ax = t,
Bx = b,
x ≥ 0

for different values of t. Generally speaking, the size of these programs is quite large.
The time needed to compute an exact solution using classical linear programming
techniques is lengthy. The solution obtained may become obsolete, since the state
vector that was fed to the control algorithm is very different from the real state
vector to which the control is applied. In practice, a linear relation is often assumed
between the state vector and the control, so that one can make a decision quickly
for any given initial state. This form of linear feedback control may, however, be
suboptimal.

This paper presents a technique for quickly evaluating sequences of linear pro-
grams with varying right-hand sides. Our method combines features of linear feed-
back control with the complete optimization procedure to obtain an approach that is
both fast and accurate. It is a generalization of the approach developed by Birge
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and Wets [3, 4]. While Birge and Wets deal with quickly evaluating a function
φ(t) = {inf cTx : Ax = t, x ≥ 0} for a varying t ∈ <m, we allow our right-hand
side vector to have a varying component, t ∈ <m′ , and a known one, b ∈ <m−m′ . Due
to their assumption that all entries in the right-hand side can vary, Birge and Wets
deal with a sublinear function. To approximate it, they evaluate φ(t) at m different
points, t1, . . . , tm, and at −t1, . . . ,−tm. These vectors are chosen so that the square
matrix D = [t1, . . . , tm] forms a basis for A. When a right-hand side, t, is provided, an
upper bound on φ(t) can be computed as

∑m
k=1(D−1

k. t)
+φ(tk)+(D−1

k. t)
−φ(−tk), where

D−1
k. denotes the kth row of the inverse of D. If D−1

k. t ≥ 0, then (D−1
k. t)

+ = D−1
k. t

and (D−1
k. t)

− = 0. On the other hand, if D−1
k. t < 0, then (D−1

k. t)
+ = 0 and

(D−1
k. t)

− = −D−1
k. t.

The rest of this paper is organized as follows. Section 2 describes the mathematical
model, its geometric properties, and the polyhedral approximation. We discuss our
approximation and related implementation issues in section 3 and then present some
numerical results in section 4.

2. Geometric properties. Mathematically, the linear control problem is equiv-
alent to evaluating

ψ(t) = infx c
Tx

subject to Ax = t,
Bx = b,
x ≥ 0,

(2)

where t ∈ <m′ and b ∈ <m−m′ are the random (varying) and deterministic (fixed)
parts of the right-hand side vector, respectively, and A ∈ <m′×n and B ∈ <m−m′×n
are the constraint matrices. We make the assumptions that [AT |BT ]T is of full row
rank, b is in the nonnegative hull of the column vectors of B, and the set of the dual
solutions of (2) is not empty.

Proposition 1. Under the above assumptions, the function ψ(t) is proper and
convex. Furthermore, the set of feasible right-hand sides, t, of the program (2) and
the epigraph of ψ(t) are convex polyhedra.

Proof. To show that ψ(t) is proper, consider any feasible solution, x∗, for the linear
system Bx = b, x ≥ 0, and the corresponding t∗ = Ax∗. Then, ψ(t∗) ≤ cTx∗ < ∞.
The set of feasible right-hand sides is a convex polyhedron since it is the intersection
of the convex polyhedral cone {[yT , zT ]T : y = Ax, z = Bx, x ≥ 0} (see, for example,
[3] for a proof) and the hyperplanes {[yT , zT ]T : zi = bi}, i = m′ + 1, . . . ,m. That is,
it is the intersection of a finite number of half-spaces. To prove that the set epi(ψ) is
a polyhedron, note that

epi(ψ) = {[v, tT ]T : v ≥ ψ(t)}
= {[v, tT ]T : v ≥ [tT , bT ][πk

T
, µk

T
]T , k = 1, . . . ,K},

where [πk
T
, µk

T
]T , k = 1, . . . ,K, is the set of dual solutions corresponding to all

dual feasible bases of (2). So, epi(ψ) is the intersection of a finite number of closed
half-spaces; hence, it is a convex polyhedron.

Since epi(ψ) is a convex polyhedron, it can be represented as a convex combination
of its extreme points and a nonnegative combination of its extreme directions (see
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Theorem 18.5 in [10]). Therefore,

epi(ψ) =


[
v
t

]
:

[
v
t

]
=

k′∑
k=1

µk

[
vk
tk

]
+

K∑
k=k′+1

µk

[
vk
tk

]
, µk ≥ 0

 ,

where
∑k′

k=1 µk = 1 and the set of vectors [vk, t
kT ] includes all extreme points and

directions of epi(ψ).

Proposition 2. Suppose [vk, t
kT ]T , k = 1, . . . , k′, and [vk, t

kT ]T , k = k′ +
1, . . . ,K, is a collection of points and directions in epi(ψ) ⊂ <m′+1. Then

ψ(t) ≤ inf

v :

[
v
t

]
=

k′∑
k=1

µk

[
vk
tk

]
+

K∑
k=k′+1

µk

[
vk
tk

]
, µk ≥ 0

 ,(3)

where
∑k′

k=1 µk = 1.

Proof. This follows directly from Proposition 1 and Jensen’s inequality.

Proposition 2 provides an upper bound on the value of ψ(t) for any given right-
hand side t. To implement this approximation, we solve (2) for different right-hand
side vectors, tk, k = 1, . . . , k′, and directions, tk, k = k′ + 1, . . . ,K. Then, given a
vector t, we write it in terms of tk by choosing the appropriate values for µk. The
approximate value of ψ(t) is then

∑K
k=1 µkvk. Clearly, it is advantageous to select

the smallest possible value for vk for each vector used in the approximation; i.e.,
vk = ψ(tk). We call this approximation polyhedral since it is based on the fact that
epi(ψ) is a polyhedron. In the special case of b = 0, the function ψ(t) is positively
homogeneous and the polyhedral approximation becomes that of Birge and Wets, i.e.,
a sublinear approximation.

The following proposition states the necessary and sufficient conditions for the
polyhedral approximation to be exact.

Proposition 3. Inequality (3) is satisfied as an equality for all t ∈ <m′ if and
only if the set of vectors used in the approximation includes all the extreme points and
directions of epi(ψ).

Proof. If the set of vectors used in the polyhedral approximation includes all
extreme points and directions, then

k′∑
k=1

µk

[
vk
tk

]
+

K∑
k=k′+1

µk

[
vk
tk

]
,

k′∑
k=1

µk = 1, µk ≥ 0

 = epi(ψ)

by Theorem 18.5 of [10], and the bound is exact. On the other hand, assume
that the bound is exact and that an extreme point or direction is not included in
the set of approximating vectors. Then, we have a representation of an extreme
point or direction in terms of other points and directions in epi(ψ), which leads to a
contradiction.

If the representation, µ, of the given right-hand side, t, is not unique, we can
choose the vector µ that provides the lowest upper bound. However, finding the best
µ requires solving another linear program of size m′×K. To avoid this difficulty, the
set of the representing vectors can be chosen so that the approximation has a unique

solution which satisfies the constraint
∑k′

k=1 µk = 1. That is, the vectors tk form a
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basis for <m′+1. The solution vector µ is then found by solving the system of linear
equations: [

Dp Dd

eT 0

] [
µp
µd

]
=

[
t
1

]
,

where Dp = [t1, . . . , tk
′
] and Dd = [tk

′+1, . . . , tm
′+1]. The objective function value

obtained from using the vectors [Dp, Dd] in the approximation is denoted by ψ[Dp,Dd].
The problem here is that some components of µ may be negative, in which case the
upper bound is assumed to be infinite. One can use a number of bases, Dl

p and Dl
d,

l = 1, . . . , L, and choose the solution corresponding to the best bound. Also, using
the convex hull of Dl

p plus the nonnegative combination of Dl
d improves the bound

obtained.
Proposition 4. Let Dl

p and Dl
d, l = 1, . . . , L, be a collection of matrices as

described above. Then

ψ(t) ≤ ψcon(Dlp)+pos(Dl
d
)(t) ≤ inf

l
ψ[Dlp,D

l
d
],

where

ψcon(Dlp)+pos(Dl
d
)(t) = inf

v :

[
v
t

]
=

L∑
l=1

k′l∑
i=1

µli

[
vli
tli

]
+

L∑
l=1

m′+1∑
i=k′

l
+1

µli

[
vli
tli

] ,

∑L
l=1

∑k′l
i=1 µ

l
i = 1, and µli ≥ 0, i = 1, . . . ,m′ + 1, l = 1, . . . , L.

Proof. Since epi(ψ) is a convex polyhedron, any convex combination of vectors in
epi(ψ), such as the column vectors of Dl

p, l = 1, . . . , L, plus a nonnegative combination

of directions in epi(ψ), such as the column vectors of Dl
d, l = 1, . . . , L, is also in epi(ψ).

That is,

epi(ψcon(Dlp)+pos(Dl
d
)) ⊆ epi(ψ).

Also, any feasible solution, µli, for epi(ψ[Dlp,D
l
d
]) can be used to construct a feasible

solution for epi(ψcon(Dlp)+pos(Dl
d
)). Therefore,

epi(ψ[Dlp,D
l
d
]) ⊆ epi(ψcon(Dlp)+pos(Dl

d
)).

The statement of the proposition follows by taking the infimum of the components
corresponding to the objective function value, v, over the three polyhedral sets.

In order to obtain a good approximation, it is clear that one may need to use a
large number of bases. Of course, the goal is to have a small number of bases that
cover the range of possible t and that provide reasonably accurate results. As an
example, consider the following system of linear equations:

x1 +x3 −x4 = t1,
x2 +x3 −x5 = t2,

x1, x2, x3, x4, x5 ≥ 0

with the objective function x1 + x2 + x3 + 100x4 + 100x5. Let us assume that t can
only take its values from the first quadrant. If we choose[

1 1
0 1

]
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as an approximating basis, our approximation is exact for all right-hand side vectors
such that t1 ≥ t2, but we pay a very large price for vectors of the form t1 < t2. Also,
using the basis [

0 1
1 1

]
results in very large objective function values for vectors that have t1 > t2. To obtain
an exact approximation for all t ≥ 0, we need to include both of the previous bases in
our set of approximating bases. On the other hand, if we use the identity matrix as an
approximating basis, we obtain a reasonable approximation for all possible vectors,
t, while performing a smaller number of calculations. In other words, one basis that
is suboptimal but covers a wide region is better than choosing an optimal basis that
may end up very bad if conditions change. To avoid searching for good bases, we
suggest using parametric programming in conjunction with our approximation to
achieve reasonable bounds while using a single basis. The following section discusses
this approach.

3. Using parametric programming. An alternative for the approximation of
section 2 is to choose a set of vectors, tk, and use scalar multiples of these vectors to
represent a given right-hand side. In other words, we use the vectors λkt

k, λk ∈ <, to
represent any right-hand side, t. Note that the function ψ(λkt

k) is a piecewise-linear
convex function of the parameter λk (see, for example, section 8.11 in [9]). The best
upper bound is then obtained by solving the following program:

infλ,µ

K∑
k=1

µkψ(λkt
k)

subject to

K∑
k=1

µkλkt
k = t,

K∑
k=1

µk = 1,

µ ≥ 0.

(4)

Let νk = µkλk. Then, the mathematical program (4) can be written in the form

infν,µ

K∑
k=1

µkψ(
νk
µk
tk)

subject to

K∑
k=1

νkt
k = t,

K∑
k=1

µk = 1,

µ ≥ 0.

(5)

Note that µkψ( νkµk t
k) is convex (see, for example, section 5 in [10]), hence the objective

function of (5) is convex. However, the resulting approximation is not linear, and
solving it may require more effort than solving the original program (2).
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To simplify the calculations, the set of vectors tk is chosen to form a basis for
<m′ . In this case, we can write program (5) as

infλ,µ

m′∑
k=1

µkψ(λkt
k)

subject to µkλk = D−1
k. t,

K∑
k=1

µk = 1,

µ ≥ 0,

(6)

where D is the basis formed by taking tk as its column vectors and D−1
k. is the kth

row of D−1. Note that in the previous program, the value of each µk determines the
corresponding λk. To look for an approximate solution of (6), one can assume certain
values for µk, compute the corresponding objective function values, and then take the
lowest upper bound as an approximation for the objective function value of (2). The
previous operation is not expensive if m′ is relatively small.

Since the parametric linear programs, ψ(λkt
k), k = 1, . . . ,K, are solved for all

values of λk or, at least, for a wide range of positive and negative values, program (6)
has an infinite number of feasible solutions for any given vector, t. In this case, a single
basis is sufficient to cover the set of all possible right-hand side vectors, t ∈ <m′ . Here
again, we have a generalization of the positive linear bases approach presented by
Birge and Wets. They suggest solving the original linear program for each tk and −tk
to guarantee a representation of any vector t. In our case, we solve parametrically for
each tk and for all possible negative and positive values of the parameter λk. Here is
an algorithmic description of our approximating procedure.

Algorithm. Given the parameters λmin ≤ 0 ≤ λmax, a step size ∆ > 0, and a
basis, D = [t1, . . . , tm

′
], for A, we use the following procedure to approximate ψ(t).

• Initialization. Evaluate ψ(λtk), k = 1, . . . ,m′. The evaluation is performed
for all values of λ in the range [λmin, λmax]. Since ψ is a piecewise-linear
function of the parameter λ, we only need to evaluate ψ at the break-points.
Set v ←∞.
• Compute the inverse D−1.
• General step.

1. Obtain a new right-hand side vector t.
2. Set µ1 = · · · = µm′−1 = 0.

While µ1 ≤ 1
While µ2 ≤ 1− µ1

. . .

While µm′−1 ≤ 1−∑m′−2
k=1 µk

Set µm′ = 1−∑m′−1
k=1 µk.

For k = 1 to m′

If µk = 0, let λk = 0; otherwise, let λk = D−1
k. t/µk.

If v >
∑m′

k=1 µkψ(λkt
k), then set v =

∑m′

k=1 µkψ(λkt
k).

µm′−1 ← µm′−1 + ∆
. . .

µ2 ← µ2 + ∆
µ1 ← µ1 + ∆

3. The value of v is the best upper bound for ψ(t) using D.
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Control

Initial Position

Load

Reference Point

Trolley

Fig. 1. A crane control problem.

4. Go to 1.

In the following section, we test our algorithm by applying it on a crane control
problem.

4. Numerical results. To evaluate the procedure of section 3, we consider the
feedback control example of [7, 8]. The example, which is depicted in figure 1, is
based on a crane with an overhead trolley that runs on frictionless straight rails with
its load suspended on an inextensible cable from its center of gravity. The objective
is to move the trolley from a given position to a reference point with the load starting
and finishing in a stationary position directly beneath the trolley. The state variables,
xi1, xi2, xi3, and xi4, represent the position of the trolley (from the reference point),
its velocity, the angle of the cable, and its angular velocity. The state of the system
changes according to the linear equation

xi+1 =


1 0.3 0.036 0.0036

1 0.234 0.036
0.92 0.292

−0.526 0.92

xi +


0.08

0.534
−0.08
−0.526

ui + αβwi,(7)

where α and β are scalars and wi is the random disturbance at stage i. The control
variable, ui, is restricted to the range [−1, 1]. Starting at [−5, 1, 0, 0]T and using a
study horizon of T = 30, the goal is to be as close as possible to the origin at any
point in time. This requirement is approximated by minimizing the expectation over

wi of the function
∑T
i=1

∑m′

j=1 |xij |.
Since the size of such a problem may make on-line control practically infeasible,

certainty equivalent controllers (CECs) are used to simplify the calculations. CECs
apply, at each stage, the control that would be optimal if all uncertain quantities are
fixed at their expected values (see, for example, section 4.1 of [2]). That is, given the
initial state, x0, we assume known conditions throughout the study horizon. The state
transition equation takes the form xi+1 = Axi + Bui + αβE(wi), i = 0, . . . , T − 1,
where E(wi) is the expected value of the noise term at stage i. At each time period,
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we apply the decision, u0, obtained from solving the mathematical program

minx,u

T∑
i=1

m′∑
j=1

|xij |

subject to xi+1 = Axi + Bui + αβE(wi), i = 0, . . . , T − 1.

(8)

If the resulting problem (8) is still large for an on-line controller, CECs are often
combined with limited lookahead policies (see section 4.3 of [2]) to further reduce the
size of the problem. The resulting mathematical program is to minimize the cost over
the truncated horizon, T ,

minx,u

T∑
i=1

m′∑
j=1

|xij |

subject to xi+1 = Axi + Bui + αβE(wi), i = 0, . . . , T − 1.

(9)

This approach results in significant computational savings at the cost of providing a
suboptimal control. In general, the quality of the decision or control tends to improve
as the value of T increases.

Our technique is basically an approximation for (8). The optimization problem (8)
is solved parametrically for different right-hand side vectors, tK , which are used to
approximate the optimal value of (8) whenever a new state, x0, is observed. At each
stage, a suboptimal policy is constructed using the optimal policies

xi =
K∑
k=1

µkX
i
k(λk),(10)

where Xi
k(λk) is an optimal solution vector for (8) when the initial state of the system

is λkt
k. The vectors λ and µ are obtained from solving (6). The error in our approx-

imation is introduced in representing t as a combination of the vectors tk. Since the
effort needed to compute the upper bound of the approximation (6) is independent
of the effort needed to approximate ψ(λkt

k), it is best, at least in the deterministic
case, to use the most accurate approximation for ψ(λkt

k).
Here, we compare our approximation to the limited lookahead policies with hori-

zons, T , between 3 and 30 periods. In order to obtain a quick solution, we use the
identity matrix as the approximating basis for (6). That is, the problem in (8) is
solved parametrically for the right-hand side vectors λke

k
i , i = 1, . . . , 4, where λk is

chosen to be between λmin = −50 and λmax = 50. The values of µi, i = 1, . . . , 4, are
varied between 0 and 1 using a step size of ∆ = 0.2.

As a third case, we consider a quadratic objective function subject to the con-
straints of (8) and assume that T → ∞ so that we can derive a stationary linear
feedback control. In this case, we assume that the objective function at each stage is
to minimize the l2 norm of the state vector. The resulting quadratic program has a
stationary solution in which the optimal control, ui, at any stage is a linear function
of the state of the system

ui = [−(BTKB)−1BTKA]xi.

Here, K is the unique solution of the discrete-time Riccati equation

K = AT [K −KB(BTKB)−1BTK]A+ I,
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where I is the identity matrix. For our example, the solution of the Riccati equation
is

K =


7.376 5.387 0.979 4.635
5.387 12.562 −2.609 10.514
0.979 −2.609 9.347 −1.531
4.635 10.514 −1.531 10.729

 ,
and the resulting control is of the form

ui = [−1.052,−2.329, 1.042,−0.143]xi.

This control law is a rough approximation of an optimal policy for the linear model.
Table 1 compares the policy obtained by applying the parametric programming

model of section 3 with both the lookahead policy and the stationary linear feedback
policy. The first column in the table, T , contains the number of stages used in the
lookahead policy approximation of (9). The second column presents the objective
function value of (9) over the full horizon of 50 periods for the deterministic case,
µ = 0.0. In general, the accuracy of the lookahead policies improves as the number of
stages, T , used in the approximation increases. The row labeled “Quadratic” provides
the objective function value for the stationary linear feedback approach, while the row
labeled “Polyhedral” provides the objective value if the approximation of section 3
is used. The approximation of section 3 provides a bound of 74.01, compared to a
bound of 81.10 for the stationary linear feedback control. The optimal objective value,
69.94, corresponds to the limited lookahead policies when T = 30. Using a lookahead
approximation with a horizon smaller than 12 periods yields an inferior solution to the
polyhedral approximation. We expect our approximation to improve as more bases
are included. The CPU time required to compute the polyhedral approximation is
almost the same as that required to solve the linear program (9) with T = 3. The
time needed to solve (9) increases as the number of stages considered is increased. The
quadratic linear feedback model is 10 times faster than the polyhedral approximation
since it only involves matrix multiplication. However, the solution produced by the
linear feedback policy is 10.1% worse than that of the polyhedral approximation.

In order to incorporate the effect of random noise into the problem, we assume
that the state vector, xi+1, at time i + 1 is given as a linear function of the state of
the system at time i, plus a random noise vector αβwi. Each component of wi is
a uniformly distributed random variable over the open interval (–0.5, 0.5). Solving
this problem, with an expected value objective as in (7), yields a stochastic program
that may be quite difficult to solve in real time. The CEC combined with limited
lookaheads is one approach to achieve an approximate solution. In this case, we
resolve (9) with the current state, xi, and expectations for future conditions. Our
approximation applies to this problem as well, but here we may benefit by a more
robust basis than in limited lookaheads. The linear feedback approximation may also
benefit in this case.

We use three values for the coefficient α: 0.01, 0.05, and 0.10. For the limited
lookahead strategy of (9), we assume that the value of the coefficient β is a function
of the study horizon, T . It grows linearly with the size of the study horizon since the
times needed to solve the linear programs involved increase with T . The effect of the
number of stages is assumed to be β = T /3. The reason for this assumption is that
the execution time of the limited lookahead model (9) increases as T increases, which
results in a wider range for the random disturbance. On the other hand, the polyhedral



SUCCESSIVE APPROXIMATIONS OF LINEAR CONTROL 175

Table 1
Comparison of different approximations.

T α = 0.0 α = 0.01 α = 0.05 α = 0.10
3 98.69 100.68 102.50 110.25
4 98.58 97.41 96.46 172.96
5 98.24 104.13 123.53 279.60
6 98.22 103.79 120.90 331.24
7 89.42 94.34 132.64 392.83
8 84.38 88.70 158.41 473.78
9 79.95 85.28 166.99 600.29
10 75.64 86.88 178.43 750.42
11 74.45 90.00 205.48 1017.94
12 74.73 93.46 235.46 1167.03
13 73.64 95.08 273.56 1369.77
14 73.59 98.30 322.20 1568.85
15 73.27 100.51 364.31 1807.80
16 73.06 103.95 439.03 2045.91
17 71.36 104.98 499.91 2273.62
18 71.64 103.57 562.90 2506.10
19 71.60 107.28 633.87 2717.86
20 70.06 108.83 737.30 2898.79
25 69.94 120.41 1209.84 4072.42
30 69.94 131.87 1819.55 5248.97

Quadratic 81.10 81.24 82.01 83.34
Polyhedral 74.01 75.20 85.44 100.26

and quadratic approximation times do not increase with the horizon. Therefore, we
can consider β fixed for these approximations. Since the polyhedral approximation
requires time comparable to a three stage (T = 3) horizon, we use β = 1 for that
method. The linear feedback control from the quadratic model is 10 times faster than
our serial polyhedral implementation, so we choose β = 0.1 in that case.

The results are shown in columns 3, 4, and 5 of Table 1. Note that the best bound
provided by the limited lookahead strategy is always higher than that produced by
the polyhedral approximation. This is a result of increasing β with the size of the
problem that needs to be solved when limited lookahead is used. Our approximation
seems to produce reasonable results even when α is set to 0.10. Note that the linear
feedback control produces better results for α = 0.05 and α = 0.10 since the value of
β used is relatively small. However, we expect our results to improve if we use parallel
computers to cut down the calculation time.

5. Conclusions. We gave an approximate solution method for linear control
problems with varying initial state conditions that require rapid solutions. We showed
characteristics of the approximation that guarantee bounds on the solution of the
linear optimization problem. As shown in an example, our approximation has an
efficiency advantage over an optimal policy for deterministic problems with quite
accurate results for longer time horizons (error of 5.8%). The corresponding linear
feedback controller had an error of 16.0% for the same problem. In addition, our policy
was effective in a stochastic system in reducing the error by more than 14.3% over
the limited lookahead policies while maintaining low computational requirements.

Acknowledgments. The authors would like to thank the associate editor and
the referees for their constructive comments, especially for pointing out that (5) is
convex.
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Abstract. During the last few decades, significant progress has been made in solving large-
scale finite-dimensional and semi-infinite linear programming problems. In contrast, little progress
has been made in solving linear programs in infinite-dimensional spaces despite their importance
as models in manufacturing and communication systems. Inspired by the research on separated
continuous linear programs, we propose a new class of continuous linear programming problems that
has a variety of important applications in communications, manufacturing, and urban traffic control.
This class of continuous linear programs contains the separated continuous linear programs as a
subclass. Using ideas from quadratic programming, we propose an efficient algorithm for solving
large-scale problems in this new class under mild assumptions on the form of the problem data. We
prove algorithmically the absence of a duality gap for this class of problems without any boundedness
assumptions on the solution set. We show this class of problems admits piecewise constant optimal
control when the optimal solution exists. We give conditions for the existence of an optimal solution.
We also report computational results which illustrate that the new algorithm is effective in solving
large-scale realistic problems (with several hundred continuous variables) arising in manufacturing
systems.

Key words. continuous linear programming, strong duality, semi-infinite linear programming,
nonlinear programming, jobshop scheduling problems
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1. Introduction. Bellman [7, 8] introduced the following optimization problem:

(CLP ) minimize

∫ T

0

c(t)′x(t) dt

subject to (s.t.) A(t)x(t) +

∫ t

0

B(s, t)x(s) ds ≤ b(t),
x(t) ≥ 0, t ∈ [0, T ],

where A(t) and B(s, t) are matrices depending on time (their entries are bounded
measurable functions) and b(t) and c(t) are bounded measurable functions. (CLP ) is
an instance of a continuous linear program.

The problem that has attracted the most attention is the separated continuous
linear programming problem (SCLP), a subclass of the continuous linear programming
problem:

(SCLP ) minimize

∫ T

0

c(t)′u(t) dt
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s.t.

∫ t

0

Gu(t) dt+ y(t) = a(t),(1)

Hu(t) ≤ b(t),
y(t), u(t) ≥ 0, t ∈ [0, T ],

where y(t) and a(t) are absolutely continuous functions. Note that the variables u(t)
and y(t) are linked only through (1), in which u(t) appears only under the integration
operator and y(t) does not appear under the integration operator. The problem
(SCLP ) was first introduced by Anderson [4] in order to model job-shop scheduling
problems (see also Avram, Bertsimas, and Ricard [6], Weiss [49]).

In this paper, we examine a larger subclass of continuous linear programs which
can be used to model a variety of problems that arise in communications, manu-
facturing, and urban traffic control (see Luo [32]). The problem we consider is the
following:

(SCSCLP ) minimize

∫ T

0

(c(t)′u(t) + g(t)′y(t)) dt

s.t.

∫ t

0

Gu(t) dt+ Ey(t) = a(t),(2)

Hu(t) ≤ b(t),(3)

Fy(t) ≤ h(t),(4)

u(t) ≥ 0, t ∈ [0, T ],

where b(t), c(t), g(t), and h(t) are bounded measurable functions and a(t) is an
absolutely continuous function. The dimensions of b(t), a(t), u(t), y(t), and h(t)
are n1, n2, n3, n4, and n5, respectively. We call (SCSCLP ) the state-constrained
separated continuous linear programs. We call y(t) the state variable and u(t) the
control variable. We call (2) the state equation (or sometimes we use the term system
dynamics) and call (4) the state constraint. We call (3) the control constraint.

Related literature. The computational study of CLP was initiated by Lehman [26]
who attempted to develop a simplex-like algorithm for CLP. Drews [10], Hartberger
[20], and Segers [44] later followed him. Perold [37, 38] developed the first simplex-
like algorithm for CLP (see also Anderson, Nash, and Perold [1] and Anderson and
Philpott [3]. Anstreicher [5] continued Perold’s work in his Ph.D. thesis, even though
both their algorithms were still incomplete. In the meantime, Russian authors such
as Ilyutovich [21, 22] treated the problem using Pontryagin’s maximum principle.
In addition, Ito, Kelley, and Sachs [23] have developed a primal-dual path, following
interior point method for CLP. Anderson and Nash in [2] proposed a convex quadratic
programming procedure for (SCLP ). The series of papers on SCLP by Pullan [41,
42, 43] deals with solution structure, duality theory, and numerical algorithms and
to the best of our knowledge represents the state of the art of this area. Philpott
and Craddock [39] later specialized Pullan’s work to a network version of SCLP and
presented encouraging numerical results.

Objective and contributions. In this paper, we will develop a new algorithm for
solving SCSCLP problems under Assumption 1 below. The new algorithm uses dis-
cretization. Unlike the algorithms mentioned above, it varies the discretization and
control simultaneously. Based on the number of constant pieces allowed in the con-
trol, we develop a quadratic program with polyhedral constraints. The quadratic
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program is generally nonconvex. However, we do not need to solve the quadratic pro-
gram to optimality. We only need to obtain a KKT point. We use the Frank–Wolfe
method (see Martos [33] and Murty [36]) or general matrix-splitting algorithms (see
Lin and Pang [28], Eckstein [11], Bertsekas and Tsitsiklis [9], Luo and Tseng [31]) to
find a KKT point for the quadratic program. By gradually increasing (and occasion-
ally decreasing) the number of pieces allowed in the control, we can improve upon
any nonoptimal KKT solution. We call this the successive quadratic programming
method. By a KKT solution structural result of Luo and Tseng [31], we show that
the iterates of the algorithm move from one polyhedral set to another, with improved
cost. By bounding the size of the quadratic programs we encounter, we bound the
number of all such polyhedral sets. We show that the new algorithm converges in fi-
nite time. The absence of a duality gap and the existence of certain highly structured
optimal solutions for (SCSCLP ) follow as byproducts. Furthermore, we have imple-
mented our algorithm and report computational results which illustrate that the new
algorithm is effective in solving large scale realistic problems (with several hundred
continuous variables) arising in manufacturing systems.

Structure of the paper. The remainder of this paper is structured as follows.
In section 2, we introduce the dual problem for (SCSCLP ) (called (SCSCLP ∗))
and state our assumptions. We also prove weak duality results between (SCSCLP )
and (SCSCLP ∗) and introduce some standard definitions and notations. In section
3, we develop a quadratic program with polyhedral constraints. In section 3.1, we
review some nonlinear programming techniques for calculating a KKT point of a
quadratic program with polyhedral constraints. In section 4, we develop a procedure
for removing redundant intervals in a feasible solution for (SCSCLP ). In section 5,
we introduce a new discrete approximation for (SCSCLP ) which is closely related to
the dual problem. From this discrete approximation, we derive a criterion to detect
whether a feasible solution is optimal for (SCSCLP ). If the criterion is not satisfied,
we derive a descent direction for the feasible solution to (SCSCLP ). In section 6,
we formally state the new algorithm. In section 7, we prove that the new algorithm
converges in finite time. In section 8, we use the new algorithm to prove new duality
results and new optimal solution structural results for (SCSCLP ). In section 9, we
report computational results that illustrate the effectiveness of the new algorithm in
solving large-scale problems. The reader is advised to first read sections 2 and 6 to
obtain a general idea of the problem, the assumptions, and the new algorithm.

2. Definitions and notation. First, we reiterate problem (SCSCLP ) and
state our assumptions. We consider the problem

(SCSCLP ) minimize

∫ T

0

(c(t)′u(t) + g(t)′y(t)) dt

s.t.

∫ t

0

Gu(t) dt+ Ey(t) = a(t),

Hu(t) ≤ b(t),
Fy(t) ≤ h(t),

u(t) ≥ 0, t ∈ [0, T ],

and its dual

(SCSCLP ∗) maximize −
∫ T

0

a(t)′ dπ(t)−
∫ T

0

b(t)′η(t) dt−
∫ T

0

h(t)′ dξ(t)
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s.t. c(t)−G′π(t) dt+H ′η(t) ≥ 0,

E′π(t) + F ′ξ(t) =

∫ T

t

g(t) dt,

π(t) bounded measurable with finite variation,

ξ(t) monotonic increasing and right continuous

on [0, T ] with ξ(T ) = 0, π(T ) = 0,

η(t) ≥ 0, for t ∈ [0, T ],

under the following assumptions (we will give a formal definition of piecewise linear
(constant) functions later in this section).

Assumption 1.

a) a(t) and h(t) are continuous,
b) a(t), c(t), and h(t) are piecewise linear,
c) b(t) and g(t) are piecewise constant,
d) Problem (SCSCLP ) is feasible and its objective value is bounded from below.

We require that u(t), y(t), and η(t) are bounded and measurable functions on
[0, T ]. We remark that the dual problem (SCSCLP ∗) reduces to the alternative
dual problem for (SCLP ) introduced by Pullan [41] when the primal problem is an
SCLP.

We have the following weak duality results for (SCSCLP ). For completeness, we
give its proof.

Proposition 1. Weak duality holds between (SCSCLP ) and (SCSCLP ∗).
Proof. Consider any two solutions (u(t), y(t)) and (π(t), η(t), ξ(t)) which are

feasible to (SCSCLP ) and (SCSCLP ∗), respectively. Let z(t) = b(t) − Hu(t) and
z̄(t) = h(t)− Fy(t). We have

∫ T

0

(c(t)′u(t) + g(t)′y(t)) dt−
(
−
∫ T

0

a(t)′ dπ(t)−
∫ T

0

b(t)′η(t) dt−
∫ T

0

h(t)′ dξ(t)

)

=

∫ T

0

(c(t)′u(t) + g(t)′y(t)) dt+

∫ T

0

a(t)′ dπ(t) +

∫ T

0

b(t)′η(t) dt+

∫ T

0

h(t)′ dξ(t)

=

∫ T

0

(c(t)′u(t) + g(t)′y(t)) dt+

∫ T

0

(∫ t

0

Gu(s) ds+ Ey(t)

)′
dπ(t)

+

∫ T

0

(Hu(t) + z(t))′η(t) dt+

∫ T

0

(Fy(t) + z̄(t))′dξ(t)

=

∫ T

0

(c(t)′u(t) + g(t)′y(t)) dt−
∫ T

0

π(t)′Gu(t) dt+

∫ T

0

(Ey(t))′ dπ(t)

+

∫ T

0

(Hu(t) + z(t))′η(t) dt+

∫ T

0

(Fy(t) + z̄(t))′dξ(t)

=

∫ T

0

(c(t)−G′π(t) +H ′η(t))
′
u(t) dt

+

∫ T

0

y(t)′ d

(
E′π(t) + F ′ξ(t)−

∫ T

t

g(t) dt

)

+

∫ T

0

z(t)′η(t) dt+

∫ T

0

z̄(t)′dξ(t)



A NEW ALGORITHM FOR CONTINUOUS LP 181

=

∫ T

0

(c(t)−G′π(t) +H ′η(t))
′
u(t) dt+

∫ T

0

z(t)′η(t) dt+

∫ T

0

z̄(t)′dξ(t)

≥ 0.

Note that in general
∫ T

0
(Fy(t))′dξ(t) and

∫ T
0
z̄(t)′dξ(t) may not exist since neither

y(t) nor z̄(t) needs to be continuous. However, since∫ T

0

y(t)′ d

(
E′π(t) + F ′ξ(t)−

∫ T

t

g(t) dt

)
= 0,

we have ∫ T

0

y(t)′ dF ′ξ(t) =

∫ T

0

y(t)′ d

(
E′π(t) + F ′ξ(t)−

∫ T

t

g(t) dt

)

−
∫ T

0

y(t)′ d

(
E′π(t)−

∫ T

t

g(t) dt

)

= −
∫ T

0

y(t)′ d

(
E′π(t)−

∫ T

t

g(t) dt

)
,

which implies that
∫ T

0
y(t)′ dF ′ξ(t) exists. The existence of

∫ T
0
z̄(t)′dξ(t) now follows

from the existence of both
∫ T

0
y(t)′ dF ′ξ(t) and

∫ T
0

(Fy(t) + z̄(t))′dξ(t) since∫ T

0

z̄(t)′dξ(t) =

∫ T

0

(Fy(t) + z̄(t))′dξ(t)−
∫ T

0

y(t)′ dF ′ξ(t).

The requirement that π(t) is bounded, measurable, and of finite variation in
(SCSCLP ∗) is important, as it makes the integration by parts valid in the proof of
the above proposition (see also Harrison [19]). As a consequence of the proof, we have
the following corollary.

Corollary 1. Strong duality holds between (SCSCLP ) and (SCSCLP ∗) if and
only if there exist (u(t), y(t)) and (π(t), η(t), ξ(t)) which are feasible to (SCSCLP )
and (SCSCLP ∗), respectively, and satisfy the following conditions:∫ T

0

(c(t)−G′π(t) +H ′η(t))
′
u(t) dt = 0,∫ T

0

(b(t)−Hu(t))′η(t) dt = 0,(5) ∫ T

0

(h(t)− Fy(t))′dξ(t) = 0.

We call all three equations in (5) the complementary slackness condition for (SCSCLP )
and (SCSCLP ∗).

The following are standard definitions and notations which we will use throughout
the remainder of the paper.

We call a sequence of time epochs P = {t0, . . . , tp} a partition of [0, T ] if

0 = t0 ≤ t1 ≤ · · · ≤ tp = T.



182 XIAODONG LUO AND DIMITRIS BERTSIMAS

We use |P | to denote the cardinality of P . Note that since our development sometimes
treats ti as a variable, we allow ti = ti−1 for some i ≥ 1 and always treat ti and ti−1

as two different variables.
We say that a function f(t) is piecewise constant (linear) with a partition P =

{t0, . . . , tp} if f(t) is constant (linear) on [ti−1, ti) for i = 1, . . . , p. We say f(t) is
piecewise constant (linear) on [0, T ] if f(t) is piecewise constant (linear) with some
partition of [0, T ].

Let P = {t0, . . . , tp} be a partition of [0, T ]. Throughout this paper, we assume
Assumption 1 holds. In particular, we assume that a(t), h(t), and c(t) are piecewise
linear and b(t) and g(t) are piecewise constant with partition P . Let B be the set of
breakpoints of a(t), b(t), c(t), g(t), and h(t). For each breakpoint in B, we select one
element ti in P such that its value denotes the same time in [0, T ] as the breakpoint.
We always select t0 = 0 and tp = T . We denoteDP to be the set of selected elements of
P excluding t0 and tp. Let DP

1 = DP
⋃ {t0, tp}. We sometimes omit the superscript

P when the context is clear.
We say that an interval [ti−1, ti] is a subinterval of [tl, tm], where tl and tm are

two consecutive breakpoints in DP
1 , if l ≤ i − 1 < i ≤ m. In this case, we also say

that ti−1, ti, and [ti−1, ti] reside on [tl, tm].
For a function f(t), we will use the notation

f(t−) = lim
s→t− f(s) and f(t+) = lim

s→t+ f(s),

when the above limits exist and t is not equal to any breakpoint in DP
1 . If [ti−1, ti] is

a zero-length subinterval of [tl, tm], where tl and tm are two consecutive breakpoints
in DP

1 , we let

f(ti−) =

{
lims→ti− f(s) if ti = tm,
lims→ti+ f(s) if ti = tl,

and let f(ti−1+) = f(t) = f(ti−). We note that the value of f(ti) is sensitive to both
the value of ti and its index i.

Given ti 6= ti−1 for i = 1, . . . , p and a set of 2p numbers f̂(t0+), f̂(t1−), f̂(t1+), . . . ,

f̂(tp−1+), f̂(tp−), the function f(t) defined by

f(t) =


f̂(ti+) if t = t0, t1, . . . , tp−1,
0 if t = T ,
ti−t

ti−ti−1
f̂(ti−1+) + t−ti−1

ti−ti−1
f̂(ti−) for t ∈ (ti−1, ti), i = 1, . . . , p

is called the piecewise-linear extension of these 2p numbers; for a set of p numbers
f̂(t0+), f̂(t1+), . . . , f̂(tp−1+), the function f(t) defined by

f(t) =

{
f̂(tp−1+) t = T ,

f̂(ti−1+) for t ∈ [ti−1, ti), i = 1, . . . , p

is called the piecewise constant extension of these p variables.

For two functions f(t) and g(t), we denote
∫ b
a
f(t) dg(t) as the Lebesgue–Stieltjes

integral of f(t) with respect to g(t) from a to b, given that the integral exists, including
both a and b. For any mathematical program (LP) we let V (LP) be the optimal value
of the objective function, which may not be attained. For any feasible solution x of
(LP), we let V (LP, x) be the solution value of x in (LP). For any n-dimensional
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Fig. 1. A piecewise constant optimal control for (SCLP ).

vector x, we denote by xi the ith coordinate of x, and, for any nonempty subset
Q ⊆ {1, . . . , n}, we use xQ, [x]Q, or (x)Q to denote the vector with components xi,
i ∈ Q (with xi arranged in the same order as in x). For a matrix A, we denote by Aij
the jth element of the ith row of matrix A and denote by Ai• the ith row of A.

3. A quadratic programming subproblem. By a result of Pullan [42] (see
also Anderson and Nash [2]), there exists an optimal basic feasible solution to (SCLP )
whose u(t) is piecewise constant (see Figure 1) when Assumption 1 holds and the
solution set to (SCLP ) is bounded. We will prove later in the paper that this remains
true for (SCSCLP ). For any feasible control u(t) that is piecewise constant with
respect to a partition P , we have the following standard linear approximation problem
(see Pullan [41] and the references therein):

DP (P ) min

p∑
i=1

(ti − ti−1)û(ti−1+)′c
(
ti + ti−1

2

)

+

p∑
i=1

ti − ti−1

2
(ŷ(ti) + ŷ(ti−1))′g(ti−1+)

s.t. Eŷ(t0) = a(t0),

(ti − ti−1)Gû(ti−1+) + Eŷ(ti)− Eŷ(ti−1) = a(ti)− a(ti−1),

i = 1, . . . , p,

Hû(ti−1+) ≤ b(ti−1+), i = 1, . . . , p,

F ŷ(ti) ≤ h(ti), i = 0, . . . , p,

û(ti−1+) ≥ 0, i = 1, . . . , p,
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where we have the convention that c( ti+ti−1

2 ) = c(ti−) whenever ti = ti−1. Note
that even though it is possible that ti = ti−1 for some i ≥ 1, we still treat û(ti+)
and û(ti−1+) as separate variables. If (û, ŷ) is a feasible solution to DP (P ), where
partition P satisfies ti 6= ti−1 for all i, the piecewise constant extension of û, together
with the piecewise-linear extension of ŷ, defines a feasible solution to (SCSCLP )
with the same cost, due to Assumption 1. If we fix the partition, DP (P ) is a linear
programming problem. So, once an optimal partition P is known, an optimal solution
can be computed by solving the linear program DP (P ).

However, we do not know the optimal partition in advance. The algorithms pro-
posed by Pullan [41] and by Philpott and Craddock [39] alternatively do the following
two steps:

1) Improve the control for the current partition.
2) Improve the partition.

In contrast, the algorithm we propose improves both the control and partition at the
same time.

By introducing new variables

v̂(ti) = (ti − ti−1)û(ti−1+),(6)

we can eliminate variable û from DP (P ) and obtain the following simpler mathemat-
ical programming problem in variables v̂, ŷ, and t̂, with t̂ being the vector of ti’s such
that ti 6∈ DP

1 :

QP (|P |) min

p∑
i=1

v̂(ti)
′c
(
ti + ti−1

2

)
+

p∑
i=1

ti − ti−1

2
(ŷ(ti) + ŷ(ti−1))′g(ti−1+)

s.t. Eŷ(t0) = a(t0),

Gv̂(ti) + Eŷ(ti)− Eŷ(ti−1) = a(ti)− a(ti−1),(7)

i = 1, . . . , p,

Hv̂(ti) ≤ (ti − ti−1)b(ti−1+), i = 1, . . . , p,

F ŷ(ti) ≤ h(ti), i = 0, . . . , p,

0 = t0 ≤ t1 ≤ · · · ≤ tp = T,

v̂(ti) ≥ 0, i = 1, . . . , p,

where c( ti+ti−1

2 ) = c(ti−) whenever ti = ti−1. Note that the breakpoints in DP
1 are

fixed and are not variables. We treat both v̂(ti) and ŷ(ti) as variables. Let tl and tm
be two consecutive breakpoints in DP

1 . For any i ∈ (l, m], c( ti+ti−1

2 ), a(ti)− a(ti−1),
and h(ti) are the following linear functions of ti and ti−1 (note that by Assumption 1b,
c(t), a(t), and h(t) are piecewise linear and therefore ċ(t), ȧ(t), and ḣ(t) are piecewise
constant):

c

(
ti + ti−1

2

)
= c(tl) +

ti + ti−1 − 2tl
2

ċ(tl+),

a(ti)− a(ti−1) = (ti − ti−1)ȧ(tl+),

h(ti) = h(tl) + (ti − tl)ḣ(tl+),

and g(ti−1+) = g(tl) and b(ti−1+) = b(tl) are constant vectors. So, QP (|P |) is a
quadratic programming problem with polyhedral constraints.

Given a feasible solution (v̂, ŷ, t̂) to QP (|P |) such that ti 6= ti−1 for all i, we can
obtain a feasible solution (û, ŷ) to problem DP (P ) with P defined from vector t̂ and
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the breakpoints in DP
1 and û defined from

û(ti−1+) =
v̂(ti)

ti − ti−1
.(8)

Equation (6) defines an injective mapping from the solution set to DP (P ) to the
solution set to QP (|P |). The two related solutions have the same solution value.

However, if ti = ti−1 but v̂(ti) 6= 0 for some i, the right-hand side of (8) is not
properly defined, i.e., there may be a solution to QP (|P |) for which the corresponding
solution to DP (P ) cannot be constructed. We overcome this difficulty by constantly
removing redundant zero-length intervals in a feasible solution and by using only the
solution (v̂, ŷ, t̂) to QP (|P |) that satisfies

ti 6= ti−1 for all i ≥ 1(9)

to construct a feasible solution for DP (P ) (and so for (SCSCLP )). When some zero-
length intervals cannot be removed, we show that there is a series of feasible solutions
to QP (|P |) that satisfies (9) whose solution value becomes arbitrarily close to that
of the feasible solution to QP (|P |). This is key to understanding the absence of a
duality gap result between (SCSCLP ) and (SCSCLP ∗), as we will see later on.

Lemma 1. Suppose u(t) in all feasible solutions to (SCSCLP ) is bounded. Let
(v̂, ŷ, t̂) be a feasible solution to QP (|P |). Then

v̂(ti) = 0 whenever ti = ti−1.(10)

Proof. Suppose ti = ti−1 for some i, but v̂(ti) 6= 0. Let [tl, tm] be the interval
ti resides on, where tl and tm are two consecutive breakpoints in DP

1 . Without
loss of generality, we may assume that there exists a positive-length subinterval of
[tl, tm] that is adjacent to [ti−1, ti] (since we can switch the values of v̂(tj) and
ŷ(tj) with adjacent zero-length subintervals on [tl, tm] and maintain the feasibility of
the solution). We assume that the adjacent positive-length subinterval on [tl, tm] is
[ti−2, ti−1]. When the adjacent positive-length subinterval of [tl, tm] is [ti, ti+1], a
similar analysis applies.

For any τ ∈ (0, 1), it is easy to verify that the following solution is feasible for
QP (|P |):

t̃τj =

{
tj if j 6= i− 1 and j 6= i,
τti−2 + (1− τ)ti−1 if j = i− 1,
ti if j = i,

ṽτ (tτj ) =

 v̂(tj) if j 6= i− 1 and j 6= i,
(1− τ)v̂(ti−1) if j = i− 1,
τ v̂(ti−1) + v̂(ti) if j = i,

ỹτ (tτj ) =

 ŷ(tj) if j 6= i− 1 and j 6= i,
τ ŷ(ti−2) + (1− τ)ŷ(ti−1) if j = i− 1,
ŷ(ti) if j = i.

The basic idea is to split interval [ti−2, ti−1] into two intervals [ti−2, τ ti−2+(1−τ)ti−1]
and [τti−2 + (1 − τ)ti−1, ti−1] and combine the second interval with [ti−1, ti]. It is
easy to check that (ṽτ , ỹτ , t̃τ ) is feasible for QP (|P |) and has one less zero-length
interval than (v̂, ŷ, t̂). Applying the same process repeatedly, we can eliminate all
the zero-length intervals in the solution (v̂, ŷ, t̂).
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Let (v̄τ , ȳτ , t̄τ ) be the resulting solution and let Q be the resulting partition.
Hence, (v̄τ , ȳτ , t̄τ ) is feasible for QP (|Q|). From this solution, we can construct a
feasible solution for DP (Q) (and thus for (SCSCLP )) by using (8). However, as τ
tends to zero, the corresponding feasible solution to DP (P ) is unbounded from above
(since the denominator in (8) goes to zero, but the numerator is bounded away from
zero). Thus u(t) in (SCSCLP ) is unbounded and this creates a contradiction.

We remark that Lemma 1 implies that if u(t) is bounded and E is an identity
matrix (e.g., a bounded and feasible (SCLP )), then ŷ(ti−1) = ŷ(ti) whenever ti−1 =
ti. In general, when (10) holds, it is possible that ŷ(ti−1) 6= ŷ(ti) even if ti−1 = ti. If in
addition to (10), ŷ(ti−1) = ŷ(ti) for some i such that ti−1 = ti, then we can eliminate
the zero-length interval [ti−1, ti] from (v̂, ŷ, t̂) while maintaining the feasibility and
improving the solution value of the solution. This fact will be used later in section 4
to remove redundant intervals.

In general, u(t) may not be bounded in a feasible solution to (SCSCLP ). It is pos-
sible that there is no feasible solution to (SCSCLP ) that is optimal for (SCSCLP ).
This perhaps is the key difficulty in establishing the absence of a duality gap between
(SCSCLP ) and (SCSCLP ∗) by conventional methods. Hence, we have the following
relationship between (SCSCLP ) and QP (|P |).

Lemma 2. Given any feasible solution (v̂, ŷ, t̂) to QP (|P |), there exists a series
of feasible solutions (v̂k, ŷk, t̂k) to QP (|P |) that satisfies (9) and whose solution value
becomes arbitrarily close to that of (v̂, ŷ, t̂) as k tends to infinity.

Proof. By using the same procedure used to prove Lemma 1, we can construct a
solution (v̄τ , ȳτ , t̄τ ) which is feasible to QP (|Q|) for some partition Q and satisfies
(9). It is easily verified that the solution value of (v̄τ , ȳτ , t̄τ ) to QP (|Q|) becomes
arbitrarily close to that of (v̂, ŷ, t̂) as τ goes to zero.

In fact, we can have ti 6= ti+1 and ti−1 6= ti−2 whenever ti = ti−1 in a local
optimum for QP (|P |). The existence of v̂(ti) 6= 0 but ti = ti−1 indicates the presence
of the Dirac δ function in u(t) at time ti.

A direct consequence of Lemma 2 is V ((SCSCLP )) ≤ V (QP (|P |)) for all P .
This fact enables us to solve (SCSCLP ) through solving QP (|P |) for a series of
partitions. We note that V (QP (|P |)) = V (SCSCLP ) does not imply that there is a
feasible solution for (SCSCLP ), whose solution value is equal to V (QP |P |), due to
the possible presence of zero-length intervals in P .

3.1. Finding a KKT point for QP (|P |). We do not need to solve the non-
convex quadratic program QP (|P |) to optimality, as we will see in section 6. We
only need to compute a series of KKT points (or equivalently, stationary points) of
a set of quadratic programs. We use the Frank–Wolfe method (see Martos [33] and
Murty [36]) or general matrix-splitting algorithms (see Lin and Pang [28], Eckstein
[11], Bertsekas and Tsitsiklis [9], Luo and Tseng [31]) to find a KKT point for the
quadratic program. There are other methods for obtaining a KKT point, such as
those proposed by Ye [51] and Kojima, Noma, and Yoshise [24].

4. Removing redundant intervals. After finding a KKT point of QP (|P |),
it is possible that some zero-length intervals can be removed, as we noted following
Lemma 1. It is also possible that some adjacent intervals can be merged while im-
proving the solution value. The reduction of unnecessary control pieces in the solution
is a key feature of the new algorithm. This enables us to prove the convergence of
the new algorithm without requiring the norm of the maximal length interval in the
discretization to tend to zero (cf. Pullan [41] and Philpott and Craddock [39]).
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To do this, let (v̂, ŷ, t̂) be a feasible solution to QP (|P |) and let [ti−1, ti] and
[ti, ti+1] be two adjacent intervals that reside on [tl, tm], where tl and tm are two
consecutive breakpoints in DP

1 . We eliminate ti from P (or equivalently, combine
[ti−1, ti] and [ti, ti+1]) and define a new feasible solution (ṽ, ỹ, t̃) for QP (|P \ {ti}|)
as follows. Let ṽ be the vector formed by removing v̂(ti+1) from v̂ and then replacing
v̂(ti) with v̂(ti) + v̂(ti+1), let ỹ be the vector formed by removing ŷ(ti) from ŷ, and
let t̃ be the vector formed by removing ti from t̂.

Lemma 3. Let [ti−1, ti] and [ti, ti+1] be two adjacent intervals that reside on
[tl, tm], where tl and tm are two consecutive breakpoints in DP

1 . If

(ti+1 − ti)v̂(ti)
′ċ(ti−1+) + (ti+1 − ti)ŷ(ti−1)′g(ti−1+) + (ti − ti−1)ŷ(ti+1)′g(ti−1+)

≤ (ti − ti−1)v̂(ti+1)′ċ(ti−1+) + (ti+1 − ti−1)ŷ(ti)
′g(ti−1+),(11)

then we can combine [ti−1, ti] and [ti, ti+1] while maintaining the feasibility and
improving the solution value of a feasible solution to QP (|P |).

Proof. The difference between the solution value of (v̂, ŷ, t̂) and that of the
solution (ṽ, ỹ, t̃) is the following:

v̂(ti)
′c
(
ti + ti−1

2

)
+ v̂(ti+1)′c

(
ti+1 + ti

2

)
+
ti − ti−1

2
(ŷ(ti) + ŷ(ti−1))′g(ti−1+)

+
ti+1 − ti

2
(ŷ(ti+1) + ŷ(ti))

′g(ti−1+)− (v̂(ti) + v̂(ti+1))′c
(
ti+1 + ti−1

2

)
− ti+1 − ti−1

2
(ŷ(ti+1) + ŷ(ti−1))′g(ti−1+)

= − 1

2
((ti+1 − ti) v̂(ti)

′ċ(ti−1+) + (ti+1 − ti)ŷ(ti−1)′g(ti−1+)

+ (ti − ti−1)ŷ(ti+1)′g(ti−1+))

+
1

2
((ti − ti−1)v̂(ti+1)′ċ(ti−1+) + (ti+1 − ti−1)ŷ(ti)

′g(ti−1+)) .

We see that the new solution has a smaller solution value if and only if (11)
holds.

A direct corollary to Lemma 3 is the following.

Corollary 2. Let tl and tm be two consecutive breakpoints in DP
1 . We can

combine adjacent zero-length intervals in [tl, tm] while maintaining the feasibility and
improving the solution value of a feasible solution to QP (|P |).

Proof. Let [ti−1, ti] and [ti, ti+1] be two adjacent zero-length intervals that reside
on [tl, tm]. Since ti−1 = ti = ti+1, (11) is trivially satisfied. By Lemma 3, we can
combine [ti−1, ti] and [ti, ti+1] and maintain the feasibility and improve the solution
value of the feasible solution to QP (|P |).

By Corollary 2, we can combine adjacent zero-length intervals. The following
lemma implies that all the zero-length intervals except those at the breakpoints in
DP

1 can be eliminated.

Lemma 4. Let [ti−1, ti] be a zero-length interval that resides on [tl, tm], where
tl and tm are two consecutive breakpoints in DP

1 . Suppose [ti−2, ti−1] and [ti, ti+1]
are two positive-length intervals that also reside on [tl, tm]. We can either

(a) combine [ti−2, ti−1] and [ti−1, ti], or
(b) combine [ti−1, ti] and [ti, ti+1],
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while maintaining the feasibility and improving the solution value of the feasible solu-
tion to QP (|P |).

Proof. Since ti−1 = ti, by Lemma 3, we can combine [ti−2, ti−1] and [ti−1, ti] if
the following relation holds:

(ti−1 − ti−2)ŷ(ti)
′g(ti−2+) ≤ (ti−1 − ti−2)(v̂(ti)

′ċ(ti−2+) + ŷ(ti−1)′g(ti−2+)).(12)

By Lemma 3 again, we can combine [ti−1, ti] and [ti, ti+1] if the following relation
holds:

(ti+1 − ti)ŷ(ti)
′g(ti+) ≥ (ti+1 − ti)(v̂(ti)

′ċ(ti+) + ŷ(ti−1)′g(ti+)).(13)

By assumption, we have ti+1− ti > 0 and ti−1− ti−2 > 0. Since c(t) is linear and g(t)
is constant on [tl, tm], we have

g(ti−2+) = g(ti+) and ċ(ti−2+) = ċ(ti+).

So either (12) or (13) is true. This proves the lemma.
We next propose the following procedure for removing redundant intervals on

[tl, tm], where tl and tm are two consecutive breakpoints in DP
1 .

Procedure PURIFY. Repeatedly combine two adjacent intervals [ti−1, ti] and
[ti, ti+1] in [tl, tm] if (11) is satisfied.

When more than one pair of adjacent intervals satisfies (11), we can combine them
in an arbitrary order, one pair at a time. Let P̃ be the resulting partition of [0, T ]
after we apply the above procedure to P for all consecutive breakpoints in DP

1 . We
call P̃ a purified partition of [0, T ]. Note that the remaining zero-length intervals are
located at the breakpoints in DP

1 and there are at most 2|DP
1 | zero-length intervals

in P .

5. Improving a nonoptimal solution. One major step of the new algorithm
is to calculate a KKT point of the system QP (|P |) for some partition P of [0, T ].
However, the problem QP (|P |) is nonconvex. To obtain a global optimal solution for
(SCSCLP ), we must be able to improve a solution that is not globally optimal for
(SCSCLP ). In this section, we give descent directions for solutions that are not glob-
ally optimal for (SCSCLP ). To do so, we first introduce a new discrete approximation
for (SCSCLP ) which is closely related to the dual problem (SCSCLP ∗). From this
new approximation, we derive a criterion that detects whether a solution is globally
optimal for (SCSCLP ). If this criterion is not satisfied, we give a descent direction
for the current solution and thus improve the solution value. We show that instead
of using the direction constructed in section 5.3, an algorithm for (SCSCLP ) can
also use the Frank–Wolfe method or the matrix-splitting algorithm to find a descent
direction. We also show that the first iterate of the Frank–Wolfe method provides an
upper bound on the current duality gap.

5.1. A new discrete approximation. For partition P = {t0, . . . , tp}, we let

P ′ =
{
t0,

t0+t1
2 , t1, . . . ,

tp−1+tp
2 , tp

}
be a refined partition of P . Consider the following

new discrete approximation to (SCSCLP ), a close variation of the second discretiza-
tion in Pullan [41]:

AP1(P ) min

p∑
i=1

ti − ti−1

2

(
c(ti−1+)′û(ti−1+) + c(ti−)′û(ti−)
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+2ŷ

(
ti−1 + ti

2

)′
g(ti−1+)

)
s.t. Eŷ(t0) = a(t0),

(
ti − ti−1

2

)
Gû(ti−) + Eŷ(ti)− Eŷ

(
ti + ti−1

2

)
= a(ti)− a

(
ti + ti−1

2

)
,

i = 1, . . . , p,(
ti − ti−1

2

)
Gû(ti−1+) + Eŷ

(
ti + ti−1

2

)
− Eŷ(ti−1)

= a

(
ti + ti−1

2

)
− a(ti−1),

i = 1, . . . , p,

Hû(ti−1+) ≤ b(ti−1+), i = 1, . . . , p,

Hû(ti−) ≤ b(ti−), i = 1, . . . , p,

F ŷ(ti) ≤ h(ti), i = 0, . . . , p,

F ŷ

(
ti + ti−1

2

)
≤ h

(
ti + ti−1

2

)
, i = 1, . . . , p,

û(ti−), û(ti−1+) ≥ 0, i = 1, . . . , p.

Problem AP1(P ) is closely related to the dual problem. The linear programming dual
of AP1(P ) gives rise to feasible solutions for the dual problem (SCSCLP ∗). Thus
an optimal solution to AP1(P ) contains the dual information. We will construct
a descent solution for (SCSCLP ) based on a solution for AP (P ), a closely related
linear program, to be defined shortly.

It is clear that the set of feasible solutions to AP1(P ) is the same as the set
of feasible solutions to DP (P ′) if we identify û(ti−) in AP1(P ) with û(( ti−1+ti

2 )+)
in DP (P ′). There are two differences between DP (P ′) and AP1(P ), both of which
reside in the objective function. First, instead of averaging the cost coefficients of u(t)
over each subinterval, the instantaneous values of the cost coefficients at the original
breakpoints of P are used. Second, instead of using the average values of the state
variable y(t) in each subinterval, the values of y(t) at the midpoint of each subinterval
of P are used. It can be checked that any feasible solution for DP (P ) defines a
feasible solution for DP (P ′) and thus for AP1(P ), and these two solutions have the
same solution value.

Similar to QP (|P |), we introduce v̂ to eliminate û, where

v̂(ti−1+) =
ti − ti−1

2
û(ti−1+) and v̂(ti−) =

ti − ti−1

2
û(ti−).(14)

Now AP1(P ) is transformed into the following linear program in v̂ and ŷ:

AP (P ) min

p∑
i=1

(
c(ti−1+)′v̂(ti−1+) + c(ti−)′v̂(ti−)
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+(ti − ti−1)ŷ

(
ti−1 + ti

2

)′
g(ti−1+)

)
s.t. Eŷ(t0) = a(t0),

Gv̂(ti−) + Eŷ(ti)− Eŷ
(
ti + ti−1

2

)
= a(ti)− a

(
ti + ti−1

2

)
,

i = 1, . . . , p,

Gv̂(ti−1+) + Eŷ

(
ti + ti−1

2

)
− Eŷ(ti−1) = a

(
ti + ti−1

2

)
− a(ti−1),

i = 1, . . . , p,

Hv̂(ti−1+) ≤
(
ti − ti−1

2

)
b(ti−1+), i = 1, . . . , p,

Hv̂(ti−) ≤
(
ti − ti−1

2

)
b(ti−), i = 1, . . . , p,

F ŷ(ti) ≤ h(ti), i = 0, . . . , p,

F ŷ

(
ti + ti−1

2

)
≤ h

(
ti + ti−1

2

)
, i = 1, . . . , p,

v̂(ti−), v̂(ti−1+) ≥ 0, i = 1, . . . , p.

Similar to AP1(P ) and DP (P ′), AP (P ) and QP (|P ′|) have the same feasible solution
set if the partition in QP (|P ′|) is fixed to P ′. We note that the actual value of
ŷ(t0) does not affect the objective value of AP (P ) as long as Eŷ(t0) = a(t0) and
F ŷ(t0) ≤ h(t0) (which is indeed feasible by assumption). The dual problem for
AP (P ) (after eliminating ŷ(t0)) can be written as

AP ∗(P ) max π̂(t0+)′a(t0)

+

p∑
i=1

(π̂(ti−1+) + π̂(ti−))′
(
a(ti)− a

(
ti + ti−1

2

))

−
p∑
i=1

(
ti − ti−1

2

)
(η̂(ti−1+) + η̂(ti−))′b(ti−)

+

p∑
i=1

(
ξ̂(ti)

′h(ti) + ξ̂

(
ti−1 + ti

2

)′
h

(
ti−1 + ti

2

))
s.t. c(ti−)−G′π̂(ti−) +H ′η̂(ti−) ≥ 0, i = 1, . . . , p,

c(ti−1+)−G′π̂(ti−1+) +H ′η̂(ti−1+) ≥ 0, i = 1, . . . , p,

E′(−π̂(ti−) + π̂(ti−1+)) + F ′ξ̂
(
ti−1 + ti

2

)
= (ti − ti−1)g(ti−1+),

i = 1, . . . , p,

E′(−π̂(ti+) + π̂(ti−)) + F ′ξ̂(ti) = 0, i = 1, . . . , p− 1,

E′(π̂(tp−)) + F ′ξ̂(tp) = 0,

η̂(ti−), η̂(ti−1+) ≥ 0, i = 1, . . . , p,

ξ̂(ti), ξ̂

(
ti−1 + ti

2

)
≤ 0, i = 1, . . . , p.

Similar to the second discretization in Pullan [41], the importance of AP (P ) lies
in the fact that feasible solutions for its dual problem AP ∗(P ) can be used either to
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define a feasible solution for (SCSCLP ∗) with the same solution value or to define a
sequence of feasible solutions for (SCSCLP ∗) whose solution value converges to that
of the original solution to AP ∗(P ), as shown in the following theorem.

Theorem 1. Suppose that P is a purified partition of [0, T ] (as defined at the

end of section 4). Given any feasible solution (π̂, η̂, ξ̂) to AP ∗(P ), if (9) holds for P ,
then there exists a feasible solution (π(t), η(t), ξ(t)) to (SCSCLP ∗) whose solution

value equals that of (π̂, η̂, ξ̂). Otherwise, there exists a series of feasible solutions
(πk(t), ηk(t), ξk(t)) to (SCSCLP ∗) that are piecewise linear with partition P k, whose

solution value converges to that of (π̂, η̂, ξ̂) with P k satisfying (9).
Proof. When there are no zero-length intervals in P (i.e., (9) holds), we let

ξ(t) =

{∑p
j=i+1

(
ξ̂
(
tj+tj−1

2

)
+ ξ̂(tj)

)
if t = ti, i = 0, 1, . . . , p− 1,

0 if t = T .

For t ∈ (ti−1, ti), we let

ξ(t) =
ti − t

ti − ti−1
ξ(ti−1) +

t− ti−1

ti − ti−1

(
ξ(ti) + ξ̂(ti)

)
.

We note that ξ(t) is monotonically increasing and right continuous (albeit discontinu-
ous). Let π(t) and η(t) be the piecewise-linear extensions of π̂ and η̂, respectively. It
can be shown that (π(t), η(t), ξ(t)) is a feasible solution for (SCSCLP ∗) by virtue
of the piecewise linearity of the problem data. Now, let us check the relationship
between the solution value of the newly constructed solution of (SCSCLP ∗) and the
original solution of AP ∗(P ). Through integration by parts, we have

−
∫ T

0

a(t)′ dπ(t)

= −a(t)′π(t) |T0 +

∫ T

0

π(t)′ da(t)

= π̂(t0+)′a(t0) +

p∑
i=1

(
a(ti)− a(ti−1)

ti − ti−1

)′ ∫ ti

ti−1

π(t) dt

= π̂(t0+)′a(t0) +

p∑
i=1

(π̂(ti−1+) + π̂(ti−))′
(
a(ti)− a

(
ti + ti−1

2

))
.(15)

Since η(t) is piecewise linear and b(t) is piecewise constant with partition P , we
have ∫ ti

ti−1

b(t)′η(t) dt =

(
ti − ti−1

2

)
(η̂(ti−1+) + η̂(ti−))′b(ti−), i = 1, . . . , p.

So

−
∫ T

0

b(t)′η(t) dt = −
p∑
i=1

(
ti − ti−1

2

)
(η̂(ti−1+) + η̂(ti−))′b(ti−).(16)

Direct calculation gives

−
∫ T

0

h(t)′ dξ(t)
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= −h(t)′ξ(t)|T0 +

∫ T

0

ξ(t)′ dh(t)

= h(t0)′ξ(t0) +

p∑
i=1

(
h(ti)− h(ti−1)

ti − ti−1

)′ ∫ ti

ti−1

ξ(t) dt

= h(t0)′
p∑
j=1

(
ξ̂

(
tj + tj−1

2

)
+ ξ̂(tj)

)

+

p∑
i=1

(
h(ti)− h(ti−1)

2

)′

×
2

p∑
j=i+1

(
ξ̂

(
tj + tj−1

2

)
+ ξ̂(tj)

)
+ ξ̂

(
ti + ti−1

2

)
+ 2ξ̂(ti)


=

p∑
i=1

(
ξ̂(ti)

′h(ti) + ξ̂

(
ti−1 + ti

2

)′
h

(
ti−1 + ti

2

))
.(17)

Combining (15), (16), and (17), we see that (π(t), η(t), ξ(t)) has the same solution

value as (π̂, η̂, ξ̂). This proves the first part of the theorem.
Now, suppose (9) does not hold for P . Since P is a purified partition, by Corollary

2 and Lemma 4, the zero-length intervals in P can be located only at the breakpoints
in DP

1 . So for any zero-length interval [ti−1, ti] that resides on [tl, tm], where tl and
tm are two consecutive breakpoints in DP

1 , either ti−1 = tl or ti = tm. Let τ ∈ (0, 1).
We define a new solution (π̃τ , η̃τ , ξ̃τ ) in the following way.

If ti−1 = tl, we let

t̃τi−1 = ti−1,

t̃τi = (1− τ)ti + τti+1,

t̃τi+1 = ti+1,

π̃τ (t̃τi−) = (1− τ)π̂(ti−) + τ π̂(ti+),

π̃τ (t̃τi +) = (1− τ)π̂(ti+) + τ π̂(ti+1−),

η̃τ (t̃τi−) = (1− τ)η̂(ti−) + τ η̂(ti+),

η̃τ (t̃τi +) = (1− τ)η̂(ti+) + τ η̂(ti+1−),

ξ̃τ

(
t̃τi + t̃τi−1

2

)
= (1− τ)ξ̂

(
ti + ti−1

2

)
+ τ ξ̂(ti),

ξ̃τ (t̃τi ) = (1− τ)ξ̂(ti) + τ ξ̂

(
ti + ti+1

2

)
,

ξ̃τ

(
t̃τi + t̃τi+1

2

)
= (1− τ)ξ̂

(
ti + ti+1

2

)
.

If ti = tm, we let

t̃τi−2 = ti−2,

t̃τi−1 = (1− τ)ti−1 + τti−2,

t̃τi = ti,

π̃τ (t̃τi−1−) = (1− τ)π̂(ti−1−) + τ π̂(ti−2+),
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π̃τ (t̃τi−1+) = (1− τ)π̂(ti−1+) + τ π̂(ti−1−),

η̃τ (t̃τi−1−) = (1− τ)η̂(ti−1−) + τ η̂(ti−2+),

η̃τ (t̃τi−1+) = (1− τ)η̂(ti−1+) + τ η̂(ti−1−),

ξ̃τ

(
t̃τi + t̃τi−1

2

)
= (1− τ)ξ̂

(
ti + ti−1

2

)
+ τ ξ̂(ti−1),

ξ̃τ (t̃τi−1) = (1− τ)ξ̂(ti−1) + τ ξ̂

(
ti−1 + ti−2

2

)
,

ξ̃τ

(
t̃τi−1 + t̃τi−2

2

)
= (1− τ)ξ̂

(
ti−1 + ti−2

2

)
.

For all the other quantities not defined in the above cases, we let t̃τj = tj ,

π̃τ (t̃τj−) = π̂(tj−), π̃τ (t̃τj+) = π̂(tj+), η̃τ (t̃τj−) = η̂(tj−), η̃τ (t̃τj+) = η̂(tj+), ξ̃τ (t̃τj−1) =

ξ̂(tj−1), and ξ̃τ
(
t̃τj+t̃τj−1

2

)
= ξ̂

(
tj+tj−1

2

)
.

Let P τ be the partition defined from t̃τ . It is easy to check the feasibility of
(π̃τ , η̃τ , ξ̃τ ) to AP ∗(P τ ). Since (π̃τ , η̃τ , ξ̃τ ) converges to (π̂, η̂, ξ̂) and t̃τ converges
to t̂ as τ tends to zero, we see that the solution value of (π̃τ , η̃τ , ξ̃τ ) in AP ∗(P τ )

converges to the solution value of (π̂, η̂, ξ̂) in AP ∗(P ). Furthermore, (9) holds for
P τ . Applying the first part of the theorem to P τ , we conclude that the theorem is
true for P .

We may now summarize the relationship among the values of various discrete
approximations in the following theorem (see also Theorem 3.5 in Pullan [41]).

Theorem 2. For any partitions P and Q,

V (AP (P )) = V (AP ∗(P )) ≤ V ((SCSCLP ∗)) ≤ V ((SCSCLP )) ≤ V (DP (Q)).

Proof. By the strong duality result for finite-dimensional linear programming,
the value of the optimal solution to AP (P ) is the value of the optimal solution to
its dual AP ∗(P ). By Theorem 1, the solution value of this solution can be closely
approximated by a sequence of feasible solutions to (SCSCLP ∗). It then follows
that this value is a lower bound on V ((SCSCLP ∗)), and thus a lower bound on
V ((SCSCLP )) by Proposition 1. The final inequality follows from the definition of
DP (Q).

Corollary 3. For any partitions P and Q, if

V (AP (P )) ≥ V (QP (|Q|)),
then the optimal solution value of QP (|Q|) gives the optimal solution value to
(SCSCLP ). In particular, if a solution (v̂, ŷ, t̂) is feasible for QP (|Q|) and has
the same cost as the optimal value of AP (P ), then (v̂, ŷ, t̂) gives the optimal solu-
tion value for (SCSCLP ) which can be closely approximated by a sequence of feasible
solutions to (SCSCLP ).

Proof. By Lemma 2, the solution value of any feasible solution to QP (|Q|)
is an upper bound on V ((SCSCLP )), and the result follows directly from Theo-
rem 2.

5.2. The doubling of breakpoints. Based on a new discrete approximation
of (SCLP ) similar to AP1(P ), Pullan [41] found a descent solution for (SCLP ) (con-
sequently, a descent direction can be constructed) by patching together the current
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solution and a solution that has a better solution value in AP1(P ) than the current
solution. The new solution has a strictly improved solution value in (SCLP ) but usu-
ally has three times as many constant control pieces as the original solution. In the
following, we give a construction for a feasible solution to (SCSCLP ) that produces,
at most, approximately twice as many breakpoints as the original feasible solution.

Let P be a partition of [0, T ], and define a new partition as follows:

P̄ = {t0, t0, t1, t1, . . . , ti, ti, ti, . . . , tp, tp} ,
where each breakpoint in DP has two duplicates and all the other breakpoints have
only one duplicate. Intuitively, we have placed a zero-length interval at the beginning
of every breakpoint of P and put a zero-length interval at the end of each breakpoint
in DP . Under this configuration, the set of intervals in P̄ is the union of the intervals
in P and a set of zero-length intervals. We let t̄i denote the (i + 1)th element of P̄ .
DP̄

1 is the set of breakpoints in P̄ that correspond to the breakpoints in DP
1 . For

the ith interval (i.e., [ti−1, ti]) in P , we have a corresponding interval [t̄j−1, t̄j ] in
P̄ , where t̄j−1 = ti−1 and t̄j = ti. We call this interval in P̄ an old interval. All the
other intervals in P̄ are called new intervals. Note that all the new intervals have zero
length but not vice versa.

Given a solution (v̂, ŷ, t̂) toQP (|P |), we first construct a feasible solution (v̄, ȳ, t̄)
to QP (|P̄ |) and then show a descent direction for this solution in QP (|P̄ |). The
descent direction will be used in the proof of convergence. We need not use the same
direction in the new algorithm, as we will see in the last remark in section 6. This
solution has the same solution value in QP (|P̄ |) as the current solution in QP (|P |)
and has approximately twice as many intervals, fewer than the one constructed by
Pullan [41].

Let (v̂, ŷ, t̂) be a feasible solution for QP (|P |). For the ith interval in P̄ , if it is
an old interval, we let interval j be the corresponding interval in P and set

v̄(t̄i) = v̂(tj), ȳ(t̄i) = ŷ(tj).(18)

We let v̄(t̄i) = 0 if interval i in P̄ is a new interval and let ȳ(t̄i) = ŷ(tj), where j is the
interval in P that corresponds to the closest old interval in P̄ to the left of [ti−1, ti]
(with the convention that ȳ(t̄1) = y(t0) and ȳ(t̄0) = y(t0)).

It is easy to verify that (v̄, ȳ, t̄) is feasible for QP (|P̄ |) and has the same solution
value in QP (|P̄ |) as (v̂, ŷ, t̂) in QP (|P |).

5.3. A descent direction. According to Corollary 3, a feasible solution (v̂, ŷ, t̂)
to QP (|P |) gives the optimal solution value of (SCSCLP ) if the optimal solution
to AP (P ) has an equal or larger solution value. If so, we can stop the algorithm.

Otherwise, there exists (˜̄v, ˜̄y, ˜̄t) feasible for AP (P ) and with a strictly smaller solution
value in AP (P ), i.e., we have

δ
def
= V (AP (P ), (˜̄v, ˜̄y, ˜̄t))− V (QP (|P |), (v̂, ŷ, t̂)) < 0.(19)

Note that |δ| is an upper bound on the duality gap between (SCSCLP ) and (SCSCLP ∗).
Let ε ∈ [0, 1]. For every interval [ti−1, ti], we define

εi =
(ti − ti−1)ε

2
.

We define a new partition P ε of [0, T ] as follows:

P ε
def
= {t0, t0 + ε1, t1 − ε1, t1 + ε2, . . . , ti − εi, ti, ti + εi+1, . . . , tp − εp, tp} ,
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Fig. 2. The construction of a descent solution where tl and tm are two consecutive breakpoints
in D1.

where we replace the breakpoint ti in P \DP
1 with two elements ti − εi and ti + εi+1

and add two elements ti − εi and ti + εi+1. For breakpoint ti in DP , we add t0 + ε1
and tp − εp for t0 and tp, respectively. We define the vector tε from P ε by mapping
tεi to the (i + 1)th element in P ε. We construct a descent solution (vε, yε, tε) with
partition P ε as follows.

When P does not have any zero-length intervals, let ˜̄u(t), û(t), and ˆ̄u(t) be the
piecewise constant extensions of ˜̄u, û, and ˆ̄u, respectively, where ˜̄u is defined from ˜̄v
by

˜̄u(ti−1+) = 2
˜̄v(ti−1+)

ti − ti−1
, ˜̄u(ti−) = 2

˜̄v(ti−)

ti − ti−1
,

û is defined from v̂ by (8), and ˆ̄u is defined as

ˆ̄u(ti−1+) =
˜̄v(ti−1+) + ˜̄v(ti−)

ti − ti−1
.

We construct the new control by patching together ˜̄u(t), û(t), and ˆ̄u(t) as follows:

uε(t) =


˜̄u(t), t ∈ [ti−1, ti−1 + εi)

⋃
[ti − εi, ti), ti ∈ DP ,

˜̄u(t), t ∈ [tp−1, tp−1 + εp)
⋃

[tp − εp, tp],
û(t), t ∈ [ti−1 + εi, ti − εi),
ˆ̄u(t), otherwise.

(20)

Having constructed the control, the construction of the state variables for (SCSCLP )
is straightforward. Our construction of a descent solution (vε, yε, tε) for (v̂, ŷ, t̂) is
illustrated in Figure 2.

However, if ti−1 = ti for some i, the u variables in the previous paragraph are
not properly defined. Fortunately, we can bypass this difficulty by working on the v
variables. We define vε as follows. Let tl and tm be two consecutive breakpoints in
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DP
1 . Let [ti + εi+1, ti+1 − εi+1] and [ti+1 − εi+1, ti+1 + εi+2] be two intervals that

reside on [tl, tm]. If tεj is the breakpoint in P ε that is mapped to ti+1 − εi+1, we let

vε(tεj) = (1− ε)v̂(ti+1),

vε(tεj+1) = ε(˜̄v(ti+1−) + ˜̄v(ti+1+)).(21)

If tεj is the breakpoint in P ε that is mapped to tl, we let

vε(tεj+1) = ε˜̄v(tl+).(22)

If tεj is the breakpoint in P ε that is mapped to tm, we let

vε(tεj) = ε˜̄v(tm−).(23)

We define yε in three different cases as follows. For the breakpoint tεj in P ε that
is mapped to ti−1 + εi, we let

yε(tεj) = (1− ε)ŷ(ti−1) + ε˜̄y

(
ti + ti−1

2

)
.(24)

For the breakpoint tεj in P ε that is mapped to ti − εi, we let

yε(tεj) = (1− ε)ŷ(ti) + ε˜̄y

(
ti + ti−1

2

)
.(25)

For the breakpoint tεj in P ε that is mapped to ti, we let

yε(tεj) = (1− ε)ŷ(ti) + ε˜̄y(ti).(26)

When ε is small, (vε, yε, tε) is a descent solution as shown in the following theorem.
Theorem 3. If (19) holds, then (vε, yε, tε) is a feasible solution to QP (|P̄ |) and

V (QP (|P̄ |), (vε, yε, tε))− V (QP (|P̄ |), (v̄, ȳ, t̄)) = εδ + o(ε),(27)

where δ is defined in (19). For ε small enough, (vε, yε, tε) has a strictly smaller
solution value than (v̄, ȳ, t̄).

Proof. The feasibility of (vε, yε, tε) follows easily. By definition, we have

V (QP (|P̄ |), (v̄, ȳ, t̄)) = V (QP (|P |), (v̂, ŷ, t̂))

=

p∑
i=1

v̂(ti)
′c
(
ti + ti−1

2

)
+

p∑
i=1

ti − ti−1

2
(ŷ(ti)

+ ŷ(ti−1))′g(ti−1+),

V (QP (|P̄ |), (vε, yε, tε)) =

|P ε|−1∑
i=1

c

(
tεi + tεi−1

2

)′
vε(tεi)

+

|P ε|−1∑
i=1

tεi − tεi−1

2
(yε(tεi) + yε(tεi−1))′g(tεi−1+).

Let tl and tm be two consecutive breakpoints in DP
1 and let tε

l̄
and tεm̄ be the

corresponding breakpoints in DP ε

1 . We have

m∑
i=l+1

v̂(ti)
′c
(
ti + ti−1

2

)
−

m̄∑
i=l̄+1

c

(
tεi + tεi−1

2

)′
vε(tεi)
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=

m∑
i=l+1

v̂(ti)
′c
(
ti + ti−1

2

)
−

m∑
i=l+1

(1− ε)v̂(ti)
′c
(
ti + ti−1

2

)

−
m−1∑
i=l+1

ε(˜̄v(ti+) + ˜̄v(ti−))′c
(
ti +

εi+1 − εi
2

)
− ε˜̄v(tl+)′c

(
tl +

εi+1

2

)
− ε˜̄v(tm−)′c

(
tm − εm

2

)
=

m∑
i=l+1

ε

(
v̂(ti)

′c
(
ti + ti−1

2

)
− (˜̄v(ti−1+)′c(ti−1+) + ˜̄v(ti−)′c(ti−))

)
+ o(ε),

(28)

and
m∑

i=l+1

ti − ti−1

2
(ŷ(ti) + ŷ(ti−1))′g(ti−1+)−

m̄∑
i=l̄+1

tεi − tεi−1

2
(yε(tεi) + yε(tεi−1))′g(tεi−1+)

=

m∑
i=l+1

ti − ti−1

2
(ŷ(ti) + ŷ(ti−1))′g(ti−1+)

−
m∑

i=l+1

(1− ε) ti − ti−1

2

(
(1− ε)(ŷ(ti) + ŷ(ti−1)) + 2ε˜̄y

(
ti + ti−1

2

))′
g(ti−1+)

−
m∑

i=l+1

εi + εi+1

2

(
2(1− ε)ŷ(ti) + ε

(
˜̄y

(
ti + ti−1

2

)
+ ˜̄y

(
ti+1 + ti

2

)))′
g(ti−1+)

−εl+1

2

(
2(1− ε)ŷ(tl) + ε

(
˜̄y(tl) + ˜̄y

(
tl+1 + tl

2

)))′
g(tl+)

−εm
2

(
2(1− ε)ŷ(tm) + ε

(
˜̄y(tm) + ˜̄y

(
tm−1 + tm

2

)))′
g(tm−)

=

m∑
i=l+1

ε
ti − ti−1

2
(ŷ(ti) + ŷ(ti−1))′g(ti−1+)

−
m∑

i=l+1

(ti − ti−1)ε˜̄y

(
ti + ti−1

2

)′
g(ti−1+) + o(ε).

(29)

Summing up (28) and (29) over all pairs of consecutive breakpoints in D1, we
have

V (QP (|P̄ |), (vε, yε, tε))− V (QP (|P̄ |), (v̄, ȳ, t̄))
= V (QP (|P̄ |), (vε, yε, tε))− V (QP (|P |), (v̂, ŷ, t̂))

=

p∑
i=1

ε

(
˜̄v(ti−1+)′c(ti−1+) + ˜̄v(ti−)′c(ti−)− v̂(ti)

′c
(
ti + ti−1

2

))

− ti − ti−1

2
(ŷ(ti) + ŷ(ti−1))′g(ti−1+)

)
+ o(ε)

= ε(V (AP (P ), (˜̄v, ˜̄y, ˜̄t))− V (QP (|P |), (v̂, ŷ, t̂))) + o(ε)

= εδ + o(ε).
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Since δ < 0, when ε is small enough, (vε, yε, tε) is a strictly improved feasible solution
to QP (|P̄ |).

Interestingly, the new solution (vε, yε, tε) gives a descent direction for (v̄, ȳ, t̄)
in QP (|P̄ |). This solution can also be used to show that the first Frank–Wolfe iterate
for (v̄, ȳ, t̄) provides an upper bound on the current duality gap, as we next illustrate.

Let [tl, tm] be two consecutive breakpoints in DP
1 . We define a new partition ¯̄P as

follows. The set of breakpoints of ¯̄P that resides on [tl, tm] is {tl, tl+tl+1

2 , tl+tl+1

2 , . . . , tm},
i.e., the union of {tl, tm} with the set of midpoints of the intervals in P , and each mid-
point appears exactly twice. We construct (¯̄v, ¯̄y, ¯̄t) as follows. The set of breakpoints

of (¯̄v, ¯̄y, ¯̄t) is ¯̄P . Let

¯̄vj =


˜̄v(ti+1−) + ˜̄v(ti+1+) if the jth interval of ¯̄P is [ ti+ti+1

2 , ti+1+ti+2

2 ],

˜̄v(tl+) if the jth interval of ¯̄P is [tl,
tl+tl+1

2 ],

˜̄v(tm−) if the jth interval of ¯̄P is [ tm−1+tm
2 , tm],

0 otherwise,

¯̄y(̄t̄0) = y(t0), and

¯̄y(̄t̄j) =



˜̄y
(
ti+1+ti+2

2

)
if the jth interval of ¯̄P is [ ti+ti+1

2 , ti+1+ti+2

2 ],

˜̄y
(
tl+tl+1

2

)
if the jth interval of ¯̄P is [tl,

tl+tl+1

2 ],

˜̄y(tm) if the jth interval of ¯̄P is [ tm−1+tm
2 , tm],

˜̄y
(
ti+1+ti

2

)
if the j-th interval of ¯̄P is [ ti+ti+1

2 , ti+ti+1

2 ].

Theorem 4. For ε ∈ [0, 1], let tε be defined by P ε. Let (vε, yε, tε) be the
solution to QP (|P̄ |) defined by (21)–(26). We have

vε = ε¯̄v + (1− ε) v̄,
yε = ε¯̄y + (1− ε) ȳ,
tε = ε̄t̄+ (1− ε) t̄,

and (¯̄v, ¯̄y, ¯̄t) is feasible for QP (|P̄ |).
Proof. Theorem 4 obtains the direct consequence of the definition of (vε, yε, tε)

and (¯̄v, ¯̄y, ¯̄t).

If we pick (˜̄v, ˜̄y, ˜̄t) introduced in (19) as an optimal solution for AP (P ), then by
Theorem 2, |δ| is an upper bound on the current duality gap. By (27) and Theorem
4, the negative objective value of the first Frank–Wolfe iterate for (v̄, ȳ, t̄) gives an
upper bound on the current duality gap.

6. A new algorithm for (SCSCLP ). In this section, we give a generic suc-
cessive quadratic programming algorithm for (SCSCLP ).

Algorithm A (E,F,G,H, a(t), b(t), c(t), g(t), h(t), T, β).
Let k = 0. Let d be the current duality gap initially set to infinity.
Let (vk, yk, tk) be a feasible solution to QP (|P 0|). Let P 0 be a partition on [0, T ],
such that a(t), c(t), and h(t) are piecewise linear with P 0 and b(t) and g(t) are
piecewise constant with P 0.
while d > β do

1. Calculate a KKT point of QP (|P k|) which has an equal or better solution
value than (vk, yk, tk).
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2. Recursively remove redundant intervals in P k as follows.

Apply Procedure PURIFY to all pairs of consecutive breakpoints in DPk

1 .
Let (ṽk, ỹk, t̃k) be the resulting solution and let Q be the resulting partition.
If (ṽk, ỹk, t̃k) is not a KKT point of QP (|Q|), let (vk, yk, tk) = (ṽk, ỹk, t̃k)
and P k = Q and go to Step 1. Otherwise, we denote the resulting purified
partition as P̃ k = {t0, t1, . . . , tp}.

3. Double the number of intervals. Define P k+1 as

P k+1 = {t0, t0, t1, t1, . . . , ti, ti, ti, . . . , tp, tp} ,

where each breakpoint in D has two duplicates and all the other breakpoints
have only one duplicate. Construct a feasible solution (v̄k+1, ȳk+1, t̄k+1) for
QP (|P k+1|) as in (18).

4. Calculate the current duality gap d. If the solution value of (ṽk, ỹk, t̃k) is
the same as the optimal value of AP (P̃ k), stop the algorithm. Otherwise go
to Step 5.

5. Get a strictly improved solution (vk+1, yk+1, tk+1) from (v̄k+1, ȳk+1, t̄k+1)
for QP (|P k+1|).

6. Let k = k + 1.
end while

Remarks.
1. In Step 1 of Algorithm A, we can use the Frank–Wolfe method or general

matrix-splitting algorithms to compute a KKT point of QP (|P k|).
2. Algorithm A will not loop between Step 1 and Step 2 forever, because every

time Algorithm A goes from Step 2 to Step 1, the cardinality of P k is reduced
at least by 1.

3. In Step 4 of Algorithm A, we can let d = V (QP (|P̃ k|)) − V (AP (P̃ k)). We
can also let d be the negative objective value of the first Frank–Wolfe it-
erate for (v̄, ȳ, t̄) and so, instead of checking whether the solution value
of (ṽk, ỹk, t̃k) is the same as the optimal value of AP (P̃ k), we can check
whether the objective value of the first Frank–Wolfe iterate for (v̄, ȳ, t̄) is
zero.

4. In Step 5 of Algorithm A, we can use the direction constructed in section
5.3 (cf. (vε, yε, tε)). We can also use the Frank–Wolfe method or general
matrix-splitting algorithms to find a descent direction for (v̄k+1, ȳk+1, t̄k+1).
By Theorem 3, we are guaranteed to find a descent direction.

7. Convergence of the new algorithm. In this section we prove that the new
algorithm converges. We first describe the argument we will use to show the conver-
gence informally. We use the Frank–Wolfe method or general matrix-splitting algo-
rithms to compute a series of KKT points to a series of generally nonconvex quadratic
programs. These KKT points have nondecreasing solution values. By Corollary 3,
we can detect whether a KKT point gives an optimal solution to (SCSCLP ). If it
does, we terminate the algorithm. If not, by Theorem 3, we can find a new solution
with approximately twice as many constant control pieces as the current solution but
with a strictly improved cost. Since there is only a finite number of different solution
values for the KKT points of every quadratic program constructed, and there is an
upper bound on the size of the quadratic programs we encounter (see Corollary 4
below), a finite convergence result follows readily. Based on the primal solution, we
can compute an optimal dual solution for (SCSCLP ∗).
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Contrary to the convergence analysis of a variety of algorithms for (SCLP ), we
do not need to let the norm of the maximal length interval in the discretization tend
to zero (as in Pullan [41]). Moreover, neither do we need the explicit knowledge of
all the extreme points of a certain set of finite-dimensional linear programs (as in
Anderson and Nash [2]). Most importantly, we prove the absence of a duality gap
result as a byproduct of the new algorithm, even when there is no optimal solution
for (SCSCLP ).

In the following, we give upper bounds on the cardinality of P̃ k, the purified
partition in Step 2 of Algorithm A. Since by Lemma 4 and Corollary 2 we know that

the total number of zero-length intervals in P̃ k is at most 2|DP̃k

1 |, we need only to
bound the number of positive-length intervals in P̃ k. We map each positive-length
interval of P̃ k to an extreme point of a certain set of linear programs and then show
that the mapping is injective. Before doing so, we give some more notation and several
useful lemmas.

Let tl and tm be two consecutive breakpoints in DP̃k

1 . By definition, a(t), c(t), and
h(t) are linear and b(t) and g(t) are constant on [tl, tm). Let [t̃i−1, t̃i] and [t̃i, t̃i+1] be
two adjacent positive-length intervals in partition P̃ k such that [t̃i−1, t̃i+1] ⊆ [tl, tm].
Let ∆ti = t̃i − t̃i−1 and ∆ti+1 = t̃i+1 − t̃i. We have ∆ti > 0 and ∆ti+1 > 0 by
assumption. Let (ṽk, ỹk, t̃k) be the resulting solution in Step 2 of Algorithm A. Let
Ji be the set of indices of the constraints in F ỹk(t̃i) ≤ h(t̃i) that are binding. Let

ũk(t̃i−1+) =
ṽk(t̃i)

∆ti

and

ũk(t̃i+) =
ṽk(t̃i+1)

∆ti+1
.

It is obvious that (ũk(t̃i+), ỹk(t̃i+1)−ỹk(t̃i)
∆ti+1

) is a feasible solution to the following linear
system:

(SY SJi) Gũ
k(t̃i+) + E

ỹk(t̃i+1)− ỹk(t̃i)

∆ti+1
= ȧ(t̃i),

Hũk(t̃i+) ≤ b(t̃i),(
F
ỹk(t̃i+1)− ỹk(t̃i)

∆ti+1

)
Ji

≤ ḣ(t̃i),

ũk(t̃i+) ≥ 0.

By introducing new variables, we can eliminate ỹk(t̃i+1)−ỹk(t̃i)
∆ti+1

in (SY SJi) and trans-

form (SY SJi) into the following linear system:

(SY S1Ji) Gũ
k(t̃i+) + E(wi+1 − wi) = ȧ(t̃i),

Hũk(t̃i+) + z̃k(t̃i+) = b(t̃i),

(F (wi+1 − wi))Ji + x = ḣ(t̃i),

x ≥ 0, wi+1 ≥ 0, wi ≥ 0, ũk(t̃i+) ≥ 0, z̃k(t̃i+) ≥ 0.

Every extreme point of the linear program defined by maximizing some linear function
over (SY S1Ji) defines a unique feasible solution to (SY SJi), which is called a gener-
alized extreme point for (SY SJi). Every extreme ray of this linear program defines a
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unique ray to (SY SJi), which is called a generalized extreme ray for (SY SJi). Since
this is a feasible finite-dimensional linear program in standard form, the resolution
theorem applies. After translating the result into variables in (SY SJi), we have the
following analogue of the resolution theorem for (SY SJi).

Lemma 5. Every feasible solution of (SY SJi) can be written as the sum of a con-
vex combination of the generalized extreme points of (SY SJi) and a linear combination
(with nonnegative coefficients) of generalized extreme rays to (SY SJi).

By Lemma 5, we have

ũk(t̃i+) =
k(i)∑
j=1

λ
(i)
j s

(i)
j +

q(i)∑
j=1

µ
(i)
j r

(i)
j ,

ỹk(t̃i+1)− ỹk(t̃i)

∆ti+1
=

k(i)∑
j=1

λ
(i)
j s̄

(i)
j +

q(i)∑
j=1

µ
(i)
j r̄

(i)
j(30)

for some positive k(i) ≥ 1 and nonnegative q(i) ≥ 0, where λ
(i)
j > 0,

∑k(i)

j=1 λ
(i)
j = 1,

and µ
(i)
j > 0, the (s

(i)
j , s̄

(i)
j ) are generalized extreme points to system (SY SJi), and

the (r
(i)
j , r̄

(i)
j ) are generalized extreme rays to system (SY SJi). Without loss of

generality, assume that we have sorted (s
(i)
j , s̄

(i)
j ) in the following order:

ċ(t̃i)
′s(i)
j − g(tl+)′s̄(i)

j ≥ ċ(t̃i)′s(i)
j+1 − g(tl+)′s̄(i)

j+1 for all j.(31)

We have the following result on (ṽk, ỹk, t̃k).
Lemma 6.

V (QP (|P̃ k|), (ṽk, ỹk, t̃k)) ≤ V (QP (|P k|), (vk, yk, tk)).

Proof. Since Procedure PURIFY does not increase the solution value of the current
solution, the result immediately follows.

Lemma 7. Suppose (30) and (31) hold for ũk(t̃i−1+) and ũk(t̃i+). Furthermore,
suppose [t̃i−1, t̃i] is not the first positive-length interval that resides on [tl, tm]. Then
we have

ċ(t̃i)
′s(i−1)

1 − g(tl+)′s̄(i−1)
1 > ċ(t̃i)

′s(i)
1 − g(tl+)′s̄(i)

1

for the two adjacent positive-length intervals [t̃i−1, t̃i] and [t̃i, t̃i+1] that reside on
[tl, tm].

Proof. We first show that

ċ(t̃i)
′r(i)
j − g(tl+)′r̄(i)

j ≤ 0(32)

for every j ≤ q(i) without assuming that [t̃i−1, t̃i] is not the first positive-length
interval that resides on [tl, tm].

Let τ ∈ (0, 1). Suppose

ũk(t̃i+) = τu1 + (1− τ)u2

and

ỹk(t̃i+1)− ỹk(t̃i)

∆ti+1
= τy1 + (1− τ)y2,
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Fig. 3. Perturbation of the solution.

where (u1, y1) and (u2, y2) are two feasible solutions for (SY SJi). Let γ be the largest
scalar in (0, τ∆ti+1] such that F (ỹk(t̃i) + γy1) ≤ h(t̃i). Such a γ exists by virtue of
the feasibility of (u1, y1) and (u2, y2) to system (SY SJi). For any ∆t ∈ (0, γ), we
consider the following perturbation of (ṽk, ỹk, t̃k), as shown in Figure 3:

t̃∗j =

{
t̃i + ∆t if j = i,
t̃j otherwise,

ṽ∗(t̃∗j ) =

 ṽk(t̃i) + u1∆t if j = i,
ṽk(t̃j)− u1∆t if j = i+ 1,
ṽk(t̃j) otherwise,

ỹ∗(t̃∗j ) =

{
ỹk(t̃i) + y1∆t if j = i,
ỹk(t̃j) otherwise.

We can easily check the feasibility of (ṽ∗, ỹ∗, t̃∗) to QP (|P̃ |). So

p∑
j=1

ṽ∗(t̃∗j )
′c

(
t̃∗i−1 + t̃∗i

2

)
−

p∑
j=1

ṽk(t̃j)
′c
(
t̃i−1 + t̃i

2

)

=

(
c(t̃i−1) + c(t̃∗i )

2

)′
ṽ∗(t̃∗i ) +

(
c(t̃∗i ) + c(t̃i+1)

2

)′
ṽ∗(t̃∗i+1)

−
(
c(t̃i−1) + c(t̃i)

2

)′
ṽk(t̃i)−

(
c(t̃i) + c(t̃i+1)

2

)′
ṽk(t̃i+1)

=

(
c(t̃∗i )− c(t̃i)

2

)′
ṽk(t̃i) +

(
c(t̃∗i )− c(t̃i)

2

)′
ṽk(t̃i+1)

−∆t

2
(∆ti + ∆ti+1)ċ(t̃i)

′u1

=
∆t∆ti

2
(ċ(t̃i)

′ũk(t̃i−)− ċ(t̃i)′u1)

+
∆t∆ti+1

2
(ċ(t̃i)

′ũk(t̃i+)− ċ(t̃i)′u1).(33)

Also,

p∑
j=1

t̃∗i − t̃∗i−1

2
(ỹ∗(t̃∗i ) + ỹ∗(t̃∗i−1))′g(t̃∗i−1+)
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−
p∑
j=1

t̃i − t̃i−1

2
(ỹk(t̃i) + ỹk(t̃i−1))′g(t̃i−1+)

=
t̃∗i − t̃∗i−1

2
(ỹ∗(t̃∗i ) + ỹ∗(t̃∗i−1))′g(t̃∗i−1+)

+
t̃∗i+1 − t̃∗i

2
(ỹ∗(t̃∗i+1) + ỹ∗(t̃∗i ))

′g(t̃∗i+)

− t̃i − t̃i−1

2
(ỹk(t̃i) + ỹk(t̃i−1))′g(t̃i−1+)

− t̃i+1 − t̃i
2

(ỹk(t̃i+1) + ỹk(t̃i))
′g(t̃i+)

=
∆ti + ∆t

2
(ỹk(t̃i) + ỹk(t̃i−1) + ∆ty1)′g(t̃i−1+)

+
∆ti+1 −∆t

2
(ỹk(t̃i+1) + ỹk(t̃i) + ∆ty1)′g(t̃i+)

−∆ti
2

(ỹk(t̃i) + ỹk(t̃i−1))′g(t̃i−1+)− ∆ti+1

2
(ỹk(t̃i+1) + ỹk(t̃i))

′g(t̃i+)

=
∆t

2
(ỹk(t̃i−1)− ỹk(t̃i+1) + (∆ti + ∆ti+1)y1)′g(tl+).(34)

Combining (33) and (34), we derive

V (QP (|P̃ k|), (ṽ∗, ỹ∗, t̃∗))− V (QP (|P̃ k|), (ṽk, ỹk, t̃k))

=
∆t∆ti

2

(
ċ(t̃i)

′ũk(t̃i−)− g(t̃i+)′
ỹk(t̃i)− ỹk(t̃i−1)

∆ti
− (ċ(t̃i)

′u1 − y′1g(tl+))

)
+

∆t∆ti+1

2

(
ċ(t̃i)

′ũk(t̃i+)− g(t̃i+)′
ỹk(t̃i+1)− ỹk(t̃i)

∆ti+1
− (ċ(t̃i)

′u1 − y′1g(tl+))

)
.

(35)

By the definition of a KKT point and the discussion following it in section 3.1, a
feasible solution to QP (|P |) is a KKT point if and only if there is no feasible descent
direction for this solution. Hence

V (QP (|P̃ k|), (ṽ∗, ỹ∗, t̃∗))− V (QP (|P̃ k|), (ṽk, ỹk, t̃k)) ≥ 0.(36)

Thus (35) implies that ċ(t̃i)
′u1 − y′1g(tl+) is uniformly bounded from above for any

possible choice of (u1, y1).
For any j̄ ≤ q(i) and any ε ∈ (0 , 1), we have

ũk(t̃i+) = ελ
(i)
1 (s

(i)
1 +

µ
(i)

j̄

ελ
(i)
1

r
(i)

j̄
)

+ (1− ελ(i)
1 )

k(i)∑
j=2

λ
(i)
j

1− ελ(i)
1

s
(i)
j +

λ
(i)
1 (1− ε)
1− ελ(i)

1

s
(1)
1 +

q(i)∑
j=1,j 6=j̄

µ
(i)
j

1− ελ(i)
1

r
(i)
j


and

ỹk(t̃i+1)− ỹk(t̃i)

∆ti+1
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= ελ
(i)
1 (s̄

(i)
1 +

µ
(i)

j̄

ελ
(i)
1

r̄
(i)

j̄
)

+ (1− ελ(i)
1 )

k(i)∑
j=2

λ
(i)
j

1− ελ(i)
1

s̄
(i)
j +

λ
(i)
1 (1− ε)
1− ελ(i)

1

s̄
(1)
1 +

q(i)∑
j=1,j 6=j̄

µ
(i)
j

1− ελ(i)
1

r̄
(i)
j

 .

By letting

u1 = s
(i)
1 +

µ
(i)

j̄

ελ
(i)
1

r
(i)

j̄
, y1 = s̄

(i)
1 +

µ
(i)

j̄

ελ
(i)
1

r̄
(i)

j̄
,

and letting ε tend to zero, the above boundedness result on ċ(t̃i)
′u(i)

1 −y′1g(tl+) implies
(32). Since [ti−1, ti] is not the first positive-length interval that resides on [tl, tm],
we can similarly have

ċ(t̃i)
′r(i−1)
j − g(tl+)′r̄(i−1)

j ≤ 0 for all j.

These together with (30) and (31) give

ċ(t̃i)
′s(i−1)

1 − g(tl+)′s̄(i−1)
1 ≥ ċ(t̃i)′ũk(t̃i−1+)− g(t̃i+)′

ỹk(t̃i)− ỹk(t̃i−1)

∆ti
.(37)

Similarly,

ċ(t̃i)
′s(i)

1 − g(tl+)′s̄(i)
1 ≥ ċ(t̃i)′ũk(t̃i+)− g(t̃i+)′

ỹk(t̃i+1)− ỹk(t̃i)

∆ti+1
.(38)

Since P̃ is a purified partition, by Procedure PURIFY , the opposite of (11)
holds, which is equivalent to

ċ(t̃i)
′ũk(t̃i−1+)− g(t̃i+)′

ỹk(t̃i)− ỹk(t̃i−1)

∆ti
> ċ(t̃i)

′ũk(t̃i+)− g(t̃i+)′
ỹk(t̃i+1)− ỹk(t̃i)

∆ti+1
.

(39)
Now, suppose

ċ(t̃i)
′s(i−1)

1 − g(tl+)′s̄(i−1)
1 ≤ ċ(t̃i)′s(i)

1 − g(tl+)′s̄(i)
1 .

By (37) and (39), we have

ċ(t̃i)
′ũk(t̃i+)− g(t̃i+)′

ỹk(t̃i+1)− ỹk(t̃i)

∆ti+1
< ċ(t̃i)

′s(i)
1 − g(tl+)′s̄(i)

1

and

ċ(t̃i)
′ũk(t̃i−1+)− g(t̃i+)′

ỹk(t̃i)− ỹk(t̃i−1)

∆ti
≤ ċ(t̃i)′s(i)

1 − g(tl+)′s̄(i)
1 .

Let u1 = s
(i)
1 and y1 = s̄

(i)
1 . Then the above relationship together with (35) gives

V (QP (|P̃ k|), (ṽ∗, ỹ∗, t̃∗))− V (QP (|P̃ k|), (ṽk, ỹk, t̃k)) < 0,

which contradicts that (ṽk, ỹk, t̃k) is a KKT point for QP (|P̃ k|) (cf. (36)).
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Since ċ(t̃i) is a constant vector over [tl, tm], as a consequence of Lemma 7, every
nonzero-length interval that resides on [tl, tm] (except the first nonzero-length inter-
val) corresponds to a different generalized extreme point of some system (SY SJi).
Since only a finite number of different systems (SY SJi) exists, and for each (SY SJi)
there is a finite number of generalized extreme points, we see there is only a finite
number of nonzero-length intervals that reside on [tl, tm]. Since the number of zero-
length intervals that reside on [tl, tm] is at most two (one on each end of [tl, tm]),
there is also a finite number of breakpoints in [tl, tm]. Thus we have the following
corollary.

Corollary 4. There is a finite number of breakpoints in P̃ k.
There is only a finite number of different solution values for all the KKT points

of QP (|P |), as shown in the following lemma.
Lemma 8. The KKT points for QP (|P |) are the union of a finite number of con-

nected sets. Over each connected component of KKT points of QP (|P |), the objective
value is a constant. Furthermore, the number of connected sets is bounded from above
by a number that depends on |P | only.

Proof. It is easily seen that a solution to QP (|P |) is a KKT point of QP (|P |)
if and only if it is a solution to a feasible symmetric affine variational inequality
problem whose dimension depends only on |P | (cf. section 3.1). The lemma now
follows directly from Lemma 3.1 of Luo and Tseng [31].

We now present the main convergence result of the paper.
Theorem 5. Algorithm A will terminate after a finite number of iterations.
Proof. Suppose Algorithm A does not terminate after a finite number of iter-

ations. It is guaranteed by Theorem 3 that Step 4 of Algorithm A would produce
a strictly improved solution, and thus every iteration of Algorithm A would give a
KKT point of a certain QP (|P |) that has a strictly better solution value. By Lemma
8, the KKT points generated by QP (|P |) should lie on a different connected KKT
points component of QP (|P |) for every |P |. This means that the cardinality of P is
unbounded and contradicts Corollary 4.

8. New structural and duality results. As a result of Algorithm A and
Theorem 5, we have the following new structural result for (SCSCLP ).

Theorem 6. Under Assumption 1, Algorithm A terminates with a solution to
QP (|P |) for some P that gives the optimal objective value of (SCSCLP ) and can be
closely approximated by a series of piecewise constant controls for (SCSCLP ). When
the solution set for (SCSCLP ) is bounded and E is an identity matrix, Algorithm
A terminates with a piecewise constant optimal control with partition P such that

ti 6= ti−1 for all i. Furthermore, over each interval [ti−1, ti), (u(ti+), y(ti+1)−y(ti)
ti+1−ti )

is a convex combination of the generalized extreme points of linear system (SY SJi),
where Ji is a subset of {1, . . . , n2}.

Proof. The first part of the theorem is a direct consequence of Theorem 5. The
second part of the theorem follows from Lemma 5 and the remark following the proof
of Lemma 1.

We remark that when the solution set for (SCSCLP ) is unbounded, it is possible
that the optimal solution value is not attained. We next derive the following new
duality result for (SCSCLP ).

Theorem 7. Under Assumption 1, there is no duality gap between (SCSCLP )
and (SCSCLP ∗). There always exists an optimal solution for (SCSCLP ∗) that is
piecewise linear. Furthermore, there exists a bounded measurable optimal solution for
(SCSCLP ) if and only if Algorithm A terminates with such a solution.
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Proof. The first part of the theorem is a direct consequence of Theorem 5.
Denote P̃ k as the final purified partition when Algorithm A terminates. To prove

the second part of the theorem, we first show that the zero-length intervals in P̃ k can
be eliminated in the dual problem AP ∗(P ). Let [ti−1, ti] be a zero-length interval

that resides on [tl, tm], where tl and tm are two consecutive breakpoints in DP̃k

1 . By

Lemma 4, the zero-length intervals can be located only at the breakpoints in DP̃k

1 .
We assume ti = tm (the case ti−1 = tl can be treated similarly).

Let (π̂, η̂, ξ̂) be an optimal solution for AP ∗(P̃ k). Then we can construct a new

solution (π̃, η̃, ξ̃) for AP ∗(P̃ k) in the following way. Let (π̃, η̃, ξ̃) equal (π̂, η̂, ξ̂)
except

π̃(ti−1+) = π̂(ti−1−), π̃(ti−) = π̂(ti−1−),

η̃(ti−1+) = η̂(ti−1−), η̃(ti−) = η̂(ti−1−),

ξ̃

(
ti−1 + ti

2

)
= 0, ξ̃(ti−1) = 0,

ξ̃(ti) = ξ̂

(
ti−1 + ti

2

)
+ ξ̂(ti−1) + ξ̂(ti).

It is easy to check the feasibility of (π̃, η̃, ξ̃). It is a fact that (π̃, η̃, ξ̃) and (π̂, η̂, ξ̂)
have the same solution value in AP ∗(P̃ k). Let P̄ be P̃ k \ {ti−1}. By eliminating

the elements π̃(ti−1−), π̃(ti−1+), η̃(ti−1−), η̃(ti−1+), ξ̃(ti−1), and ξ̃
(
ti−1+ti

2

)
from

(π̃, η̃, ξ̃), we can get a feasible solution (π̄, η̄, ξ̄) for AP (P̄ ). Also, (π̄, η̄, ξ̄) has the
same solution value as (π̃, η̃, ξ̃).

By repeating this process, we can eliminate all the zero-length intervals in P̃ k and
define a feasible solution for AP ∗(P ) from the resulting partition P . From this feasible
solution, we can construct an optimal solution for (SCSCLP ∗) that is piecewise linear.
This proves the second part of the theorem.

One direction of the third part of the theorem is quite obvious. The other di-
rection (i.e., if there exists a bounded measurable optimal solution for (SCSCLP ),
then Algorithm A will find such a solution) can be shown as follows. Let the bounded
measurable solution (u(t), y(t)) be optimal for (SCSCLP ). By the second part of the
theorem, there always exists an optimal solution (π(t), η(t), ξ(t)) for (SCSCLP ∗)
that is piecewise linear with partition P (defined by removing all the zero-length inter-
vals from P̃K). By Corollary 1, the complementary slackness condition (5) is satisfied.
Let ū(t) be the piecewise constant extensions of u(t0+), u(t1+), . . . , u(tp−1+). Let
ȳ(t) be the piecewise-linear extension of y(t0+), y(t1−) y(t1+), . . . , y(tp−1+), y(tp−).
The solution (ū(t), ȳ(t)) is a feasible solution for (SCSCLP ) which together with
(π(t), η(t), ξ(t)) satisfies (5). Therefore, Corollary 1 again, (ū(t), ȳ(t)) is optimal for
(SCSCLP ).

9. Computational results. Algorithm A has been implemented and tested on
a Sparc 10/41. The program is written in C. We used the academic version of LOQO
Version 1.08 by Vanderbei [48]. We call its subroutines to solve intermediate linear
programming and quadratic programming subproblems.

The implementation of Algorithm A consists of four modules: the input data
processing module, the output module, the successive quadratic programming module,
and the lower bound module. The successive quadratic programming module uses
the Frank–Wolfe method to iteratively solve a sequence of quadratic programs, as
outlined in Algorithm A. The lower bound module uses the partition generated by
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MM M M 201 2 3 19M

Fig. 4. The reentrant line for the example.

the successive quadratic programming module to calculate a dual feasible solution for
the problem.

We next give a numerical example that arises in manufacturing systems. The
example is a reentrant line, as in Kumar [25]. A reentrant line is a multiclass queuing
network with fixed routing.

The reentrant line we consider is shown in Figure 4. We have from left to right
n stations (in Figure 4, we have 20 stations), and each station services 5 different
classes of customers. There are 5n classes of customers in total. Class i customers
will be served at machine b(i − 1)/n + 1c. After class i customer finishes service, it
will become class i + 1 customer if i < 5n and exit the system otherwise. For this
system, we assume the exogenous arrival rate for class 1 customer is 1 and is zero
for all other classes. We generate randomly the mean service time, the cost per unit
time, and the initial number of customers for each class of customers. Our objective
is to find an optimal control policy (involving both routing and sequencing decisions)
that minimizes the cumulated cost of queuing over a fixed time horizon [0, T ].

We can formulate the problem as an (SCSCLP ). Let yi(t) be the queue length of
class i customers at time t. If class i customers are served at machine j, we let ui(t) be
the proportion of machine capacity of machine j that is devoted to class i customers
at time t. The G matrix of the (SCSCLP ) is the node-arc incidence matrix for the
following line digraph: Node i of the graph corresponds to class i and the edges are
(i, i + 1) for i = 1, . . . , 5n − 1. The matrix H is a block diagonal matrix, with each
block a row vector of mean service times of the customers served at the same machine.
F is a negative identity matrix. c(t) is a zero vector. g(t) is a randomly generated
vector. a(t) = y(0) + e1t with e1 the unit vector whose first component is one and all
the other components are zero. b(t) is a vector of all ones and h(t) is a zero vector.

The computational sequences are shown in Table 9.1.

When we fix the precision requirement and vary the number of stations in the
example, we find that the computational time grows almost quadratically with the
problem dimension, as shown in Figure 5. This is due to the fact that the number of
control pieces grows almost linearly with the problem dimension and the total number
of nonzero elements in the intermediate problems grows almost quadratically with the
number of stations. Notice that for the largest example in Figure 5 (25 stations) there
are 250 continuous variables.
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Table 9.1
Test results for the example.

# Iter. Obj. Value # Pieces Dual obj. Time in sec.

0 20987.1355 7

1 5986.7656 7 5956.7923 134.05

2 5965.1006 15 5962.7291 1738.2

3 5963.6674 29 5963.2700 2436.61
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Fig. 5. Computation time versus the number of stations (with precision fixed at 0.0001).

This problem demonstrates that our algorithm can solve rather large problems.
It is our experience that (SCSCLP ) is easier to approximate than to solve exactly.
The computational time grows almost exponentially with the accuracy requirement.
A key feature of Algorithm A is that it keeps the number of breakpoints as small
as possible, which in turn makes the size of intermediate quadratic programming
subproblems small. It is this feature that makes the algorithm efficient. We believe
that Algorithm A can be made even more efficient if the special structure of the
intermediate quadratic programs is exploited.
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Abstract. In this paper we present a convex optimization problem for solving the rational
covariance extension problem. Given a partial covariance sequence and the desired zeros of the
modeling filter, the poles are uniquely determined from the unique minimum of the corresponding
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1. Introduction. In [7] a solution to the problem of parameterizing all ratio-
nal extensions of a given window of covariance data has been given. This problem
has a long history, with antecedents going back to potential theory in the work of
Carathéodory, Toeplitz, and Schur [9, 10, 31, 30], and continuing in the work of
Kalman, Georgiou, Kimura, and others [18, 14, 21]. It has been of more recent in-
terest due to its significant interface with problems in signal processing and speech
processing [11, 8, 25, 20] and in stochastic realization theory and system identifica-
tion [2, 32, 22]. Indeed, the recent solution to this problem, which extended a result
by Georgiou and confirmed one of his conjectures [13, 14], has shed some light on
the stochastic (partial) realization problem through the development of an associated
Riccati-type equation, whose unique positive semidefinite solution has as its rank the
minimum dimension of a stochastic linear realization of the given rational covariance
extension [6]. In both its form as a complete parameterization of rational extensions
to a given covariance sequence and as an indefinite Riccati-type equation, one of the
principal problems which remains open is that of developing effective computational
methods for the approximate solution of this problem. In this paper, motivated by
the effectiveness of interior point methods for solving nonlinear convex optimization
problems, we recast the fundamental problem as such an optimization problem.

In section 2 we describe the principal results for the rational covariance extension
problem and set notation we shall need throughout. The only solution to this problem
for which there have been simple computational procedures is the so-called maximum
entropy solution, which is the particular solution that maximizes the entropy gain.
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In section 3 we demonstrate that the infinite-dimensional optimization problem for
determining this solution has a simple finite-dimensional dual. This motivates the
introduction in section 4 of a nonlinear, strictly convex functional defined on a closed
convex set naturally related to the covariance extension problem. We first show that
any solution of the rational covariance extension problem lies in the interior of this
convex set and that, conversely, an interior minimum of this convex functional will
correspond to the unique solution of the covariance extension problem. Our interest
in this convex optimization problem is, therefore, twofold: as a starting point for the
computation of an explicit solution and as a means of providing an alternative proof
of the rational covariance extension theorem.

Concerning the existence of a minimum, we show that this functional is proper
and bounded below, i.e., that the sublevel sets of this functional are compact. From
this, it follows that there exists a minimum. Since uniqueness follows from strict
convexity of the functional, the central issue which needs to be addressed in order to
solve the rational covariance extension problem is whether, in fact, this minimum is
an interior point. Indeed, our formulation of the convex functional, which contains
a barrier-like term, was inspired by interior point methods. However, in contrast
to interior point methods, the barrier function we have introduced does not become
infinite on the boundary of our closed convex set. Nonetheless, we are able to show
that the gradient, rather than the value, of the convex functional becomes infinite on
the boundary. The existence of an interior point which minimizes the functional then
follows from this observation.

In section 5, we apply these convex minimization techniques to the rational co-
variance extension problem, noting that, as hinted above, we obtain a new proof of
Georgiou’s conjecture. Moreover, this proof, unlike our previous proof [7] and the
existence proof of Georgiou [14], is constructive. Consequently, we have also obtained
an algorithmic procedure for solving the rational covariance extension problem. In
section 6 we report some computational results and present some simulations.

2. The rational covariance extension problem. It is well known that the
spectral density Φ(z) of a purely nondeterministic stationary random process {y(t)}
is given by the Fourier expansion

Φ(eiθ) =

∞∑
−∞

cke
ikθ(2.1)

on the unit circle, where the covariance lags

ck = E{yt+kyt}, k = 0, 1, 2, . . .(2.2)

play the role of the Fourier coefficients

ck =
1

2π

∫ π

−π
eikθΦ(eiθ)dθ.(2.3)

In spectral estimation [8], identification [2, 22, 32], speech processing [11, 25, 24,
29], and several other applications in signal processing and systems and control, we
are faced with the inverse problem of finding a spectral density which is coercive, i.e.,
positive on the unit circle, given only

c = (c0, c1, . . . , cn),(2.4)
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which is a partial covariance sequence positive in the sense that

Tn =


c0 c1 · · · cn
c1 c0 · · · cn−1

...
...

. . .
...

cn cn−1 · · · c0

 > 0,(2.5)

i.e., the Toeplitz matrix Tn is positive definite.
In fact, the covariance lags (2.2) are usually estimated from an approximation

1

N − k + 1

N−k∑
t=0

yt+kyt

of the ergodic limit

ck = lim
T→∞

1

T

T∑
t=0

yt+kyt,

since only a finite string

y0, y1, y2, y3, . . . , yN

of observations of the process {y(t)} is available, and therefore we can only estimate
a finite partial covariance (2.4), where n << N .

The corresponding inverse problem is a version of the trigonometric moment
problem [1, 16]: Given a sequence (2.4) of real numbers satisfying the positivity
condition (2.5), find a coercive spectral density Φ(z) such that (2.3) is satisfied for
k = 0, 1, 2, . . . , n. Of course there are infinitely many such solutions, and we shall
shortly specify some additional properties which we would like the solution to have.

The trigonometric moment problem, as stated above, is equivalent to the
Carathéodory extension problem to determine an extension

cn+1, cn+2, cn+3, . . . ,(2.6)

with the property that the function

v(z) =
1

2
c0 + c1z

−1 + c2z
−2 + · · ·(2.7)

is strictly positive real, i.e., is analytic on and outside the unit circle (so that the
Laurent expansion (2.7) holds for all |z| ≥ 1) and satisfies

v(z) + v(z−1) > 0 on the unit circle.(2.8)

In fact, given such a v(z),

Φ(z) = v(z) + v(z−1)(2.9)

is a solution to the trigonometric moment problem. Conversely, any coercive spectral
density Φ(z) uniquely defines a strictly positive real function v(z) via (2.9).

These problems are classical and go back to Carathéodory [9, 10], Toeplitz [31],
and Schur [30]. In fact, Schur parameterized all solutions in terms of what are now
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known as the Schur parameters, or, more commonly in the circuits and systems liter-
ature, as reflection coefficients, and which are easily determined from the covariance
lags via the Levinson algorithm [27]. More precisely, modulo the choice of c0, there is
a one-to-one correspondence between infinite covariance sequences c0, c1, c2, . . . and
Schur parameters γ0, γ1, . . . such that

|γt| < 1 for t = 0, 1, 2, . . . ,(2.10)

under which partial sequences (2.4) correspond to partial sequences γ0, γ1, . . . , γn−1 of
Schur parameters. Therefore, covariance extension (2.6) amounts precisely to finding
a continuation

γn, γn+1, γn+2, . . .(2.11)

of Schur parameters satisfying (2.10). Each such solution is only guaranteed to yield
a v(z) which is meromorphic.

In circuits and systems theory, however, we are generally only interested in so-
lutions which yield a rational v(z) of at most degree n, or, equivalently, a ratio-
nal spectral density Φ(z) of at most degree 2n. Then the unique rational, stable,
minimum-phase function w(z) having the same degree as v(z) and satisfying

w(z)w(z−1) = Φ(z)(2.12)

is the transfer function of a modeling filter, which shapes white noise into a random
process with the first n + 1 covariance lags given by (2.4); see, e.g., [7, 6] for more
details.

Setting all free Schur parameters (2.11) equal to zero, which clearly satisfies the
condition (2.10), yields a rational solution

Φ(z) =
1

a(z)a(z−1)
,(2.13)

where a(z) is a polynomial given by

a(z) = a0z
n + a1z

n−1 + · · ·+ an (a0 > 0),(2.14)

which is easily computed via the Levinson algorithm [27]. This so-called maximum
entropy solution is an all-pole or AR solution, and the corresponding modeling filter

w(z) =
zn

a(z)
(2.15)

has all its zeros at the origin.
However, in many applications a wider variety in the choice of zeros is required

in the spectral density Φ(z). To illustrate this point, consider in Figure 2.1 a spectral
density in the form of a periodogram determined from a speech signal sampled over 20
milliseconds (in which time interval it represents a stationary process) together with a
maximum entropy solution corresponding to n = 6. As can be seen, the latter yields a
rather flat spectrum which is unable to approximate the valleys or the “notches” in the
speech spectrum, and therefore in speech synthesis, the maximum entropy solution
results in artificial speech which sounds quite flat. This is a manifestation of the fact
that all the zeros of the maximum entropy filter (2.15) are located at the origin and
thus do not give rise to a frequency where the power spectrum vanishes. However,
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Fig. 2.1. Spectral envelope of a maximum entropy solution.

were we able to place some zeros of the modeling filter reasonably close to the unit
circle, these would produce notches in the spectrum at approximately the frequency
of the arguments of those zeros.

For this reason, it is widely appreciated in the signal and speech processing com-
munity that regeneration of human speech requires the design of filters having non-
trivial zeros [3, p. 1726], [24, pp. 271–272], [29, pp. 76–78]. Indeed, while all-pole
filters can reproduce many human speech sounds, the acoustic theory teaches that
nasals and fricatives require both zeros and poles [24, pp. 271–272], [29, p. 105].

Therefore, we are interested in modeling filters

w(z) =
σ(z)

a(z)
,(2.16)

for which (2.14) and

σ(z) = zn + σ1z
n−1 + · · ·+ σn(2.17)

are Schur polynomials, i.e., polynomials with all roots in the open unit disc. In this
context, the maximum entropy solution corresponds to the choice σ(z) = zn.

An important mathematical question, therefore, is to what extent it is possible
to assign desired zeros and still satisfy the interpolation condition that the partial
covariance sequence (2.4) is as prescribed. In [13] (see also [14]), Georgiou proved
that for any prescribed zero polynomial σ(z) there exists a modeling filter w(z) and
conjectured that this correspondence would yield a complete parameterization of all
rational solutions of at most degree n, i.e., that the correspondence between v and a
choice of positive sequence (2.4) and a choice of Schur polynomial (2.14) would be a
bijection. This is a nontrivial and highly nonlinear problem, since generally there is
no method to see which choices of free Schur parameters will yield rational solutions.
In [7] we resolved this long-standing conjecture by proving the following theorem as
a corollary of a more general theorem on complementary foliations of the space of all
rational positive real functions of degree at most n.

Theorem 2.1 (see [7]). Given any partial covariance sequence (2.4) and Schur
polynomial (2.17), there exists a unique Schur polynomial (2.14) such that (2.16) is
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a minimum-phase spectral factor of a spectral density Φ(z) satisfying

Φ(z) = c0 +
∞∑
k=1

ĉk(zk + z−k),

where

ĉk = ck for i = 1, 2, . . . , n.

In particular, the solutions of the rational positive extension problem are in one-to-one
correspondence with self-conjugate sets of n points (counted with multiplicity) lying in
the open unit disc, i.e., with all possible zero structures of modeling filters. Moreover,
this correspondence is bianalytic.

Consequently, we not only proved Georgiou’s conjecture that the family of all
rational covariance extensions of (2.4) of degree at most n is completely parameterized
in terms of the zeros of the corresponding modeling filters w(z), but also that the
modeling filter w(z) depends analytically on the covariance data and the choice of
zeros, a strong form of well-posedness increasing the likelihood of finding a numerical
algorithm.

In fact, both Georgiou’s existence proof and our proof of Theorem 2.1 are non-
constructive. However, in this paper we present for the first time an algorithm which,
given the partial covariance sequence (2.4) and the desired zero polynomial (2.17),
computes the unique pole polynomial (2.14). This is done via the convex optimiza-
tion problem to minimize the value of the function ϕ : Rn+1 → R, defined by

ϕ(q0, q1, . . . , qn) = c0q0 + c1q1 + · · ·+ cnqn

− 1

2π

∫ π

−π
logQ(eiθ)|σ(eiθ)|2dθ(2.18)

over all q0, q1, . . . , qn such that

Q(eiθ) = q0 + q1 cos θ + q2 cos 2θ + · · ·+ qn cosnθ > 0 for all θ.(2.19)

In sections 4 and 5 we show this problem has a unique minimum. In this way we
shall also provide a new and constructive proof of the weaker form of Theorem 2.1
conjectured by Georgiou.

Using this convex optimization problem, a sixth-degree modeling filter with zeros
at the appropriate frequencies can be constructed for the speech segment represented
by the periodogram of Figure 2.1. In fact, Figure 2.2 illustrates the same periodogram
together with the spectral density of such a filter. As can be seen, this filter yields a
much better description of the notches than does the maximum entropy filter.

Before turning to the main topic of this paper, the convex optimization problem
for solving the rational covariance extension problem for arbitrarily assigned zeros,
we shall provide a motivation for this approach in terms of the maximum entropy
solution.

3. The maximum entropy solution. As a preliminary we shall first consider
the maximum entropy solution discussed in section 2. The reason for this is that, as
indicated by its name, this particular solution corresponds to an optimization problem.
Hence, this section will be devoted to clarifying the relation between this particular
optimization problem and the class of problems solving the general problem. Thus
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Fig. 2.2. Spectral envelope obtained with appropriate choice of zeros.

our interest is not in the maximum entropy solution per se, but in showing that it
can be determined from a constrained convex minimization problem in Rn+1, which
naturally is generalized to a problem with arbitrary prescribed zeros.

Let us briefly recall the problem at hand. Given the partial covariance sequence

c0, c1, . . . , cn,

determine a coercive, rational spectral density

Φ(z) = ĉ0 +
∞∑
k=1

ĉk(zk + z−k)(3.1)

of degree at most 2n such that

ĉk = ck for i = 1, 2, . . . , n.(3.2)

Of course there are many solutions to this problem, and it is well known that the
maximum entropy solution is the one which maximizes the entropy gain

1

2π

∫ π

−π
log Φ(eiθ)dθ(3.3)

(see, e.g., [19]), and we shall now consider this constrained optimization problem.
We begin by setting up the appropriate spaces. Recall from classical realization

theory that a rational function

v(z) =
1

2
ĉ0 + ĉ1z

−1 + ĉ2z
−2 + · · ·

of degree n has a representation

ĉk = h′F k−1g k = 1, 2, 3, . . .

for some choice of (F, g, h) ∈ Rn×n×Rn×Rn. Therefore, if in addition v(z) is strictly
positive real, implying that all eigenvalues of F are less than one in modulus, ĉk tends
exponentially to zero as k →∞. Hence, in particular,

ĉ := (ĉ0, ĉ1, ĉ2, . . . )
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must belong to `1. Moreover, the requirement that (3.1) be a coercive spectral density
adds another constraint, namely that ĉ belongs to the set

F :=

{
ĉ ∈ `1 | ĉ0 +

∞∑
k=1

ĉk(eikθ + e−ikθ) > 0

}
.(3.4)

Now, let

ψ(ĉ) = − 1

2π

∫ π

−π
log

[
ĉ0 +

∞∑
k=1

ĉk(eikθ + e−ikθ)

]
dθ(3.5)

be a functional F → R, and consider the infinite-dimensional convex constrained
optimization problem to minimize ψ(ĉ) over F given the finite number of constraints
(3.2). Thus we have relaxed the optimization problem to allow also for nonrational
spectral densities.

Since the optimization problem is convex, the Lagrange function

L(ĉ, λ) = ψ(ĉ) +

n∑
k=0

λk(ĉk − ck)(3.6)

has a saddle point [26, p. 458] provided the stationary point lies in the interior of
F , and, in this case, the optimal Lagrange vector λ = (λ0, λ1, . . . , λn) ∈ Rn+1 can be
determined by solving the dual problem to maximize

ρ(λ) = min
ĉ∈F

L(ĉ, λ).(3.7)

To this end, first note that

∂L

∂ĉk
= − 1

2π

∫ π

−π
(eikθ + e−ikθ)Φ−1(eiθ)dθ + λk for k = 0, 1, 2, . . . , n,(3.8)

and that

∂L

∂ĉk
= − 1

2π

∫ π

−π
(eikθ + e−ikθ)Φ−1(eiθ)dθ for k = n+ 1, n+ 2, . . . .(3.9)

Then, setting the gradient equal to zero, we obtain from (3.9) that

1

2π

∫ π

−π
(eikθ + e−ikθ)Φ−1(eiθ)dθ = 0 for |k| > n,

from which it follows that Φ−1 must be a pseudopolynomial

Q(z) = q0 +
1

2
q1(z + z−1) + · · ·+ 1

2
qn(zn + z−n)(3.10)

of degree at most n, i.e.,

Φ−1(z) = Q(z),(3.11)

yielding a spectral density Φ which is rational and of at most degree 2n, and thus
belongs to the original (nonrelaxed) class of spectral densities. Likewise we obtain
from (3.8) that

λk =
1

2π

∫ π

−π
(eikθ + e−ikθ)Φ−1(eiθ)dθ(3.12)
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for k = 0, 1, 2, . . . , n, which together with (3.11) yields

λk = qk for k = 0, 1, 2, . . . , n.(3.13)

However, the minimizing ĉ is given by

ĉk =
1

2π

∫ π

−π

1

2
(eikθ + e−ikθ)Q(eiθ)−1dθ(3.14)

and consequently

n∑
k=0

qk ĉk =
1

2π

∫ π

−π
Q(eiθ)Q(eiθ)−1dθ = 1.(3.15)

To determine the optimal (saddle point) Lagrange multipliers we turn to the dual
problem. In view of (3.11), (3.13), and (3.15), the dual function is

ρ(q) =
1

2π

∫ π

−π
logQ(eiθ)dθ + 1− c′q,

where c ∈ Rn+1 is the vector with components c0, c1, . . . , cn. Consequently, the dual
problem is equivalent to minimizing

ϕ(q) = c′q − 1

2π

∫ π

−π
logQ(eiθ)dθ(3.16)

over all q ∈ Rn+1 such that the pseudopolynomial (3.10) is nonnegative on the unit
circle, i.e.,

Q(eiθ) > 0 for all θ,(3.17)

and, if the dual problem has an optimal solution satisfying (3.17), the optimal Q
solves the primal problem when inserted into (3.11).

The dual problem to minimize (3.16) given (3.17) is a finite-dimensional convex
optimization problem, which is simpler than the original (primal) problem. Clearly
it is a special case of the optimization problem (2.18)–(2.19), obtained by setting
|σ(eiθ)|2 = 1 as required for the maximum entropy solution. Figure 3.1 depicts a
typical cost function ϕ in the case n = 1. As can be seen, it is convex and attains
its optimum in an interior point so that the spectral density Φ has all its poles in the
open unit disc as required. That this is the case in general will be proven in section 5.

We stress again that the purpose of this section is not primarily to derive an
algorithm for the maximum entropy solution, for which we already have the simple
Levinson algorithm, but to motivate an algorithm for the case with prescribed zeros
in the spectral density. This is the topic of the next two sections.

4. The general convex optimization problem. Given a partial covariance
sequence c = (c0, c1, . . . , cn)′ and a Schur polynomial σ(z), we know from section 2
that there exists a Schur polynomial

a(z) = a0z
n + a1z

n−1 + · · ·+ an (a0 > 0)

such that

Φ(z) =
σ(z)σ(z−1)

a(z)a(z−1)
= c0 +

∞∑
k=1

ĉk(zk + z−k),(4.1)
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Fig. 3.1. A typical cost function ϕ(q) in the case n = 1.

where

ĉk = ck for k = 1, 2, . . . , n.(4.2)

The question now is: How do we find a(z)? In this section, we shall construct a
nonlinear, strictly convex functional on a closed convex domain. In the next section,
we shall show that this functional always has a unique minimum and that if such a
minimum occurs as an interior point, it gives rise to a(z).

As seen from (2.3), the interpolation condition (4.2) may be written

ck =
1

2π

∫ π

−π
eikθ
|σ(eiθ)|2
Q(eiθ)

dθ for k = 0, 1, . . . , n,(4.3)

where

Q(z) = a(z)a(z−1),(4.4)

so the problem is reduced to determining the variables

q =


q0

q1

...
qn

 ∈ Rn+1(4.5)

in the pseudopolynomial

Q(z) = q0 +
1

2
q1(z + z−1) +

1

2
q2(z2 + z−2) + · · ·+ 1

2
qn(zn + z−n)(4.6)

so that the conditions (4.3) and

Q(eiθ) > 0 for all θ ∈ [−π, π](4.7)

are satisfied.
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Now, consider the convex functional ϕ(q) : Rn+1 → R defined by

ϕ(q) = c′q − 1

2π

∫ π

−π
logQ(eiθ)|σ(eiθ)|2dθ.(4.8)

Our motivation in defining ϕ(q) comes in part from the desire to introduce a barrier-
like term, as is done in interior point methods, and in part from our analysis of the
maximum entropy method in the previous section. As it turns out, by a theorem
of Szegö the logarithmic integrand is in fact integrable for nonzero Q having zeros
on the boundary of the unit circle, so that ϕ(q) does not become infinite on the
boundary of the convex set. On the other hand, ϕ(q) is a natural generalization of
the functional (3.16) in section 3, since it specializes to (3.16) when |σ(eiθ)|2 ≡ 1 as
for the maximum entropy solution. As we shall see, minimizing (4.8) yields precisely
via (4.4) the unique a(z) which corresponds to σ(z).

It is clear that if q ∈ D+
n , where

D+
n = {q ∈ Rn+1 | Q(z) > 0 for |z| = 1},(4.9)

then ϕ(q) is finite. Moreover, ϕ(q) is also finite when Q(z) has finitely many zeros on
the unit circle, as can be seen from the following lemma.

Lemma 4.1. The functional ϕ(q) is finite and continuous at any q ∈ D+
n except

at zero. The functional is infinite, but continuous, at q = 0. Moreover, ϕ is a C∞

function on D+
n .

Proof. We want to prove that ϕ(q) is finite when q 6= 0. Then the rest follows by
inspection. Clearly, ϕ(q) cannot take the value −∞; hence, it remains to prove that
ϕ(q) <∞. Since q 6= 0,

µ := max
θ
Q(eiθ) > 0.

Then setting P (z) := µ−1Q(z),

logP (eiθ) ≤ 0(4.10)

and

ϕ(q) = c′q − 1

2π
logµ

∫ π

−π
|σ(eiθ)|2dθ − 1

2π

∫ π

−π
logP (eiθ)|σ(eiθ)|2dθ,

and hence, the question of whether ϕ(q) <∞ is reduced to determining whether

−
∫ π

−π
logP (eiθ)|σ(eiθ)|2dθ <∞.

However, since |σ(eiθ)|2 ≤M for some bound M , this follows from∫ π

−π
logP (eiθ)dθ > −∞,(4.11)

which is the well-known Szegö condition: (4.11) is a necessary and sufficient condition
for P (eiθ) to have a stable spectral factor [17]. However, since P (z) is a symmetric
pseudopolynomial which is nonnegative on the unit circle, there is a polynomial π(z)

such that π(z)π(z−1) = P (z). But then w(z) = π(z)
zn is a stable spectral factor, and

hence (4.11) holds.
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Lemma 4.2. The functional ϕ(q) is strictly convex and defined on a closed, convex
domain.

Proof. We first note that q = 0 is an extreme point, but it can never be a minimum
of ϕ since ϕ(0) is infinite. In particular, in order to check the strict inequality

ϕ(λq(1) + (1− λ)q(2)) < λϕ(q(1)) + (1− λ)ϕ(q(2)),(4.12)

where one of the arguments is zero, we need only consider the case that either q(1) or
q(2) is zero, in which case the strict inequality holds. We can now assume that none
of the arguments is zero, in which case the strict inequality in (4.12) follows from

the strict concavity of the logarithm. Finally, it is clear that D+
n is a closed convex

subset.
Lemma 4.3. Let q ∈ D+

n , and suppose q 6= 0. Then c′q > 0.
Proof. Consider an arbitrary covariance extension of c such as, for example, the

maximum entropy extension, and let Φ(z) be the corresponding spectral density (2.9).
Then c is given by (2.3), which may also be written

ck =
1

2π

∫ π

−π

1

2
(eikθ + e−ikθ)Φ(eiθ)dθ, k = 0, 1, . . . , n.

Therefore, in view of (4.6),

c′q =
1

2π

∫ π

−π
Q(eikθ)Φ(eiθ)dθ,(4.13)

which is positive whenever Q(z) ≥ 0 on the unit circle and q 6= 0.
Proposition 4.4. For all r ∈ R, ϕ−1(−∞, r] is compact. Thus ϕ is proper (i.e.,

ϕ−1(K) is compact whenever K is compact) and bounded from below.
Proof. Suppose q(k) is a sequence in Mr := ϕ−1(−∞, r]. It suffices to show that

q(k) has a convergent subsequence. Each Q(k) may be factored as

Q(k)(z) = λkā
(k)(z)ā(k)(z−1) = λkQ̄

(k)(z),

where λk is positive and ā(k)(z) is a monic polynomial, all of whose roots lie in the
closed unit disc. The corresponding sequence of the (unordered) set of n roots of each
ā(k)(z) has a convergent subsequence, since all (unordered) sets of roots lie in the
closed unit disc. Denote by ā(z) the monic polynomial of degree n which vanishes
at this limit set of roots. By reordering the sequence if necessary, we may assume
the sequence a(k)(z) tends to ā(z). Therefore, the sequence q(k) has a convergent
subsequence if and only if the sequence λk does, which will be the case provided the
sequence λk is bounded from above and from below away from zero. Before proving
this, we note that the sequences c′q̄(k), where q̄(k) is the vector corresponding to the
pseudopolynomial Q̄(k), and

1

2π

∫ π

−π
log Q̄(k)(eiθ)|σ(eiθ)|2dθ(4.14)

are both bounded from above and from below, respectively, away from zero and −∞.
The upper bounds come from the fact that {ā(k)(z)} are Schur polynomials and
hence have their coefficients in the bounded Schur region. As for the lower bound
of c′q̄(k), note that c′q̄(k) > 0 for all k (Lemma 4.3) and c′q̄(k) → α > 0. In fact,
Q̄(k)(eiθ) → |ā(eiθ)|2, where ā(z) has all its zeros in the closed unit disc, and hence
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it follows from (4.13) that α > 0. Then, since ϕ(q) <∞ for all q ∈ D+
n except q = 0

(Lemma 4.1), (4.14) is bounded away from −∞. Next, observe that

ϕ(q(k)) = λkc
′q̄(k) − 1

2π
log λk

∫ π

−π
|σ(eiθ)|2dθ − 1

2π

∫ π

−π
log Q̄(k)(eiθ)|σ(eiθ)|2dθ.

From this we can see that if a subsequence of λk were to tend to zero, then ϕ(q(k))
would exceed r. Likewise, if a subsequence of λk were to tend to infinity, ϕ would
exceed r, since linear growth dominates logarithmic growth.

5. Interior critical points and solutions of the rational covariance ex-
tension problem. In the previous section, we showed that ϕ has compact sublevel

sets in D+
n , so that ϕ achieves a minimum. Moreover, since ϕ is strictly convex and D+

n

is convex, such a minimum is unique. We record these observations in the following
statement.

Proposition 5.1. For each partial covariance sequence c and each Schur poly-

nomial σ(z), the functional ϕ has a unique minimum on D+
n .

In this paper we consider a question which is of independent interest: whether ϕ
achieves its minimum at an interior point. The next result describes an interesting
systems-theoretic consequence of the existence of such interior minima.

Theorem 5.2. Fix a partial covariance sequence c and a Schur polynomial σ(z).
If q̂ ∈ D+

n is a minimum for ϕ, then

Q̂(z) = a(z)a(z−1),(5.1)

where a(z) is the solution of the rational covariance extension problem.
Proof. Suppose that q̂ ∈ D+

n is a minimum for ϕ. Then

∂ϕ

∂qk
(q̂) = 0 for k = 0, 1, 2, . . . , n.(5.2)

Differentiating inside the integral, which is allowed due to uniform convergence, (5.2)
yields

ck − 1

2π

∫ π

−π

1

2
(eikθ + e−ikθ)

|σ(eiθ)|2
Q̂(eiθ)

dθ = 0 for k = 0, 1, . . . , n,

where Q̂(z) is the pseudopolynomial (4.6) corresponding to q̂, or, equivalently,

ck =
1

2π

∫ π

−π
eikθ
|σ(eiθ)|2
Q̂(eiθ)

dθ for k = 0, 1, . . . , n,(5.3)

which is precisely the interpolation condition (4.3)–(4.4), provided (5.1) holds.
As a corollary of this theorem, we have that the gradient of ϕ at any q̃ ∈ D+

n is
given by

∂ϕ

∂qk
(q̃) = ck − c̃k,(5.4)

where

c̃k =
1

2π

∫ π

−π
eikθ
|σ(eiθ)|2
Q̃(eiθ)

dθ, k = 0, 1, 2, . . . , n(5.5)
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is the partial covariance sequence corresponding to a process with spectral density

Φ̃(eiθ) =
|σ(eiθ)|2
Q̃(eiθ)

,

where Q̃(z) is the pseudopolynomial corresponding to q̃. The gradient is thus the
difference between the true and calculated partial covariance sequences.

We now state the converse result, underscoring our interest in this particular
convex optimization problem.

Theorem 5.3. For each partial covariance sequence c and each Schur polynomial
σ(z), suppose that a(z) gives a solution to the rational covariance extension problem.
If

Q̂(z) = a(z)a(z−1),(5.6)

then the corresponding (n+ 1)-vector q̂ lies in D+
n and is a unique minimum for ϕ.

Proof. Let a(z) be the solution of the rational covariance extension problem
corresponding to c and σ(z), and let Q̂(z) be given by (5.6). Then c satisfies the
interpolation condition (5.3), which is equivalent to (5.2), as seen from the proof of
Theorem 5.2. However, since a(z) is a Schur polynomial, Q̂(z) > 0 on the unit circle,
and thus q̂ ∈ D+

n . Since ϕ is strictly convex on D+
n , (5.3) implies that q̂ is a unique

minimum for ϕ.
Since the existence of a solution to the rational covariance extension problem has

been established in [14] (see also [7]), we do in fact know the existence of interior
minima for this convex optimization problem. On the other hand, we know from

Proposition 5.1 that ϕ has a minimum for some q̂ ∈ D+
n , so to show that ϕ has a

minimum in the interior D+
n it remains to prove the following lemma.

Lemma 5.4. The functional ϕ never attains a minimum on the boundary ∂D+
n .

Proof. Denoting by Dpϕ(q) the directional derivative of ϕ at q in the direction p,
it is easy to see that

Dpϕ(q) := lim
ε→0

ϕ(q + εp)− ϕ(q)

ε
(5.7)

= c′p− 1

2π

∫ π

−π

P (eiθ)

Q(eiθ)
|σ(eiθ)|2dθ,(5.8)

where P (z) is the pseudopolynomial

P (z) = p0 +
1

2
p1(z + z−1) +

1

2
p2(z2 + z−2) + · · ·+ 1

2
pn(zn + z−n)

corresponding to the vector p ∈ Rn+1. In fact,

log(Q+ εP )− logQ

ε
=
P

Q
log

[(
1 + ε

P

Q

) 1
ε
Q
P

]
→ P

Q

as ε→ +0, and hence (5.7) follows by dominated convergence.
Now, let q ∈ D+

n and q̄ ∈ ∂D+
n be arbitrary. Then the corresponding pseudopoly-

nomials Q and Q̄ have the properties

Q(eiθ) > 0 for all θ ∈ [−π, π]
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and

Q̄(eiθ) ≥ 0 for all θ and Q̄(eiθ0) = 0 for some θ0.

Since qλ := q̄ + λ(q − q̄) ∈ D+
n for λ ∈ (0, 1], we also have for λ ∈ (0, 1] that

Qλ(eiθ) := Q̄(eiθ) + λ[Q(eiθ)− Q̄(eiθ)] > 0 for all θ ∈ [−π, π],

and we may form the directional derivative

Dq̄−qϕ(qλ) = c′(q̄ − q) +
1

2π

∫ π

−π
hλ(θ)dθ,(5.9)

where

hλ(θ) =
Q(eiθ)− Q̄(eiθ)

Qλ(eiθ)
|σ(eiθ)|2.

Now,

d

dλ
hλ(θ) =

[Q(eiθ)− Q̄(eiθ)]2

Qλ(eiθ)2
|σ(eiθ)|2 ≥ 0,

and hence hλ(θ) is a monotonically nondecreasing function of λ for all θ ∈ [−π, π].
Consequently, hλ tends pointwise to h0 as λ→ 0. Therefore,∫ π

−π
hλ(θ)dθ → +∞ as λ→ 0.(5.10)

In fact, if ∫ π

−π
hλ(θ)dθ → α <∞ as λ→ 0,(5.11)

then {hλ} is a Cauchy sequence in L1(−π, π) and hence has a limit in L1(−π, π)
which must equal h0 almost everywhere. However, h0, having poles in [−π, π], is not
summable and hence, as claimed, (5.11) cannot hold.

Consequently, by virtue of (5.9),

Dq−q̄ϕ(qλ)→ +∞ as λ→ 0

for all q ∈ D+
n and q̄ ∈ ∂D+

n , and hence, in view of Lemma 26.2 in [28], ϕ is essentially
smooth. Then it follows from Theorem 26.3 in [28] that the subdifferential of ϕ is
empty on the boundary of D+

n , and therefore ϕ cannot have a minimum there.
Thus we have proven the following result.
Theorem 5.5. For each partial covariance sequence c and each Schur polynomial

σ(z), there exists an (n+ 1)-vector q̂ in D+
n which is a minimum for ϕ.

Consequently, by virtue of Theorem 5.2, there does exist a solution to the rational
covariance extension problem for each partial covariance sequence and zero polynomial
σ(z), and, in view of Theorem 5.3, this solution is unique.

These theorems have the following corollary.
Corollary 5.6 (Georgiou’s conjecture). For each partial covariance sequence

c and each Schur polynomial σ(z), there is a unique Schur polynomial a(z) such that
(4.1) and (4.2) hold.

Hence, we have given an independent proof of the weaker version of Theorem 2.1
conjectured by Georgiou, but not of the stronger version of [7] which states that the
problem is well posed in the sense that the one-to-one correspondence between σ(z)
and a(z) is a diffeomorphism.
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6. Some numerical examples. Given an arbitrary partial covariance sequence
c0, c1, . . . , cn and an arbitrary zero polynomial σ(z), the constructive proof of Geor-
giou’s conjecture provides algorithmic procedures for computing the corresponding
unique modeling filter, which are based on the convex optimization problem to mini-
mize the functional (2.18) over all q0, q1, . . . , qn such that (2.19) holds.

In general such procedures will be based on the gradient of the cost functional ϕ,
which, as we saw in section 5, is given by

∂ϕ

∂qk
(q0, q1, . . . , qn) = ck − c̄k,(6.1)

where

c̄k =
1

2π

∫ π

−π
eikθ
|σ(eiθ)|2
Q(eiθ)

dθ for k = 0, 1, 2, . . . , n(6.2)

are the covariances corresponding to a process with spectral density

|σ(eiθ)|2
Q(eiθ)

= c̄0 + 2
∞∑
k=1

c̄k cos(kθ).(6.3)

The gradient is thus the difference between the given partial covariance sequence
c0, c1, . . . , cn and the partial covariance sequence corresponding to the choice of vari-
ables q0, q1, . . . , qn at which the gradient is calculated. The minimum is attained when
this difference is zero.

The following simulations have been done by Per Enqvist, using Newton’s method
(see, e.g., [23, 26]), which of course also requires computing the Hessian (second-
derivative matrix) in each iteration. A straightforward calculation shows that the
Hessian is the sum of a Toeplitz and a Hankel matrix. More precisely,

Hij(q0, q1, . . . , qn) =
1

2
(di+j + di−j), i, j = 0, 1, 2, . . . , n,(6.4)

where

dk =
1

2π

∫ π

−π
eikθ
|σ(eiθ)|2
Q(eiθ)2

dθ for k = 0, 1, 2, . . . , 2n(6.5)

and d−k = dk. Moreover, d0, d1, d2, . . . , d2n are the 2n+ 1 first Fourier coefficients of
the spectral representation

|σ(eiθ)|2
Q(eiθ)2

= d0 + 2
∞∑
k=1

dk cos(kθ).(6.6)

The gradient and the Hessian can be determined from (6.1) and (6.4), respectively, by
applying the inverse Levinson algorithm (see, e.g., [27]) to the appropriate polynomial
spectral factors of Q(z) and Q(z)2, respectively, and then solving the resulting linear
equations for c̄0, c̄1, . . . , c̄n and d0, d1, d2, . . . , d2n; see [12] for details.

To illustrate the procedure, let us again consider the sixth-order spectral envelopes
of Figures 2.1 and 2.2 together with the corresponding zeros and poles. Hence, Figure
6.1 illustrates the periodogram for a section of speech data together with the corre-
sponding sixth-order maximum entropy spectrum, which, since it lacks finite zeros,
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becomes rather “flat.” The location of the corresponding poles (marked by ×) in the
unit circle is shown next to it. The zeros (marked by ◦) of course all lie at the origin.

Now, selecting the zeros appropriately as indicated to the right in Figure 6.2, we
obtain the poles as marked, and the corresponding sixth-order modeling filter produces
the spectral envelope to the left in Figure 6.2. We see that the second solution has
a spectral density that is less flat and provides a better approximation, reflecting
the fact that the filter is designed to have transmission zeros near the minima of the
periodogram.

7. Conclusions. In [13, 14] Georgiou proved that to each choice of partial co-
variance sequence and numerator polynomial of the modeling filter there exists a
rational covariance extension yielding a pole polynomial for the modeling filter, and
he conjectured that this extension is unique so that it provides a complete parame-
terization of all rational covariance extensions. In [7] we proved this long-standing
conjecture in the more general context of a duality between filtering and interpolation
and showed that the problem is well posed in a very strong sense. In [6] we connected
this solution to a certain Riccati-type matrix equation that sheds further light on the
structure of this problem.
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However, our proof in [7], as well as the existence proof of Georgiou [14], is non-
constructive. In this paper we presented a constructive proof of Georgiou’s conjecture,
which, although it is weaker than our result in [7], provides us for the first time with
an algorithm for solving the problem of determining the unique pole polynomial cor-
responding to the given partial covariance sequence and the desired zeros.

This is done by means of a constrained convex optimization problem, which can
be solved without explicitly computing the values of the cost function and which
has the interesting property that the cost function is finite on the boundary but the
gradient is not. In this context, Georgiou’s conjecture is equivalent to establishing
that there is a unique minimum in the interior of the feasible region. Specialized to
the maximum entropy solution, this optimization problem was seen to be a dual to
the well-known problem of maximizing the entropy gain.
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Abstract. In this paper we address the question of whether the open-loop exponential growth
rate of a linear system can be improved by a feedback in such a way that this improvement is robust
with respect to small delays in the feedback loop. When the input operator is admissible, and the
class of possible feedbacks consists of compact operators, we find that if a feedback can improve the
exponential growth rate, then it can do so robustly. Furthermore, we find that if the control space
is finite dimensional and a bounded feedback cannot be found to improve exponential stability, then
a large class of unbounded feedbacks cannot improve the exponential growth rate robustly, even if
such feedbacks can improve the exponential growth rate in the absence of delays.

Key words. robustness, delays, feedback, control, distributed parameter systems
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1. Introduction. In this paper we are concerned with robustness of stability
with respect to small delays in the feedback loop for distributed parameter systems.
This issue has been analyzed a great deal when the stability in question is either
input-output stability or modal stability. For a sample see Logemann, Rebarber,
and Weiss [10] (for the frequency domain), Logemann and Rebarber [11], Datko,
Lagnese, and Polis [3], Datko [4] (for modal stability of partial differential equations),
and Logemann and Townley [12] (for modal stability of neutral systems). To our
knowledge, there are no results available in the literature on robustness of state space
stability for distributed parameter systems. If input-output stability is not robust,
then in most situations it follows immediately that any state space stability is not
robust. However, in general, robustness of input-output stability does not imply
robustness of exponential stability, the most useful kind of state space stability. One
reason for this is that, in general, input-output stability does not imply exponential
stability. A more immediate difficulty is that the state space for the system with delay
in the feedback is dependent on the delay.

In this paper we address the question of whether the exponential growth rate
of a system can be improved by a feedback in such a way that this improvement is
robust with respect to small delays in the feedback loop. When the input operator
is admissible, and the class of feedbacks consists of compact operators, we find, in
Theorem 3.5, that if a compact feedback can improve the exponential growth rate,
then it can do so robustly when a natural state space is chosen for the delayed system.
Sometimes it is possible to improve the exponential growth rate with an unbounded
feedback when it is not possible with a bounded feedback. We find in Theorem 4.1
that if the control space is finite dimensional and a bounded feedback cannot be found
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to improve exponential stability, then a large class of unbounded feedbacks cannot
improve the exponential growth rate robustly, even if such feedbacks can improve the
exponential growth when there are no delays present in the feedback loop.

We consider state space systems of the form

ẋ(t) = Ax(t) +Bu(t),(1.1)

where A is the infinitesimal generator of a strongly continuous semigroup S(t) on X,
a Hilbert space with norm ‖ · ‖. Let R(s,A) = (sI −A)−1. Let

Cα = {s ∈ C | Re (s) > α},
and for any Hilbert space X, let H∞ω (X) be the set of all B(X)-valued functions f(s)
which are holomorphic in Cω and for which sups∈Cω ‖f(s)‖ <∞. The growth bound
ω0 of S(t) is given by

ω0 = lim
t→∞

ln(‖S(t)‖B(X))

t
= inf{ω | R(s,A) ∈ H∞ω (X)}.(1.2)

We let X−1 denote the closure of X in the norm ‖x‖−1 = ‖R(λ,A)x‖ for some λ in
the resolvent set of A. The control space is a Hilbert space U with norm ‖ · ‖U , and
B : U → X−1 is an admissible input operator for S(t); for details about admissibility
see Weiss [20, 22]. Two consequences of the admissibility of B are that for every
F ∈ B(X,U),

• A − BF is the infinitesimal generator of a strongly continuous semigroup
SF (t);
• the function FR(s,A)B is analytic and bounded in Cα for some α ∈ R.

For F ∈ B(X,U) we associate with (1.1) the observation

y(t) = Fx(t) .(1.3)

Then (1.1) and (1.3) determine a linear open-loop, input-output system with transfer
function HF given by

HF (s) = FR(s,A)B .(1.4)

Note that unity output feedback u(t) = −y(t) for the input-output system (1.1) and
(1.3) coincides with state feedback control u(t) = −Fx(t) for (1.1).

We consider the closed-loop system with unity gain and delay ε in the feedback
loop, described by Figure 1, equivalently (1.1), (1.3) with feedback control u(t) =
v(t)−Fx(t− ε). The block with transfer function e−εs represents a delay by ε, where
ε ≥ 0. The transfer function Gε for the closed-loop system (i.e., the transfer function
from v to y) is given by

Gε(s) = HF (s)
(
I + e−εsHF (s)

)−1
.(1.5)

In the next section we obtain a sufficient condition for the existence of a feedback
which robustly improves stability in a frequency domain sense; see Definition 2.6
and Proposition 2.7. In section 3 we show that the same condition is necessary and
sufficient for the existence of a feedback which robustly improves stability in a natural
state space setting; see Proposition 3.1, Definition 3.2, and Theorem 3.5. In section
4 we show that the necessary and sufficient condition of section 3 is also necessary
and sufficient when a large class of unbounded feedbacks is used; see Theorem 4.1. In
section 5 we give examples to illustrate our main results.



232 RICHARD REBARBER AND STUART TOWNLEY

6
–

j-v u

+

- HF
-
ys

e−εs �

Fig. 1. Feedback system with delay.

2. Frequency domain robustness for state space systems. Let K(X,U)
denote the set of compact operators from X into U . For systems of the form (1.1) we
use the following definition of exponential stabilizability.

Definition 2.1. The system (1.1) is exponentially α-stabilizable if for every
ν > α there exists a feedback operator F ∈ K(X,U) and Mν > 0 such that

‖SF (t)‖B(X) ≤Mνe
νt.

Remark 2.2. When the input space U is finite dimensional, so that K(X,U) =
B(X,U), Definition 2.1 coincides with the usual notion of closed-loop stabilizability
(see, for instance, Curtain [1] or Jacobson and Nett [8]). Infinite dimensional input
spaces U might arise in boundary control of partial differential equations in two or
more spatial variables. In such cases, compact feedback operators arise naturally via
integration over the boundary.

We now summarize from Rebarber [14] necessary conditions for (1.1) to be ex-
ponentially α-stabilizable (see [1] or [8] for similar conditions in the case where the
input space is finite dimensional). Let σ(A) denote the spectrum of A, and suppose
there exists ν ∈ R such that

σu(A, ν) := {λ | λ ∈ σ(A) and Re (λ) ≥ ν}
is bounded and can be isolated from the remaining part σs(A, ν) of the spectrum of
A by a simple closed contour Γ. Following [9, Theorem 6.17], let

P =

∫
Γ

R(s,A) ds and N = I − P,

so that P is the projection corresponding to σu(A, ν) and N is the projection corre-
sponding to σs(A, ν). Let Xu = PX and Xs = NX, so that X can be represented by
Xu ⊕Xs. Then (1.1) can be decomposed into the two systems

ẋu(t) = Auxu(t) +Buu(t),

ẋs(t) = Asxs(t) +Bsu(t),

where Au = AP , As = AN , Bu = PB, and Bs = NB.
Lemma 2.3 (see [14, Theorem 1]). If (A,B) is exponentially α-stabilizable, then

for every ν > α, (A,B) has spectrum decomposition at ν in the sense that σu(A, ν) is
bounded and can be isolated from σs(A, ν) by a simple closed contour, and
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(a) σu(A, ν) consists of finitely many eigenvalues of finite multiplicity;
(b) As generates a strongly continuous semigroup Ss(t) such that ‖Ss(t)‖ ≤

Mνe
νt for some Mν ∈ R;

(c) (Au, Bu) is a controllable pair.
The following lemma shows that if F ∈ K(X,U), then the transfer function HF ,

for (1.1) and (1.3), is strictly proper in some right half-plane.
Lemma 2.4. Let A be the generator of a semigroup with growth bound ω0, B ∈

B(U,X−1) be an admissible input operator for S(t), and F ∈ K(X,U). Then for every
γ > ω0,

lim
|s|→∞
s∈Cγ

‖HF (s)‖B(U) = 0.(2.1)

This result was proved in Curtain [1, Lemma 3.7] in the case where the input
space U is finite dimensional.

Proof. F is compact if and only if F ∗ is compact (Schauder’s theorem) and B∗ is
output admissible if B is input admissible (Salamon [17, Lemma 1.3.5]). Therefore,
since the growth bound of the semigroup S∗(t) generated by A∗ is the same as that
of S(t),

‖HF (s)‖B(U) = ‖FR(s,A)B‖B(U) = ‖B∗R(s,A∗)F ∗‖B(U)

holds for all s ∈ Cω0 , where we make the identification between the Hilbert spaces X
and U and their duals.

Step 1. We claim that for each x ∈ X and γ > ω0,

lim
|s|→∞
s∈Cγ

‖B∗R(s,A∗)x‖U = 0.(2.2)

To see this, fix x ∈ X and let {sn}∞n=1 ∈ Cγ and limn→∞ |sn| = ∞. If Re (sn) → ∞,
then it follows from [21, Proposition 2.3], that

lim
n→∞ ‖B

∗R(sn, A
∗)x‖ = 0.

Therefore we assume that Re (sn) is bounded, so there exists η such that γ < Re (sn) ≤
η.

Write s ∈ Cγ as a+ ib for a, b ∈ R. Then

R(s,A∗)x =

∫ ∞
0

e−ate−ibtS∗(t)x dt(2.3)

=

∫ π/b

0

e−ate−ibtS∗(t)x dt+

∫ ∞
π/b

e−ate−ibtS∗(t)x dt.(2.4)

By making a change of variable in the second integral in (2.4) and using the semigroup
property of S∗(t), we see that (2.4) can be written as

R(s,A∗)x =

∫ π/b

0

e−ate−ibtS∗(t)x dt−
∫ ∞

0

e−ate−ibtS∗(t)e−aπ/bS∗(π/b)x dt.(2.5)

Multiplying both (2.3) and (2.5) on the left by B∗/2 and adding give

B∗R(s,A∗)x = (1/2)

∫ π/b

0

e−ate−ibtB∗S∗(t)x dt

+ (1/2)B∗
∫ ∞

0

e−ate−ibtS∗(t)[I − e−aπ/bS∗(π/b)]x dt.
(2.6)
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To analyze the first term in (2.6), note that by the output admissibility of B∗,

‖B∗S∗(·)x‖U ∈ L2[0, π/b].

Hence, using Hölder’s inequality, there exists M1 such that∥∥∥∥∥(1/2)

∫ π/b

0

e−ate−ibtB∗S∗(t)x dt

∥∥∥∥∥
U

≤ M1√
b

(2.7)

for s ∈ Cγ .
We can rewrite the second term in (2.6) as

(1/2)B∗R(a+ ib, A∗)[(I − e−aπ/bS∗(π/b))x].

By Proposition 2.3 in [21] we see that ‖B∗R(a + ib, A)‖B(X,U) is uniformly bounded
for a+ ib ∈ Cγ , so there exists M2 such that∥∥∥∥(1/2)B∗

∫ ∞
0

e−ate−ibtS∗(t)[I − e−aπ/bS∗(π/b)]x dt
∥∥∥∥
U

≤M2‖[I − e−aπ/bS∗(π/b)]x‖
(2.8)

for s ∈ Cγ . We see from the strong continuity of S(t) that (2.8) → 0 as |b| → ∞.
If we write sn = an + bn, then γ < an < η and |bn| → ∞. We see from (2.6),

(2.7), and (2.8) that ‖B∗R(sn, A
∗)x‖U → 0 as n→∞.

Step 2. Using Step 1, it is clear that if F ∗ is of finite rank, then

lim
|s|→∞
s∈Cγ

‖B∗R(s,A∗)F ∗‖B(U) = 0.(2.9)

Step 3. Since any Hilbert space has the finite approximation property, it then fol-
lows, by using a standard finite rank approximation of the compact operator
F ∗, that (2.9) is true if B∗ is admissible and F ∗ is compact. This completes the
proof.

Define

αmin = inf{α | (A,B) is exponentially α-stabilizable}.

The following result, which is of interest in its own right, will be used in the proof of
Proposition 2.7.

Proposition 2.5. Suppose B is admissible and F ∈ K(X,U). If β > αmin, then

lim
|s|→∞
s∈Cβ

‖HF (s)‖B(U) = 0.

Proof. If αmin < ν1 < β, then (A,B) is exponentially ν1-stabilizable. Let ν1 <
ν2 < β. Using a spectrum decomposition for (A,B) at ν2, we see that HF (s) =
Hu(s) + Hs(s), where Hu(s) = FR(s,Au)Bu and Hs(s) = FR(s,As)Bs. Since Au
has spectrum consisting of finitely many eigenvalues and F and Bu are bounded,

lim
|s|→∞
s∈Cβ

‖Hu(s)‖B(U) = 0.
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Since β > ν2, we see from Lemma 2.4 that

lim
|s|→∞
s∈Cβ

‖Hs(s)‖B(U) = 0.

This completes the proof.
We now formulate the notion of robustly improving stability in a frequency domain

context. Let

α0(HF ) = inf{α | HF ∈ H∞α (U)}(2.10)

denote the input-output growth rate of HF . We are interested in using feedback to
improve the stability of (1.1), that is, in finding a feedback F so that the growth rate
of G0 is less than the growth rate of HF , and in determining whether this improved
stability is robust with respect to delays. Because our interest is in improving stability,
we emphasize the dependence on the growth rate α in our definitions.

Definition 2.6.
(a) Gε is α-stable if Gε ∈ H∞α (U). It is well known that this property is

equivalent to the property: if ŷ = Gεv̂ and e−α·v(·) ∈ L2([0,∞), U), then
e−α·y(·) ∈ L2([0,∞), U).

(b) G0 is robustly α-stable with respect to delays if there is an ε0 > 0 such that
for any ε ∈ [0, ε0],Gε is α-stable.

(c) We say that unity feedback robustly improves the stability of HF if there
exists α < α0(HF ) such that G0 is robustly α-stable with respect to delays.

We can now give a sufficient condition under which we can robustly improve
stability in the sense of Definition 2.6.

Proposition 2.7. If αmin < ω0, then there exists F ∈ K(U,X) for which unity
feedback robustly improves the stability of HF (s).

Proof. By the definition of αmin, for any α ∈ (αmin, ω0) we can find F ∈ K(X,U)
so that the semigroup generated by A−BF is α-stable. Hence G0 ∈ H∞α (U), that is,
G0 is α-stable. From Proposition 2.5 we see that for α ∈ (αmin, ω0) and F ∈ K(X,U),

lim sup
|s|→∞
s∈Cα

‖HF (s)‖B(U) = 0.

Hence there exist δ ∈ (0, 1) and m1 > 0 such that

‖HF (s)‖B(U) < 1− δ, s ∈ Cα ∩ {|s| ≥ m1}.
Therefore the Neumann series for (I + e−εsHF (s))−1 converges uniformly in this
region, so that Gε(s) is bounded in Cα ∩ {|s| ≥ m1}. Since HF (s)(I + HF (s))−1 is
bounded in the compact set Cα ∩ {|s| ≤ m1}, a simple perturbation argument then
shows that there exists ε∗ > 0 such that for any ε ∈ [0, ε∗], HF (s)(I + e−εsHF (s))−1

is also bounded in Cα ∩{|s| < m1}. It follows that HF (I + e−ε·HF )−1 is α-stable for
all ε ∈ [0, ε∗] and therefore G0 is robustly α-stable with respect to delays.

Hence, to show that we have robustly improved the stability, all that remains is
to show that we have in fact improved the stability. To do this it suffices to show that
α0(HF ) = ω0, which is not a priori guaranteed, since the input-output growth rate α0

might be less than the exponential growth rate ω0. Clearly α0(HF ) ≤ ω0. Moreover,
since (A−BF ) is α-stable, (A−ω0I,B, F ) is stabilizable and detectable in the sense
discussed in Rebarber [15], and so results in [15] guarantee that input-output stability
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of (A− ω0I,B, F ) is equivalent to exponential stability. Hence for ε > 0, exponential
(ω0 − ε)-stability of S(t) is equivalent to (ω0 − ε)-stability of HF . In particular, if
HF ∈ H∞ω0−ε(U) for some ε > 0, then S(t) is exponentially (ω0−ε)-stable. This would
contradict the definition of ω0, so α0(HF ) cannot be less than ω0, and the proof is
complete.

3. State space robustness. In this section we consider robustness of exponen-
tial stability in a natural state space for the closed-loop system with delay in the
feedback loop. We make the same assumptions on A,B, and F as in section 2, so
that, in particular, B is admissible for S(t) and F is compact. A closed-loop state
space realization for the system described by Figure 1 with v ≡ 0 is given, formally,
by the differential equation

ẋ(t) = Ax(t)−BFx(t− ε), y(t) = Fx(t),(3.1)

where x(t) takes values in the original state space X. In order to show that robustly
improved stability in an input-output context can be strengthened to the robustly
improved exponential stability for (3.1), we must first show that (3.1) is well-posed
in some natural state space which takes account of the delay. A natural choice for
this state space is X × L2(−ε, 0;X). The well-posedness of (3.1) in this state space
is summarized as follows.

Proposition 3.1. For each x0 ∈ X and φ0 ∈ L2(−ε, 0;X),

(a) there exists a unique x(·) evolving continuously in X which satisfies

x(t) = S(t)x0 −
∫ t

0

S(t− τ)BFx(τ − ε)dτ, t ≥ 0,(3.2)

with x(t) = φ0(t) for t ∈ [−ε, 0]. Furthermore, for each t ≥ 0 there exists
M1 > 0 such that

‖x(t)‖2 ≤M1(‖x0‖2 + ‖φ‖2L2(−ε,0;X));(3.3)

(b)

ẋ(t) = Ax(t)−BFx(t− ε) for almost every (a.e.) t ≥ 0,(3.4)

holds as an equation in X−1;
(c) let Φ(t) be defined for t ≥ 0 by

Φ(t)(r) = x(t+ r), r ∈ [−ε, 0].(3.5)

Then for each t ≥ 0, Φ(t) ∈ L2(−ε, 0;X) and there exists M2 > 0 such that

‖Φ(t)‖2L2(−ε,0;X) ≤M2(‖x0‖2X + ‖φ‖2L2(−ε,0;X));(3.6)

(d) the formula

TF,ε(t)
(
x0

φ0

)
=

(
x(t)
Φ(t)

)
defines a strongly continuous semigroup on X × L2(−ε, 0;X).
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Proof. (a) The main step in the proof is the construction of a continuous solution
trajectory x(·). This is achieved by piecing together segments on the intervals [nε, (n+
1)ε), for n ∈ N. Indeed, given that

x(t) = φ0(t) for t ∈ [−ε, 0],

we can define

x(t) = S(t− nε)x(nε)−
∫ t−nε

0

S(t− nε− τ)BFx(τ + nε− ε)dτ, nε ≤ t ≤ (n+ 1)ε

recursively for n ∈ N. By the admissibility of B, for every n ∈ N, x(·) is continuous
on [0, (n+ 1)ε) with values in X and Fx(·) ∈ L2(nε, (n+ 1)ε;U). Using induction, it
is easy to verify that x(·) satisfies (3.2) and (3.3) for t ∈ [0, nε) and all n ∈ N , thus
proving (a).

(b) Since x0 ∈ X and Fx(· − τ) ∈ L2(0, T ;U) for all T , this follows immediately
from Theorem 3.9 in [20].

(c) This follows from the construction of Φ from x(·).
The proof of (d) is similar to the case when B is bounded (see for example Curtain

and Zwart [2]). Indeed, given x0, φ0, and s, let g(t) = x(t+ s). Then

g(t) = x(t+ s) = S(t+ s)x0 −
∫ t+s

0

S(t+ s− τ)BFx(τ − ε)dτ

= S(t)x(s)−
∫ t

0

S(t− σ)BFx(s+ σ − ε)dσ .

Hence g(·) is the solution of (3.2) corresponding to initial conditions g(0) = x(s) and
g(θ) = x(s+ θ) for θ ∈ [−ε, 0]. It now follows from the definition of TF,ε(t) that

TF,ε(t+ s)

(
x0

φ0

)
=

(
g(t)

g(t+ ·)
)

= TF,ε(t)
(

x(s)
x(s+ ·)

)
= TF,ε(t)TF,ε(s)

(
x0

φ0

)
which is the semigroup property for TF,ε(t). Strong continuity of the semigroup TF,ε
is an easy consequence of continuity of x(·) and the estimates (3.3) and (3.6).

The following definition is a state space analogue of parts (b) and (c) of Defini-
tion 2.6.

Definition 3.2.
(a) F ∈ K(X,U) robustly exponentially α-stabilizes (1.1) if there exists ε0 > 0

such that for any ε ∈ [0, ε0] the semigroup TF,ε is α-stable.
(b) F robustly improves the exponential stability of (1.1) if F robustly exponen-

tially α-stabilizes (1.1) for some α < ω0 (see (1.2)).
We will show that exponential stabilization of the delay-free system by compact

feedback is robust if the corresponding input-output stabilization is robust, in par-
ticular if αmin < ω0. Our approach is to show that the resolvent of the generator
of TF,ε(t) is bounded in Cα, which shows, using Prüss [13, Proposition 2], that the
semigroup TF,ε(t) is α-stable. Instead of determining the generator of TF,ε, we use the
fact that the resolvent of the generator is the Laplace transform of TF,ε(t). To this
end we take Laplace transforms of (3.2) and (3.5) which, after some rearrangement,
gives

x̂(s) = (I + e−εsR(s,A)BF )−1R(s,A)

[
x0 − e−εsBF

∫ 0

−ε
e−stφ0(t)dt

]
(3.7)
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and, for r ∈ [−ε, 0],

Φ̂(s)(r) = e−sr
(
x̂(s) +

∫ 0

r

e−stφ0(t)dt

)
.(3.8)

If we show that

‖(I + e−εsR(s,A)BF )−1R(s,A)‖B(X)

and

‖(I + e−εsR(s,A)BF )−1R(s,A)B‖B(U,X)

are bounded in Cα, then it will follow that∥∥∥∥( x̂(s)

Φ̂(s)

)
‖X⊗L2(−ε,0;X) ≤M‖

(
x0

φ0

)∥∥∥∥
X⊗L2(−ε,0;X)

(3.9)

for some M > 0 and all s ∈ Cα so that TF,ε(t) is α-stable.
Lemma 3.3. If there exists M > 0 such that for all s ∈ Cα

‖(I +R(s,A)BF )−1R(s,A)‖B(X) ≤M,(3.10a)

‖(I + e−εsHF (s))−1‖B(U) ≤M,(3.10b)

‖HF (s)(I + e−εsHF (s))−1‖B(U) ≤M,(3.10c)

then there exists M̃ > 0 such that

‖(I + e−εsR(s,A)BF )−1R(s,A)‖B(X) ≤ M̃,(3.11)

‖(I + e−εsR(s,A)BF )−1R(s,A)B‖B(U,X) ≤ M̃(3.12)

for all s ∈ Cα.
Remark 3.4. Note that

R(s,A−BF ) = (I +R(s,A)BF )−1R(s,A),

so (3.10a) is equivalent to exponential α-stability of the closed-loop delay-free state
space system, whilst (3.10b) and (3.10c) are equivalent to input-output α-stability of
the closed-loop system with delay.

Proof. Since B is admissible for the semigroup generated by A, it is also admissible
for the semigroup generated by A−BF (see Salamon [17]), which means that R(s,A−
BF )B is bounded in the same half-plane as R(s,A− BF ); see [21, Proposition 2.3].
Hence

‖(I +R(s,A)BF )−1R(s,A)B‖B(U,X) ≤M.(3.13)

Let

I(s) = (I +R(s,A)BF )−1R(s,A)B∆(s)S(s) + (I +R(s,A)BF )−1R(s,A),(3.14)

where

S(s) = (I + HF (s))(I + HF (s)e−εs)−1F (I +R(s,A)BF )−1R(s,A)



ROBUSTNESS OF EXPONENTIAL STABILITY 239

and

∆(s) = (1− e−εs).
We will show that

(I + e−εsR(s,A)BF )−1R(s,A) = I(s).(3.15)

This would verify (3.11), since all the terms on the right side of (3.14) are, by hypoth-
esis, bounded in Cα. (3.12) would then follow because

(I + e−εsR(s,A)BF )−1R(s,A)B = I(s)B ,

and, using (3.14), I(s)B is clearly bounded in Cα, since the only difficult term is
S(s)B, which is bounded in Cα by (3.13).

For brevity, we write R(s,A) = R(s). Then

(I + e−εsR(s)BF )−1R(s)− I(s)

= (I + e−εsR(s)BF )−1(R(s)− (I + e−εsR(s)BF ))I(s).

Substituting I(s) from (3.14) into this expression, we obtain, after a number of
straightforward manipulations,

(R(s)− (I + e−εsR(s)BF ))I(s)

=
[
(I +R(s)BF )− {(I + e−εsR(s)BF )

× [(I +R(s)BF )−1R(s)B∆(s)(I + HF (s))(I + HF (s)e−εs)−1F + I]}]
× (I +R(s)BF )−1R(s)

= ∆(s){R(s)BF − [(I + e−εsR(s)BF )(I +R(s)BF )−1R(s)B

× (I + HF (s))(I + HF (s)e−εs)−1F
]}(I +R(s)BF )−1R(s).

(3.16)

Recall that

HF (s) = FR(s)B ,

F (I +R(s)BF )−1R(s)B = HF (s)(I −HF (s))−1,

and

(I +R(s)BF )−1R(s)B = R(s)B(I + HF (s))−1 .

Using these inside the second pair of square brackets in (3.16), expanding, and sim-
plifying, we see that (3.16) is zero. Therefore

(I + e−εsR(s,A)BF )−1R(s,A) = I(s)

as claimed, and the proof is complete.
Theorem 3.5. It is possible to robustly improve the exponential stability of (1.1)

in the sense of Definition 3.2 if and only if αmin < ω0.
Proof. The “only if” part follows immediately from the definition of αmin.
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For the “if” part, we first show that for any α ∈ (αmin, ω0), there exists ε1 such
that (3.10a), (3.10b), and (3.10c) are true for ε ∈ (0, ε1). By the definition of αmin,
for any α ∈ (αmin, ω0) we know that there exists F ∈ K(X,U) such that the delay-free
closed-loop system is exponentially α-stable, i.e., so that (3.10a) holds for s ∈ Cα.
Since α < ω0, the proof of Proposition 2.7 shows that unity feedback robustly improves
the stability of HF . This establishes the existence of ε1 such that (3.10b) and (3.10c)
are bounded in Cα for any ε ∈ (0, ε1). Lemma 3.3 now implies that (3.11) and (3.12)
are true in Cα for any ε ∈ (0, ε1). Therefore, (3.9) holds in Cα for some M and for
any ε ∈ (0, ε1). This shows that the resolvent of the semigroup TF,ε(t) is bounded in
Cα, so that TF,ε(t) is α-stable. Hence F robustly improves the exponential stability
of (1.1) in the sense of Definition 3.2.

4. Unbounded feedback. We have seen that if B is an admissible input op-
erator for S(t), then we can robustly improve the exponential stability of (1.1) by
compact feedback if and only if αmin < ω0. In [15] a definition of exponential stabiliz-
ability (which we call regular stabilizability) is given which allows F to be unbounded
provided that (A,B, F ) is a regular system and unity gain is an admissible feedback.
We refer the reader to Weiss [22] for details about regular systems, and to Weiss
[23] for details about admissible feedbacks. We mention here that if the feedback
loop is closed with unity gain and unity gain is an admissible feedback for (A,B, F ),
then the closed-loop generator is A − BFL, where FL is the Lebesgue extension of
F (see [22]), and that the formulas (1.4) and (1.5) hold when F is replaced by FL.
Roughly speaking, we say that (1.1) is regularly stabilizable if A+BFL generates an
exponentially stable semigroup. With this kind of stabilizability it can be possible to
improve the exponential stability of (1.1) even if αmin = ω0. (We should note here
that in the definition of αmin we still use the definition of stabilizability by compact
F .) However, we will show that whenever the input space U is finite dimensional, any
such improvement of stability is not robust with respect to delays.

Theorem 4.1. Suppose U is finite dimensional and αmin = ω0. If (1.1) is regu-
larly µ-stabilizable, where µ < ω0, then there exists sequences (εn) and (pn) with

εn > 0 , lim
n→∞ εn = 0 , pn ∈ Cω0

, lim
n→∞ |Im pn| =∞ ,

and such that for any n ∈ N, pn is a pole of Gεn .
Proof. Suppose (1.1) is regularly µ-stabilizable with µ < ω0 with the admissible

feedback F . We break the proof up into two cases.
Case 1. Suppose

lim sup
|s|→∞
s∈Cω0

‖R(s,A)‖B(X) =∞,

or, equivalently,

lim sup
|s|→∞
s∈C0

‖R(s,A− ω0I)‖B(X) =∞.(4.1)

Since A−BFL is the generator of a semigroup with growth rate µ, (A−ω0I,B, F ) is
stabilizable and detectable in the sense given in [15]. Combining this with (4.1), we
can conclude from (4.1) and Theorem 1.6 in [15] that

lim sup
|s|→∞
s∈C0

‖HF (s+ ω0)‖B(U) = lim sup
|s|→∞
s∈Cω0

‖HF (s)‖B(U) =∞.(4.2)
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By hypothesis, there exists F such that (A,B, F ) is a regular system and A−BFL is
µ-exponentially stable. From Proposition 4.1 in Weiss [22] it follows that the closed-
loop transfer function G0 for (A,B, F ) with unity gain is µ-stable. Hence, in the
terminology of [10], the identity operator I stabilizes HF (s+ω0), and the conclusion
of Theorem 4.1 follows immediately from Lemma 8.5 in [10].

Case 2. Suppose

lim sup
|s|→∞
s∈Cω0

‖R(s,A)‖B(X) <∞.(4.3)

Since u(t) = −FLx(t) is such that for any α ∈ (µ, ω0),∫ ∞
0

e−αt
(‖u(t)‖2U + ‖x(t)‖2) dt <∞,

we see that (1.1) is open-loop α-stabilizable as defined in Rebarber and Zwart [16].
By Theorem 2.11 in [16], for any α ∈ (µ, ω0) we have that {λ ∈ σ(A) | Reλ ≥ α}
contains no finite accumulation point (although ∞ might be an accumulation point)
and consists only of point spectrum with finite multiplicity; see also Theorem 3.5 in
Zwart [24] for a related result. Using this fact along with (4.3), we see that

σ1(A) = {λ ∈ σ(A) | Reλ = ω0}
consists of finitely many eigenvalues of finite multiplicity. Since {λ ∈ σ(A) | Reλ ≥ α}
contains no finite accumulation point, σ1(A) can be isolated from the remaining part,
σ2(A), of σ(A) by a simple closed contour Γ. We proceed as in [9], Theorem 6.17 (see
also the development before Lemma 2.3 in this paper) to decompose (1.5) into

ẋ1(t) = A1x1(t) +B1u(t),

ẋ2(t) = A2x2(t) +B2u(t),

where σ(A1) = σ1(A), σ(A2) = σ2(A), and the x1-subsystem is finite-dimensional.
By (4.3) and the fact that A2 does not have spectrum in Cω0 , ‖R(s,A2)‖ is bounded
on Cω0 . Using [13, Proposition 2], this shows that A2 generates an (ω0 − ε)-stable
semigroup for some ε > 0. It follows that exponential α-stabilizability of (1.1) by
bounded feedback is equivalent to α-stabilizability of the pair (A1, B1), which in
turn is equivalent to controllability of the pair (A1, B1). Since αmin = ω0, (1.1) is
not stabilizable by bounded feedback, we conclude that (A1, B1) is not controllable.
In particular, the (A1, B1)-subsystem has an uncontrollable mode λ, with Reλ =
ω0. This implies that (1.5) cannot be regularly α-stabilized for any α < ω0, which
contradicts our hypotheses. Therefore Case 2 cannot hold, so Case 1 holds and the
proof is complete.

5. Examples.
Example 1. To illustrate Theorem 3.5, we consider a heat equation with Neumann

boundary control on part of the boundary. Let Ω be a bounded open domain in Rn,
n = 2 or 3, with Lipschitz boundary Γ, and let Γ0 be a nonempty simply connected
subset of Γ. Let 〈·, ·〉 denote the real inner product in L2(Ω), ẇ denote differentiation
with respect to time t ≥ 0, ∂w/∂ν denote the normal derivative of w on Γ, and ∆ be
the Laplacian in Ω. Unless otherwise stated, ξ will denote a variable in Ω and ζ will
denote a variable in Γ.



242 RICHARD REBARBER AND STUART TOWNLEY

We now consider the following heat equation with Neumann boundary control on
Γ0 and Dirichlet data on Γ \ Γ0:

ẇ(ξ, t) = ∆w(ξ, t), ξ ∈ Ω, t ≥ 0,(4.1a)

w(ζ, t) = 0, ζ ∈ Γ \ Γ0, t ≥ 0,(4.1b)

∂w(ζ, t)

∂ν
= u(ζ, t), ζ ∈ Γ0, t ≥ 0,(4.1c)

where u ∈ L2[0, T ;U ], with U = L2(Γ0).
We wish to represent (4.1a)–(4.1c) as a state space equation in X = L2(Ω). Let

the operator A : D(A)→ L2(Ω) be defined by

Aw = ∆w, D(A) =

{
z ∈ L2(Ω) | ∆z ∈ L2(Ω), z|Γ\Γ0

= 0,
∂z

∂ν
|Γ0

= 0

}
.

It is well known that A is negative self-adjoint and has compact resolvent. In partic-
ular, for any β ∈ R, σu(A, β) consists of finitely many eigenvalues, each with finite
multiplicity.

We define the Neumann map N as follows: If f is defined on Γ0, then N f = R
if R is the (distributional) solution to

∆R(ξ) = 0, ξ ∈ Ω,

with boundary conditions

R(ζ) = 0, ζ ∈ Γ \ Γ0,

R(ζ) = f(ζ), ζ ∈ Γ0,

where the boundary values are to be understood in the sense of trace.
It is a standard exercise to show that (4.1a)–(4.1c) can be put into the form (1.1)

in X−1 (where w is now the dependent variable instead of x) with

B = −AN .

In order to apply the results of sections 2 and 3, we need to show that B is admissible
for the semigroup S(t) generated by A. Let λ be in the resolvent set of A, and define
X−1/2 as the completion of X in the norm ‖(λI − A)−1/2 · ‖. It follows from Weiss
[21] and Hansen and Weiss [7] that if the range of B is contained in X−1/2, then B is
admissible. From Grisvard [6],

D((−A)1/2) = {z ∈ H1(Ω) | z = 0 on Γ \ Γ0},

so from elliptic theory

N ∈ B(L2(Γ),D((−A)1/2)).

Hence we see that the range of B = −AN is contained in X−1/2, so B is admissible.
Therefore the results in sections 2 and 3 show that if F ∈ K(X,U) is such that
u(ζ, t) = Fw(ξ, t) is an exponentially α-stabilizing feedback, then this stability is
robust in the natural state spaces described in section 3.
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As a specific example, let Ω = {(x, y) | 0 < x < π, 0 < y < π} ⊂ R2 and Γ0 be
{0 ≤ x ≤ π}. The eigenvalues of A are easily computed to be

λj,k = −
((

j +
1

2

)2

+ k2

)
, j ∈ N, k ∈ Z+,

with associated eigenvectors

Φj,k(x, y) = sin(kx) cos((j + 1/2)y), j ∈ N, k ∈ Z+.

Since the eigenvalue with the largest real part is λ0,1 = −5/4, the open loop system is
exponentially (−5/4)-stable. The eigenvalue with the second largest real part is λ1,1,
which is equal to −13/4. In order to improve stability to (−13/4)-stability, we use a
one dimensional bounded feedback of the form

F : X → U, (Fw) = 〈η, w〉g

with η ∈ X and g ∈ U . With this feedback (4.1a)–(4.1c) are equivalent to

ẇ(t) = Aw(t) +Bgu(t), u(t) = 〈η, w(·, t)〉.

We can find η so that F of this form exponentially −13/4-stabilizes (4.1a)–(4.1c)
if and only if (Au, Bg) is controllable on Xu, which is the closed span of Φ0,1 in X
(see Theorem 6.1 in Triggiani [18]). In particular, suppose the trace Φ0,1|Γ0

(which
is sinx) is not orthogonal to g in L2(Γ). Then we can use the characterization of the
adjoint of AN found in Triggiani [19] to show that −AN g is not orthogonal to Φ0,1

in L2(Ω), and so (Au, Bg) is controllable on Xu as required.
Example 2. Let X be a Hilbert space, and let A be a nonnegative self-adjoint

operator on X with domain D(A). To illustrate Theorem 4.1 we consider a large class
of hyperbolic systems of the form

ẍ(t) +Ax(t) = Bu(t).(4.2)

We assume that B : U → X−1, where U is finite dimensional, is admissible for
this system in the sense that B = [0, B]T , is admissible for the semigroup on H =
D(A1/2)⊕X generated by

A =

[
0 I
−A 0

]
.

The first-order state space equation for (4.2) is

ż(t) = Ax(t) + Bu(t).(4.3)

It is easy to see that ω0 = 0 for this system. Since A does not have the spectrum
decomposition described in Lemma 2.3, (4.3) is not stabilizable by bounded feedback,
so αmin = ω0. Many systems of this form can be exponentially stabilized by regular
feedback, for instance, many wave and beam equations in spatial dimension one.
However, by Theorem 4.1 this stabilization cannot be robust with respect to small
delays in the feedback loop. Related nonrobustness results for this system can be
found in Datko and You [5].
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DETERMINATION OF THE INTERFACE BETWEEN THE FLUIDS
IN A HALL–HÉROULT CELL FROM MEASUREMENTS OF
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Abstract. In this paper we apply the method of electrical impedance tomography to the
problem of determining the interface between two fluid layers in a shallow electrolytic cell. We show
that any nontrivial set of boundary currents and corresponding boundary voltages suffices to uniquely
identify the interface. We propose a very simple reconstruction method that in an essential way uses
the fact that the cell is of very small height. Estimates of the accuracy of this method are also
provided. Finally we perform a number of computational experiments to demonstrate the efficiency
of the method we propose. For the numerical reconstructions we use synthetic data generated from
a discretized boundary integral formulation of the underlying conductivity problem.

Key words. electrical impedance tomography, Hall–Héroult cells, numerical reconstruction
methods

AMS subject classifications. 35R30, 65N99
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1. Introduction. Hall and Héroult are two names commonly associated with
the electrolytic cells used for industrial aluminum production. The main components
of a Hall–Héroult cell are the electrolytic bath and the liquid aluminum. At the top and
the bottom of a cell are the arrays of anode and cathode blocks. The electrolytic bath
contains, among other things, cryolite, and it is situated on top of the liquid aluminum
layer. There are other less important layers which we disregard. The efficiency of the
cell (a measure of the aluminum production) depends strongly on the location of the
interface between the electrolytic bath and the aluminum layer. It is thus practically
important to be able to control the location of the interface. However, before we
can proceed to control the interface location, we need to be able to determine fairly
accurately its current state. In industrial plants, cells are operating at a temperature
of the order of 970◦C. At this temperature the cryolite contained in the bath is
chemically very active. Under such conditions measurements of the interface location
by mechanical means encounter severe difficulties. In fact, the location cannot be
determined accurately with such procedures. It is, on the other hand, very simple
to make measurements of the voltages and currents at the top and bottom of the
cell (at the anode and cathode blocks). These are exactly the kinds of measurements
that are used in so-called electrical impedance tomography to determine the internal
conductivity distribution. Since the conductivity properties of the electrolytic bath
and the aluminum are fairly well known (and very different), the determination of the
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Fig. 1. The domain Ωε representing the electrolytic cell.

conductivity distribution is really equivalent to the determination of the location of
the interface.

The purpose of this work is to demonstrate that electrical impedance tomogra-
phy can be effectively applied to determine the location of an interface between two
horizontal layers of different (but known) conductivity. In doing so we shall strongly
make use of one geometric characteristic of a Hall–Héroult cell. Such a cell typically
has a width of about 1/3 of its length and a height of about 1/50 of its length. Conse-
quently we shall restrict our attention to domains of very small height. In this initial
study we also suppose that the properties of the cell are independent of the width
variable. We therefore model the cell by the two-dimensional rectangular domain
Ωε = (0, 1)× (−ε, ε) of length 1 and height 2ε.

As shown in Figure 1 we suppose that the domain Ωε is separated into two
parts, ω+

ε , and ω−ε , by the curve y = εh(x). The subdomains ω±ε are given by ω+
ε =

{(x, y) : 0 < x < 1, εh(x) < y < ε} and ω−ε = {(x, y) : 0 < x < 1, − ε < y < εh(x)},
respectively. The subdomain ω+

ε corresponds to the electrolytic bath and the sub-
domain ω−ε corresponds to the liquid aluminum layer; these have different, known,
constant conductivities a+ > 0 and a− > 0 (we note that our theoretical results
could very easily be generalized to the case in which a+ and a− are known, variable
conductivities, with a proper jump across the curve y = εh(x)). We assume that the
function h(·) satisfies −1 < h(x) < 1, 0 ≤ x ≤ 1; for simplicity we also always (for our
theoretical results) assume that h(·) is sufficiently smooth. We model the imposed
boundary currents as distributed currents at the top and bottom boundaries. The
two vertical boundaries x = 0, 1 are assumed to be insulated. The boundary value
problem for the voltage potential uε therefore becomes

∇ · (a+∇uε) = 0 in ω+
ε ,(1a)

∇ · (a−∇uε) = 0 in ω−ε ,(1b)

∂uε
∂x

= 0 on x = 0, 1,(1c)

a+
∂uε
∂y

= f on y = ε, a−
∂uε
∂y

= g on y = −ε,(1d)

with the continuity condition

uε is continuous across the interface y = εh(x)(1e)
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and the jump condition

a+

(
∂

∂n

)
+

uε = a−

(
∂

∂n

)
−
uε on the interface y = εh(x).(1f)

Here n is a fixed normal direction to the interface {y = εh(x)}; ( ∂∂n)+ and
(
∂
∂n

)
−

denote the derivatives in the direction n as we approach the interface from the top
and the bottom, respectively. This boundary value problem has a corresponding weak
formulation: find uε ∈ H1(Ωε) such that∫

Ωε

aε∇uε∇v dxdy =

∫
∂Ωε∩{y=ε}

f v dx−
∫
∂Ωε∩{y=−ε}

g v dx ∀ v ∈ H1(Ωε).(2)

Here the (piecewise-constant) conductivity distribution aε(x, y) is given by

aε(x, y) = a+ for εh(x) < y < ε , aε(x, y) = a− for − ε < y < εh(x).

Given f , g ∈ H1/2(0, 1), with
∫ 1

0
f dx =

∫ 1

0
g dx, the weakly formulated boundary

value problem (2) has a solution, and this solution is unique up to an additive constant.
If the current distributions f and g are in C2,α([0, 1]) for some α > 0, then elliptic
regularity theory ensures that uε is C∞ inside each of the subdomains ω±ε and is
twice continuously differentiable up to the smooth parts of the boundaries ∂ω±ε . Such
a smooth, weak solution uε satisfies (1) in a classical sense.

For our identification problem we suppose that measurements of the voltage po-
tential uε are available all along the top and bottom boundaries {y = ±ε}. The main
objective of this paper is to show that the interface y = εh(x) may be very effectively
determined from knowledge of these measurements. The present study may thus be
seen as another piece of evidence that electrical impedance tomography is a quite
effective method to determine special features of an otherwise known conductor; see
also [1, 7, 8, 4, 15] and references therein. The setting we study here is as already men-
tioned very simplified when compared to the industrial, three-dimensional problem.
We do however believe that the simplified setting exhibits many of the key character-
istics. The added difficulties of the industrial, three-dimensional problem will be the
focus of future work.

2. A two-dimensional identification result. The first question that natu-
rally arises is whether knowledge of uε at the top and bottom boundaries suffices
to identify the location of the interface between the constant conductivities a+ and
a−(6= a+). This question is somewhat analogous to the question of identifiability of
an inaccessible boundary part (cf. [2]) and it is therefore not surprising that it is
answered in the affirmative by the following theorem.

Theorem 2.1. Suppose hi ∈ C2,α([0, 1]), i = 1, 2, and suppose f, g ∈ C2,α([0, 1])
with at least one of these boundary currents not identically zero. Let uiε, i = 1, 2 denote
solutions to (2) (or (1)) corresponding to the two interfaces y = εhi(x), i = 1, 2, but
with the same fixed set of boundary currents f, g. Then

u1
ε − u2

ε = c (a single constant) on ∂Ωε ∩ ({y = ε} ∪ {y = −ε})
⇒ h1 = h2 on [0, 1].

Proof. By adding the constant c to u2
ε we get another solution to (2). It therefore

suffices to prove that h1 = h2 on [0, 1] whenever we have two solutions with u1
ε = u2

ε
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on ∂Ωε ∩ ({y = ε} ∪ {y = −ε}). Let ω̃+
ε , ω̃intε , and ω̃−ε denote the sets

ω̃+
ε = {(x, y) : 0 < x < 1 , εmax(h1(x), h2(x)) < y < ε},

ω̃intε = {(x, y) : 0 < x < 1 , εmin(h1(x), h2(x)) < y < εmax(h1(x), h2(x))},
ω̃−ε = {(x, y) : 0 < x < 1 , −ε < y < εmin(h1(x), h2(x))}.

Due to elliptic regularity theory the uiε are both smooth solutions to 4uiε = 0 inside
the three sets ω̃+

ε , ω̃intε , and ω̃−ε . Due to elliptic regularity theory and the regularity
assumptions on f and g it also follows that the uiε are C2 up to (the interior of) the
top and bottom boundaries {(x, y) : 0 < x < 1 , y = ±ε} and that they satisfy the
boundary conditions in a classical sense.

Now consider vε = u1
ε−u2

ε . Since, by assumption, vε has zero Cauchy data (vε and
∂
∂yvε vanish) on the top and bottom boundaries {(x, y) : 0 < x < 1 , y = ±ε}, and

since vε satisfies4vε = 0 in ω̃+
ε ∪ ω̃−ε , it follows from unique continuation (Holmgren’s

uniqueness theorem) that vε ≡ 0 in ω̃+
ε ∪ ω̃−ε . It is well known that the uiε, and thus

vε, are continuous on Ωε. We therefore get

vε ≡ 0 on ω̃+
ε ∪ ω̃−ε .(3)

Let ω̃ denote any nonempty, connected component of the open set ω̃intε (if one ex-
ists). Corresponding to ω̃ we either have h1(x) < h2(x) ∀ (x, y) ∈ ω̃ or h2(x) <
h1(x) ∀ (x, y) ∈ ω̃. Without loss of generality we suppose that

h1(x) < h2(x) ∀ (x, y) ∈ ω̃ .

The set ω̃ has an open, connected projection on the x-axis, hence there exists an open
interval I ⊂ (0, 1) such that

h1(x) < h2(x) ∀ x ∈ I and

ω̃ = {(x, y) : x ∈ I , εh1(x) < y < εh2(x)}.
The following argument is slightly different depending on whether or not the endpoints
of I fall in the interior of the interval (0, 1). Let us first consider the case where both
endpoints fall in the interior. Afterwards we shall outline the changes necessary if this
is not the case. The boundary of ω̃ is now given by

∂ω̃ = {(x, y) : x ∈ I , y = εh2(x)} ∪ {(x, y) : x ∈ I , y = εh1(x)}.(4)

Because of the identity (3) it follows immediately that vε = 0 on ∂ω̃. We also have that
vε is continuous on the closure of ω̃, and satisfies 4vε = 0 in ω̃. From the maximum
principle it now follows that vε ≡ 0 in ω̃.

If one (or both) of the endpoints of I lies on the boundary of [0, 1], then ∂ω̃
will generally contain at least one vertical line segment in addition to the curves
y = εhi(x). If (by chance) there happens to be no such vertical boundary part(s) we
proceed just as before to show that vε ≡ 0 in ω̃. Now suppose vertical lines form part
of the boundary. The classical version of the maximum principle asserts that vε ≡ 0
in ω̃ or a nonzero extremal value is attained (in the interior) of one of the vertical
boundary parts. As the normal derivative of vε vanishes along the vertical boundary
part(s) the strong version of the maximum principle (Hopf’s lemma) implies that we
necessarily must have vε ≡ 0 in ω̃. In summary we have now verified that vε always
vanishes in ω̃. Since ω̃ is any nonempty, connected component of ω̃intε this immediately
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shows that one of the following two statements must be true: 1) vε ≡ 0 on the closure
of ω̃intε , or 2) ω̃intε is the empty set.

Let us now suppose that ω̃intε 6= ∅, and therefore vε ≡ 0 on the closure of ω̃intε .
By a combination with (3) this implies that

vε = u1
ε − u2

ε = 0 on Ωε.

We consider a single, nonempty connected component ω̃ of the set ω̃intε (such a com-
ponent exists since we suppose that ω̃intε itself is nonempty). We shall analyze the case
where the boundary of ω̃ has the form (4). The case in which there are vertical bound-
ary parts may be treated in a completely analogous manner due to the fact that the
normal derivatives of uiε, i = 1, 2 vanish on these vertical parts. Along the boundary
curve {(x, y) : x ∈ I , y = εh2(x)} we have that [ ∂∂nu

1
ε ] =

(
∂
∂n

)
+
u1
ε −

(
∂
∂n

)
− u

1
ε = 0

(since u1
ε satisfies 4u1

ε = 0 across this curve). Along this curve we also have that the
conormal derivative of u2

ε satisfies the jump condition[
aε

∂

∂n
u2
ε

]
= a+

(
∂

∂n

)
+

u2
ε − a−

(
∂

∂n

)
−
u2
ε = 0.(5)

Here n denotes a fixed normal direction to the curve y = εh2(x);
(
∂
∂n

)
+

and
(
∂
∂n

)
−

denote the derivatives in the direction n as we approach the curve from the top
and the bottom, respectively. Since u1

ε = u2
ε in all of Ωε we in particular have that(

∂
∂n

)
± u

2
ε =

(
∂
∂n

)
± u

1
ε = ∂

∂nu
1
ε along the curve {(x, y) : x ∈ I , y = εh2(x)}. Since

a+ 6= a−, the jump condition (5) therefore yields(
∂

∂n

)
±
u2
ε =

∂

∂n
u1
ε = 0

along the curve {(x, y) : x ∈ I , y = εh2(x)}. By a completely identical argument
we get that (

∂

∂n

)
±
u1
ε =

∂

∂n
u2
ε = 0

along the curve {(x, y) : x ∈ I , y = εh1(x)}. Consider now the function u1
ε . From

the previous two identities we get that

∂

∂n
u1
ε = 0

along the boundary curves {(x, y) : x ∈ I , y = εhi(x)}, i = 1, 2, of ω̃. Since the
function u1

ε also satisfies 4u1
ε = 0 in ω̃ and since it has finite energy (it is in H1(ω̃)),

it follows that u1
ε = constant in ω̃. Unique continuation (Holmgren’s uniqueness theo-

rem) now implies that u1
ε = constant in all of Ωε, which contradicts the fact that the

boundary currents f and g are not both identically zero. The assumption that the
set ω̃intε is nonempty has thus led to a contradiction, and as a consequence it must
necessarily be empty. This implies that h1(x) = h2(x) for all x ∈ [0, 1], exactly as
desired.

Remark. We note that the proof of Theorem 2.1 carries through virtually without
any changes when the hi are only assumed to be piecewise C2,α and globally Lip-
schitz. This observation is relevant for interfaces such as the piecewise-linear ones we
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consider in connection with our numerical experiments. We also note that there is
some similarity between the above proof and the proof of Lemma 2.1 in [7].

Theorem 2.1 guarantees the identifiability of h from the overdetermined data
uε|y=±ε, but it does not provide an explicit reconstruction formula. The derivation of
such a reconstruction formula, in the case when the height of the cell (2ε) approaches
zero, is the focus of the next two sections.

3. The asymptotic limit as ε → 0. In this section we shall study the limit
of the voltage potential uε as ε → 0. Studies of such “thin domain” limits are quite
common in continuum mechanics—for instance in connection with the derivation of
“dimensionally reduced” equations for beams, plates, or shells (see [5, 14] and refer-
ences therein). These studies have incorporated sandwich-like structures [13, 14] and
they have extended to the modeling of electrolytic cells [3], but to the best of our
knowledge distributions of “material properties” such as those encountered here have
not previously been rigorously analyzed. Since this analysis is furthermore quite short
and elementary we shall, for the convenience of the reader, include it here.

As is frequently the case it is also here preferable to “stretch” the domain Ωε,
by introduction of the new variables (x, z) = (x, y/ε). In these new coordinates
the domain becomes Ω = (0, 1) × (−1, 1), and the corresponding voltage potential
vε(x, z) = uε(x, εz) satisfies the boundary value problem

∂

∂x

(
a(x, z)

∂vε
∂x

)
+ ε−2 ∂

∂z

(
a(x, z)

∂vε
∂z

)
= 0 in Ω,(6a)

∂vε
∂x

= 0 at x = 0, 1,(6b)

a+
∂vε
∂z

= εf at z = 1, a−
∂vε
∂z

= εg at z = −1.(6c)

Here the conductivity a(x, z) is independent of ε and is given by

a(x, z) = a+ for h(x) < z < 1, a(x, z) = a− for − 1 < z < h(x).

(6a) is the (customary) shorthand for

∂

∂x
a+

∂vε
∂x

+ ε−2 ∂

∂z
a+

∂vε
∂z

= 0 for h(x) < z < 1,

∂

∂x
a−

∂vε
∂x

+ ε−2 ∂

∂z
a−

∂vε
∂z

= 0 for − 1 < z < h(x),

with the continuity condition

vε is continuous across the interface z = h(x),

and the jump condition[
a
∂

∂x
vε

]
nx + ε−2

[
a
∂

∂z
vε

]
nz = 0 on the interface z = h(x).

By formally expanding vε(x, z) in powers of ε and matching terms of equal powers
in (6) we obtain

vε(x, z) = ε−1v(−1)(x, z) + εv(1)(x, z) + ε3v(3)(x, z) + · · · ,
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where the functions v(i) satisfy the equations

∂

∂x
a
∂

∂x
v(i−2) +

∂

∂z
a
∂

∂z
v(i) = 0 in Ω,(7)

the (vertical) boundary conditions ∂
∂xv

(i) = 0 at x = 0, 1, and the (horizontal) bound-
ary conditions

a+
∂

∂z
v(1) = f at z = 1, a−

∂

∂z
v(1) = g at z = −1,(8a)

a±
∂

∂z
v(i) = 0 at z = ±1 for i 6= 1.(8b)

We note that as before (7) is to be interpreted in the strong sense in each of the
subdomains ω+ = {(x, z) : 0 < x < 1, h(x) < z < 1} and ω− = {(x, z) : 0 < x <
1, − 1 < z < h(x)}, but in a weak sense across their interface, i.e., all the v(i) are
continuous, and furthermore[

a
∂

∂x
v(i−2)

]
nx +

[
a
∂

∂z
v(i)

]
nz = 0(9)

along the interface z = h(x). Here n = (nx, nz) denotes a vector field normal to the
interface, and [·] indicates, as before, the difference between the values as we approach
the interface from above and below. As it turns out, these equations imply that all
the v’s corresponding to even superscripts vanish and that the first nonvanishing v
corresponding to an odd superscript is v(−1). (7) and the boundary condition (8b)
corresponding to i = −1 now read

∂

∂z
a
∂

∂z
v(−1) = 0 in Ω, a±

∂

∂z
v(−1) = 0 at z = ±1.

This immediately implies that v(−1)(x, z) = v(−1)(x) (a function of x only). We now
multiply (7) with i = 1 by any smooth φ(x) (a function of x only) and integrate over
Ω. After integration by parts (and use of (8a) and (9) for i = 1) this yields∫ 1

0

((1− h(x))a+ + (1 + h(x))a−)
d

dx
v(−1) d

dx
φ dx =

∫ 1

0

(f − g)φ dx.

In other words, v(−1)(x) is the solution to the two-point boundary value problem

d

dx

(
((1− h(x))a+ + (1 + h(x))a−)

d

dx
v(−1)

)
= −f + g in (0, 1),(10)

d

dx
v(−1)(x) = 0 at x = 0, 1.

The following proposition translates the previous formal analysis into a completely
rigorous convergence statement. The proof of this proposition is based on a variational
technique somewhat similar to that used in [12] to derive the beam equation in the
constant coefficient case.

Proposition 3.1. Suppose the function h as well as the boundary currents f, g

are in C2,α([0, 1]) with
∫ 1

0
f dx =

∫ 1

0
g dx. Let uε(x, y) be a solution to (1) (or (2))
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and let v(−1)(x) be a solution to (10). There exists a constant C, dependent on f , g,
h, and a± but independent of the (small) positive parameter ε, such that∫

Ωε

aε(x, y)|∇(εuε − v(−1))|2 dxdy ≤ Cε3.

Proof. The solution uε has a very simple variational characterization, related to
(2). It is a minimizer of the energy expression

1

2

∫
Ωε

aε|∇u|2 dxdy −
∫
∂Ωε∩{y=ε}

fu dx+

∫
∂Ωε∩{y=−ε}

gu dx

in the space H1(Ωε). Selecting as a test function u = ε−1v(−1) we therefore get

1

2

∫
Ωε

aε|∇uε|2 dxdy −
∫
∂Ωε∩{y=ε}

fuε dx+

∫
∂Ωε∩{y=−ε}

guε dx

≤ 1

2
ε−2

∫
Ωε

aε

∣∣∣∣ ddxv(−1)

∣∣∣∣2 dxdy − ε−1

∫ 1

0

(f − g)v(−1) dx

=
1

2
ε−1

∫ 1

0

((1− h(x))a+ + (1 + h(x))a−)

∣∣∣∣ ddxv(−1)

∣∣∣∣2 dx(11)

−ε−1

∫ 1

0

(f − g)v(−1) dx.

We note that the last expression is simply ε−1 times the energy (minimum) associated
with the two-point boundary value problem (10). From the natural dual variational
principle we get that

1

2

∫
Ωε

aε|∇uε|2 dxdy −
∫
∂Ω∩{y=ε}

fuε dx+

∫
∂Ω∩{y=−ε}

guε dx

= max
σ∈V
−1

2

∫
Ωε

a−1
ε |σ|2 dxdy,(12)

where the set V is characterized by

V =

{
σ = (σx, σy) ∈ (L2(Ωε)

)2
:

∫
Ωε

σ · ∇v dxdy

=

∫
∂Ωε∩{y=ε}

fv dx−
∫
∂Ωε∩{y=−ε}

gv dx ∀v ∈ H1(Ωε)

}
.

In terms of the subsets ω+
ε and ω−ε , the elements of V are those vector fields that

satisfy (in a “weak” distributional sense) the divergence constraints

∇ · σ = 0 in ω+
ε , ∇ · σ = 0 in ω−ε ,(13a)

[σx]nx + [σy]ny = [σ · n] = 0 on the interface y = εh(x),(13b)

and the boundary conditions

σy = f at y = ε, σy = g at y = −ε, and σx = 0 at x = 0, 1.
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We note that (13) is just a “piecewise” formulation of the constraint ∇ · σ = 0 in Ωε.
Now define the test field τ = (τx, τy) as follows:

τx = ε−1aε(x, y)
d

dx
v(−1)(x),(14a)

τy = −ε−1 ∂

∂x

(∫ y

−ε
aε(x, t) dt

d

dx
v(−1)(x)

)
+ g(x).(14b)

We may alternatively express τy in terms of its formulas in the subdomains ω±ε

τy(x, y) = h′(x)(a+ − a−)
d

dx
v(−1)(x)(15a)

−ε−1 ((y − εh(x))a+ + (εh(x) + ε)a−)
d2

dx2
v(−1)(x) + g(x) in ω+

ε ,

τy(x, y) = −ε−1(y + ε)a−
d2

dx2
v(−1)(x) + g(x) in ω−ε .(15b)

Due to the regularity assumptions about f , g, and h it follows that v(−1) ∈ C3([0, 1]);
τ is thus piecewise C1 and certainly globally in (L2(Ωε))

2. From the piecewise version
of the definition of τy in combination with the definition of τx we get

∇ · τ =
∂

∂x
τx +

∂

∂y
τy = ε−1aε

d2

dx2
v(−1)(x)− ε−1aε

d2

dx2
v(−1)(x)

= 0 in ω+
ε and ω−ε .(16)

For the same reason it also follows that

[τx]nx = (τ+
x − τ−x )

−εh′(x)√
1 + ε2h′(x)2

= −(a+ − a−)
d

dx
v(−1)(x)

h′(x)√
1 + ε2h′(x)2

on y = εh(x) and

[τy]ny = (τ+
y − τ−y )

1√
1 + ε2h′(x)2

=

(
h′(x)(a+ − a−)

d

dx
v(−1)(x)

−ε−1 ((y − εh(x))a+ + (εh(x) + ε)a−)
d2

dx2
v(−1)(x) + g(x)

+ε−1(y + ε)a−
d2

dx2
v(−1)(x)− g(x)

)
1√

1 + ε2h′(x)2

= h′(x)(a+ − a−)
d

dx
v(−1)(x)

1√
1 + ε2h′(x)2

on y = εh(x),

so that

[τx]nx + [τy]ny = 0 on the interface y = εh(x).(17)

It is also immediately clear from (10) and (14a) that the field τ satisfies the boundary
condition

τy = − d

dx

(
((1− h(x))a+ + (1 + h(x))a−)

d

dx
v(−1)

)
+ g(x)(18a)

= f(x) at y = ε,
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as well as

τy = g(x) at y = −ε , and τx = 0 at x = 0, 1.(18b)

The statements (16)–(18) together assert that the field τ , defined by (14), is indeed
an element of V . From (15) and the facts that g and h are in C2,α and v(−1) is in C3,
we immediately get ∫

Ωε

a−1
ε |τy|2 dxdy ≤ Cε.(19)

By inserting τ into the dual variational expression, and using (12) and (19), we now
get that

1

2

∫
Ωε

aε|∇uε|2 dxdy −
∫
∂Ωε∩{y=ε}

fuε dx+

∫
∂Ωε∩{y=−ε}

guε dx

≥ −1

2

∫
Ωε

a−1
ε |τ |2 dxdy

= −1

2

∫
Ωε

a−1
ε |τx|2 dxdy +O(ε)(20)

= −1

2
ε−1

∫ 1

0

((1− h(x))a+ + (1 + h(x))a−)

∣∣∣∣ ddxv(−1)

∣∣∣∣2 dx+O(ε)

=
1

2
ε−1

∫ 1

0

((1− h(x))a+ + (1 + h(x))a−)

∣∣∣∣ ddxv(−1)

∣∣∣∣2 dx

−ε−1

∫ 1

0

(f − g)v(−1) dx +O(ε).

A combination of the upper bound (11) and the lower bound (20) gives that

1

2

∫
Ωε

aε|∇uε|2 dxdy −
∫
∂Ωε∩{y=ε}

fuε dx+

∫
∂Ωε∩{y=−ε}

guε dx

=
1

2
ε−1

∫ 1

0

((1− h(x))a+ + (1 + h(x))a−)

∣∣∣∣ ddxv(−1)

∣∣∣∣2 dx

−ε−1

∫ 1

0

(f − g)v(−1) dx+O(ε)(21)

=
1

2

∫
Ωε

aε|ε−1∇v(−1)|2 dxdy

−
∫
∂Ωε∩{y=ε}

fε−1v(−1) dx+

∫
∂Ωε∩{y=−ε}

gε−1v(−1) dx+O(ε).

It is well known that

1

2

∫
Ωε

aε|∇(uε − v)|2 dxdy

=
1

2

∫
Ωε

aε|∇v|2 dxdy −
∫
∂Ωε∩{y=ε}

fv dx+

∫
∂Ωε∩{y=−ε}

gv dx

−
(

1

2

∫
Ωε

aε|∇uε|2 dxdy −
∫
∂Ωε∩{y=ε}

fuε dx+

∫
∂Ωε∩{y=−ε}

guε dx

)
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for any v ∈ H1(Ωε). By a combination of this identity and the estimate (21) it follows
immediately that

1

2

∫
Ωε

aε|∇(uε − ε−1v(−1))|2 dxdy = O(ε)

or ∫
Ωε

aε|∇(εuε − v(−1))|2 dxdy = O(ε3),

exactly as desired.
Returning to the “stretched” domain Ω = (0, 1) × (−1, 1) and the function

vε(x, z) = uε(x, εz), Proposition 3.1 asserts that∫
Ω

a(x, z)

((
∂

∂x
(εvε − v(−1))

)2

+ ε−2

(
∂

∂z
(εvε − v(−1))

)2
)
dxdz ≤ Cε2(22a)

(recall dxdy = εdxdz) from which it also immediately follows that∫
Ω

a(x, z)

(
∂

∂z
vε

)2

dxdz = ε−2

∫
Ω

a(x, z)

(
∂

∂z
(εvε − v(−1))

)2

dxdz ≤ Cε2.(22b)

The functions uε, vε, and v(−1) have so far been defined only up to additive constants.
It will be convenient to make a specific choice for these constants. This can for instance
be done by assuming that ∫

∂Ω

vε ds =

∫
∂Ω

v(−1) ds = 0.

From (22a) it now follows that∫
Ω

(
εvε − v(−1)

)2

dxdz ≤ Cε2,(23)

and therefore

‖εvε − v(−1)‖H1(Ω) ≤ Cε.
Based on a standard trace estimate we conclude that

‖εuε(·,±ε)− v(−1)(·)‖H1/2(0,1) = ‖εvε(·,±1)− v(−1)(·)‖H1/2(0,1)

≤ C‖εvε − v(−1)‖H1(Ω)(24)

≤ Cε.
This estimate of the approximation error in the boundary data, however, is not suffi-
cient for our later analysis. We shall need an estimate of the H1 approximation error.
In order to establish such an estimate we need two a priori estimates of εvε− v(−1) in
higher-order norms. These estimates require stricter regularity assumptions about the
boundary currents and the “interface” function h(x). From now on we shall assume
that h ∈ C3,α([0, 1]) and that f, g ∈ C4,α([0, 1]) with

f ′(x) = f ′′′(x) = 0 at x = 0, 1.(25)
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Let c be a constant such that maxx∈[0,1] h(x) < c < 1. This guarantees that the
domain ωc = {(x, z) : 0 < x < 1, c < z < 1} lies inside ω+ = {(x, z) : 0 <
x < 1, h(x) < z < 1}. Select a smooth cutoff function φ(z) with the properties that
φ ≡ 1 near z = 1, φ ≡ 0 near z = c, and 0 ≤ φ(z) ≤ 1, c ≤ z ≤ 1, and let wε denote
the function

wε(x, z) = (εvε(x, z)− v(−1)(x))φ(z).(26)

Our first a priori estimate is the following lemma.
Lemma 3.2. Suppose that h is in C3,α([0, 1]) and suppose that the boundary cur-

rents f, g are in C4,α([0, 1]) with f satisfying (25). Let wε denote the function defined
by (26). There exists a constant C, dependent on the boundary currents f, g, the
function h, and the conductivities a±, but independent of 0 < ε < 1, such that∫

ωc

((
∂2

∂x2
wε

)2

+ ε−4

(
∂2

∂z2
wε

)2

+ ε−2

(
∂2

∂x∂z
wε

)2
)
dxdz ≤ Cε−2.

Proof. Let ṽε denote the even extension of vε across the boundary line x = 0.
Since ∂

∂xvε = 0 at x = 0 it follows immediately that ṽε remains a solution to(
∂2

∂x2
+ ε−2 ∂

2

∂z2

)
ṽε = 0 in (−1, 1)× (maxh(x), 1),

with

a+
∂

∂z
ṽε|z=1 = εf̃ on z = 1, − 1 < x < 1.

Here f̃ denotes the even extension of f across the point x = 0. Since f ∈ C4,α([0, 1])
with f ′(0) = f ′′′(0) = 0 it follows that f̃ is a C4,α function, and consequently elliptic
regularity theory gives that ṽε is C4 on (−1, 1)×[c, 1]. It immediately follows that vε is
C4 on the domain [0, 1)× [c, 1]. By a similar extension argument across the boundary
line x = 1 we get that vε is C4 on the domain (0, 1]× [c, 1], and thus

vε ∈ C4([0, 1]× [c, 1]) = C4(ωc).

Since f, g are C4,α and h is C3,α, we have

v(−1) ∈ C4([0, 1]).

Altogether we therefore conclude that

wε ∈ C4([0, 1]× [c, 1]) = C4(ωc).(27)

Using the definition (26) of wε we calculate(
∂2

∂x2
+ ε−2 ∂

2

∂z2

)
wε(x, z)

= − d2

dx2
v(−1)(x)φ(z) + 2ε−1 ∂

∂z
vε(x, z)

d

dz
φ(z)

+ε−2(εvε(x, z)− v(−1)(x))
d2

dz2
φ(z).
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From estimates (22b) and (23) it now immediately follows that, for 0 < ε < 1,∥∥∥∥( ∂2

∂x2
+ ε−2 ∂

2

∂z2

)
wε

∥∥∥∥
L2(ωc)

≤ Cε−1,

which is equivalent to∫
ωc

((
∂2

∂x2
wε

)2

+ ε−4

(
∂2

∂z2
wε

)2

+ 2ε−2 ∂
2

∂x2
wε

∂2

∂z2
wε

)
dxdz = O(ε−2).(28)

Let us now for a moment consider the last term of this integral:∫
ωc

∂2

∂x2
wε

∂2

∂z2
wε dxdz = −

∫
ωc

∂

∂x
wε

∂

∂z

(
∂2

∂x∂z
wε

)
dxdz

=

∫
ωc

(
∂2

∂x∂z
wε

)2

dxdz −
∫
∂Ω∩{z=1}

∂

∂x
wε

∂2

∂x∂z
wε dx(29)

=

∫
ωc

(
∂2

∂x∂z
wε

)2

dxdz − ε2a−1
+

∫
∂Ω∩{z=1}

∂

∂x
wε f

′(x) dx.

In the first integration by parts there are no boundary terms coming from the vertical
boundaries, since ∂

∂xwε vanishes at x = 0, 1. In the second integration by parts there
is no boundary term coming from the lower boundary {0 < x < 1, z = c}, due to the
fact that φ vanishes in a neighborhood of z = c. In the last identity we have used that

∂2

∂x∂z
wε =

∂2

∂x∂z
(εvε − v(−1))φ = ε2a−1

+ f ′(x) at z = 1.

A combination of (28) and (29) gives that∫
ωc

((
∂2

∂x2
wε

)2

+ ε−4

(
∂2

∂z2
wε

)2

+ 2ε−2

(
∂2

∂x∂z
wε

)2
)
dxdz

= 2a−1
+

∫
∂Ω∩{z=1}

∂

∂x
wε f

′(x) dx+O(ε−2).(30)

Since ∂
∂xwε = 0 at z = c,

∂

∂x
wε(x, 1) =

∫ 1

c

∂2

∂x∂z
wε(x, z) dz,

and therefore∫
∂Ω∩{z=1}

(
∂

∂x
wε

)2

dx ≤ (1− c)
∫
ωc

(
∂2

∂x∂z
wε

)2

dxdz.(31)

This last estimate together with (30) immediately implies that∫
ωc

((
∂2

∂x2
wε

)2

+ ε−4

(
∂2

∂z2
wε

)2

+ ε−2

(
∂2

∂x∂z
wε

)2
)
dxdz ≤ Cε−2,

0 < ε < 1, as desired.
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Let c < c2 < 1 be chosen sufficiently close to 1 so that φ(z) ≡ 1 for z ∈ [c2, 1],
and let φ2 denote a second cutoff function with the properties that φ2 ≡ 1 near z = 1,
φ2 ≡ 0 near z = c2, and 0 ≤ φ2(z) ≤ 1 for z ∈ [c2, 1]. Let w2,ε denote the function
defined by

w2,ε(x, z) = wε(x, z)φ2(z) = (εvε(x, z)− v(−1)(x))φ2(z).(32)

Our last a priori estimate is the following lemma.
Lemma 3.3. Suppose that h is in C3,α([0, 1]) and suppose that f, g are in

C4,α([0, 1]) with f satisfying (25). Let w2,ε denote the function defined by (32) and
define Dw2,ε = ∂

∂zw2,ε. There exists a constant C, dependent on the boundary cur-
rents f , g, the function h, and the conductivities a±, but independent of 0 < ε < 1,
such that∫

ωc2

((
∂2

∂x2
Dw2,ε

)2

+ ε−4

(
∂2

∂z2
Dw2,ε

)2

+ ε−2

(
∂2

∂x∂z
Dw2,ε

)2
)

dxdz ≤ Cε−2.

Proof. A simple calculation, just as in the previous proof, yields that(
∂2

∂x2
+ ε−2 ∂

2

∂z2

)
Dw2,ε(x, z)

= − d2

dx2
v(−1)(x)

d

dz
φ2(z) + 2ε−1 ∂

2

∂z2
vε(x, z)

d

dz
φ2(z)(33)

+3ε−1 ∂

∂z
vε(x, z)

d2

dz2
φ2(z)

+ε−2(εvε(x, z)− v(−1)(x))
d3

dz3
φ2(z).

From the estimate in Lemma 3.2 we have∫
ωc

(
∂2

∂z2
wε

)2

dxdz ≤ Cε2.

Since φ ≡ 1 on ωc2 ⊂ ωc,
∂2

∂z2
wε =

∂2

∂z2
(εvε − v(−1)) = ε

∂2

∂z2
vε in ωc2 .

The previous integral estimate therefore immediately gives∫
ωc2

(
∂2

∂z2
vε

)2

dxdz ≤ C.(34)

A combination of (33) with the estimates (22b), (23), and (34) now leads to∥∥∥∥( ∂2

∂x2
+ ε−2 ∂

2

∂z2

)
Dw2,ε

∥∥∥∥
L2(ωc2 )

≤ Cε−1,

or equivalently∫
ωc2

((
∂2

∂x2
Dw2,ε

)2

+ ε−4

(
∂2

∂z2
Dw2,ε

)2

+ 2ε−2 ∂
2

∂x2
Dw2,ε

∂2

∂z2
Dw2,ε

)
dxdz(35)

= O(ε−2).
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As in the proof of Lemma 3.2 let us now for a moment consider the last term of this
integral:∫

ωc2

∂2

∂x2
Dw2,ε

∂2

∂z2
Dw2,ε dxdz = −

∫
ωc2

∂

∂x
Dw2,ε

∂

∂z

(
∂2

∂x∂z
Dw2,ε

)
dxdz

=

∫
ωc2

(
∂2

∂x∂z
Dw2,ε

)2

dxdz

−
∫
∂Ω∩{z=1}

∂

∂x
Dw2,ε

∂2

∂x∂z
Dw2,ε dx(36)

=

∫
ωc2

(
∂2

∂x∂z
Dw2,ε

)2

dxdz

+ε5
∫
∂Ω∩{z=1}

f ′(x)
∂3

∂x3
vε dx.

In the first integration by parts there are no boundary terms coming from the vertical
boundaries since ∂

∂xDw2,ε = ∂
∂z

∂
∂xw2,ε vanishes at x = 0, 1. In the second integration

by parts there is no boundary term coming from the lower boundary {0 < x < 1, z =
c2}, due to the fact that φ2 vanishes in a neighborhood of z = c2. In the last identity
we have used that

∂

∂x
Dw2,ε = ε

∂

∂x

∂

∂z
vε = ε2f ′ at z = 1 and

∂2

∂x∂z
Dw2,ε = ε

∂

∂x

∂2

∂z2
vε = −ε3 ∂

3

∂x3
vε at z = 1.

The last term in the right-hand side of (36) may be estimated by∣∣∣∣∣ε5
∫
∂Ω∩{z=1}

f ′(x)
∂3

∂x3
vε dx

∣∣∣∣∣ =

∣∣∣∣∣ε5
∫
∂Ω∩{z=1}

f ′′′(x)
∂

∂x
vε dx

∣∣∣∣∣
=

∣∣∣∣∣ε4
∫
∂Ω∩{z=1}

f ′′′(x)
∂

∂x
(wε + v(−1)) dx

∣∣∣∣∣
≤ Cε4

1 +

(∫
∂Ω∩{z=1}

[
∂

∂x
wε

]2

dx

)1/2
 .

If we now apply the inequality (31) we get∣∣∣∣∣ε5
∫
∂Ω∩{z=1}

f ′(x)
∂3

∂x3
vε dx

∣∣∣∣∣ ≤ Cε4
1 +

(∫
ωc

[
∂2

∂x∂z
wε

]2

dxdz

)1/2
 ,

which, because of Lemma 3.2, immediately leads to∣∣∣∣∣ε5
∫
∂Ω∩{z=1}

f ′(x)
∂3

∂x3
vε dx

∣∣∣∣∣ ≤ Cε4.(37)

A combination of (35), (36), and (37) gives∫
ωc2

((
∂2

∂x2
Dw2,ε

)2

+ ε−4

(
∂2

∂z2
Dw2,ε

)2

+ 2ε−2

(
∂2

∂x∂z
Dw2,ε

)2
)
dxdz = O(ε−2),
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exactly as desired.
The estimate in Lemma 3.3 immediately implies that∫

ωc2

(
∂

∂z

∂2

∂x2
w2,ε

)2

dxdz ≤ Cε−2.

Proceeding along the lines of the argument that led to (31) we obtain∫ 1

0

(
∂2

∂x2
(εvε(x, 1)− v(−1)(x))

)2

dx =

∫ 1

0

(
∂2

∂x2
w2,ε(x, 1)

)2

dx

≤ C
∫
ωc2

(
∂

∂z

∂2

∂x2
w2,ε

)2

dxdz

≤ Cε−2.

Consequently∫ 1

0

(
∂2

∂x2
(εuε(x, ε)− v(−1)(x))

)2

dx =

∫ 1

0

(
∂2

∂x2
(εvε(x, 1)− v(−1)(x))

)2

dx

≤ Cε−2,

or in combination with the estimate (24)

‖εuε(·, ε)− v(−1)(·)‖H2(0,1) ≤ Cε−1.

If we again combine this estimate with (24) and use the fact that the Sobolev norms
are logarithmically convex (with respect to the smoothness index), it follows that

‖εuε(·, ε)− v(−1)(·)‖H1(0,1) ≤ Cε1/3,
or in particular ∥∥∥∥ ∂∂x (εuε(·, ε)− v(−1)(·))

∥∥∥∥
L2(0,1)

≤ Cε1/3.

A completely similar argument with the boundary ∂Ω ∩ {z = 1} (∂Ωε ∩ {y = ε})
replaced by ∂Ω ∩ {z = −1} (∂Ωε ∩ {y = −ε}), and f replaced by g would lead to∥∥∥∥ ∂∂x (εuε(·,−ε)− v(−1)(·))

∥∥∥∥
L2(0,1)

≤ Cε1/3.

In summary we have therefore proven the following result.
Theorem 3.4. Suppose that h is in C3,α([0, 1]) and suppose that the boundary

currents f, g are in C4,α([0, 1]) with both f and g satisfying (25). There exists a
constant C, dependent on the boundary currents f , g, the function h, and the con-
ductivities a±, but independent of 0 < ε < 1, such that∥∥∥∥ ∂∂x (εuε(·,±ε)− v(−1)(·))

∥∥∥∥
L2(0,1)

≤ Cε1/3.

By an extension of the arguments above it may be proven that ∂
∂x (εuε)(·,±ε)

converge to d
dxv

(−1)(·) uniformly. However, for reasons of space we do not present the
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details here. The above theorem plays a significant role in the derivation of a very
accurate and robust reconstruction formula, valid for ε sufficiently small. This formula,
which is derived in the next section, is conceptually somewhat similar to the linearized
formula derived in [9], [10] for the reconstruction of a corroded (inaccessible) surface
of a thin structure. However, the formula here is not based on any linearization and
furthermore we provide estimates of its accuracy.

4. Reconstruction of the interface. Based on (10) we get that

(1− h(x))a+ + (1 + h(x))a− =
− ∫ x

0
(f − g)(t) dt
d
dxv

(−1)(x)
(38)

whenever
∫ x

0
(f−g)(t) dt 6= 0. On the right-hand side we know the numerator − ∫ 1

0
(f−

g)(t) dt, however, we do not know the denominator d
dxv

(−1)(x). What we do have

access to are the boundary voltage derivatives ∂
∂x (εuε)(x,±ε). Let δ be an arbitrarily

small positive number, and let Iδ denote the set

Iδ =

{
x ∈ [0, 1] :

∣∣∣∣∫ x

0

(f − g)(t) dt

∣∣∣∣ ≥ 2δmax{a−, a+}
}
.

From (38) we see that

2 min{a−, a+} ≤
− ∫ x

0
(f − g)(t) dt
d
dxv

(−1)(x)
≤ 2 max{a−, a+}.

It therefore immediately follows that∣∣∣∣ ddxv(−1)(x)

∣∣∣∣ ≥ δ for x ∈ Iδ.

From (38) we also see that

sign

(
d

dx
v(−1)(x)

)
= sign

(
−
∫ x

0

(f − g)(t) dt

)
.

We now define approximations to d
dxv

(−1) :

DV±ε(x) =

 ε ∂∂xuε(x,±ε) when |ε ∂∂xuε(x,±ε)| ≥ δ,

δ sign
(− ∫ x

0
(f − g)(t) dt

)
otherwise.

(39)

We note that since the data ε ∂∂xuε(x,±ε) are at our disposal, the functions DV±ε may
easily be computed. The two corresponding reconstructed interfaces h±ε are then
given by

(1− h±ε(x))a+ + (1 + h±ε(x))a− =
− ∫ x

0
(f − g)(t) dt

DV±ε(x)
,(40)

or more explicitly

h±ε(x) =
− ∫ x

0
(f − g)(t) dt

(a− − a+)DV±ε(x)
− a− + a+

a− − a+
.(41)
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That these formulas do indeed provide good approximations to the true “inter-
face” function on Iδ is guaranteed by the following theorem.

Theorem 4.1. Suppose that h is in C3,α([0, 1]) and that the boundary currents
f, g are in C4,α([0, 1]) with both f and g satisfying (25). Let h±ε be as defined by (39)
and (41) for some δ > 0. There exists a constant C, dependent on f , g, h, and a±
but independent of 0 < ε < 1 and δ such that

‖h− h±ε‖L2(Iδ) ≤ Cδ−2ε1/3.

If the function x → ∫ x
0

(f − g)(t) dt has only finitely many zeros on [0, 1] and if all
these zeros are simple, then there exists a constant K such that |[0, 1] \ Iδ| ≤ Kδ.

Proof. For x ∈ Iδ we have that

| d
dx
v(−1)(x)| ≥ δ and |DV±ε(x)| ≥ δ.

By subtraction of (40) from (38) it therefore follows that

|h(x)− h±ε(x)|

≤ 1

|a− − a+|

∣∣∣∣∣−
∫ x

0
(f − g)(t) dt
d
dxv

(−1)(x)
− −

∫ x
0

(f − g)(t) dt

DV±ε(x)

∣∣∣∣∣
=

∣∣∫ x
0

(f − g)(t) dt
∣∣

|a− − a+|
∣∣ d
dxv

(−1)(x)
∣∣ |DV±ε(x)|

∣∣∣∣DV±ε(x)− d

dx
v(−1)(x)

∣∣∣∣(42)

≤ ‖f‖L2(0,1) + ‖g‖L2(0,1)

δ2|a− − a+|
∣∣∣∣DV±ε(x)− d

dx
v(−1)(x)

∣∣∣∣
= Cδ−2

∣∣∣∣DV±ε(x)− d

dx
v(−1)(x)

∣∣∣∣ for x ∈ Iδ.

The definition of DV±ε, and the fact that d
dxv

(−1) and − ∫ x
0

(f − g)(t) dt have the
same sign, guarantee that∣∣∣∣DV±ε(x)− d

dx
v(−1)(x)

∣∣∣∣ ≤ ∣∣∣∣ε ∂∂xuε(x,±ε)− d

dx
v(−1)(x)

∣∣∣∣ for x ∈ Iδ.

From a combination of this estimate with (42) it now immediately follows that

|h(x)− h±ε(x)|2 ≤ Cδ−4

∣∣∣∣ε ∂∂xuε(x,±ε)− d

dx
v(−1)(x)

∣∣∣∣2 for x ∈ Iδ.

Integration over Iδ, extraction of the square root, and use of the estimate in Theorem
3.4 lead to the desired estimate for ‖h− h±ε‖L2(Iδ).

The estimate on the measure of the set [0, 1] \ Iδ is obvious, given that
∫ x

0
(f −

g)(t) dt is continuously differentiable with only finitely many simple zeros.
If the function x → ∫ x

0
(f − g)(t) dt has only finitely many zeros which are all

simple, and if we were to change the definition of h±ε a little just to make sure that
it stays bounded:

h̃±ε(x) =

{
h±ε(x) when |h±ε(x)| ≤ 1,
sign(h±ε(x)) otherwise ,
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then Theorem 4.1, for the choice δ = ε2/15, immediately implies that

‖h− h̃±ε‖L2(0,1) ≤ C(δ−2ε1/3 + δ1/2) = 2Cε1/15.

The above analysis gives no indication of how to proceed if the function
∫ x

0
(f −

g)(t) dt vanishes in an entire interval (c, d). We shall now formally find an appropriate
approximation to h(x) in this case as well. Since

∫ x
0

(f−g)(t) dt = 0 in (c, d) it follows

from (10) that d
dxv

(−1) = 0 in (c, d). We return to the asymptotic expansion at the
beginning of section 3 in order to calculate the second (nontrivial) term, corresponding
to the function v(1)(x, z). This function satisfies the weak formulation of the equation

∂

∂x
a
∂

∂x
v(−1) +

∂

∂z
a
∂

∂z
v(1) = 0 in Ω,

with the boundary conditions

a+
∂

∂z
v(1) = f at z = 1 , a−

∂

∂z
v(1) = g at z = −1.

By integration of these equations and use of the fact that d
dxv

(−1)(x) = 0 (and f(x) =

g(x)) for x ∈ (c, d) we get that v(1)(x, z), for x ∈ (c, d), has the form

v(1)(x, z) =

{ 1
a+
f(x)(z − h(x)) + b(x) for h(x) < z < 1,

1
a−
f(x)(z − h(x)) + b(x) for − 1 < z < h(x),

where b(x) is some function of x alone. We now consider the expression ε−1(uε(x, ε)−
uε(x,−ε)); from the asymptotic expansion at the beginning of section 3 it formally
follows that

ε−1(uε(x, ε)− uε(x,−ε)) = ε−1(vε(x, 1)− vε(x,−1))

=
1

a+
f(x)(1− h(x)) +

1

a−
f(x)(1 + h(x)) +O(ε2)

=

(
1

a−
− 1

a+

)
f(x)h(x) +

(
1

a−
+

1

a+

)
f(x) +O(ε2)

for x ∈ (c, d). Provided the boundary current f has no zeros in the interval (c, d), we
thus arrive at a formula for an approximation to h:

h1,ε(x) =
uε(x, ε)− uε(x,−ε)
εf(x)

(
1
a−
− 1

a+

) − a+ + a−
a+ − a− .(43)

If f has simple isolated zeros, then a procedure similar to that before could be applied;
on the other hand, if f has an entire interval of zeros inside (c, d), then the determi-
nation of higher-order terms in the asymptotic expansion for vε would be required in
order to obtain a formula for an approximation to h (in terms of the boundary data).

The derivation of the formula (43) is entirely formal. In order to provide a rigorous
justification we would need estimates of how well ε−1(uε(x, ε) − uε(x,−ε)) approxi-
mates v(1)(x, 1) − v(1)(x,−1). We are confident that such estimates can be proven
along the lines of our proofs in section 3, but we have not carried out this analysis.

Remarks. So far we have assumed that a+ and a− are fixed positive constants
(i.e., they are bounded away from 0 and ∞). There is one degenerate case that is of
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high interest in the context of Hall–Héroult cells, namely the case in which a+ is very
small (nearly zero) relative to a−. The formula we derived for h−ε makes sense even
for a+/a− = 0. In this extreme case it reads

h0
−ε(x) =

− ∫ x
0

(f − g)(t) dt

a−DV 0−ε(x)
− 1,

with

a−DV 0
−ε(x) =

 a−ε ∂∂xuε(x,−ε) when |a−ε ∂∂xuε(x,−ε)| ≥ δ′,

δ′ sign
(− ∫ x

0
(f − g)(t) dt

)
otherwise.

The small parameter δ′ has taken the role of δa− in our earlier notation. We expect
this formula to provide an acceptable approximation to h(x), at least for x ∈ I0

δ =
{x : | ∫ x

0
(f − g)(t) dt| ≥ 2δ′}, an expectation which is confirmed by our numerical

experiments. The situation is completely different when it comes to the formula for
h+ε, since this refers to boundary data of uε along y = ε. In the extreme case, a+/a− =
0, the top boundary of the domain Ωε has been completely isolated from the bottom
subdomain, ω+

ε , where the limit of the rescaled solutions (a−uε) appears to be well
defined. On the top boundary, indications are that a−DV+ε becomes infinitely large
as a+/a− tends to zero, and therefore the formula h+ε does not provide a good
approximation to h, rather it converges to −1.

If we multiply by a+ in both the numerator and the denominator (of the first
term) of the right-hand side of (43), then we may formally insert a+/a− = 0 to get

h0
1,ε(x) = −a+ε

−1(uε(x, ε)− uε(x,−ε))
f(x)

+ 1.

It appears that the rescaled top boundary data a+ε
−1uε(x, ε) has a well-defined limit

as a+/a− tends to zero and that the rescaled bottom data a+ε
−1uε(x,−ε) tends to

zero as a+/a− tends to zero. Our numerical experiments indicate that the limiting
formula provides a reliable approximation to h (recall that this corresponds to intervals
in which

∫ x
0

(f − g)(t) dt ≡ 0).

5. Integral equation formulation. In this section we describe how we numer-
ically approximate the solution uε of the boundary value problem (1) (the forward
problem) by solving a system of integral equations. We use this solution to generate
the data needed for the numerical reconstruction of the interface h.

As in the calculation of the asymptotic limit (section 3), it is preferable to intro-
duce the new coordinate z = y/ε and solve the following rescaled problem (the same
as (6)) in the ε-independent domain Ω = (0, 1)× (−1, 1):

∂

∂x

(
a(x, z)

∂vε
∂x

)
+ ε−2 ∂

∂z

(
a(x, z)

∂vε
∂z

)
= 0 in Ω,

∂vε
∂x

= 0 at x = 0, 1,

a+
∂vε
∂z

= εf at z = 1, a−
∂vε
∂z

= εg at z = −1.

Here the conductivity a(x, z) is given by

a(x, z) =

{
a+, (x, z) ∈ ω+,
a−, (x, z) ∈ ω−,
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with

ω+ = {(x, z) : 0 < x < 1, h(x) < z < 1},
ω− = {(x, z) : 0 < x < 1, −1 < z < h(x)}.

The physical voltage potential uε is related to vε by uε(x, y) = vε(x, y/ε). We note
that vε satisfies

∂2

∂x2
vε +

1

ε2
∂2

∂z2
vε = 0(44)

in each of the subdomains ω+ and ω−. We also note that the fundamental solution
corresponding to the differential operator in (44) is given by

Nε((x, z); (x̃, z̃)) =
ε

4π
log((x̃− x)2 + ε2(z̃ − z)2).(45)

Unless otherwise specified n = (nx, nz) denotes the exterior unit normal associated
with each of the subdomains ω+ and ω−. ΓI denotes the interface between ω+ and
ω−, that is,

ΓI = {(x, h(x)) : 0 ≤ x ≤ 1}.

We now derive an integral formulation for the values of vε along the boundary ∂ω+ ∪
∂ω− = ∂Ω ∪ ΓI . It is convenient to introduce the following operators L and D:

Lv =
∂2v

∂x2
+

1

ε2
∂2v

∂z2
, Dv =

∂v

∂x
nx +

1

ε2
∂v

∂z
nz,

corresponding to each of the two subdomains ω+ and ω−. Then, for (x̃, z̃) ∈ ω+ we
have

vε(x̃, z̃) =

∫
ω+

Lvε Nε(·; (x̃, z̃)) dxdz −
∫
ω+

vε LNε(·; (x̃, z̃)) dxdz

=

∫
∂ω+

DvεNε(·; (x̃, z̃)) ds−
∫
∂ω+

vε DNε(·; (x̃, z̃)) ds(46)

and

0 =

∫
∂ω−

Dvε Nε(·; (x̃, z̃)) ds−
∫
∂ω−

vε DNε(·; (x̃, z̃)) ds.(47)

Multiplying (46) by a+ and (47) by a− and adding we obtain

a+vε(x̃, z̃) + a+

∫
∂ω+

vε DNε(· ; (x̃, z̃)) ds+ a−
∫
∂ω−

vε DNε(· ; (x̃, z̃)) ds

= a+

∫
Γ+

Dvε Nε(· ; (x̃, z̃)) ds + a−
∫

Γ−
Dvε Nε(· ; (x̃, z̃)) ds(48)

for (x̃, z̃) ∈ ω+. Here Γ+ and Γ− are the top and bottom boundaries given by

Γ+ = {(x, 1) : 0 ≤ x ≤ 1},
Γ− = {(x,−1) : 0 ≤ x ≤ 1}.
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We have used the conditions

a+ (Dvε)
+

= −a− (Dvε)
−

along ΓI ,

Dvε = 0 along x = 0 and x = 1,

where (Dvε)
+ and (Dvε)

− correspond to the situations in which ΓI is interpreted as a
boundary part of ω+ and ω−, respectively (recall that the normals are exterior to the
subdomains). Now let (x̃, z̃) approach ∂ω+ \ ΓI , excluding the top two corner points.
(48) then becomes

a+vε(x̃, z̃) + a+

∫
∂ω+

vε DNε(·; (x̃, z̃))ds− a+vε(x̃, z̃)

2
+ a−

∫
∂ω−

vε DNε(·; (x̃, z̃))ds

=a+

∫
Γ+

Nε(·; (x̃, z̃)) Dvεds + a−
∫

Γ−
Nε(·; (x̃, z̃)) Dvεds.

The additional term on the left-hand side reflects the jump associated with the double-
layer potential. For (x̃, z̃) ∈ ∂ω+ \ ΓI , excluding the top two corners, we thus have

vε(x̃, z̃) + 2

∫
∂ω+

vε DNε(·; (x̃, z̃))ds+
2a−
a+

∫
∂ω−

vε DNε(·; (x̃, z̃))ds

=
2

a+

(
a+

∫
Γ+

Nε(·; (x̃, z̃)) Dvε ds + a−
∫

Γ−
Nε(·; (x̃, z̃)) Dvεds

)
.(49)

Similarly, for (x̃, z̃) ∈ ω− \ ΓI , excluding the bottom two corners, we have

vε(x̃, z̃) +
2a+

a−

∫
∂ω+

vε DNε(·; (x̃, z̃)) ds+ 2

∫
∂ω−

vε DNε(·; (x̃, z̃)) ds

=
2

a−

(
a+

∫
Γ+

Nε(·; (x̃, z̃)) Dvε ds + a−
∫

Γ−
Nε(·; (x̃, z̃)) Dvε ds

)
.(50)

Next, consider the interior (smooth) points of ΓI . For such points we arrive at

vε(x̃, z̃) +
2a+

a+ + a−

∫
∂ω+

vε DNε(· ; (x̃, z̃)) ds+
2a−

a+ + a−

∫
∂ω−

vε DNε(· ; (x̃, z̃)) ds

=
2

a+ + a−

(
a+

∫
Γ+

Nε(· ; (x̃, z̃)) Dvε ds+ a−
∫

Γ−
Nε(· ; (x̃, z̃)) Dvε ds

)
.(51)

This equation can be obtained by letting (x̃, z̃) approach ΓI from inside ω+ in (48).
It can also be obtained by letting (x̃, z̃) approach ΓI from inside ω− in the equation
analogous to (48) for the subdomain ω−.

We note that at a corner the jump associated with a double-layer potential must
be modified. The jump now becomes

1

2
δout vε and − 1

2
δin vε

as (x̃, z̃) approaches the corner, (xc, zc), from outside and from inside the domain,
respectively. Here

δout =
γ

π
and δin = 2− γ

π
,
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and γ is the interior angle of the corner. Therefore, letting (x̃, z̃) → (xc, zc) in (48)
and simplifying we obtain

vε(xc, zc) + 4

∫
∂ω+

vε DNε(· ; (xc, zc)) ds+
4a−
a+

∫
∂ω−

vε DNε(· ; (xc, zc)) ds

=
4

a+

(
a+

∫
Γ+

Nε(· ; (xc, zc)) Dvε ds+ a−
∫

Γ−
Nε(· ; (xc, zc)) Dvε ds

)
,(52)

where (xc, zc) is one of the top two corners of ω+. Similarly, we can establish the
following formula for the bottom two corners of ω−:

vε(xc, zc) +
4a+

a−

∫
∂ω+

vε DNε(· ; (xc, zc)) ds+ 4

∫
∂ω−

vε DNε(· ; (xc, zc)) ds

=
4

a−

(
a+

∫
Γ+

Nε(· ; (xc, zc)) Dvε ds + a−
∫

Γ−
Nε(· ; (xc, zc)) Dvε ds

)
.(53)

We now consider the two endpoints of ΓI . Letting (x̃, z̃)→ (xc, zc) in (48) and applying
the jump condition above we obtain

vε(xc, zc) +
2πa+

γa+ + (π − γ)a−

∫
∂ω+

vε DNε(· ; (xc, zc)) ds

+
2πa−

γa+ + (π − γ)a−

∫
∂ω−

vε DNε(· ; (xc, zc)) ds(54)

=
2π

γa+ + (π − γ)a−

(
a+

∫
Γ+

Nε(· ; (xc, zc)) Dvε ds

+ a−
∫

Γ−
Nε(· ; (xc, zc)) Dvε ds

)
,

where (xc, zc) is now one of the endpoints of ΓI (and γ is the angle interior to ω+).
While we have initially for (most of) our theoretical analysis assumed that h is globally
smooth we use a piecewise-linear representation for h in our numerical computations.
Since we deliberately avoid placing any collocation points at interior corners of ΓI
it is, however, not necessary to derive the special form of the integral formulation
corresponding to such interior corner points. Summarizing (49) through (54) we have

vε(x̃, z̃) + k+(x̃, z̃)

∫
∂ω+

vε DNε(· ; (x̃, z̃)) ds

+ k−(x̃, z̃)

∫
∂ω−

vε DNε(· ; (x̃, z̃)) ds

=
k+(x̃, z̃)

a+

(
a+

∫
Γ+

Nε(· ; (x̃, z̃)) Dvε ds

+ a−
∫

Γ−
Nε(· ; (x̃, z̃)) Dvε ds

)
,

where (x̃, z̃) denotes any point on the boundary. The coefficients k+(x̃, z̃) and k−(x̃, z̃)
are related by k+(x̃, z̃) = a+

a−
k−(x̃, z̃), and their exact dependence on (x̃, z̃) is given

by (49)–(54). The previous equation may be rewritten

vε(x̃, z̃) +

∫
∂Ω∪ΓI

K(· ; (x̃, z̃))

(
nx

∂

∂x
+ nz

1

ε2
∂

∂z

)
Nε(· ; (x̃, z̃)) vε ds(55)
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=
k+(x̃, z̃)

εa+

(∫
Γ+

f Nε(· ; (x̃, z̃)) ds−
∫

Γ−
g Nε(· ; (x̃, z̃)) ds

)
,

with

K((x, z); (x̃, z̃)) =

 k+(x̃, z̃), (x, z) ∈ ∂ω+ \ ΓI ,
k−(x̃, z̃), (x, z) ∈ ∂ω− \ ΓI ,
k+(x̃, z̃)− k−(x̃, z̃), (x, z) ∈ ΓI .

In the above formula n still denotes the exterior unit normal on ∂Ω. However, along
the interface ΓI , n is now taken to be the exterior unit normal to ω+. The change in
the right-hand side has been obtained by insertion of the formulas

a+Dvε|Γ+
=
f

ε
, a−Dvε|Γ− = −g

ε
.

The solution vε (being the solution to a Neumann problem) is only determined up to
an additive constant. To remedy this situation we impose the additional condition∫

∂Ω

vε ds = 0.(56)

The equations (55) and (56) are now uniquely solvable.
We shall now briefly describe the collocation method which we use to discretize

the system of equations (55)–(56); for more details including an analysis of its con-
vergence properties, see Chapter 13 in [11]. Let s(t) = (x(t), z(t)) : [0, T ]→ ∂Ω∪ΓI
be a parametrization by arclength of the cell boundary and the interface. In our im-
plementation we take s(0) to be the point where ΓI meets the left vertical boundary,
s(t), t > 0, then traces the boundary ∂Ω clockwise until it returns to s(0), at which
point it continues along ΓI finally reaching the point where ΓI meets the right ver-
tical boundary at t = T . We select p = 7N − 1 collocation points along ∂Ω ∪ ΓI . It
is always required that the four corners of ∂Ω and the endpoints of ΓI be collocation
points. We select N + 1 equidistant points along the top side of Ω as well as along
the bottom side. 2N + 1 points are chosen on each of the vertical sides, such as to be
approximately equidistant while satisfying the restriction that the endpoints of ΓI be
amongst them. Finally we select N +1 points along the interface ΓI . These points are
again evenly spaced with the following exception. Given an equidistant set of points

(x(t1), y(t1)), . . . , (x(tN+1), y(tN+1))

along ΓI we minimally shift those points (if any) that fall at interior corners of ΓI . This
is done to avoid explicitly incorporating the special integral formulation corresponding
to such corners. The total number of collocation points is 7N−1 (as each of the corners
of Ω and the endpoints of ΓI are included twice above). Given the collocation points

s(tj) = (x(tj), y(tj)), 0 < t1 < t2 · · · < tp < T,

we seek an approximate solution v
(p)
ε from a finite-dimensional subspace Xp, with

dimXp = p = 7N − 1, by requiring that (55) be satisfied at these points. For our
computations, Xp consists of the continuous piecewise-linear functions with nodes at

the given collocation points. For convenience we shall sometimes think of v
(p)
ε as a

function of t through the following natural identification:

v(p)
ε (t) = v(p)

ε (s(t)).
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Let c = {cj}pj=1 denote the nodal values of v
(p)
ε . Then for t ∈ [tj , tj+1],

v(p)
ε (t) =

cj(tj+1 − t) + cj+1(t− tj)
tj+1 − tj .

v
(p)
ε also has the representation

v(p)
ε (t) =

p∑
j=1

cjLj(t), t1 < t < tp,(57)

where Lj is the standard piecewise-linear “hat” function with support in [tj−1, tj+1].
Upon substitution of (57) into (55) the coefficients c = {cj}pj=1 solve the linear system

Mc = ϕ,(58)

with the “generic” elements of the matrix M defined by

mij =

{
Lj(ti) +

∫ tj+1

tj−1
K(s(t); s(ti)) Lj(t) DNε(s(t); s(ti)) dt, 1 ≤ i, j ≤ p,∫

∂Ω
Lj(t)dt, i = p+ 1, 1 ≤ j ≤ p,

and the right-hand side given by

ϕi =
k+(s(ti))

ε a+

(∫
Γ+

f Nε(· ; s(ti)) ds −
∫

Γ−
g Nε(· ; s(ti)) ds

)
.

When 0 < tj < T is one of the two parameter values corresponding to the endpoints of
ΓI an extra integral has to be added to the formula for mij . This integral corresponds
to the parameter interval (0, t1) in the case of the left endpoint and the parameter
interval (tp, T ) in the case of the right endpoint. Almost all the (nonzero) integrals
in the definition of the matrix m are calculated by means of a Simpson’s composite
rule. An exception is made when j = i and s(ti) is a collocation point adjacent to one
of the (interior) corners of ΓI ; in this case the integral is calculated using a highly
accurate adaptive quadrature routine. We solve the (p + 1) × p system of equations
(58) by means of linear least squares. Once we obtain the coefficients cj , we have
an approximation to vε along ∂Ω ∪ ΓI . In order to reconstruct the interface function
h(x), we most often also require an approximation to ε∂vε∂x along Γ+ and Γ−. Having
computed the values

v(p)
ε (0, 1), v(p)

ε

(
1

N
, 1

)
, v(p)

ε

(
2

N
, 1

)
, . . . , v(p)

ε (1, 1)

and

v(p)
ε (0,−1), v(p)

ε

(
1

N
,−1

)
, v(p)

ε

(
2

N
,−1

)
, . . . , v(p)

ε (1,−1)

at the N +1 equidistant collocation points along Γ+ and Γ−, respectively, we approx-
imate ε∂vε∂x by numerical differentiation, using the five-point rule

ε
∂vε
∂x

(
i

N
,±1

)
≈ ε

12

v
(p)
ε ( i−2

N ,±1)− 8v
(p)
ε ( i−1

N ,±1) + 8v
(p)
ε ( i+1

N ,±1)− v(p)
ε ( i+2

N ,±1)
1
N

,
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Fig. 2. Two interfaces (a) and the corresponding boundary voltage derivatives (b).

i = 2,. . . , N-2. Figure 2b displays two examples of this approximate, rescaled deriva-
tive from the bottom boundary Γ−. The computations were both done with ε = 0.01,
a+ = 1, a− = 5, and with boundary currents f = −2x + 1, g = 2x − 1. Two differ-
ent h’s were used, namely h(x) = 0 and h(x) = 1

4x − 1
8 , as displayed in Figure 2a.

The solid (dashed) interface in Figure 2a corresponds to the solid (dashed) approx-
imate derivative graphed in Figure 2b. Notice that the approximate derivatives are
reasonably different except near x = 0.5, where the two h’s agree.

In the following section approximate values such as these will be used as “syn-
thetic” data in order to establish the effectiveness of the interface reconstruction
formulas derived in section 3.

6. Computational results. Before we present our computational results let us
first note any restrictions or conditions imposed on our data. In all our computa-
tions the boundary currents f(x) and g(x) are piecewise-linear, but not necessarily
continuous, functions which satisfy∫

Γ+

f(x)dx−
∫

Γ−
g(x)dx = 0.(59)

The “true” interface function h(x) is a piecewise-linear continuous function, and the
conductivities a+ and a− are positive constants with a+ 6= a−. In the examples
presented in this section the “synthetic” data have been generated with N between 50
and 150, corresponding to a total number of collocation points between 349 and 1049.
A relatively large number of collocation points was used for small ε, large conductivity
ratios, and very “rough” h’s. The reconstructed interface function is given in terms of
its computed values at the equidistant points i/N , 2 ≤ i ≤ N − 2. Since the formulas
used in reconstructing the interface are only valid for “thin domains,” we restrict our
thickness parameter, ε, to the interval between 0 and 1/10. In two of our examples
(corresponding to Figures 3b and 8) we select parameters that are directly relevant
to Hall–Héroult cells. In our other examples the parameters are chosen simply to test
various features of the reconstruction formulas.

We note that in many cases the voltage potential vε has a singularity at the
corners of the domain, Ω, as well as at the points where the interface meets the vertical



DETERMINATION OF THE INTERFACE 271

boundaries. Therefore the approximation we calculate may not be very accurate near
these (six) points. Furthermore, the value of

∫ x
0

(f−g)(t)dt is always very close to zero
when x is near 0 or 1, and so the reconstruction formula based on the derivative data
degenerates near these points. Recognizing these facts, we cannot expect to recover
the interface function h(x) very well for values near 0 or 1. Consequently, we have
graphed all the reconstructed interfaces only for 0.05 < x < 0.95.

In the first example we examine the effect of different conductivity ratios on
the reconstructed interface. We use the derivative-based formula (41). Here and in
all the following examples the cutoff parameter δ (in the formula for DV±ε) is chosen
very small (so small that δa− is always of magnitude less than 10−5). We compare the
reconstruction results for the following two sets of conductivities: (a) a+ = 1, a− = 2,
and (b) a+ = 1, a− = 104, with all other data remaining the same. The boundary
currents are f(x) = −x+ 1

2 and g(x) = x− 1
2 . The interface function, h(x), is defined

by

h(x) =

 0.50, 0 ≤ x ≤ 0.30,
−100x+ 30.5, 0.30 < x < 0.31,
−0.50, 0.31 ≤ x ≤ 1,

and the thickness parameter used is ε = 0.02. Each of the frames in Figure 3 shows two
reconstructions of h(x) obtained by using the bottom derivative data (the dot-dashed
line) and the top derivative data (the dashed line). As in all the figures to follow
the solid line represents the “true” location of the interface. Figure 3a corresponds
to the first set of conductivities (a+ = 1, a− = 2) and Figure 3b corresponds to
the second set. It is evident that if the conductivities are close in size, either set of
data (top or bottom) suffices for the reconstruction. However, if the conductivities
are very different in magnitude, as in case (b), the bottom data (from the boundary
adjacent to the subdomain with the large conductivity) produces the only acceptable
reconstruction of h(x). This is consistent with our remarks at the end of section 4. In
the rest of our examples we always use the bottom data to calculate the boundary
voltage derivative, unless otherwise stated. We note that there are oscillations present
in the (synthetic) boundary derivative data (particularly in that which corresponds
to the top boundary and a conductivity ratio a+/a− = 10−4). These oscillations
could be made smaller by use of more collocation points and/or a more sophisticated
differentiation strategy. This last comment is only of minor practical interest since
“real” measured data will come with a limited accuracy, which we cannot as easily
change.

In our next example we analyze the reconstruction results obtained by means of
(41) for different ε. In each case the boundary currents are given by f(x) = x

2 and
g(x) = x

4 + 1
8 ; the interface, h(x), is defined by

h(x) =


0, 0 ≤ x < 0.25,
2x− 0.5, 0.25 ≤ x < 0.375,
−2x+ 1, 0.375 ≤ x < 0.625,
2x− 1.5, 0.625 ≤ x < 0.75,
0, 0.75 ≤ x ≤ 1,

and the conductivities are a+ = 1 and a− = 5. We shall compare the results obtained
for the following three cases: (a) ε = 0.10, (b) ε = 0.05, and (c) ε = 0.01. Since
the performance of the reconstruction formula is based on how well ε ∂∂xuε(x,±1)

approximates d
dxv

(−1)(x), 0 ≤ x ≤ 1, we can expect better results for smaller ε. On
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Fig. 3. Reconstructed interfaces for two different conductivity ratios. (a) a+/a− = 0.5, (b)
a+/a− = 10−4.

the other hand we note that as ε decreases the solution to (1) becomes increasingly
more difficult to approximate; i.e., the quality of our synthetic data declines. Our
computational results displayed in Figure 4a–c confirm both of these observations.
Figure 4a shows the reconstruction of h(x) for ε = 0.10. The smoothness of the

reconstruction directly corresponds to the smoothness of our approximation u
(p)
ε . In

this case the approximation is very smooth, but the thickness parameter ε is not
sufficiently small, resulting in a smooth, but fairly inaccurate, reconstruction. Figure
4b shows the reconstruction with ε = 0.05. The improved accuracy and increased
irregularity is evident. Figure 4c shows the reconstruction of h(x) for ε = 0.01. The
effect of decreasing ε is clearly displayed. The reconstruction is highly accurate but is
also somewhat irregular. We may regularize the reconstructed curve in the following
fashion. Let hr(x) be the originally reconstructed interface function and consider the
energy

Ec(h̃r) = ‖h̃r − hr‖2L2(0,1) + c‖h̃′r‖2L2(0,1)

= E1 + cE2.

The regularized interface function is an approximate minimizer of this energy. We
obtain this approximation by solving a finite difference version of the corresponding
Euler–Lagrange equation

−cd
2h̃r
dx2

+ h̃r = hr,

with the boundary conditions h̃′r = 0 at x = 0, 1. Our selection of the value of c
is based on an L-curve approach. Quite frequently, as c increases up to a particular
value, copt, E2 rapidly decreases while E1 slightly increases. Then, for c > copt, E2

decreases at a declining rate while E1 rapidly increases. In some sense copt represents
the optimal choice. For our example we examined the results obtained for several
values of c. The reconstruction obtained after regularization of the interface in Figure
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Fig. 4. Reconstructions for various values of ε. (a) ε = 0.1, (b) ε = 0.05, (c) ε = 0.01, (d)
ε = 0.01, regularized.

4c is graphed in Figure 4d. For a further discussion of this regularization approach
and the selection of c, we refer the reader to [6] and [10].

In our next example we examine the effect of the smoothness of the boundary
currents on the reconstructed interface. We again base the reconstruction on (41). For
our example we take conductivity values a+ = 1 and a− = 5 and thickness parameter
ε = 0.02. We compare the computational results for the reconstruction of the interface:

h(x) =


17
12x− 1

2 , 0 ≤ x < 0.60,
− 1

2x+ 13
20 , 0.60 ≤ x < 0.70,

2
3x− 1

6 , 0.70 ≤ x ≤ 1.00

for the following two sets of boundary currents:

(a) f(x) = x− 1

2
,

g(x) = 0,
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Fig. 5. The effect of discontinuities in the currents on the reconstruction.

and

(b) f(x) =


−3

8 , 0 ≤ x < 0.25,

− 1
8 , 0.25 ≤ x < 0.50,
1
8 , 0.50 ≤ x < 0.75,
3
8 , 0.75 ≤ x ≤ 1.00,

g(x) = 0.

The current distribution f in (b) is a very natural piecewise-constant approxi-
mation to the continuous distribution in (a). Figure 5a shows the reconstruction cor-
responding to the smooth f . Away from the endpoints (x = 0, 1), the reconstructed
interface is uniformly accurate in its approximation of h(x). Figure 5b shows the
reconstruction corresponding to the piecewise-constant f . Away from the points of
discontinuity of f as well as the endpoints, the reconstructed interface provides an
excellent approximation to h(x). This reconstruction is clearly less accurate near the
points of discontinuity of f . The local inaccuracy of the reconstruction at these points
of discontinuity is caused by two facts: 1) the fact that the boundary voltage deriva-
tive ε ∂∂xuε is a poorer approximation to d

dxv
(−1), and 2) the fact that our synthetic

data (the approximation of uε) are less accurate.

In our next example we use model data corresponding to a cell in which both (41)
and (43) must be employed to reconstruct h(x). The conductivities are a+ = 1 and
a− = 2 and once again we use a thickness parameter of ε = 0.02. The “true” interface
is given by

h(x) =


−3

4x+ 2
5 , 0 ≤ x < 0.20,

x+ 1
20 , 0.20 ≤ x < 0.25,

− 3
4x+ 39

80 , 0.25 ≤ x < 0.65,
x− 13

20 , 0.65 ≤ x < 0.70,
− 3

4x+ 23
40 , 0.70 ≤ x ≤ 1.00,

(60)
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Fig. 6. Reconstruction using a combination of (41) and (43).

and the boundary currents are defined by

f(x) =

 2, 0 ≤ x < 0.40,
−1, 0.40 ≤ x < 0.60,
2, 0.60 ≤ x ≤ 1.00,

g(x) =

 1, 0 ≤ x < 0.60,

2, 0.60 ≤ x ≤ 1.00.

Since
∫ x

0
(f(t) − g(t)) dt 6= 0, 0 < x < 0.60, (41) is used to reconstruct h(x) for

x < 0.60. The result is the dashed curve to the left in Figure 6a. Since
∫ x

0
(f(t) −

g(t)) dt ≡ 0, 0.60 < x < 1.00, (43) is used to reconstruct h(x) for x > 0.60. The
result is the dot-dashed curve to the right in Figure 6a. Away from the endpoints
the reconstruction is a quite accurate approximation to h(x) except near the points
x = 0.40 and x = 0.60. Note that x = 0.40 is a point of discontinuity for f(x) while
x = 0.60 is a point of discontinuity for both f(x) and g(x) as well as the point at which
the formula used to reconstruct h(x) changes. Even with perfect boundary voltage
data we could not expect to reconstruct h(x) with extremely good accuracy near
x = 0.40 and x = 0.60. Since the reconstruction is rather unsmooth we regularize the
curves using the process described above. The regularized result is graphed in Figure
6b.

It is not that the interface (60) is particularly difficult to reconstruct. It may
be quite accurately reconstructed using smoother (and less degenerate) boundary
currents. Figure 7 shows the reconstruction of this interface for conductivities a+ =
1, a− = 2 and thickness parameter ε = 0.02 (as before). However, this time we
use the boundary currents f(x) = −2x + 1 and g(x) = 2x − 1. Figure 7a is the
reconstruction obtained by use of the derivative-based formula (41); Figure 7b is
the same reconstruction, only this time regularized. This example confirms that the
inaccuracies in the previous reconstruction were largely a result of the discontinuities
and the degeneracy of the applied boundary currents.

In our final example we demonstrate that an interface such as (60) may also be
quite accurately reconstructed in the case a+ = 1, a− = 104, and ε = 0.02. Figure
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Fig. 7. The same interface and conductivities as in the previous figure, but with smoother, less
degenerate boundary currents.
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Fig. 8. Same interface as in Figure 7, but a conductivity ratio a+/a− = 10−4. Reconstructions
based on (41) to the left, reconstruction based on (43) to the right. The boundary currents for (a)
and (b) differ.

8a corresponds to applied boundary currents f(x) = −2x+ 1 and g(x) = 2x− 1 and
use of (41). The dot-dashed (fairly good) reconstruction corresponds to the use of the
bottom derivative data. The dashed (useless) reconstruction is obtained by use of the
top derivative data. No regularization was performed on the reconstructions shown
in Figure 8a. Figure 8b corresponds to the applied boundary currents f = g = 1 and
use of (43). This reconstruction has been regularized using the technique described
earlier.
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Abstract. Three dynamical systems are associated with a problem of convex optimization
in a finite-dimensional space. For system trajectories x(t), the ratios x(t)/t are, respectively, (i)
solution tracking (staying within the solution set X0), (ii) solution abandoning (reaching X0 as time
t goes back to the initial instant), and (iii) solution approaching (approaching X0 as time t goes
to infinity). The systems represent a closed control system with appropriate feedbacks. In typical
cases, the structure of the trajectories is simple enough. For instance, for a problem of quadratic
programming with linear and box constraints, solution-approaching dynamics are described by a
piecewise-linear ODE with a finite number of polyhedral domains of linearity. Finding the order of
visiting these domains yields an analytic resolution of the original problem; a detailed analysis is
given for a particular example. A discrete-time approach is outlined.

Key words. feedback control, differential inclusions, convex programming, linear equality con-
straints
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1. Introduction. Our goal in this paper is to expose new connections between
dynamical systems and static convex optimization problems. The idea of approach-
ing a static optimizer along a trajectory of a continuous-time dynamical system has
been exploited in various aspects. Gradient processes shifting the primal and dual
variables against the gradients of the Lagrange function so as to attain its saddle
point have perhaps the longest history [1]. Gradient-type processes in feasible sets
[2], continuous-time gradient projection [3], and continuous-time barrier projection [4]
illustrate, among other things, further developments in the gradient approach. The
homotopy approach rests on the idea of tracking solutions of time-parametrized prob-
lems by smoothly transforming an easily solvable problem into the original one. In this
context we mention path-following processes [5] and interior-point homotopy methods
[6]. Finally, we refer to continuous-time counterparts of proximal and Newton-type
optimization methods (see, e.g., [3]).

In this paper we hold a viewpoint of control theory. We describe three dynami-
cal systems (ODEs) whose state-over-time ratios converge to static optimizers. The
ODEs represent a closed control system with appropriate feedbacks. The structure
of the feedbacks originates from the method of shifting control [7] and its regularized
modifications [8].

The paper has two objectives.
The first objective is qualitative. We show that the dynamical systems corre-

sponding to the Filippov shifting, regularized shifting, and penalized shifting feedbacks
converge to an optimizer differently. The Filippov shifting system is fixed on the
optimizer. The regularized shifting system reaches the optimizer as time goes back to
the initial instant. The penalized shifting system finds the optimizer as time goes to
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infinity. Thus, we have solution-tracking dynamics, solution-abandoning dynamics,
and solution-approaching dynamics. Up to now, dynamical systems reaching the opti-
mizer at infinity (a prototype of solution approaching) have been considered. Solution
tracking and solution abandoning extend the variety of qualitative links between the
dynamical systems and the solvers to convex optimization problems.

Our second objective is to outline an analytic optimization approach associated
with explicit solutions of the designed ODEs. Generally, these ODEs have multival-
ued right-hand sides, and nonstandard solution techniques are required. However, if
the minimized function is strictly convex, the right-hand sides of the ODEs are single
valued (the Filippov shifting system is a single exception). For instance, the penal-
ized shifting system associated with a problem of quadratic programming with linear
and box constraints is described by a piecewise-linear ODE with a finite number of
polyhedral domains of linearity. System trajectory is represented explicitly in each
domain. A problem is to identify the order of visiting the domains. In section 7 we
give an example of an analytic resolution of this problem.

We restrict this study to convex optimization problems whose feasible sets are
described by inclusions and linear equalities. The linear equality constraints allow us
to implement the idea of extremal shifting with minimum modifications (in this paper
we deal with a minimum of technical details).

In section 2 we discuss the underlying idea of our method. In sections 3, 4, and
6 we introduce the Filippov shifting system, the regularized shifting system, and the
penalized shifting system, and prove their convergence properties. Sections 5 and
7 are devoted to the analytic design of the regularized shifting trajectories and the
penalized shifting trajectories for two particular examples. In section 8 we consider
discrete-time analogues of the shifting and penalized shifting dynamics.

The study was initiated in [9]. In this paper the method of regularized shift-
ing was used for the justification of a finite approximate optimization algorithm. A
preliminary text of the present paper was published in [10]. A family of numerical
algorithms for convex optimization adjoining the suggested approach is described in
[11].

2. Outline of the method: Definitions. We are concerned with the opti-
mization problem

minimize J(x),
x ∈M,
Fx = b.

(2.1)

Here J is a convex function on Rn, M is a closed, convex, and bounded set in Rn,
F is an r × n matrix, and b ∈ Rr. As usual, Rk is a k-dimensional Euclidean space
of column vectors, xi is the ith coordinate of x ∈ Rn, xT stands for x transposed,
and | · | denotes the Euclidean norm. A point x ∈ Rn such that x ∈ M , Fx = b is
called feasible in problem (2.1). The collection of all points feasible in (2.1) forms
the feasible set of problem (2.1). We assume that the feasible set of problem (2.1)
is nonempty. J0 and X0 denote the optimal value and the solution set in problem
(2.1), respectively. Note that X0 is nonempty. In what follows, argmin{f(x) : x ∈ E}
stands for the collection of all minimizers of function f in E.

Let us outline informally a method of building a dynamical system tracking the
solution set X0. We begin with an ODE with a fixed (zero) initial state and a variable
(controllable) right-hand side u(t):

ẋ(t) = u(t), x(0) = 0,(2.2)
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where time t varies between zero and infinity. Impose the constraint u(t) ∈M . Then,
no matter how u(t) is formed, x(t)/t ∈M for all t > 0; this follows from the convexity
of M . In other words, the ratio x(t)/t automatically satisfies the inclusion constraint
in problem (2.1). We treat x(t)/t as a candidate for tracking X0. Let us find a control
law ensuring Fx(t)/t = b, or, equivalently, ε(t) = |Fx(t)− bt|2 = 0 for all t ≥ 0. The
zero initial condition implies ε(0) = 0. So, it is sufficient to have ε̇(t) ≤ 0. The
differentiation yields ε̇(t) = 2(Fx(t) − bt)T (Fu(t) − b). We get ε̇(t) ≤ 0 by letting
u(t) ∈ L−(t, x(t)), where

L−(t, x) = {u ∈M : (Fx− bt)T (Fu− b) ≤ 0}.(2.3)

Any u(t) ∈ L−(t, x(t)) keeps x(t)/t within the feasible set of problem (2.1) for all
t > 0. We associate this argument with the method of shifting control [7]. Control
u(t) ∈ L−(t, x(t)) shifts discrepancy ε(t) toward zero. Now let u(t) minimize J in
L−(t, x(t)), i.e., u(t) ∈ Us(t, x(t)), where

Us(t, x) = argmin{J(u) : u ∈ L−(t, x)}.(2.4)

We call Us(t, x) the shifting feedback. We have Fx0 − b = 0, where x0 is a solution
of problem (2.1). Hence (Fx(t)− bt)T (Fx0 − b) = 0, and x0 ∈ L−(t, x(t)). Therefore
J(u(t)) ≤ J(x0) = J0 for all t > 0. Due to the convexity of J ,

J

(
x(t)

t

)
≤ 1

t

∫ t

0

J(u(s))ds ≤ 1

t

∫ t

0

J0 = J0.

Now take into account that x(t)/t is feasible in problem (2.1). We immediately get
that x(t)/t is a solution of (2.1), or, equivalently, x(t)/t ∈ X0 for all t > 0. We
find that x(t), a trajectory of the control system (2.2) under the shifting feedback
Us(t, x(t)), tracks the solution set X0.

Unfortunately, the above argument does not work, for we cannot guarantee the
existence of a trajectory under the shifting feedback Us(t, x). Let us give a simple
nonexistence example. We minimize the scalar variable x under the trivial constraints
x ∈ [−1, 1] and x = 0. We have L−(t, x) = [−1, 0] for x ≥ 0, and L−(t, x) = [0, 1] for
x < 0. Hence Us(t, x) = {us(t, x)}, where

us(t, x) =

{ −1, x ≥ 0,
0, x < 0.

The differential equation for system (2.2) closed with feedback Us(t, x) is

ẋ(t) = us(t, x(t)), x(0) = 0.(2.5)

Its right-hand side is discontinuous. Obviously, this equation has neither classical nor
Carathéodory solutions.

The paradox disappears if we assume Filippov’s definition of solutions. Following
[12], we identify a solution of (2.5) with a solution of the differential inclusion

ẋ(t) ∈ Ufs(t, x(t)), x(0) = 0.

Here

Ufs(t, x) =

 {−1}, x > 0,
{0}, x < 0,

[−1, 0], x = 0.
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It is easily seen that x(t) = 0 is a single Filippov solution of (2.5) and x(t)/t ∈ X0

for all t > 0 (X0 = {0}).
In section 3 the features of the above example will be extended to the general

case.
In what follows, we deal with multivalued feedbacks for system (2.2). A (mul-

tivalued) feedback U is defined to be a map from R+ × Rn into the collection of all
nonempty sets in M ; here R+ = [0,∞]. A feedback U such that U(t, x) is one-element
for all (t, x) ∈ E is called single valued on E; if E = R+×Rn, we call U single valued.
A trajectory (of system (2.2)) under feedback U is a solution of

ẋ(t) ∈ U(t, x(t)), x(0) = 0.(2.6)

More accurately, a function x(·) : R+ 7→ Rn is called a trajectory under U if x(·) is
absolutely continuous on every bounded interval, x(0) = 0, and the inclusion in (2.6)
holds for almost all t ≥ 0.

The convexity of M and the fact that the values of feedbacks are contained in M
yield the following.

Lemma 2.1. Let x(·) be a trajectory under an arbitrary feedback. Then x(t)/t ∈
M for all t > 0.

We conclude this section with some known definitions and properties of multival-
ued maps; they will be referred to in what follows. A multivalued (set-valued) map
F on E ⊂ R+ ×Rn associates with every (t, x) ∈ E a nonempty set F(t, x) ⊂ Rn; if
E = R+×Rn, we call F a multivalued map (without mentioning its set of definition).
The continuity, upper semicontinuity, and lower semicontinuity of a multivalued map
F on E at a point are understood in a standard way (see [13, pp. 41, 43]). A multi-
valued map F whose restriction to a set E is continuous at every point (t, x) ∈ E is
said to be continuous on E; if E = R+ ×Rn, then F is called continuous. The same
applies for the upper and lower semicontinuity. The next two lemmas follow from
standard results of set-valued analysis (see [14, section 1.4]).

Lemma 2.2. Let F be a closed and convex-valued multivalued map continu-
ous on E, and f be a convex function on Rn. Then the multivalued map (t, x) 7→
argmin{f(u) : u ∈ F(t, x)} is closed and convex valued and upper semicontinuous on
E.

Lemma 2.3. Let E1, . . . , Em be closed sets in R+ × Rn, and a multivalued map
F be upper semicontinuous on each of them. Then F is upper semicontinuous on
∪{Ej : j = 1, . . . ,m}.

3. Solution-tracking dynamics. In this section we extend the argument of
section 2 to the general case. We state that the trajectories under the shifting feedback
are solution tracking but usually do not exist. Next, we introduce the Filippov shifting
feedback. We prove that there always exists a trajectory under this feedback, and
every such trajectory is solution tracking.

We call a function x(·) : R+ 7→ Rn solution tracking if x(t)/t ∈ X0 for all
t > 0. Let us fix a continuous feedback Q such that Q(t, x) ∩X0 is nonempty for all
(t, x) ∈ R+ ×Rn. The shifting feedback Us is defined by (2.4), where

L−(t, x) = {u ∈ Q(t, x) : (Fx− bt)T (Fu− b) ≤ 0}(3.1)

(in (2.3) we have Q(t, x) = M). Note that Us is closed and convex valued.
Let us give a criterion for a function x(·) to be a trajectory under the shifting

feedback. We set

Q0(t, x) = argmin{J(u) : u ∈ Q(t, x)}.(3.2)
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Lemma 2.3 and the continuity of Q yield the following.
Lemma 3.1. Feedback Q0 (3.2) is upper semicontinuous.
Theorem 3.1. Let x(·) : R+ 7→ Rn be absolutely continuous on every bounded

interval, and x(0) = 0. Then the next statements are equivalent:
(i) x(·) is a trajectory under the shifting feedback;
(ii) ẋ(t) ∈ Q0(t, x(t)) ∩X0 for almost all t ≥ 0.
Proof. Let (i) hold. By the definition of the shifting feedback (see (2.4)), ẋ(t) ∈

L−(t, x(t)) for almost all t. Hence (see (3.1)), the function ε(·) : t 7→ | Fx(t) − tb |2
is nonincreasing. Since ε(0) = 0, we have Fx(t) = tb for all t ≥ 0. Therefore
L−(t, x(t)) = Q(t, x(t)) for t ≥ 0 (see (3.1)). By (3.2) Us(t, x(t)) = Q0(t, x(t)).
Consequently ẋ(t) ∈ Q0(t, x(t)) for almost all t ≥ 0. In particular J(ẋ(t)) ≤ J0 for
almost all t ≥ 0. It follows from Fx(t) = tb that ẋ(t) is feasible in problem (2.1) for
almost all t ≥ 0. Hence J(ẋ(t)) = J0 for almost all t ≥ 0. Therefore ẋ(t) ∈ X0 for
almost all t ≥ 0.

Let (ii) hold. For almost all t, ẋ(t) is simultaneously a minimizer of J in Q(t, x(t))
and a minimizer of J in the feasible set of problem (2.1). Since L−(t, x(t)) contains
the feasible set of problem (2.1) and is contained in Q(t, x(t)), ẋ(t) minimizes J in
L−(t, x(t)), or, equivalently, ẋ(t) ∈ Us(t, x(t)) for almost all t.

Corollary 3.1. Every trajectory under the shifting feedback is solution tracking.
Proof. Let x(·) be a trajectory under the shifting feedback. By Theorem 3.1(ii),

ẋ(t) ∈ X0 for almost all t ≥ 0. Since X0 is closed and convex, x(t)/t ∈ X0 for all
t > 0.

Corollary 3.2. Let there exist a trajectory under the shifting feedback. Then
∪{Q0(t, x) ∩X0 : x ∈ tX0} is nonempty for all t ≥ 0.

Proof. Let x(·) be a trajectory under the shifting feedback. By statement (ii) of
Theorem 3.1, x(t) ∈ tX0 for all t ≥ 0 and Q0(t, x(t))∩X0 is nonempty for almost all
t ≥ 0. Due to the upper semicontinuity of feedback Q0 (Lemma 3.1), Q0(t, x(t))∩X0

is nonempty for all t ≥ 0.
Corollary 3.3. Let X0 be one-element. The next statements are equivalent:
(i) there exists a trajectory under the shifting feedback;
(ii) for all t ≥ 0 it holds that x0 ∈ Q0(t, tx0), where x0 is a single element in X0.
Proof. If (i) holds, then (ii) is true by Corollary 3.2. Let (ii) hold. By Theorem

3.1, x(·) : t 7→ tx0 is a trajectory under the shifting feedback.
The necessary condition for the existence of a trajectory under the shifting feed-

back given in Corollary 3.2 is a severe constraint on the problem’s data and feedbackQ.
For instance, if Q(t, x) = M (see section 2), this condition requires that a minimizer
in the original problem (2.1) minimizes J in M . The latter situation is degenerate.

To avoid the nonexistence phenomenon, we introduce a Filippov modification of
the shifting feedback. In what follows, conv E designates the closure of the convex
hull of a set E ⊂ Rn. The Filippov shifting feedback Ufs is defined by

Ufs(t, x) = ∩δ>0 conv ∪ {Us(t, y) : |y − x| ≤ δ}.(3.3)

Theorem 3.2. There exists a trajectory under the Filippov shifting feedback, and
every such trajectory is solution tracking.

Proof. We can easily verify that the Filippov shifting feedback Ufs is upper
semicontinuous. Obviously, it is bounded. These properties imply the existence of a
trajectory under Ufs (see, e.g., [13, Theorem 4, p. 101]). Now let x(·) be a trajectory
under Ufs. We must prove that x(·) is solution tracking. Take a small δ > 0 and
arbitrary t ≥ 0 such that ẋ(t) ∈ Ufs(t, x). By (3.3) there are points y1, . . . , yk in the
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closed δ-neighborhood of x(t), elements ui ∈ Us(t, yi) (i = 1, . . . , k), and coefficients

βi ≥ 0 (i = 1, . . . , k),
∑k
i=1 βi = 1, such that∣∣∣∣∣ẋ(t)−

k∑
i=1

βiui

∣∣∣∣∣ < δ.(3.4)

By the definition of Us(t, x) (see (2.4)), ui ∈ L−(t, yi). So, (Fyi − tb)T (Fui − b) ≤
0. Fix an arbitrary µ > 0, and, with no loss of generality, take δ so small that
(Fx(t)− tb)T (Fui − b) ≤ µ for all i. Then (Fx(t)− tb)T (F

∑k
i=1 βiui − b) ≤ µ. Due

to (3.4) we can choose δ so small that

(Fx(t)− tb)T (Fẋ(t)− b) ≤ 2µ.(3.5)

Note that Q(t, yi) ∩X0 is nonempty for every i. Let x0
i ∈ Q(t, yi) ∩X0. Obviously,

(Fyi− tb)T (Fx0
i − b) = 0. Hence x0

i ∈ X0 ∩L−(t, yi). Consequently J(ui) ≤ J(x0) =

J0 (see (2.4)). By the convexity of J we have J(
∑k
i=1 βiui) ≤ J0. Taking into account

(3.4) and (if needed) decreasing δ, we get

J(ẋ(t)) ≤ J0 + µ.(3.6)

In (3.5) and (3.6) µ > 0 is arbitrary. Omitting µ yields

(Fx(t)− tb)T (Fẋ(t)− b) ≤ 0,(3.7)

J(ẋ(t)) ≤ J0.(3.8)

Recall that t is arbitrary and satisfies ẋ(t) ∈ Ufs(t, x). The latter holds for almost
all t ≥ 0. Therefore for almost all t ≥ 0 estimates (3.7) and (3.8) are valid. Set
ε(t) = |Fx(t) − tb|2. Obviously ε(0) = 0. By (3.7) ε̇(t) ≤ 0 for almost all t ≥ 0.
Thus for all t ≥ 0 we have ε(t) = 0, or Fx(t)/t = b. So far as x(t)/t ∈ M (Lemma
2.1), x(t)/t is feasible in problem (2.1) for all t > 0. Now integrate (3.8) and use the
convexity of J . For arbitrary t > 0 we obtain

J

(
x(t)

t

)
≤ 1

t

∫ t

0

J(ẋ(s))ds ≤ 1

t

∫ t

0

J0 = J0.(3.9)

Since x(t)/t is feasible in problem (2.1), x(t)/t is a minimizer in (2.1). Equivalently,
x(t)/t ∈ X0. Thus trajectory x(·) is solution tracking.

Note that if J is strictly convex, the shifting feedback Us is single valued (see
(2.4)). This is not true for the Filippov shifting feedback Ufs.

Theorem 3.3. Let J be strictly convex, and the Filippov shifting feedback be
single valued. Then there exists a trajectory under the shifting feedback.

Proof. Since J is strictly convex, each of the sets X0 and Q0 is one-element.
We denote by x0 a single element in X0 and by q0(t, x) a single element in Q0(t, x).
Suppose there does not exist a trajectory under the shifting feedback. Then statement
(ii) of Corollary 3.3 is untrue; i.e., there is a τ ≥ 0 such that x0 6= q, where q =
q0(τ, τx0). Then q (lying in M) does not satisfy the equality constraint in problem
(2.1), Fq 6= b. Take ε > 0 and set y−ε = τx0 − (εq − x0). We have

(Fy−ε − τb)T (Fq − b) = (Fτx0 − τb− εF (q − x0))T (Fq − b)
= −ε(Fq − b)T (Fq − b) < 0.
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By Lemma 3.1 the function (t, x) 7→ q0(t, x) is continuous. Consequently for suffi-
ciently small ε > 0, (Fy−ε − τb)T (Fq0(τ, y−ε ) − b) < 0, or q0(τ, τy−ε ) ∈ L−(τ, y−ε ).
Hence for small ε > 0, q0(τ, τy−ε ) minimizes J in L−(τ, y−ε ), i.e., q0(τ, y−ε ) ∈ Us(τ, y−ε ).
By the definition of the Filippov shifting feedback, q = limε→+0 q

0(τ, y−ε ) is contained
in Ufs(τ, τx0). Now let

y+
ε = τx0 + ε(q − x0),

u+
ε ∈ Us(τ, y+

ε ), and u+ be a limit point of the sequence (u+
1/i). By (3.3) u+ ∈

Ufs(τ, τx0). Since u+
1/i ∈ L−(τ, y+

1/i), we have (Fy+
1/i−τb)T (Fu+

1/i−b) ≤ 0. Dividing

by ε and using Fx0 = b, we get (Fq − b)T (Fu+
1/i − b) ≤ 0. Hence (Fq − b)T

(Fu+ − b) ≤ 0. If u+ = q, then Fq − b = 0. The latter does not hold by assumption.
Therefore u+ 6= q. Thus Ufs(τ, τx0) contains the two different elements q and u+.
We find that the Filippov shifting feedback Ufs is not single valued, which contradicts
the assumption.

4. Solution-abandoning dynamics. The single-validity is a useful property
of a feedback. It allows us to design trajectories using standard ODE techniques.
Theorem 3.3 says that the Filippov shifting feedback Ufs is rarely single valued.

In this section we consider a feedback that is single valued on (0,∞)×Rn (provided
J is strictly convex) whose trajectories possess a property slightly weaker than solution
tracking (we call it solution abandoning). The single-validity on (0,∞) × Rn, i.e.,
everywhere except the hyperplane t = 0, is less convenient than the single-validity
everywhere but still gives a chance for using ODE techniques. The trajectories under
a feedback U that is single valued on (0,∞) × Rn are governed by an ODE whose
right-hand side is well defined everywhere except t = 0. If the right-hand side is
continuous on (0,∞) × Rn (which is the case in this section), the solutions of the
ODE are continuable to zero and bounded in its neighborhood. A solution x(·) is a
trajectory under U whenever limt→+0 x(t) = 0.

In what follows, dist(x,X) stands for the distance from a point x ∈ Rn to a set
X ⊂ Rn. We call a function x(·) : R+ 7→ Rn solution abandoning if dist(x(t)/t,X0)→
0 as t→ +0. Define the regularized shifting feedback Urs by

Urs(t, x) =

{
(1− ω(t, x))Us(t, x) + ω(t, x)Q0(t, x), t > 0,

Q(0, x), t = 0.
(4.1)

Here ω(·) is a continuous pasting function defined on (0,∞)×Rn. It satisfies ω(t, x) =
0 if |Fx − tb| ≥ ρ(t), and ω(t, x) = 1 if |Fx − tb| = 0. A continuous barrier function
ρ(·) is defined on R+, takes positive values everywhere except the origin, vanishes at
the origin, and satisfies

lim
t→+0

ρ(t)

t
= 0.(4.2)

If J is strictly convex, then feedbacks Us (2.4) and Q0 (3.2) are single valued, hence
Urs is single valued on (0,∞)×Rn. To state the existence of a trajectory under the
regularized shifting feedback we need to assume that feedback L− (3.1) is continuous
on

E+ = {(t, x) : t > 0, x ∈ Rn, Fx− tb 6= 0}.(4.3)
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Note that the continuity of L− on E+ does not imply its continuity on R+ × Rn.
For instance, for problem (2.1) with the trivial constraints x ∈ [−1, 1], x = 0, and
Q(t, x) = [−1, 1], we have L−(t, x) = [−1, 0] if x > 0, L−(t, x) = [0, 1] if x > 0, and
L−(t, x) = [−1, 1] if x = 0. We see that L− is continuous on E+ = {(t, x) : t > 0, x ∈
R1, x 6= 0} and discontinuous at points (t, 0).

Let us give a condition sufficient for L− to be continuous on E+. We write int E
for the interiority of a set E ⊂ Rn.

Lemma 4.1. Let int Q(t, x) intersect the feasible set of problem (2.1) for every
(t, x) ∈ E+. Then feedback L− is continuous on E+.

Proof. Since Q is continuous, L− is upper semicontinuous. We complete the
proof by showing that L− is lower semicontinuous on E+. Let L−0 (t, x) = {u ∈ Rn :
(Fx − bt)T (Fu − b) ≤ 0}. By (3.1) L−(t, x) = {u ∈ L−0 (t, x) : u ∈ Q(t, x)}. Then
by Proposition 1.5.2 in [15], the next conditions are sufficient for L− to be lower
semicontinuous on E+:

(i) L−0 is lower semicontinuous on E+;
(ii) Q(t, x) is convex;
(iii) the graph of the multivalued map (t, x) 7→ int Q(t, x) defined on E+ is open;

and
(iv) L−0 (t, x) ∩ int Q(t, x) is nonempty for all (t, x) ∈ E+.
Condition (i) is obviously satisfied. Conditions (ii) and (iv) follow from the as-

sumptions. It remains to prove (iii). Take arbitrary (t∗, x∗) ∈ E+ and u∗ ∈ int Q(t, x).
Let ε > 0 be the radius of a neighborhood of u∗ contained in Q(t∗, x∗). Then

∆(ψ | Q(t∗, x∗))− ε|ψ| ≥ ψTu∗
for all ψ ∈ Rn. Here and in what follows ∆(· | D) is the support function of D ⊂ Rn,
i.e., ∆(ψ | D) = sup{ψTu : u ∈ D}. By the continuity of Q, if (τ, ξ) is sufficiently
close to (t∗, x∗), then

∆(ψ | Q(τ, ξ)) ≥ ∆(ψ | Q(t∗, x∗))− ε

2
|ψ|

for all ψ ∈ Rn. Hence for (τ, ξ) close to (t∗, x∗) it holds that

∆(ψ | Q(τ, ξ))− ε

2
|ψ| ≥ ψTu∗

for all ψ ∈ Rn; equivalently, the (ε/2)-neighborhood of u∗ is contained in Q(τ, ξ).
Thus, (t∗, x∗, u∗) lies in the interior of the graph of (t, x) 7→ int Q(t, x). This graph is
therefore open. Condition (iii) is proved.

Lemma 4.2. Let feedback L− be continuous on E+. Then the regularized shifting
feedback is closed and convex valued and upper semicontinuous.

Proof. Observing (4.1), we easily see that the regularized shifting feedback Urs

is closed and convex valued. We must prove that Urs is upper semicontinuous. Let

D+ = {(t, x) ∈ (0,∞)×Rn : |Fx− tb| ≥ ρ(t)},
D− = {(t, x) ∈ (0,∞)×Rn : |Fx− tb| ≤ ρ(t)},

D+
0 = D+ ∪ ({0} ×Rn),

D−0 = D− ∪ ({0} ×Rn).
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Obviously D+
0 and D−0 are closed, and D+

0 ∪D−0 = R+ ×Rn. In view of Lemma 2.3
it is sufficient to prove that Urs is upper semicontinuous on each of these sets. Note
that Urs(t, x) ⊂ Q(t, x) and Urs(0, x) = Q(0, x) (see (4.1)). Since Q is continuous,
Urs is upper semicontinuous on {0} × Rn. It remains to show that Urs is upper
semicontinuous on D+ and D−. By assumption L− is continuous on D+. Then by
Lemma 2.2 the shifting feedback Us is upper semicontinuous on D+. On the other
hand, Urs and Us coincide on D+ (see (4.1)). Thus Urs is upper semicontinuous
on D+. Take arbitrary (t∗, x∗) ∈ D− and show that Urs is upper semicontinuous at
(t∗, x∗). Let Fx∗ 6= bt∗. Feedback L− is continuous at (t∗, x∗). Hence by Lemma 2.2
Us is upper semicontinuous at (t∗, x∗). By Lemma 3.1 Q0 is upper semicontinuous
at (t∗, x∗). Observe formula (4.1) for Urs(t, x). So far as ω(·) is continuous, and Us

and Q0 are upper semicontinuous at (t∗, x∗), Urs is upper semicontinuous at (t∗, x∗).
Let Fx∗ = bt∗. Now formula (4.1) for Urs(t, x) and the facts that Q0 is upper
semicontinuous at (t∗, x∗) and ω(t, x)→ 1 as (t, x)→ (t∗, x∗) yield that Urs(t, x) lies
in an arbitrary neighborhood of Urs(t∗, x∗) = Q0(t∗, x∗) provided (t, x) is sufficiently
close to (t∗, x∗). In other words, Urs is upper semicontinuous at (t∗, x∗). We have
proved that Urs is upper semicontinuous at every point in D−.

A key property of the trajectories under the regularized shifting feedback is as
follows.

Lemma 4.3. Let x(·) be a trajectory under the regularized shifting feedback. Then
for all t > 0

J

(
x(t)

t

)
≤ J0,(4.4)

∣∣∣∣ F x(t)

t
− b

∣∣∣∣ ≤ ρ(t)

t
.(4.5)

Proof. Take a t ≥ 0 such that ẋ(t) ∈ Urs(t, x(t)). By (4.1) ẋ(t) = (1 −
ω(t, x(t)))u1(t)+ω(t, x(t))u2(t), where u1(t) ∈ Us(t, x(t)) and u2(t) ∈ Q0(t, x(t)). By
the definition of Q0(t, x(t)) (see (3.2)), J(u2(t)) ≤ J0. The definition of Us(t, x(t))
(see (2.4)) and the fact that Q(t, x(t)) intersects X0 imply that J(u1(t)) ≤ J0. Then
the convexity of J and the inclusion ω(t, x(t)) ∈ [0, 1] yield

J(ẋ(t)) ≤ (1− ω(t, x(t)))J(u1(t)) + ω(t, x(t))J(u1(t)) ≤ J0.

We have proved that J(ẋ(t)) ≤ J0 for almost all t ≥ 0. Now using the convexity of J ,
we get (4.4) for all t > 0 (a detailed argument is given in (3.9)). Let us prove that (4.5)
holds for all t > 0. Suppose the contrary, i.e., ε(t∗) > ρ(t∗) for some t∗ ≥ 0, where
ε(t) = |Fx(t)−bt|. Note that ε(0) = 0 = ρ(0). Hence t∗ > 0, and there is a t∗ ∈ (0, t∗)
such that ε(t∗) < ε(t∗) and ε(t) > ρ(t) for all t ∈ [t∗, t∗]. By the definition of the
pasting function ω(·) we have ω(t, x(t)) = 0 for t ∈ [t∗, t∗]. Therefore Urs(t, x(t)) =
Us(t, x(t)) for t ∈ [t∗, t∗]. Hence ẋ(t) ∈ Us(t, x(t)) for almost all t ∈ [t∗, t∗]. Since
Us(t, x(t)) ⊂ L−(t, x(t)) (see (2.4)), dε2(t)/dt = 2(Fx(t) − bt)T (Fẋ(t) − b) ≤ 0 for
almost all t ∈ [t∗, t∗]. Thus ε(·) is nonincreasing on [t∗, t∗], which is not possible, since
by supposition ε(t∗) < ε(t∗). The obtained contradiction proves that (4.5) holds for
all t > 0.

Theorem 4.1. Let feedback L− be continuous on E+. Then there exists a tra-
jectory under the regularized shifting feedback, and every such trajectory is solution
abandoning.
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Proof. By Lemma 4.2 the regularized shifting feedback Urs is upper semicontin-
uous. Obviously, it is bounded. These properties imply the existence of a trajectory
under Urs (see [14, Theorem 4, p. 101]). Let x(·) be a trajectory under the regular-
ized shifting feedback. By Lemma 4.3 the estimates (4.4) and (4.5) hold for all t > 0.
Estimate (4.5) and the fact that ρ(·) satisfies (4.2) imply that |Fx(t)/t − b| → 0 as
t → +0. The latter convergence and the inclusion x(t)/t ∈ M holding for all t > 0
(Lemma 2.1) yield that the distance from x(t)/t to the feasible set in problem (2.1)
goes to zero as t → +0. Then in view of (4.4), limt→+0 dist(x(t)/t,X0) = 0, i.e.,
trajectory x(·) is solution abandoning.

Lemma 4.3 provides additional information on a solution-abandoning trajectory
x(·) under the regularized shifting feedback. In particular, we see that as t → +0,
values J(x(t)/t) converge to the optimal value J0 from below.

5. Solution-abandoning dynamics: Example. Here we give an example of
a solution-abandoning trajectory under the regularized shifting feedback.

Consider the problem of finding the projection of a vector z ∈ Rn onto the
hyperplane H orthogonal to a vector q ∈ Rn. This problem is represented in the
form (2.1), where J(x) = |x − z|2, F = qT , and M is a closed ball centered at zero
and containing z. We assume that qT z < 0 and denote by x0 the projection of z
onto H, i.e., the solution of problem (2.1). Set Q(t, x) = M . Note that the zero
element is feasible in problem (2.1) and lies in the interior of Q(t, x). Therefore by
Lemma 4.1 feedback L− is continuous on E+. Hence by Theorem 4.1 there exists a
trajectory under the regularized shifting feedback Urs, and every such trajectory is
solution abandoning. Let us construct a trajectory under Urs. The shifting feedback
Us (2.4) has the form

Us(t, x) =

{ {z}, qTx > 0,
{x0}, qTx ≤ 0.

We have Q0(t, x) = {x0} (see (3.2)). Hence the regularized shifting feedback Urs (4.1)
is given by

Urs(t, x) =

{ {urs(t, x)}, t > 0,
M, t = 0,

where

urs(t, x) =

 z, qTx > 0,
(1− ω(t, x))x0 + ω(t, x)z, −ρ(t) < qTx ≤ 0,

x0, qTx ≤ −ρ(t).

We take ρ(t) = t2 for the barrier function, and ω(t, x) = max{0, (1 − |qTx|)/t2} for
the pasting function. Then a trajectory under Urs is described by the ODE

ẋ(t) = x0 + ζ(t, qTx(t))(z − x0), x(0) = 0,(5.1)

where

ζ(t, y) =

 1, y ≥ 0,
1 + y

t2 , −t2 < y < 0,
0, y ≤ −t2.
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Let x(·) be a solution of (5.1). Scalar multiplying (5.1) by q, we find that y(t) = qTx(t)
solves

ẏ(t) = qTx0 + ζ(t, y(t))qT (z − x0), y(0) = 0,

or, as long as qTx0 = 0,

ẏ(t) = −aζ(t, y(t)), y(0) = 0,(5.2)

where a = −qT z > 0. The right-hand side in (5.2) is decreasing in the state variable.
Hence y(·) is a unique solution of (5.2). We can easily verify that y(·) solves the linear
ODE

ẏ(t) = −a
(

1 +
y(t)

t2

)
, y(0) = 0,

and is given by

y(t) = −a
(∫ ∞

1/t

e−aτ

τ2
dτ

)
e−a/t

for t > 0. Obviously y(t) ≤ 0. Also, we have

−y(t) ≤ 1

(1/t)2
a

(∫ ∞
1/t

e−aτdτ

)
e−a/t = at2

∫ ∞
0

e−aτdτ = t2.

Thus

−t2 ≤ y(t) ≤ 0.(5.3)

Coming back to (5.1) and taking into account (5.2), we find that x(·) solves the
equation

ẋ(t) = x0 − ẏ(t)

a
(z − x0), x(0) = 0.

Hence trajectory x(·) is unique and given by

x(t) = x0t− y(t)

a
(z − x0).

Owing to (5.3) we have ∣∣∣∣x(t)

t
− x0

∣∣∣∣ ≤ t

a
|z − x0|.(5.4)

Thus x(t)/t converges to x0, the solution of problem (2.1), as t → +0. We found
a formula for x(·), a (single) trajectory under the regularized shifting feedback, and
showed that x(·) is solution abandoning.
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6. Solution-approaching dynamics. In this section we introduce a feedback
whose trajectories approach the solution set X0 as time goes to infinity.

We call a function x(·) : R+ 7→ Rn solution approaching if dist(x(t)/t,X0) → 0
as t → ∞. Note that a solution-abandoning trajectory (see section 4) identifies
a solution within an arbitrarily short initial time interval. A solution-approaching
trajectory finds a solution in infinite time. Thus, solution-approaching trajectories
are much slower “solution identifiers” than solution-abandoning trajectories. On the
other hand, the structure of the ODEs for solution-approaching trajectories is usually
simpler.

We define the penalized shifting feedback Ups by

Ups(t, x) = argmin{2(Fx− tb)TFu+ αJ(u) : u ∈ Q(t, x)},(6.1)

where α is a positive penalty parameter. A key property of the trajectories under the
penalized shifting feedback is as follows.

Lemma 6.1. Let x(·) be a trajectory under the penalized shifting feedback. Then
for all t ≥ 0

λ(t) ≤ 0,(6.2)

where

λ(t) = |Fx(t)− tb|2 + α

∫ t

0

J(ẋ(τ))dτ − αtJ0.(6.3)

Proof. For almost all t we have

λ̇(t) = 2(Fx(t)− tb)T (F (ẋ(t)− b) + αJ(ẋ(t)))− αJ0.

Letting x0(t) ∈ X0∩Q(t, x(t)) (note that by assumption Q(t, x(t)) intersects X0) and
observing that Fx0(t)− b = 0 and J0 = J(x0(t)), we continue as follows:

λ̇(t) = [2(Fx(t)− tb)T (F (ẋ(t)− b) + αJ(ẋ(t)))]

−[2(Fx(t)− tb)T (F (x0(t)− b) + αJ(x0(t)))].

Now take into account that for almost all t ≥ 0 we have ẋ(t) ∈ Ups(t, x(t)). Owing
to (6.1) and the fact that x0 ∈ Q(t, x(t)) we get λ̇(t) ≤ 0 for almost all t ≥ 0. Since
λ(·) is absolutely continuous and λ(0) = 0, (6.2) holds for all t ≥ 0.

The next lemma is a simple corollary of Lemma 6.1.
Lemma 6.2. Let x(·) be a trajectory under the penalized shifting feedback. Then

for all t > 0 we have (4.4) and ∣∣∣∣ F x(t)

t
− b

∣∣∣∣2 ≤ αK

t
,(6.4)

where K = 2 max{|J(u)| : u ∈M}.
Proof. Take arbitrary t > 0. By Lemma 6.1, λ(t) defined by (6.3) satisfies (6.2).

Dividing (6.2) by t2, we get∣∣∣∣ F x(t)

t
− b

∣∣∣∣2 +
1

t2
α

∫ t

0

J(ẋ(τ))dτ − 1

t2
αtJ0 ≤ 0.(6.5)
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Hence

1

t

∫ t

0

J(ẋ(τ))dτ ≤ J0,

and we obtain (4.4) due to the convexity of J . Noticing that the second and third
terms in (6.5) do not exceed αK/2t, we arrive at (6.4).

Theorem 6.1. There exists a trajectory under the penalized shifting feedback,
and every such trajectory is solution approaching.

Proof. Observing (6.1), we see that the penalized shifting feedback Ups is closed
and convex valued. By Lemma 2.2 Ups is upper semicontinuous. Obviously, it is
bounded. These properties imply the existence of a trajectory under Urs (see [14,
Theorem 4, p. 101]). Let x(·) be a trajectory under the regularized shifting feedback.
By Lemma 6.2, for all t > 0 we have (4.4) and (6.4). The latter estimate implies
that |Fx(t)/t − b| → 0 as t → ∞. Recall that by Lemma 2.1, x(t)/t ∈ M . Hence
we conclude that the distance from x(t)/t to the feasible set of problem (2.1) tends
to zero as t→∞. Then in view of (4.4), limt→∞ dist(x(t)/t,X0) = 0, i.e., trajectory
x(·) is solution approaching.

Lemma 6.2 provides additional information on trajectories x(·) under the penal-
ized shifting feedback. In particular, we see that, as t→∞, values J(x(t)/t) converge
to the optimal value J0 from below.

It is easily seen that the penalized shifting feedback Ups is single valued if J is
strictly convex. For some typical problems, including problems of linear and quadratic
programming, the feedback Ups is specified explicitly. Consider, for instance, a prob-
lem of quadratic programming under linear and box constraints, i.e., let J(x) = |x|2
and M = {x ∈ Rn : x−i ≤ x ≤ x+

i , i = 1, . . . , n}. Set Q(t, x) = M . Then ups(t, x),
a single element in Ups(t, x), is represented as follows. Let v(t, x) be a minimizer of
u 7→ 2(Fx− tb)TFu+ α|u|2 in Rr, i.e.,

v(t, x) = −F
T (Fx− tb)

α
.

We have

ups(t, x)i =


v(t, x)i, x−i ≤ v(t, x)i ≤ x+

i ,
x−i , v(t, x)i < x−i ,
x+
i , v(t, x)i > x+

i

(i = 1, . . . , n).

A trajectory under feedback Ups is described by the ODE

ẋ(t) = ups(t, x(t)), x(0) = 0.

Its right-hand side is continuous and piecewise linear, with a finite number of lin-
earity domains. Each linearity domain is characterized by a finite number of linear
inequalities. A trajectory is unique and represented explicitly in each linearity do-
main. In order to build the trajectory, we must identify the order of visiting the
linearity domains. In the next section we give an example of an analysis of this kind.
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7. Solution-approaching dynamics: Example. Here we consider a partic-
ular problem of quadratic programming with linear and box constraints. Our goal
is to find an explicit solution through the analytic design of a trajectory under the
penalized shifting feedback. The trajectories are described by a piecewise-linear ODE.
First, we show a trajectory locked in a single linearity domain. Then we change the
parameters and build a trajectory visiting two linearity domains.

The problem under consideration is a discrete counterpart of a one-dimensional
linear quadratic optimal control problem with state constraints:

minimize

N+1∑
i=1

y2
i +

N∑
i=1

s2
i ,

yi+1 = yi + si (i = 1, . . . , N),

yi ∈ [y−i , y
+
i ] (i = 1, . . . , N + 1),

si ∈ [s−i , s
+
i ] (i = 1, . . . , N).

We set

x = (y1, . . . , yN+1, s1, . . . , sN )T(7.1)

and represent the problem in the form (2.1), where

J(x) = |x|2, M =
N+1∏
i=1

[y−i , y
+
i ]×

N∏
i=1

[s−i , s
+
i ],

F = (F1 F2), b = 0.

The N × (N + 1) matrix F1 is given by

F1 =


−1 1 0 . . . 0 0 0

0 −1 1 . . . 0 0 0
. . .

0 0 0 . . . −1 1 0
0 0 0 . . . 0 −1 1

 ,

and F2 = −I, where I is an N ×N identity matrix. We assume that the feasible set
of problem (2.1) is nonempty. In our argument we use the matrix FTF . We have

FTF =

(
G11 G12

G21 G22

)
,

where the (N + 1)× (N + 1) matrix G11 is given by

G11 =



2 −1 0 . . . 0 0 0
−1 2 −1 . . . 0 0 0

0 −1 2 . . . 0 0 0
. . .

0 0 0 . . . 2 −1 0
0 0 0 . . . −1 2 −1
0 0 0 . . . 0 −1 2


,
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the (N + 1)×N matrix G12 is given by

G12 =



1 0 . . . 0 0
−1 1 . . . 0 0

0 −1 . . . 0 0
. . .

0 0 . . . 1 0
0 0 . . . −1 1
0 0 . . . 0 −1


,

and

G21 = GT12, G22 = I.

We set Q(t, x) = M and fix a penalty parameter α > 0. The penalized shifting
feedback Ups is single valued. Let ups(t, x) denote a single element in Ups(t, x). By
(6.1), ups(t, x) is a minimizer of 2(Fx)TFu+α|u|2 in M . Note that ups(t, x) does not
depend on t; therefore we use the simpler notation ups(x). Setting

u = (v1, . . . , vN+1, w1, . . . , wN )T ,

we get

2(Fx)TFu+ α|u|2 = 2(FTFx)u+ α|u|2

= 2

(
N+1∑
i=1

fi(x)vi +
N∑
i=1

gi(x)wi

)
+ α

N+1∑
i=1

v2
i + α

N∑
i=1

w2
i ,(7.2)

where

(f1(x), . . . , fN+1(x), g1(x), . . . , gN (x)) = (FTFx)T .

Using the form of FTF and (7.1), we obtain

f1(x) = 2y1 − y2 + s1,

fi(x) = −yi−1 + 2yi − yi+1 − si−1 + si (i = 2, . . . , N),(7.3)

fN+1(x) = −yN + 2yN+1 − sN ,
gi(x) = yi − yi+1 + si (i = 1, . . . , N).

For

ups(x) = (vps1 (x), . . . , vpsN+1(x), wps1 (x), . . . , wpsN (x))T ,

a minimizer of (7.2) in M , we have

vpsi (x) =


− fi(x)

α , y−i ≤ − fi(x)
α ≤ y+

i ,

y−i , − fi(x)
α ≤ y−i ,

y+
i , − fi(x)

α ≥ y+
i ,

(7.4)

wpsi (x) =


− gi(x)

α , s−i ≤ − gi(x)
α ,≤ s+

i ,

s−i , − gi(x)
α ≤ s−i ,

s+
i , − gi(x)

α ≥ s+
i .

(7.5)
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A trajectory under the penalized shifting feedback Ups is described by the ODE

ẋ(t) = ups(x(t))(7.6)

and the initial condition x(0) = 0. The right-hand side in (7.6) is linear in closed
polyhedral domains. Each polyhedral linearity domain is defined by a combination of
the linear inequalities given in (7.4) and (7.5). Within each of the linearity domains
(7.6) is solved explicitly. We only need to identify the linearity domains visited by the
trajectory. Here we restrict ourselves to the cases where the trajectory stays within a
single linearity domain and crosses two linearity domains.

In what follows,

y−i > 0 (i = 1, . . . , N + 1), s−i < 0 < s+
i (i = 1, . . . , N).(7.7)

Let x(·) be a trajectory under Ups:

x(t) = (y1(t), . . . , yN+1(t), s1(t), . . . , sN (t))T .

The initial conditions yi(0) = 0, si(0) = 0, and assumptions (7.7) imply that for t
close to the origin

−fi(x(t))

α
< y−i (i = 1, . . . , N + 1),(7.8)

s−i < −gi(x(t))

α
< s+

i (i = 1, . . . , N)(7.9)

(see also (7.3)). These inequalities correspond to the linearity domain L1, where

vpsi (x) = y−i (i = 1, . . . , N + 1),

wpsi (x) = −gi(x)

α
(i = 1, . . . , N)

(see (7.4) and (7.5)). Referring to the formula for gi(x) in (7.3), we find that

ẏi(t) = y−i (i = 1, . . . , N + 1),(7.10)

ṡi(t) = −si(t)
α

+
yi+1(t)− yi(t)

α
(i = 1, . . . , N)(7.11)

in a neighborhood of the origin. Explicitly,

yi(t) = y−i t (i = 1, . . . , N + 1),(7.12)

si(t) = (y−i+1 − y−i )t− α(y−i+1 − y−i )(1− et/α) (i = 1, . . . , N).(7.13)

Case 1. Assume that

s−i ≤ y−i+1 − y−i ≤ s+
i (i = 1, . . . , N),(7.14)

y−2 − y−1 ≤ y−1 ,(7.15)

y−N − y−N+1 ≤ 0,(7.16)
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y−i−1 − 2y−i + y−i+1 ≤ y−i (i = 2, . . . , N).(7.17)

Let us show that in this case x(t) never escapes the linearity domain L1, i.e., inequal-
ities (7.8), (7.9) hold for all t ≥ 0. Assume the contrary. Then x(t) hits the boundary
of L1. Let ξ be the first hitting time, or, more accurately, the supremum of all τ ≥ 0
such that (7.8), (7.9) hold for all t ∈ [0, τ ]. We have either

−fi(x(ξ))

α
= y−i(7.18)

for some i ∈ {1, . . . , N + 1}, or

−gi(x(ξ))

α
∈ {s−i , s+

i }(7.19)

for some i ∈ {1, . . . , N + 1}. For all t ∈ [0, ξ] the trajectory representation (7.12),
(7.13) is valid. Substitute (7.12), (7.13) into the formulas for fi(x(t)), gi(x(t)) (see
(7.3)). We get

−f1(x(t))

α
= −y

−
1 t

α
+ (y−2 − y−1 )(1− e−t/α),(7.20)

−fi(x(t))

α
= (y−i−1 − 2y−i + y−i+1)(1− e−t/α) (i = 2, . . . , N),(7.21)

−fN+1(x(t))

α
= −y

−
N+1t

α
− (y−N+1 − y−N )(1− e−t/α),(7.22)

−gi(x(t))

α
= (y−i+1 − y−i )(1− e−t/α) (i = 1, . . . , N)(7.23)

for all t ∈ [0, ξ]. Estimate the right-hand sides using (7.15), (7.17), (7.7), (7.16), and
(7.14). We obtain

−fi(x(t))

α
< y−1 (i = 1, . . . , N + 1),

−gi(x(t))

α
∈ (s−i , s

−
i ) (i = 1, . . . , N)

for all t ∈ [0, ξ]. Therefore (7.18) and (7.19) are violated. A contradiction proves that
(7.8) and (7.9) hold true for all t ≥ 0 and the trajectory representation (7.12), (7.13)
is valid for all t ≥ 0. Hence

yi(t)

t
= y−i (i = 1, . . . , N + 1),

lim
t→∞

si(t)

t
= y−i+1 − y−i (i = 1, . . . , N).

Consequently

lim
t→∞

x(t)

t
= x0,
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where

x0 = (y0
1 , . . . , y

0
N+1, s

0
1, . . . , s

0
N )T ,

y0
i = y−i (i = 1, . . . , N + 1),

s0
i = y−i+1 − y−i (i = 1, . . . , N).

By Theorem 6.1 x0 is a (unique) solution of problem (2.1).
Using the trajectory representation (7.12), (7.13), we can easily compute the

discrepancies in constraints and objective values for the approximate solution x(t)/t.
We have ∣∣∣∣ F x(t)

t

∣∣∣∣ =
α

t
(1− e−t/α)

(
N+1∑
i=1

(y−i+1 − y−i )2

)1/2

,

J0 − J
(
x(t)

t

)
=
α

t
(1− e−t/α)[2− (1− e−t/α)]

N+1∑
i=1

(y−i+1 − y−i )2.

The discrepancies vanish as t → ∞. A simple analysis shows that discrepancy J0 −
J(x(t)/t) is positive. This provides an explicit justification for estimate (4.4) given in
Lemma 6.2.

Case 2. Let conditions (7.7), (7.14), (7.15), and (7.16) be again satisfied, and one
of the inequalities (7.17) be violated. More accurately, instead of (7.17) we have

y−i−1 − 2y−i + y−i+1 ≤ y−i (i = 2, . . . , N, i 6= k),(7.24)

y−k−1 − 2y−k + y−k+1 > y−k ,(7.25)

where 2 ≤ k ≤ N . Rough conditions sufficient for the fact that trajectory x(·) visits
precisely two linearity domains also involve inequalities (7.49), (7.50), and (7.51)
introduced later. (These inequalities require that y+

k , the upper bound for variable
yk, is sufficiently large, and intervals [s−k−1, s

+
k−1] and [s−k , s

+
k ] admissible for variables

sk−1 and sk are wide enough.)
As in Case 1, for t in a neighborhood of the origin we have inequalities (7.8)

and (7.9) implying the explicit trajectory representation (7.12), (7.13) and formulas
(7.20) through (7.23). Due to (7.25) the right-hand side in (7.21), where i = k,
exceeds y−k (1− e−t/α). Hence −fk(x(t))α reaches y−k , i.e., x(t) hits the boundary of
the linearity domain L1 at a finite time. Let ξ be the first hitting time defined as in
Case 1. Arguing as in Case 1, we find that neither of the hitting conditions (7.18)
with i 6= k and (7.19) can hold. Therefore

−fk(x(ξ))

α
= y−k ,(7.26)

−fi(x(t))

α
< y−k (t ∈ [0, ξ), i = 1, . . . , N + 1),(7.27)

s−i < −gi(x(t))

α
< s+

i (t ∈ [0, ξ), i = 1, . . . , N).(7.28)
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Let us identify a linearity domain containing x(t) after the hitting time ξ. Ac-
cording to (7.21), the left derivative of f∗k (·) : t 7→ fk(x(t)) at point ξ is given by
(y−k−1− 2y−k + y−k−1)e−ξ/α. Assumption (7.25) shows that it is positive. Since fk(·)
(see (7.3)) and x(·) are continuously differentiable, f∗k (·) is continuously differentiable

as well, hence ḟ∗k (t) is positive for t in a right neighborhood of ξ. Due to (7.26), for
these t we have

fk(x(t))

α
> y−k .(7.29)

On the other hand, (7.27) and (7.28) imply that for t in a right neighborhood of ξ,

−fk(x(t))

α
< y−k (i = 1, . . . , N + 1, i 6= k),(7.30)

s−i < −gi(x(t))

α
< s+

i (i = 1, . . . , N).(7.31)

Now (7.4) and (7.5) show that for t varying in a right neighborhood of ξ, point
x(t) moves within the linearity domain L2, where the right-hand side of the ODE
(7.6) is given by

vpsi (x) = y−i (i = 1, . . . , N + 1, i 6= k),(7.32)

vpsk (x) =
fk(x)

α
,(7.33)

wpsi (x) =
gi(x)

α
(i = 1, . . . , N).(7.34)

Using formulas (7.3), we specify (7.6) as

ẏi(t) = y−i (i = 1, . . . , N + 1, i 6= k),(7.35)

ẏk(t) =
yk−1(t)− 2yk(t) + yk+1(t)

α
+
sk−1(t) + sk(t)

α
,(7.36)

ṡi(t) = −si(t)
α

+
yi+1(t)− yi(t)

α
(i = 1, . . . , N).(7.37)

We see that the ODEs for yi(·), where i 6= k, and si(·), where i 6= k− 1, k, do not
differ from those in the linearity domain L1 (see (7.10), (7.11)). Therefore for t close
to ξ we have as in Case 1

yi(t) = y−i t (i = 1, . . . , N + 1, i 6= k),(7.38)

ṡi(t) = −si(t)
α

+
yi+1(t)− yi(t)

α
(i = 1, . . . , N + 1, i 6= k − 1, k)(7.39)

(see (7.12), (7.13)). Substitute (7.38) into (7.36), (7.37) for i = k − 1, k. We obtain
a three-dimensional ODE for yk(·), sk−1(·), sk(·). We can solve this ODE explicitly
and find that the next representations hold in a right neighborhood of ξ:

yk(t) = y−k +
y−k−1 + y−k+1

3
(t− ξ)

+
α

3

(
y−k −

y−k−1 + y−k+1

3

)
(1− e−3(t−ξ)/α),(7.40)
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sk−1(t) =

(
y−k−1 + y−k+1

3
− y−k−1

)
t

− α

6

(
y−k−1 + y−k+1

3
− y−k

)
(1− e−3(t−ξ)/α)

+ αck−1

(
1− e−(t−ξ)/α

)
,(7.41)

sk(t) =

(
y−k+1 −

y−k−1 + y−k+1

3

)
t

+
α

6

(
y−k−1 + y−k+1

3
− y−k

)
(1− e−3(t−ξ)/α)

+ αck(1− e−(t−ξ)/α).(7.42)

Here

ck−1 = (y−k − y−k−1)(1− e−ξ/α) +
y−k + y−k−1 − y−k+1

2
,

ck = (y−k+1 − y−k )(1− e−ξ/α)− y−k + y−k−1 − y−k+1

2
.

The differentiation yields that in a right neighborhood of ξ,

ẏk(t) = φk(t), ṡk−1(t) = ψk−1(t), ṡk(t) = ψk(t),

where

φk(t) =
y−k−1 + y−k+1

3

+

(
y−k −

y−k−1 + y−k+1

3

)
e−3(t−ξ)/α,(7.43)

ψk−1(t) =
y−k−1 + y−k+1

3
− y−k−1

− 1

2

(
y−k −

y−k−1 + y−k+1

3

)
e−3(t−ξ)/α

+ ck−1e
−(t−ξ)/α,(7.44)

ψk(t) = y−k+1 −
y−k−1 + y−k+1

3

+
1

2

(
y−k −

y−k−1 + y−k+1

3

)
e−3(t−ξ)/α

+ cke
−(t−ξ)/α.(7.45)



298 ARKADII V. KRYAZHIMSKII

If

y−k < φk(t) < y+
k ,(7.46)

s−k−1 < ψk−1(t) < s+
k−1,(7.47)

s−k < ψk(t) < s+
k(7.48)

for all t > ξ, then x(t) lies in the linearity domain L2 for all t > ξ, and consequently
(7.40), (7.41), and (7.42) hold for all t > ξ. We can prove this by contradiction
arguing as in Case 1. Let us specify the problem’s parameters so as to guarantee
(7.46), (7.47), (7.48) for all t > ξ. We start with (7.46). The second term in the
right-hand side of (7.43) is negative for t > ξ due to assumption (7.25). Hence the
infimum and supremum of φk(t) in [ξ,∞) are achieved at ξ and infinity and are equal
to y−k and (y−k−1 + y−k+1)/3, respectively. Therefore

y−k < φk(t) <
y−k−1 + y−k+1

3

for all t > ξ. We require

y−k−1 + y−k+1

3
≤ y+

k(7.49)

and thus ensure (7.46) for all t > ξ.
The sum of the second and third terms on the right-hand side in (7.44) is estimated

in absolute value by

ψ∗k−1 =
1

2

∣∣∣∣∣ y−k − y−k−1 + y−k+1

3

∣∣∣∣∣+ |y−k − y−k−1|+
1

2
|y−k + y−k−1 − y−k+1|.

We guarantee (7.47) by assuming

s−k−1 + ψ∗k−1 <
y−k−1 + y−k+1

3
− y−k−1 < s+

k−1 − ψ∗k−1.(7.50)

Using (7.45), we similarly guarantee (7.48) by

s−k + ψ∗k < y−k+1 −
y−k−1 + y−k+1

3
< s+

k − ψ∗k;(7.51)

here

ψ∗k =
1

2

∣∣∣∣∣ y−k − y−k−1 + y−k+1

3

∣∣∣∣∣+ |y−k+1 − y−k |+
1

2
|y−k + y−k−1 − y−k+1|.

Thus assuming (7.49), (7.50), and (7.51), we have (7.40), (7.41), and (7.42) for all
t > ξ. Hence

lim
t→∞

yk(t)

t
=
y−k−1 + y−k+1

3
,
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lim
t→∞

sk−1(t)

t
=
y−k−1 + y−k+1

3
− y−k ,

lim
t→∞

sk(t)

t
= y−k+1 −

y−k−1 + y−k+1

3
.

The relations (7.35) and (7.37) show that yi(t) for i 6= k and si(t) for i 6= k − 1, k
behave as in Case 1, i.e.,

yi(t)

t
= y−i (i = 1, . . . , N + 1, i 6= k),

lim
t→∞

si(t)

t
= y−i+1 − y−i (i = 1, . . . , N, i 6= k − 1, k).

Therefore

lim
t→∞

x(t)

t
= x0,

where

x0 = (y0
1 , . . . , y

0
N+1, s

0
1, . . . , s

0
N )T ,

y0
i = y−i (i = 1, . . . , N + 1, i 6= k),

y0
k =

y−k−1 + y−k+1

3
,

s0
i = y−i+1 − y−i (i = 1, . . . , N + 1, i 6= k − 1, k),

s0
k−1 =

y−k−1 + y−k+1

3
− y−k−1,

s0
k = y−k+1 −

y−k−1 + y−k+1

3
.

By Theorem 6.1 x0 is a (unique) solution of problem (2.1).

8. Discrete dynamics. In this section we consider discrete-time analogues of
the shifting and penalized shifting trajectories. Here the feedback Q (see section 2)
is not necessarily continuous.

Let (tk) (k = 1, 2, . . .) be a sequence of positive instants increasing and convergent
to infinity. We set

t0 = 0, δk = tk+1 − tk, τk =
k−1∑
i=0

δ2
i .

A discrete-time trajectory under a feedback U is defined to be a sequence (x(tk)) in Rn

satisfying x(t0) = 0 and x(xk+1) ∈ x(tk) + U(tk, x(tk))δk. Obviously, a discrete-time
trajectory exists for every feedback. We can hardly expect a discrete-time trajectory
to be solution tracking (see section 3) or solution abandoning (see section 4); each of
these properties would require x(t1)/t1 to lie in the solution set or close to it, which
is hardly possible.
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We call a sequence (x(tk)) in Rn solution approaching if dist(x(tk), X0) → 0 as
k →∞. In what follows we assume that either

lim
k→∞

τk
t2k

= 0,(8.1)

or

lim
k→∞

τk
tk

= 0.(8.2)

Since tk → ∞, (8.2) implies (8.1). Obviously (8.2) holds if the sequence (τk) is
bounded, or, equivalently, the sum of the series δ2

0 + δ2
1 + · · · is finite, for instance,

δk = 1/k. If δk does not depend on k, δk = δ, then τk = δtk, and we have (8.1), while
(8.2) is not valid.

Theorem 8.1. Let (8.1) be satisfied. Then every discrete-time trajectory under
the shifting feedback is solution approaching.

Proof. Let (x(tk)) be a discrete-time trajectory under the shifting feedback Us.
We have x(xk+1) = x(tk) + u(tk)δ, where u(tk) ∈ Us(tk, x(tk)). By (2.4) u(tk) ∈
L−(t, yi), i.e., (Fx(tk)− tkb)T (Fu(tk)− b) ≤ 0. Hence

|Fx(tk+1)− tk+1b|2 = |Fx(tk)− tkb|2
+ 2(Fx(tk)− tkb)T (Fu(tk)− b)δk + |Fu(tk)− b|2δ2

k

≤ |Fx(tk)− tkb|2 +Kδ2
k,

where K = sup{|Fu− b|2 : u ∈M}. So far as Fx(t0)− t0b = 0, we obtain |Fx(tk)−
tkb|2 ≤ Kτk. Hence |Fx(tk/tk)−b|2 ≤ Kτk/t2k. In view of (8.1), limk→∞ |Fx(tk/tk)−
b|2 = 0. Note that x(tk)/tk ∈ M . Therefore the sequence (x(tk)/tk) converges to
the feasible set of problem (2.1) (more accurately, the distance from x(tk)/tk to the
feasible set of problem (2.1) goes to zero as k →∞). By assumption Q(t, x(tk))∩X0

is nonempty. For x0
k ∈ Q(t, x(tk)) ∩ X0 we have (Fyi − tb)T (Fx0

k − b) = 0. Hence
x0
k ∈ X0 ∩ L−(t, x(tk)). Since u(tk) ∈ Us(tk, x(tk)), it holds that J(u(tk)) ≤ J(x0

k) =
J0. Using the convexity of J , we get

J

(
x(tk)

tk

)
≤ 1

tk

k−1∑
i=0

J(u(tk))δk ≤ 1

tk

(
k−1∑
i=0

δk

)
J0 = J0.

Hence the sequence (x(tk)/tk) (convergent to the feasible set of problem (2.1)) con-
verges to the solution set X0, and dist(x(tk), X0) → 0 as k →∞.

Theorem 8.2. Let (8.2) be satisfied. Then every discrete-time trajectory under
the penalized shifting feedback is solution approaching.

Proof. Let (x(tk)) be a discrete-time trajectory under the penalized shifting feed-
back Ups, i.e., x(xk+1) = x(tk) + u(tk)δ, where u(tk) ∈ Ups(tk, x(tk)). Let

λk = |Fx(tk)− tkb|2 + α
k−1∑
i=0

J(u(tk))δk − αtkJ0.

Obviously,

λk+1 − λk ≤ 2(Fx(tk)− tkb)T (Fu(tk)− b)δk +Kδ2
k + αJ(u(tk))δk − αJ0δk,
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where K = sup{|Fu− b|2 : u ∈ M}. For x0
k ∈ Q(t, x(tk)) ∩X0 we have Fx0

k − b = 0
and J0 = J(x0(t)). Therefore

λk+1 − λk ≤ [2(Fx(tk)− tkb)T (Fu(tk)− b) + αJ(u(tk))]δk

− [2(Fx(tk)− tkb)T (Fx0
k − b) + αJ0]δk +Kδ2

k.

The inclusion u(tk) ∈ Ups(tk, x(tk)) implies that the sum of the first two terms on
the right is nonpositive. Thus λk+1 − λk ≤ Kδ2

k. Since λ0 = 0, we have λk ≤ Kτk.
Dividing by t2k, we get∣∣∣∣ F x(tk)

tk
− b

∣∣∣∣2 ≤ −α 1

t2k

(
k−1∑
i=0

J(u(tk))δk − tkJ0

)
+K

τk
t2k
.

The right-hand side goes to zero as k →∞. That follows from (8.2) and the fact that
J is bounded on M . Therefore the sequence (x(tk)/tk) converges to the feasible set
of problem (2.1). Now divide the inequality λk ≤ Kτk by tk. We obtain

α

(
1

tk

k−1∑
i=0

J(u(tk))δk − J0

)
≤ Kτk

tk
− 1

tk
|Fx(tk)− b|2 ≤ Kτk

tk
.

By (8.2) the right-hand side goes to zero as k →∞, and we have

lim sup
k→∞

1

tk

k−1∑
i=0

J(u(tk))δk ≤ J0.

By the convexity of J

J

(
x(tk)

tk

)
≤ 1

tk

k−1∑
i=0

J(u(tk))δk.

Therefore lim supk→∞ J(x(tk)/tk) ≤ J0. Since (x(tk)/tk) converges to the feasible
set of problem (2.1), it converges to the solution set X0, and dist(x(tk), X0) → 0 as
k →∞.
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Abstract. Using a projective approach, new necessary conditions and new sufficient conditions
for optimization problems with explicit or implicit constraints are examined. They are compared
to previous ones. A particular emphasis is given to mathematical programming problems with non-
polyhedral constraints. This case occurs in particular when the constraints are defined in functional
spaces.

Key words. Lagrangian, mathematical programming, multiplier, optimality conditions, projec-
tive tangent set, second-order conditions

AMS subject classifications. 49K27, 90C30, 46A20, 46N10, 52A05, 52A40
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1. Introduction. Devising efficient optimality conditions is an important ob-
jective when dealing with optimization problems. Therefore the literature on the sub-
ject is rich. (See [11], [15], [25], [29], [30], [41] for recent contributions.) Structured
problems, such as mathematical programming problems, optimal control problems,
continuous time problems, and semi-infinite programming problems, require a partic-
ular attention because the constraints are not necessarily defined by a finite number
of scalar functions. This lack of polyhedrality causes a gap between necessary condi-
tions and sufficient conditions, (see, for instance, [24], [28]). Moreover, the conditions
cannot be given the simple and aesthetic form of the cases in which the constraints
are polyhedral, as in [3], [4], [7], [17]–[19], and [23], for instance.

In [37] we reduced this gap to an acceptable extent: when the decision space
is finite dimensional, the sufficient condition differs from the necessary condition by
the replacement of an inequality by a strict inequality. As the unconstrained case
shows, this difference is unavoidable. However, the second-order conditions of [37]
are complex, and so are the conditions of [20], [27], and [31]. It is the purpose of the
present work to present more handy conditions inspired by [11] and to compare them
with recent proposals. It appears that the new conditions are not as selective as the
previous ones: the sufficient (resp., the necessary) condition is a consequence of the
sufficient (resp., necessary) condition of [37]. However, the new necessary condition
is close to the sufficient condition, and such a fact is rather satisfactory.

For simplicity, we limit our study to the second-order case and we do not insist
on the projective aspect of the tangent sets we deal with, which is just pointed out in
section 2, although it is probably the main novelty here.

The optimality conditions are presented in section 3 along with a comparison with
the results of [37]. Mathematical programming problems are considered in section 4.
We devote section 5 to comparisons with recent works which came to our atten-
tion after the original version of the present paper was submitted. We are especially
indebted to the referees for references [12] and [26]. We hope the clarifications we give
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will provide hints for obtaining concrete and convenient conditions in the specially
structured cases mentioned above.

2. Projective tangent sets. In what follows, we denote by P (resp., R+) the
set of positive (resp., nonnegative) real numbers. The closed ball with center x and
radius r in a normed vector space (n.v.s.) X is denoted by B(x, r). The closure of a
subset F of X is denoted by clF. Recall that the projective space P (X) associated
with a vector space X is the set of equivalence classes of pairs (v, r) ∈ X×R+ for the
relation

(v, r) ∼ (v′, r′) if (v′, r′) = (tv, tr) for some t > 0.

Obviously, P (X) can be identified with the union

P (X) = X1 ∪X0,

where X1 (resp., X0) is the image of X × {1} (resp., X × {0}) under the canonical
mapping p : X × R+ → P (X). We write [v, r] to denote p (v, r) and we call p the
projective projection. If Y is another vector space and if h : X → Y is a positively
homogeneous mapping, then h induces a mapping hP : P (X) → P (Y ) satisfying
hP (p (x, r)) = p (h (x) , r) for each (x, r) ∈ X×R+, hence hP (X1) ⊂ Y1, h

P (X0) ⊂ Y0,

and if hP ([x, 1]) = [y, 1], then hP ([x, 0]) = [y, 0]. Conversely, any mapping ĥ : P (X)→
P (Y ) satisfying these conditions is the mapping hP associated with some positively
homogeneous map h : X → Y.

Definition 1. Given an integer k ≥ 2, a subset F of an n.v.s. X, x ∈ cl F,
v1, . . . , vk−1 ∈ X, the projective tangent set of order k to F at (x, v1, . . . vk−1) is the
image PT k (F, x, v1, . . . , vk−1) by the projective projection p of the set

T̂ k (F, x, v1, . . . , vk−1) of pairs (w, r) ∈ X × R+ such that there exist sequences (tn) ,

(rn) in P with limits 0 and r, resp., (wn)
σ→ w (weak convergence) such that

(
r−1
n tn

)→
0 and

xn := x+ tnv1 +
t2n
2
v2 + · · ·+ tk−1

n

(k − 1)!
vk−1 +

tkn
k!

wn
rn
∈ F

for each n.
The preceding definition has been inspired by a notion presented in [11]; it is

closely related to two notions given in [26]. A precise comparison will be given in
the last section of the paper. Several variants are possible. For instance, one can
take strong convergence instead of weak convergence in what precedes, or weak∗

convergence if X is a dual space. One could also use nets (or, rather, bounded nets).
Also for some purposes, it would be possible to replace the condition

(
r−1
n tn

)→ 0 by

the weaker condition
(
r−1
n tnwn

)→ 0. Clearly, by its very definition, the weak tangent
set of order k to F at (x, v1, . . . , vk−1) (also denoted by F k (x, v1, . . . , vk−1)),

T k (F, x, v1, . . . , vk−1) = lim sup
t↓0

k!t−k
(
F − x− tv1 · · · − tk−1

(k − 1)!
vk−1

)
coincides with the set F k1 (x, v1, . . . , vk−1), where

F kr (x, v1, . . . , vk−1) :=
{
w ∈ X : (w, r) ∈ T̂ k (F, x, v1, . . . , vk−1)

}
.

Here the limit sup is the sequential limit sup with respect to the weak topology.
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It may be useful to split the set PT 2 (F, x, v) into two parts.. We observe that
this set is the union of p

(
F 2 (x, v)× {1}) and p

(
F 2

0 (x, v)× {0}), where

F 2 (x, v) =

{
w ∈ X : ∃ (tn)↘ 0,∃ (wn)

σ→ w, x+ tnv +
1

2
t2nwn ∈ F ∀n ∈ N

}
is the familiar (weak upper) second-order tangent set to F at (x, v) and

F 2
0 (x, v) =

{
w ∈ X : ∃ (tn) ↓ 0,∃ (rn) ↓ 0,∃ (wn)

σ→ w,
(
r−1
n tn

)→ 0,

x+ tnv +
1

2
r−1
n t2nwn ∈ F ∀n

}
is what will be called the asymptotic second-order tangent cone to F at (x, v) .

Similar decompositions hold for higher-order projective tangent sets. For the sake
of simplicity, in what follows we focus our attention on the second-order case only.

Although the second-order tangent set to a smooth subset may be empty, as the
example of

F :=
{

(r, s) ∈ R2 : r2 = s3
}
, x = (0, 0), v := (1, 0)

shows, the following result asserts that the projective tangent set of order two in the
reflexive case is always nonempty.

Proposition 2.1. Let v ∈ F ′ (x) := T (F, x), where F is an arbitrary subset
of the reflexive Banach space X and x ∈ cl F. Then either F 2 (x, v) or F 2

0 (x, v) is
nonempty.

Proof. By assumption, there exists a sequence (tn) ↘ 0 such that the se-
quence (sn) given by sn := t−1

n d (x+ tnv, F ) converges to 0. Since 0 ∈ F 2 (x, v)
if sn = 0 for infinitely many n, we may assume sn > 0 and set rn = 1

2s
−1
n tn,

wn = s−1
n t−1

n (zn − x− tnv) , where zn ∈ F is such that ‖x+ tnv − zn‖ ≤ 2sntn.
Then (r−1

n tn) = (2sn)→ 0 and

x+ tnv +
1

2
t2nr
−1
n wn = zn ∈ F.

Taking a subsequence if necessary, we may suppose (rn)→ r for some r ∈ [0,∞] and
(wn) has a weak limit w in 2BX . If r =∞, setting w′n = r−1

n wn, we get (w′n)→ 0 and
0 ∈ F 2 (x, v) (strong). If r ∈ P the same choice of (w′n) shows that r−1w ∈ F 2 (x, v)
(weak). Finally, if r = 0 we have w ∈ F 2

0 (x, v) .
Example 2.1. Suppose F is the graph of a twice differentiable mapping g : U →

V in X = U×V, where U and V are n.v.s. Then, for (u0, v0) ∈ F, (u, v) ∈ F ′ (u0, v0) ,
(w, z) ∈ X, r > 0, one has

((w, z) , r) ∈ T̂ 2F ((u0, v0) , (u, v))

iff z = g′ (u0)w + rg′′ (u0)uu, as an easy calculation shows. Since any submanifold
of a normed vector space can be represented locally as a graph, this example applies
in a variety of situations.

The following proposition shows the concept of projective tangent set is invariant
under Ck-diffeomorphisms and thus can be extended to subsets of Ck-manifolds. We
take k = 2 for simplicity.

Proposition 2.2. Let g : X → Y be a mapping of class C2 on an open subset
X0 of X, let B be a subset of X, x ∈ X0 ∩ clB, and let C be a subset of Y with
g (B) ⊂ C. Then for each v ∈ X, (w, r) ∈ T̂ 2 (B, x, v) one has

(g′ (x)w + rg′′ (x) vv, r) ∈ T̂ 2 (C, g (x) , g′ (x) v) .
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Proof. By definition there exist sequences (tn) ↘ 0, (wn, rn) → (w, r) such
that {rn} ⊂ P,

(
r−1
n tn

)→ 0, and xn := x+ tnv + 2−1r−1
n t2nwn ∈ B for each n. Then

g (xn) ∈ C, and since (tnvn)→ 0 strongly if vn := v+2−1r−1
n tnwn, for some (yn)→ 0,

one has

g (xn) = g (x) + tng
′ (x) v +

1

2
r−1
n t2n (g′ (x)wn + rng

′′ (x) vv) + t2nyn

in view of Taylor’s expansion. Setting zn := g′ (x)wn + rng
′′ (x) vv + 2rnyn and

observing that (zn)
σ→ z := g′ (x)w + rg′′ (x) vv and that

(
r−1
n tn

) → 0, the result
follows.

The following property will be useful. For r = 1 it corresponds to a property
similar to the one observed in [34], [13, Proposition 3.1].

Proposition 2.3. Let C be a convex subset of X, and let x ∈ C, v ∈ T (C, x).

Then, for any z ∈ T (T (C, x), v), (w, r) ∈ T̂ 2 (C, x, v), one has

(w + z, r) ∈ T̂ 2 (C, x, v) .

Proof. By definition, w ∈ F 2
r (x, v) :=

{
w ∈ X : (w, r) ∈ T̂ 2 (C, x, v)

}
, so that

there exist sequences (rn)→ r, (tn)→ 0+, (wn)→ w such that
(
r−1
n tn

)→ 0, rn > 0,
and

xn = x+ tnv +
1

2
r−1
n t2nwn ∈ C

for each n. For any y ∈ C and any p, q ≥ 0 we have(
1− 1

2
pr−1
n tn

)
xn +

1

2
pr−1
n tn(x+ qtn(y − x)) ∈ C;

as
(
r−1
n tn

)→ 0 we obtain w+ p(q(y− x)− v) ∈ Fr(x, v). As this set is closed, and as
R+(C−x) is dense in T (C, x), we also have w+p(T (C, x)−v) ⊂ Fr(x, v). Since T (C, x)
is convex, R+(T (C, x)− v) is dense in T (T (C, x), v) and we get w + T (T (C, x), v) ⊂
Fr(x, v).

Among the variants of Definition 1, the following one seems to be noticeable. We
will see in section 5 that this variant is closely related to Definition 2.2 of [26].

Definition 2. The second-order projective incident set to a subset F of X at
(x, v) with x ∈ F, v ∈ T (F, x) is the image by the projective projection of the set

T̂ ii(F, x, v) of (w, r) ∈ X × R+ such that for any sequences (tn) → 0+, (rn) → r
with rn > 0, (r−1

n tn) → 0, there exists a sequence (wn) → w such that x + tnv +
2−1r−1

n t2nwn ∈ F for each n.

Given r ∈ R+ we denote by T̂ ii(F, x, v, r) the set of w ∈ X such that (w, r) ∈
T̂ ii(F, x, v), and we use the similar notation T̂ 2(F, x, v, r) when T̂ ii(F, x, v) is replaced

with T̂ 2(F, x, v).
Part of the interest of this notion stems from the following property, the proof of

which follows easily from the definition.
Proposition 2.4. (a) If F is convex, then T̂ ii(F, x, v, r) is convex for each

(x, v, r);

(b) if F is convex, then (1− λ)T̂ ii(F, x, v, r) + λT̂ 2(F, x, v, r) ⊂ T̂ 2(F, x, v, r) for
any λ ∈ [0, 1];

(c) T̂ ii(F ×G, (x, y), (u, v), r) = T̂ ii(F, x, u, r)× T̂ ii(G, y, v, r);
(d) T̂ ii(F, x, u, r) × T̂ 2(G, y, v, r) ⊂ T̂ 2(F × G, (x, y), (u, v), r) ⊂ T̂ 2(F, x, u, r) ×

T̂ 2(G, y, v, r).
Sequential concepts as in [21], [22], [37], and [38] can be devised for similar aims.
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3. Optimality conditions. The following necessary optimality condition justi-
fies the introduction of the projective tangent set of order two. The proof we present
has been devised independently of the one in [12, Theorem 2]; however, results of this
kind had been announced earlier by A. Cambini at a lecture in Marseille (see [11] for
a partial account and section 5 for a comparison).

Proposition 3.1. Suppose f : X → R is twice differentiable at x ∈ F and
attains a (local) minimum on F ⊂ X at x. Then

f ′ (x) v ≥ 0 for each v ∈ F ′ (x) = T (F, x),

and whenever v ∈ F ′ (x) ∩ ker f ′ (x), one has

f ′ (x)w + rf ′′ (x) vv ≥ 0 for each (w, r) ∈ T̂ 2 (F, x, v) .

Clearly this last condition can be formulated on the second projective tangent
space PT 2 (F, x, v) .

Proof. Since for g (·) := f (·)− f (x) we have g (F ) ⊂ R+, the result follows from
Proposition 2.2 and from the fact that for y = 0, v = 0 one has

T̂ 2 (R+, y, v) = {(z, r) ∈ R× R+ : z ≥ 0} .
Example 3.1. Let F = R × {0} ∪ {0} × R in X = R2. Then F ′ (0) = F , and,

as for x = 0, v ∈ F, the set T̂ 2 (F, x, v) contains (w, 1), with w = 0, a necessary
optimality condition for f on F at 0 is f ′ (0) = 0, f ′′ (0) vv ≥ 0 for each v ∈ F.

It may be useful to split the condition of Proposition 3.1 into two parts, using the
decomposition of PT 2 (F, x, v) we described above.

Corollary 3.2. If f : X → R is twice differentiable at x ∈ F and attains
a local minimum on F at x, then f ′ (x) v ≥ 0 for each v ∈ F ′ (x), and when v ∈
F ′ (x) ∩ ker f ′ (x), one has

f ′ (x)w + f ′′ (x) vv ≥ 0 for each w ∈ F 2 (x, v) ,

f ′ (x)w ≥ 0 for each w ∈ F 2
0 (x, v) .

The first condition is well known but the second one is new.
Example 3.2. Let F =

{
(r, s) ∈ R2 : s =| r |α}, where α ∈ ]1, 2[ . Then for

x = (0, 0) , v = (1, 0) , the set F 2 (x, v) is empty but F 2
0 (x, v) contains w = (0, 1) .

Thus a necessary condition for (0, 0) to be a minimizer of f on F is f ′ (0, 0) = 0. Such
a condition can also be obtained from [37, Theorem 1.2] via a computation similar to
the one in [37, Example 1.4].

Example 3.3. Given a subset F of the space X, x ∈ F, v ∈ X\{0}, given
0 < p < q, let us denote by T q/p(F, x, v) the set of vectors w, such that for some
sequences (sn) → 0+, (wn) → w one has x + spnv + sqnwn ∈ F for each n. Then if
q > 2p, one has 0 ∈ F 2(x, v) whenever T q/p(F, x, v) is nonempty, while for q = 2p
one has F 2(x, v) = T q/p(F, x, v); for q < 2p and for w ∈ T q/p(F, x, v) one has

(w, 0) ∈ T̂ 2 (F, x, v) , as one can see by taking (tn) := (spn), (rn) := (s2p−q
n ). In the last

case, a necessary condition for f to attain a local minimum on F at x is f ′(x)w ≥ 0
whenever f ′(x)v = 0 and w ∈ T q/p(F, x, v). The relationships with the higher-order
optimality conditions of [14] and [15] will be considered elsewhere.

The preceding examples prompt us to clarify the relationships between Corollary
3.2 (which is equivalent to Proposition 3.1) and [37, Theorem 1.2].

Proposition 3.3. The necessary optimality condition of [37]:

1

2
f ′′ (x) vv + lim inf

(t,u)→(0,v), t>0, x+tu∈F
f ′(x)t−1(u− v) ≥ 0 ∀v ∈ F ′(x) ∩ ker f ′(x)

implies the necessary condition of Corollary 3.2.
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Proof. Let v ∈ F ′ (x) ∩ ker f ′ (x) . The condition f ′′ (x) vv + f ′ (x)w ≥ 0 for each
w ∈ F 2 (x, v) is a consequence of [37, Theorem 1.2] by [37, Corollary 1.3]. Let us
derive the condition f ′ (x)w ≥ 0 for w ∈ F 2

0 (x, v) . Suppose on the contrary that
f ′ (x)w < 0 for some w ∈ F 2

0 (x, u) . Then there exist sequences (tn) ↓ 0, (rn) ↓ 0,

(wn)
σ→ w such that

(
r−1
n tn

) ↓ 0, xn := x + tnv + (2rn)
−1
t2nwn ∈ F for each n.

Setting vn := v + (2rn)
−1
tnwn we see that (vn) → v, x + tnvn = xn ∈ F and

f ′ (x) t−1
n (vn − v) = (2rn)−1f ′(x)(wn) → −∞, which is a contradiction with our

assumption.
Although the necessary condition of Proposition 3.1 is not as strong as [37, The-

orem 1.2], one can still associate to it a sufficient condition of the same type (see also
[11] and [12, Theorem 2] for a closely related result).

Proposition 3.4. If X is finite dimensional, if f is twice differentiable at x ∈ F ,
and if the following conditions hold, then x is a local strict minimizer of f on F :

(a) f ′ (x) v ≥ 0 for each v ∈ F ′ (x);
(b) if v ∈ F ′ (x) ∩ ker f ′ (x) , v 6= 0, then f ′ (x)w + rf ′′ (x) vv > 0 for each

(w, r) ∈ T̂ 2 (F, x, v) \ {(0, 0)} .
Proof. Suppose on the contrary there exists a sequence (xn) of F\ {x} with limit

x such that f (xn) ≤ f (x) for each n ∈ N. Let tn := ‖xn − x‖ , vn := t−1
n (xn − x) .

Taking a subsequence if necessary, we may suppose (vn) has a limit v with norm
1. Let sn := ‖vn − v‖ . When sn = 0 for infinitely many n we get 0 ∈ F 2 (x, v) and
f ′ (x) v = 0 (by (a) and the inequality t−1

n (f(x+tnvn)−f(x)) ≤ 0), and f ′′ (x) vv ≤ 0,
a contradiction, as we can take (w, r) = (0, 1) in (b). Thus we may suppose sn > 0

for each n and assume that the sequence (rn) given by rn := (2sn)
−1
tn has a limit

r in R+ ∪ {∞}, and the sequence (wn) :=
(
s−1
n (vn − v)

)
has a limit w with norm 1.

Then
(
r−1
n tn

)
= (2sn)→ 0 and

x+ tnv +
1

2
r−1
n t2nwn = xn ∈ F ∀n.

Thus, when r is finite, we have (w, r) ∈ T̂ 2 (F, x, v), and, since f (A) ⊂ f (x)−R+ for
A = {xn : n ∈ N} , we obtain f ′ (x) v ≤ 0, hence f ′ (x) v = 0, and

f ′ (x)w + rf ′′ (x) vv ≤ 0

by a computation similar to the one in Proposition 2.2. This is a contradiction, as
w 6= 0.

When r =∞, setting r′ = 1, r′n = 1, w′n = r−1
n wn, we observe that (w′n)→ 0 and

x+tnv+ 1
2 t

2
nw
′
n = xn ∈ F for each n, so that 0 ∈ F 2 (x, v) or (w′, r′) ∈ T̂ 2 (F, x, v), and

we get, as above, f ′′ (x) vv ≤ 0, which is a contradiction, since (0, r′) ∈ T̂ 2 (F, x, v) ,
v 6= 0.

The preceding sufficient condition is in fact a consequence of the sufficient condi-
tion of [37, Theorem 1.7], as the following result shows.

Proposition 3.5. Suppose X is finite dimensional. If f is twice differentiable
at x ∈ F and v ∈ F ′ (x) ∩ ker f ′ (x) , v 6= 0, the condition

f ′ (x)w + rf ′′ (x) vv > 0 for each (w, r) ∈ T̂ 2 (F, x, v) \ {(0, 0)}(1)

implies the condition

1

2
f ′′ (x) vv + lim inf

(t,u)→(0,v), t>0, x+tu∈F
f ′(x)t−1(u− v) > 0 ∀v ∈ F ′(0) ∩ ker f ′(x).(2)
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Proof. Suppose on the contrary that the first condition holds and there exist
sequences (tn)→ 0+, (vn)→ v such that x+ tnvn ∈ F for each n and

1

2
f ′′ (x) vv + f ′ (x) t−1

n (vn − v)→ c ≤ 0.

Let sn = ‖vn − v‖ . If sn = 0 for infinitely many n, we have w := 0 ∈ F 2 (x, v) and
1
2f
′′ (x) vv = c ≤ 0, so that for r = 1

2 , w = 0, we get a contradiction with (1).
Thus, we may assume sn > 0 for each n and that (rn) :=

(
2−1s−1

n tn
)

has a

limit r in R+ ∪ {∞} and (wn) :=
(
s−1
n (vn − v)

)
has a limit w 6= 0. If r =∞, setting

w′n = 2snt
−1
n wn, we see that (w′n)→ 0, xn := x+tnv+ 1

2 t
2
nw
′
n = x+tnvn ∈ F for each

n, hence w′ := 0 ∈ F 2 (x, v), and, as t−1
n (vn − v) = 1

2w
′
n, we get f ′ (x) 0+ 1

2f
′′ (x) vv =

c ≤ 0, a contradiction with (0, 1) ∈ T̂ 2 (F, x, v) . If r <∞ we have

xn := x+ tnvn = x+ tnv +
1

2
r−1
n t2nwn ∈ F

and
(
r−1
n tn

)
= (2sn)→ 0, so that (w, r) ∈ T̂ 2 (F, x, v) . Since

f ′ (x)w = lim s−1
n tnf

′ (x) t−1
n (vn − v) = 2r

(
c− 1

2
f ′′ (x) vv

)
we get

f ′ (x)w + rf ′′ (x) vv = 2rc ≤ 0,

a contradiction.
However, the implication shown in the preceding condition can be partly reversed.
Proposition 3.6. Suppose that f is twice differentiable at x ∈ F. Then, for each

v ∈ (F ′ (x) \ {0}) ∩ ker f ′(x), the condition

lim inf
(t,u)→(0,v), t>0, x+tu∈F

f ′(x)t−1(u− v) +
1

2
f ′′ (x) vv > 0(3)

implies the condition

f ′ (x)w + rf ′′ (x) vv > 0 for each (w, r) ∈ T̂ 2 (F, x, v) with r 6= 0.(4)

Proof. Let (w, r) ∈ T̂ 2 (F, x, v) with r > 0: there exist positive sequences (tn)→ 0,

(rn)→ r, and a sequence (wn)
σ→ w such that

(
r−1
n tn

)→ 0 and

xn := x+ tnv +
1

2
r−1
n t2nwn ∈ F

for each n. Let vn := t−1
n (xn − x) = v+ 1

2r
−1
n tnwn, so that (vn)→ v, x+ tnvn = xn ∈

F. By assumption, there exists some c > 0 such that, for n large enough, one has

1

2
f ′′ (x) vv + f ′ (x) t−1

n (vn − v) ≥ c,

hence

1

2
rnf
′′ (x) vv +

1

2
f ′ (x)wn > crn >

1

2
cr > 0

as r > 0, and the result follows by taking limits.
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4. Application to mathematical programming. Let us consider in this sec-
tion the mathematical programming problem

(M) minimize f (x) : x ∈ F := g−1 (C) ,

where f : X → R, g : X → Z are twice differentiable mappings, C is a closed convex
subset of Z, and X and Z are Banach spaces. Such a formulation encompasses
problems in which equality and inequality constraints are present.

We will need a series of preliminary results of some independent interest. The
first one gives a characterization of the projective tangent set of order two to the
feasible set F. It uses a condition of metric regularity introduced in [36]. Here, for
z ∈ Z we set d(z, C) = infc∈C ‖z − c‖ to denote the distance function to C, and we
adopt a similar notation for subsets of X.

Proposition 4.1. Suppose the following directional metric regularity condition
is satisfied for x ∈ X, v ∈ X:

(DMR) there exists µ > 0, ρ > 0 such that for t ∈ (0, ρ) , u ∈ B (v, ρ) one has

d
(
x+ tu, g−1 (C)

) ≤ µd (g (x+ tu) , C) .

Then, for F = g−1 (C), one has

(w, r) ∈ T̂ 2 (F, x, v)⇔ (g′ (x)w + rg′′ (x) vv, r) ∈ T̂ 2 (C, g (x) , g′ (x) v) .

Proof. In view of Proposition 2.2 it suffices to prove that (w, r) ∈ T̂ 2 (F, x, v)

whenever (g′ (x)w + rg′′ (x) vv, r) ∈ T̂ 2 (C, g (x) , g′ (x) v) . Let (rn) → r, (tn) →
0+, (zn)→ z := g′ (x)w + rg′′ (x) vv be such that

(
r−1
n tn

)→ 0, rn > 0 and

g (x) + tng
′ (x) v +

1

2
r−1
n t2nzn ∈ C

for each n. For n large enough we have tn ∈ (0, ρ) , un := v + 2−1r−1
n tnw ∈ B (v, ρ) ,

so that

d (x+ tnun, F ) ≤ µ d (g (x+ tnun) , C)

≤ µ ∥∥g (x+ tnun)− g (x)− tng′ (x) v − 2−1r−1
n t2nzn

∥∥
≤ 1

2
r−1
n t2nµ ‖g′ (x)w + rng

′′ (x) vv − zn‖+ o
(
t2n
)
.

Since (zn)→ z we can find xn ∈ F such that
(
rnt
−2
n ‖x+ tnun − xn‖

)→ 0. Defining

wn by xn := x+ tnv + 2−1r−1
n t2nwn we get (wn)→ w, so that w ∈ T̂ 2 (F, x, v).

Let us observe that condition (DMR) is a consequence of the following metric
regularity condition:

(MR) there exist µ > 0, δ > 0 such that for each x′ ∈ B (x, δ) one has

d
(
x′, g−1 (C)

) ≤ µd (g (x′) , C) .

This condition is of more common use than the directional metric regularity condition
(DMR). In turn, condition (MR) has been shown to be a consequence of the classical
Mangasarian–Fromovitz qualification [28], [18] and of its extension to the infinite
dimensional case in [40], [32], [6], [16], and [42], which can be written

(Rr) g′ (x) (X)− R+ (C − g (x)) = Z.
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When the interior int C of C is nonempty, it has been shown in [32] that the radial
tangent cone T r (C, x) := R+ (C − g(x)) in the preceding condition can be replaced
by the usual tangent cone T (C, g(x)) = cl (T r (C, g(x))) :

(R) g′ (x) (X)− T (C, g(x)) = Z.

However, in general, condition (R) is weaker than condition (Rr) and does not imply
(MR). We will use a second-order qualification condition which generalizes the Ben-
Tal qualification condition [2]:

(TR) g′(x)(X)− T (T (C, g(x)), g′(x)v) = Z,

in which v is a given vector of X; it is still weaker than (R).
We will also need the following duality result.
Lemma 4.2. Let P and Q be closed convex cones of the Banach spaces X and Z,

resp., and let A : X → Z, c : X → R be linear and continuous and such that for some
m ∈ R, b ∈ Z

c (x) ≥ m for each x ∈ P ∩A−1 (b+Q) .

Then, if A (P )−Q = Z, there exists y ∈ Q0 such that for each x ∈ P
c (x) + 〈y,Ax− b〉 ≥ m.

Since P is a cone, the conclusion can be written 0 ∈ c+y◦A+P 0 and 〈y,−b〉 ≥ m.
When P = X, we have c+ y ◦A = 0. Taking m = 0, b = 0 we get a Farkas lemma:

−c ∈ (A−1(Q) ∩ P )0 ⇒ ∃y ∈ Q0 : −(c+ y ◦A) ∈ P 0.

In what follows we say that v ∈ X is a critical vector at x if f ′(x)v = 0, g′(x)v ∈
T (C, g(x)), and we write v ∈ K(x).

Theorem 4.3. Let x be a (local) solution to problem (P). Suppose conditions
(DMR) and (TR) are satisfied at x. Then, for each critical vector v ∈ K(x), v 6= 0

and each (z, r) ∈ T̂ 2 (C, g (x) , g′ (x) v) there exists some y ∈ N (T (C, g (x)), g′(x)v)
such that

f ′ (x) + y ◦ g′ (x) = 0,

r (f ′′ (x) vv + 〈y, g′′ (x) vv〉) ≥ 〈y, z〉.

Proof. Given v ∈ K(x)\ {0} , (z, r) ∈ T̂ 2 (C, g (x) , g′ (x) v) , for each w ∈ X such
that

g′ (x)w + rg′′ (x) vv − z ∈ T (T (C, g (x)) , g′(x)v),

Proposition 2.3 ensures that

(g′ (x)w + rg′′ (x) vv, r) ∈ T̂ 2 (C, g (x) , g′ (x) v) .

It follows from Proposition 4.1 that

(w, r) ∈ T̂ 2 (F, x, v) .

Then, by Proposition 3.1, we have

f ′ (x)w ≥ −rf ′′ (x) vv.
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Taking in Lemma 4.2, A = g′ (x) , b = z − rg′′ (x) vv, c = f ′ (x) , P = X, Q =
T (T (C, g (x)) , g′(x)v), m = −rf ′′ (x) vv, and observing that A (P )−Q = Z by con-
dition (TR), we get some y ∈ Q0 = N (T (C, g (x)), g′(x)v) such that

f ′ (x) + y ◦ g′ (x) = 0,

〈y,−z + rg′′ (x) vv〉 ≥ −rf ′′ (x) vv.

Thus the result is established.
Let us present a variant of the preceding necessary condition.
Theorem 4.4. Let x be a (local) solution to problem (P). Suppose conditions

(DMR) and (TR) are satisfied at x. Then for each non-null critical vector v ∈ K(x)

and each nonempty closed convex subcone Q̂ of T̂ 2 (C, g (x) , g′ (x) v) not contained in
Z × {0}, there exists some y ∈ N (T (C, g (x)), g′(x)v) such that

f ′ (x) + y ◦ g′ (x) = 0,

inf
(z,r)∈Q̂

[r(f ′′ (x) vv + 〈y, g′′ (x) vv〉)− 〈y, z〉] ≥ 0.

Proof. Given v ∈ K(x)\ {0} , and a cone Q̂ as above, in view of Proposition 2.3,
for each (w, r) ∈ X × R+ such that

(g′ (x) (w) + rg′′ (x) vv, r) ∈ cl(Q̂+ T × {0})
with T := T (T (C, g(x)), g′(x)v), we have

(g′ (x) (w) + rg′′ (x) vv, r) ∈ T̂ 2 (C, g (x) , g′ (x) v)

since T̂ 2(C, g(x), g′(x)v) is closed. It follows from Proposition 4.1 that

(w, r) ∈ T̂ 2 (F, x, v) .

And then, by Proposition 3.1,

f ′ (x)w + rf ′′ (x) vv ≥ 0.

Setting P = X × R+, Q = cl(Q̂+ T × {0}), and defining A by

A(w, r) := (g′ (x)w + rg′′ (x) vv, r)

so that A(P )−Q = Z×R, as is easily seen, it follows from the Farkas lemma recalled

above that there exists (y,−s) ∈ Q0 = (Q̂+ T × {0})0 such that

f ′ (x)w + rf ′′ (x) vv − rs+ 〈y, g′ (x)w + rg′′ (x) vv〉 ≥ 0

for each (w, r) ∈ X × R+. It follows that y ∈ T 0 := N (T (C, g (x)), g′(x)v) and that

f ′ (x) + y ◦ g′ (x) = 0,

r(f ′′ (x) vv + 〈y, g′′ (x) vv〉) ≥ rs.
Since rs ≥ 〈y, z〉 for each (z, r) ∈ Q, the result follows.

Since the preceding optimality condition has been derived from Proposition 3.1,
and since that criterion is a consequence of the results of [37], one may guess that
it is a consequence of the necessary condition of [37] for mathematical programming

problems. This is the case. Given v ∈ K(x) and a nonempty closed convex subcone Q̂
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of T̂ 2 (C, g (x) , g′ (x) v), let us consider two cases. When Q̂ is contained in Z×{0} the

condition −〈y, z〉 ≥ 0 for each z ∈ Q̂ is satisfied by any y in the set M(x) of multipliers,

as is easily seen. When Q̂∩Z ×P is nonempty, taking T = X × (Q̂∩Z ×{1}) in [37,
Corollary 3.6] we get some y ∈M(x) such that

f ′′ (x) vv + 〈y, g′′ (x) vv〉 ≥ 〈y, z〉
for each z such that (z, 1) ∈ Q̂. Taking into account the remarks above and a homo-
geneity argument, the conclusion follows.

Now, let us turn to sufficient conditions.
Theorem 4.5. The following conditions ensure that an element x of F is a strict

local minimizer:
(a) X is finite dimensional;
(b) the set M (x) = {y ∈ N (C, g (x)) : f ′ (x) + y ◦ g′ (x) = 0} of multipliers at x

is nonempty;
(c) for each v ∈ F ′ (x) \ {0} with f ′ (x) v = 0 and each (w, r) ∈ X×R+\ {(0, 0)}

such that (z, r) := (g′ (x)w + rg′′ (x) vv, r) ∈ T̂ 2 (C, g (x) , g′ (x) v) there exists y ∈
M (x) such that

r (f ′′ (x) vv + 〈y, g′′ (x) vv〉) > 〈y, z〉.
Proof. The existence of a multiplier y ensures condition (a) of Proposition 3.4

since for any v ∈ F ′ (x) we have g′ (x) v ∈ T (C, g (x)) and y ∈ N (C, g (x)) , hence
〈y, g′ (x) v〉 ≤ 0 and f ′ (x) v ≥ 0.

In order to check condition (b) of Proposition 3.4, let us consider v ∈ F ′ (x) ∩
ker f ′ (x) with v 6= 0 and (w, r) ∈ T̂ 2 (F, x, v) with (w, r) 6= (0, 0) . Then Proposition

2.2 ensures that (z, r) ∈ T̂ 2 (C, g (x) , g′ (x) v) for z = g′ (x)w + rg′′ (x) vv. Then,
taking y ∈M(x) as in assumption (c) we get

f ′ (x)w + rf ′′ (x) vv > −〈y, g′ (x)w〉+ 〈y, z〉 − r〈y, g′′ (x) vv〉 = 0,

and condition (b) is satisfied.

5. Comparisons with other works. As mentioned above, the definition we
gave for the second-order projective incident cone T̂ ii(F, x, v) to a subset F of X at
(x, v) seems to be closely related to Definition 2.2 of [26]: (w, r) ∈ TC(2)(F, x, v) iff
there exist ε > 0 and α : [0, ε]→ X such that α(s)→ 0 as s→ 0,

x+ s
√
rv + s2w + s2α(s) ∈ F ∀s ∈ [0, ε].

In fact, supposing X is finite dimensional, so that the weak topology coincides with
the strong topology, setting t = s

√
r we see that for r > 0 (w, r) ∈ TC(2)(F, x, v) iff

(w, r) ∈ T̂ ii(F, x, v) iff r−1w ∈ T ii(F, x, v) := lim inft→0+
2t−2(F − x− tv). However,

(w, 0) ∈ TC(2)(F, x, v) iff w ∈ T i(F, x) := lim inft→0+
t−1(F − x), the first-order

incident tangent cone, and there is no relationship with the case (w, 0) ∈ T̂ ii(F, x, v).
Another definition is given in [26], in the style of the Dubovitskii–Milyutin work:
(w, r) ∈ FC(2)(F, x, v) iff there exists ε > 0 such that

x+ s
√
rv + s2B(w, ε) ⊂ F ∀s ∈ [0, ε].

Setting G := X\F, we see that for r > 0 we have (w, r) ∈ FC(2)(G, x, v) iff (w, r) /∈
T̂ 2(F, x, v). However, for r = 0 we have (w, r) ∈ FC(2)(G, x, v) iff w /∈ T (F, x) and

there is no connection with T̂ 2(F, x, v).
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As mentioned in the introduction, the definition of the projective tangent set we
introduced above has been inspired by a notion given in a work of Cambini, Martein,
and Komlosi [11] (or, rather, a talk around that paper). With a slight change of
notation, their definition is as follows:

w ∈ TC ′′(F, x, v)⇔ (∃k ∈ R+ ∪ {∞} ∃(xn) ∈ FN (xn)→ x,

∃(αn), (βn)→∞ : (αnβ
−1
n )→ k, (βn [αn(xn − x)− v])→ w).

Clearly, this set is a cone, as is T̂ 2(F, x, v). Given (w, r) ∈ T̂ 2(F, x, v) and setting
αn = t−1

n , βn = 2rnt
−1
n one sees that w ∈ TC ′′(F, x, v) so that, denoting by pX the

canonical projection of X × R onto X, one has

pX(T̂ 2(F, x, v)) ⊂ TC ′′(F, x, v).

This inclusion is strict in general as a vector w such that for some sequences (xn) ∈
FN, (xn) → x, (αn), (βn) → ∞ : (αnβ

−1
n ) → 0, (βn [αn(xn − x)− v]) → w does not

belong to the left-hand side of the preceding relation. The necessary condition of [11]
is thus potentially richer than the one of our Proposition 3.1. However, for a vector
w as just described, the necessary condition of [11] reads as

f ′(x)(2kw) + f ′′(x)(v, v) ≥ 0

with k = 0 or f ′′(x)(v, v) ≥ 0. Then, since xn = x+ α−1
n v + α−2

n (αnβ
−1
n )wn, we have

(αnβ
−1
n wn) → 0, so that 0 ∈ T 2(F, x, v) (see [12, Observation 7], in this connection)

and the conclusion f ′′(x)(v, v) ≥ 0 is contained in Proposition 3.1. For a similar
reason, the assumptions of their sufficient condition are not more restrictive than the
ones of our Proposition 3.4. We refer to [12] for a precise formulation of the optimality
conditions of [11] and a number of observations about the second-order tangent sets
described above. Among them is the following property [12, Observations 4 and 5]:

T̂ 2(F, x, v) + RT (F, x)× {0} ⊂ T̂ 2(F, x, v),

which is related to the inclusion

T 2(F, x, v) + RT (F, x) ⊂ T 2(F, x, v)

contained in [13, Proposition 3.1].
Moreover, pursuing the line of thought of several papers [8], [9], [10], Cambini,

Martein, and Komlosi introduce in [11] a new notion of second-order tangent set
and use it for optimality conditions. When applied to mathematical programming
problems, another main feature of the approach of [11] is the fact that it takes place in
the image of the decision space X by the joint mapping h := (f, g) : X → V := R×Z.
In such a setting, X can be an arbitrary topological space, V can be an arbitrary
normed vector space, and the following tools address local minimizers rather than
global minimizers. Given x ∈ X, let us denote by T (X,h, x) the set of v ∈ V such
that there exist sequences (xn)→ x, (tn)→ 0+, (vn)→ v in X, P, and V , resp., such
that vn = t−1

n (h(xn)− h(x0)) for each n. Now, given v ∈ T (X,h, x), let T 2(X,h, x, v)
be the set of limits w of sequences (wn) = 2t−2

n (h(xn)− h(x)− tnv), where (xn)→ x,
(tn)→ 0+. Clearly,

T (X,h, x) ⊂ T (h(X), h(x)), T 2(X,h, x, v) ⊂ T 2(h(X), h(x), v),

and if X is a normed space,

h′(x)(X) ⊂ T (X,h, x), h′(x)(X) + h′′(x)(v, v) ⊂ T 2(h(X), h(x), v).
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However, these sets do not seem to be directly related to the projective tangent sets
we defined, although they also give rise to optimality conditions in the form

T (X,h, x) ∩ ((−P)× intC) = ∅,
T 2(X,h, x, v) ∩ ((−P)× intC) = ∅ ∀v ∈ T (X,h, x) ∩ Fr((−P)× intC).

On the other hand, conditions in terms of multipliers can be deduced from such
relations and from the use of the set A2 of v ∈ T (X,h, x)\{0} such that there exist
t > 0 and sequences (xn)→ x, (tn)→ 0+, (vn)→ v in X, P, and V , resp., such that
vn = t−1

n (h(xn)− h(x0)), tn = t‖h(xn)− h(x)‖, ‖xn − x‖−2(h(xn)− h(x))→ 0. Such
a set seems to be more closely related to our projective tangent sets.

Now let us turn to a recent contribution of Bonnans, Cominetti, and Shapiro [5]
using a notion of approximation to devise a sufficient optimality condition which we
intend to compare with the one in [37]. We recall them briefly. The condition in [37]
relies on the notion of compound tangent set to E := (−R+)×C (we suppose f(x) = 0
for simplicity). Given u ∈ X one denotes by

Su := lim sup
(t,u′)→(0+,u)

2t−2(E − h(x)− th′(x)u′)

the set formed with limits of sequences (wn) such that there exist sequences (tn)→ 0+,
(un) → u in P and X, resp., with h(x) + tnh

′(x)un + 1
2 t

2
nwn ∈ E for each n. Then

one can give a sufficient condition in order that x be an essential local minimizer of
second order for problem (M) in the following sense, which differs slightly from the
one in [1], [5], [35], [39], and [38]: there exists α > 0, β > 0, γ > 0 such that

f(u) ≥ f(x) + α‖u− x‖2 for any u ∈ B(x, β) such that d(g(u), C) ≤ γ‖u− x‖2.
We make use of the set J(x) of F. John’s multipliers at x for problem (M), i.e., the
set of (t, y) ∈ R+ ×N(C, g(x)) such that

tf ′(x) + y ◦ g′(x) = 0

and of the set of subcritical directions

K≤(x) := {u ∈ X : f ′(x)u ≤ 0, g′(x)u ∈ T (C, g(x))} .
This set obviously coincides with the set of critical directions K(x) whenever the set
of multipliers M(x) = {y : (1, y) ∈ J(x)} is nonempty.

Proposition 5.1. The following conditions ensure that an element x of F is an
essential local minimizer of second order:

(a) X is finite dimensional;
(b) the set J (x) of John’s multipliers at x is nonempty;
(c) for each u ∈ K≤ (x) \ {0} and each (r, z) ∈ Su there exists a multiplier

(t, y) ∈ J(x) such that

tf ′′ (x)uu+ 〈y, g′′ (x)uu〉 > rt+ 〈y, z〉.(5)

Proof. Suppose on the contrary that there exist a sequence (xn) of X and a
sequence (εn)→ 0+ such that 0 < tn := ‖xn − x‖ < εn, d(g(xn), C) ≤ εnt

2
n, f(xn) <

f(x) + t2nεn for each n. Without loss of generality we may assume that (t−1
n (xn − x))

converges to some u in X. It is easy to see that u ∈ K≤ (x) \ {0} and that (r, z) :=
(f ′′(x)uu, g′′(x)uu) ∈ Su. Thus we get a contradiction with (c).



316 JEAN-PAUL PENOT

Now, in order to present the result of [5] let us introduce the following concepts in
which the Pompeiu–Hausdorff excess of a subset C over another subset D of a metric
space is given by

e(C,D) := sup
c∈C

d(c,D).

Definition 3. A subset A of a metric space is an outer (or upper) hemi-limit of
a family (Aw)w∈W of subsets of X parametrized by a subset Wof a topological space
P as w → w0 ∈ clW, w ∈W if e(Aw, A)→ 0 as w → w0 in W.

Such a limit is not unique: if A′ contains A, then A′ is again an outer hemi-limit
of (Aw). Moreover, any closed outer hemi-limit of (Aw) contains lim supw→w0

Aw, as
is easily seen. The concept introduced in [5] can be reformulated as follows (in the
case d = Mu, which is of interest to us).

Definition 4. Given n.v.s. X and Z, a subset C of Z, a continuous linear
mapping M : X → Z, u ∈ X, z ∈ C, a subset A of Z is said to be an upper (second-
order) approximation to C at z with respect to M, z, u if it is an outer hemi-limit of
the family At,u′ := 2t−2(C − z − tMu′) as (t, u′)→ (0, u) in P×X.

A simpler notion can be introduced.
Definition 5. Given a subset C of an n.v.s. Z, z ∈ C, v ∈ T (C, z), a subset A

of Z is said to be an outer (second-order) approximation to C at z in the direction v
if it is an outer hemi-limit of the family At := 2t−2(C − z − tv) as t→ 0+.

This definition is less demanding than the preceding one: if A is an upper ap-
proximation to C at z with respect to M, z, u, and if v := Au, then A is an outer
approximation to C at z in the direction v.

EXAMPLE. For any convex subset C of Z and any z ∈ C, v ∈ T (C, z) the cone
T (T (C, z), v) is an outer approximation to C at z in the direction v. In fact, for any
t > 0, c ∈ C, setting w := 2t−2(c− z − tv), v′ := v + (t/2)w = t−1(c− z) ∈ T (C, z),
one has w = 2t−1(v′ − v) ∈ T (T (C, z), v).

The main result of [5] states that if x is feasible for problem (M), if for each u ∈
K≤(x) there exists an upper approximation A to C with respect to M := g′(x), z :=
g(x), u, and if there exists (t, y) ∈ J(x) such that

tf ′′ (x)uu+ 〈y, g′′ (x)uu〉 > σ(y,A) := sup
a∈A
〈y, a〉,(6)

then x is a strict locally optimal solution of (M). In fact this result can be extended to
the case when A is just an outer approximation to C at z in the direction v := g′(x)u,
and, moreover, it is a simple consequence of the preceding proposition in view of the
following lemma.

Lemma 5.2. If condition (6) holds for some outer approximation to C at g(x) in
the direction v := g′(x)u, then condition (5) holds.

Proof. It suffices to prove that for any u ∈ K≤(x), any (r, z) ∈ Su, any (t, y) ∈
J(x), and any outer approximation A to C at g(x) in the direction v := g′(x)u, one
has

σ(y,A) ≥ 〈y, z〉+ rt.

Now, since (r, z) ∈ Su there exist sequences (tn)→ 0+, (un)→ u, (zn)→ z, (rn)→ r
such that

cn := g(x) + tng
′(x)un +

1

2
t2nzn ∈ C,

f ′(x)un +
1

2
tnrn ≤ 0.
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Let wn := 2t−1
n (un−u), and let qn := g′(x)wn+zn. Since A is an outer approximation

to C at g(x) in the direction v := g′(x)u, and since qn = 2t−2
n (cn − g(x)− tng′(x)u),

there exists an ∈ A such that εn := ‖qn − an‖ → 0. Then, using the definitions of
J(x) and K≤(x), we get

〈y, zn〉+ trn = 〈y, qn〉 − 〈y, g′(x)wn〉+ trn

= 〈y, qn〉+ tf ′(x)wn + trn

= 〈y, qn〉+ 2tt−1
n

(
f ′(x)un +

1

2
tnrn

)
≤ 〈y, an〉+ εn‖y‖.

Therefore, taking limits, we get

〈y, z〉+ rt ≤ σ(y,A).

Corollary 5.3. Suppose that for an element x of F the conditions (a) and
(b) of the preceding proposition hold while condition (c) is replaced with the following
condition (c′). Then x is an essential local minimizer of second order:

(c′) for each u ∈ K≤ (x) \ {0} there exist an outer approximation A of C at g(x)
in the direction g′(x)u and a multiplier (t, y) ∈ J(x) such that

tf ′′ (x)uu+ 〈y, g′′ (x)uu〉 > sup
a∈A
〈y, a〉.(7)

REFERENCES

[1] A. Auslender, Stability in mathematical programming with nondifferentiable data, SIAM J.
Control Optim., 22 (1984), pp. 239–254.

[2] A. Ben-Tal, Second order and related extremality conditions in nonlinear programming, J.
Optim. Theory Appl., 31 (1980), pp. 143–165.

[3] A. Ben Tal and J. Zowe, A unified theory of first and second-order conditions for extremum
problems in topological vector spaces, Math. Programming Study, 19 (1982), pp. 39–76.

[4] A. Ben Tal and J. Zowe, Necessary and sufficient optimality conditions for a class of non-
smooth minimization problems, Math. Programming, 24 (1982), pp. 70–91.

[5] J.F. Bonnans, R. Cominetti, and A. Shapiro, Second order necessary conditions and suffi-
cient optimality conditions under abstract constraints, preprint, 1996.

[6] J. Borwein, Stability and regular points of inequality systems, J. Optim. Theory Appl., 48
(1986), pp. 9–52.

[7] J. Burke, Second order necessary and sufficient conditions for convex composite NDO, Math.
Programming, 38 (1987), pp. 287–302.

[8] A. Cambini and L. Martein, Second order necessary optimality conditions in the image space:
Preliminary results, in Scalar and Vector Optimization in Economic and Financial Prob-
lems, E. Castagnoli and G. Giorgi, eds., 1995, pp. 27–38.

[9] A. Cambini, L. Martein, and R. Cambini, A new approach to second order optimality condi-
tions in vector optimization, Technical report 103, Department of Statistics and Applied
Math., Univ. of Pisa, 1996.

[10] R. Cambini, Second order optimality conditions in the image space, Technical report 99, De-
partment of Statistics and Applied Math., Univ. of Pisa, 1996.

[11] A. Cambini, L. Martein, and S. Komlosi, Recent developments in second order necessary
optimality conditions, Generalized Convexity, Generalized Monoticity, J.-P. Crouzeix et
al., eds., Kluwer, Amsterdam, 1998, pp. 347–356.

[12] A. Cambini, L. Martein, and M. Vlach, Second order tangent sets and optimality conditions,
preprint, Japan Advanced Study of Science and Technology, Hokuriku, Japan, 1997.

[13] R. Cominetti, Metric regularity, tangent sets and second-order optimality conditions, Applied
Math. Optim., 21 (1990), pp. 265–287.

[14] J.-P. Dedieu, Third and fourth-order optimality conditions in optimization, Optimization, 33
(1995), pp. 97–105.



318 JEAN-PAUL PENOT

[15] J.-P. Dedieu and R. Janin, A propos des conditions d’optimalité d’ordre trois et quatre pour
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Abstract. It is proved that the dynamic elastica, which is a nonlinear model describing the large
deflecting motion of an inextensible beam, can be uniformly exponentially stabilized by boundary
velocity feedback.

Key words. elastica, uniform stabilization, boundary control, exponential decay

AMS subject classifications. 93D15, 35B37, 73K05

PII. S0363012997322352

1. Introduction. We consider the large, planar motion of an inextensible elastic
beam described by the following model, called the dynamic elastica:

ρutt = λx,(1.1)

ρwtt = νx,(1.2)

λ sinϕ− ν cosϕ+ Iρϕtt − EIϕxx = 0,(1.3)

1 + ux = cosϕ, wx = sinϕ.(1.4)

The unknowns are u, w, ϕ, λ, and ν, which are functions of two variables x and t,
0 ≤ x ≤ L, t ≥ 0. In this model, the centerline (i.e., the locus of the centroid of the
cross section) of the beam is assumed to lie in a fixed plane with the usual Cartesian
coordinate system O-XY , and, in the reference state of the beam, to occupy the
interval 0 ≤ X ≤ L of the X-axis. The unknowns u(x, t) and w(x, t) denote the
displacements, at time t, in the X- and Y -direction, respectively, of the particle
which occupies position (x, 0), 0 ≤ x ≤ L, in the reference state; thus, the centerline
at time t is described by the curve x 7→ (x + u(x, t), w(x, t)). The unknown ϕ(x, t)
denotes the angle between the tangent (1 + ux(x, t), wx(x, t)) of the centerline and
the X-axis. This, together with the inextensibility condition

√
(1 + ux)2 + w2

x = 1,
implies (1.4). The unknowns λ(x, t) and ν(x, t) denote the components in the X- and
Y -direction, respectively, of the force acting on Γ(x), where Γ(x) is the cross section
that is at X = x when the beam is in the reference state. In the motion equations
(1.1)–(1.3), the coefficients ρ, Iρ, and EI are the mass per unit length, the mass
moment of inertia of the cross section, and the bending stiffness of the beam. We
assume that these coefficients are positive constants. For more detailed explanation
of (1.1)–(1.3), see, e.g., [2], [1].

The boundary conditions we consider at x = 0 are

u(0, t) = w(0, t) = 0,(1.5)

ϕ(0, t) = 0,(1.6)
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f̄2
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Fig. 1.1. Elastica (the dependence of the functions upon t is suppressed).

which represent that the beam is clamped at the end having the cross section Γ(0),
and the boundary conditions at x = L are

λ(L, t) = f̄1(t), ν(L, t) = f̄2(t),(1.7)

EIϕx(L, t) = µ̄(t),(1.8)

which represent that, at the cross section Γ(L), the beam is subjected to external
forces f̄1 and f̄2 in the X- and Y -direction, respectively, and to an external moment µ̄
(see Fig. 1.1).

For the model above, the strain energy of the beam is given by

U(t;ϕ) = 1
2

∫ L

0

EIϕx(x, t)2 dx,(1.9)

and the kinetic energy is given by

K(t;ϕ) = 1
2

∫ L

0

{
ρut(x, t)

2 + ρwt(x, t)
2 + Iρϕt(x, t)

2
}
dx(1.10)

(note that u and w, and thus K, are determined by ϕ through (1.4) and (1.5)). Indeed,
the motion equations (1.1)–(1.3) and the natural boundary conditions (1.7)–(1.8) can
be derived from Hamilton’s principle with the Lagrangian

L(ϕ) =

∫ t1

t0

{
U(t;ϕ)−K(t;ϕ)− (f̄1(t)u(L, t) + f̄2(t)w(L, t) + µ̄(t)ϕ(L, t))

}
dt

(1.11)

and with the geometrical constraints (1.4), (1.5)–(1.6).
The purpose of this paper is to investigate uniform stabilization of the above model

with the following boundary velocity feedback control (i.e., boundary damping):

f̄1(t) = −k1ut(L, t),(1.12)

f̄2(t) = −k2wt(L, t),(1.13)

µ̄(t) = −lϕt(L, t),(1.14)

where k1, k2, and l are positive constants representing feedback gains. For a linear
wave equation with boundary damping, Chen [4], [5] adopted an approach using
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Lyapunov-type functionals to establish exponential decay of solutions (this work was
done as an extension of Quinn and Russell [20]). After that, this approach was used
not only for extending Chen’s result for linear wave equations (see, e.g., [14], [15],
[17]), but also for obtaining exponential decay rates for some linear elastic systems
with boundary damping (see, e.g., [12], [3], [7], [6]). One of the main advances in
this approach was made by Komornik and Zuazua [9], [8] when they introduced a
new type of Lyapunov functional. Their argument showed that the approach can be
applied to nonlinear systems with boundary damping; results on uniform decay rates
have been obtained for semilinear wave equations (see, e.g., [24]) and nonlinear elastic
beams and plates (see, e.g., [13], [18], [10], [11], [16], [21], [19]) with linear or nonlinear
boundary damping. On the other hand, there is another important approach to the
problem of obtaining uniform decay rates for the similar systems. For this approach,
see, for example, Tataru [22] and the bibliography therein.

We apply the Lyapunov functional approach: we construct a functional to estab-
lish that the total energy

E(t;ϕ) := K(t;ϕ) + U(t;ϕ)(1.15)

of the controlled system (1.1)–(1.8), (1.12)–(1.14) has an exponential decay rate. As
far as the author knows, all previous work, except [23], on uniform boundary sta-
bilization for flexible systems (string, membrane, beam, plate) treats those models
that are derived under the condition that the deflection of the body is small enough,
even though the model equations are nonlinear. The present paper shows that the
boundary velocity feedback control is effective for large deflecting flexible structures.
Independently of the present work, Taylor has shown in an unpublished article [23]
that the elastica model without the rotational inertia term (the third term of the left-
hand side of (1.3)) is exponentially stabilized by the boundary feedback forces (1.12)
and (1.13), assuming the existence of a solution of the model. However, for that
model, the existence of a global classical solution has not been proven yet.

2. Preliminary results. In this section, we give some preliminary results, in-
cluding the well-posedness of (1.1)–(1.8), (1.12)–(1.14).

First of all, we eliminate λ, ν, f̄1, f̄2, and µ̄ from (1.1)–(1.8), (1.12)–(1.14) to
obtain

(2.1)

∫ x

L

ρutt(ξ, t) dξ sinϕ−
∫ x

L

ρwtt(ξ, t) dξ cosϕ+ Iρϕtt − EIϕxx
= k1ut(L, t) sinϕ− k2wt(L, t) cosϕ,

u(x, t) =

∫ x

0

{cosϕ(ξ, t)− 1} dξ, w(x, t) =

∫ x

0

sinϕ(ξ, t) dξ,(2.2)

ϕ(0, t) = 0,(2.3)

EIϕx(L, t) = −lϕt(L, t).(2.4)

In what follows, we are concerned with (2.1)–(2.4) exclusively.
Caflisch and Maddocks [2] proved the existence and uniqueness of global, classical

solutions to the initial-boundary value problem corresponding to (1.1)–(1.8) with

f̄1(t) = const, f̄2(t) = µ̄(t) = 0, t ≥ 0
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(they dealt with the problem with variable coefficients). The existence result, Propo-
sition 2.1 below, for our problem can be proved by similar argument to theirs. Thus
we give only the outline of a proof.

Let Cnpw (n = 1, 2) denote the class of those functions in Cn−1 that have piecewise
continuous derivatives of order n.

Proposition 2.1. Let ϕ0 ∈ C2
pw[0, L], and let ϕ1 ∈ C1

pw[0, L], where ϕ0 and ϕ1

satisfy

ϕ0(0) = ϕ1(0) = 0, EIϕ′0(L) = −lϕ1(L)(2.5)

( “′” stands for d/dx). Then there exists one and only one function ϕ ∈ C2
pw([0, L]×

[0,∞)) satisfying (2.1)–(2.4) and

ϕ(x, 0) = ϕ0(x), ϕt(x, 0) = ϕ1(x).(2.6)

Proof. Step 1: semilinear form. Throughout this step, the dependence of ϕ upon t
is suppressed. Substituting (2.2) into (2.1) yields

Iρϕtt(x)− EIϕxx(x)(2.7)

+

∫ L

0

ρ̂(x, ξ)
{
ϕtt(ξ) cos(ϕ(x)− ϕ(ξ)) + ϕt(ξ)

2 sin(ϕ(x)− ϕ(ξ))
}
dξ

=−
∫ L

0

ϕt(ξ)
{
k1 sinϕ(x) sinϕ(ξ) + k2 cosϕ(x) cosϕ(ξ)

}
dξ,

where

ρ̂(x, ξ) =

{
ρ(L− x) : ξ < x,

ρ(L− ξ) : x < ξ.

By integration by parts and (2.3), we have the equality

∫ L

0

ρ̂(x, ξ)(EI/Iρ)ϕxx(ξ) cos(ϕ(x)− ϕ(ξ)) dξ

=− ρ̂(x, 0)(EI/Iρ)ϕx(0) cosϕ(x)

−
∫ L

0

ρ̂ξ(x, ξ)(EI/Iρ)ϕx(ξ) cos(ϕ(x)− ϕ(ξ)) dξ

−
∫ L

0

ρ̂(x, ξ)(EI/Iρ)ϕx(ξ)2 sin(ϕ(x)− ϕ(ξ)) dξ.

Subtracting this equality from (2.7) yields

(2.8) Iρϕtt(x)− EIϕxx(x)

+

∫ L

0

ρ̂(x, ξ)I−1
ρ

{
Iρϕtt(ξ)− EIϕxx(ξ)

}
cos(ϕ(x)− ϕ(ξ)) dξ = [Aϕ](x),
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where

[Aϕ](x) =ρ̂(x, 0)(EI/Iρ)ϕx(0) cosϕ(x)

+

∫ L

0

ρ̂(x, ξ)
{

(EI/Iρ)ϕx(ξ)2 − ϕt(ξ)2
}

sin(ϕ(x)− ϕ(ξ)) dξ

+

∫ L

0

ρ̂ξ(x, ξ)(EI/Iρ)ϕx(ξ) cos(ϕ(x)− ϕ(ξ)) dξ

−
∫ L

0

ϕt(ξ)
{
k1 sinϕ(x) sinϕ(ξ) + k2 cosϕ(x) cosϕ(ξ)

}
dξ.

Define now the operator Lψ for each ψ ∈ C[0, L] by

[Lψf ](x) =

∫ L

0

ρ̂(x, ξ)I−1
ρ cos(ψ(x)− ψ(ξ))f(ξ) dξ, f ∈ L2(0, L).

As stated in the next step, the operator 1 +Lψ has the inverse (1 +Lψ)−1 = 1 +Kψ,
with Kψ a compact operator on L2(0, L). Thus (2.8) can be rewritten as

Iρϕtt − EIϕxx = (1 +Kϕ)Aϕ.(2.9)

In the following, it is shown that this semilinear equation with the boundary conditions
(2.3)–(2.4) and the initial conditions (2.6) has a unique C2

pw solution.
Step 2: properties of Lϕ, Kϕ and Aϕ. Let QT = [0, L]× [0, T ] for T > 0, and let

Q∞ = [0, L]× [0,∞). We denote by || · ||∞ and || · ||L2 the usual norms of L∞(0, L),
and L2(0, L), respectively, and define || · ||1 by

||f(·, t)||21 = ||f(·, t)||2L2 + ||fx(·, t)||2L2 + ||ft(·, t)||2L2 for f ∈ C1
pw(Q∞).

Let ϕ, ψ ∈ C[0, L]. The operator Lϕ is a compact, positive operator on L2(0, L)
into C[0, L] and satisfies

||Lϕf ||∞ ≤ c1||f ||L2 ,

||(Lϕ − Lψ)f ||∞ ≤ c1||ϕ− ψ||∞||f ||L2 ,

where c1 is a positive constant depending only on ρ, Iρ, and L. If ϕ ∈ C1[0, L], then
Lϕf ∈ C1[0, L].

Since Lϕ is compact and positive definite, the operator (1 +Lϕ)−1 on L2(0, L) is
well defined, which is positive and satisfies

||(1 + Lϕ)−1f ||L2 ≤ ||f ||L2 , f ∈ L2(0, L).

We define Kϕ by

Kϕ = −Lϕ(1 + Lϕ)−1 = −(1 + Lϕ)−1Lϕ.

Thus, (1 + Kϕ) = (1 + Lϕ)−1. By the definition, it follows that Kϕ is a compact,
self-adjoint operator on L2(0, L) into C[0, L] and satisfies

||Kϕf ||∞ ≤ c2||f ||L2 ,

||(Kϕ −Kψ)f ||∞ ≤ c2||ϕ− ψ||∞||f ||L2 ,
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where c2 is a positive constant depending only on ρ, Iρ, and L. Moreover, if ϕ ∈
C1[0, L], then Kϕf ∈ C1[0, L].

In the rest of this step, we suppose that ϕ(x, t) and ψ(x, t) belong to C1
pw(Q∞)

(the dependence of ϕ and ψ upon t is suppressed) and ϕ(0, t) = ψ(0, t) = 0. By
the definition of Aϕ and by using the inequalities above, we obtain the following
estimations, in which c3 is a positive constant depending only on ρ, Iρ, EI, L, k1,
and k2:

||Aϕ||∞ ≤ c3
(||ϕx||∞ + ||ϕ||1 + ||ϕ||21

)
,(2.10)

||(1 +Kϕ)Aϕ||∞ ≤ c3
(||ϕx||∞ + ||ϕ||1 + ||ϕ||21

)
,(2.11)

(2.12) ||Aϕ−Aψ||∞
≤ c3

(
1 + ||ϕx||∞ + ||ψx||∞ + ||ϕ||1 + ||ψ||1 + ||ϕ||21 + ||ψ||21

)
× (||ϕx − ψx||∞ + ||ϕ− ψ||1

)
,

(2.13) ||(1 +Kϕ)Aϕ− (1 +Kψ)Aψ||∞
≤ c3

(
1 + ||ϕx||∞ + ||ψx||∞ + ||ϕ||1 + ||ψ||1 + ||ϕ||21 + ||ψ||21

)
× (||ϕx − ψx||∞ + ||ϕ− ψ||1

)
.

Step 3: linear wave equation. Consider the inhomogeneous initial-boundary value
problem

ϕtt − β2ϕxx = f, 0 ≤ x ≤ L, t ≥ 0

with the boundary conditions (2.3)–(2.4) and the initial conditions (2.6), where β =√
EI/Iρ. Using d’Alembert’s formula, we can express explicitly the solution of this

problem:

(2.14) ϕ(x, t) =
1

2

(∫ x+βt

0

ϕ+(ξ) dξ +

∫ x−βt

0

ϕ−(ξ) dξ

)

+
1

2β

∫ t

0

∫ x+β(t−τ)

x−β(t−τ)

f̃(ξ, τ) dξdτ, 0 ≤ x ≤ L, t ≥ 0.

In this formula, ϕ+(x) (x ≥ 0), ϕ−(x) (x ≤ L), and f̃(x, t) (−∞ < x <∞, t ≥ 0) are
defined by

ϕ+(x+ nL) =

{
σk
(
ϕ′0(x) + 1

βϕ1(x)
)

: n = 2k,

σk
(
ϕ′0(L− x)− 1

βϕ1(L− x)
)

: n = 2k + 1

for 0 ≤ x < L, k = 0, 1, 2, . . . ,

ϕ−(x+ nL) =

{
σ|k|
(
ϕ′0(x)− 1

βϕ1(x)
)

: n = 2k,

σ|k|
(
ϕ′0(L− x) + 1

βϕ1(L− x)
)

: n = 2k − 1

for 0 ≤ x < L, k = 0, −1, −2, . . . ,

f̃(x+ nL, t) =

{
σ|k|f(x, t) : n = 2k,

−σ|k+1|f(L− x, t) : n = 2k + 1

for 0 ≤ x < L, t ≥ 0, k = 0, ±1, ±2, . . . ,
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where

σ = −1− αβ
1 + αβ

(∈ (−1, 1)
)

with α =
l

EI
(> 0).

We can check that if f(x, t) ∈ C(Q∞) and ∂f/∂x is a piecewise continuous function
on Q∞, then the right-hand side of (2.14) is in C2

pw(Q∞) (note that ∂f/∂t is not
required to be piecewise continuous). Moreover, defining N(ϕ(·, t)) to be

N(ϕ(·, t)) = ||ϕ(·, t)||∞ + ||ϕx(·, t)||∞ + ||ϕt(·, t)||∞,

it follows from (2.14) that the solution ϕ satisfies

N(ϕ(·, t)) ≤ c4
(||ϕ0||∞ + ||ϕ′0||∞ + ||ϕ1||∞

)
+ c4

∫ t

0

||f(·, τ)||∞ dτ(2.15)

for t ≥ 0, where c4 is a positive constant depending only on Iρ, EI, L, and l.
Step 4: existence. Define ϕ(n) for n = 0, 1, 2, . . . by

ϕ(0)(x, t) = ϕ0(x) + tϕ1(x),

Iρϕ
(n+1)
tt − EIϕ(n+1)

xx = (1 +Kϕ(n))Aϕ(n)

with the boundary conditions (2.3)–(2.4) and the initial conditions (2.6). Let

g(n) =
1

Iρ
(1 +Kϕ(n))Aϕ(n).

Since g(0) ∈ C1
pw(Q∞), ϕ(n+1) belongs to C2

pw and satisfies (2.15) with f = g(n) for
n = 0, 1, . . . . From this estimate and (2.11), we can show that

N(ϕ(n)(·, t)) ≤M0, 0 ≤ t ≤ t0, n = 0, 1, . . .(2.16)

for some positive constants M0 and t0 independent of n. Furthermore, letting ψ(n) =
ϕ(n+1) − ϕ(n), ψ(n+1) then satisfies (2.15) with ϕ0 = ϕ1 = 0 and f = g(n+1) − g(n).
From this estimate, (2.13), and (2.16), we can see that

N(ψ(n+1)(·, t)) ≤ 1
2 sup

0≤τ≤t1
N(ψ(n)(·, τ)), 0 ≤ t ≤ t1, n = 0, 1, . . .

for some positive constants t1 ≤ t0 independent of n. This implies that ϕ(n) is a
Cauchy sequence in C1(Qt1). The constants M0, t0, and t1 depend only on ρ, Iρ, EI,
L, k1, k2, l, ||ϕ0||∞, ||ϕ′0||∞, ||ϕ1||∞, and ||ϕ′1||∞.

Let ϕ ∈ C1(Qt1) be the limit of ϕ(n) and g = I−1
ρ (1 + Kϕ)Aϕ. It follows from

(2.13) that g(n) converges to g in C(Qt1). Hence, ϕ satisfies (2.14) with f = g. On the
other hand, by the definitions of Aϕ and Kϕ, we see that ∂g/∂x ∈ C(Qt1). Therefore,
as stated in Step 3, ϕ is a C2

pw solution of (2.9). The uniqueness of solutions follows
easily from (2.15) and (2.13).

Global existence of the solution can be proved in exactly the same way as in the
proof of Theorem 1 in [2] using the estimate E(t;ϕ) ≤ E(0;ϕ), t ≥ 0, of the energy E
(see the proof of Lemma 3.2 below).

The inequalities in the following lemma are used in the next section.
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Lemma 2.2. Let ψ ∈ C1
pw[0, L], and define

p(x) =

∫ x

0

{cosψ(ξ)− 1} dξ, q(x) =

∫ x

0

sinψ(ξ) dξ.

Then, for any x ∈ [0, L], we have

|xp′(x)− p(x)| ≤ L3/2

(∫ L

0

|ψ′(ξ)|2 dξ
)1/2

,

|xq′(x)− q(x)| ≤ L3/2

(∫ L

0

|ψ′(ξ)|2 dξ
)1/2

.

Proof. From the definition of p, it follows that for any x ∈ [0, L],

|xp′(x)− p(x)| =
∣∣∣∣∫ x

0

(
cosψ(x)− cosψ(ξ)

)
dξ

∣∣∣∣
≤
∫ x

0

|ψ(x)− ψ(ξ)| dξ =

∫ L

0

∣∣∣∣∫ x

ξ

ψ′(η)dη

∣∣∣∣ dξ
≤
∫ L

0

∫ L

0

|ψ′(η)| dηdξ ≤ L3/2

(∫ L

0

|ψ′(ξ)|2 dξ
)1/2

.

The inequality for |xq′(x)− q(x)| can be verified in the same way as above.

3. The main result and its proof. The main result is as follows.
Theorem 3.1. Let ϕ(x, t) be the function stated in Proposition 2.1. Then there

exist constants M ≥ 1 and γ > 0 such that

E(t;ϕ) ≤Me−γtE(0;ϕ), t ≥ 0.

Proof. First of all, we introduce the functional

V (t;ϕ) = E(t;ϕ) + εF (t;ϕ) (ε > 0),

where E(t;ϕ) is the energy functional defined in (1.15), and

F (t;ϕ) =

∫ L

0

{ρut(xux − u) + ρwt(xwx − w) + Iρxϕtϕx} dx.

Differentiating V (t;ϕ) in t, we have (see Lemma 3.2 below)

V̇ (t;ϕ) =− [k1u
2
t + k2w

2
t + lϕ2

t ]x=L

− εE(t;ϕ)− ε
∫ L

0

(ρu2
t + ρw2

t ) dx

+ 1
2Lε[ρu

2
t + ρw2

t + Iρϕ
2
t + (l2/EI)ϕ2

t ]x=L

− ε[k1ut(xux − u) + k2wt(xwx − w)]x=L

(3.1)

( “.” stands for d/dt). Now using Lemma 2.2 and the inequality

ξη ≤ δξ2 + η2/(4δ) for any real ξ, η, and any δ > 0,
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we obtain the following estimate on V̇ (t;ϕ): for any ε > 0 and δ > 0,

V̇ (t;ϕ) ≤− (ε/2)

∫ L

0

(3ρu2
t + 3ρw2

t + Iρϕ
2
t ) dx

− ε
∫ L

0

(EI/2− 2δ)ϕ2
x dx

−
{
k1 −

(
Lρ

2
+
k1L

3/2

4δ

)
ε

}
ut(L, t)

2

−
{
k2 −

(
Lρ

2
+
k2L

3/2

4δ

)
ε

}
wt(L, t)

2

−
{
l −
(
LIρ
2

+
Ll2

2EI

)
ε

}
ϕt(L, t)

2.

Therefore, if we choose δ, ε and the control gains such that

k1 > 0, k2 > 0, l > 0,

k1 −
(
Lρ

2
+
k1L

3/2

4δ

)
ε > 0, k2 −

(
Lρ

2
+
k2L

3/2

4δ

)
ε > 0,

l −
(
LIρ
2

+
Ll2

2EI

)
ε > 0, EI/2− 2δ > 0,

(3.2)

we have

V̇ (t;ϕ) ≤ −ε(1− 4δ/EI)E(t;ϕ), t ≥ 0.(3.3)

On the other hand, it follows from Schwarz’s inequality and Lemma 2.2 that

|F (t;ϕ)| ≤ CE(t;ϕ), t ≥ 0,

where C is a constant depending only on ρ, Iρ, EI, and L. This implies

(1− Cε)E(t;ϕ) ≤ V (t;ϕ) ≤ (1 + Cε)E(t;ϕ).(3.4)

Therefore, it follows from (3.3) that

V̇ (t;ϕ) ≤ −γV (t;ϕ), t ≥ 0,(3.5)

where

γ = ε

(
1− 4δ

EI

)
1

1 + Cε
> 0.

If ε is chosen so as to satisfy, in addition to (3.2),

1− Cε > 0,

the inequalities (3.5) and (3.4) imply

E(t;ϕ) ≤ 1 + Cε

1− Cεe
−γtE(0;ϕ), t ≥ 0.

The proof is thus completed.
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Lemma 3.2. For the function ϕ stated in Proposition 2.1, the equality (3.1)
holds.

Proof. In the proof, we often use the equality∫ L

0

f(x)

(∫ x

0

g(ξ) dξ

)
dx = −

∫ L

0

(∫ x

L

f(ξ) dξ

)
g(x) dx,(3.6)

where f and g are functions of L2(0, L).
Differentiating V (t;ϕ) in t, we have

V̇ (t;ϕ) = Ė(t;ϕ) + εḞ (t;ϕ).

Let us calculate the right-hand side of the above. First of all, multiplying both sides
of (2.1) by ϕt and integrating the result in x from 0 to L, we can see from (3.6), (2.2),
integration by parts, and (2.4) that

Ė(t;ϕ) = −[k1u
2
t + k2w

2
t + lϕ2

t ]x=L.

Next, we consider

(3.7) Ḟ (t;ϕ) =

∫ L

0

{ρutt(xux − u) + ρwtt(xwx − w) + Iρxϕttϕx} dx

+

∫ L

0

{ρut(xuxt − ut) + ρwt(xwxt − wt) + Iρxϕtϕxt} dx.

Substituting (2.1) into Iρϕtt of the above, and using (3.6), we see that the first term
of the right-hand side of (3.7) is equal to

(3.8)

∫ L

0

{
ρutt(xux − u) + ρwtt(xwx − w)

− ρutt
∫ x

0

ξ(cosϕ(ξ, t))x dξ − ρwtt
∫ x

0

ξ(sinϕ(ξ, t))x dξ

+ 1
2EIx(ϕ2

x)x − k1ut(L, t)x(cosϕ)x − k2wt(L, t)x(sinϕ)x

}
dx.

Furthermore, from integration by parts and (2.2), we have that (3.8) is equal to

1

2
EIL[ϕ2

x]x=L −
∫ L

0

1

2
EIϕ2

x dx− [k1ut(xux − u) + k2wt(xwx − w)]x=L.

The second term of the right-hand side of (3.7) is calculated as∫ L

0

x

2
{ρ(u2

t )x + ρ(w2
t )x + Iρ(ϕ

2
t )x} dx−

∫ L

0

(ρu2
t + ρw2

t ) dx

=
L

2
[ρu2

t + ρw2
t + Iρϕ

2
t ]x=L − 1

2

∫ L

0

(3ρu2
t + 3ρw2

t + Iρϕ
2
t ) dx.

Therefore, we arrive at

Ḟ (t;ϕ) =− E(t;ϕ)−
∫ L

0

(ρu2
t + ρw2

t ) dx

+ (L/2)[ρu2
t + ρw2

t + Iρϕ
2
t + EIϕ2

x]x=L

− [k1ut(xux − u) + k2wt(xwx − w)]x=L.

The proof is thus completed.
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ERRATUM: A UNIQUENESS RESULT FOR THE LINEAR
SYSTEM OF ELASTICITY AND ITS CONTROL

THEORETICAL CONSEQUENCES∗

ENRIQUE ZUAZUA†

SIAM J. CONTROL OPTIM. c© 1998 Society for Industrial and Applied Mathematics
Vol. 37, No. 1, pp. 330–331

Abstract. In this note we explain why the three-dimensional counterexample of section 7.2 of
the paper under consideration [E. Zuazua, SIAM J. Control Optim., 34 (1996), pp. 1473–1495] is
incorrect. It concerns the existence of eigenfunctions for the Dirichlet Laplacian of a special form.
We claimed the existence of particular three-dimensional domains in which these eigenfunctions do
exist. However, in a recent joint work with G. Sweers [G. Sweers and E. Zuazua, J. Elasticity, to
appear], we have proved that they may not exist in any bounded Lipschitz domain in dimensions
n ≥ 3.

PII. S0363012998334122

There is a mistake in the counterexample given in section 7.2 for dimension n = 3.
Indeed, the function φ that we propose on page 1490 of [1] does not satisfy the Dirichlet
homogeneous boundary condition in the second surface of formula (7.2). This function
φ does satisfy the differential equation

−µ∆Φ− (λ+ 2µ)
∂2Φ

∂x2
3

= κ2Φ(1)

but may not be considered as a counterexample for the Dirichlet problem. The do-
mains indicated in the figures of that section correspond to the analytical expressions

−
√
λ+ 2µ

k
arc sin (p(x1, x2)) ≤ x3 ≤

√
λ+ 2µ

k
arc sin (p(x1, x2)) .(2)

The function φ given in that section can be slightly modified to fulfill the Dirichlet
boundary condition on the boundary of that domain. It is sufficient to take

φ (x1, x2, x3) = p (x1, x2)− sin

(
k√

λ+ 2µ
| x3 |

)
(3)

(we just replace x3 by | x3 |). Note, however, that this φ satisfies

−µ∆φ− (λ+ µ)∂2
3φ = k2φ+ ξ,(4)

ξ being a measure with support on x3 = 0. Thus, it does not quite solve the eigenvalue
problem under consideration. In fact, in a recent joint work with G. Sweers [2] we
prove that, in dimension n = 3, there is no Lipschitz domain Ω in which there is a
nontrivial solution of (1) satisfying the homogeneous Dirichlet boundary conditions
and being of the form Φ(x1, x2, x3) = p(x1, x2)+q(x3). This unexpected result is sharp
since, as indicated in section 7.1, in dimension n = 2, there are polygonal domains in
which the corresponding two-dimensional problem admits nontrivial eigenfunctions of
the form Φ(x1, x2) = p(x1) + q(x2). The rest of the results of this paper remain true.
Note, however, that, according to the new developments indicated above, Theorem
1.3 is true for all Lipschitz bounded domains when n = 3 and not only under the
additional assumptions of Theorem 1.1.
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EXISTENCE AND APPROXIMATION OF ROBUST SOLUTIONS OF
VARIATIONAL INEQUALITY PROBLEMS OVER POLYTOPES∗

GERARD VAN DER LAAN† , DOLF TALMAN‡ , AND ZAIFU YANG§

SIAM J. CONTROL OPTIM. c© 1998 Society for Industrial and Applied Mathematics
Vol. 37, No. 2, pp. 333–352

Abstract. We study nonlinear variational inequality problems over polytopes from a viewpoint
of stability and propose a new solution concept. Extending an earlier concept proposed by Yang
[Z. Yang, SIAM J. Control Optim., 34 (1996), pp. 491–506] on the unit simplex, we will introduce
the concept of the robust stationary point, which is a refinement of the concept of the stationary
point. Though a stationary point need not be robust, it is shown that every continuous function on
a polytope has a robust stationary point. We develop a simplicial algorithm to compute a robust
stationary point of a continuous function on a polytope. The algorithm can be briefly stated as
follows. Starting with any point in the relative interior of a polytope, the algorithm generates a
piecewise linear path which leads to an approximate robust stationary point of any a priori chosen
accuracy within a finite number of steps. Moreover, we also discuss several numerical examples and
apply the new concept to noncooperative games and economic equilibrium problems.

Key words. variational inequality problem, robust stationary point, polytopes, simplicial algo-
rithm, fixed points, stability, Nash equilibrium, Walrasian equilibrium

AMS subject classifications. Primary, 49D35, 90A14; Secondary, 90C30, 90C33

PII. S0363012996309344

1. Introduction. We study nonlinear stationary point problems from a view
point of stability. Given an arbitrary polytope P in Rn and an arbitrary function
f : P 7→ Rn, the problem of stationary point (or variational inequality) for f on P is
to find a point x∗ ∈ P such that

(x∗ − x)>f(x∗) ≥ 0

for any point x ∈ P. Such a point x∗ is called a stationary point of f on P. This
problem has many important applications in various fields, such as noncooperative
game theory, economic equilibrium theory, fixed point theory, nonlinear optimization
theory, and engineering. The concept of a robust stationary point is a refinement of
the concept of a stationary point of a continuous function on the unit simplex and was
essentially motivated from problems of economic equilibrium, noncooperative games,
biology, and engineering (see, e.g., Myerson [13], van Damme [3], and Yamamoto [20]).
It is well known (see Hartman and Stampacchia [9] and Eaves [4]) that a continuous
function on a compact convex nonempty subset of Rn has at least one stationary
point. In general, a continuous function on a compact convex nonempty subset of Rn
has multiple stationary points, and some of them are undesirable from a viewpoint of
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stability. Hence it is very important to eliminate those undesirable stationary points
in the context of game theory and general equilibrium theory.

Based on these ideas we will apply the concept of robust stationary point to
nonlinear stationary point problems on polytopes. Though a stationary point need
not be robust, it is shown that every continuous function on a polytope has a robust
stationary point. When we apply this new concept to game theoretic problems and
economic equilibrium problems, this concept is both game-theoretically and econom-
ically meaningful. Furthermore, we develop a simplicial algorithm to find a robust
stationary point for any continuous function on a polytope. This algorithm can be
briefly described as follows. Starting from an arbitrarily chosen interior point of the
polytope, the algorithm generates a piecewise linear (PL) path which leads to an
approximate robust stationary point of any a priori chosen accuracy within a finite
number of steps. The path traced by the algorithm corresponds to a sequence of
θ-robust stationary points of the PL approximation of the function with respect to a
well-chosen triangulation of the polytope, where 0 < θ ≤ 1. This triangulation has
the novelty that when the path generated by the algorithm approaches the boundary
of the polytope, the mesh size of the triangulation along the path automatically con-
verges to zero. This property induces that θ goes to zero for the θ-robust stationary
points induced by the path when the path approaches the boundary. Hence the algo-
rithm shares the basic properties of a simplicial homotopy algorithm (see Eaves [5])
and a simplicial restart algorithm (see van der Laan and Talman [11]), but it dis-
penses with an extra dimension required by simplicial homotopy algorithms. It is also
worthwhile to stress that another motivation of this paper comes from variational in-
equality problems in which the function is not monotone. We only require the function
to be continuous. The results we obtain in this paper considerably generalize those
of Yang [21] on the unit simplex and of Talman and Yang [17] on the simplotope.
For extensive treatments of simplicial algorithms we refer to Allgower and Georg [1],
Todd [18], and Yang [22].

This paper is organized as follows. In section 2 we introduce the concept of robust
stationary point on polytopes and prove the existence of a robust stationary point for
every continuous function. We also give an interpretation of a robust stationary point
in term of the complementary slackness condition. Section 3 presents a triangulation
of the polytope which underlies the algorithm. In section 4 we give the path of
points followed by the algorithm, prove the convergence of the algorithm under the
assumption that the function f to be considered is continuous, and also derive the
accuracy of an approximate robust stationary point. Section 5 describes the steps of
the algorithm. In section 6 we discuss two important and practical applications of
the concept of robust stationary point in the context of game theory and economic
equilibrium theory.

2. Robust stationary points on polytopes. We first introduce some nota-
tion. The set N denotes the set of all natural numbers. The set N0 is equal to the
union of N and {0}. The notion I ⊂ J means I is a proper subset of J and I ⊆ J
means I ⊂ J or I = J . The set In denotes the set of positive integers { 1, . . . , n }. The
vector e(i) is the ith unit vector of Rn for each i ∈ In. The notion 0 is the n-vector
of all zeros. Consider an arbitrary full-dimensional polytope

P = {x ∈ Rn | ai>x ≤ bi, for all i ∈ Im }.

We assume that P is simple and that no constraints are redundant.
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For each subset I of Im, define

F (I) = {x ∈ P | ai>x = bi for all i ∈ I }.
Then F (I) is a face of P unless it is empty. Note that F (∅) = P. Let

I = { I ⊆ Im | F (I) is a nonempty face of P}.
Under the above assumption that dim(P ) = n, P is a simple polytope, and the linear
inequalities defining P are nonredundant, we have the following observations:

(i) for each face F of P the set I ∈ I with F = F (I) is unique and identical with
the set {i ∈ Im | ai>x = bi for all x ∈ F };

(ii) dim(F (I)) = n− |I|;
(iii) G is a facet of F (I) if and only if G = F (I ∪ {h}) for some h 6∈ I with

I ∪ {h} ∈ I.
For each I ∈ I, define

F ∗(I) =

{
x ∈ Rn | x =

∑
h∈I

νha
h, νh ≥ 0, for all h ∈ I

}
,

with F ∗(∅) = {0}. Now we introduce the concept of a robust stationary point on
polytopes. Let a function f : P 7→ Rn be given.

Definition 2.1. For given θ > 0 a point x ∈ P is a θ-robust stationary point of
f if

(1) x is an interior point of P;
(2) for some I ∈ I, f(x) =

∑
h∈Im µha

h with µh ≥ 0 for all h ∈ I and µh = 0

for all h ∈ Im \ I, if µl > µk, then bl − al>x ≤ θ(bk − ak>x).
A geometric interpretation of the above definition will be given later. We first

give an easy observation.
Lemma 2.2. For any c ∈ Rn there exists I ∈ I with |I| = n such that c =∑

h∈I µha
h with µh ≥ 0 for all h ∈ I.

It follows immediately that Definition 2.1 is valid.
Definition 2.3. A point x∗ ∈ P is a robust stationary point of f on P if there

exist sequences { θl | l ∈ N } of positive numbers and {x(θl) | l ∈ N } of θl-robust
stationary points x(θl) of f such that

lim
l→∞

θl = 0 and lim
l→∞

x(θl) = x∗.

Now we derive some properties of stationary points. The following lemma is
explicitly given in Burke and More [2] and is implicitly used in Talman and Ya-
mamoto [16].

Lemma 2.4. Let f : P 7→ Rn be a continuous function. Then x∗ ∈ P is a
stationary point of f on P if and only if x∗ ∈ F (I) and f(x∗) ∈ F ∗(I) for some
I ∈ I.

The following result states that the concept of robust stationary point is a refine-
ment of that of the stationary point.

Lemma 2.5. Let f : P 7→ Rn be a continuous function. If x∗ ∈ P is a robust
stationary point of f on P, then x∗ is also a stationary point of f on P.

Proof. We need to consider two cases. If x∗ lies in the interior of P, then it follows
from Definitions 2.1 and 2.3 that f(x∗) = 0. Hence x∗ is a stationary point of f by
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Lemma 2.4. If x∗ lies on the boundary of P, it easily follows from Definitions 2.1 and
2.3 and Lemma 2.4 that x∗ is a stationary point of f on P.

Now we are going to give an interpretation of a robust stationary point. For a
stationary point x∗ ∈ F (I) for some I ∈ I, we have that µi > 0 implies bi−ai>x∗ = 0
for any i. One might think of this relation as the complementary slackness condition,
as in the linear programming (LP) theory. In order for x∗ to be a robust stationary
point, it is reasonable to require that the higher µi is, the stronger this equality should
be. That is to say, in a neighborhood of x∗ for any θ > 0 there should be a point x(θ)
such that if µi(θ) > µj(θ), then x(θ) must be θ times closer to F ({i}) than to F ({j}),
i.e., bi − ai>x(θ) ≤ θ(bj − aj>x(θ)). In section 6 we shall apply the concept of robust
stationary point to noncooperative game theory and economic equilibrium theory.

The next two examples demonstrate that the concept of the robust stationary
point is indeed a proper refinement of the concept of the stationary point.

Example 2.6. Take n = 2 and a1 = −a3 = (1, 0)>, a2 = −a4 = (0, 1)>,
b1 = b2 = 1, and b3 = b4 = 0. Then P = C2 = {x ∈ R2 | x1 ≤ 1, x2 ≤ 1, −x1 ≤
0, and − x2 ≤ 0 }. Let a continuous function f : P 7→ R2 be given by

f(x) = (x1 − 1, x2 − 1)>.

It is not difficult to show that for any continuous function f : C2 7→ R2, x∗ is a
stationary point of f if and only if it holds that

fi(x
∗) ≤ 0 if x∗i = 0,

fi(x
∗) = 0 if 0 < x∗i < 1,

fi(x
∗) ≥ 0 if x∗i = 1.

The set of stationary points of the function is equal to

{(0, 0)>, (1, 1)>, (1, 0)>, (0, 1)>}.
However, only (0, 0)> is a robust stationary point of f . To show this, let for θ ∈ (0, 1)

x1(θ) = θ, x2(θ) = θ2.

Clearly, x(θ) lies in the interior of P for each θ ∈ (0, 1). Note that

f(x(θ)) = µ3a
3 + µ4a

4 = µ3(−1, 0)> + µ4(0,−1)>,

with µ3 > 0 and µ4 > 0. In fact we have µ4 = 1− θ2 > µ3 = 1− θ. It also holds that

b4 − a4>x(θ) = θ2 ≤ θ(b3 − a3>x(θ)) = θ2.

Hence for each θ ∈ (0, 1), x(θ) is a θ-robust stationary point. It is easy to see that

lim
θ→0+

x(θ) = (0, 0)>.

It is also easy to check why all other stationary points are not robust stationary points.
We leave it to the reader.

Example 2.7. Let f : C2 7→ R2 be given by

f(x) = (x2(1− x1)2(x2 − 1), x1(1− x2)2(x1 − 1))>,

where the set C2 is as given in Example 2.6.
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The set of stationary points of this function is equal to

{(0, x)> | 0 ≤ x ≤ 1} ∪ {(1, x)> | 0 ≤ x ≤ 1}
∪{(x, 1)> | 0 ≤ x ≤ 1} ∪ {(x, 0)> | 0 ≤ x ≤ 1}.

It is remarkable that this function has only one stationary point (0, 0)> which is a
robust stationary point. We will prove it. For θ ∈ (0, 1), let

x(θ) = (θ, θ2)>.

Clearly, x(θ) is an interior point of C2. For each θ ∈ (0, 1) we have

f(x(θ)) = µ3a
3 + µ4a

4 = µ3(−1, 0)> + µ4(0,−1)>,

with µ3 = θ2(1−θ)2(1−θ2) > 0 and µ4 = θ(1−θ2)2(1−θ) > 0. Since µ4

µ3
= (1+θ)

θ > 1,
µ4 > µ3. It also holds that

b4 − a4>x(θ) = θ2 ≤ θ(b3 − a3>x(θ)) = θ2.

Hence x(θ) is a θ-robust stationary point. Since

lim
θ→0+

x(θ) = (0, 0)>,

the point (0, 0)> is a robust stationary point by definition. It is left to the reader to
check that any other stationary point is not a robust stationary point.

We now come to the question of under what conditions there exists a robust
stationary point for a function on a polytope. In the remainder of this section we
prove that every continuous function f : P 7→ Rn has a robust stationary point, and
hence continuity is enough to ensure the existence of a robust stationary point.

Define the function η : Rn 7→ R by

η(x) = min
i∈Im

(bi − ai>x).

Let Υ = maxx∈Pη(x). Since P is a bounded full-dimensional polyhedron, it is easy to
see that Υ > 0. Take any ω ∈ (0,Υ]. For I ∈ I and θ ∈ [0, 1

2 ], we define aI and bI(θ)
by

aI =
∑
h∈I

ah,

bI(θ) =
∑
h∈I

bh − ω
n∑

k=n+1−|I|
θk.

(2.1)

Definition 2.8. For each θ ∈ [0, 1
2 ], the set A(θ) in Rn is given by

A(θ) = {x ∈ Rn | aI>x ≤ bI(θ), for any I ∈ I }.
We remark that for each θ ∈ [0, 1

2 ], A(θ) is a polytope which is a nonempty subset
of P and A(0) = P. Note that we take the interval [0, 1

2 ] for the purpose of the
triangulation to be introduced in the coming section.

Let the collection of ordered indexed sets, J , be defined by

J = {L = (L1, . . . , Lk) | ∅ ⊂ L1 ⊂ · · · ⊂ Lk ⊆ I for each I ∈ I, k ∈ In } ∪ {∅}.
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For L = (L1, . . . , Lk) ∈ J and θ ∈ (0, 1
2 ], let

F (θ;L) = {x ∈ A(θ) | aLh>x = bLh(θ) for all h ∈ Ik}.
Then F (θ;L) is a face of A(θ) with dimension equal to n − k in case L1 6= ∅. Note
that F (θ; ∅) = A(θ). For each L = (L1, . . . , Lk) ∈ J , define

F ∗(L) = {x ∈ Rn | x =
k∑
h=1

µha
Lh , µh ≥ 0 for all h ∈ Ik}

with F ∗(∅) = {0}.
Let f : P 7→ Rn be a continuous function. Then for each θ ∈ [0, 1

2 ] there is
a stationary point of f on A(θ), since A(θ) is a nonempty convex compact set and
f is a continuous function. For each θ ∈ [0, 1

2 ], let x(θ) denote a stationary point
of f on A(θ). Then by Lemma 2.4 there exists a minimal face F (θ;L(θ)) for some
L(θ) = (L1(θ), . . . , Lk(θ)) ∈ J such that x(θ) ∈ F (θ;L(θ)) and f(x(θ)) ∈ F ∗(L(θ)).
Note that Lk(θ) ∈ I by definition. So there exist µl ≥ 0 for all l ∈ Lk(θ) and µl = 0
for all l ∈ Im \ Lk(θ) such that

f(x(θ)) =
∑
h∈Im

µha
h.

We can choose ω ∈ (0,Υ] so small that for every θ ∈ [0, 1
2 ] it holds that

bq − aq>x(θ) ≤ θ(bp − ap>x(θ))

for all q ∈ Lk(θ) and all p ∈ Im \ Lk(θ). Now we have the following lemma.
Lemma 2.9. Let f : P 7→ Rn be a continuous function. Then for each θ ∈ (0, 1

2 ]
a stationary point of f on A(θ) is a θ-robust stationary point of f .

Proof. Since A(θ) is a nonempty convex compact set and f is a continuous
function, f has a stationary point z∗ ∈ A(θ), i.e.,

(z∗ − x)>f(z∗) ≥ 0

for all x ∈ A(θ). Then there exists a minimal face F (θ;L) with L = (L1, . . . , Lk) ∈ J
such that z∗ ∈ F (θ;L) and f(z∗) ∈ F ∗(L). So there exist µ1 ≥ 0, . . ., µk ≥ 0 such
that

f(z∗) =

k∑
h=1

µha
Lh .

Without loss of generality we may assume that all µh > 0. Let t1, . . ., tk be a sequence
of increasing positive integers such that Lh = {it1 , . . . , ith} for each h ∈ Ik. Note that

tk ≤ n. Let L0 = ∅. For each h ∈ Ik and l ∈ Lh \ Lh−1, let νl =
∑k
i=h µi. Note that

|Lh| > 0 for all h ∈ Ik and |Lp| < |Lq| with 1 ≤ p < q ≤ k by definition. Hence we
have νp > νq for all p ∈ Li and q ∈ Lj with 1 ≤ i < j ≤ k and

f(z∗) =
∑
h∈Lk

νha
h.

We will prove bp − ap>z∗ ≤ θ(bq − aq>z∗). It is sufficient to restrict to the case in
which p ∈ Li and q ∈ Li+1 with 1 ≤ i ≤ k − 1. We have to consider the following
cases.
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Case 1. If |Li|+ 1 = |Li+1| = 2, we have

ap>z∗ = bp − ωθn,
(ap + aq)>z∗ = bp + bq − ω(θn + θn−1).

It is easy to see that

bp − ap>z∗ ≤ θ(bq − aq>z∗).
Case 2. If 1 = |Li| and |Li+1| ≥ 2, then we have

ap>z∗ = bp − ωθn,
(ap + aq)>z∗ ≤ bp + bq − ω(θn + θn−1).

It follows that

bq − aq>z∗ ≥ ωθn−1.

Hence we have

bp − ap>z∗ ≤ θ(bq − aq>z∗).
Case 3. If 1 < |Li|+ 1 = |Li+1|, then we have∑

h∈Li\{p} a
h>z∗ ≤ ∑

h∈Li\{p} bh − ω
∑
h=n+2−|Li| θ

h,∑
h∈Li a

h>z∗ =
∑
h∈Li bh − ω

∑
h=n+1−|Li| θ

h.

It follows that

bp − ap>z∗ ≤ ωθn+1−|Li|.

On the other hand we have

bq − aq>z∗ = ωθn−|Li|.

Hence

bp − ap>z∗ ≤ θ(bq − aq>z∗).
Case 4. If 1 < |Li|+ 1 < |Li+1|, then we have∑

h∈Li a
h>z∗ =

∑
h∈Li bh − ω

∑n
h=n+1−|Li| θ

h,∑
h∈Li\{p} a

h>z∗ ≤ ∑
h∈Li\{p} bh − ω

∑n
h=n+2−|Li| θ

h.

This implies

bp − ap>z∗ ≤ ωθn+1−|Li|.(2.2)

On the other hand, we have∑
h∈Li a

h>z∗ =
∑
h∈Li bh − ω

∑n
h=n+1−|Li| θ

h,∑
h∈Li∪{q} a

h>z∗ ≤ ∑
h∈Li∪{q} bh − ω

∑n
h=n+2−|Li| θ

h.

This implies

bq − aq>z∗ ≥ ωθn−|Li|.(2.3)
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Now it follows from (2.2) and (2.3) that

bp − ap>z∗
bq − aq> ≤ ωθn+1−|Li|

ωθn−|Li|
= θ.

Hence

bp − ap>z∗ ≤ θ(bq − aq>z∗).

Case 5. For any q ∈ Im \ Lk, we have νq = 0. Take any p ∈ Lk. It is clear that
νp > νq. Now it follows from the choice of ω that

bp − ap>z∗ ≤ θ(bq − aq>z∗).

We completed the proof.
Theorem 2.10. Let f : P 7→ Rn be a continuous function. Then f has at least

one robust stationary point.
Proof. Let {θk}∞1 be a sequence of positive real numbers strictly between zero

and 1
2 converging to zero. According to Lemma 2.9 there exists a θk-robust stationary

point x(θk) for each k ∈ N. Since P is a compact set, there exists a subsequence out
of {x(θk)}∞1 converging to a cluster point x∗ ∈ P. It is clear that x∗ is a robust
stationary point of f on P.

In the subsequent sections we will develop an algorithm to find a robust stationary
point of any continuous function. This also gives a constructive proof of Theorem 2.10.

3. A continuous refining triangulation of polytopes. In this section we
introduce a triangulation of the polytope which underlies the algorithm. Let v =
(v1, . . . , vn)> be any point in the interior of the polytope P. The point v will be the
starting point of the algorithm. Take a sufficiently small ω ∈ (0,Υ] such that v is
contained in the interior of A( 1

2 ).
We say that I ∈ J conforms to J ∈ J if it holds that every component of I

is also a component of J . Let { θk | k ∈ N} be a strictly decreasing sequence of
real numbers in (0, 1

2 ] converging to zero. Let θ0 be a constant bigger than θ1. For
L = (L1, . . . , Lk) ∈ J , let

F (θ0, θ1;L) = {x|x = av + (1− a)z for some z ∈ F (θ1;L) and a ∈ [0, 1] }

and for k ∈ N

F (θk, θk+1;L) = {x|x = ay + (1− a)z for some y ∈ F (θk;L),

z ∈ F (θk+1;L), and a ∈ [0, 1] }.

For L ∈ J and l ∈ N, we denote the union of F (θi−1, θi;L) over i = 1, . . ., l
by F(θl;L). For l ∈ N0, the union of F (θl, θl+1;L) over all L ∈ J is denoted by
F(θl, θl+1). For L ∈ J , we denote the union of F (θk, θk+1;L) over all k ∈ N0 by F(L).
Notice that the dimension of F(L) is equal to t = n−k+ 1 for L = (L1, . . . , Lk) ∈ J .
The union of F (θl, θl+1;L) over all L ∈ J and all l ∈ N0 is equal to the interior of
the polytope P. The subdivision of P = C2 of Example 2.6 with θk = 2−k for k ∈ N,
ω = 1

2 , and v = (1/2, 1/2)> is depicted in Figure 1. Note that in the figure we only
draw the subdivision for θ1 = 1

2 and θ2 = 1
4 .

A simplicial subdivision underlying the algorithm must be such that every set
F (θk, θk+1;L) is subdivided into t-dimensional simplices. Such a triangulation can be
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Fig. 1. Subdivision of the interior of C2.

described as follows. For L ∈ J , we denote v(0, L) = v, and for l ∈ N, let v(l, L) be a
relative interior point (e.g., the barycenter) of F (θl;L). For L ∈ J , if L consists of n
components, then F (θl;L) is a vertex of A(θl). For general L ∈ J , let F (θl;L(n)) be a
vertex of F (θl;L), i.e., L(n) has n components and L conforms to L(n). Moreover let
(L1, L2, . . . , Lt) = γ(L,L(n)) be a conformation between L and L(n), i.e., L1 = L(n),
Lk ∈ J for k = 2, . . ., t − 1, Lt = L, Lk conforms to Lk−1 and has one component
less than Lk−1 for k = 2, . . ., t. For given k ∈ N0, L ∈ J , and γ(L,L(n)), the subset
F (θk, θk+1;L, γ(L,L(n))) of F (θk, θk+1;L, γ(L,L(n))) of F (θk, θk+1;L) is defined to
be the convex hull of v(k, L1), v(k, L2), . . ., v(k, Lt), v(k + 1, L1), v(k + 1, L2), . . .,
and v(k + 1, Lt), so

F (θk, θk+1;L, γ(L,L(n))) =

x ∈ P|x = v(k, L(n)) + αq0 +
t−1∑
j=1

αjq
j(α),

0 ≤ α ≤ 1, and 0 ≤ αt−1 ≤ · · · ≤ α1 ≤ 1

 ,

where q0 = v(k + 1, L(n))− v(k, L(n)), and for j = 1, . . ., t− 1, 0 ≤ α ≤ 1,

qj(α) = α(v(k + 1, Jj+1)− v(k + 1, Jj)) + (1− α)(v(k, Jj+1)− v(k, Jj)).

The dimension of F (θk, θk+1;L, γ(L,L(n))) is equal to t, and F (θk, θk+1;L) is
the union of F (θk, θk+1;L, γ(L,L(n))) over all conformations γ(L,L(n)) and over all
index sets L(n) conformed by L.

Definition 3.1. Let d be an arbitrary positive integer. For k ∈ N0, the set
Gd(k, k+ 1;L, γ(L,L(n))) is the collection of t-simplices σ(a, π) with vertices y1, . . .,
yt+1 in F (θk, θk+1;L, γ(L,L(n))) such that

(1) y1 = v(k, L(n))+a(0)d−1q0 +(a(0)+dk)−1
∑t−1
j=1 a(j)qj(d−1a(0)), where a =

(a(0), a(1), . . . , a(n− 1))> is a vector of integers such that 0 ≤ a(0) ≤ d− 1,
and a(n− 1) = · · · = a(t) = 0 ≤ a(t− 1) ≤ · · · ≤ a(2) ≤ a(1) ≤ a(0) + dk;
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Fig. 2. The P -triangulation of C2 for n = 2.

(2) π = (π1, . . . , πt) is a permutation of (0, 1, . . . , t − 1) such that s < s′ if for
some q ∈ { 1, . . . , t− 2 } it holds that πs = q, πs′ = q + 1, a(q) = a(q + 1) in
case q ≥ 1, and a(0) + kd = a(1) in case q = 0;

(3) Let i be such that πi = 0. Then

yj+1 = yj + (a(0) + kd)−1qπj (d−1a(0)), j = 1, . . . , i− 1,

yi+1 = v(k, L(n)) + (a(0) + 1)d−1q0

+ (a(0) + 1 + kd)−1
t−1∑
j=1

a(j)qj(d−1(a(0) + 1))

+ (a(0) + 1 + kd)−1
i−1∑
j=1

qπj (d−1(a(0) + 1)),

yj+1 = yj + (a(0) + 1 + kd)−1qπj (d−1(a(0) + 1)), i < j ≤ t.

The set Gd(k, k + 1;L, γ(L,L(n))) is a simplicial subdivision of F (θk, θk+1;
L, γ(L,L(n))) with grid size d−1. Moreover, the union Gd(k, k + 1;L) of Gd(k, k +
1;L, γ(L,L(n))) over all conformations γ(L,L(n)) and L(n) conformed by L is a sim-
plicial subdivision of F (θk, θk+1;L). The union Gd(k, k + 1) of Gd(k, k + 1;L) over
all sets L ∈ J induces a triangulation of F(θk, θk+1). Taking the union Gd(k) of
Gd(j, j + 1) over j = 0, 1, . . ., k− 1, we obtain a simplicial subdivision of A(θk) with
grid size d−1. The union of Gd(k) over all k ∈ N0 is a continuous refining simplicial
subdivision of the interior of P and is called the P -triangulation of P. We remark
that for L ∈ J the union Gd(L) of Gd(k, k + 1;L) over k = 0, 1, . . ., is a simplicial
subdivision of the set F(L). The P -triangulation of P = C2 with θk = 2−k for k ∈ N,
and v = (1/2, 1/2)> with θk = 2−k for k ∈ N, and v = (1/2, 1/2)> is illustrated in
Figure 2. Note that in the figure we only draw a part of the P -triangulation.
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As a norm we use the Euclidean norm || · || in Rn. For a set B in Rn, we define
the diameter of B by

diam(B) = sup{ ||y1 − y2|| | y1, y2 ∈ B }.

Then for given k ∈ N0 the mesh size of Gd(k, k + 1) is equal to

δk,d = sup{diam(σ) | σ ∈ Gd(k, k + 1) }.

Now we have the following observation.
Lemma 3.2. For the P -triangulation of P with grid size d−1, it holds that

lim
k→∞

δk,d = 0.

The P -triangulation has the following property that the diameter of the simplices
converges to zero when the boundary of P is approached.

4. The path of the algorithm. Now we discuss operation of the algorithm in
the P -triangulation of the polytope P to approximate a robust stationary point of
a continuous function f on P. Starting at the point v, the algorithm will generate
a sequence of adjacent simplices of the P -triangulation in the set F(L) having L-
complete common facets for varying L ∈ J .

Definition 4.1. Let f : P 7→ Rn be a continuous function. For given L =
(L1, . . . , Lk) ∈ J and s = t or t− 1, where t = n−k+ 1, an s-simplex σ with vertices
y1, . . . , ys+1 is L-complete if the system of linear equations

s+1∑
i=1

λi

(
f(yi)

1

)
−

k∑
j=1

µj

(
aLj

0

)
=

(
0
1

)
(4.1)

has a solution λ∗i , i ∈ Is+1, µ∗j , j ∈ Ik, satisfying λ∗i ≥ 0, i ∈ Is+1, µ∗j ≥ 0, j ∈ Ik.
Notice that the system (4.1) has s+ 1 +k columns, so when s = t− 1, the system

has n+1 columns, and for s = t one column more. A solution λ∗i , i ∈ Is+1, µ∗j , j ∈ Ik,
will be denoted by (λ∗, µ∗).

Nondegeneracy assumption For s = t − 1 the system (4.1) has a unique
solution (λ∗, µ∗) with λ∗i > 0, i ∈ It, and µ∗j > 0, j ∈ Ik, and for s = t at most one
component of (λ∗, µ∗) is equal to zero. We remark that this assumption can easily be
dropped if we use the lexicographic pivoting method to solve system (4.1); see e.g.,
Todd [18] or Yang [22].

Under this nondegeneracy assumption σ0 = { v } is L0-complete with L0 =
(L0

1, . . . , L
0
n) ∈ J , where L0

h = {i1, . . . , ih} for h ∈ In such that the system of linear
equations

f(v) =

n∑
h=1

µha
L0
h

has solutions µh > 0 for all h ∈ In.
The algorithm now starts with σ0 for L = L0 and follows a sequence of adjacent

t-simplices in F(L) for varying L, L ∈ J , such that their common facets are L-
complete. In this way within a finite number of steps either the algorithm reaches a
point x̄ in an n-dimensional simplex for which f̄j(x̄) = 0 for every j ∈ In, where f̄ is
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the PL approximation of f with respect to the P -triangulation, or for k = 1, 2, . . .,
the algorithm finds a J(k)-complete simplex in F (θk;J(k)) for some J(k) ∈ J . Let
{ θt | t ∈ N } be given as in section 3. Now we have the following result.

Lemma 4.2. For some l ∈ N and L = (L1, . . . , Lk) ∈ J , let σ with vertices
y1, . . ., yt be an L-complete (t − 1)-simplex lying in F (θl;L). Let (λ∗, µ∗) be the
corresponding unique solution of system (4.1). Then x =

∑t
i=1 λ

∗
i y
i is a θl-robust

stationary point of the PL approximation f̄ of f with respect to the P -triangulation.
Moreover, x is a stationary point of f̄ on A(θl).

Proof. It follows from (4.1) that at x =
∑t
i=1 λ

∗
i y
i

f̄(x) =

k∑
h=1

µ∗ha
Lh ,

where µ∗h > 0 for h = 1, . . ., k. So x ∈ F (θl;L) and f̄(x) ∈ F ∗(L). According to
Lemma 2.4 this implies that x is a stationary point of f̄ on A(θl). By applying Lemma
2.9 we know that x is a θl-robust stationary point of f̄ .

The next lemma shows that a θl-robust stationary point of f̄ is an approximate
θl-robust stationary point of f .

Lemma 4.3. Let ηl,d = sup{diam(f(σ)) |σ ∈ Gd(l − 1, l) }. Let x be a θl-robust
stationary point of the PL approximation f̄ of f with respect to the P -triangulation
with grid size d−1 obtained by the algorithm, so that x ∈ F (θl;L) for some L ∈ J .
Then f(x) lies in the ηl,d-neighborhood of F ∗(L), i.e., there is a y ∈ F ∗(L) such that
||y − f(x)|| ≤ ηl,d.

Proof. Let y1, . . .¸ , yt be the vertices of a (t−1)-simplex of Gd(l−1, l) in F (θl;L)
containing x. Then f̄ =

∑t
j=1 λ

∗
jf(yj) lies in F ∗(L), where λ∗1, . . ., λ∗t are convex

combination coefficients such that x =
∑t
j=1 λ

∗
jy
j . Hence we have

||f̄(x)− f(x)|| = ||∑t
j=1 λ

∗
jf(yj)− f(x)||

= ||∑t
j=1 λ

∗
j (f(yj)− f(x))||

≤ ∑t
j=1 λ

∗
j ||f(yj)− f(x)||

≤ ηl,d.

Given a function f : P 7→ Rn, let us define a function g : P 7→ P by

g(x) = argmin{(x+ f(x)− y)>(x+ f(x)− y) | y ∈ P}.

Now we have the following well-known result (see Hartman and Stampacchia [9] and
Eaves [4]).

Theorem 4.4. Let f : P 7→ Rn be a continuous function. Then x∗ is a stationary
point of f on P if and only if x∗ is a fixed point of g on P.

There are several ways of proving the existence of a stationary point in the above
theorem. For example, one way is to use Brouwer’s fixed point theorem. Of course,
we could also use degree theory, as we could use degree theory to prove Brouwer’s
theorem.

We are now going to discuss the convergence properties of the algorithm. First
we consider the case in which the algorithm converges to a boundary point of P. Since
P is compact and f is continuous on P, the error ηl,d tends to zero as the mesh size
δl,d goes to zero when l goes to infinity. Let xl be a θl-robust stationary point of f̄
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and ηl,d the error in Lemma 4.3. Suppose that the algorithm generates the sequence
{xh |h ∈ N } of approximate θl-robust stationary points of f which therefore has a
cluster point x∗. For simplicity of notation we can assume that this sequence itself
converges to x∗. We are now ready to state the following theorem.

Theorem 4.5. Let {xl | l ∈ N } be a sequence generated by the algorithm with
xl ∈ F (θl;J(l)) for each l ∈ N. Then the sequence {xl | l ∈ N } has a cluster point x∗

which is a robust stationary point of f on P.
Proof. To prove the theorem, we first extend the domain of the PL approximation

f̄ of f . Recall from Lemma 3.2 that for a given positive integer d, the mesh size δl,d
converges to zero as l goes to infinity. We can take f̄(x) to be f(x) if x lies on the
boundary of P, since f is a continuous function. Hence f̄ is also a continuous function
on P. From Lemma 4.2 we know that for each l ∈ N, xl is a θl-robust stationary point
of f̄ . By definition x∗ is a robust stationary point of f̄ on P. Now we are going to
show that for any given ε > 0, there exists a positive integer M such that for l ∈ N
with l > M there is a θl-robust stationary point yl ∈ A(θl) of f on P which is in the
ε-neighborhood of xl.

Let

U(θ) =

{
A(θ) for θ ∈ [0, θ1],
A(θ1)(θ − 1)/(θ1 − 1) + { v }(θ − θ1)/(1− θ1) for θ ∈ [θ1, 1].

Observe that U(θ) is a convex and compact set contained in A(θ1) for any θ ∈ [θ1, 1].
As θ decreases from 1 to 0, the set U(θ) first expands from the starting point v to the
set A(θ1) and then to the whole set P. Let Y (θ) denote the set of stationary points
of f on U(θ) for θ ∈ [0, 1]. Notice that for each θ ∈ (0, θ1], x is a θ-robust stationary
point if x belongs to the set Y (θ).

For each θ ∈ [0, 1], define a function gθ : P 7→ U(θ) by

gθ(x) = argmin{ (x+ f(x)− y)>(x+ f(x)− y) | y ∈ U(θ) }.

Since U(θ) is a convex and compact set and f is continuous, the function gθ is a
continuous function. By Theorem 4.4, x ∈ Y (θ) if and only if x = gθ(x). Define a
homotopy function H : P× [0, 1] 7→ Rn by

H(x, θ) = x− gθ(x).

The function H is also a continuous function. Now let

H−1(0) = { (x, θ) ∈ P× [0, 1] | H(x, θ) = 0 }.

Let Z(θ) denote the set of stationary points of f̄ on U(θ) for each θ ∈ [0, 1]. Similarly,
a continuous function G with respect to f̄ can be defined as

G : P× [0, 1] 7→ Rn

such that

Z(θ) = {x ∈ P | G(x, θ) = 0 }, θ ∈ [0, 1].

Let

G−1(0) = { (x, θ) ∈ P× [0, 1] | G(x, θ) = 0 }.
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For each l ∈ N, let

ξl = (xl, θl).

It is clear that liml→∞ ξl = ξ∗ = (x∗, 0). Define

N(ε) = { (x, θ) ∈ P× [0, 1] | ||(x, θ)− (z, α)|| < ε for some (z, α) ∈ H−1(0)}.
This implies that

||H(ψ)|| > 0 for any ψ ∈ P× [0, 1] \N(ε).

Notice that N(ε) is open, so the set P× [0, 1] \N(ε) is compact. It follows from the
compactness that the minimum can be attained. There exists ν > 0 such that

min{ ||H(ψ)|| | ψ ∈ P× [0, 1] \N(ε) } > ν.

This implies that if a point ψ ∈ P× [0, 1] satisfies

||H(ψ)|| ≤ ν,(4.2)

then ψ must be in N(ε). Because H and G are uniformly continuous on P × [0, 1]
and f̄ is the LP approximation of f with respect to the P -triangulation, we can prove
that

||H(ψ)−G(ψ)|| < ε(4.3)

for any ψ = (x, θ) ∈ P× [0, 1] under the condition that the diameter of the simplices
in which x lies is small enough, say, smaller than ∆ > 0. Given any ε > 0, because of
f̄ being a PL approximation of f , it holds that

||f(x)− f̄(x)|| < ε,

for any x ∈ P when the diameter of the simplices in which x lies, is small enough. For
any given x ∈ P and any θ ∈ [0, 1], define a function hθ : Rn 7→ U(θ) by

hθ(x+ z) = argmin{(x+ z − y)>(x+ z − y) | y ∈ U(θ)}.
It is clear that hθ is a Lipschitz continuous function. Furthermore, it is easy to see
that for all p, q ∈ Rn

||hθ(x+ p)− hθ(x+ q)|| ≤ ||p− q||.
Then it follows immediately that

||H(ψ)−G(ψ)|| = ||hθ(x+ f(x))− hθ(x+ f̄(x))||
≤ ||f(x)− f̄(x)||
< ε.

Lemma 3.2 states that given a positive integer d as l goes to infinity, the mesh
size δl,d converges to zero. This implies that there exists a positive integer M such
that for every l ∈ N with l > M , it holds that

δl,d < ∆.
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Since for any l ∈ N with l > M , ψl ∈ G−1(0), i.e., G(ψl) = 0, it follows from (4.3)
that

||H(ψl)|| < ε.

By (4.2) ψl must be in N(ε). This implies that for any l ∈ N with l > M there is
ψl ∈ H−1(0) which is in the ε-neighborhood of ξl. Without loss of generality we may
assume that ψl = (yl, θl). This is what we claimed.

Now let us take a sequence of positive real numbers { εl | l ∈ N } with limit
zero. Then for any l there exists a yil being a θil -robust stationary point of f with
||xil − yil || ≤ εl. Since liml→∞ xil = x∗ and liml→∞ εl = 0, we have

lim
l→∞

yil = x∗.

Hence x∗ is a robust stationary point of f on P.
Now we consider the case in which the algorithm converges to a simplex in

the interior of the polytope. This means that the algorithm terminates with an
n-dimensional simplex σ with vertices y1, . . ., yn+1 within a finite number of steps.
Let x̄ =

∑n+1
i=1 λ

∗
i y
i. Then for each k ∈ In it holds that f̄k(x̄) = 0. It is clear that

x̄ is a robust stationary point of f̄ on P. If the accuracy of approximation is not
satisfactory, the algorithm can be restarted at the point x̄ with a smaller grid size
d−1 to find a better approximate robust stationary point, hopefully within a small
number of steps. In this case we may assume that the algorithm generates a sequence
{ x̄h |h ∈ N }, where x̄h is the robust stationary point of f̄ on P corresponding to the
grid size d−1

h for a strictly increasing sequence of positive integers { dh |h ∈ N }. It is
readily seen that for every k ∈ N0, the mesh size δk,dh tends to zero when h goes to
infinity. Therefore the sequence { x̄h |h ∈ N } has a subsequence converging to a point
being a robust stationary point of f on P. For a subset B of Rn, int(B) denotes the
relative interior of B. We now have the following corollary.

Corollary 4.6. Let x̄h ∈ int(P) be the robust stationary point of f̄ generated
by the algorithm for the P -triangulation with grid size d−1

h for h ∈ N. Suppose that
{dh | h ∈ N} is a strictly increasing sequence of positive integers. Then the sequence
{x̄h | h ∈ N} has a cluster point which is a robust stationary point of f on P.

5. The steps of the algorithm. As described in the last section, starting at
the point v, the algorithm will generate a unique PL path leading to an approximate
solution by making alternating LP pivot steps in system (4.1) and replacement steps
in the underlying triangulation. When, with respect to some simplex σ(a, π) with
vertices y1, . . ., yt+1 in some Gd(l, l+1;L, γ(L,L(n))) for some l ∈ N0 and γ(L,L(n)),
the variable λq, for some q, 1 ≤ q ≤ t + 1, becomes zero through an LP pivot
step in (4.1), then the replacement step determines the unique t-simplex σ̄(ā, π̄) in
F (θl, θl+1;L, γ(L,L(n))) sharing with σ a common facet τ opposite the vertex yq,
unless this facet lies on the boundary of the set F (θl, θl+1;L, γ(L,L(n))). If τ does
not lie on the boundary of F (θl, θl+1;L, γ(L,L(n))), then σ̄(ā, π̄) can be obtained
from a and π as given in Table 1, where E(i − 1) is the ith unit vector in Rn for
i ∈ In.

The algorithm continues with σ̄ by making an LP pivot step in (4.1) with
(f>(ȳ), 1)>, where ȳ is the vertex of σ̄ opposite the facet τ . When the L-complete
facet τ of the simplex σ(a, π) in Gd(l, l + 1;L, γ(L,L(n))) is not a facet of another
t-simplex in Gd(l, l + 1;L, γ(L,L(n))), then τ lies on the boundary of F (θl, θl+1;L,
γ(L,L(n))). According to Definition 3.1 we have the following lemma.
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Table 1
Parameters of σ̄ if the vertex yq of σ(a, π) is replaced.

π̄ ā
q = 1 (π2, ..., πt, π1) a+ E(π1)
1 < q < t+ 1 (π1, ..., πq−2, πq , πq−1, πq+1..., πt) a
q = t+ 1 (πt, π1, ..., πt−1) a− E(πt)

Lemma 5.1. Let σ(a, π) be a t-simplex in F (θl, θl+1;L, γ(L,L(n))). The facet τ
of σ opposite the vertex yq, 1 ≤ q ≤ t+ 1, lies on the boundary of this set if and only
if one of the following cases occurs:

(i) q = 1, π1 = 0, and a(0) = d− 1;
(ii) 1 < q < t + 1, πq = h + 1, πq−1 = h for some h ∈ { 0 } ∪ It−2, and

a(h) = a(h+ 1) in case h ≥ 1, and a(0) + kd = a(1) in case h = 0;
(iii) q = t+ 1, πt = 0, and a(0) = 0;
(iv) q = t+ 1, πt = t− 1, and a(t− 1) = 0.
Suppose that the algorithm generates the simplex σ(a, π) as given in Lemma 5.1

and λq becomes zero after making an LP pivot step in (4.1). Then the facet τ of σ
opposite the vertex yq is L-complete. In case (i) the facet τ lies in the face F (θl+1;L)

of A(θl+1) and the algorithm reaches a θl+1-robust stationary point x̄ =
∑t+1
i=1 λiy

i of
f̄ lying in F (θl+1;L). If l is large enough, then x̄ is an approximate robust stationary
point of f . Otherwise, the algorithm continues with σ̄ by making an LP pivot step
in (4.1) with (f>(ȳ), 1)>, where ȳ is the vertex of σ̄ opposite the facet τ and σ̄ in
F (θl+1, θl+2;L, γ(L,L(n))) is obtained according to Table 1.

In case (ii), and if h = 0, τ is a facet of the t-simplex σ̄ = σ(a, π) in
F (θl, θl+1;L, γ̄(L, L̄(n))) with L̄(n) and γ̄ defined as follows. Let L1 = L(n) =
(L1, . . . , Ln). When L2 = (L1, . . . , Ln−1), we have L̄(n) = (L1, . . . , Ln−1, L̄n) with
L̄n = Ln−2 ∪ (L(n) \ Ln−1). When L2 = (L2, . . . , Ln), let L̄(n) = (L̄1, L2, . . . , Ln)
with L̄1 = L2 \ L1. Finally, if L2 = (L1, . . . , Li, Li+2, . . . , Ln) for some i ∈ In−3, we
have L̄(n) = (L1, . . . , Li, L̄i+1, Li+2, . . . , Ln) with L̄i+1 = Li ∪ (Li+2 \ Li+1). Then
γ̄(L, L̄(n)) = (L̄(n), L2, . . . , Lt). In case (i), and if h ≥ 1, the facet τ is a facet of
the t-simplex σ̄ = σ(a, π) in F (θl, θl+1;L) lying in the subset F (θl, θl+1;L, γ̄(L,L(n)))
with

γ̄(L,L(n)) = (L1, . . . , Lh, L̄h+1, Lh+2, . . . , Lt),

where L̄h+1 ∈ J , L̄h+1 6= Lh+1, is uniquely determined by the properties that L̄h+1

conforms to Lh, has one component less than Lh, and is conformed by Lh+2. In both
subcases of case (ii) the algorithm proceeds by making an LP pivot step in (4.1) with
(f>(ȳ), 1)>, where ȳ is the vertex of the new t-simplex σ̄ opposite the facet τ .

In case (iii) the facet τ lies in the face F (θl;L) of A(θl) and the algorithm continues
with σ̄ by making an LP pivot step in (4.1) with (f>(ȳ), 1)>, where ȳ is the vertex σ̄
opposite the vertex τ and σ in F (θl−1, θl;L, γ(L,L(n))) is obtained from Table 1.

In case (iv) the facet lies in the set F (θl, θl+1;Lt−1) of F(L). More precisely, τ is
the (t−1)-simplex σ(a, π̄) in F (θl, θl+1; L̄, γ̄(L̄, L(n))), where L̄ = Lt−1, γ̄(L̄, L(n)) =
(L1, . . . , Lt−1). The algorithm now continues by making an LP pivot step in (4.1)
with (−(aLh)>, 0)>, where Lh is the unique component of Lt−1 but not in Lt.

Finally, if, through an LP pivot step in (4.1), µi becomes zero for some i ∈ Ik and
k = 1, then the algorithm terminates with the approximate robust stationary point
x̄ =

∑n+1
j=1 λjy

i. In case the accuracy is not satisfactory, the algorithm can restart at
the point x̄. When k > 1, then the simplex σ(a, π) is a facet of a unique (t+1)-simplex
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σ̄ in F(L̄) with L̄ = (L1, . . . , Li−1, Li+1, . . . , Lk). To be precise, σ̄ = σ(a, π̄) lies in
F (θl, θl+1; L̄, γ̄(L̄, L(n))), where π̄ = (π1, . . . , πt, t) and γ̄(L̄, L(n)) = (L1, . . . , Lt, L̄).
The algorithm now proceeds by making an LP pivot step in (4.1) with (f>(ȳ), 1)>,
where ȳ is the vertex of σ opposite the facet σ.

This completes the description of how to follow a sequence of adjacent simplices
of varying dimension in the P -triangulation of the polytope P.

6. Special cases and applications to games and economics. We now turn
to discussing the cases when the polytope P is not full-dimensional. Moreover we also
show the applications of the concept of robust stationary point in game theory and
economic equilibrium theory. First we discuss the cases when the polytope P is not
full-dimensional. If P is a lower-dimensional polytope we may assume that P can be
described as

P = {x ∈ Rn | ai>x ≤ bi, i ∈ Im, and cj>x = dj , j ∈ Im1}
and P is simple and no constraints are redundant, while dim(P ) = n−m1, for some
m1, 0 ≤ m1 ≤ n. In this case for each I ∈ I, the cone F ∗(I) is defined by

F ∗(I) =

x ∈ Rn | x =
∑
i∈I

νha
i +

∑
j∈Im1

µjc
j , νi ≥ 0 for i ∈ I, µj ∈ R for j ∈ Im1

,
where F (I) is a nonempty face of P and defined as

F (I) = {x ∈ P | ai>x = bi for i ∈ I}.
The dimension of such a face F (I) is equal to n − m1 − |I|. Now the definition of
robust stationary points is the same as in Definition 2.3 except that the definition of
θ-robust stationary points is adapted as follows.

Definition 6.1. For given θ > 0 a point x ∈ P is a θ-robust stationary point of
f if

(1) x is a relative interior point of P;
(2) for some I ∈ I, f(x) =

∑
h∈Im µha

h +
∑
j∈Im1

νjc
j with µh ≥ 0 for all h ∈ I

and µh = 0 for all h ∈ Im \ I, and νj ∈ R for all j ∈ Im1 , if µl > µk, then
bl − al>x ≤ θ(bk − ak>x).

We leave it to the reader to prove the existence of a robust stationary point for
any continuous function on a lower-dimensional polytope P in Rn. Now the algorithm
is the same as described in sections 4 and 5 except that the LP pivot steps are made
in the following system for given L = (L1, . . . , Lk) ∈ J :∑s+1

i=1 λif(yi)−∑k
j=1 µja

Lj +
∑m1

h=1 νhc
h = 0,∑s+1

i=1 λi = 1,

λi ≥ 0, i ∈ Is+1; µj ≥ 0, j ∈ Ik; νh ∈ R, h ∈ Im1 ,

where s = t or t− 1 with t = n−m1 − k + 1.
It should be noted that when we study the stability and refinements of Nash

equilibria or Walrasian equilibria, we often have to deal with problems over lower-
dimensional polytopes.

Very special cases of the polytope P are the (n − 1)-dimensional unit simplex
Sn = {x ∈ Rn+ |

∑n
i=1 xi = 1} or the simplotope. We rewrite Sn = {x ∈ Rn | ai>x ≤
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Table 2
Payoffs of the game.

Player 2

Player 1

φ1 φ2 φ3

ψ1 (1, 1) (0, 0) (−9,−9)
ψ2 (0, 0) (0, 0) (−7,−7)
ψ3 (−9,−9) (−7,−7) (−7,−7)

0, i ∈ In, and
∑n
i=1 xi = 1}, where ai = −e(i) for all i ∈ In. In case the polytope

is the unit simplex Sn, Definition 6.1 coincides with Definition 2.1 in Yang [21]. The
simplotope is the Cartesian product of, say, n, n ∈ N, unit simplices Snj , nj ∈ N and
j ∈ In. In case the polytope is the simplotope, then the concept of robust stationary
point is reduced to that in Talman and Yang [17]. We recall that concept here. The
definition of robust stationary points is the same as in Definition 2.3, but the form of
θ-robust stationary points becomes much simpler. Let S =

∏n
h=1 S

nh , where Snh is
the (nh − 1)-dimensional unit simplex for each h ∈ In.

Definition 6.2. Let f : S 7→ ∏n
h=1 Rnh be a function. For given θ > 0 a point

x ∈ S is a θ-robust stationary point of f if
(1) x is a relative interior point of S;
(2) fh,i(x) < fh,j(x) implies xh,i ≤ θxh,j for i, j ∈ Inh and h ∈ In.
Furthermore, when the simplotope is the strategy space of a noncooperative finite

n-person game, the concept of robust stationary point coincides with the well-known
concept of proper Nash equilibrium in Myerson [13] provided that the function on
the simplotope is defined as the marginal expected payoff of the game. We suggest
the interested reader see Myerson [13] and van Damme [3] for the game-theoretic
interpretation of the above concept. Let us illustrate this by a well-known example
of Myerson [13].

Example 6.3. We consider a bimatrix game with two players. Each player has
three pure strategies. The payoffs are given in Table 2.

This game has three Nash equilibria: (ψ1, φ1), (ψ2, φ2), and (ψ3, φ3). Among
these equilibria, (ψ1, φ1) is the only proper Nash equilibrium. The marginal expected
payoff function is given by f : S3 × S3 7→ R3 × R3 with

f(x) = (f1,1(x), f1,2(x), f1,3(x); f2,1(x), f2,2(x), f2,3(x))>,

where

f1,1(x) = x2,1 − 9x2,3,
f1,2(x) = −7x2,3,
f1,3(x) = −9x2,1 − 7x2,2 − 7x2,3,
f2,1(x) = x1,1 − 9x1,3,
f2,2(x) = −7x1,3,
f2,3(x) = −9x1,1 − 7x1,2 − 7x1,3.

This function has three stationary points: (1, 0, 0; 1, 0, 0)>, (0, 1, 0; 0, 1, 0)>, and
(0, 0, 1; 0, 0, 1)>, corresponding to the three Nash equilibria given above, respectively.
The point (1, 0, 0; 1, 0, 0)> is the only robust stationary point which corresponds to
the only proper Nash equilibrium.

Finally let us apply the concept of robust stationary point to the standard ex-
change economy model with linear production. For detailed discussions, we refer to
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Scarf [15] and Koopmans [10]. In such an economy, there are, say, n commodities, a fi-
nite number of production activities or firms, and a finite number of consumers, each
of whom initially has a certain amount of commodities. Exchange of commodities
is based on relative prices. All agents exchange their commodities to maximize their
utility under their budget constraints, and all firms run their activities to achieve their
maximal profits. This economy can be captured by an excess demand function z :
Sn 7→ Rn and an n×(n+k) matrix A = [a1, . . . , ak+n] = [a1, . . . , ak,−e(1), . . . ,−e(n)],
which satisfies the following standard conditions:

(i) z is continuous;
(ii) p>z(p) = 0 (Walras’ law);
(iii) Ay ≥ 0 and y ∈ Rn+k

+ imply yi = 0 for all i ∈ In+k. (No production without
input.)

Now we explain the matrix A in some detail. For each j ∈ Ik, the jth column aj

of A represents an activity. It says that if activity j is operated at level one, |aji | units

of commodity i are supplied as output for aji ≥ 0 or required as input for aji < 0. The
last n columns of A imply an assumption of free disposal. The Walrasian equilibrium
is defined as follows. A pair (p∗, y∗) ∈ Sn × Rn+k

+ is an equilibrium if it satisfies
z(p∗) ≤ Ay∗ and p∗>A ≤ 0. The interpretation is that at equilibrium the demand is
met by supply for all commodities and no activity makes positive profit. Note that
at equilibrium we have p∗>Ay∗ = 0. This means that an activity having a deficit
(p∗>aj < 0) is not producing (y∗j = 0) while an activity in operation (y∗j > 0) runs

at balance (p∗>aj = 0). It is shown in Scarf [15] that the economy has at least one
equilibrium.

Define SA = {p ∈ Sn | p>A ≤ 0}. It is shown by Eaves [7] (see also van den
Elzen [8]) that SA is an (n − 1)-dimensional polytope and (p∗, y∗) is an equilibrium
if and only if p∗ is a stationary point of the function z on SA. It is easy to see that
the set SA can be expressed as SA = {x ∈ Rn | p>A ≤ 0,

∑
i=1 xi = 1}. If there

is a redundant constraint, we just delete it. So we may assume that all constraints
describing SA are nonredundant. Applying the concept of robust stationary point,
we have the following economically meaningful concept which refines the Walrasian
equilibrium concept. Let m = k + n and 1n be the n-vector of ones.

Definition 6.4. For given θ ∈ (0, 1) a point p ∈ SA is a θ-robust Walrasian
equilibrium of z if

(1) p is a relative interior point of SA;
(2) for some I ∈ I, z(p) =

∑
h∈Im yha

h + β1n with yh ≥ 0 for all h ∈ I and

yh = 0 for all h ∈ Im \ I, and β ∈ R, if yl > yk, then al>p ≥ θak>p.

A robust Walrasian equilibrium p∗ is the limit of a sequence of θt-robust Wal-
rasian equilibria (pt) as θt converges to zero. We are now going to explain the above
concept in terms of economics. First note that for each h ∈ Im the parameter yh ≥ 0
represents the level of activity h. At θ-robust equilibrium, all production activities
are making deficits (p>ah < 0 for all h). A θ-robust equilibrium requires that if
yl > yk, then (0 >) al>p ≥ θak>p (> ak>p). It says that when all firms are mak-
ing deficits, the higher an activity level of a firm is, the lower the per unit deficit
of that firm must be. In other words, the higher deficit a firm makes, the less that
firm should produce. Hence as θ converges to zero, this adjustment mechanism will
eventually bring the negative profit yha

h>p of each firm h close to zero and a robust
Walrasian equilibrium state will be reached. This reveals a thought similar to the clas-
sical Walrasian tâtonnement adjustment process. We should point out the difference
between the classical Walrasian tâtonnement adjustment process and the algorithm
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proposed in this paper. The former process is known to be nonconvergent, but the
latter algorithm is globally convergent and also admits a nice economic interpretation
as described above.
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Abstract. The proximal point algorithm (PPA) is a method for solving inclusions of the form
0 ∈ T (z), where T is a monotone operator on a Hilbert space. The algorithm is one of the most
powerful and versatile solution techniques for solving variational inequalities, convex programs, and
convex-concave mini-max problems. It possesses a robust convergence theory for very general problem
classes and is the basis for a wide variety of decomposition methods called splitting methods. Yet the
classical PPA typically exhibits slow convergence in many applications. For this reason, acceleration
methods for the PPA algorithm are of great practical importance. In this paper we propose a variable
metric implementation of the proximal point algorithm. In essence, the method is a Newton-like
scheme applied to the Moreau–Yosida resolvent of the operator T . In this article, we establish the
global and linear convergence of the proposed method. In addition, we characterize the superlinear
convergence of the method. In a companion work, we establish the superlinear convergence of the
method when implemented with Broyden updating (the nonsymmetric case) and BFGS updating
(the symmetric case).

Key words. maximal monotone operator, proximal point methods, variable metric, global
convergence, convergence rates
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1. Introduction. The proximal point algorithm (PPA) is one of the most pow-
erful and versatile solution techniques for problems of convex programming and mini-
max convex-concave programming. It possesses a robust convergence theory for very
general problem classes in finite- and infinite-dimensions (e.g., see [11, 16, 21, 22, 23,
28, 32, 41, 40]) and is the basis for a wide variety of decomposition methods called
splitting methods (e.g., see [4, 9, 12, 43, 44]). Yet, the classical PPA typically exhibits
slow convergence in many applications. For this reason, acceleration methods for the
PPA are of great practical importance. In this paper we propose a variable metric
implementation of the proximal point algorithm. Our approach extends and refines
results that originally appeared in [38] and is in the spirit of several recent articles
[3, 7, 10, 18, 20, 24, 25, 36]. However, there is a fundamental difference between the
method presented here and those studied in [3, 7, 10, 18, 20, 24, 25, 36]. This differ-
ence has a profound impact on the methodology applied in this article. All previous
work on this topic (except [38]) applies exclusively to monotone operators that arise as
the subdifferential of a finite-valued, finite dimensional convex function. The results
of this article apply to general monotone operators on a Hilbert space. The resulting
difference in methodology roughly corresponds to the difference between methods for
function minimization and methods for solving systems of equations.

There are both advantages and disadvantages to the more general approach. The
advantages are that the method applies to a much broader class of problems. This is
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so not only because the theory is developed in the Hilbert space setting, but, more
important, because many monotone operators cannot be represented as the subdif-
ferential of a finite-valued, finite dimensional convex function. General monotone
operators do not possess many of the rich structural properties associated with the
subdifferential of a convex function (e.g., subdifferentials of convex functions are the
only maximal cyclically monotone operators [33]). In addition, in the case where
the operator is the subdifferential of a convex function, we do not require the usual
assumption that the underlying function be finite-valued.

The disadvantages of our general approach arise from the fact that the method
cannot make use of the additional structure present when the operator is the subdif-
ferential of a convex function. This complicates both the structure of the method and
its analysis. Of particular note in this regard is the complexity of our global conver-
gence result. If the operator is the subdifferential of a convex function, then solving
the inclusion 0 ∈ T (x) is equivalent to minimizing the underlying convex function.
The global convergence of a method is then typically driven by a line-search routine
(e.g., see [3, 7, 10, 18, 20, 24, 25, 36]). In the general setting we do not have direct
recourse to this strategy. This complicates both the structure of the algorithm and
its convergence theory. Nonetheless, the proof technique developed in this paper can
be refined in the convex programming setting, thereby significantly simplifying both
the global and the local convergence results [5, 6].

Notwithstanding these differences in methodology, our approach is still nicely
motivated by recalling the behavior of the PPA in the context of convex programming:

min
z∈H

f(z) ,(1)

where H is a Hilbert space and f :H 7→ R ∪ {+∞} is a lower semicontinuous convex
function that is not identically +∞. Define the Moreau–Yosida regularization of f to
be the function fλ:H 7→ R given by

fλ(z̄) := min
z∈H

{
λf(z) +

1

2
‖z − z̄‖2

}
.

The set of solutions to (1) corresponds precisely to the set of points at which fλ
attains its minimum value. The function fλ is continuously Fréchet differentiable
[28, Proposition 7.d]. The PPA applied to (1) is approximately the steepest descent
algorithm applied to fλ [11]. This analogy immediately suggests that a variable
metric approach could be applied to the function fλ to accelerate the method. This
idea was first studied in [38] and is the basis of the acceleration techniques described
in [3, 7, 10, 18, 20, 24, 25, 36].

In [3], Bonnans et al. develop methods along an algorithmic pattern originally
suggested by Qian in [38]. This pattern circumvents many of the difficulties associ-
ated with a variable metric approach applied directly to the function fλ. The key
is to employ a matrix secant update based on the function f instead of fλ. The
local convergence results in [3, Section 3] require some smoothness assumptions. In
particular, linear convergence is established when the function f is differentiable with
Lipschitz continuous derivative, and superlinear convergence is established when f is
twice strictly Fréchet differentiable at a unique solution z̄, where the second derivative
is positive definite (we speak only of quotient or q-rate of convergence).

In [18, 20, 24, 25], the authors apply the bundle concept for nonsmooth convex
minimization [17] to approximate the Moreau–Yosida regularization fλ and its deriva-
tive. Variable metric updates, in particular, quasi-Newton updates, are then applied
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using these approximate values. The superlinear convergence results in the papers
[18, 20, 24] require either strong smoothness assumptions on the function f (such
as the Lipschitz continuity of ∇f) or that the regularization parameter λ diverges to
+∞. In [20], Lemaréchal and Sagastizábal propose a clever reversal quasi-Newton for-
mula which uses the value of the gradient of fλ at a variety of points other than those
strictly obtained by the iterates. This promising idea deserves further theoretical and
numerical study.

In [10] and [36], the authors develop an approach based on Newton’s method
for semismooth functions as developed in [30, 31, 37, 34]. Properly speaking, these
methods are neither an adaptation of the PPA algorithm nor a variable metric method.
Nonetheless, the flavor of both of these methodologies is present. In order to obtain
superlinear convergence, smoothness hypotheses are again required; however, these
hypotheses are of a somewhat more technical nature. Specifically, it is required that

(a) the function f be semismooth at a unique solution to (1) [37],
(b) every element of the set-valued mapping

∂2
Bf(z) := { lim

yk→z
∇2fλ(yk) : yk → x,∇f(yk) exists for all k = 1, 2, . . .}

be nonsingular at the unique solution z̄, and
(c) the sequence of Hessian approximates {Vk} used to generate the iterates {zk}

satisfy

lim
k→∞

dist (Vk, ∂
2
Bf(zk)) = 0 .(2)

One can show that the semismoothness hypotheses are satisfied in many cases of in-
terest when f is finite-valued. Moreover, by Rademacher’s theorem on the differentia-
bility of Lipschitz continuous functions, it follows that the set-valued mapping ∂2

Bf(z)
is always well-defined and compact-valued in the finite dimensional, finite-valued case,
with the nonsingularity property being closely tied to the usual hypothesis of strong
convexity. Although the limiting hypotheses on the Vk’s is a bit strong, it is not en-
tirely unreasonable in the absence of differentiability. In [36], Qi and Chen propose a
very nice preconditioning technique wherein an exact value for the gradient of a shifted
Moreau–Yosida regularization can be computed from inexact values for the gradient
of fλ. This technique is similar in spirit to the reversal quasi-Newton formula found
in [20]. Both of these techniques should prove useful in numerical implementations.

The algorithm presented in this paper is most closely related to the methods
proposed by Chen and Fukushima [7] and Mifflin, Sun, and Qi [25]. However, there
are several fundamental distinctions, the foremost of which is that the methods in
[7, 25] are restricted to finite dimensional finite-valued convex programming problems.
Within this framework, these authors use bundle strategies to approximate fλ and its
gradient and establish the global convergence of their methods with the aid of a line
search routine. Chen and Fukushima establish global and linear convergence results
along with a generalization of the Dennis–Moré characterization theorem for super-
linear convergence [14]. One of the most important features of the Chen–Fukushima
algorithm is that the line search is based on the function f rather than approximations
to the function fλ. This is very important in practice since obtaining sufficiently accu-
rate approximations to the function fλ is usually quite time consuming. Their linear
and superlinear convergence results blend bundle techniques with the theory of nons-
mooth equations. Consequently, the convergence hypotheses are reminiscent of those
employed in [10] and [36]; in particular, they require semismoothness, CD-regularity,
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and the strong approximation property (2). In [6], the methods of this paper are
applied to the Chen–Fukushima algorithm to obtain the superlinear convergence of
the method when BFGS matrix secant updating is employed.

In [25], Mifflin, Sun, and Qi obtain the first superlinear convergence result for
a variable metric proximal point algorithm using the BFGS matrix secant update in
the setting of finite dimensional finite-valued convex programming. Their proposed
algorithm uses a line search based on approximations to the function fλ and requires
that the function fλ is strongly convex with ∇fλ Fréchet differentiable at the unique
global solution to the convex program. In addition it is assumed that the iterates
satisfy a certain approximation property involving the gradient ∇fλ. In section 4 of
this paper, we discuss how these hypotheses are related to those that are also required
in our convergence analysis.

In this paper, we provide a general theory for a variable metric proximal point
algorithm (VMPPA) applied to maximal monotone operators from a Hilbert space
to itself. In the important special case of convex programming, where T is taken
to be the subdifferential of the function f , we do not assume that f is finite-valued
or differentiable on the whole space. However, to obtain superlinear convergence,
we do require certain smoothness hypotheses at a unique global solution z̄. These
smoothness hypotheses differ from those assumed in [3, 18, 20, 24] since they are im-
posed on the operator T−1 rather than T . In this regard, they are reminiscent of the
hypotheses employed in [25]. The choice of smoothness hypotheses has deep signifi-
cance in the context of convex programming. Differentiability hypotheses on T = ∂f
imply the second-order differentiability of f , whereas differentiability hypotheses on
T−1 = (∂f)−1 are related to the standard strong second-order sufficiency conditions
of convex programming [40, Proposition 2] and thus reduce to the standard hypothe-
ses used in local analysis of convergence. In particular, the differentiability of (∂f)−1

does not imply that ∂f is single-valued or differentiable, nor does it imply that f is
finite-valued.

Our smoothness hypotheses also differ from those that appear in [7, 10, 36]. These
methods rely on the theory of nonsmooth equations and require hypotheses such as
semismoothness and nonsingularity of the elements of ∂2

Bf . In addition, the proof
theory for these methods specifically requires that the underlying convex function be
finite-valued in a neighborhood of the unique solution to (1) (again, these methods
assume that the function is finite-valued on all of Rn). This limits direct application
to constrained problems since in the constrained case solutions typically lie on the
boundary of the constraint region (i.e., on the boundary of the domain of the essential
objective function).

Throughout the paper we illustrate many of the ideas and results by applying
them to the case of convex programming. Our purpose here is not only to show how
the results can be applied, but also to ground them in the familiar surroundings of
this concrete application. Further details on the application of these results to the
case of convex programming can be found in [5].

The paper is structured as follows. We begin with a review of the classic proximal
point algorithm in section 2. The VMPPA is introduced in section 3. This section
contains the approximation criteria that must be satisfied at each iteration. Two
criteria are presented. The first is required to obtain global convergence and the
second is required to accelerate the local convergence of the method. This division
into global and local criteria is one of the recurring themes of the paper. On the
global level the method behaves like a steepest descent method, while at the local
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level it becomes more Newton-like. This feature is common to most general purpose
methods in nonlinear programming, such as the nonmonotone descent methods, the
dogleg method, and trust-region methods. In section 4 we discuss the smoothness
hypotheses required for the local analysis. We also extend some of the differentiability
results appearing in [19, 35] to maximal monotone operators. In section 5, we study
the operators Nk associated with the Newton-like iteration proposed in section 3.
The focus of this section is to provide conditions under which the operators Nk are
nonexpansive at a solution to the inclusion 0 ∈ T (z). A global convergence result
paralleling Rockafellar’s 1976 result [41] is given in section 6. In section 7 we study
local convergence rates. Linear convergence is established under a Lipschitz continuity
assumption on T−1, and a characterization of superlinear convergence for the VMPPA
is also given. This characterization is modeled on the landmark characterization of
superlinear convergence of variable metric methods in nonlinear programming due
to Dennis and Moré [14]. In [6], we use this characterization result to establish the
superlinear convergence of the method when the derivatives are approximated using
the BFGS and Broyden updating strategies.

A word about our notation is in order. We denote the closed unit ball in the
Hilbert space H by B. Then the ball with center a and radius r is denoted by
a + rB. Given a set Z ⊂ H and an element z ∈ H, the distance of z to Z is
dist (z, Z) = inf{‖z − z′‖ : z′ ∈ Z}.

Let H1 and H2 be two Hilbert spaces. Given a multifunction (also referred to
as a mapping or an operator depending on the context) T : H1

−→−→ H2, the graph of
T , gphT , is the subset of the product space H1 × H2 defined by gphT = {(z, w) ∈
H1 ×H2|w ∈ T (z)}. The domain of T is the set domT := {z ∈ H1|T (z) 6= ∅}. The
identity mapping will be denoted by I. The inverse of an operator T is defined by
T−1(w) := {z ∈ H1|(z, w) ∈ gphT}.

Given a lower semicontinuous convex function f : H → R
⋃{+∞}, the conjugate

of f is defined by f∗(z∗) = supz∈H{〈z∗, z〉 − f(z)}.
2. Monotone operators and the classic algorithm. Given a real Hilbert

space H with inner product 〈·, ·〉, we say that the multifunction T : H −→−→ H is
monotone if for every z and z′ in domT , and w ∈ T (z) and w′ ∈ T (z′), we have
〈z − z′, w − w′〉 ≥ κ‖z − z′‖2 for some κ ≥ 0. If κ > 0, then T is said to be strongly
monotone with modulus κ. The monotone operator T is said to be maximal if its
graph is not properly contained in the graph of any other monotone operator. An
important example of a monotone operator is the subgradient of a convex function
(see Minty [27] and Moreau [28]).

We are concerned with solving inclusions of the form

0 ∈ T (z),(3)

where T is a maximal monotone operator. In the case of the convex programming
problem (1), the operator T is the subdifferential of the convex function f , and the
inclusion (3) characterizes the points z at which f attains its minimum value. A wide
variety of other problems can be cast in this framework, e.g., variational inequalities,
complementary problems, and mini-max problems. Existence results for inclusion (3)
can be found in [41].

In 1962, Minty [27] showed that, when the operator T is maximal monotone, the
Moreau–Yosida resolvent of T ,

Pλ = (I + λT )−1 with λ > 0,
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is single-valued and nonexpansive on H. This result suggests that a solution to the
inclusion 0 ∈ T (z) can be iteratively approximated by the recursion zk+1 = Pλ(zk).
One can modify this scheme by varying the scalar λ and by choosing the iterates zk+1

to be an approximate solution to the equation (I + λkT )(z) = zk. The PPA applies
precisely these ideas. The algorithm, starting from any point z0, generates a sequence
{zk} in H by the approximation rule

zk+1 ≈ (I + ckT )−1(zk) .(4)

The principal difficulty in applying the PPA lies in executing the operators Pk =
(I + ckT )−1. In the case of convex programming, the iteration (4) reduces to the
iteration

zk+1 ≈ arg min
z∈H

{
ckf(z) +

1

2
‖z − zk‖2

}
.

Notice that executing the algorithm exactly (i.e., with “=” instead of “≈” in the
above algorithm) can be as difficult as solving the original problem directly. Hence it
is critical that the convergence results are obtained under the assumption of approx-
imation.

In [22] and [23], Martinet proved the convergence of the exact PPA for certain
cases of the operator T with fixed ck ≡ c. The first theorem on the convergence of
the general PPA was proved by Rockafellar [41] in 1976. His theorem not only insures
the global convergence under an approximating rule, but also describes the global
behavior when the inclusion 0 ∈ T (z) has no solution.

The convergence rate of the PPA depends on properties of the operator T , the
choice of the sequence {ck}, and the accuracy of the approximation in (4). The first
rate of convergence results were also obtained by Rockafellar [41] in 1976, under the
assumption that the solution set is a singleton {z̄}. He proved that if the sequence
{ck} is bounded away from 0, and T−1(w) is bounded by a linear function of ‖w‖
when w is near 0, then the rate of convergence is at least linear. Luque [21] extended
Rockafellar’s theorem to the case where T−1(0) is not required to be a singleton, and
showed that such an estimate of the convergence rate is tight.

3. The algorithm and approximation criteria. The algorithm proposed in
this section is a Newton-like iteration for solving the resolvent equation z = Pλ(z).
In the context of the convex programming problem, the iteration takes the form

zk+1 = zk −Hk∇fλ(zk) ,

where the operator Hk is used to approximate second-order properties of the function
fλ. If fλ is twice differentiable with [∇2fλ(zk)]−1 bounded, then for Newton’s method
one sets Hk = [∇2fλ(zk)]−1. However, in general, fλ is only known to be differentiable
with Lipschitz continuous gradient [28]. Thus, in the finite dimensional case, the Hes-
sian ∇2fλ(x) is guaranteed to exist only on a dense subset by Rademacher’s theorem.
Further results on the second-order properties of fλ can be found in [19, 35, 42].

It is well known that the negative gradient −∇fλ(zk) is the unique element wk

solving the problem

min
w∈H

{
λf(zk + w) +

1

2
‖w‖2

}
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or, equivalently, satisfying the inclusion

0 ∈ λ∂f(zk + wk) + wk .(5)

The PPA for a general maximal monotone operator T can be formally derived from
(5) by replacing λ, zk, and ∂f by ck, zk, and T , respectively, to obtain

0 ∈ ckT (zk + wk) + wk ,

or equivalently,

wk = [(I + ckT )−1 − I](zk) ,

where equality follows from the fact that wk is unique. This motivates us to define
the operator

Dk := (I + ckT )−1 − I .(6)

This operator provides the analogue of the direction of steepest descent in the operator
setting.

The algorithm we propose for solving the inclusion 0 ∈ T (z) can be succinctly
stated as follows.

THE VARIABLE METRIC PROXIMAL POINT ALGORITHM.
Let z0 ∈ H and c0 ≥ 1 be given. Having zk, set

zk+1 := zk +Hkw
k, where wk ≈ Dk(zk),

and choose ck+1 ≥ 1.
As mentioned in the previous section, it is critical that the convergence results

are obtained under the assumption that Dk(zk) can only be approximated. We use
the following approximation criteria:

(G) ‖wk −Dk(zk)‖ ≤ min

{
1,

1

‖Hk‖
}
εk with

∞∑
k=0

εk <∞

and

(L) ‖wk −Dk(zk)‖ ≤ δk‖wk‖ with lim
k→∞

δk = 0 .

The approximation criterion (G) is used to establish global convergence properties,
while criterion (L) is used to obtain local rates of convergence.

Although these criteria are used in the proof of convergence, they are impractical
from the perspective of implementation. In their stead, we provide criteria that are
implementable. To obtain these criteria we recall the following result from Rockafellar
[41].

Proposition 1 (see [41, Proposition 3]). Let Sk(w) := T (zk +w) + 1
ck
w . Then

0 ∈ Sk(wk)⇔ wk = Dk(zk). Moreover, for all w ∈ H we have the bound

‖w −Dk(zk)‖ ≤ ckdist (0, Sk(w)) .(7)

Proposition 1 yields the following alternative approximation criteria for the wk’s.
Since this result is an immediate consequence of Proposition 1, its proof is omitted.
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Proposition 2. Consider the following acceptance criteria for the wk’s:

(G′) dist (0, Sk(wk)) ≤ min

{
1,

1

‖Hk‖
}
εk
ck

with
∞∑
k=0

εk <∞

and

(L′) dist (0, Sk(wk)) ≤ δk
ck
‖wk‖ with lim

k→∞
δk = 0 .

We have (G′) implies (G) and (L′) implies (L).
Remark. Note that to satisfy either (G′) or (L′) it is not necessary to find an

element of Sk(wk) of least norm.
Before leaving this section we recall from [41] a few properties of the operators

Dk and Pk := Dk + I that are essential in the analysis to follow.
Proposition 3 (see [41, Proposition 1]).
a) The operator Dk can be expressed as

Dk = −
(
I + T−1 1

ck

)−1

,(8)

and for any z ∈ H, − 1
ck
Dk(z) ∈ T (Pk(z)).

b) For any z, z′ ∈ H, 〈Pk(z)− Pk(z′), Dk(z)−Dk(z′)〉 ≤ 0 .
c) For any z, z′ ∈ H, ‖Pk(z)− Pk(z′)‖2 + ‖Dk(z)−Dk(z′)‖2 ≤ ‖z − z′‖2 .
Remark. An important consequence of part c) above is that the operators Pk and

Dk are Lipschitz continuous with Lipschitz constant 1; that is, they are nonexpansive.
Henceforth, we make free use of this fact.

4. On the differentiability of T−1 and Dk. Just as Newton’s method for
minimization locates roots of the gradient, one can view the VMPPA as a Newton-
like method for locating roots of the operator Dk. This perspective motivates our
approach to the local convergence analysis. For this analysis, we require that the op-
erator T−1 possesses certain smoothness properties. These properties in turn imply
the smoothness of the operators Dk. Smoothness hypotheses are used in the conver-
gence analysis in much the same way as they are used in the convergence analysis
for Newton’s method. For example, recall that to ensure the quadratic convergence
of Newton’s method one requires the derivative at a solution to be both locally Lip-
schitz and nonsingular. Nonsingularity ensures that the iterates are well-defined and
can be bounded, while the Lipschitzian hypothesis guarantees that the error in the
linearization is quadratically bounded (see [29, sections 3.2.12 and 10.2.2]). We make
use of similar properties in our analysis.

In order to discuss the smoothness of T−1 and Dk, we recall various notions of
differentiability for multivalued functions from the literature. For a more thorough
treatment of these ideas in the context of monotone operators, we refer the reader to
[1, 19, 26, 35, 42].

Definition 4. We say that an operator Ψ : H −→−→ H is Lipschitz continuous at
a point w̄ (with modulus α ≥ 0) if the set Ψ(w̄) is nonempty and there is a τ > 0 such
that

Ψ(w) ⊂ Ψ(w̄) + α‖w − w̄‖B whenever ‖w − w̄‖ ≤ τ .
We say that Ψ is differentiable at a point w̄ if Ψ(w̄) consists of a single element z̄ and
there is a continuous linear transformation J : H → H such that for some δ > 0,

∅ 6= Ψ(w)− z̄ − J(w − w̄) ⊂ o(‖w − w̄‖)B whenever ‖w − w̄‖ ≤ δ .
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We then write J = ∇Ψ(w̄).
Remarks. 1) These definitions of Lipschitz continuity and differentiability for

multifunction are taken from [41, pp. 885 and 887] (also see [2, p. 41]). Note that
these notions of Lipschitz continuity and differentiability correspond to the usual
notions when Ψ is single-valued.

2) Rockafellar [41, Theorem 2] was the first to use Lipschitz continuity to establish
rates of convergence for the PPA.

3) When the set Ψ(w̄) is restricted to be a singleton {z̄}, the differentiability of Ψ
at w̄ implies the Lipschitz continuity of Ψ at w̄. Moreover, one can take α(τ)→ ‖J‖
as τ → 0. This observation is verified in [41, Proposition 4].

4) It follows from the definition of monotonicity that if T is a maximal monotone
operator, then the operator ∇T (z) is positive semidefinite whenever it exists.

We now give a result that relates the differentiability of a multivalued function
to the differentiability of its inverse. The proof is omitted since it parallels the proof
of a similar result for single-valued functions.

Lemma 5. Assume that Ψ : H −→−→ H is differentiable at z̄ with Ψ(z̄) = {w̄} and
∇Ψ(z̄) = J with J−1 bounded. Also assume that Ψ−1 is Lipschitz continuous at w̄
with Ψ−1(w̄) = {z̄}. Then Ψ−1 is differentiable at w̄ with ∇Ψ−1(w̄) = J−1.

In the two examples that follow, we examine the concepts introduced in Definition
4 when the operator in question is the subdifferential of a convex function. The first
example illustrates that ∂f−1 can be Lipschitz continuous but not differentiable at
the origin, while in the second example ∂f−1 is differentiable at the origin, but ∂f is
not differentiable on (∂f)−1(0).

Example 6. Let

f(z) :=

{
0 if z < 0,
z if z ≥ 0,

and T (z) := ∂f(z) =

 0 if z < 0,
[0, 1] if z = 0,
1 if z > 0 .

Then T−1(y) =


∅ if y < 0 or y > 1,
(−∞, 0] if y = 0,
{0} if y ∈ (0, 1),
[0,∞) if y = 1 .

T−1 is Lipschitz continuous at 0 but is not differentiable at 0.
Example 7. Let

f(z) :=

{ −z if z < 0,
z5/3 if z ≥ 0,

and T (z) := ∂f(z) =


−1 if z < 0,
[−1, 0] if z = 0,
5
3z

2/3 if z > 0.

Then T−1(y) =


∅ if y < −1,
(−∞, 0] if y = −1,
{0} if y ∈ (−1, 0),
3
5y

3/2 if y ≥ 0 .

T−1 is differentiable at 0 with J = 0, but T is not differentiable on T−1(0).
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The superlinear convergence result of section 7 requires the assumption that the
operator T−1 be differentiable at the origin. Although this is a severe restriction on
the applicability of these results, it turns out that in the case of convex programming
it is a consequence of the standard second-order sufficiency conditions for constrained
mathematical programs. This and related results were established by Rockafellar in
[40, Proposition 2]. In this context, it is important to note that the second-order suf-
ficiency condition is the standard hypothesis used in the mathematical programming
literature to ensure the rapid local convergence of numerical methods. So, at least in
the context of constrained convex programming, such a differentiability hypothesis is
not as severe an assumption as one might at first suspect. To the contrary, it is a
bit weaker than the standard hypothesis employed for such results. For the sake of
completeness, we recall a portion of Rockafellar’s result below.

Theorem 8. Consider the convex programming problem (1), where f : Rn →
R ∪ {∞} is given by

f(z) =

{
f0(z) if fi(z) ≤ 0 for i = 1, 2, . . . ,m,
+∞ otherwise,

with fi : Rn → R convex for i = 0, 1, . . . ,m. Suppose that the following conditions
are satisfied:

(i) The functions fi for i = 0, 1, . . . ,m are k ≥ 2 times continuously differentiable
in a neighborhood of a point z̄ ∈ Rn.

(ii) There is a Kuhn–Tucker vector ȳ ∈ Rm for z̄ such that ȳi > 0 for i ∈ I(z̄) =
{i : fi(z̄) = 0, i = 1, 2, . . . ,m}.

(iii) The gradients {∇fi(z̄) : i ∈ I(z̄)} are linearly independent.
(iv) The matrix H = ∇2f0(z̄) +

∑m
i=1 ȳi∇2fi(z̄) satisfies uTHu > 0 for every

nonzero u ∈ Rn such that ∇f0(z̄)Tu = 0, and ∇fi(z̄)Tu = 0 for i ∈ I(z̄).
Then the operator ∂f−1 is (k− 1) times continuously differentiable in a neighborhood
of the origin.

Remark. Theorem 8 follows by applying the implicit function theorem to the
Kuhn–Tucker conditions for the parameterized problems min{f(z)−〈w, z〉} in a neigh-
borhood of w = 0. The relationship to ∂f−1 comes from the fact that ∂f−1(w) =
argmin {f(z)−〈w, z〉}. Rockafellar establishes the result only for k = 2. The extension
to k > 2 follows trivially from the implicit function theorem.

We now examine the differentiability properties of the mapping Dk. Two results
in this direction are given. The first uses (8) to relate the differentiability of the
operators T−1 and Dk, while the second uses the definition of Dk given in (6) to
relate the differentiability of the operators T and Dk.

Proposition 9. Let T : H −→−→ H be maximal monotone and λ > 0. Define

D(z) = −
(
I + T−1 1

λ

)−1

(z) .(9)

Let z̄ ∈ H and set w̄ = D(z̄) and ȳ = − 1
λ w̄. The operator T−1 is differentiable at ȳ

with [I + 1
λ∇(T−1)(ȳ)]−1 bounded if and only if the operator D is differentiable at z̄

with (∇D(z̄))−1 bounded. In either case, we have

∇D(z̄) = −
[
I +

1

λ
∇(T−1)(ȳ)

]−1

.(10)
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Proof. First assume that T−1 is differentiable at ȳ with ∇(T−1)(ȳ) bounded. The
differentiability of T−1 at ȳ clearly implies that of D−1 at w̄ with

∇[D−1](w̄) = −
(
I +

1

λ
∇[T−1](ȳ)

)
.

Since D is Lipschitzian with D(z̄) = w̄, Lemma 5 implies that D is differentiable at z̄
with derivative given by (10). Since ∇[D−1](w̄) = (∇D(z̄))−1, we conclude that the
latter is bounded.

Conversely, assume that D is differentiable at z̄ with (∇D(z̄))−1 bounded. We
show that D−1 is single-valued and Lipschitzian at w̄. The result will then follow
from Lemma 5.

Let δ > 0 be as in Definition 4 for ∇D(z̄). Since D is single-valued and ∇D(z̄)
is surjective (it is invertible), we may apply a standard open mapping result from
functional analysis (e.g., [8, Theorem 15.5]) to obtain the existence of a ρ > 0 and a

0 < δ̂ < δ such that

w̄ + ρB ⊂ D(z̄ + δ̂B) .(11)

Hence for each w ∈ w̄ + ρB and z ∈ D−1(w) ∩ (z̄ + δ̂B) 6= ∅ we have

w = w̄ +∇D(z̄)(z − z̄) + o(‖z − z̄‖) .(12)

Since (∇D(z̄))−1 is bounded, there is a κ > 0 such that

‖w − w̄‖+ o(‖z − z̄‖) = ‖∇D(z̄)(z − z̄)‖ ≥ κ‖z − z̄‖ .

Hence, by reducing ρ and δ̂ if necessary, we may assume that

‖w − w̄‖ ≥ κ

2
‖z − z̄‖ ≥ κ

2
‖w − w̄‖

for w ∈ w̄ + ρB, where the second inequality follows since D is nonexpansive. There-
fore, we can assume that o(‖z − z̄‖) = o(‖w − w̄‖) for all w ∈ w̄ + ρB and z ∈
D−1(w) ∩ (z̄ + δ̂B). By substituting this into (12) and rearranging, we obtain

z = z̄ + (∇D(z̄))−1(w − w̄) + o(‖w − w̄‖)
for all w ∈ w̄ + ρB and z ∈ D−1(w) ∩ (z̄ + δ̂B).

(13)

We now show that (13) implies the existence of an ε > 0 such that D−1(w̄+εB) ⊂
z̄ + δ̂B. Indeed, if this were not the case, then there would exist sequences {wi} and

{zi} such that zi ∈ D−1(wi), ‖zi − z̄‖ > δ̂, and wi → w̄. Since D−1 is itself maximal
monotone, its images are convex; hence, by (11), there exists a sequence {ẑi} with

ẑi ∈ D−1(wi) and ‖ẑi − z̄‖ = δ̂ for all i = 1, 2, . . .. But then (13) implies that

ẑi = z̄ + (∇D(z̄))−1(wi − w̄) + o(‖wi − w̄‖)

for all i = 1, 2, . . .. This contradicts the fact that wi → w̄ and ‖ẑi − z̄‖ = δ̂ for all
i = 1, 2, . . ., and so such an ε > 0 must exist. This fact combined with (13) implies
that D−1 is Lipschitzian at w̄ with D−1(w̄) = {z̄}. Lemma 5 now applies to yield the
result.
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Proposition 10. Let D be defined as in (9). Let z̄ ∈ H and set ȳ = (I +D)(z̄).
The operator T is differentiable at ȳ with [I + λ∇T (ȳ)]−1 bounded if and only if the
operator D is differentiable at z̄ with [I +∇D(z̄)]−1 bounded. In either case we have
the formula

∇D(z̄) = [I + λ∇T (ȳ)]−1 − I .

Proof. Replace D by P := I+D = (I+λT )−1 and observe that D is differentiable
at z̄ with [I+∇D(z̄)]−1 bounded if and only if P is differentiable at z̄ with [∇P (z̄)]−1

bounded. The proof now follows the same argument as in the proof of Proposition 9
with D replaced by P , T−1 replaced by T , and w̄ replaced by ȳ.

Propositions 9 and 10 say quite different things about the differentiability of
Dk. To illustrate this difference, observe that in Example 7 the operator T is not
differentiable at 0, while T−1 and D are differentiable at 0. On the other hand, if we
take T = ∂f with f(x) = |x|3, then T−1 is not differentiable at 0, while T and D
are differentiable at 0. It is also important to note that even if neither T nor T−1 is
differentiable, D may be differentiable. But, in this case, we know from Propositions
9 and 10 that if D is differentiable and neither T nor T−1 is differentiable, then both
∇D(z̄) and ∇P (z̄) have to be singular or have unbounded inverses. For a further
discussion of these issues in the context of finite dimensional convex programming,
see [35].

When T is assumed to be the subdifferential of a convex function f , Propositions
9 and 10 can be refined by making use of the relation ∂f−1 = ∂f∗, where f∗ is the
convex conjugate of f [39, Corollary 12A]. This allows us to extend [35, Theorem 1]
and [35, Theorem 2] to the Hilbert space setting (also see [19, Theorem 3.1]). However,
some caution in terminology is required since f∗ is not necessarily twice differentiable
in the classical sense at points where ∂f∗ is differentiable in the sense of Definition
4. Indeed, ∂f∗ may be multivalued arbitrarily close to a point of differentiability.
The best way to interpret this result is through Alexandrov’s theorem [1], which
states that at almost every point z̄ in the interior of the domain of a convex function
f :Rn 7→ R∪{∞} there is a quadratic function qz̄ such that f(x) = qz̄(x)+o(‖x− z̄‖2).
In [19] and [35], the matrix ∇2qz̄ is called a generalized Hessian and is denoted Hf(x).
Note that the existence of a generalized Hessian at the point z̄ guarantees that f is
strictly differentiable at z̄. Moreover, if ∂f(x) is single-valued in a neighborhood of a
point z̄ at which Hf(z̄) exists, then ∇2f(z̄) exists and equals Hf(z̄). We extend this
terminology to the Hilbert space setting with the following definition.

Definition 11. Let φ:H 7→ R ∪ {∞} be a function on the Hilbert space H. We
say that φ is twice differentiable in the generalized sense at a point z̄ ∈ H if there is a
continuous quadratic functional qz̄ such that φ(x) = qz̄(x)+o(‖x− z̄‖2). The operator
∇2qz̄ is called a generalized Hessian of φ at z̄ and is denoted by Hφ(z̄).

With this terminology in hand, we apply Propositions 9 and 10 to the case of con-
vex programming. The proofs of these results are not required since they are a direct
translation of Propositions 9 and 10 into the terminology of convex programming.

Corollary 12. Let f : H → R
⋃{+∞} be lower semicontinuous and convex.

Let z̄ ∈ H and set w̄ = ∇fλ(z̄) and ȳ = 1
λ w̄. Then fλ is twice (Fréchet) differentiable

at z̄ with [∇2fλ(z̄)]−1 bounded if and only if f∗ has a generalized Hessian at ȳ with
[I + 1

λHf
∗(ȳ)]−1 bounded. In either case we have

∇2fλ(z̄) =

[
I +

1

λ
Hf∗(ȳ)

]−1

.
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Corollary 13. Let f : H → R
⋃{+∞} be lower semicontinuous and convex.

Let z̄ ∈ H and set ȳ = z̄ − ∇fλ(z̄). Then fλ is twice (Fréchet) differentiable at z̄
with [I +∇2fλ(z̄)]−1 bounded if and only if f is twice differentiable in the generalized
sense at ȳ with [I + λHf(ȳ)]−1 bounded. In either case we have

∇2fλ(z̄) = I − [I + λHf(ȳ)]−1 .

Remark. As observed earlier, the generalized Hessian is necessarily positive
semidefinite. This observation can be used to further refine the statement of Corol-
laries 12 and 13.

5. Newton operators. In this section we study the operators associated with
the variable metric proximal point iteration:

Nk := I +HkDk = Pk + (Hk − I)Dk .(14)

This notation emphasizes the fact that these operators produce Newton-like iterates.
Just as in the case of the classical Newton’s method for equation solving [29, section
12.6], one of the keys to the convergence analysis is to show that these operators
are contractive with respect to the solution set T−1(0). Clearly the operators Nk are
single-valued. Moreover, fixed points of the operators Nk are solutions to the inclusion
0 ∈ T (z) since

0 ∈ T (z) ⇔ Pk(z) = z ⇔ Dk(z) = 0 ⇔ Nk(z) = z.

Thus, conditions that ensure that the operators Nk are nonexpansive with respect
to T−1(0) are important for the global analysis of the variable metric proximal point
iteration. To obtain this property, we impose the following conditions on the linear
transformations {Hk}:

(H1) Each Hk is a continuous linear transformation with continuous inverse.
(H2) There is a nonempty closed bounded subset Γ of T−1(0) such that

‖(Hk − I)Dk(zk)‖ ≤ γk‖Dk(zk)‖ for all k,

where

γk :=
‖Dk(zk)‖

2σk + 3‖Dk(zk)‖ with σk = sup{‖zk − z‖ : z ∈ Γ}.

Remark. The set Γ in (H2) is used to guarantee the boundedness of the sequence
{zk}. By taking Γ = {z̄}, one can show that every weak cluster point of the sequence
{zk} is an element of T−1(0). It was observed by Iusem [13] that if T−1(0) is bounded
and one takes Γ = T−1(0), then the sequence {zk} has a weak limit z∞ ∈ T−1(0) (see
Theorem 17 and [41, Theorem 1]).

Hypothesis (H1) is standard and is automatically satisfied in the finite dimensional
case. On the other hand, hypothesis (H2) is quite technical and requires careful
examination. This hypothesis is problematic since it specifies that the matrices Hk

satisfy a condition that depends on the unknown values σk and ‖Dk(zk)‖. We will
show that in certain cases it is possible to satisfy (H2) without direct knowledge of
these unknown values. This is done in two steps. First it is shown in Lemma 14 that
if T−1 is Lipschitz continuous or differentiable at the origin, then γk is bounded below
by a positive constant (which can be taken to be 1/6 as ‖Dk(zk)‖ approaches zero).
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Then, in Lemma 15, it is shown that (H2) is satisfied if a related condition in terms
of Hk and wk is satisfied. Taken together, these results imply that at least locally
(H2) can be satisfied by checking a condition based on known quantities.

Further insight into hypothesis (H2) can be gained by considering the case in
which T−1 is differentiable at the origin. In this case Hk is intended to approximate
−(∇Dk(0))−1 = (I + c−1

k J), where J = ∇(T−1)(0) (by Proposition 9). Hence, if
Hk ≈ −(∇Dk(0))−1, then (Hk − I) ≈ c−1

k J . Therefore, one can guarantee that (H2)
is satisfied by choosing ck sufficiently large and Hk ≈ I. This fact is used in [6] to
establish the superlinear convergence of the method when the Hk’s are obtained via
matrix secant updating techniques.

The purpose of hypothesis (H2) is to globalize what is essentially a local algorithm
(Newton’s method). In the context of convex programming, one commonly obtains
global convergence properties with the aid of a line search routine applied to the
objective function f or its regularization fλ. However, in the operator setting there
is no natural underlying objective function to which a line search can be applied.
This is a key difference between the approach taken in this paper and those in [3,
7, 10, 18, 20, 24, 36]. In the convex programming setting, the global convergence
of the VMPPA is driven by a line search routine applied to the objective function
f (or its regularization fλ). In the operator setting, hypothesis (H2) replaces the
line search and the associated hypotheses needed to make the line search strategy
effective (such as the finite-valuedness of the objective function f and the boundedness
of the sequence {Hk}). On the other hand, when it is known that the operator T
is the subdifferential of a finite-valued finite dimensional convex function, then the
algorithm of this paper can be modified to include the line search routine of Chen
and Fukushima [7], thereby avoiding the need for hypothesis (H2) [6].

We now show three cases where the γk’s are bounded away from zero.
Lemma 14. Suppose T−1(0) is nonempty.
(i) If the operator T is strongly monotone with modulus κ, then T−1(0) = {z̄},

‖zk − z̄‖ ≤
(

1 +
1

κck

)
‖Dk(zk)‖ ,

and γk ≥ 1
5+ 2

κck

≥ 1
5+2/κ for all k.

(ii) If the operator T−1 is Lipschitz continuous at the origin with modulus α, then

dist (zk, T−1(0)) ≤
(

1 +
α

ck

)
‖Dk(zk)‖ ,(15)

for all k such that ‖Dk(zk)‖ ≤ τ , where τ is given in Definition 4. Moreover, if
T−1(0) = {z̄}, then γk ≥ 1

5+2α/ck
≥ 1

5+2α for all k such that ‖Dk(zk)‖ ≤ τ .

(iii) If T−1 is differentiable at the origin with derivative J , then T−1(0) = {z̄},
there is a δ > 0 such that for all k with ‖Dk(zk)‖ ≤ τ we have

‖zk − z̄‖ ≤
(

1 +
‖J‖
ck

+ σ(‖Dk(zk)‖)
)
‖Dk(zk)‖ ,

and γk ≥ 1

5+2
‖J‖
ck

+σ(‖Dk(zk)‖) for all k, where σ(τ)→ 0 as τ → 0.

Proof.
(i) If T is strongly monotone with modulus κ, then ‖z − z′‖ ≤ 1

κ‖w − w′‖ for
any z, z′, w, w′ such that w ∈ T (z) and w′ ∈ T (z′). That is, T−1 is single-valued
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and Lipschitz continuous. Let z = Pk(zk) and z′ = z̄, where {z̄} = T−1(0). By
Proposition 3 a) we have − 1

ck
Dk(zk) ∈ T (Pk(zk)). Hence

‖zk − z̄‖ ≤ ‖zk − Pk(zk)‖+ ‖Pk(zk)− z̄‖ ≤
(

1 +
1

κck

)
‖Dk(zk)‖ ,

since Dk = Pk − I. By the definition of γk,

γk =
‖Dk(zk)‖

2‖zk − z̄‖+ 3‖Dk(zk)‖

≥ ‖Dk(zk)‖
2(1 + 1

κck
)‖Dk(zk)‖+ 3‖Dk(zk)‖ ≥

κck
5κck + 2

.

This establishes the result since ck ≥ 1 for all k.
(ii) If ‖Dk(zk)‖ ≤ τ , Definition 4 implies that

T−1

(
− 1

ck
Dk(zk)

)
⊂ T−1(0) + α

∥∥∥∥ 1

ck
Dk(zk)

∥∥∥∥B = T−1(0) +
α

ck
‖Dk(zk)‖B ,

or (
I + T−1 1

ck

)
(−Dk(zk)) +Dk(zk) ⊂ T−1(0) +

α

ck
‖Dk(zk)‖B .

Since Dk(zk) = −(I + T−1 1
ck

)−1(zk), we have zk ∈ (I + T−1 1
ck

)(−Dk(zk)), and so

zk ∈ T−1(0)−Dk(zk) +
α

ck
‖Dk(zk)‖B.

Hence (15) holds. If T−1(0) = {z̄}, then the lower bound on γk follows as in part (i).
(iii) This result follows as in part (ii) using the second remark after Defini-

tion 4.
When wk ≈ Dk(zk), one can establish the inequality in hypothesis (H2) from a

related condition on the vectors wk. A specific technique for accomplishing this is
given in the following lemma.

Lemma 15. Let ξ, γ̂k, δk ∈ R+ be such that

0 ≤ ξ < 1, δk ≤ min
{

1, ‖Hk‖−1
} 3

7
(1− ξ)γ̂k, and γ̂k ≤ 1

3
,(16)

and let Hk be a continuous linear transformation from H to itself. If zk, wk ∈ H
satisfy

‖(I −Hk)wk‖ ≤ ξγ̂k‖wk‖ and ‖wk −Dk(zk)‖ ≤ δk‖wk‖,(17)

then ‖(I − Hk)Dk(zk)‖ ≤ γ̂k‖Dk(zk)‖. Therefore, if (H1) and criterion (L) are
satisfied, and if ξ and the sequence {(γ̂k, δk)} ⊂ R2 satisfy (16), with γ̂k ≤ γk for all
k (where γk is defined in (H2)), then hypothesis (H2) is satisfied.

Proof. From (16) and (17), we have

‖wk‖ ≤ ‖Dk(zk)‖+ ‖wk −Dk(zk)‖ ≤ ‖Dk(zk)‖+
3

7
(1− ξ)γ̂k‖wk‖;
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hence

‖wk‖ ≤ 1

1− 3
7 (1− ξ)γ̂k

‖Dk(zk)‖ .

Again by (17),

‖(I −Hk)Dk(zk)‖ ≤ ‖(I −Hk)wk‖+ ‖Hk‖‖wk −Dk(zk)‖+ ‖wk −Dk(zk)‖
≤ ξγ̂k‖wk‖+ (‖Hk‖+ 1)δk‖wk‖ ≤

(
ξ +

6

7
(1− ξ)

)
γ̂k‖wk‖

≤ ξ + 6
7 (1− ξ)

1− 3
7 (1− ξ)γ̂k

γ̂k‖Dk(zk)‖ ≤ γ̂k‖Dk(zk)‖

since the inequality γ̂k ≤ 1
3 implies that

ξ+ 6
7 (1−ξ)

1− 3
7 (1−ξ)γ̂k = 6+ξ

7−3(1−ξ)γ̂k ≤ 1.

We conclude this section by showing that the operators Nk are nonexpansive with
respect to the set T−1(0).

Proposition 16. Assume T−1(0) is nonempty. If the sequence of linear transfor-
mations {Hk} satisfies hypotheses (H1) and (H2), then for all k we have ‖HkDk(zk)‖ ≤
3
2‖Dk(zk)‖ and

‖Nk(zk)− z̄‖2 +
γ2
k

4
‖Dk(zk)‖2 ≤ ‖zk − z̄‖2 for all z̄ ∈ Γ.(18)

Proof. Let z̄ ∈ Γ. From the definitions of Pk and Nk, we have

‖Pk(zk)−z̄‖ = ‖Nk(zk)−(Hk−I)Dk(zk)−z̄‖ ≥ |‖Nk(zk)−z̄‖−‖(Hk−I)Dk(zk)‖|;
(19)
hence

‖Pk(zk)−z̄‖2 ≥ ‖Nk(zk)−z̄‖2+‖(Hk−I)Dk(zk)‖2−2‖(Hk−I)Dk(zk)‖‖Nk(zk)−z̄‖ .
(20)
From hypothesis (H2), we have

‖HkDk(zk)‖ ≤ ‖Dk(zk)‖+ ‖(Hk − I)Dk(zk)‖ ≤ (1 + γk)‖Dk(zk)‖ ≤ 3

2
‖Dk(zk)‖ .

Hence

‖Nk(zk)− z̄‖ ≤ ‖zk − z̄‖+ ‖HkDk(zk)‖ ≤ σk +
3

2
‖Dk(zk)‖ .

Then, again by hypothesis (H2),

‖(Hk − I)Dk(zk)‖ ≤ γk‖Dk(zk)‖ =
‖Dk(zk)‖2

2σk + 3‖Dk(zk)‖ ≤
‖Dk(zk)‖2

2‖Nk(zk)− z̄‖ .(21)

Thus, from (20) and (21),

‖Pk(zk)− z̄‖2 ≥ ‖Nk(zk)− z̄‖2 + ‖(Hk − I)Dk(zk)‖2 − ‖Dk(zk)‖2 .(22)

Letting z = zk and z′ = z̄ in Proposition 3 c) yields

‖Pk(zk)− z̄‖2 + ‖Dk(zk)‖2 ≤ ‖zk − z̄‖2 .(23)
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From (22) and (23) we have

‖Nk(zk)− z̄‖2 + ‖(Hk − I)Dk(zk)‖2 ≤ ‖zk − z̄‖2 .(24)

We now consider αk = ‖(Hk−I)Dk(zk)‖
‖Dk(zk)‖ . If αk ≥ γk

2 , then (18) holds by (24). Suppose

that αk <
γk
2 . From (19), we have

‖Pk(zk)− z̄‖ ≥ ‖Nk(zk)− z̄‖ − γk
2
‖Dk(zk)‖ .

Therefore, by (23),

‖Nk(zk)− z̄‖ ≤
√
‖zk − z̄‖2 − ‖Dk(zk)‖2 +

γk
2
‖Dk(zk)‖ .

Using the inequality
√
a2 − b2 ≤ a− b2

2a for a > b > 0,

‖Nk(zk)− z̄‖ ≤ ‖zk − z̄k‖ − ‖Dk(zk)‖2
2‖zk − z̄‖ +

γk
2
‖Dk(zk)‖ .

But ‖Dk(zk)‖
2‖zk−z̄‖ ≥ γk; thus

‖Nk(zk)− z̄‖ ≤ ‖zk − z̄‖ − γk
2
‖Dk(zk)‖

or

‖Nk(zk)− z̄‖+
γk
2
‖Dk(zk)‖ ≤ ‖zk − z̄‖ .(25)

From (25) we again obtain (18).

6. Global convergence. The statement and proof of the global convergence
result given below parallels the development given by Rockafellar in [41, Theorem 1]
for the classical PPA.

Theorem 17. Let {zk} be any sequence generated by the VMPPA under criterion
(G) (or (G′)). Suppose that the solution set T−1(0) is nonempty and the sequence
of linear transformations {Hk} satisfies the hypotheses (H1) and (H2). Then the
sequence {zk} is bounded, each weak cluster point of this sequence is an element
of T−1(0), and limkDk(zk) = 0. If it is also assumed that T−1(0) is bounded and
Γ = T−1(0) in (H2), then there is a z̄ ∈ T−1(0) such that {zk} converges weakly to z̄.

In order to establish this result we require the following technical lemma, whose
proof is straightforward and so is omitted.

Lemma 18. Suppose the nonnegative sequences {εk} satisfy
∑∞
k=0 εk < +∞. If

{uk} is a nonnegative sequence satisfying uk+1 ≤ εk + uk, then {uk} is a Cauchy
sequence.

Proof of Theorem 17. We begin by showing that the limit limk ‖zk − z̄‖ = µ(z̄)
exists for every z̄ ∈ Γ. To this end let z̄ ∈ Γ and observe that the definition of Nk
and Proposition 16 imply that

‖zk+1 − z̄‖ = ‖zk+1 −Nk(zk) +Nk(zk)− z̄‖ ≤ ‖zk+1 −Nk(zk)‖+ ‖Nk(zk)− z̄‖
≤ ‖Hk‖‖wk −Dk(zk)‖+ ‖zk − z̄‖ ≤ εk + ‖zk − z̄‖ .
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Therefore, Lemma 18 implies that the sequence {‖zk − z̄‖} is Cauchy, and so µ(z̄)
exists for every z̄ ∈ Γ. An immediate consequence of the existence of these limits is
the boundedness of the sequences {zk} and σk.

We now show that the sequence {Dk(zk)} converges strongly to the origin. In-
deed, if this is not the case, then there is a subsequence J ⊂ {1, 2, . . .} such that
infJ ‖Dk(zk)‖ = β1 > 0. This in turn implies that infJ γk = β2 > 0 since otherwise
limJ ‖Dk(zk)‖ = 0 due to the boundedness of the sequence {σk}. Let z̄ ∈ Γ. By
Proposition 16,

γ2
k

4
‖Dk(zk)‖2 − ‖zk − z̄‖2 + ‖zk+1 − z̄‖2 ≤ ‖zk+1 − z̄‖2 − ‖Nk(zk)− z̄‖2

= 〈zk+1 −Nk(zk), zk+1 − z̄ +Nk(zk)− z̄〉
≤ ‖zk+1 −Nk(zk)‖(‖zk+1 − z̄‖+ ‖Nk(zk)− z̄‖)
≤ ‖Hk‖‖wk −Dk(zk)‖(‖zk+1 − z̄‖+ ‖zk − z̄‖) ≤ εk(‖zk+1‖+ 2‖z̄‖+ ‖zk‖) = εkCk ,

with {Ck} bounded, where the final inequality follows from criterion (G). Hence

γ2
k

4
‖Dk(zk)‖2 ≤ ‖zk − z̄‖2 − ‖zk+1 − z̄‖2 + εkCk,

whereby we obtain the contradiction

0 <
β2

1β
2
2

4
≤ lim sup

J

γ2
k

4
‖Dk(zk)‖2

≤ lim
J

(‖zk − z̄‖2 − ‖zk+1 − z̄‖2 + εkCk) = µ(z̄)− µ(z̄) + 0 = 0 .

Therefore, limk ‖Dk(zk)‖ = 0.
Next let J ⊂ {1, 2, . . .} be such that the subsequence {zk}J converges weakly to

z∞, i.e., z∞ is a weak cluster point of the sequence {zk}. We show that z∞ must be
an element of T−1(0). From Proposition 3 a), we have that − 1

ck
Dk(zk) ∈ T (Pk(zk))

for all k; hence 0 ≤ 〈z−Pk(zk), w+ 1
ck
Dk(zk)〉, or equivalently, 〈z− zk−Dk(zk), w+

1
ck
Dk(zk)〉 ≥ 0 for all k and z, w with w ∈ T (z). Taking the limit over J yields the

inequality 〈z − z∞, w〉 ≥ 0 for all z, w with w ∈ T (z). Since T is maximal monotone,
we get 0 ∈ T (z∞).

Under the assumption that Γ = T−1(0), the argument showing that there is no
more than one weak cluster point of {zk} is identical to the one given by Rockafellar
in [41, Theorem 1].

Remark. To ensure the strong convergence of the sequence {zk}, one again re-
quires a growth condition on the inverse mapping T−1 in a neighborhood of the origin.
Rockafellar has shown that Lipschitz continuity of T−1 at the origin suffices for this
purpose [41, Theorem 2]. Other conditions can be found in the work of Luque [21,
Proposition 1.2]. The results of Rockafellar and Luque are easily extended to the
VMPPA.

7. Convergence rates.

7.1. Linear convergence. Just as in Rockafellar [41, Theorem 2], we require
that the operator T−1 is Lipschitz continuous at the origin in order to establish that
the convergence rate is at least linear.

Theorem 19. Let {zk} be any sequence generated by the VMPPA satisfying
both criteria (G) and (L) for all k. Assume that T−1 is Lipschitz continuous at the
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origin with modulus α and the solution set T−1(0) is a singleton {z̄}. If the sequence
{Hk} satisfies the hypotheses (H1) and (H2) with δk‖Hk‖ → 0, then the sequence {zk}
strongly converges to the solution and there is an index k̄ such that

‖zk+1 − z̄‖ ≤ σk‖zk − z̄‖ for all k ≥ k̄ ,

where σk satisfies lim supk→∞ σk < 1. That is, the convergence rate is linear.
Proof. By Theorem 17, we have ‖Dk(zk)‖ → 0. Hence, Part (ii) of Lemma 14

implies that {zk} converges strongly to z̄. We now establish the linear rate.
Let τ > 0 be as in Definition 4, and let k̃ be such that ‖ 1

ck
Dk(zk)‖ ≤ τ for all k ≥

k̃ . By Proposition 3 a) and the Lipschitz continuity of T−1 at 0, we have

‖Pk(zk)− z̄‖ ≤ α

ck
‖Dk(zk)‖ .(26)

Hence relation (14) and hypothesis (H2) yield

‖Nk(zk)− z̄‖ = ‖Pk(zk) + (Hk − I)Dk(zk)− z̄‖
≤ ‖Pk(zk)− z̄‖+ γk‖Dk(zk)‖ .(27)

Let ak := α
ck

+ γk. Using (26) and (27),

‖Nk(zk)− z̄‖ ≤
(
α

ck
+ γk

)
‖Dk(zk)‖ = ak‖Dk(zk)‖ .(28)

Let γ := 1
2(5+2α) . By Proposition 16 and Lemma 14 we have, for k ≥ k̃, that

‖Nk(zk)− z̄‖2 + γ2‖Dk(zk)‖2 ≤ ‖zk − z̄‖2 .(29)

By (28) and (29), when k ≥ k̃,

‖Nk(zk)− z̄‖2 ≤ ak2‖Dk(zk)‖2 ≤ ak
2

γ2
‖zk − z̄‖2 − ak

2

γ2
‖Nk(zk)− z̄‖2 .(30)

Let µk := ak√
a2
k
+γ2

. From (30) we have

‖Nk(zk)− z̄‖ ≤ µk‖zk − z̄‖ .(31)

By (31), criterion (L) (or (L′)), and Proposition 3 c),

‖zk+1 − z̄‖ ≤ ‖zk+1 −Nk(zk)‖+ ‖Nk(zk)− z̄‖
≤ δk‖Hk‖‖wk‖+ µk‖zk − z̄‖ ≤ δk‖Hk‖

1− δk ‖Dk(zk)‖+ µk‖zk − z̄‖

≤
(
δk‖Hk‖
1− δk + µk

)
‖zk − z̄‖ = σk‖zk − z̄‖ ,

where σk := δk‖Hk‖
1−δk + µk. Since there is a δ̃ > 0 such that µk < 1 − δ̃ for any

k, and δk‖Hk‖ → 0, we have σk < 1 for k sufficiently large. Moreover, we have
lim supk→∞ σk = lim supk→∞ µk ≤ 1− δ̃.
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7.2. Superlinear convergence. We now give an analogue of Dennis and Moré’s
[14] characterization theorem for the superlinear convergence of variable metric meth-
ods in nonlinear programming that applies to the VMPPA. This result is used in [6]
to establish the superlinear convergence of the VMPPA when the Broyden (nonsym-
metric case) or the BFGS (symmetric case) updating formula is used to generate the
matrices Hk.

Theorem 20. Let {zk} be any sequence generated by the VMPPA satisfying
criterion (L) for all k. Suppose that the operator T−1 is differentiable at the origin
with T−1(0) = {z̄} and ∇T−1(0) = J . If limk ‖Dk(zk)‖ = 0, then {zk} converges to
the solution z̄ superlinearly if and only if

[I − (I + 1
ck
J)H−1

k ](zk+1 − zk)

‖zk+1 − zk‖ → 0 as k →∞ .(32)

Remark. By Proposition 9 we have ∇D(z̄) = −(I + 1
cJ)−1. Consequently, condi-

tion (32) can be recast in the more familiar form given in [15, Theorem 8.2.4]. Note
that the assumption in (32) on the sequence {Hk} is much weaker than assuming that
this sequence converges. Specific choices of the linear transformations Hk satisfying
(32) are discussed in [6].

The proof of Theorem 20 requires the following lemma.
Lemma 21. Under the conditions in Theorem 20 we have
(a) T−1(−1

ck
Dk(zk))− z̄ − J(−1

ck
Dk(zk)) ⊂ o(‖zk − z̄‖)B, and

(b) (I + 1
ck
J)H−1

k (zk+1 −Nk(zk)) ∈ o(‖zk − z̄‖)B,
for all k sufficiently large.

Proof. For part (a), let δ > 0 be such that

T−1(w)− Jw − z̄ ⊂ o(‖w‖)B(33)

whenever ‖w‖ < δ. Let k̄1 be such that whenever k > k̄1, ‖Dk(zk)‖ ≤ δ. Then, by
(33) and Proposition 3 c), when k > k̄1,

T−1

(−1

ck
Dk(zk)

)
− z̄ − J

(−1

ck
Dk(zk)

)
⊂ o(‖Dk(zk)‖)B ⊂ o(‖zk − z̄‖)B .

We now prove (b). Note that Nk(zk) = (I +HkDk)(zk); hence by criterion (L)∥∥∥∥(I +
1

ck
J

)
H−1
k (zk+1 −Nk(zk))

∥∥∥∥ =

∥∥∥∥(I +
1

ck
J(wk −Dk(zk)

)∥∥∥∥
≤ (1 + ‖J‖)‖wk −Dk(zk)‖ ≤ δk(1 + ‖J‖)‖wk‖
≤ δk(1 + ‖J‖)

1− δk ‖Dk(zk)‖ .(34)

Therefore by (34) and Proposition 3 c),(
I +

1

ck
J

)
H−1
k (zk+1 −Nk(zk)) ∈ o(‖Dk(zk)‖)B ⊂ o(‖zk − z̄‖)B.

Proof of Theorem 20. Let z̃k+1 := Nk(zk) = (I + HkDk)(zk). By Proposition 3
a) we have z̃k+1 = zk −Hk(I + T−1 1

ck
)−1(zk). Hence

zk ∈
(
I + T−1 1

ck

)
[H−1

k (zk − z̃k+1)]

= H−1
k (zk − z̃k+1) + T−1

[
1

ck
H−1
k (zk − z̃k+1)

]
,
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or equivalently,

zk+1 − z̄ = zk − z̄ + (zk+1 − zk)

∈
[
T−1

(
1

ck
H−1
k (zk − z̃k+1)

)
− z̄ + (zk+1 − zk) +H−1

k (zk − z̃k+1)

]
=

[
T−1

(
1

ck
H−1
k (zk − z̃k+1)

)
− z̄ − J

(
1

ck
H−1
k (zk − z̃k+1)

)]
+

[
I −

(
I +

1

ck
J

)
H−1
k

]
(zk+1 − zk)

+

(
I +

1

ck
J

)
H−1
k (zk+1 − z̃k+1)

=

[
T−1

(−1

ck
Dk(zk)

)
− z̄ − J

(−1

ck
Dk(zk)

)]
+

[
I −

(
I +

1

ck
J

)
H−1
k

]
(zk+1 − zk)

+

(
I +

1

ck
J

)
H−1
k (zk+1 − z̃k+1) .(35)

By Lemma 21 the first and third of the three terms appearing on the right-hand side
of this inclusion can be bounded by an expression of the form o(‖zk − z̄‖)B. If (32)
holds, then [I − (I + 1

ck
J)H−1

k ](zk+1 − zk) ∈ o(‖zk+1 − zk‖)B . Therefore there are

positive sequences {α1k} and {α2k}, each converging to zero such that, for k > k̄1,

‖zk+1 − z̄‖ ≤ α1k‖zk+1 − zk‖+ α2k‖zk − z̄‖
≤ α1k(‖zk − z̄‖+ ‖zk+1 − z̄‖) + α2k‖zk − z̄‖
= α1k‖zk+1 − z̄‖+ (α1k + α2k)‖zk − z̄‖.

Let k̄2 > k̄1 be such that α1k <
1
2 for all k > k̄2. Then, denoting α1k+α2k

1−α1k
by τk,

‖zk+1 − z̄‖ ≤ α1k + α2k

1− α1k
‖zk − z̄‖ = τk‖zk − z̄‖

whenever k > k̄2, and τk → 0 as k →∞. Therefore {zk} converges to z̄ superlinearly.
Conversely, suppose that

lim
k→∞

‖zk+1 − z̄‖
‖zk − z̄‖ = 0 .(36)

Divide (35) by ‖zk − z̄‖ and let k →∞. From (36) and Lemma 21 we obtain

[I − (I + 1
ck
J)H−1

k ](zk+1 − zk)

‖zk − z̄‖ → 0 as k →∞ .

However, from (36) we have

‖zk − z̄‖
‖zk+1 − zk‖ ≤

‖zk − z̄‖
‖zk − z̄‖ − ‖zk+1 − z̄‖ =

1

1− ‖zk+1−z̄‖
‖zk−z̄‖

→ 1

as k →∞. Hence (32) holds.
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8. Concluding remarks. In this paper, we introduced a new PPA for solving
the inclusion 0 ∈ T (x), where T is an arbitrary maximal monotone operator. The
global convergence of the algorithm is demonstrated with an inexact solution at each
step. This is important in practice, since solving for the exact solution at each step is
impractical and may in fact be almost as difficult as solving the original problem. If it
is assumed that T−1 is Lipschitz continuous at the origin, then the method is shown to
be linearly convergent. If it is further assumed that T−1 is differentiable at the origin,
then the classical characterization of superlinear convergence due to Dennis and Moré
also holds for the VMPPA. In [6], this characterization of superlinear convergence is
applied to establish the super-linear convergence of the method when certain matrix
secant updating strategies are employed to generate the matrices Hk. In [5], we give
some of the implementation details in the case of convex programming. We show how
to apply the method to solve the associated primal, dual, and Lagrangian saddle point
problems. In particular, it is shown how the bundle technique [17] can be applied to
satisfy the approximation criteria (L) and (G) in both the primal and saddle point
solution techniques. Preliminary numerical results comparing these three approaches
are also presented.
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exposition. In particular, we would like to thank Professor Alfredo Iusem for observing
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Abstract. We consider the problem of optimizing the rate of decay of solutions of the linear
damped wave equation on a bounded interval. This corresponds to optimizing the spectral abscissa of
the associated linear operator. By writing the damping term as a Fourier cosine series and obtaining
some inequalities that the coefficients in this series have to satisfy in order that the spectral abscissa
be larger than a real number α, we are then able to use a genetic algorithm to obtain values of the
spectral abscissa which are better than those given by the constant damping case. This provides a
counterexample to the conjecture that the best possible decay was obtained for constant damping.
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1. Introduction. Let H be a Hilbert space and consider the system of differen-
tial equations

Autt +But + Cu = 0,(1.1)

supplemented by initial conditions, and where A,B, and C are self-adjoint linear
operators whose domain is dense in H, with A and C uniformly positive. When B
is the zero operator, and under suitable conditions on A and C, solutions of (1.1)
oscillate in time. Otherwise, the system is said to be damped, and depending on the
choice of B, solutions will converge to zero, become unbounded, or may still display
an oscillatory behavior [4, 5].

When B is a positive operator, the system is dissipative and solutions will, in
general, converge to zero. From the point of view of applications, the rate at which
this happens is quite important, and one normally distinguishes between two cases,
depending on the existence or not of real eigenvalues of the associated eigenvalue
problem. When such eigenvalues are not present, solutions will oscillate to zero. If
the operator B is large enough in some sense, then there will exist modes which are
associated with real eigenvalues and whose corresponding solutions are of the form
e−αtv, where α is some positive real number and v is an element of H.

The effect caused by increasing the damping can be illustrated by considering the
very simple case of the second-order ordinary differential equation

u′′ + 2bu′ + cu = 0,(1.2)

where b is now a real parameter and c is a fixed positive number. In this case it is well
known that while for both very small and very large values of b the decay of solutions
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is quite slow, there exists a critical value for which this rate of decay is optimal. This
value is given by bo = c1/2 and corresponds exactly to a double real eigenvalue at the
point of transition between complex and real eigenvalues. For values of b larger than
bo, the system is said to be overdamped.

This very simple situation suggests the following problem for the general case of
(1.1):

Consider (1.1) and assume that both A and C are given, together
with a set B of operators. Maximize over B the values of ω for which
all solutions of (1.1) satisfy

‖u‖H ≤ ke(δ−ω)t

for all positive values of t and all positive δ, where k is a positive
constant. Describe the subset of B corresponding to the optimum.

The reason for including the positive number δ in this description of the problem
is that, as can be seen in the simple example above, the optimal may correspond to a
multiple eigenvalue for which the corresponding solutions are of the form (c0 + c1t+
· · · + cmt

m)e−ωotv, for some v in H. If this is the case, then the inequality above
might not hold when δ is zero.

The previous simple one-dimensional example also highlights the fact that al-
though (1.1) is linear in u, the problem just described is nonlinear. Even in the
general case of a finite-dimensional space H, where A and C are real positive n × n
matrices, the problem is already much more complex than is the case for (1.2). This
situation has been addressed in [7], where it was shown that the optimal value ω is
given by

ωo =

[
det(C)

det(A)

]1/(2n)

and that this optimum is attained. A full description of the class of symmetric matrices
which are optimum is, however, unknown, except in the case where n is two.

As we have seen from the previous examples, this type of problem is related to
the maximization of the minimum of the negative of the real parts of the eigenvalues
of the quadratic pencil defined on H by

T (λ) = λ2A+ λB + C.

This value is usually referred to as the spectral abscissa of the pencil T (λ) and, in
general, it can only be guaranteed that it is greater than or equal to ωo (see [2] and the
references therein). Thus, in this version of the optimization problem the objective
is, given the operators A and C, to maximize the spectral abscissa and describe the
subset of operators B which are optimal.

When H is an infinite-dimensional Hilbert space, one of such optimization prob-
lems is related to the wave equation of the form

utt + 2b(x)ut = uxx(1.3)

on the interval J = (0, π), together with initial conditions and homogeneous Dirichlet
boundary conditions, and with b ∈ L∞(0, π). This problem and the related question
of studying the distribution of the eigenvalues of the corresponding quadratic pencil
have received much attention in the literature recently [1, 2, 3, 6, 8]. In [3], for
instance, it has been proven that within the class of all damping terms which satisfy
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0 ≤ b ≤ 1, the constant damping term b(x) ≡ 1 is optimal. Later, it was shown
in [2] for the case of a general open bounded connected set D of Rn that the constant
damping term is a critical point of the function

Ω(b) = inf
λ∈ΣT

[−Re(λ)] ,

where ΣT denotes the spectrum of the pencil T . More precisely, letting bo denote
the square root of the first eigenvalue of −∆ on D, and given b1 in L∞(D), they
showed that the function ε → µ(ε) = Ω(bo + εb1) is strictly decreasing in [0, δ] for
some positive δ. However, due to a lack of a uniform lower bound for δ = δ(b1), this
does not necessarily imply that it is a local optimum. The authors then conjectured
that this was in fact the optimal value of the spectral abscissa and that the optimal
damping was constant. More recently, some numerical evidence was presented in [1]
to support this conjecture.

The main purpose of this paper is to give numerical evidence, supported by some
rigorous results, that this conjecture is in fact false and that there exist functions b
which give a better decay than the constant damping.

In order to do this, we shall perform a spectral approximation of (1.3) based on
a Fourier sine series of the unknown and then study the corresponding optimization
problem in finite dimension. It should be remarked that this last step is not equivalent
to solving the finite-dimensional problem mentioned above, as now the entries of the
matrix obtained in the discretization process are not independent. The reason for
opting for a spectral method lies in the fact that we are interested in a global property
of the spectrum and not just in a small number of eigenvalues.

A crucial step in the whole process is the use of a Fourier cosine series for the
damping coefficient b. This makes the equation resemble the well-known (complex)
Hill equation, except that here we are dealing with different boundary conditions.
The fundamental role of the first of the coefficients in the series—the average—in the
asymptotic distribution of the high frequencies is well known (see, for instance, [3, 8]).
Here we show that the other coefficients also play an important part and that an
adequate way of looking at this problem in one dimension is to consider the effect of
each of these coefficients on the spectrum. In particular, one of the main results in
the paper shows that in order to increase the value of the spectral abscissa more and
more terms in the series have to be considered.

One aspect of the optimization process that also has to be taken into consideration
at this point is that the optimal value in such problems quite often corresponds to
eigenvalues of high multiplicity. In the finite-dimensional problem, for instance, the
optimum is achieved precisely when the spectrum consists of a single eigenvalue of
maximum multiplicity. This implies that the function Ω described above will not be
differentiable at such points. Furthermore, it may even happen that there will exist
only one Jordan block associated with this eigenvalue, as can again be the case in the
finite-dimensional problem considered in [7].

All this means that the choice of algorithms used for the optimization might be
critical. Taking into account that the structure of this type of problem is not very
well understood, and that in the case of (1.3) it is not even known if a finite optimum
exists, the choice to use a genetic algorithm in the numerical optimization procedure
arises naturally. These algorithms tend not to give the actual optimum, but, on the
other hand, they quickly improve the starting value. Since the main purpose here is
to provide a counterexample, this seems to be the right choice. Also for the same
reason, we shall not go into much detail about the algorithm, although the main steps
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will be indicated. For a comprehensive treatment of this type of algorithms see, for
instance, the books by Holland [10], Goldberg [9], or Michalewicz [12].

The paper is divided into three parts. In the first part (sections 2, 3, and 4), we
state the problem and establish some rigorous results which in some sense show the
direction that should be pursued in the numerical study. In the second part (sections 5
and 6), we briefly describe the algorithm and present the numerical results obtained.
Finally, in section 7 we discuss the results obtained.

2. Statement of the problem and main results. Consider the self-adjoint
quadratic pencil in L2(0, π)

T (λ) = λ2I + 2λb(x)− ∂2

∂x2

with domain H = H2(0, π) ∩ H1
0 (0, π), and denote by ΣT its spectrum, that is, the

set of complex values of λ for which T does not have a bounded inverse with dense
domain. In this instance, the spectrum is formed only by eigenvalues:

ΣT = {λ ∈ C : T (λ)u = 0, u 6= 0}.
We now define the function Ω : L∞ → R by

Ω(b) = inf
λ∈ΣT

[−Re(λ)] .

For each function b in L∞, the function above gives the corresponding spectral ab-
scissa. In the one-dimensional case, this coincides with the uniform rate of decay of
the solutions of (1.3) (see, for instance, [3]), and so by maximizing Ω we are optimizing
the asymptotic rate of decay of solutions. The optimization problem then reduces to
finding

ωo = sup
b∈L∞

[Ω(b)] .(2.1)

Although there are some results when further restrictions are imposed on the set
where b is allowed to vary (see [3, 1]), for the full general problem described here, it
is not even known whether ωo is finite or not.

The procedure used here highlights the fact that the coefficients in the Fourier
cosine series of the damping term are fundamental in the values that the spectral
abscissa might take, and the main results of the paper along these lines are given in
Theorem 4.2 and Corollaries 4.3 and 4.4. In particular, Corollary 4.3 gives intervals
where each of the terms up to a certain order in the Fourier cosine series have to lie
for the spectral abscissa to be larger than a certain value. This also establishes a
hierarchy within these coefficients, showing their relative importance; note that this
is not the case for, say, the Fourier sine coefficients of b.

Taking these results into account, we then obtain numerical evidence that the
constant damping is in fact not optimal, by producing several examples with different
sets of nonzero Fourier coefficients for which the corresponding spectral abscissa im-
proves the value obtained for b(x) ≡ 1. These numerical results can be complemented
with the asymptotics for the spectrum from [3, 8] to provide reliable evidence of this
fact.

3. The discretized problem. We discretize (1.3) by means of a Fourier sine
series on the interval (0, π), in order to obtain a finite-dimensional approximation to
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the optimization problem (2.1). Writing

u(x, t) =
∞∑
k=1

uk(t) sin(kx)

with

uk(t) =
2

π

∫ π

0

u(x, t) sin(kx)dx,

we are thus led to the following infinite system of ordinary differential equations for
the Fourier coefficients of u:

u′′k(t) + 2
∞∑
j=1

bjku
′
k(t) + k2uk(t) = 0,

where

bjk = bkj =
2

π

∫ π

0

b(x) sin(jx) sin(kx)dx.

So that we can obtain a manageable expression for these coefficients, we now expand
the function b into a Fourier cosine series, that is,

b(x) =
b0
2

+
∞∑
k=1

bk cos(kx),

with

bk =
2

π

∫ π

0

b(x) cos(kx)dx, k = 0, 1, . . . .

Then

bjk =
b0
2
δjk +

2

π

∞∑
m=1

bm

∫ π

0

cos(mx) sin(jx) sin(kx)dx

=
b0
2
δjk +

1

π

∞∑
m=1

bm

[∫ π

0

cos(mx) [cos((k − j)x)− cos((k + j)x)]

]
dx

=
b|k−j| − bk+j

2
,

where δjk denotes the Kronecker symbol. This can be summarized in the following
proposition.

Proposition 3.1. Let bk, k = 0, 1, . . . , denote the Fourier cosine coefficients
of the function b on the interval (0, π). Then the nth-dimensional truncation of the
discretized wave equation can be written as

U ′′n (t) +BnU
′
n(t) + CnUn(t) = 0,

where

Bn =


b0 − b2 b1 − b3 b2 − b4 · · · bn−1 − bn+1

b1 − b3 b0 − b4 b1 − b5 · · · bn−2 − bn+2

b2 − b4 b1 − b5 b0 − b6 · · · bn−3 − bn+3

...
bn−1 − bn+1 bn−2 − bn+2 bn−3 − bn+3 · · · b0 − b2n

(3.1)
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and Cn = diag{1, 4, . . . , n2}.
This is a known result, but no specific reference to it could be found in the

literature.
The finite-dimensional problem obtained can now be written in the same manner

as before, in terms of the optimization of the spectral abscissa of a quadratic pencil
of matrices. To this end, define

Ln(λ) = λ2I + λB + C

with B and C as in the previous proposition (in what follows we shall drop the indexes
on the matrices) and let ΣnL denote its spectrum. The matrix B now belongs to a
linear subspace of the space of symmetric n× n matrices. We shall denote this space
by Bn and consider the function Ωn : Bn → R by

Ωn(B) = min
λ∈Σn

L

[−Re(λ)] .

For each matrix B in Bn, this function gives the corresponding spectral abscissa—
note that C is fixed—and minimizing the rate at which solutions decay to zero then
becomes equivalent to determining

ωno = sup
B∈Bn

[Ωn(B)] .

4. Conditions on the coefficients bj. We now present some results that em-
phasize the importance of the coefficients in the Fourier cosine series for b. The idea
is that just like the average of b controls the real part of the high frequencies, the
remaining coefficients in the Fourier cosine series play an important role in how large
the spectral abscissa can be.

Lemma 4.1. If Ω(b) > α0 for some α0, then 〈T (−α)u, u〉 > 0 for all u ∈ D(T )
and all α ≤ α0.

Proof. If T (−α) were not a positive operator, its smallest eigenvalue would clearly
be nonpositive. This implies that the first eigencurve of T (λ), that is, the curve
described by the first eigenvalue of T (λ) as λ varies over R, would take a nonpositive
value for λ equal to −α. As this eigencurve is continuous and will be above the
horizontal axis for large enough (real) λ, there would have to exist a number λ0 larger
than or equal to −α such that T (λ0) would have a zero eigenvalue. In other words,
ΣT would contain a point λ0 satisfying λ0 ≥ −α ≥ −α0 and then Ω(b) ≤ α0.

Using this result, we can now prove a relation between the first coefficients in the
series for b and the maximum possible value for the spectral abscissa.

Theorem 4.2. If Ω(b) is larger than an integer k, then |b0 − b2j | < 2j for
j = 1, . . . , k.

Proof. If Ω(b) > k, then the previous lemma gives that 〈T (−α)u, u〉 > 0 for all α
smaller than or equal to k and all u in H. In particular, for u = sin(jx) this yields
that

α2 − (b0 − b2j)α+ j2 > 0, α ≤ k.
If |b0 − b2j | ≥ 2j for some j, then the polynomial above has a real root at

α− =
b0 − b2j −

√
(b0 − b2j)2 − 4j2

2
.

If b0 − b2j > 2j, then the maximum possible value for α− is j, and is attained when
b0−b2j = 2j. By the previous lemma this polynomial has to be positive for α ≤ k, and
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thus it follows that b0−b2j must be smaller than 2j for j = 1, . . . , k. If b0−b2j < −2j,
then α− will be negative and a similar argument applies.

This result also highlights the importance of the coefficients corresponding to
the even (around π/2) functions in the series. However, by itself it is not enough
to show that the coefficients must be increased in order to increase the value of the
spectral abscissa. In order to show that, we need the fact that the real part of the
high frequencies clusters around minus the average of the function b, which, in this
case, corresponds to b0/2.

Corollary 4.3. If b is in BV (0, π) and Ω(b) is larger than a real number α,
then b0 is larger than 2α and the coefficients b2j satisfy

b0 − 2j < b2j < b0 + 2j

for j = 1, . . . , k, where k is the largest integer not exceeding α.
Proof. From [3, 8] we know that the real parts of the eigenvalues converge to−b0/2

as the imaginary part of the eigenvalues grows to infinity. Thus if Ω(b) is larger than
α, we must have b0 larger than 2α. Since, by the previous theorem, |b0 − b2j | is
smaller than 2j for j = 1, . . . , k, it follows that b2j must satisfy the inequalities.

We shall now consider the simple but important implications of this result. The
eigenvalues of the operator C = −∂2/∂x2 on the interval (0, π) and with homogeneous

Dirichlet boundary conditions are γj = j2, j = 1, 2, . . . . When b = γ
1/2
1 = 1, all

eigenvalues have the same real parts which are equal to −1. If a damping term b

exists for which Ω(b) is larger than γ
1/2
1 , then b0 must be larger than 2γ

1/2
1 and it

follows that b2 must satisfy

0 < b0 − 2 < b2 < b0 + 2.

In other words, if a damping term has a coefficient in cos(2x) which is smaller than
or equal to zero, then the corresponding spectral abscissa has to be smaller than or

equal to γ
1/2
1 . This can be stated as follows.

Corollary 4.4. If b is such that

b2 =
2

π

∫ π

0

b(x) cos(2x)dx ≤ 0,

then Ω(b) is smaller than or equal to 1.
In particular, if a function has a zero component in cos(2x), then Ω can be at most

1. Clearly similar results can be stated for the other Fourier coefficients. However, it
should be kept in mind that the interest of this type of result for j larger than one
will depend on whether Ω is unbounded or not.

5. Brief description of the algorithm. Genetic algorithms are a relatively
new tool in optimization problems, with their first systematic presentation probably
dating only as far back as 1975 with Holland’s book [10]. Because of this, and also
because of their nature, there are several possible choices to be made when using
an algorithm of this type. Apart from the standard options, such as whether to use
floating-point or binary representations, fixed of varying population sizes, etc., there
are many others which normally depend on the problem in question. In this section
we describe some of the choices which were made in this case, and also some of the
main points related to the tuning of the algorithm.

The algorithm acts on a population with a fixed number p of vectors with m com-
ponents, βj = (βj1, . . . , βjm), j = 1, . . . , p, representing the Fourier cosine coefficients
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of the function b up to order m. In this respect, we have opted for a floating-point
version of the algorithm instead of using a binary representation. These vectors are
generated randomly at the beginning of each run, being weighted in order to impose
a decay as k increases. In the cases presented in section 6, some of the components of
each randomly generated vector were forced to be zero, while the nonzero components
βjk were uniformly distributed on intervals of the form [−rs/(k+1), r(1−s)/(k+1)],
where typically r and s where chosen to be, respectively, 10 and .3. This corresponds
to considering functions whose Fourier coefficients roughly decay with 1/k.

At each iteration the population is evaluated and a number nr of vectors—those
whose corresponding value of Ωn is the smallest—are replaced by linear combinations
of pairs of the members of the population—called arithmetical crossover. Once a
vector has been in existence for a certain number of iterations, it will also be replaced,
either by another linear combination or by a new randomly generated vector.

The main steps in each iteration can thus be described roughly as follows:
1. evaluation of the fitness of each vector over the total population,
2. generation of new vectors by means of arithmetical crossover to replace those

with poorest performance in step 1,
3. replacement of the older vectors either by arithmetical crossover or by the

introduction of new randomly generated vectors.
In the actual simulations, the size of the population p was taken to be 20 and that

of nr to be nine. The relation between these parameters turned out to be critical for
the performance of the algorithm, in the sense that both smaller and larger values of
nr made the number of iterations necessary to attain a certain value much larger.

6. Numerical results. In this section we present a series of results obtained
by running the algorithm for different choices of the set of nonzero Fourier cosine
coefficients. The results obtained for eight trials are shown in Table 1. The best
values for Ω obtained during each trial are given, together with the nonzero coefficients
of the corresponding damping term. In general, the larger the number of nonzero
coefficients used, the larger the corresponding value of Ω obtained. To keep numerical
accuracy, the order of the coefficient corresponding to the highest frequency used was
always kept much smaller than the order of the truncation. Typically, the value of n
used varied between 15 and 30 during the runs, while the value of the best spectral
abscissa obtained was then checked for n equal to 100. One of the features of the
spectral method employed is that, with the exception of a few (one to four pairs in
the cases tried) spurious eigenvalues in the highest frequencies, which, in any case,
never deviated much from their real value, all the other eigenvalues are practically
coincident for different values of n. This, together with the asymptotic behavior of
the eigenvalues, ensured that the value obtained for the spectral abscissa remained
constant when n was increased which makes it possible to compare different damping
terms for relatively low values of n.

The first example shows that a damping term of the form b0/2 + b2 cos(2x) is
already sufficient to obtain a spectral abscissa greater than the best value obtained for
the case of constant damping (Ω(1) = 1). This case corresponds to a Mathieu equation
with homogeneous Dirichlet boundary conditions and with complex coefficients which
are not independent:

uxx + [w − z cos(2x)]u = 0,
w = −λ(b0 + λ),
z = 2b2λ.
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Table 1
Values of Ω for different damping terms.

i ii iii iv v vi vii viii

b0 3.1133 3.0083 3.4063 3.5366 3.5755 3.5191 3.5483 3.5692
b1 0.2047
b2 1.4896 1.3644 1.8130 2.0046 2.0528 1.9950 2.0312 2.047
b4 0.3930 0.5013 0.5450 0.4934 0.5314 0.5626
b6 0.1843 0.2420 0.1654 0.2057 0.2050
b8 −0.0365 −0.0571 −0.0897 −0.0513
b10 −0.0939 −0.0645 −0.1105
b12 −0.1343 −0.0316
b14 −0.0420 −0.0783
b16 0.0082 −0.0488
b18 0.1382 0.0406
b20 0.0916
b22 0.2101
b24 −0.0433
b26 0.0553
b28 0.0417
b30 0.2643
b32 −0.1077
b34 0.1589
b36 0.1110
b38 0.2038

Ω 1.2869 1.3146 1.3984 1.5055 1.5353 1.5358 1.5675 1.5712

In the second example, we introduced an odd term, b1 cos(x), which allowed for
an improvement. However, in general, the introduction of the odd terms, although
improving the value of Ω, did not do so in a significant manner when compared to
the introduction of higher-order even terms. The other examples in Table 1 are those
obtained by considering even higher-order coefficients in the series.

In Figures 6.1 and 6.2, we have plotted the different spectra corresponding to
these damping terms. We considered n to be 100 in order to evaluate the spectral
abscissa in each case, but plotted only 120 eigenvalues. Of the remaining 80, with the
exception of about 8 (spurious) eigenvalues, they are all situated near the asymptotic
line for the real part. In any case, the spurious eigenvalues are also quite close and
do not affect the value of Ω.

The effect of introducing more terms in the series is quite visible in that this will
increase the number of low-frequency eigenvalues which get further and further away
from the vertical line Re(λ) = −b0/2.

In Figure 6.3 we show the plots of some of the graphs corresponding to these
damping terms.

7. Discussion. By writing the damping term in the wave equation as a Fourier
cosine series, we have been able to relate these coefficients to the value of the corre-
sponding spectral abscissa. Based on this, and by successively adding more terms to
the series, it has been possible to construct damping terms which give a better value of
the spectral abscissa than the constant damping. Due to the fact that the real parts of
the high frequencies are asymptotically close to −b0/2, and that the numerical results
give only a very small number of eigenvalues which are away from this vertical line
and which converge very fast, we believe these results to be quite reliable.
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Fig. 6.1. Spectra for cases i–iv.
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To prove in a rigorous way that this is in fact the case, one would have to pro-
ceed in two steps. First consider a ball B containing a number 2p of eigenvalues in
such a way that the estimates for the eigenvalues outside B imply that their real
parts are sufficiently close to −b0/2. Then show that the eigenvalues given by the
spectral approximation method considered converge to the eigenvalues of the original
problem and obtain estimates for this convergence. After determining an order of
the approximation which is sufficient to ensure that the approximate eigenvalues are
close enough to the eigenvalues inside B, the desired result could be obtained. The
second step indicated is fairly standard and methods for this type of problem can be
found, for instance, in [11] (see also [13]). In particular, it is possible to obtain that
Ωn(B) converges to Ω(b). However, the estimates given in [8] for a general damping
term and which are needed in order to determine the order p above which the eigen-
values outside B are close enough to the vertical line Re(λ) = −b0/2 are, from this
point of view, quite poor. This makes the dimensions of the matrices that would have
to be considered too high, and so either better estimates can be obtained for these
particular cases or another line of approach has to be considered.

From a certain point onward it can be seen that the introduction of more terms in
the Fourier series produces only a negligible increase in the best value of Ω obtained.
There are several distinct reasons why this might be so. In the first place, it could



386 PEDRO FREITAS

Pi/2 Pi

i

-1
0

3

5

Pi/2 Pi
v

-1
0

3

5

Pi/2 Pi

vii

-1
0

3

5

Pi/2 Pi

viii

-1
0

3

5

Fig. 6.3. Graphs of b for cases i, v, vii, and viii.

happen that the function Ω is in fact bounded from above, and that the values ob-
tained are actually quite close to the optimum. Second, it might be possible that this
algorithm ceases to be adequate at some stage due to a lack of capacity to negotiate its
way past critical points other than the optimum; note that in all the runs the vector
found always gave rise to a pair of eigenvalues which were very close to a double real
eigenvalue with geometric multiplicity one. Finally, and related to this, it may also
happen that the algorithm will have problems in getting the coefficients to lie in the
desired intervals given by the results in section 4.

Regarding the shape of the damping terms given in section 6, there are several
points worth noticing. To begin with, in all examples the way used to improve the
spectral abscissa is by increasing the damping near the boundary and decreasing it in
the middle of the interval. This becomes more noticeable as the number of nonzero
terms grows. It also has the effect of making the minimum smaller and smaller, until
it actually becomes negative. In the case of examples vii and viii, where, respectively,
even terms up to b18 and b38 were included, and which gave a better value than
those of the trials with less nonzero terms (Ω(b) = 1.5675 and Ω(b) = 1.5712), the
corresponding damping terms obtained take negative values (see Figure 6.3). A similar
phenomenon is already present in the finite-dimensional case treated in [7], where
for some given matrices C the solution to the optimization problem is obtained for
damping matrices which are indefinite (and in some cases only for these). From the
results in [6], we know that if b is a damping term which changes sign, then the trivial
solution of the equation

utt + 2pb(x)ut = ∆u,

where p is a real parameter, will become unstable if p is made large enough. This
means that for this specific damping term, increasing the parameter p will first have
the effect of moving all of the spectrum to the left side past the vertical line Re(λ) =
−1.5 for p close to one and then bringing some of the eigenvalues to the right-hand
side of the complex plane for p large enough.

As is mentioned in the introduction, the main idea behind the numerical results
presented here is to give a counterexample to the constant damping conjecture. In
this sense, these should only be seen as a beginning to a more thorough study of the
problem, both from the analytical and numerical points of view, but now from the
perspective that the optimum is in fact not attained at the constant damping. In
some sense, this is a characteristic use of genetic algorithms. As has been pointed
out in [10], for instance, such algorithms can be quite useful in performing an initial
search, selecting a subset of the whole possible space which is likely to contain the
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optimum. After that, the optimization process should be handed over to a procedure
that takes advantage of the specific structure of the problem.
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Abstract. This paper develops a theory of control for distributed systems (i.e., those defined by
systems of constant coefficient partial differential operators) via the behavioral approach of Willems.
The study here is algebraic in the sense that it relates behaviors of distributed systems to submodules
of free modules over the polynomial ring in several indeterminates. As in the lumped case, behaviors
of distributed ARMA systems can be reduced to AR behaviors. This paper first studies the notion of
AR controllable distributed systems following the corresponding definition for lumped systems due
to Willems. It shows that, as in the lumped case, the class of controllable AR systems is precisely the
class of MA systems. It then shows that controllable 2-D distributed systems are necessarily given
by free submodules, whereas this is not the case for n-D distributed systems, n ≥ 3. This therefore
points out an important difference between these two cases. This paper then defines two notions of
autonomous distributed systems which mimic different properties of lumped autonomous systems.

Control is the process of restricting a behavior to a specific desirable autonomous subbehavior.
A notion of stability generalizing bounded input–bounded output stability of lumped systems is
proposed and the pole placement problem is defined for distributed systems. This paper then solves
this problem for a class of distributed behaviors.

Key words. distributed systems, systems of partial differential equations, controllability, sta-
bility, pole placement

AMS subject classifications. 93C20, 93C35, 35B37, 35E20
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1. Introduction. In this paper we develop a theory of control of distributed
systems patterned after the behavioral approach for lumped systems in Willems [10,
11]. Thus we study the control of behaviors of systems of linear, constant coefficient
partial differential operators. In this paper, we demonstrate that, while behaviors of
distributed systems are similar to the behaviors of lumped systems in some respects,
there are nonetheless many points of departure between the two cases, especially in
the techniques employed to arrive at the results. This is essentially due to the fact that
lumped systems are defined over a principal ideal domain (PID), whereas distributed
systems are not.

In [10], Willems initiates his approach to the study of systems by first considering
ARMA systems. (We adopt the terminology there to define various systems like
ARMA, AR, and MA systems, which are again formally defined in section 2 below.)
He establishes an “elimination theorem” for ARMA systems; i.e., he proves that every
ARMA system is equivalent to an AR system. This follows from the fact that every
submodule of a free module over the principal ideal domain R[ ddx ] is free. On the
other hand, the elimination theorem for distributed systems requires the celebrated
Ehrenpreis–Palamodov theorem (see Oberst [5, Corollary 38] for a constructive proof).

Our study of distributed systems is algebraic in the sense that we set up a corre-
spondence between smooth behaviors and submodules of free modules over polynomial
rings (in several indeterminates). That this correspondence is one to one is the content
of a hard theorem of Oberst [5] and is in fact a central result of his seminal paper.
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The main body of this paper starts with a study of controllable systems. Our
definition of controllability is patterned after Willems’s definition for 1-D systems in
[10, 9, 11] and that for discrete 2-D systems in [6]. (Following the spirit of Willems’s
work, our notion of controllability does not rely on any input-output structure.) We
show that every MA system is controllable. We obtain a necessary and sufficient
condition for an AR system to admit an MA representation. This condition allows us
to conclude that every controllable AR system is MA. Thus the class of distributed
controllable AR systems is precisely the class of MA systems. We also show that a sub-
module corresponding to such a system is maximal amongst the class of submodules
with the same compactly supported behavior.

While every lumped behavior is of course given by a free submodule (as observed
above), Rocha and Willems [6] show that every controllable 2-D discrete system is
also given by a free submodule, which here corresponds to a system given by a left
prime matrix. This is an important result, for free submodules over polynomial rings
occupy a central position and geometrically correspond, by Serre, Quillen, and Suslin,
to the class of vector bundles over affine space. In what we consider an important
counterexample, we show that controllable AR distributed n-D systems for n ≥ 3 are
not necessarily given by free submodules. The same example also shows that systems
described by left prime matrices need not be controllable. That such an example
exists, we explain, is due to the fact that the global dimension of the ring R[∂1, ∂2, ∂3]
over which 3-D systems are defined is 3. We show that such examples cannot occur
if the global dimension of the ring over which the system is defined is less than or
equal to 2. This therefore extends the result of Rocha and Willems on 2-D discrete
systems alluded to earlier to 2-D distributed systems as well. These results follow
from a necessary and sufficient condition which describes when a controllable system
is given by a free submodule.

Given a behavior B, corresponding to a submodule, say R of (R[∂1, . . . , ∂n])k,
we wish to study subbehaviors of B. These subbehaviors come from submodules of
(R[∂1, ∂2, . . . , ∂n])k containing R. By extending some set of generators of R to a set
of generators of a submodule of (R[∂1, ∂2, . . . , ∂n])k containing R, it is possible to
restrict B to any subbehavior contained in it. Of all the subbehaviors contained in
B, we are interested primarily in a special class of behaviors which are analogous to
autonomous behaviors of lumped systems. Restriction to such behaviors is the process
of control. The above description explains the process of control for AR systems. We
also translate this procedure to the case of MA systems.

Recollect from Willems [10, 9, 11] that an autonomous lumped behavior is one
given by a submodule of (R[ ddx ])k of rank k. Such a behavior is a finite-dimensional
R-vector space. In the case of distributed systems, as shown in this paper, these two
properties of a behavior need not coincide. This is essentially due to the fact that
a subvariety of C (if not all of C) is a finite set of points, whereas this is certainly
not the case in Cn, n ≥ 2. As a result we introduce two kinds of autonomous
behaviors to capture the above properties of a lumped autonomous behavior. By
the first notion, the behavior of a single partial differential operator is autonomous,
whereas the second notion of autonomy (namely, what we call a strongly autonomous
system) implies a finite-dimensional behavior. Thus a strongly autonomous behavior
resembles the behavior of a lumped autonomous system.

We generalize the notion of bounded input–bounded output stability of lumped
behaviors by replacing the positive time axis by a (proper) cone S in Rn whose apex
is the origin. A behavior is considered stable if the elements in it tend to zero along
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all directions in S. We show that a stable behavior must necessarily be autonomous.
A stabilizing controller is one which restricts the behavior to a (nonzero) subbehavior
stable with respect to S. We show that a controllable behavior can be stabilized with
respect to any cone S. We also define the more general pole placement problem for
AR systems. We solve this problem for a subclass of AR systems.

Our paper also contains what we feel are illuminating examples which point to the
complexities of the behaviors of distributed systems. Moreover, since our approach to
the study of distributed systems is algebraic, it makes available computational tech-
niques from commutative algebra (Gröbner basis, etc.), although we do not directly
address such issues here.

2. Preliminaries. In the notation of [10, 11], we consider systems of the form
(Rn,Rk,B), where B is a subspace of (D′)k, the space of Rk-valued distributions
on Rn. (In its stead we sometimes consider subspaces of (C∞)k, Dk, etc.) These
subspaces B are the behaviors of distributed ARMA systems which we now define.

Let

R : (D′)k → (D′)l(1)

and

M : (D′)m → (D′)l(2)

be continuous local E ′-module morphisms, where E ′ is the space of compactly sup-
ported distributions on Rn. Note that (D′)p is an E ′-module for all p, where the action
of E ′ on (D′)p is given by componentwise convolution, i.e.,

f ∗ (v1, . . . , vp) = (f ∗ v1, . . . , f ∗ vp)

for f in E ′ and (v1, . . . , vp) in (D′)p. We therefore require that R(f ∗ (u1, . . . , uk)) =
f ∗ R(u1, . . . , uk), and similarly for M . (In this paper we follow the notation in
Hörmander [2], except that we use D to denote the space of compactly supported
(complex valued) smooth functions instead of C∞0 .)

It follows then that the kernel of R as well as the image of M are E ′-submodules
of (D′)k and (D′)l, respectively. Hence both the kernel of R as well as the image of M
are subspaces that are shift invariant, i.e., closed under translations (take f above to
be δx, the Dirac measure supported at x in Rn). By local we mean that the support of
R(v) is contained in the support of v (and similarly for M), where for v = (v1, . . . , vp)
in (D′)p, the support of v is the union of the supports of vi, i = 1, . . . , p .

The behavior B of the ARMA system (R,M) defined by the maps (1) and (2) is
the subspace of (D′)k consisting of those distributions that are mapped by R into the
image of M , that is,

B = {u ∈ (D′)k | Ru ∈ Im(M)}.

As R is local, we have the restriction map

R1 : (E ′)k → (E ′)l

which is also continuous. We write a matrix for R1, say (rij), with respect to the
standard bases e1, . . . , ek and f1, . . . , fl on (E ′)k and (E ′)l, respectively, where ei =
(0, . . . , δ, 0, . . . , 0) (δ in the ith slot) and similarly for the fj ’s. As R1 is local, the R1ei’s
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are all supported at the origin, and hence each rij is also supported at the origin.
Thus each rij is an R-linear combination of δ and its derivatives (see Hörmander [2,
Theorem 2.3.4]). We can therefore consider each rij as the corresponding constant
coefficient partial differential operator. Then the action of R1 on (E ′)k is given by

R1(u1, . . . , uk) =

(
k∑
i=1

r1i(ui), . . . ,
k∑
i=1

rli(ui)

)
.

By density of (E ′)k in (D′)k, R is the unique extension of R1 and thus admits the
same matrix representation (rij). This same matrix also represents the restriction
of R to the submodules (C∞)k, Dk, etc. These considerations also hold for the map
M yielding a matrix representation (mij) for it. We therefore, in this paper, study
behaviors of distributed ARMA systems, that is, behaviors defined by systems of
constant coefficient partial differential operators.

It is also of interest to consider, as in [10, 11], special cases of ARMA systems,
namely MA and AR systems. MA systems are those systems for which k = l and R
is the identity morphism in (1). Thus an MA behavior is the image of an E ′-module
morphism M . On the other hand, those behaviors that are kernels of E ′-module
morphisms are called AR behaviors and correspond to the case when M in (2) is the
zero map. In [10], Willems proves an elimination theorem for lumped systems that
states that the C∞ behavior of an ARMA system is equivalent to the C∞ behavior of
some AR system. An elimination theorem for distributed systems follows from the
Ehrenpreis–Palamodov theorem, which we also use elsewhere in this paper. We now
state this theorem in the notation that we employ.

Let (R,M) be an ARMA system and let (rij) and (mij) be the matrix represen-
tations for R and M , respectively, described above. Let A denote the commutative
ring R[∂1, . . . , ∂n], that is, the polynomial ring in the variables ∂1, . . . , ∂n, where ∂i is
the partial derivative in the ith direction xi. Thus the entries of the above matrices
are from the ring A. Consider the set Q of all relations of the rows of (mij), that is,
the set of all l-tuples (q1, . . . , ql) in Al such that

l∑
i=1

qimij = 0, j = 1, . . . ,m.(3)

This set Q is clearly a submodule of Al. We now quote the theorem of Ehrenpreis–
Palamodov from Hörmander [3, Theorem 7.6.13].

THEOREM (Ehrenpreis–Palamodov). Let f be in (C∞)l. Then there exists a u in
(C∞)m such that M(u) = f iff q(f) = 0 for all q in Q, the module of relations of the
rows of M , i.e., the rows of (mij).

Remark. The Ehrenpreis–Palamodov theorem is valid in many other distribution
spaces; see chapter 15 of Hörmander [2]. That it is also valid for D′ is a consequence
of a result of Oberst [5] which states that D′ is an injective cogenerator.

Corollary 1 (the elimination theorem). The C∞ (or D′) behavior of an ARMA
system is the same as the C∞ (or D′) behavior of some AR system.

This elimination theorem appears in Oberst [5], where there is in fact a construc-
tive proof for it. Thus it suffices to study behaviors of AR systems.

Consider now the AR system defined by the map R in (1) represented by the
matrix (rij). Consider each row of R as an element of the free A-module Ak. In what
follows we consider each element p = (p1, . . . , pk) in Ak as an E ′-module morphism

p : (D′)k → D′,
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(u1, . . . , uk)→
∑
i

pi(ui).

We also consider restrictions of the above morphism

p : (W )k →W,

where W is any E ′-submodule of D′, for instance C∞, D, or E ′ itself. Correspondingly,
we obtain the restrictions of R to the submodules (W )k. Let u = (u1, . . . , uk) be in the
behavior B which is the kernel of R or, more generally, the kernel of its restriction to
(W )k. It then follows that this u is in the kernel of every p in the submodule R of Ak
generated by the rows of R. Thus associated with a behavior in (W )k is a submodule
of Ak. Conversely, given a submodule R of Ak, we obtain a behavior consisting of
those u in (W )k that lie in the kernel of every p in R. As Ak is Noetherian, R is
finitely generated, say by p1, . . . , pl. The behavior corresponding to R can then be
thought of as the kernel of a map R : (W )k → (W )l given by a matrix whose rows are
p1, . . . , pl. Thus given an E ′-submodule W of D′, this establishes a correspondence
between behaviors in W k and submodules of Ak.

The principal idea in this paper is to exploit this correspondence to deduce prop-
erties of behaviors in terms of submodules of Ak. This makes our study of behaviors of
distributed systems tractable; note that Ak is a Noetherian A-module whereas (W )k

is not finitely generated as an E ′-module when W is D, D′, or C∞.
We now elaborate on this correspondence between behaviors and submodules

of Ak. Thus given a behavior B ⊂ (W )k, denote by M(B) the submodule of Ak
consisting of all the elements p which map to zero every element in B, i.e., those p
for which p(u) = 0 for all u in B. Similarly, given a submodule R of Ak, denote by
BW (R) the behavior in W corresponding to R, i.e., those u in (W )k with p(u) = 0 for
all p in R. Clearly BW (R) is an E ′-submodule of (W )k (note that p(f ∗u) = f ∗p(u)).
Observe that a behavior B in W is the kernel of an E ′-module morphism R restricted
to (W )k (equation (1)), and so in this notation, B is actually BW (R), where R is the
submodule generated by the rows of R.

Lemma 1. BW ◦M is the identity map on AR behaviors for any E ′-submodule
W , i.e., BW ◦M(B) = B.

Proof. Clearly B ⊂ BW (M(B)). As mentioned above, since B is an AR behavior,
it is equal to BW (R) for some submodule R of Ak. Clearly, R is then contained in
M(B) =M(BW (R)). Thus BW (M(B)) ⊂ BW (R) = B.

Corollary 2. The correspondence B→M(B) is injective.
Proof. Suppose M(B1) = M(B2). Then B1 = BW (M(B1)) = BW (M(B2)) =

B2.
This raises the question of whether the correspondence R→ BW (R) is bijective,

i.e., whether BW and M are inverses of one another. The answer to this question of
course depends upon W . Prompted by this question, we make the following definition.

Definition 1. A submodule R of Ak is called a Willems submodule with respect
to W if M(BW (R)) = R.

Thus the correspondence R→ BW (R) is bijective when restricted to the class of
Willems submodules with respect to W . Given a submodule R of Ak, M(BW (R))
is clearly the smallest Willems submodule that contains R. We will call M(BW (R))
the Willems submodule with respect to W generated by R. Clearly, M(BW (R)) is
the largest submodule in Ak determining the same behavior in W k as that of R.

In terms of this definition, we now state the theorem of Oberst referred to in the
introduction.
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THEOREM (Oberst). Every submodule of Ak is Willems with respect to C∞ (or
D′).

Later in this paper we determine the class of submodules which are Willems with
respect to D or E ′ to be precisely the class of MA systems.

In this paper we often look at the subclass of AR systems given by MA systems
which display several “nice” properties such as controllability and stabilizability. We
therefore now discuss a parametrization of such systems.

Proposition 1. Every MA system is the image of a right prime morphism.
Remark. By a right prime morphism, we mean a morphism given by a factor

right prime matrix. For various notions of right and left primeness, see Bose [1].
Proof. Let an MA behavior be given as the image of a morphism whose matrix

representation is given by M as in (2). We first show that this same MA behavior is
also given by a submatrix M0 of M which has full column rank.

Let the columns of M be given by elements c1, . . . , cm. Let the rank of M be
m0 and assume, without loss of generality, that c1, . . . , cm0 are A-independent. Let
ci, i 6= 1, . . . ,m0, be any other column of the matrix M . By assumption, there is a
relation between the columns c1, . . . , cm0 and ci, say aci =

∑m0

j=1 αjcj , where a and

the αj ’s belong to A. We will show that the image of ci in (C∞)l (or (D′)l as the
case may be) is contained in the span of the images of c1, . . . , cm0

. For this consider
any f in C∞ (or D′). By a standard result (see for instance Hörmander [2, Corollary
10.6.8]), there is a g in C∞ (or D′) such that a(g) = f . Then ci(f) = ci(ag) =
aci(g) = (

∑m0

j=1 αjcj)(g). This element is in the image of the submatrix M0 given by
the columns c1, . . . , cm0

.
Suppose now that M0 is not right prime. Then M0 = M1T , where M1 is right

prime and where T is a square m0 ×m0 matrix whose determinant is a nonconstant
polynomial. Note that the module of relations of the rows of T is the 0 submodule
of Am0 . Using the Ehrenpreis–Palamodov theorem or the injectivity result of Oberst
in the remark following it, we conclude that T is surjective on (C∞)m0 or (D′)m0 ,
respectively.

Thus the image of M0 equals the image of M1, which is to say that the given MA
behavior is also the image of a right prime morphism, namely M1 above.

In view of this proposition, we will henceforth describe MA behaviors using only
right prime morphisms.

We conclude this section with the following definition and approximation theorem
of Malgrange which we quote from Hörmander [2].

DEFINITION. A solution f of the constant coefficient partial differential equation
p(f) = 0 is called an exponential solution if it is of the form

f(x) = q(x)e〈x,ξ〉,

where q(x) is a polynomial and ξ is in Cn.
Remark. If x = (x1, . . . , xn) and ξ = (ξ1, . . . , ξn), then by 〈x, ξ〉 we mean

∑
xiξi.

This is not the standard Hermitian inner product on Cn. However, as in this paper
x is always in Rn, the above choice of the bilinear form 〈, 〉 suffices.

It is easy to check that if f = q(x)e〈x,ξ〉 is a solution of p(f) = 0, then p(ξ) = 0,
i.e., ξ lies in the variety of p (in Cn).

THEOREM (see Theorem 7.3.6 in [2]). The closed linear hull in C∞(Rn) of the
exponential solutions of the equation p(f) = 0 consists of all its solutions in C∞(Rn).

Remark (see remark following Theorem 10.5.1 in [2]). In fact Malgrange has
proved that it is sufficient to use polynomial solutions in the above theorem iff every
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nonconstant factor of p vanishes at the origin. Also, it suffices to use solutions of the
form e〈x,ξ〉 iff p has no multiple factors.

3. Controllable systems. We now discuss controllability properties of AR sys-
tems. Motivated by the definition of controllability of lumped systems in [10, 11] and
of 2-D discrete systems in [6], we adopt a similar definition for distributed systems
below.

Definition 2. Let (Rn,Rk,B) be an AR system. Then B is said to be con-
trollable if for w1 and w2, any two elements in B, and for U1 and U2 any two open
subsets of Rn such that their closures are disjoint (i.e., U1 ∩ U2 = ∅), there exists
an element w in B which coincides with w1 on U1 and with w2 on U2.

The above definition means that the action of w coincides with that of w1 on test
functions whose supports lie in U1 and with the action of w2 on test functions whose
supports lie in U2. If w1 and w2 are smooth functions, then the above implies that w
coincides pointwise with w1 on U1 and with w2 on U2. Intuitively, w has patched up
w1 and w2.

Note that our definition is symmetric with respect to all the variables x1, . . . , xn.
This is motivated by the theory of 2-D systems applied to image processing where
neither variable plays a special role. It is possible however that in some systems a
variable plays a special role, for instance, that of time. In such systems it might
be that it is necessary only to patch up elements in the behavior along this special
variable. Then U1 and U2 in the above defintion need only be “strips,” that is, open
sets of the form I ×Rn−1, where I is an open interval in R. Note that such open sets
are of course included in the definition above.

Definition 3. Let U be an open subset of Rn, and let V be any closed subset
whose interior contains the closure of U . Let w be an element in (D′)k. An element
w′ in (D′)k is a cutoff of w with respect to U and V if w′ coincides with w on U and
with 0 on V C , the complement of V .

Recollect that given any U and V as above, there is a smooth function f which is
identically 1 on U and 0 on V C (i.e., a “bump” function). Thus in the above definition
fw is such a w′. Note that if w is smooth, then such a cutoff is also smooth.

Lemma 2. Let B be an AR behavior in (W )k, where W is any E ′-submodule of
D′. Then B is controllable iff for every w in B and for every U and V as in the
definition above, some cutoff of w with respect to U and V is also in B.

Proof. Let B be controllable and let U and V be as in the definition above. Then
U and V C , the complement of V , are open sets whose closures are disjoint. Let w
be in B. As B is a linear subspace, the 0 distribution is in B. By the definition of
controllability, there is a w′ in B which coincides with w on U and with 0 on V C .
This w′ is a cutoff of w with respect to U and V .

Conversely, let w1 and w2 be any two elements in B, and let U1 and U2 be open
subsets whose closures are disjoint. As Rn is normal, we can find closed disjoint
subsets V1 and V2 containing U1 and U2 in their interiors. There is a cutoff w′1 of w1

with respect to U1 and V1 in B and, similarly, a cutoff w′2 of w2 with respect to U2

and V2 in B. By linearity of B, w = w′1 +w′2 is also in B. This w obviously coincides
with w1 on U1 and with w2 on U2.

In [10, 11], Willems shows that all lumped controllable AR systems are MA
systems and conversely. Rocha and Willems prove this same fact for 2-D discrete
systems. They also show that controllable 2-D discrete systems are always given by
free submodules or equivalently given by kernels of left prime matrices. The situation
in the distributed case in three or more variables is more involved. We explain all this
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in terms of the global dimension of the ring A.
In what follows we rely on the Ehrenpreis–Palamodov theorem (or its variant in

the case of D′ due to Oberst) in the proofs of many statements. As such a theorem
is not valid for an arbitrary E ′-submodule W of D′, we henceforth restrict ourselves
to behaviors with respect to C∞ or D′.

We start this development with the following proposition.
Proposition 2. Every MA system is controllable.
Proof. Let the MA system be given by the E ′-module morphism M : (D′)m →

(D′)l; i.e., let the behavior B be the image of M . Let w be any element in B. Then
w = M(v) for some v in (D′)m. Let U and V be as in Definition 3. Let v′ be any
cutoff of v with respect to U and V . Consider w′ = M(v′). We claim that w′ is a
cutoff of w also with respect to U and V .

Let f be any test function in (D)l whose support is contained in U . Then w′(f) =
M(v′)(f) = v′(M ′(f)), where M ′ : (D)l → (D)m, the adjoint of M , is also a local
continuous E ′-module morphism. Thus the support of M ′(f) is also contained in
U . Then as v′ is a cutoff of v with respect to U and V , v′(M ′(f)) = v(M ′(f)) =
M(v)(f) = w(f). Hence w′(f) = w(f) for all f in (D)l with support in U . Similarly,
w′ coincides with 0 in V C . Thus w′ is indeed a cutoff of w with respect to U and V .

If we restrict the morphism M to the subspace (C∞)m, then there is a cutoff w′

of w in (C∞)l which is also smooth and is obtained by choosing a smooth cutoff v′ of
v. Thus MA systems are also controllable in the C∞ sense.

The question now arises as to which AR systems are controllable. We show below
that the class of distributed controllable AR systems coincides with the class of MA
systems. Toward this we first characterize those AR systems which are MA systems
and hence controllable by the above proposition. For the sake of convenience, we
restrict ourselves further to the C∞ category. Note, however, that all the results that
follow are equally valid for behaviors with respect to D′.

Given the behavior B of an AR system R : (C∞)k → (C∞)l, consider the subbe-
haviors of B which are MA systems, i.e., images of morphisms M : (C∞)m → (C∞)k

that lie in the kernel of R. (Recollect from the discussion in section 2 that MA behav-
iors are in one-to-one correspondence with right prime morphisms M .) Representing
R and such an M by matrices (rij) and (mij) as in section 2, it follows that

k∑
j=1

rijmjh = 0 for all i = 1, . . . , l, h = 1, . . . ,m.(4)

We can therefore consider the columns of M as relations between the columns of
R. Conversely, relations between the columns of R determine a morphism whose
image lies in the kernel of R. Consider now the module of all relations between the
columns of R. Generators of this module, say g in number, determine a morphism
M0 : (C∞)g → (C∞)k, whose image is clearly the largest subbehavior of B which
admits an MA representation. Denote by M0 the submodule of Ag generated by
the rows of the matrix representation of M0. Consider next the submodule R0 of
relations between the rows of the matrix representation of M0. By (4) it follows that
the rows of R lie in this module of relations. By Ehrenpreis–Palamodov, the image
of M0 is precisely the kernel of R0, the morphism determined by R0. Thus we have
the following.

Theorem 1. Let R : (C∞)k → (C∞)l be an AR system and let R be the submodule
of Ak generated by the rows of R. Then the system admits an MA representation iff
the module R0 defined above equals R.
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Proof. By the theorem of Oberst, R and R0 define the same behavior iff they are
equal. By construction the behavior of R0 is an MA behavior.

Remark. We supplement the discussion preceding the above theorem with a few
elementary remarks that we use elsewhere. Given a submodule of Ak, define its rank
to be the rank of the largest free submodule contained in it. It is easy to see that this
rank is equal to the rank of any matrix whose rows generate the submodule and whose
entries are now considered as belonging to the quotient field of the domain A. It is
equally elementary that this rank is also the dimension of the vector space obtained
by tensoring the submodule with this quotient field. From this it follows that if the
rank of a submodule R of Ak is i, then the rank of the submodule generated by all
the relations between the columns of any matrix representation R of R, namely the
submodule M0 defined above, is (k − i). We therefore conclude, similarly, that the
rank of the submodule R0 in Theorem 1 equals the rank of R. As R is contained in
R0, it follows that for any p in R0, there is a nonzero a in A such that ap is in R. In
other words the quotient R0/R is a torsion module. We finally remark that from the
construction of M0 and R0 above, it follows that if a p in Ak has the property that
some ap is in R for a nonzero a in A, then this p must be in R0. This is because if
ap is in R, then it lies in the module of relations of the rows of the matrix M0, which
by definition is R0. Thus the set of torsion elements of the module Ak/R is precisely
the submodule R0/R. We can therefore reformulate the above theorem as follows.

Theorem 2. The AR system defined by a submodule R is MA iff Ak/R is torsion
free.

An important case where the above theorem is applicable is when R can be
“decoupled,” namely, the proposition below.

Proposition 3. Let R be a submodule of Ak which is a direct summand. Then
the AR behavior determined by it admits an MA representation.

Proof. As R is a direct summand, it follows that Ak = R⊕Ak/R. Thus Ak/R
is a projective module and hence free by Serre, Quillen, and Suslin. The result then
follows from Theorem 2.

The importance of this special case follows from the fact that this is the case for
lumped systems.

Corollary 3 (1-D systems). Let A = R[ ddx ]. Then the behavior given by a
submodule R of Ak is MA iff R is a direct summand.

Proof. Suppose that the behavior of the submodule R is MA. Then R equals R0.
By the above theorem Ak/R is torsion-free. As A here is a PID; this implies that
Ak/R is free. It then follows that 0→ R→ Ak → Ak/R→ 0 splits, i.e., that R is a
direct summand.

Remark. It is a result of Willems that every controllable lumped system is MA.
Thus the above proposition actually provides a necessary and sufficient condition for
the controllability of lumped systems.

We conclude this development with the following classical example.
Example 1 (the deRham complex on R3). Consider the behavior given by the

kernel of the map R : (C∞)3 → (C∞)3 whose matrix representation is given by 0 −∂
∂z

∂
∂y

∂
∂z 0 −∂

∂x−∂
∂y

∂
∂x 0

 .

Then the relations between the columns of R determine a map M0 : C∞ → (C∞)3

which is given by the matrix ( ∂
∂x ,

∂
∂y ,

∂
∂z )T . As explained above, M0 determines the
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largest MA subbehavior contained in the kernel of R. The module of relations R0 of
the rows of M0 is a submodule of A3 generated by (0, −∂∂z ,

∂
∂y ), ( ∂∂z , 0,

−∂
∂x ), (−∂∂y ,

∂
∂x , 0),

which coincides with R, the module generated by the rows of R above. Thus by the
above theorem, the kernel ofR is an MA behavior, given by the image ofM0. Similarly,
if one considers the map R1 : (C∞)3 → C∞, given by ( ∂

∂x ,
∂
∂y ,

∂
∂z ), then the module of

relations of its columns is generated by the columns of R. Moreover, the module of
relations between the rows of R is a cyclic module, again generated by ( ∂

∂x ,
∂
∂y ,

∂
∂z ).

Thus the kernel of R1 is equal to the image of R. Note that this is just the familiar
fact that the image of the gradient equals the kernel of curl and that the image of
curl equals the kernel of divergence.

Willems, and Rocha and Willems, prove that controllable AR systems are MA
for 1-D and discrete 2-D systems by showing that MA behaviors are the kernels of
left prime morphisms. We show below that while this is also true for distributed 2-D
systems, n-D behaviors given by left prime morphisms are not necessarily controllable
for n ≥ 3 (Example 2). We also show that controllable systems, although MA, are
not necessarily given by free submodules.

We first characterize the class of controllable AR systems.
Theorem 3. Every distributed controllable AR system is an MA system.
Proof. We show that if an AR system, say defined by the morphism R : (C∞)k →

(C∞)l, is not MA, then it is not controllable.
So assume that the behavior given by ker(R), the kernel of R, is not MA. By

Theorem 1 above, the submodule R corresponding to R is strictly contained in the
submodule R0. Let p = (p1, . . . , pk) be any element in R0 which is not in R. It
follows from the remark following Theorem 1 that ap is in R for some nonzero a in
A. Consider the maps

P : ker(R)→ C∞,
(f1, . . . , fk) 7→

∑
pi(fi),

and

A : C∞ → C∞,
f 7→ a(f),

where p and a are as above.
By the theorem of Oberst quoted in the introduction, as p is not in R, it does

not kill every element in ker(R), i.e., the map P defined above is not the zero map.
However, the composition A ◦P : ker(R)→ C∞, which maps (f1, . . . , fk) in ker(R) to∑
api(fi), is the zero map as ap is in R.

Now let u be any element in ker(R) which is not in the kernel of P . Let U be
any bounded open subset of Rn, where P (u) is nonzero, and let V be any compact
set whose interior contains the closure of U . Let uc be any cutoff with respect to U
and V . Then uc has compact support and is clearly not in the kernel of P . If ker(R)
were controllable, then some cutoff of u with respect to this U and V must also be
in the kernel of R. This implies that the image under P of this cutoff must be in the
kernel of A. It follows then that the PDE a admits a nonzero compactly supported
solution. This is a contradiction to the Paley–Wiener theorem.

If we were to consider the behavior of R in (D′)k, then the same proof as above
shows that every distributed controllable AR system is an MA system. A variant of
the above proof yields another characterization of controllable systems.
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Theorem 4. A submodule R of Ak defines a controllable AR system iff R is
Willems with respect to D (or E ′).

Proof. We prove the theorem for the case of D, the proof for E ′ being similar.
Thus we have to show that R is controllable iff M(BD(R)) = R, i.e., R is Willems
with respect to D.

Suppose first that M(BD(R)) = R1 strictly contains R. Then by the theorem
of Oberst, BC∞(R1) is strictly contained in BC∞(R). As BD ◦ M is the identity
(Lemma 1), it follows that BD(R) = BD(R1) which is in turn contained in BC∞(R1).
Thus the closure of BD(R) in C∞(Rn) is contained in BC∞(R1). This implies that
the closure of BD(R) is strictly contained in BC∞(R). Thus R cannot be controllable,
since the compactly supported behavior of any controllable system is dense in its
C∞-behavior.

Conversely, suppose the C∞-behavior given by R is not controllable. We have
to show that R is not Willems with respect to D; i.e., R is strictly contained in
M(BD(R)). Since R is not controllable, R is not MA by the above theorem. Hence
by Theorem 1, R is strictly contained in R0. This implies that BD(R0) ⊂ BD(R). In
fact we claim that these two compactly supported behaviors are identical, i.e., every
p in R0 kills every element in BD(R). For suppose that this was not true for some
p in R0. By the remark following Theorem 1, there exists some a in A such that ap
is in R. Thus ap kills every element in BD(R). So if p does not kill some element in
BD(R), it follows as in the proof of the above theorem that the Paley–Wiener theorem
is contradicted. Hence R is strictly contained in R0 ⊂ M(BD(R0)) = M(BD(R)).
Thus R is not Willems with respect to D.

We have thus established the following equivalences: R is controllable ⇔ R is
MA ⇔ R is Willems with respect to D (or E ′) ⇔ Ak/R is torsion-free.

Rocha and Willems in [6] show that every controllable 2-D discrete system is given
by a factor left prime matrix (whose rows necessarily generate a free submodule). We
have already pointed out the importance of this result in the introduction. The
question then arises as to whether this is so for distributed systems as well. This is
not in general true as the following counterexample demonstrates.

Example 2. Let R : (C∞)3 → (C∞)2 be the AR system determined by the
following matrix:

R =

(
0 − ∂

∂z
∂
∂y

∂
∂z 0 − ∂

∂x

)
.

Clearly R is factor left prime. Nonetheless the AR behavior determined by R is
not controllable, as an easy calculation shows that R0 is the matrix that appears in
Example 1, namely curl. The system defined by curl is of course controllable, since
it is the image of the gradient map. Note, however, that the matrix representation
of curl is not factor left prime; in fact the submodule generated by the rows of this
matrix is not even free.

Thus the question now arises as to which controllable systems are given by free
submodules. As pointed out in the introduction, this is an important question. We
provide a necessary and sufficient condition below in the notation preceding Theo-
rem 1.

Theorem 5. Let R be a submodule of Ak which determines a controllable behav-
ior. Let R determine the submodule M0 of Ag as above. Then R is a free submodule
iff the projective dimension of Ag/M0 is less than or equal to 2.
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Proof. Consider the following resolution of Ag/M0:

0→ R0
φ3−→ Ak φ2−→ Ag φ1−→ Ag/M0 → 0,

where φ1 and φ3 are canonically defined and φ2 takes a basis of Ak to the rows
of the matrix M0. By the discussion preceding Theorem 1, the kernel of φ2 is
the module R0, and hence the sequence above is indeed exact. As the behavior
of R is controllable, R0 equals R by Theorem 3. A standard argument shows that
Ext1(R,−) ≈ Ext3(Ag/M0,−), which equals 0 iff the projective dimension of Ag/M0

is at most 2. This implies that R is projective. Now by Serre, Quillen, and Suslin, R
must be free.

Corollary 4 (2-D distributed systems). Every distributed 2-D controllable be-
havior is given by a free submodule.

Proof. Observe that here A = R[∂1, ∂2]. Thus the global dimension of A is 2 and
hence the projective dimension of any A-module is less than or equal to 2. This then
satisfies the conditions of the above proposition.

Remark. From the proof of Theorem 3, it can be easily seen that if a controllable
AR system is given by a free submodule R, then R is maximal among all submod-
ules with the same number of generators as R. This would imply that the matrix
representation of R is factor left prime. From the above corollary we can therefore
further conclude that every distributed 2-D controllable behavior is given by a factor
left prime matrix.

Thus the phenomenon exhibited in Example 2 above occurs only in dimension 3
or more.

Remark. It is now well known that there is an important difference between 1-D
and n-D, n ≥ 2, discrete systems, namely that while every 1-D system is feedback
stabilizable, this is not, however, the case for 2-D systems (see Shankar and Sule [8]).
The counterexample and corollary above point out, likewise, a difference between 2-D
systems and n-D, n ≥ 3, systems.

4. Autonomous systems. In [10, 11] Willems defines a lumped autonomous
AR behavior to be one given by the kernel of a map R in Rk×k[ ddt ] whose characteristic
polynomial, i.e., its determinant, is a nonzero polynomial. Intuitively, this definition
singles out those AR behaviors that are far from being controllable in the sense that
every element in the behavior of an autonomous system is determined by its values on
any open interval of R, i.e., by its germ at any point in R. Thus if we specify the germ
of an element in such a behavior, that element is specified in its entirety. We therefore
have no “control” over it; i.e., it is “autonomous.” In fact the elements in the behavior
of a lumped autonomous system are entire functions which are linear combinations of
exponential functions that arise from the zeros of the characteristic polynomial. As
these zeros are finite in number, the exponential solutions span a finite-dimensional R-
vector subspace in the space of entire as well as C∞ functions. Being finite dimensional,
this subspace is closed, and hence by the Malgrange approximation theorem, the
C∞-behavior of an autonomous lumped system R also consists only of these entire
functions. (In fact this finite dimensionality of the behavior is equivalent to R having
full rank.) This finite dimensionality of the C∞-behavior implies that if the derivatives
up to some finite order of an element all vanish at a point, then this element must be
the zero element. Hence an element in such a behavior can be specified by a “finite
amount of data.” This is considerably stronger than saying that the C∞-behavior of
a system consists only of entire functions. Note finally that the behavior of a single
ordinary differential equation is autonomous.
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We now wish to extend this definition of an autonomous behavior to distributed
systems. So consider a distributed AR behavior given by the kernel of a morphism
R. This behavior corresponds to a submodule of Ak generated by the rows of R.
Observe that submodules of Ak can have larger than k number of generators when
A = R[∂1, . . . , ∂n], n > 1. (This does not happen in the lumped case, i.e., when n = 1,
as then every submodule is free and thus requires fewer than or equal to k generators.)
Thus in the distributed case, the matrix representation of R might necessarily need
more than k rows. Like the behavior of an autonomous lumped system, we would
expect the behavior of a distributed autonomous system R to be dependent on the
various k × k submatrices of R. To describe this we use the following notation from
Lang [4]. Let M be an l × m matrix with coefficients in A. For r ≤ min(l,m),
the rth determinant ideal of M , denoted Ir(M), is the ideal of A generated by the
determinants of all the r × r minors of M . If r > min(l,m), Ir(M) is defined to be
the zero ideal. Define also the rth determinant variety of M to be the variety in Cn
of Ir(M).

In terms of this, a lumped autonomous behavior is one given by an R ∈ Rk×k[ ddt ]
whose kth determinant ideal is not the zero ideal. It is this property that we generalize
to define a distributed autonomous behavior. As behaviors correspond to submodules
of Ak, we first state the following lemma whose proof easily follows from the Cauchy–
Binet formula.

Lemma 3. Let R be a submodule of Ak. Let R1 and R2 be two matrices whose
rows generate R. Then for every i, the ith determinant ideals of R1 and R2 are
identical, and therefore their ith determinant varieties coincide.

We can now make the following definition.
Definition 4. Let R be any submodule of Ak. Define the characteristic ideal of

R to be the kth determinant ideal of any matrix representation of R. The variety of
this ideal (in Cn) is called the characteristic variety of R. We denote the characteristic
ideal (characteristic variety) of R by I(R)(V (R)).

As pointed out above, a lumped autonomous behavior corresponds to an R whose
characteristic variety is not all of C. Hence we make the following definition.

Definition 5. The behavior given by a submodule R of Ak is said to be au-
tonomous if the characteristic variety of R is not all of Cn (i.e., its kth determinant
ideal is not the zero ideal).

We show below that if a behavior is not autonomous, then it contains nontrivial
controllable subbehaviors. We wish to remark first that behaviors of autonomous sys-
tems whose characteristic varieties are nonempty contain exponentials corresponding
to points on this variety. This is because if R is any matrix representation of R,
then substituting any point ξ of V (R) into the entries of R will result in a matrix
R(ξ) with entries in C whose column rank is less than k. This implies that there is a
nonzero element in the kernel of R(ξ), say (c1, . . . , ck). Then an easy check shows that
(c1e

〈x,ξ〉, . . . , cke〈x,ξ〉) is in the behavior of R. Thus there are exponential solutions in
the behavior corresponding to every point in V (R).

Clearly any matrix representation of a distributed autonomous system has full
column rank, i.e., there are no polynomial relations between the columns of R. As
pointed out above, a submodule of Ak might have more than k generators, and thus
every matrix representation of it will have more than k rows. Therefore a distributed
autonomous system need not have a square matrix representation, for which reason
we specify its column rank. This therefore is the right generalization of Willems’s
definition of lumped autonomous systems as those whose matrix representations have
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full rank.
Note also that as in the lumped case, the behavior of a single (nonzero) partial

differential equation is autonomous. We further substantiate this definition below.
Proposition 4. A behavior is autonomous iff it does not contain any (nontrivial)

controllable subbehaviors.
Proof. Suppose that the behavior of a submodule R of Ak is autonomous. Let

R be any matrix representation of R. Let R1 be a k × k submatrix of R whose
determinant ∆ is nonzero. Clearly the behavior of R is contained in that of R1. In
turn the behavior of R1 is contained in the behavior of R∗1R1 = R1R

∗
1 = diag(∆),

where R∗1 is the adjoint matrix of R1. Thus each entry in an element of the behavior of
R lies in the kernel of ∆. As ∆ is nonzero, none of these can have compact support (by
Paley–Wiener). By Lemma 2, a controllable behavior necessarily has elements with
compact support. Hence an autonomous behavior does not contain any nontrivial
controllable subbehaviors.

Conversely, suppose that the behavior of R is not autonomous. This means that
R does not have full column rank, and thus that there are nontrivial relations between
the columns of R. Let p = (p1, . . . , pk) be such a relation. Then RpT is equal to zero.
This implies that the image of the map pT : C∞ → (C∞)k is contained in the behavior
of R. Thus the behavior of R contains MA subbehaviors, which are controllable by
Proposition 2.

Corollary 5. No nonzero element in an autonomous behavior can vanish out-
side a compact subset of Rn.

Proof. The proof is clear from the proof of Proposition 4.
For lumped systems, the characteristic variety of an autonomous system is dis-

crete, as it is not all of C. However for distributed autonomous systems, this need not
be the case. As a result, many of the properties of an autonomous lumped system that
are consequences of the discreteness of the characteristic variety, do not carry over to
distributed systems. To capture these properties, we present another definition.

Definition 6. The behavior given by a submodule R of Ak is said to be strongly
autonomous if the characteristic variety V (R) of R is discrete (i.e., if A/I(R) has
(Krull) dimension 0).

Note that as A is Noetherian, discreteness of V (R) implies that it is finite.
We show in the following theorem that a strongly autonomous distributed system

satisfies the property of finite dimensionality of lumped autonomous behaviors. We
first prove the following preliminary results.

Lemma 4. Let I be a maximal ideal in A = R[∂1, . . . , ∂n]. Then B(I), the
C∞-behavior given by I, is finite dimensional.

Proof. Observe first that as I is maximal, its variety in Cn consists of a finite
number of points (in fact at most 2n in number). Assume first that this variety
intersects Rn, say at ξ = (ξ1, . . . , ξn). Then the ideal I must equal (∂1−ξ1, . . . , ∂n−ξn)
and the variety of this ideal must consist of this point alone. To say that an exponential
solution is in B(I) is to say that (∂i − ξi)(q(x)e〈x,ξ〉) = 0 for all i. This forces q(x)
to be a constant. As the C∞-behavior is the closed linear hull of the exponential
solutions (by Malgrange), B(I) is 1-dimensional (and is in fact spanned by e〈x,ξ〉).

Suppose now that the variety does not intersect Rn. Then it is a finite set,
say {ξ1, . . . , ξk} ⊂ Cn. The point ξj = (ξj1, . . . , ξ

j
n) corresponds to the maximal ideal

(∂1−ξj1, . . . , ∂n−ξjn) in C[∂1, . . . , ∂n]. As above, the space of exponential solutions cor-
responding to this point is 1-dimensional. Thus the space of the exponential solutions
in B(I) is the k-dimensional space spanned by the exponential solutions corresponding
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to each of the k points in the variety of I. Being finite dimensional, the closure of
this space in C∞ is itself.

Lemma 5. Let I = (p1, . . . , pi, . . . , pN ) be an ideal in R[∂1, . . . , ∂n] whose C∞ be-
havior is finite dimensional. Then the C∞-behavior of the ideal J = (p1, . . . , p

2
i , . . . , pN )

is also finite dimensional.
Proof. Let I ′ be the ideal (p1, . . . , p̂i, . . . , pN ), where p̂i means that pi has been

omitted. Consider the following R-linear map:

Pi : B(I ′)→ C∞(Rn),

f 7→ pi(f).

Then the behavior B(I) of I is the kernel of Pi, which by assumption is finite dimen-
sional. Hence P−1

i (B(I)) is also finite dimensional. But P−1
i (B(I)) is precisely the

behavior of J .
Corollary 6. Let I be an ideal in R[∂1, . . . , ∂n] such that the behavior of its

radical,
√
I, is finite dimensional. Then the behavior of I is also finite dimensional.

Proof. Some power of
√
I, say the rth power, is contained in I (as R[∂1, . . . , ∂n] is

Noetherian!). Let J be the ideal generated by the rth powers of the generators of
√
I.

An easy induction using Lemma 5 shows that B(J) is finite dimensional. However,
now J is contained in I. So B(I) is contained in B(J), and hence B(I) is also finite
dimensional.

Theorem 6. A behavior is strongly autonomous iff it is a finite-dimensional
subspace of the R-vector space of C∞ functions.

Proof. Let a behavior B corresponding to a submodule R be strongly autonomous.
Let I(R) be generated by ∆1, . . . ,∆l in A. Then every component of f = (f1, . . . , fk)
in B is also a solution of ∆i, i = 1, . . . , l.

Now consider the variety V of I(R). By assumption it is discrete. Hence the ideal
of this variety, which is the radical of I(R), is a finite intersection of maximal ideals.
Now the exponential solutions of

√
I(R) is the union of the exponential solutions

corresponding to each of these maximal ideals. By Lemma 4, this spans a finite-
dimensional R-vector space. Thus by Malgrange, this space is also the C∞-behavior
of
√
I(R). By Corollary 6, the C∞-behavior of I is finite dimensional as well.

Conversely, suppose that B is not strongly autonomous. Then as V (R) is not
finite, it must contain an infinite number of points in Cn. By the discussion fol-
lowing Definition 5, each of these points contribute nonzero exponential elements in
B. Clearly these exponential elements corresponding to different points in V (R) are
linearly independent. So B is not finite dimensional.

Corollary 7. Every C∞ solution of a strongly autonomous system is entire.
Thus no nonzero element in a strongly autonomous behavior can vanish on any open
subset of Rn.

Proof. The proof is clear from the first part of the proof of Theorem 6.
As a strongly autonomous system is clearly autonomous as well, Corollary 5 is

valid for such systems. In fact even more is true, namely, the following.
Corollary 8. No cutoff of an element in a strongly autonomous behavior B is

in B.
Corollary 9. An element in a strongly autonomous behavior B is determined

by its values on any open subset of Rn.
Proof. If w1 and w2 are two elements in B that agree on some open subset of U

of Rn, then w1 − w2 is an element of B that vanishes on U . Then by Corollary 7,
w1 − w2 equals zero.
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Remark. In fact much more is true. By the finite dimensionality of a strongly
autonomous behavior B, every element in it can be determined by its derivatives up
to some finite order. It is in order to mimic this property of a lumped autonomous
behavior that we made the above definition. In the case of a lumped system, the
C∞-behavior either contains elements that are not entire or is finite dimensional. For
a distributed system, the behavior could consist of only entire functions but may not
be finite dimensional. This will happen, for instance, if the behavior is specified by
a single partial differential operator which is elliptic. As a result, such behaviors will
also satisfy the above corollary but will not be strongly autonomous.

5. Control. Let B be a C∞ AR behavior and let R be the submodule of Ak
corresponding to it. Let {Rα} be the class of submodules of Ak containing R. The
C∞ AR behaviors given by any of these Rα’s is clearly contained in B. This, by
definition, is the class of AR subbehaviors of B. (In fact, by Oberst, there is a
one-to-one correspondence between the subbehaviors of B and the collection {Rα}.)

Let R be a matrix whose rows generate R so that B is the kernel of R. Let Bα

be a subbehavior of B, and let Rα be a submodule of Ak that generates Bα. As Rα

contains R, we can obtain a matrix representation Rα by appending rows to R.
Suppose now that the behavior B is controllable. Then by Theorem 3, B is an

MA behavior, i.e., suppose that B is the image of a morphism M : (C∞)m → (C∞)k.
We wish to explain how to obtain the subbehaviors {Bα} of B in this setting.

Observe that the behavior B is the image under M of (C∞)m, which in turn can
be thought of as the AR behavior given by the 0 submodule of Am. We claim that
the subbehaviors of B can all be obtained as the images under M of the various AR
subbehaviors of (C∞)m. Clearly, without loss of generality, it suffices to consider only
those AR subbehaviors of (C∞)m that contain the kernel of M .

Let M be the submodule ofAm generated by the rows of the matrix representation
of the morphism M . Clearly any AR subbehavior of (C∞)m that contains the kernel
of M corresponds to a submodule K of M. Let K be the morphism (C∞)m → (C∞)r

corresponding to the submodule K (where r is the number of generators for K).
Clearly K = TM for some morphism T : (C∞)k → (C∞)r (see the diagram below).

(C∞)m
M−→ (C∞)k

R−→ (C∞)l

K ↓ ↙ T
(C∞)r.

Equally clearly, the image under M of the kernel of K equals the intersection of the
image of M with the kernel of T . By assumption the image of M is the AR behavior
given by the morphism R. Thus the image under M of the kernel of K equals the
intersection of the kernels of R and T . Hence we obtain a subbehavior Bα (namely,
by appending the rows of the matrix representation of the morphism T to the rows
of R) as the image under M of a subbehavior of (C∞)m.

Control problems are always accompanied by criteria which single out certain
subbehaviors as desirable. Such criteria are usually in the nature of stability or
optimality requirements. In this paper we are concerned with stability requirements,
which we model after the lumped situation. There, a very fruitful notion of stability
has been the notion of bounded input–bounded output stability, where the growth
of the signals in the system (i.e., inputs and outputs) is specified along the half-line
R+, i.e., as the independent variable (time) tends to +∞. We wish to generalize this
notion of stability to distributed systems.
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Definition 7. The directions of stability is a closed convex cone S in Rn (with
vertex at the origin). A C∞-behavior B is stable with respect to S if every element in
B tends to zero along every half-line in S.

Remark. By a cone in Rn we mean a subset S, such that if x is in S, then tx
is also in S, for every t > 0. Given a closed cone S, we also define the subset S< of
Rn consisting of those points y in Rn such that 〈y, x〉 < 0 for every nonzero x in S.
Clearly S< is also a cone in Rn. It is easy to check that S< is nonempty if S is a
proper closed cone, i.e., S does not contain a full line. In fact S<, in this case, has
nonempty interior.

Proposition 5. Let R be a submodule of Ak and B its behavior. If the projection
of the characteristic variety of R, V (R), to Rn does not lie in S<, then B is not stable
with respect to S.

Proof. If there is a point in the projection of V (R) which does not lie in S<, then
the exponential solution corresponding to this point will not tend to zero along at
least one half-line in S.

It is not clear whether the assumption in the above proposition is also necessary.
However, an additional hypothesis, which is generically satisfied, does guarantee sta-
bility.

Proposition 6. Suppose that the characteristic ideal I(R) of R contains a
polynomial without repeated factors. Then if the projection of the characteristic variety
is contained in S<, and if its distance from the boundary of S< is strictly positive,
then the behavior of R is stable with respect to S.

Proof. As observed before, every component of every element in the behavior of
R is also a homogeneous solution of every polynomial in the characteristic ideal I(R)
of R. By assumption there is a polynomial p in I(R) without repeated factors. Then
by a remark in [2] quoted earlier at the end of section 2, it follows that the linear
hull of exponential solutions of the form e〈x,ξ〉 is dense in the behavior of p. As the
behavior of I(R) is a closed subspace of the behavior of p, it follows that the linear
hull of such exponentials (i.e., those without polynomial factors) is also dense in the
behavior of I(R).

We now claim that given any ε > 0, there exists a ball, say Bε, such that all the
above exponential solutions (i.e., those of the form e〈x,ξ〉) are less in absolute value
than ε at every point in BCε ∩S. This is because, by assumption, the projection of the
characteristic variety to Rn is at a strictly positive distance from the boundary of S<.
Therefore every element in the behavior of I(R) tends to zero along every half-line in
S. This is therefore also true of every element in the behavior of R.

Observe that as the characteristic variety of a nonautonomous behavior B is all of
Cn, it contains exponentials corresponding to every p ∈ Cn. Thus B cannot be stable
with respect to any cone S in Rn. Stability with respect to a cone S is therefore a
property of autonomous behaviors. Hence by Proposition 4, a behavior that contains
a controllable subbehavior is not stable with respect to any cone S. Restricting to an
autonomous subbehavior stable with respect to a cone S is the process of control in
stability problems. More generally we define control as the process of restricting B
to some autonomous subbehavior.

Assume therefore that we are given an AR behavior B defined by a morphism R.
Let R be an l × k matrix representation of R. Let K be a j × k matrix whose rows,
when appended to the rows of R, define an autonomous nontrivial subbehavior B′ of
B. The system defined by the matrix K we call the controller. If this subbehavior

B′, defined by [
R
K

], is stable with respect to a cone S, then we call K a stabilizing
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controller for R with respect to the cone S. We have already explained above how to
obtain a controller if B is also a controllable behavior.

Theorem 7. A controllable behavior can be stabilized with respect to any proper
cone S. In fact there is a controller that restricts this behavior to a strongly au-
tonomous behavior stable with respect to S.

Proof. As S is proper, S< is nonempty. Given any ξ in Cn which projects into
S<, the function e〈x,ξ〉, x ∈ Rn, is stable with respect to S. The set of all such ξ has
nonempty interior.

Observe now that if (e〈x,ξ〉, . . . , e〈x,ξ〉) lies in the kernel of a morphism M :
(C∞)m → (C∞)k (the image of which defines the given behavior; for being controllable
it is MA), then ξ must lie in the characteristic variety of M . We can assume that this
characteristic variety is not all of Cn by Proposition 1 in section 2. Thus this variety
has empty interior. Therefore for almost all ξ which project into S<, the function
(e〈x,ξ〉, . . . , e〈x,ξ〉) does not lie in the kernel of M .

Let ξ1, . . . , ξr be any finite set of points that project into S< and such that
the corresponding exponentials do not lie in the kernel of M . Assume further that
ξ1, . . . , ξr is closed under conjugation. Then ξ1, . . . , ξr is an affine variety in Cn given
by an ideal say, (p1, . . . , pt) in A; i.e., each pi has real coefficients. Now consider the
matrix 

1
1 0

. . .

1
p1

0
...
pt


in A(m+t−1)×m. Clearly its determinantal ideal is (p1, . . . , pt). The AR subbehavior of
(C∞)m defined by the kernel of this matrix is strongly autonomous and hence spanned
by a finite number of exponential solutions that are all stable with respect to S. Thus
the subbehavior itself is stable with respect to S. Clearly the image under M of such
a subbehavior is also strongly autonomous and stable with respect to S.

We now define the more general pole-placement problem for distributed systems
which we pattern after the corresponding problem for lumped systems.

The pole-placement problem. Given a behavior B defined by R, and any ideal
I in A, is there a controller K such that the characteristic ideal of the augmented

system [
R
K

] is I?

Observe that if the pole-placement problem can be solved for a behavior B, then
it contains nontrivial autonomous subbehaviors stable with respect to any proper cone
S in Rn.

A necessary condition for the solution of the above problem is the following.
Lemma 6. If the pole-placement problem can be solved for a behavior B, then B

is nonautonomous.
Proof. Suppose B defined by R is autonomous. Then its characteristic ideal I is

nonzero, and hence the characteristic ideal of any augmented system [
R
K

] contains

I.
The question therefore arises of whether the above is also sufficient. While we
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have not been able to solve this problem in all generality, we provide partial answers
in what follows.

In this paper we treat the pole-placement problem only for free submodules R
of Ak. While this is not the most general situation for distributed systems, it is
nonetheless the first generalization of Willems’s results on pole placement for lumped
systems [9], where everything is free. (Recall also our remarks on free submodules in
the introduction.)

We begin by first considering a special class of AR systems introduced in Proposi-
tion 3, defined by submodules R which are direct summands of Ak. By Proposition 3,
a behavior defined by such an R is an MA behavior and hence is controllable. We
have already shown that controllable behaviors can be stabilized with respect to any
cone S. We now solve the pole-placement problem for such AR systems.

Theorem 8. The pole-placement problem can be solved for a behavior B defined
by a submodule R which is a direct summand of Ak.

Proof. Since R is a direct summand, a basis for it consisting of l elements, say,
can be extended to a basis for Ak. Let K be the matrix whose rows are given by the
(k− l) elements that extend the basis for R above. Then the controller defined by the

matrix K is such that the characteristic ideal of [
R
K

] is (u), where u is some unit in

A. Hence by replacing the last row of K by u−1r times that row (for some r ∈ A),
we can obtain a controller yielding the characteristic ideal (r).

Now let I be any ideal of A, generated by p1, . . . , pt, say. Then we construct a
controller K ′ from K as follows : K ′ has k − l + t− 1 rows, where the first k − l − 1
rows are the same as the first k − l − 1 rows of K. The remaining t rows of K ′ are
obtained by multiplying the last row of K by u−1p1, . . . , u

−1pt, respectively.

The characteristic ideal of the augmented system [
R
K′ ] is generated by the de-

terminants of its k × k submatrices. If, in any k × k submatrix, more than k − l
rows of K ′ appear, then by construction the determinant is zero. Thus every nonzero
determinant is obtained by choosing all the l rows of R and some k − l rows of K ′.
Thus the characteristic ideal of the augmented system [

R
K′ ] is precisely I.

Observe from the proof of the above theorem that every principal ideal in A can
be obtained as a characteristic ideal of a system augmented by a free controller. In [9],
Willems shows that given a controllable system R in Rl×k[ ddx ] and any polynomial r in

R[ ddx ], there is a controllerK in R(k−l)×k[ ddx ] such that the characteristic polynomial of

the augmented system [
R
K

] is (r). The theorem above is therefore the generalization

of this result to distributed systems. For we have already shown that a lumped
controllable system is given by a left prime matrix, i.e., by a submodule of (R[ ddx ])k

which is a direct summand. See Proposition 3 and Corollary 3.
We therefore have solved the pole-placement problem for this special class of

AR systems. We wish to extend these results to more general systems given by free
submodules of Ak.

We now address the question as to which principal ideals can be obtained using
a free controller for systems defined by free submodules.

Let R be a free submodule of Ak of rank l and let R be any matrix representation
for R. Let Il(R) be its lth determinant ideal. Let e1, . . . , ek be the (standard) basis
of Ak. Let f1, . . . , fl in Ak freely generate the submodule R. Consider the following
map:

φ : Λk−lAk → ΛkAk,
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g1 ∧ · · · ∧ gk−l 7→

∑
f1 ∧ · · · ∧ fl ∧ g1 ∧ · · · ∧ gk−l.

This is clearly an A-module morphism. As ΛkAk is isomorphic to A, the image of φ
is therefore an ideal in A. This image is of course spanned by the images of any basis
for Λk−lAk.

Consider the following basis for Λk−lAk obtained from the basis e1, . . . , ek for Ak
by choosing a (k− l)-tuple from it, namely, elements of the form ei1 ∧ ei2 ∧ · · · ∧ eik−l
for 1 ≤ i1 < i2 < · · · < ik−l ≤ k. The image of ei1 ∧ ei2 ∧ · · · ∧ eik−l under φ is, up to
sign, the determinant of the l × l submatrix of R obtained by choosing l columns of
R which are not i1, i2, . . . , ik−l. However, this determinant is one of the generators of
Il(R). Thus the image of the morphism φ is precisely Il(R). Hence if the controller
is to be defined by a free submodule of rank (k − l), then the characteristic ideal of
the augmented system is a principal ideal that must lie in Il(R).

The question now is whether every principal ideal contained in Il(R) can be so
obtained. To answer this observe that if K is a free controller of rank (k− l), then the

characteristic ideal of the augmented system [
R
K

] is a principal ideal generated by

f1 ∧ · · · ∧ fl ∧ g1 ∧ · · · ∧ gk−l, where g1, . . . , gk−l are the rows of K. Thus these ideals
come from the image under φ of homogeneous elements, denoted by Hk−l, in Λk−lAk.
Thus φ(Hk−l) correspond to the principal ideals in Il(R) which can be obtained by a
free controller of rank (k− l). It is also easy to see that φ(Hk−l) is in correspondence
with free submodules of Ak of rank k, which contain R as a direct summand.

Corollary 10. Let R be a free submodule of Ak of rank k − 1. Then every
principal ideal in Ik−1(R) can be obtained by a free controller of rank 1.

Proof. From the above discussion, observe that if l equals k− 1, then Hk−l = H1

is equal to all of Λ1Ak. Thus every element in Λ1Ak is in H1 and so φ(H1) is all of
Ik−1(R).

A constructive proof for the above corollary can also be given. Let R be a matrix
representation of R. Let (r) be any principal ideal contained in Ik−1(R). Then
r =

∑
aipi, where pi is the determinant of the (k−1)×(k−1) submatrix of R obtained

by dropping the ith column of R and ai ∈ A for i = 1, . . . , k. Then the controller given
by K = (a1,−a2, . . . , (−1)i−1ai, . . . , (−1)k−1ak) would give an augmented system
that has (r) as its characteristic ideal.

Corollary 11. Let R be a submodule of Ak and let R in Al×k be a matrix rep-
resentation for it. Let K be a controller given by a submodule generated by g1, . . . , gN .
Suppose that every subset of {g1, . . . , gN} containing k−l+1 elements is A-dependent.

Then the characteristic ideal of the augmented system [
R
K

] is contained in Il(R).

Proof. The proof is clear from the proof of Theorem 8 and the discussion following
it.

Remark. More generally in the above corollary, if every subset of {g1, . . . , gN}
containing k − l + t elements were A-dependent, then the characteristic ideal of the
augmented system would be contained in Il−t+1(R).

We have shown that a principal reason for the complexities of distributed be-
haviors as compared to lumped behaviors is due to the existence of submodules that
are not free. We have, however, shown that in low projective dimensions (i.e., less
than or equal to 2), the imposition of the property of controllability on a behavior
forces the corresponding submodule to be free. This explains why controllable 2-D
systems, even though not defined over a principal ideal domain, exhibit properties
similar to controllable lumped systems. Our treatment therefore not only extends the
results of Willems, and Rocha and Willems, on 1-D and discrete 2-D systems, but
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also provides a better understanding of this phenomena. Our treatment also shows
why n-D systems for n ≥ 3 are essentially different from 2-D systems. Our treatment
of the pole-placement problem was essentially confined to behaviors given by free
submodules. The pole-placement problem for general submodules will be considered
elsewhere. Applications of this theory to specific distributed systems will also appear
elsewhere [7].
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H∞ CONTROL OF DIFFUSION SYSTEMS BY USING A
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Abstract. In this paper, we consider H∞ control of linear and semilinear diffusion systems by
using a finite-dimensional controller. The main aim is to construct a finite-dimensional stabilizing
controller for the linear diffusion system that makes the H∞ norm of the closed-loop transfer function
less than a given positive number δ. For that purpose, we first derive a finite-dimensional reduced-
order system for the linear diffusion system. Then, a stabilizing controller that makes the H∞ norm
of the closed-loop transfer function less than another positive number is constructed for the reduced-
order model. It is proved that the finite-dimensional controller, together with a residual mode filter,
plays a role of a finite-dimensional stabilizing controller that makes the H∞ norm of the closed-loop
transfer function less than δ for the original linear diffusion system if the order of residual mode
filter is chosen sufficiently large. Moreover, it is shown that the finite-dimensional H∞ controller
constructed for the linear diffusion system also works as a finite-dimensional H∞ controller for a
semilinear diffusion system with sufficiently small nonlinear term.

Key words. H∞ control, diffusion systems, residual mode filters
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1. Introduction. In recent years, H∞ control theory for distributed parameter
systems has been developed by extending the existing results for lumped parameter
systems. In particular, H∞ control with measurement feedback, which is of special
importance from the practical point of view, has been investigated by Van Keulen
[4]. In [4] the results given by Doyle et al. [3] are extended to the infinite-dimensional
case by using the infinite-dimensional version of Redheffer’s lemma developed by Van
Keulen, and H∞ controllers are constructed by using the solutions to two kinds of
Riccati equations in an infinite-dimensional space. However, it seems difficult to ap-
ply Van Keulen’s algorithm directly to actual infinite-dimensional systems, because
the controllers obtained there are of infinite-dimension. In this paper, we study a
design method of finite-dimensional H∞ controllers for linear and semilinear diffusion
systems. In our design method, we need not solve Riccati equations numerically in
an infinite-dimensional space nor to reduce infinite-dimensional controllers to finite-
dimensional ones by using approximation techniques. Instead, we use residual mode
filters, which were originally adopted for the problem of stabilizing distributed param-
eter systems of modal type by using finite-dimensional dynamic compensators (see [6],
[1], [7]).

In this paper, in order to construct a finite-dimensional controller that internally
stabilizes the linear diffusion system and makes the H∞ norm of the closed-loop trans-
fer function from the disturbance input w to the controlled output z less than δ > 0,
we first derive a finite-dimensional model for the linear diffusion system. Next, we
construct a stabilizing controller for the finite-dimensional model such that the H∞
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norm of the closed-loop transfer function from w to z is less than γ (0 < γ < δ), by
using the algorithm given by Doyle et al. [3]. However, the finite-dimensional con-
troller constructed in this way is not necessarily a stabilizing controller for the original
infinite-dimensional system that makes the H∞ norm of the closed-loop transfer func-
tion from w to z less than δ. Therefore, we consider a controller consisting of the above
controller and a residual mode filter. One of our main results in this paper is to prove
that a controller, which consists of a residual mode filter and the finite-dimensional
controller constructed for the finite-dimensional model, yields a finite-dimensional
stabilizing controller such that the closed-loop transfer function from w to z has H∞
norm less than δ for the given original infinite-dimensional system if the order of the
residual mode filter is chosen sufficiently large. Moreover, it is shown that the finite-
dimensional H∞ controller constructed for the linear diffusion system also works as
a finite-dimensional H∞ controller for a semilinear diffusion system with sufficiently
small Lipschitz constant.

2. H∞ control of linear diffusion systems.

2.1. System description. Let H be a real Hilbert space with inner product
〈 · , · 〉 and associated norm ‖ · ‖. We shall consider the linear system of the form

dx(t)

dt
= Ax(t) +B1w(t) +B2u(t) (t > 0), x(0) = x0,

z(t) = C1x(t) +D12u(t),

y(t) = C2x(t) +D21w(t),

(2.1)

where x(t) ∈ H is the state, w(t) ∈ Rm1 is the disturbance input, u(t) ∈ Rm2 is the
control input, z(t) ∈ Rp1 is the controlled output, and y(t) ∈ Rp2 is the measured
output. A is the infinitesimal generator of a C0-semigroup etA on H. Moreover,
we assume that A is self-adjoint and that A has compact resolvent. From these
assumptions for the operator A, by using the Hilbert–Schmidt theory for compact
self-adjoint operators, it follows that there exists a set of eigenpairs (λi, φij) with
finite multiplicity µi, such that

(1) σ(A) = {λ1, λ2, . . . }, with λ1 > λ2 > · · · > λi > · · ·, limi→∞ λi = −∞,
(2) Aφij = λiφij (i ≥ 1, 1 ≤ j ≤ µi),
(3) {φij ; i ≥ 1, 1 ≤ j ≤ µi } forms a complete orthonormal system in H,

where σ(A) denotes the spectrum of A. Therefore, x ∈ H has a unique expression

x =

∞∑
i=1

µi∑
j=1

〈x, φij〉φij ,

and the operator A is expressed as

Ax =

∞∑
i=1

µi∑
j=1

λi〈x, φij〉φij for x ∈ D(A),

where

D(A) =

{
x ∈ H ;

∞∑
i=1

µi∑
j=1

λ2
i 〈x, φij〉2 <∞

}
.



H∞ CONTROL OF DIFFUSION SYSTEMS 411

The C0-semigroup etA generated by A is analytic in t > 0, and it is given as

etAx =
∞∑
i=1

µi∑
j=1

eλit〈x, φij〉φij (t ≥ 0, x ∈ H).

In (2.1), B1 : Rm1 → H, B2 : Rm2 → H, C1 : H → Rp1 , C2 : H → Rp2 are bounded
linear operators, and D12 is a p1 ×m2 matrix and D21 is a p2 ×m1 matrix.

In this paper, we impose the following assumptions for the operators and the
matrices appearing in (2.1):

(A1) The pair (A,B1) is stabilizable and the pair (C1, A) is detectable, where
the former means that there exists a bounded linear operator F1 : H → Rm1 such
that the analytic semigroup generated by A + B1F1 is exponentially stable, and the
latter means that there exists a bounded linear operator K1 : Rp1 → H such that the
analytic semigroup generated by A+K1C1 is exponentially stable.

(A2) The pair (A,B2) is stabilizable and the pair (C2, A) is detectable.
(A3) DT

12C1 = 0, DT
12D12 = I, where DT

12 denotes the transpose of D12.
(A4) B1D

T
21 = 0, D21D

T
21 = I.

Moreover, it is assumed that x0 ∈ H. As is well known, the system (2.1) represents
a linear diffusion system subjected to both the disturbance input and the control input.

2.2. H∞control problem. In the system (2.1), if a proper control law u =
K(s)y is given, the closed-loop transfer function from w to z can be calculated, which
will be denoted by Gzw(s).

Given a positive number δ > 0, the problem is to find a finite-dimensional control
law u = K(s)y such that the controller is internally stabilizing the system (2.1), and
that ‖Gzw(·)‖H∞(L(Cm1 ,Cp1 )) < δ, where

‖Gzw(·)‖H∞(L(Cm1 ,Cp1 )) := sup
s∈C+

‖Gzw(s)‖L(Cm1 ,Cp1 ),

C+ := { s ∈ C ; Re(s) > 0 }.
Any finite-dimensional controller that satisfies the above two conditions will be called
a finite-dimensional H∞ controller.

Remarks. (i) In this paper, we do not discuss how to find a finite-dimensional sta-
bilizing controller that minimizes ‖Gzw(·)‖H∞(L(Cm1 ,Cp1 )) under the order constraint.
This problem is very important from the practical point of view, but it is difficult to
solve.

(ii) In [4] Van Keulen has given a design method of infinite-dimensional controllers
satisfying the above two properties for a large class of infinite-dimensional systems.

3. Finite-dimensional H∞controllers for linear diffusion systems.

3.1. Partitioned system. First of all, let us define the positive number β as

β := max

{
1, ‖C1‖ ‖B2‖ ‖DT

12‖, ‖C1‖ ‖B1‖, ‖DT
21‖ ‖C2‖ ‖B1‖,

‖C1‖ ‖B2‖ ‖DT
12‖ ‖DT

21‖ ‖C2‖ ‖B1‖
}
.(3.1)

Let δ > 0 and θ ∈ (0, 1) be given positive numbers. To derive a finite-dimensional
model for the system (2.1), we define the orthogonal projection PK by

PKx =
K∑
i=1

µi∑
j=1

〈x, φij〉φij .
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Using the operator PK , we decompose the system (2.1) according to the following
steps.

Step 1. Given a positive number ε ∈ (0, θδβ ), we choose an integer l (≥ 1) such
that

0 <
1

−λl+1
< ε.

Step 2. We take another integer n such that n > l.
Step 3. Using the operators Pl and Pn corresponding to the integers l and n, we

decompose the state variable x(t) as follows:

x(t) = x1(t) + x2(t) + x3(t),

where x1(t) := Plx(t), x2(t) := (Pn − Pl)x(t), x3(t) := (I − Pn)x(t). The state space
H can also be decomposed as

H = H1 ⊕H2 ⊕H3,

where H1 := PlH, H2 := (Pn − Pl)H, H3 := (I − Pn)H, and their dimensions are
given as dimH1 = l̄, dimH2 = n̄− l̄, dimH3 =∞. In the above l̄ := µ1 +µ2 + · · ·+µl,
n̄ := µ1 + µ2 + · · ·+ µn. Therefore, we see that the system (2.1) can be decomposed
as follows: 

dx1(t)

dt
= A1x1(t) +B11w(t) +B21u(t), x1(0) = x01,

dx2(t)

dt
= A2x2(t) +B12w(t) +B22u(t), x2(0) = x02,

dx3(t)

dt
= A3x3(t) +B13w(t) +B23u(t), x3(0) = x03,

z(t) = C11x1(t) + C12x2(t) + C13x3(t) +D12u(t),

y(t) = C21x1(t) + C22x2(t) + C23x3(t) +D21w(t),

where

A1 := PlAPl,

B11 := PlB1,

B21 := PlB2,

C11 := C1Pl,

C21 := C2Pl,

x01 := Plx0,



A2 := (Pn − Pl)A(Pn − Pl),
B12 := (Pn − Pl)B1,

B22 := (Pn − Pl)B2,

C12 := C1(Pn − Pl),
C22 := C2(Pn − Pl),
x02 := (Pn − Pl)x0,



A3 := (I − Pn)A(I − Pn),

B13 := (I − Pn)B1,

B23 := (I − Pn)B2,

C13 := C1(I − Pn),

C23 := C2(I − Pn),

x03 := (I − Pn)x0.

In the above, only the operator A3 is unbounded, whereas the other operators are
bounded.

Hereafter, the Hilbert space H1 will be identified with the Euclidean space Rl̄

with respect to the basis (φ11, . . . , φ1µ1
, . . . , φl,µl). Thus, x1 ∈ H1 will be identified

with the l̄-dimensional vector, and the operators A1, B11, B21, C11, C21 are identified
with the matrices, respectively. In the same way, x2 ∈ H2 will be identified with the
(n̄ − l̄)-dimensional vector, and the operators A2, B12, B22, C12, C22 are identified
with the matrices, respectively.
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3.2. Design of finite-dimensional H∞controllers using residual mode
filters. In connection with (2.1), let us consider a finite-dimensional model given by

dx1(t)

dt
= A1x1(t) +B11w(t) +B21u(t),

z(t) = C11x1(t) +D12u(t),

y(t) = C21x1(t) +D21w(t).

(3.2)

Then, by [9, Proposition 4.12 and Proposition 4.13], it is easy to see that the assump-
tions (A1) and (A2) for the original infinite-dimensional system (2.1) imply that

(A1′) the pair (A1, B11) is stabilizable and the pair (C11, A1) is detectable, and
(A2′) the pair (A1, B21) is stabilizable and the pair (C21, A1) is detectable.

Moreover, noting that C11 = C1Pl and B11 = PlB1, we see that the assumptions (A3)
and (A4) imply

(A3′) DT
12C11 = 0, DT

12D12 = I, and
(A4′) B11D

T
21 = 0, D21D

T
21 = I.

Given a proper control law u = K̃(s)y, we denote by Tzw(s) the closed-loop
transfer function from w to z for the finite-dimensional model (3.2). Here, for the
given positive numbers δ > 0, θ ∈ (0, 1), and ε ∈ (0, θδβ ), let us define γ by

γ :=
1

(1 + ε)2

(
θδ

β
− ε
)
∈ (0, δ).(3.3)

We seek a controller u = K̃(s)y that satisfies the following two conditions.
Condition 1. The controller is internally stabilizing the finite-dimensional system

(3.2).
Condition 2. ‖Tzw(·)‖H∞(L(Cm1 ,Cp1 )) < γ.
From the results given by Doyle et al. [3], under the conditions (A1′)–(A4′) for

the finite-dimensional system (3.2), there exists a controller u = K̃(s)y that satisfies
the above two conditions 1 and 2 if and only if, for the matrices H∞ and J∞ defined
by

H∞ :=

[
A1 γ−2B11B

T
11 −B21B

T
21

−CT11C11 −AT1

]
,

J∞ :=

[
AT1 γ−2CT11C11 − CT21C21

−B11B
T
11 −A1

]
,

the following conditions hold:
(B1) H∞ ∈ dom(Ric), X∞ := Ric(H∞) ≥ 0,
(B2) J∞ ∈ dom(Ric), Y∞ := Ric(J∞) ≥ 0,
(B3) ρ(X∞Y∞) < γ2,

where the notations dom(Ric) and Ric(H∞) are as defined in [3], and ρ(X∞Y∞)
denotes the spectral radius of the matrix X∞Y∞.

Hereafter, it is supposed that the conditions (B1)–(B3) are satisfied. Then, by
[3], all the stabilizing controllers that satisfy ‖Tzw(·)‖H∞(L(Cm1 ,Cp1 )) < γ for the
finite-dimensional model (3.2) are given as follows:

dq(t)

dt
= Â∞q(t)− Z∞L∞y(t) + Z∞B21v(t), q(0) = q0,

u(t) = F∞q(t) + v(t),

r(t) = −C21q(t) + y(t),

(3.4)
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dλ(t)

dt
= AΛλ(t) +BΛr(t), λ(0) = λ0,

v(t) = CΛλ(t) +DΛr(t),
(3.5)

where

Â∞ := A1 + γ−2B11B
T
11X∞ +B21F∞ + Z∞L∞C21,

F∞ := −BT21X∞, L∞ := −Y∞CT21, Z∞ := (I − γ−2Y∞X∞)−1,

and the linear system (AΛ, BΛ, CΛ, DΛ) indicates a free parameter such that{
Reσ(AΛ) < 0,

‖CΛ((·)I −AΛ)−1BΛ +DΛ‖H∞(L(Cp2 ,Cm2 )) < γ,

σ(AΛ) being the spectrum of AΛ.
For simplicity, let us assume DΛ = 0 in (3.5). Then, the closed-loop system

consisting of the finite-dimensional model (3.2) and the controller (3.4), (3.5) is written
as follows: 

dη(t)

dt
= A1η(t) + B1w(t), η(0) = η0,

z(t) = C1η(t),

where

η(t) :=

[
x1(t)
p(t)

] (
p(t) :=

[
q(t)
λ(t)

])
is in Rl̄ × (Rl̄ ×RS) (RS denotes the state space of the free parameter (3.5)), and
the matrices A1, B1, and C1 are defined by

A1 :=

[
A1 B21L
NC21 M

]
, B1 :=

[
B11

ND21

]
, C1 :=

[
C11 D12L

]
,

M :=

[
Â∞ Z∞B21CΛ

−BΛC21 AΛ

]
, N :=

[ −Z∞L∞
BΛ

]
, L :=

[
F∞ CΛ

]
.

The condition 1 that the controller K̃(s) is internally stabilizing the system means
that the matrix etA1 is exponentially stable, i.e., there exist positive constants m (≥ 1)
and α such that

‖etA1‖ ≤ me−αt (t ≥ 0).(3.6)

It should be noted that both m and α do not depend on the integer n. Also, noting
that Tzw(s) = C1(sI−A1)−1B1, we see that Condition 2 is equivalent to the inequality

‖C1((·)I −A1)−1B1‖H∞(L(Cm1 ,Cp1 )) < γ.(3.7)

However, it cannot be ensured that the controller (3.4), (3.5) works as a finite-
dimensional stabilizing controller that satisfies ‖Gzw(·)‖H∞(L(Cm1 ,Cp1 )) < δ for the
given original infinite-dimensional system (2.1).
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Infinite-dimensional
system (2.1)

(3.10)

(3.8)

(3.9)
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Fig. 1. Finite-dimensional H∞ controller ΣK .

Let us consider a controller, which consists of the controller (3.4), (3.5) with
DΛ = 0 constructed for (3.2) as well as a residual mode filter

dx̂2(t)

dt
= A2x̂2(t) +B22u(t), x̂2(0) = x̂20,

ŷ2(t) = C22x̂2(t).

Then, the whole controller ΣK (see Fig. 1) is described by


dq(t)

dt
= Â∞q(t)− Z∞L∞(y(t)− ŷ2(t)) + Z∞B21v(t), q(0) = q0,

u(t) = F∞q(t) + v(t),

r(t) = −C21q(t) + y(t)− ŷ2(t),

(3.8)


dλ(t)

dt
= AΛλ(t) +BΛr(t), λ(0) = λ0,

v(t) = CΛλ(t),
(3.9)


dx̂2(t)

dt
= A2x̂2(t) +B22u(t), x̂2(0) = x̂20,

ŷ2(t) = C22x̂2(t).
(3.10)

The following theorem is one of our main results.
Theorem 3.1. Suppose that the assumptions (A1)–(A4) are satisfied. Let δ > 0,

θ ∈ (0, 1), and ε ∈ (0, θδβ ) be given constants, where the constant β is defined by (3.1),

and let the integers l and n be chosen such that 0 < 1
−λl+1

< ε and n > l hold, where

λl+1 is the (l+ 1)th eigenvalue of the operator A. Moreover, let the conditions (B1)–
(B3) be satisfied with γ = 1

(1+ε)2 ( θδβ − ε) ∈ (0, δ). Then, the controller ΣK , which

consists of (3.8), (3.9), and (3.10), gives a finite-dimensional stabilizing controller
that satisfies ‖Gzw(·)‖H∞(L(Cm1 ,Cp1 )) < δ for the linear infinite-dimensional system
(2.1) if the integer n is taken sufficiently large.
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4. Proof of Theorem 3.1. First of all, let us state the lemma which will be
frequently used in this section.

Lemma 4.1 (Lemma 4.1 in [8]). Let A11 and A22 be the generators of C0-
semigroups S1(t), S2(t) with ‖S1(t)‖L(X1) ≤ M1e

ω1t, ‖S2(t)‖L(X2) ≤ M2e
ω2t (ω1 6=

ω2) for t ≥ 0 on Hilbert spaces X1, X2, respectively, and let A12 : X2 → X1 and
A21 : X1 → X2 be bounded linear operators. Then, the C0-semigroup S̄21(t) on X1 ×
X2 generated by the operator [ A11 0

A21 A22
] and the C0-semigroup S̄12(t) on X1 × X2

generated by the operator [ A11 A12

0 A22
] have the following operator norm bounds:

‖S̄21(t)‖L(X1×X2) ≤ max(M1,M2)

(
1 +

max(M1,M2)‖A21‖L(X1,X2)

|ω1 − ω2|
)
emax(ω1,ω2)t

for t ≥ 0,

‖S̄12(t)‖L(X1×X2) ≤ max(M1,M2)

(
1 +

max(M1,M2)‖A12‖L(X2,X1)

|ω1 − ω2|
)
emax(ω1,ω2)t

for t ≥ 0.

Let us introduce the variable e2(t) := x2(t)− x̂2(t). Then, the closed-loop system
of state equations from w to z in Fig. 1 is written as follows:

dξ(t)

dt
= (A+∆A)ξ(t) + (B +∆B)w(t), ξ(0) = ξ0,

z(t) = (C +∆C)ξ(t),

where the state vector

ξ(t) :=


x1(t)
p(t)
x2(t)
x3(t)
e2(t)


(
p(t) :=

[
q(t)
λ(t)

])

is in a real Hilbert space X := Rl̄ × (Rl̄ ×RS) ×Rn̄−l̄ ×H3 ×Rn̄−l̄ with the inner
product 〈 · , · 〉X defined by

〈ξ, ξ̃〉X := xT1 x̃1 + pT p̃+ xT2 x̃2 + 〈x3, x̃3〉+ eT2 ẽ2

for ξ =


x1

p
x2

x3

e2

 , ξ̃ =


x̃1

p̃
x̃2

x̃3

ẽ2

 ∈ X,
and the operators A, ∆A, B, ∆B, C, and ∆C are defined by

A :=


A1 B21L 0 0 0
NC21 M 0 0 NC22

0 B22L A2 0 0
0 0 0 A3 0
0 0 0 0 A2

 , ∆A :=


0 0 0 0 0
0 0 0 NC23 0
0 0 0 0 0
0 B23L 0 0 0
0 0 0 0 0

 ,
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B :=


B11

ND21

B12

0
B12

 , ∆B :=


0
0
0
B13

0

 ,
C :=

[
C11 D12L C12 0 0

]
, ∆C :=

[
0 0 0 C13 0

]
,

M :=

[
Â∞ Z∞B21CΛ

−BΛC21 AΛ

]
, N :=

[ −Z∞L∞
BΛ

]
, L :=

[
F∞ CΛ

]
.

In the above, we remark that the operator A is unbounded because A3 is unbounded,
whereas the operators ∆A, B, ∆B, C, and ∆C are bounded.

4.1. Exponential stability. Define the matrix A2 by

A2 :=

[ A1 0[
0 B22L

]
A2

]
.

Then, the operator A can be written as

A =


A2

 0 0
0 NC22

0 0


0

[
A3 0
0 A2

]
 .

First, we shall estimate the norm of the matrix etA2 . For the matrix etA1 , we
know that under the assumptions of the theorem, inequality (3.6) holds. For a matrix
etA2 , the following estimate holds:

‖etA2‖ = eλl+1t ≤ e−ωt (t ≥ 0),(4.1)

where ω > 0 is independent of n and is chosen such that λl+1 ≤ −ω, α 6= ω. Also,
we can easily derive the inequality∥∥[ 0 B22L

]∥∥ ≤ N1,(4.2)

where N1 := ‖B2‖‖L‖ is independent of n. Therefore, by using Lemma 4.1 for A2

and by using (3.6), (4.1), and (4.2), it follows that

‖etA2‖ ≤ m′e−σt (t ≥ 0),(4.3)

where

m′ := m

(
1 +

mN1

|α− ω|
)

(≥ 1), σ := min(α, ω) (> 0)

are independent of n by Lemma 4.1.
Next, based on the above estimate (4.3), we shall find the operator norm bound

of an analytic semigroup etA generated by the operator A. For an analytic semigroup

[
etA3 0

0 etA2
] generated by the operator [

A3 0
0 A2

], it is clear that∥∥∥∥[ etA3 0
0 etA2

]∥∥∥∥
L(H3×Rn̄−l̄)

≤ eλl+1t (t ≥ 0).(4.4)
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Also, it is easy to see that∥∥∥∥∥∥
 0 0

0 NC22

0 0

∥∥∥∥∥∥
L(H3×Rn̄−l̄,Rl̄×(Rl̄×RS)×Rn̄−l̄)

≤ N2,(4.5)

where N2 := ‖N‖‖C2‖ is independent of n. Therefore, by using Lemma 4.1 and (4.3),
(4.4), and (4.5), it follows that

‖etA‖L(X) ≤ m′′e−σt (t ≥ 0),(4.6)

where

m′′ := m′
(

1 +
m′N2

|σ + λl+1|
)

(≥ 1)

is independent of n.
By using the well-known result (e.g. [5, Theorem 3.1.1], [11, Theorem 3.4.1]), for

an analytic semigroup et(A+∆A) generated by the perturbed operator A+∆A, where
∆A is bounded, we get

‖et(A+∆A)‖L(X) ≤ m′′e−µt (t ≥ 0),(4.7)

where

µ := σ −m′′‖∆A‖L(X).

Therefore, noting that ‖∆A‖L(X) ≤ ‖B23‖‖L‖+ ‖N‖‖C23‖ → 0 (n→∞) holds since
‖B23‖ → 0 (n→∞) and ‖C23‖ → 0 (n→∞), it follows that there exists an integer
n1 such that

µ = σ −m′′‖∆A‖L(X) > 0 (∀ n ≥ n1),

i.e., et(A+∆A) is exponentially stable when n is chosen such that n ≥ n1.

4.2. Norm condition. First, let us estimate the H∞ norm of G(s) := C(sI −
A)−1B. Using the assumptions (A3) and (A4) (i.e., (A3′) and (A4′)), G(s) is calcu-
lated as follows (see appendix):

G(s) = Tzw(s) + C12(sI −A2)−1B22D
T
12Tzw(s) + C12(sI −A2)−1B12

+Tzw(s)DT
21C22(sI −A2)−1B12

+C12(sI −A2)−1B22D
T
12Tzw(s)DT

21C22(sI −A2)−1B12,(4.8)

where

Tzw(s) = C1(sI −A1)−1B1 =
[
C11 D12L

] [ sI −A1 −B21L
−NC21 sI −M

]−1 [
B11

ND21

]
.

Under the assumptions of the theorem, we see that

‖Tzw(·)‖H∞(L(Cm1 ,Cp1 )) < γ.
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Moreover, noting the fact that

‖((·)I −A2)−1‖H∞(L(Cn̄−l̄)) =
1

−λl+1
< ε,

we can give the H∞ norm bound of G(s) as

‖G(·)‖H∞(L(Cm1 ,Cp1 )) ≤ β
[
(1 + ε)2‖Tzw(·)‖H∞(L(Cm1 ,Cp1 )) + ε

]
< θδ.

Based on this fact, we shall find the H∞ norm bound of

Gzw(s) = (C +∆C)(sI − (A+∆A)
)−1

(B +∆B).

Let us denote by Xc the complexification of X. First, noting that

‖((·)I −A)−1‖H∞(L(Xc)) ≤ m′′/σ

(by [5, Theorem 1.5.3 and Remark 1.5.4], together with the definition of H∞ norm)
and that ‖∆A‖L(Xc) = ‖∆A‖L(X) → 0 (n→∞), it follows that

‖((·)I −A)−1∆A‖H∞(L(Xc)) → 0 (n→∞),

which implies that there exists an integer n2 such that

‖((·)I −A)−1∆A‖H∞(L(Xc)) < 1 (∀ n ≥ n2).

Therefore, when n is chosen such that n ≥ n2, (I− ((·)I−A)−1∆A)−1 ∈ H∞(L(Xc))
exists and the H∞ norm can be estimated as follows:

‖(I − ((·)I −A)−1∆A)−1‖H∞(L(Xc)) ≤ 1

1− ‖((·)I −A)−1∆A‖H∞(L(Xc))
.

Here, setting n3 := max(n1, n2), we can calculate

Gzw(s) = (C+∆C)
[
(sI −A)−1 + (sI −A)−1∆A(I − (sI −A)−1∆A)−1

(sI −A)−1
]

×(B +∆B), s ∈ C+,

if n is chosen such that n ≥ n3. Moreover, noting that ‖∆B‖L(Cm1 ,Xc) = ‖∆B‖L(Rm1 ,X)

= ‖B13‖ → 0 (n → ∞) and ‖∆C‖L(Xc,Cp1 ) = ‖∆C‖L(X,Rp1 ) = ‖C13‖ → 0 (n → ∞),
we have

‖Gzw(·)−G(·)‖H∞(L(Cm1 ,Cp1 )) → 0 (n→∞),(4.9)

which implies that there exists an integer n4 (≥ n3) such that

‖Gzw(·)−G(·)‖H∞(L(Cm1 ,Cp1 )) < (1− θ)δ (∀ n ≥ n4).

Hence, we finally obtain

‖Gzw(·)‖H∞(L(Cm1 ,Cp1 )) ≤ ‖Gzw(·)−G(·)‖H∞(L(Cm1 ,Cp1 )) + ‖G(·)‖H∞(L(Cm1 ,Cp1 ))

< (1− θ)δ + θδ = δ (∀ n ≥ n4).(4.10)

The proof of Theorem 3.1 is thus complete.
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Remarks. (i) We cannot a priori estimate the order of the resulting controller
n̄+S in Theorem 3.1 as well as the order of finite-dimensional dynamic compensators
(see [6], [1], [7]). This is an open problem.

(ii) In Theorem 3.1, we can replace the operator A by a modal operator [1]. An
unbounded closed linear operator A with the domain D(A) dense in H is called a
modal operator if A has the form

Ax =

∞∑
i=1

λi〈x, φi〉φi, x ∈ D(A),

where λi are eigenvalues of A satisfying

Re(λ1) ≥ Re(λ2) ≥ · · · ≥ Re(λi) ≥ · · · , lim
i→∞

Re(λi) = −∞,

and φi denote eigenfunctions corresponding to λi, and {φi ; i ≥ 1} forms a complete
orthonormal system in H.

5. Example. Let Ω = (0, π) be a domain in R1 with a boundary Γ = {0, π}.
We consider the linear diffusion system described by

∂x

∂t
(t, ξ) = 4x(t, ξ) + b1(ξ)w1(t) + b2(ξ)u(t), (t, ξ) ∈ (0,∞)× Ω,

∂x

∂ν
(t, η) = 0, (t, η) ∈ (0,∞)× Γ,

x(0, ξ) = x0(ξ), ξ ∈ Ω,

z1(t) =

∫
Ω

c1(ξ)x(t, ξ)dξ,

z2(t) = u(t),

y(t) =

∫
Ω

c2(ξ)x(t, ξ)dξ + w2(t).

(5.1)

In the above, 4 denotes the Laplacian, and ∂/∂ν means the outward normal differ-
entiation at the points η = 0, π.

We will formulate the above system in a real Hilbert space L2(Ω) with inner
product 〈 · , · 〉L2(Ω) and corresponding norm ‖ · ‖L2(Ω). First, we define the operator

A in L2(Ω) as follows:

Ax = 4x, x ∈ D(A) =

{
x ∈ H2(Ω) ;

∂x

∂ν
= 0 on Γ

}
.

Then, A is a self-adjoint operator with compact resolvent and the eigenpairs of A are
completely specified by

λi = −(i− 1)2 (i = 1, 2, 3, . . .),

φ1(ξ) =
1√
π
, φi(ξ) =

√
2

π
cos(i− 1)ξ (i = 2, 3, . . .).

Here, assuming that b1, b2, c1, c2 ∈ L2(Ω), and defining bounded linear operators
B̃1 : R1 → L2(Ω), B2 : R1 → L2(Ω), C̃1 : L2(Ω)→ R1, and C2 : L2(Ω)→ R1 by

B̃1w1(t) := b1w1(t), B2u(t) := b2u(t),

C̃1x(t) := 〈c1, x(t)〉L2(Ω), C2x(t) := 〈c2, x(t)〉L2(Ω),
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we can express the above system (5.1) as

dx(t)

dt
= Ax(t) + B̃1w1(t) +B2u(t), x(0) = x0,

z1(t) = C̃1x(t),

z2(t) = u(t),

y(t) = C2x(t) + w2(t).

(5.2)

Moreover, defining the operators B1 : R2 → L2(Ω), C1 : L2(Ω) → R2, the 2 × 1
matrix D12, the 1× 2 matrix D21, and the vectors w(t) ∈ R2, z(t) ∈ R2 by

B1 :=
[
B̃1 0

]
, C1 :=

[
C̃1

0

]
, D12 :=

[
0
1

]
, D21 :=

[
0 1

]
,

w(t) :=

[
w1(t)
w2(t)

]
, z(t) :=

[
z1(t)
z2(t)

]
,

the above system (5.2) can be expressed as in (2.1).
Now, we especially consider the case where bj ∈ L2(Ω) (j = 1, 2) and cj ∈

L2(Ω) (j = 1, 2) are given by

bj(ξ) =


1√

(βj − αj)π
, ξ ∈ [αjπ, βjπ],

0, ξ ∈ (0, αjπ) ∪ (βjπ, π),

cj(ξ) =


1√

(δj − γj)π
, ξ ∈ [γjπ, δjπ],

0, ξ ∈ (0, γjπ) ∪ (δjπ, π),

where α1 = 0.05, β1 = 0.25, α2 = 0.5, β2 = 0.75, γ1 = 0.3, δ1 = 0.45, γ2 = 0.8, δ2 =
0.95. Then, noting that

‖B1‖ = ‖b1‖L2(Ω) = 1, ‖B2‖ = ‖b2‖L2(Ω) = 1,

‖C1‖ = ‖c1‖L2(Ω) = 1, ‖C2‖ = ‖c2‖L2(Ω) = 1,

‖DT
12‖ = ‖D12‖ = 1, ‖DT

21‖ = ‖D21‖ = 1,

it follows from (3.1) that β = 1.
Here, let us set δ = 1.85 and θ = 0.96479 (< 1). Then, we can choose ε as

ε = 0.063 (< θδ
β = 1.78486). Moreover, we can choose l = 4, and calculate the

matrices of A1, B11, B21, C11, C21 with respect to the basis (φ1, φ2, φ3, φ4) as follows:

A1 =


λ1 0 0 0
0 λ2 0 0
0 0 λ3 0
0 0 0 λ4

 , B11 =


g1,1 0
g1,2 0
g1,3 0
g1,4 0

 , B21 =


g2,1

g2,2

g2,3

g2,4

 ,
C11 =

[
h1,1 h1,2 h1,3 h1,4

0 0 0 0

]
, C21 =

[
h2,1 h2,2 h2,3 h2,4

]
,

where

gj,i := 〈bj , φi〉L2(Ω) (j = 1, 2 ; i = 1, 2, 3, 4),

hj,i := 〈cj , φi〉L2(Ω) (j = 1, 2 ; i = 1, 2, 3, 4).

In the above, A1, B11, B21, C11, and C21 are identified with their corresponding ma-
trices. It is easily verified that the conditions (A3′) and (A4′) are satisfied. From
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(3.3), we can calculate γ = 1.52381. Then, by using Robust Control TOOLBOX
of MATLAB [2], we can verify that the conditions (A1′), (A2′), and (B1)–(B3) are
satisfied.

Remark. In this example, we treated the system with β = 1. If β is larger, we
see from (3.3) that the H∞ norm bound γ for the finite-dimensional model becomes
smaller. Consequently, if β is larger, conditions (B1)–(B3) may not be satisfied.

6. H∞control of semilinear diffusion systems. Let H be a real Hilbert
space with inner product 〈 · , · 〉 and associated norm ‖ · ‖. Consider the semilinear
system of the form

dx(t)

dt
= Ax(t) + F (x(t)) +B1w(t) +B2u(t) (t > 0), x(0) = x0,

z(t) = C1x(t) +D12u(t),

y(t) = C2x(t) +D21w(t),

(6.1)

where the nonlinear term F (·) : H → H satisfies the following condition:{ ‖F (x)− F (x̃)‖ ≤ k‖x− x̃‖, x, x̃ ∈ H,
F (0) = 0.

(6.2)

The other operators and matrices are the same ones as in section 2.
A function x(·) : [0,∞) → H is called a solution of the first equation of (6.1)

if x(·) ∈ C([0,∞);H) ∩ C1((0,∞);H), x(t) ∈ D(A) for t > 0, and x(·) satisfies the
first equation of (6.1). For the first equation of (6.1), the following existence and
uniqueness result is obtained by using the theory of semilinear evolution equations
(see [5], [10]).

Lemma 6.1. Let x0 ∈ H, w(·) ∈ Cν([0,∞); Rm1), and u(·) ∈ Cν([0,∞); Rm2)
(0 < ν ≤ 1), where Cν([0,∞); Rm1) denotes the Hölder space with the exponent ν, on
[0,∞) taking values in Rm1 . Then, the first equation of (6.1) has a unique solution.

To the above system (6.1), we shall apply the linear controller (3.8)–(3.10) con-
structed for the linear diffusion system (2.1). By using the same notation as in section
4, the closed-loop system from w to z can be written as follows:

dξ(t)

dt
= (A+∆A)ξ(t) + F(ξ(t)) + (B +∆B)w(t), ξ(0) = ξ0,

z(t) = (C +∆C)ξ(t),
(6.3)

where F(·) : X → X is defined as

F(ξ(t)) :=


F1(x1(t), x2(t), x3(t))

0
F2(x1(t), x2(t), x3(t))
F3(x1(t), x2(t), x3(t))
F2(x1(t), x2(t), x3(t))

 ,
F1(·) := PlF (·), F2(·) := (Pn − Pl)F (·), F3(·) := (I − Pn)F (·).

Here, we remark that F1(·) and F2(·) are identified with their corresponding vectors
with respect to the bases (φ11, . . . , φ1µ1

, . . . , φl,µl) of H1 and (φl+1,1, . . . , φl+1,µl+1
, . . . ,

φn,µn) of H2, respectively.
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Then, we have the following theorem.
Theorem 6.2. Suppose that the assumptions of Theorem 3.1 are satisfied and

that the integer n is chosen sufficiently large such that the inequality (4.10) holds.
Moreover, assume that the Lipschitz constant k satisfies the inequality

0 < k <
µ√
2m′′

,(6.4)

where the constants m′′ and µ are defined in (4.6) and (4.7), respectively. Then, the
following results (1) and (2) hold:

(1) The solution of the equation

dξ(t)

dt
= (A+∆A)ξ(t) + F(ξ(t)), ξ(0) = ξ0(6.5)

is exponentially stable.
(2) For the closed-loop system (6.3) with the initial condition ξ(0) = 0, the in-

equality

‖z‖L2(0,∞;Rp1 ) ≤ (δ + δk)‖w‖L2(0,∞;Rm1 )

holds for all w ∈ L2(0,∞; Rm1), where

δk :=

√
2km′′2‖B +∆B‖L(Rm1 ,X)‖C +∆C‖L(X,Rp1 )

µ(µ−√2km′′)
.(6.6)

Proof of (1). From (6.5), we have

ξ(t) = et(A+∆A)ξ0 +

∫ t

0

e(t−s)(A+∆A)F(ξ(s))ds.(6.7)

Since the condition (6.2) implies{ ‖F(ξ)−F(ξ̃)‖X ≤
√

2k‖ξ − ξ̃‖X , ξ, ξ̃ ∈ X,
F(0) = 0,

(6.8)

from (4.7) and (6.7), we obtain

eµt‖ξ(t)‖X ≤ m′′‖ξ0‖X +

∫ t

0

√
2km′′eµs‖ξ(s)‖Xds.

Here, using Gronwall’s inequality yields

‖ξ(t)‖X ≤ m′′‖ξ0‖Xe−(µ−√2km′′)t.

Hence, it follows under the assumption (6.4) that the solution of (6.5) is exponentially
stable.

Proof of (2). By setting ξ(0) = 0 in the closed-loop system (6.3), we have ξ(t) =

∫ t

0

e(t−s)(A+∆A){F(ξ(s)) + (B +∆B)w(s)}ds,
z(t) = (C +∆C)ξ(t).

(6.9)
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From (6.9), we get

z(t) =

∫ t

0

(C+∆C)e(t−s)(A+∆A)(B+∆B)w(s)ds+

∫ t

0

(C+∆C)e(t−s)(A+∆A)F(ξ(s))ds.

Let us estimate the L2(0,∞; Rp1) norm of z. First, it follows from the above equation
that

‖z‖L2(0,∞;Rp1 ) ≤
∥∥∥∥∫ ·

0

(C +∆C)e(·−s)(A+∆A)(B +∆B)w(s)ds

∥∥∥∥
L2(0,∞;Rp1 )

+

∥∥∥∥∫ ·
0

(C +∆C)e(·−s)(A+∆A)F(ξ(s))ds

∥∥∥∥
L2(0,∞;Rp1 )

.(6.10)

Here, noting that

sup
w̃∈L2(0,∞;Rm1 )

w̃ 6=0

∥∥∥∥∫ ·
0

(C +∆C)e(·−s)(A+∆A)(B +∆B)w̃(s)ds

∥∥∥∥
L2(0,∞;Rp1 )

‖w̃‖L2(0,∞;Rm1 )

= ‖Gzw(·)‖H∞(L(Cm1 ,Cp1 )) < δ,

it is easy to see that the first term of the right-hand side of (6.10) is estimated as∥∥∥∥∫ ·
0

(C +∆C)e(·−s)(A+∆A)(B +∆B)w(s)ds

∥∥∥∥
L2(0,∞;Rp1 )

≤ δ‖w‖L2(0,∞;Rm1 )(6.11)

for all w ∈ L2(0,∞; Rm1). Therefore, we have only to consider the second term of
the right-hand side of (6.10). Using (4.7) and (6.8), and using Hölder’s inequality, we
get ∥∥∥∥∫ t

0

(C +∆C)e(t−s)(A+∆A)F(ξ(s))ds

∥∥∥∥
Rp1

≤
√

2km′′‖C +∆C‖L(X,Rp1 )

∫ t

0

e−µ(t−s)‖ξ(s)‖Xds

≤
√

2km′′‖C +∆C‖L(X,Rp1 )

(∫ t

0

e−µ(t−s)ds
) 1

2
(∫ t

0

e−µ(t−s)‖ξ(s)‖2Xds
) 1

2

≤
√

2km′′‖C +∆C‖L(X,Rp1 )

(
1

µ

) 1
2
(∫ t

0

e−µ(t−s)‖ξ(s)‖2Xds
) 1

2

.(6.12)

Here, squaring the both sides of (6.12), integrating from 0 to∞ with respect to t, and
interchanging the order of integration, we have∫ ∞

0

∥∥∥∥∫ t

0

(C +∆C)e(t−s)(A+∆A)F(ξ(s))ds

∥∥∥∥2

Rp1

dt

≤ 2k2m′′2‖C +∆C‖2L(X,Rp1 )

1

µ

∫ ∞
0

(∫ t

0

e−µ(t−s)‖ξ(s)‖2Xds
)
dt

= 2k2m′′2‖C +∆C‖2L(X,Rp1 )

1

µ

∫ ∞
0

(∫ ∞
s

e−µ(t−s)‖ξ(s)‖2Xdt
)
ds

= 2k2m′′2‖C +∆C‖2L(X,Rp1 )

1

µ

∫ ∞
0

‖ξ(s)‖2X
(∫ ∞

s

e−µ(t−s)dt
)
ds

= 2k2m′′2‖C +∆C‖2L(X,Rp1 )

1

µ2
‖ξ‖2L2(0,∞;X).(6.13)
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From (6.13), we obtain∥∥∥∥∫ ·
0

(C +∆C)e(·−s)(A+∆A)F(ξ(s))ds

∥∥∥∥
L2(0,∞;Rp1 )

≤
√

2km′′‖C +∆C‖L(X,Rp1 )
1

µ
‖ξ‖L2(0,∞;X).(6.14)

Finally we estimate ‖ξ‖L2(0,∞;X) in the right-hand side of (6.14) by ‖w‖L2(0,∞;Rm1 ).
By using (4.7) and (6.8), and by using Hölder’s inequality, it follows from the first
equation of (6.9) that

‖ξ(t)‖X ≤
√

2km′′
∫ t

0

e−µ(t−s)‖ξ(s)‖Xds

+m′′‖B +∆B‖L(Rm1 ,X)

∫ t

0

e−µ(t−s)‖w(s)‖Rm1ds

≤
√

2km′′
(∫ t

0

e−µ(t−s)ds
) 1

2
(∫ t

0

e−µ(t−s)‖ξ(s)‖2Xds
) 1

2

+m′′‖B +∆B‖L(Rm1 ,X)

(∫ t

0

e−µ(t−s)ds
) 1

2
(∫ t

0

e−µ(t−s)‖w(s)‖2Rm1ds

) 1
2

≤
√

2km′′
(

1

µ

) 1
2
(∫ t

0

e−µ(t−s)‖ξ(s)‖2Xds
) 1

2

+m′′‖B +∆B‖L(Rm1 ,X)

(
1

µ

) 1
2
(∫ t

0

e−µ(t−s)‖w(s)‖2Rm1ds

) 1
2

.(6.15)

Here, squaring both sides of (6.15) and integrating from 0 to∞ with respect to t yield∫ ∞
0

‖ξ(t)‖2Xdt ≤
[√

2km′′
1

µ

(∫ ∞
0

‖ξ(s)‖2Xds
) 1

2

+m′′‖B +∆B‖L(Rm1 ,X)
1

µ

(∫ ∞
0

‖w(s)‖2Rm1ds

) 1
2
]2

.

In the above, we interchange the order of integration and use Hölder’s inequality.
Therefore, we have(

1−
√

2km′′
1

µ

)
‖ξ‖L2(0,∞;X) ≤ m′′‖B +∆B‖L(Rm1 ,X)

1

µ
‖w‖L2(0,∞;Rm1 ).

Hence, it follows under the assumption (6.4) that

‖ξ‖L2(0,∞;X) ≤
m′′‖B +∆B‖L(Rm1 ,X)

µ−√2km′′
‖w‖L2(0,∞;Rm1 ).(6.16)

Here, combining (6.14) and (6.16) gives∥∥∥∥∫ ·
0

(C +∆C)e(·−s)(A+∆A)F(ξ(s))ds

∥∥∥∥
L2(0,∞;Rp1 )

≤ δk‖w‖L2(0,∞;Rm1 ),(6.17)

where

δk =

√
2km′′2‖B +∆B‖L(Rm1 ,X)‖C +∆C‖L(X,Rp1 )

µ(µ−√2km′′)
.
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From (6.10), (6.11), and (6.17), we finally obtain

‖z‖L2(0,∞;Rp1 ) ≤ (δ + δk)‖w‖L2(0,∞;Rm1 )

for all w ∈ L2(0,∞; Rm1).
The proof of Theorem 6.2 is thus complete.
Remark. From (6.6), it is easy to see that δk → 0 as k ↓ 0 and δk → ∞ as

k ↑ µ√
2m′′

. This shows that the finite-dimensional H∞ controller constructed for the

linear infinite-dimensional system also works as a finite-dimensional H∞ controller for
a semilinear infinite-dimensional system with sufficiently small Lipschitz constant k.

Appendix: Derivation of (4.8). Noting that

(sI −A)−1

=


sI −A1 −B21L 0 0 0
−NC21 sI −M 0 0 −NC22

0 −B22L sI −A2 0 0
0 0 0 sI −A3 0
0 0 0 0 sI −A2


−1

=


 sI −A1 −B21L 0
−NC21 sI −M 0

0 −B22L sI −A2

−1

[
0 0 0
0 0 0

]

−
 sI −A1 −B21L 0
−NC21 sI −M 0

0 −B22L sI −A2

−1  0 0
0 −NC22

0 0

[ sI −A3 0
0 sI −A2

]−1

[
sI −A3 0

0 sI −A2

]−1


and sI −A1 −B21L 0
−NC21 sI −M 0

0 −B22L sI −A2

−1

=


[
sI −A1 −B21L
−NC21 sI −M

]−1 [
0
0

]
−(sI −A2)−1

[
0 −B22L

] [ sI −A1 −B21L
−NC21 sI −M

]−1

(sI −A2)−1

 ,
G(s) = C(sI −A)−1B can be calculated as

G(s) = C12(sI −A2)−1B12 +G1(s) +G2(s) +G3(s) +G4(s),

where

G1(s) :=
[
C11 D12L

] [ sI −A1 −B21L
−NC21 sI −M

]−1 [
B11

ND21

]
= Tzw(s),

G2(s) := C12(sI −A2)−1
[

0 B22L
] [ sI −A1 −B21L
−NC21 sI −M

]−1 [
B11

ND21

]
,
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G3(s) :=
[
C11 D12L

] [ sI −A1 −B21L
−NC21 sI −M

]−1 [
0

NC22(sI −A2)−1B12

]
,

G4(s) := C12(sI −A2)−1
[

0 B22L
] [ sI −A1 −B21L
−NC21 sI −M

]−1

×
[

0
NC22(sI −A2)−1B12

]
.

Here, by using the assumptions (A3) and (A4) (i.e., (A3′) and (A4′)), G2(s), G3(s),
and G4(s) can be rewritten as follows:

G2(s)

= C12(sI −A2)−1B22

[
0 L

] [ sI −A1 −B21L
−NC21 sI −M

]−1 [
B11

ND21

]
= C12(sI −A2)−1B22

[
DT

12C11 DT
12D12L

] [ sI −A1 −B21L
−NC21 sI −M

]−1 [
B11

ND21

]
= C12(sI −A2)−1B22D

T
12

[
C11 D12L

] [ sI −A1 −B21L
−NC21 sI −M

]−1 [
B11

ND21

]
= C12(sI −A2)−1B22D

T
12Tzw(s),

G3(s)

=
[
C11 D12L

] [ sI −A1 −B21L
−NC21 sI −M

]−1 [
0
N

]
C22(sI −A2)−1B12

=
[
C11 D12L

] [ sI −A1 −B21L
−NC21 sI −M

]−1 [
B11D

T
21

ND21D
T
21

]
C22(sI −A2)−1B12

=
[
C11 D12L

] [ sI −A1 −B21L
−NC21 sI −M

]−1 [
B11

ND21

]
DT

21C22(sI −A2)−1B12

= Tzw(s)DT
21C22(sI −A2)−1B12,

G4(s)

= C12(sI −A2)−1B22

[
0 L

] [ sI −A1 −B21L
−NC21 sI −M

]−1

×
[

0
N

]
C22(sI −A2)−1B12

= C12(sI −A2)−1B22

[
DT

12C11 DT
12D12L

] [ sI −A1 −B21L
−NC21 sI −M

]−1

×
[

B11D
T
21

ND21D
T
21

]
C22(sI −A2)−1B12

= C12(sI −A2)−1B22D
T
12

[
C11 D12L

] [ sI −A1 −B21L
−NC21 sI −M

]−1

×
[

B11

ND21

]
DT

21C22(sI −A2)−1B12

= C12(sI −A2)−1B22D
T
12Tzw(s)DT

21C22(sI −A2)−1B12.
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Therefore, we finally obtain

G(s) = C12(sI −A2)−1B12 + Tzw(s) + C12(sI −A2)−1B22D
T
12Tzw(s)

+Tzw(s)DT
21C22(sI −A2)−1B12

+C12(sI −A2)−1B22D
T
12Tzw(s)DT

21C22(sI −A2)−1B12.
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GENERALIZED FOURIER AND TOEPLITZ RESULTS FOR
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Abstract. This paper provides a generalization of certain classical Fourier convergence and
asymptotic Toeplitz matrix properties to the case where the underlying orthonormal basis is not the
conventional trigonometric one but rather a rational generalization which encompasses the trigono-
metric one as a special case. These generalized Fourier and Toeplitz results have particular applica-
tion in dynamic system estimation theory. Specifically, the results allow a unified treatment of the
accuracy of least-squares system estimation using a range of model structures, including those that
allow the inclusion of prior knowledge of system dynamics via the specification of fixed pole or zero
locations.

Key words. stochastic processes, prediction theory, system identification
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1. Introduction. In the area of applied mathematics, a fundamental idea is
that of approximating or exactly expressing solutions by expanding them in terms
of orthogonal basis functions. Well-known classical examples are Fourier analysis,
solutions of the wave equation and Schrödinger’s equation in terms of (respectively)
Legendre and Laguerre orthogonal polynomials, and solutions of self-adjoint operator
equations such as Sturm–Liouville systems in terms of the orthogonal eigenfunctions of
the operator. More recently, particularly for the solution of signal processing and other
system theoretic problems, there has been an explosion of interest in the development
and use of a wide class of new orthogonal bases called “wavelets” [7, 5].

Indeed, tackling system theoretic problems using orthonormal descriptions has a
particularly rich history, going back at least as far as the work of Kolmogorov [23] and
Wiener [52], who exploited them in developing their now famous theory on the predic-
tion of random processes. In that work, the orthonormal basis was the trigonometric
one, but as was shown by Szegö there is great utility in reexpressing the problem with
respect to another orthonormal basis that is adapted to the random process; namely,
a basis of polynomials orthogonal to a given positive function f which is the spectral
density of the process [45, 11]. Such polynomials are called “Szegö polynomials.”

This latter approach derives its utility from the fact that the nth order Szegö
polynomial is in fact the mean-square best, order n, one step ahead predictor of the
random process [14, 45]. By exploiting the orthonormality of the basis to derive what
is called a “Christoffel–Darboux” formula for the “reproducing kernel” associated with
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the Szegö polynomial basis, theoretical analysis of this predictor is greatly facilitated.
For example, it was by this means that Szegö was able to derive his famous formula

σ2 = exp

{
1

2π

∫ π

−π
log f(ω) dω

}
for the asymptotic in order n variance σ2 of the prediction error associated with a
spectral density f .

In addition, use of the Christoffel–Darboux formula provides a recursive in n
formula for the Szegö polynomials [45, 11], and this in turn allows a computation-
ally efficient means for calculating predictors. This recursive formula is of course the
famous Levinson recursion, which was developed independently of Szegö’s work by
exploiting the properties of Toeplitz matrices [26, 38]. In practice, the so-called “re-
flection coefficients” required in the Levinson recursions are calculated by the Schur
algorithm [41], originally proposed by Schur [43] as a means for testing whether or
not a function is bounded positive real (or “Carathéodory” as it is known in some
literature). Here again orthonormal bases and Toeplitz matrices arise since another
test for positive realness involves testing for the positive definiteness of the Toeplitz
matrix formed from the Fourier coefficients of the function [44].

These several links between Toeplitz matrices and orthonormal bases arise since
(subject to some regularity conditions) the `,mth element of any n × n symmetric
Toeplitz matrix Tn(f) may be expressed using the orthonormal trigonometric basis
{ejωn} as

[Tn(f)]`,m =
1

2π

∫ π

−π
ejω`e−jωmf(ω) dω(1.1)

for some positive function f . By recognizing this, certain quadratic forms of Toeplitz
matrices that arise naturally in the frequency domain analysis of least-squares esti-
mation problems may instead be conveniently rewritten as

1

n
Γ?n(ω)Tn(f)Γn(ω) =

n∑
k=−n

(
1− |k|

n

)
ck e

jωk(1.2)

where ·? denotes “conjugate transpose” and

ck ,
1

2π

∫ π

−π
f(ω)e−jωk dω

is the kth Fourier coefficient of f with Γn(ω) an n× 1 vector defined as

Γ?n(ω) , [1, e−jω, e−j2ω, . . . , e−j(n−1)ω].

The right-hand side of (1.2) may be recognized as the Cesàro mean reconstruction of
a Fourier series which is known [10], provided f is continuous, to converge uniformly
to f(ω) on [−π, π].

This latter fact has been exploited by Ljung and coauthors [29, 31, 16, 30, 53,
27], who, reminiscent of Szegö’s approach of examining the asymptotic in order n
nature of predictors, have provided asymptotic-in-model-order results describing the
variability of the frequency response of least-squares system estimates in such a way as
to elucidate how they depend on excitation and measurement noise spectral densities,
model order, and observed data length; see section 7 for more detail on this point.
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Such results have found wide engineering application; see for example [2, 12, 28,
17]. However, to derive them, another key ingredient pertaining to the properties of
Toeplitz matrices is required, namely, that asymptotically in size n, Toeplitz matrices
possess the algebraic structure [14, 50]

Tn(f)Tn(g) ∼ Tn(fg),(1.3)

where f and g are any continuous positive functions, and for n× n matrices An and
Bn, the notation An ∼ Bn means that limn→∞ |An − Bn| = 0, where | · | is the
Hilbert–Schmidt matrix norm defined by

|A|2 , 1

n
Trace{A?A}.(1.4)

The main results of this paper extend the results of the convergence of the Cesàro
mean (1.2) and the algebraic structure of Toeplitz matrices (1.3) to more general cases
wherein the underlying orthonormal basis is not the trigonometric one but rather a
generalization of it. More specifically, this paper studies the use of the basis functions
Bn(z) given by

Bn(z) ,
√

1− |ξn|2
1− ξnz

n−1∏
k=0

(
z − ξk
1− ξkz

)
,(1.5)

where the {ξk} may be chosen (almost) arbitrarily inside and (in some cases) on the
boundary of the open unit disc D , {z ∈ C : |z| < 1} (C is the field of complex
numbers). These functions {Bn} are orthonormal on the unit circle T = {z ∈ C :
|z| = 1}, and the trigonometric basis is a special case of them if all the {ξk} are chosen
as zero. Using them, a generalization

[Mn(f)]`,m ,
1

2π

∫ π

−π
B`(ejω)Bm(ejω)f(ω) dω(1.6)

of Toeplitz matrices is considered, for which it is shown here that a generalization of
(1.3) still holds, and with the redefinition

ΓTn (ω) , [B0(ejω), B1(ejω), . . . ,Bn−1(ejω)](1.7)

it is also shown here that a generalization of the uniform convergence of the Cesàro
mean (1.2) to f(ω) also holds.

In both cases, the generalization involves replacing the 1/n normalization ap-
pearing in (1.2) and in the definition of the matrix norm (1.4) with a frequency
dependent term Kn(ω, ω) which is the reproducing kernel associated with the linear
space spanned by the basis functions {B0,B1, . . . ,Bn−1}.

Indeed, this reproducing kernel is the key to the results presented here. Classical
derivations of Cesàro summability and Toeplitz matrix results rely heavily on the
algebraic structure of the trigonometric basis, namely, that ejωnejωm = ejω(n+m). In
the cases considered here, since BnBm 6= Bn+m this algebraic structure is lost and
pre-existing analysis techniques are not applicable. Instead, motivated by Szegö’s
approach to the study of orthogonal polynomials, this paper exploits a closed form
expression for the appropriate reproducing kernel.

The utility of the new results presented here is that, just as the classical Fourier
and Toeplitz results have been used by Ljung and coauthors to analyze estimation
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using finite impulse response (FIR) and certain other rational model structures, the
results of this paper can be used to analyze estimation using generalizations of these
model structures. As shown in [37] and as commented on in section 7, these generalized
structures are actually quite common since they implicitly arise whenever the common
practice of data prefiltering is performed.

There is much other work related to the results presented here. The study of the
basis functions (1.5) dates back to Malmquist [34] and was taken up by Walsh [49] in
the context of complex rational approximation theory and by other authors [52, 25,
21, 3, 9, 8, 32, 39] for system theoretic applications such as system approximation and
network synthesis, including generalizations of Schur and Levinson recursions, lattice
structures, and the concomitant solution of inverse scattering problems.

In the context of system identification, as well as pertaining to the aforementioned
work [29, 31, 16, 30, 53, 27], the results of this paper also have close connections with
much recent literature examining the use of model structures derived from orthonor-
mal bases. In [22, 6, 20, 46, 48] the use of the so-called “Laguerre” basis is examined.
This basis can be encompassed by the basis (1.5) by fixing all the poles at a common
value ξk = ξ ∈ R (R denotes the field of real numbers) and with the substitution
z 7→ 1/z so as to accommodate convention in the signal processing and control theory
literature. In this case the name “Laguerre” derives from the ensuing functions being
related to the classical Laguerre orthonormal polynomials via a Fourier and bilinear
transform [35]. In [47] a generalization of this Laguerre case is analyzed wherein the
common value ξ may be complex valued. In [18, 40], these analyses are again gener-
alized to the case where a fixed set of poles {ξ0, . . . , ξr} are cyclically repeated and

orthonormal bases are generated with denominators given as Dp(z) =
∏p−1
k=0(z − ξk)

and numerators as Szegö polynomials associated with the weight function |Dp(e
jω)|−2.

The cyclic repetition of poles arises due to the latter numerator and denominator pair
being multiplied by powers of the all-pass function zpDp(1/z)/Dp(z) as the number
of required basis functions increases beyond p.

In all these works, any analysis of estimation accuracy proceeds by exploiting the
restriction on the choice of ξk to establish, via a bilinear transform [46, 47, 48] or a
multilinear transform (dubbed a “Hambo” transform) [40] an algebra isomorphism
to the trigonometric basis {ejωn}. The utility of this is that the original results of
Ljung [31] can then be employed, having been mapped through the isomorphism, to
provide quantification of estimation accuracy.

In spite of the elegance of this approach, it suffers several drawbacks which are
the motivation for the work at hand. First, the results pertain only to a restricted
class of models in which all the poles {ξk} either are chosen the same [46, 48, 47] or
are cyclically repeated from a fixed set [40]. Second, and with particular reference
to [40], the results are asymptotic not, as is the case here, to the number of poles
{ξk} chosen but to the number of times the whole set {ξ0, . . . , ξp−1} is repeated. The
results in this paper allow the avoidance of these limitations by eschewing a strategy
of forcing an algebra isomorphism to the trigonometric case.

The presentation of these ideas is organized as follows. In section 2, the anal-
ysis begins by establishing that the general orthonormal bases (1.5) fundamental to
this paper form a complete set in the Hilbert space H2(T). In order to study other
approximating properties of the basis, a “reproducing kernel” approach is employed,
and section 3 is devoted to explaining certain important principles relevant to this
framework. Perhaps more importantly, section 3 also contains the derivation of a
closed form “Christoffel–Darboux” type formula for the reproducing kernel. With
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these results in hand, section 4 then considers generalized Fourier analysis with re-
spect to the basis (1.5), and using the reproducing kernel ideas establishes uniform
convergence for generalized Cesàro mean reconstructions.

In fact, because of application demands, something more is derived: it is shown
that for certain frequencies being different, uniform convergence to zero also ensues.
The generalized Cesàro mean reconstruction is defined with respect to a generalized
Toeplitz matrix, and section 5 is devoted to the study of the asymptotic algebraic
properties of such matrices since, as already explained, these properties are of great
utility in certain system theoretic applications.

Pertinent to this, section 5 defines a new notion of asymptotic equivalence be-
tween matrices and then uses this to establish that asymptotically, arbitrary products
of generalized Toeplitz matrices and their inverses are equivalent to a single general-
ized Toeplitz matrix with a symbol equal to the product of the corresponding symbols
and inverse symbols of the matrices in the product. This study of generalized Toeplitz
matrix properties in terms of its symbol is continued in section 6, where the relation-
ship between the spectrum of the matrices and the values of the symbol are explored
and found to be intimately connected. Given these theoretical developments, sec-
tion 7 provides a very brief overview of how the results here may be applied in the
study of certain system identification problems that were, in fact, the original mo-
tivation for this work. More detail on this application is provided in the separate
work [37]. Finally, section 8 provides a summary and concluding perspectives on the
work presented here.

2. Completeness properties. The theme of this paper is examination of cer-
tain system theoretic issues pertaining to the use of the basis functions (1.5) for the
purposes of describing discrete time dynamic systems. In what follows only bounded-
input, bounded-output stable and causal systems will be of interest, so that it is
natural to embed the analysis in the Hardy space H2(T) of functions f(z) which are
analytic on D, square integrable on T, and possess only a one-sided Fourier expan-
sion. As is well known [19], H2(T) is a Hilbert space when endowed with the inner
product

〈f, g〉 =
1

2π

∫ π

−π
f(ejω)g(ejω) dω =

1

2πj

∮
T

f(z)g(z)
dz

z
, f, g ∈ H2(T).(2.1)

That the functions (1.5) form an orthonormal set in that 〈Bn,Bm〉 = δ(n − m) =
Kronecker delta may easily be shown [36] using the contour integral formulation of
the inner product in (2.1) and Cauchy’s residue theorem.

What must be of central interest if the functions (1.5) are to be useful in such a
system theoretic setting is whether or not linear combinations of them can describe
an arbitrary system in H2(T) to any degree of accuracy. This may be answered in the
affirmative by the following completeness result which has been developed elsewhere,
but is presented here for the sake of a self-contained presentation.

Theorem 2.1 (Ninness and Gustafsson [36]).

Span {Bk(z)}k≥0 = H2(T)

if and only if

∞∑
k=0

(1− |ξk|) =∞,

where here X denotes the norm closure of the space X.
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3. Reproducing kernels. Given the completeness result in Theorem 2.1, to
further examine the properties of approximants formed as linear combinations of the
basis functions (1.5), this paper utilizes the ideas of reproducing kernel spaces [1, 45],
of which a brief overview of the key ideas is as follows.

If an approximant fn(z) of a function f(z) is formed as a certain linear combina-
tion of the n basis functions {B0,B1, . . . ,Bn−1}, then for any µ ∈ D it is also possible
to form a linear functional Fµ defined as follows:

Fµ : Xn , Span{B0,B1, . . . ,Bn−1} → C, fn 7→ fn(µ).

Since the setting is a Hilbert space H2(T), by the Riesz representation theorem [42]
there exists a unique µ dependent element in Xn, called Kn(z, µ), such that

g(µ) , Fµ(g) = 〈g(z),Kn(z, µ)〉 ∀g ∈ Xn.

This element Kn(z, µ) is called the “reproducing kernel” on account of its property
of reproducing values of elements of Xn at the point µ via an inner product.

Certain basic properties of Kn(z, µ) important for the purposes of this paper are
that it is “Hermitian symmetric” as can be easily seen according to

Kn(σ, µ) = 〈Kn(z, µ),Kn(z, σ)〉 = 〈Kn(z, σ),Kn(z, µ)〉 = Kn(µ, σ)

so that Kn(µ, µ) ∈ R and also Kn(µ, µ) > 0, since if it were not, then since Kn(µ, µ) =
〈Kn(z, µ),K(z, µ)〉 = ‖Kn(z, µ)‖2, then ‖Kn(z, µ)‖ = 0 would be implied, which
would further imply that g(µ) = 0 for every g ∈ Xn which is impossible since, for
example, B0(µ) 6= 0 for any µ ∈ D.

As will be illustrated in what follows, the reproducing kernel is enormously useful
in the study of the approximating properties of the linear span {B0, . . . ,Bn−1}. As
a preluding example, in the linear prediction context mentioned in the introduction,
consider the problem of finding the nth order, mean square optimal, one step ahead
predictor ϕn(z) ∈ Xn of a wide-sense stationary process with spectral density f(ω).
Here z is interpreted as the backward shift operator so that if {uk} is a sequence in
`2, then {ϕn(z)uk} denotes a filtered version of that sequence. With this notation in
hand ϕn is given by

ϕn = arg min
ϕ∈Xn

‖1− ϕ‖ subject to ϕ(0) = 0.

The constraint is added to ensure the one step ahead nature of the predictor, and the
norm is induced by the inner product (2.1) modified so as to be weighted according
to the spectral density f(ω). This constrained optimization problem is easily solved
using the reproducing kernel Kn(z, µ) associated with Span{1,B0, . . . ,Bn−1} and with
respect to the modified inner product by first noting that via the Cauchy–Schwarz
inequality

1 = |1− ϕn(0)|2 = |〈1− ϕn,Kn(z, 0)〉|2
≤ 〈1− ϕn, 1− ϕn〉〈Kn(z, 0),Kn(z, 0)〉
= ‖1− ϕn‖2Kn(0, 0).

However, equality occurs in the Cauchy–Schwarz inequality if and only if 1−ϕn(z) =
cK(z, 0) for some constant c. The constraint ϕn(0) = 0 implies the choice c =
1/Kn(0, 0) which leads to the solution

ϕn(z) = 1− Kn(z, 0)

Kn(0, 0)
.
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Given this utility of the reproducing kernel Kn(z, µ), the natural question of calcu-
lating it arises. This may be easily achieved as

Kn(z, µ) =
n−1∑
k=0

Bk(z)Bk(µ).(3.1)

That this formulation is valid may be quickly checked by noting that for any 0 ≤ m <
n

〈Bm(z),Kn(z, µ)〉 =
n−1∑
k=0

Bk(µ)〈Bm(z),Bk(z)〉 = Bm(µ).

However, for the purposes of the analysis in this paper this representation is too
cumbersome, and a more succinct description is required. This is in common with
the study of orthogonal polynomials [45, 11] via the use of reproducing kernels, where
simpler closed form formulae for Kn(z, µ) are called “Christoffel–Darboux formulae.”
Borrowing from this literature, the following theorem presents a Christoffel–Darboux
formula for Kn(z, µ) which in what follows will be central to the derivation of the
generalized Fourier and Toeplitz matrix results of this paper.

Theorem 3.1 (Christoffel–Darboux formula). Define the modified Blaschke prod-
uct

ϕn(z) ,
n−1∏
k=0

z − ξk
1− ξkz .

Then the reproducing kernel of the space spanned by {B0,B1, . . . ,Bn−1} can be ex-
pressed as

Kn(z, µ) =
1− ϕn(µ)ϕn(z)

1− zµ .(3.2)

Proof. Take z, µ ∈ D, consider the function Λn(z, µ) : C×C→ C defined by

Λn(z, µ) , 1− ϕn(µ)ϕn(z)

1− zµ ,

and define the space Xn , Span{B0(z), . . . ,Bn−1(z)} ⊂ H2(T). Clearly, since the
product ϕn(µ)ϕn(1/µ) = 1, then 1− ϕn(µ)ϕn(z) possesses a zero at z = 1/µ so that
Λn(z, µ) ∈ Xn. Furthermore, by Cauchy’s integral theorem〈

Bm(z),
1

1− µz
〉

=
1

2πj

∮
T

Bm(z)

z − µ dz = Bm(µ),

and also, for any m = 0, 1, . . . , n − 1, by the change of integration variable z 7→ 1/z
and Cauchy’s integral theorem〈

Bm(z),
ϕn(µ)ϕn(z)

1− µz

〉
=
ϕn(µ)

2πj

∮
T

Bm(z)ϕn(z)

z − µ dz

=
ϕn(µ)

2πj

∮
T

Bm(1/z)ϕn(1/z)

1− µz dz = 0.
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Therefore, Λn(z, µ) given by (3.2) has the property that f(µ) = 〈f(z),Λn(z, µ)〉 for
any f ∈ Xn. However, the reproducing kernel Kn(z, µ) is the unique function in Xn

with this property, so it must be that Kn(z, µ) = Λn(z, µ).
Often the expression (3.2) will be used by setting µ = rejσ, z = rejω and letting

r → 1 from below. In this case, with some abuse of notation in the interests of
cleanliness of exposition, the theorem will be used in the form

Kn(ω, σ) =
1− ϕn(ejσ)ϕn(ejω)

1− ej(σ−ω)
.(3.3)

4. Generalized Fourier series convergence. Given a function f ∈ H2(T),
an obvious way of approximating it in terms of the basis functions {B0,B1, . . . ,Bn−1}
is as fn given by

fn(z) = arg min
g∈Xn

‖f − g‖ =
n−1∑
k=0

〈f,Bk〉Bk(z).(4.1)

Provided
∑

(1 − |ξk|) = ∞ holds, by the completeness theorem, Theorem 2.1, the
approximation error ‖fn− f‖ can then be made arbitrarily small for arbitrarily large
approximation order n.

A natural question to then ask is how the approximant fn behaves with respect to
other norms, for example, the supremum norm on [−π, π]. The purpose of this section
is to show that a modified approximant, closely related to the above one and deriving
from the Cesàro (or Fejér) mean of classical Fourier analysis, is also supremum norm
convergent to f under the same condition of

∑
(1 − |ξk|) = ∞. This result will

encompass the classical result for the trigonometric basis by simply setting all the
poles {ξk} to zero.

To proceed, it is expedient to revisit the classical case by indeed setting ξk = 0
in (4.1) and also temporarily shifting to the L2(T) setting so that the sum in (4.1)
becomes two-sided to obtain

fn(ω) =
1

2π

n∑
k=−n

ejkω
∫ π

−π
f(σ)e−jσk dσ =

1

2π

∫ π

−π
f(σ)Dn(ω − σ) dσ,(4.2)

where

Dn(θ) , sin(2n+ 1)θ/2

sin θ/2

is known [10] as the “Dirichlet kernel.” Perhaps one of the more surprising facets of
applied mathematics is that even if f is continuous on [−π, π], then limn→∞ |fn−f | =
0 uniformly on [−π, π] is not guaranteed; this is a century-old observation due to Du
Bois-Reymond [24]. This undesirable behavior stems from the fact that although from
(4.2) one would wish Dn(θ) to behave more and more like a Dirac delta function as
n increases, it does not in the sense that

lim inf
n→∞

∫
|θ|>ρ

|Dn(θ)|dθ 6= 0

for arbitrarily small ρ. In fact, the quantity ‖Dn‖1 (called the nth Lebesgue constant)
is known to be bounded below by (4/π2) log n, so that since the norm of any linear
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projection Ln : C[−π, π]→ Span{e−jωn, . . . , e−jω, 1, ejω, . . . , ejωn} is known [4] to be
underbounded by ‖Dn‖1, then by Du Bois-Reymond’s result there always exists an
f ∈ C[−π, π] such that ‖Lnf‖ becomes unbounded as n→∞. In fact, this difficulty
has been the genesis of much work in the system identification literature, of which [33]
offers a survey.

A remedy for this problem of nonconvergence is to replace the approximation
(4.2) with the so-called Cesàro mean defined on the unit circle by

fn(ω) =
n∑

k=−n

(
1− |k|

n

)
〈f, ejkω〉ejkω =

1

2π

∫ π

−π
f(σ)Kn(ω − σ) dσ,(4.3)

where now

Kn(θ) , sin2 nθ/2

n sin2 θ/2

is known [10] as the “Fejér kernel” and does possess the “delta-like” property

lim
n→∞

∫
|θ|>ρ

Kn(θ) dθ = 0 ∀ρ > 0(4.4)

so that since it is also true that

1

2π

∫ π

−π
Kn(θ) dθ = 1,

then

2π|fn(ω)−f(ω)| ≤
∫
|ω−σ|≤ρ

|fn(σ)−f(ω)|Kn(σ) dσ+

∫
|ω−σ|>ρ

|fn(σ)−f(ω)|Kn(σ) dσ

in which case if f is continuous, then use of (4.4) allows the conclusion that since ρ
may be made arbitrarily small, then limn→∞ |fn(ω)−f(ω)| = 0 uniformly on [−π, π].

To develop the analogue of this result for the general case of approximants formed
using the general orthonormal basis (1.5), it is necessary to first develop a generaliza-
tion of the Cesàro mean (4.3). This may be accomplished by the definition

fn(ω) , Γ?n(ω)Mn(f)Γn(ω)

Kn(ω, ω)
,(4.5)

where Γn defined in (1.7) is an n × 1 vector of general rational orthonormal basis
functions (1.5) and Mn(f) is a generalized Toeplitz matrix as defined in (1.6). If all
the poles {ξk} are set to zero in (3.1), then it is straightforward to verify that the
formulation (4.5) reduces (since in this case Mn(f) = Tn(f)) to the usual Cesàro mean
(4.3). To analyze the convergence properties of (4.5), note that by the formulation
(3.1)

Γ?n(ω)Mn(f)Γn(ω) =
n−1∑
m=0

n−1∑
n=0

Bm(ejω)Bn(ejω)[Mn(f)]m,n

=
1

2π

∫ π

−π
f(σ)

n−1∑
m=0

n−1∑
n=0

Bm(ejω)Bn(ejω)Bm(ejσ)Bn(ejσ) dσ

=
1

2π

∫ π

−π
f(σ) |Kn(ω, σ)|2 dσ.
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Therefore, since by the defining property of the reproducing kernel

1

2π

∫ π

−π
|Kn(ω, σ)|2 dσ = 〈Kn(ω, σ),Kn(ω, σ)〉 = Kn(ω, ω) =

n−1∑
m=0

|Bm(ejω)|2,(4.6)

then

1

2π

∣∣∣∣Γ?n(ω)Mn(f)Γn(ω)

Kn(ω, ω)
− f(ω)

∣∣∣∣ =
1

2πKn(ω, ω)
|Γ?n(ω)Mn(f)Γn(ω)−Kn(ω, ω)f(ω)|

=
1

2πKn(ω, ω)

∣∣∣∣∫ π

−π
[f(σ)− f(ω)] |Kn(ω, σ)|2 dσ

∣∣∣∣(4.7)

and so, in analogy with classical Fourier analysis, convergence of the generalized
Cesàro mean approximant (4.5) hinges on a kernel function (in this case depending on
the reproducing kernel and being given by |Kn(ω, σ)|2/Kn(ω, ω)) behaving in some
sense like the Dirac delta function δ(ω − σ). Via use of the Christoffel–Darboux
formula (3.3) for the reproducing kernel, it is possible to establish that this “delta-
like” behavior does in fact occur in the following sense.

Lemma 4.1. For any ρ > 0 and provided

∞∑
k=0

(1− |ξk|) =∞,

then

lim
n→∞

1

Kn(ω, ω)

∫
σ 6∈[ω−ρ,ω+ρ]

|Kn(ω, σ)|2 dσ = 0.

Proof. By Theorem 3.1 formulated as (3.3)

|Kn(ω, σ)| ≤ 2

|ej(σ−ω) − 1| =
1

| sin(σ − ω)/2|
so that ∫

σ 6∈[ω−ρ,ω+ρ]

|Kn(ω, σ)|2 dσ ≤ 2π

sin2 ρ/2
.

Also, since |1− ξkejω| ≤ 1 + |ξk|, then

Kn(ω, ω) =
n−1∑
k=0

1− |ξk|2
|1− ξkejω|2 ≥

1

2

n−1∑
k=0

(1− |ξk|)(4.8)

so that

1

Kn(ω, ω)

∫
σ 6∈[ω−ρ,ω+ρ]

|Kn(ω, σ)|2 dσ ≤ π

sin2 ρ/2

(
n−1∑
k=0

(1− |ξk|)
)−1

which tends to zero under the conditions of the lemma.
Before using this result, some further notation is required since, motivated by

the desire to provide results applicable to certain system theoretic problems, it is
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necessary to be more ambitious than to just prove convergence of fn to f . Instead, it
is also necessary to prove convergence to zero of the quadratic form

Γ?n(µ)Mn(f)Γn(ω)

Kn(ω, ω)

when µ 6= ω, and this entails some delicacy in dealing with the distance between ejµ

and ejω on the unit circle, so that the distance between µ and ω must be considered
modulo 2π. This is achieved by defining, for −π ≤ x, y ≤ π, the function d(x, y) :
[−π, π]× [−π, π]→ [0, π] as

d(x, y) , min(|x− y|, 2π − |x− y|).(4.9)

Furthermore, letting Ω1 and Ω2 be subsets of [−π, π], then

d(Ω1,Ω2) , min
x∈Ω1, y∈Ω2

d(x, y).

In what follows, it will also be useful to note that because

| sin(x)| = | sin(π − x)| = | sin(−x)| = | sin(−(π − x))|,
then

| sin(x)| = sin
d(2x, 0)

2
, −π ≤ x ≤ π

so that since 2x/π ≤ sinx ≤ x for 0 ≤ x ≤ π/2, then

2

d(2x, 0)
≤ 1

| sin(x)| ≤
π

d(2x, 0)
(4.10)

for any x : |x| ≤ π, x 6= 0. The main use for these latter ideas is to develop further
bounds such as the ones contained in the following lemma, which sharpen the inter-
pretation (already begun in Lemma 4.1) of Kn(ω, σ) as behaving approximately like
the Dirac delta δ(ω, σ).

Lemma 4.2. Suppose that |ξn| ≤ 1 − δ for some δ > 0 and all n. Then for n
large enough the following bounds apply:

1

2

n−1∑
k=0

(1− |ξk|) ≤ |Kn(ω, σ)| ≤


2n

δ
∀σ, ω,

1

| sin(ω − σ)/2| , ω 6= σ.

(4.11)

Proof. Consider first the case of ω = σ. Then by the expression (4.6) and the
formulation (1.5)

Kn(ω, ω) =

n−1∑
k=0

1− |ξk|2
|1− ξkejω|2 ≤

n−1∑
k=0

1 + |ξk|
1− |ξk| ≤

2

δ
n(4.12)

so that using the Cauchy–Schwarz inequality the bound

|Kn(ω, σ)| ≤
√
|Kn(ω, ω)|

√
|Kn(σ, σ)| ≤ 2

δ
n(4.13)
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applies for all ω, σ. For the case of ω 6= σ, using (3.3) derived from Theorem 3.1 then
leads to the bound

|Kn(ω, σ)| = 1∣∣ej(ω−σ) − 1
∣∣ ≤ 1

| sin(ω − σ)/2| .

Finally, the underbound has already been established in (4.8).
With these ideas in hand, the following result is available.
Theorem 4.3. Suppose f(ω) is a continuous, not necessarily real-valued function

on [−π, π]. Then provided

∞∑
k=0

(1− |ξk|) =∞

the following limit result holds:

lim
n→∞

Γ?n(ω)Mn(f)Γn(ω)

Kn(ω, ω)
= f(ω)

uniformly in ω on [−π, π]. Under the strengthened condition that |ξn| ≤ 1 − δ for
some δ > 0 and all n, then for µ 6= ω

lim
n→∞

Γ?n(µ)Mn(f)Γn(ω)

Kn(ω, ω)
= 0.

Proof. Consider first the case of µ = ω. Then from (4.7) and for arbitrary ρ > 0

1

2π

∣∣∣∣Γ?n(ω)Mn(f)Γn(ω)

Kn(ω, ω)
− f(ω)

∣∣∣∣ =
1

2πKn(ω, ω)

∣∣∣∣∫ π

−π
[f(σ)− f(ω)] |Kn(ω, σ)|2 dσ

∣∣∣∣
≤ 1

2πKn(ω, ω)

∣∣∣∣∣
∫
σ∈[ω−ρ,ω+ρ]

[f(σ)− f(ω)] |Kn(ω, σ)|2 dσ

∣∣∣∣∣
+

1

2πKn(ω, ω)

∣∣∣∣∣
∫
σ 6∈[ω−ρ,ω+ρ]

[f(σ)− f(ω)] |Kn(ω, σ)|2 dσ

∣∣∣∣∣ .
Now, f(ω) is continuous, so for ρ sufficiently small

|f(σ)− f(ω)| ≤ ε on [ω − ρ, ω + ρ].

Using this and (4.6) gives that for sufficiently small ρ

1

2πKn(ω, ω)

∣∣∣∣∣
∫
σ∈[ω−ρ,ω+ρ]

[f(σ)− f(ω)] |Kn(ω, σ)|2 dσ

∣∣∣∣∣ ≤ ε

2πKn(ω, ω)

∫ π

−π
|Kn(ω, σ)|2 dσ

= ε.

Also, since f is continuous on compact [−π, π], then |f | is bounded by some M/2 <∞.
Therefore

1

2πKn(ω, ω)

∣∣∣∣∣
∫
σ 6∈[ω−ρ,ω+ρ]

[f(σ)− f(ω)] |Kn(ω, σ)|2 dσ

∣∣∣∣∣
≤ M

2πKn(ω, ω)

∫
σ 6∈[ω−ρ,ω+ρ]

|Kn(ω, σ)|2 dσ
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which provides

1

2π

∣∣∣∣Γ?n(ω)Mn(f)Γn(ω)

Kn(ω, ω)
− f(ω)

∣∣∣∣ ≤ ε+
M

2πKn(ω, ω)

∫
σ 6∈[ω−ρ,ω+ρ]

|Kn(ω, σ)|2 dσ.

Using Lemma 4.1 and the fact that ε is arbitrary then gives the result for µ = ω. Now
consider the case µ 6= ω. Define the regions

Ω1 ,
{
σ ∈ [−π, π] : |σ − µ| < K−αn (ω, ω)

}
,

Ω2 ,
{
σ ∈ [−π, π] : |σ − ω| < K−αn (ω, ω)

}
,

Ω3 , {σ ∈ [−π, π] : σ 6∈ {Ω1 ∪ Ω2}} ,

where α ∈ (0, 1/2) is arbitrary. In this case∣∣∣∣Γ?n(µ)Mn(f)Γn(ω)

Kn(ω, ω)

∣∣∣∣ =

∣∣∣∣ 1

2πKn(ω, ω)

∫ π

−π
f(σ)Kn(µ, σ)Kn(ω, σ) dσ

∣∣∣∣
≤ ‖f‖∞

2πKn(ω, ω)

∫
Ω1∪Ω2∪Ω3

|Kn(µ, σ)Kn(ω, σ)|dσ.

Consider the integrals over the various regions in turn. By Lemma 4.2 the bound
Kn(ω, ω) ≥ 1/2

∑n−1
k=0(1 − |ξk|) holds, so that by the assumptions of the theorem, n

can be taken large enough that Ω1 and Ω2 do not overlap. Assuming this to be the
case, then |ω − σ| > K−αn (ω, ω) on Ω1 and hence using Lemma 4.2

|Kn(ω, σ)| ≤ 1

| sin(ω − σ)/2| ≤
π

dα(ω, σ)
, σ ∈ Ω1.

Therefore, under the assumption that |ξk| ≤ 1 − δ, δ > 0, then by Lemma 4.2
|Kn(µ, σ)| ≤ 2n/δ, so that assuming n is so large that K−αn (ω, ω) ≤ d(µ, ω)/4 gives,
using Lemma B.1,∫

Ω1

|Kn(µ, σ)Kn(ω, σ)|dσ ≤ 2n

δ

∫
Ω1

1

| sin(ω − σ)/2| dσ ≤
32n

δKα
n (ω, ω)| sin(ω − µ)/2| .

Using an identical argument∫
Ω2

|Kn(µ, σ)Kn(ω, σ)|dσ ≤ 32n

δKα
n (ω, ω)| sin(ω − µ)/2| .

Finally, by the definition of Ω3 and Lemma 4.2∫
Ω3

|Kn(µ, σ)Kn(ω, σ)|dσ ≤ 2π

sin2K−αn (ω, ω)/2
≤ 8πK2α

n (ω, ω).

Combining the bounds on the integrals over the various regions gives∣∣∣∣Γ?n(µ)Mn(f)Γn(ω)

Kn(ω, ω)

∣∣∣∣ ≤ 32n‖f‖∞
πK1+α

n (ω, ω)| sin(ω − µ)/2| +
4‖f‖∞

K1−2α
n (ω, ω)

which, according to the lower bound in Lemma 4.2 and since α ∈ (0, 1/2), tends to
zero as n→∞.
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5. Algebraic structure of generalized Toeplitz matrices. In applications [29,
31, 16, 30, 53, 27], the consideration of quadratic forms more complicated than (4.5)
occur. In fact, what is of more interest are forms such as

Γ?n(ω)Mn(f)Mn(g)Γn(ω)

Kn(ω, ω)
.

In these aforementioned applications [29, 31, 16, 30, 53, 27], the underlying orthonor-
mal basis is the trigonometric one {ejωn} in which case Mn(f) = Tn(f) is a bonafide
Toeplitz matrix for which classical results are at hand concerning their algebraic struc-
ture. Namely, following the notation defined in (1.3), the convenient property that
Tn(f)Tn(g) ∼ Tn(fg) is assured [14, 50] (the meaning of the ∼ notation here is as
described in conjunction with equation (1.3)).

The purpose of this section is to establish this same algebraic structure for the
generalized Toeplitz matrices defined by (1.6), the classical results once again arising
as the special case of ξk = 0 in (1.5). To begin, note that by the formulation (1.6)

[Mn(f)Mn(g)]m,` =
1

4π2

n−1∑
k=0

∫ π

−π
Bm(ω)Bk(ω)f(ω) dω

∫ π

−π
B`(σ)Bk(σ)g(σ) dσ

=

n−1∑
k=0

〈Bmf,Bk〉〈B`g,Bk〉

and

[Mn(fg)]m,` =
1

2π

∫ π

−π
Bm(ω)B`(ω)f(ω)g(ω) dω = 〈Bmf,B`g〉.

Therefore, by Parseval’s theorem∣∣∣[Mn(f)Mn(g)]m,` − [Mn(fg)]m,`

∣∣∣ =

∣∣∣∣∣
n−1∑
k=0

〈Bmf,Bk〉〈B`g,Bk〉 − 〈Bmf,B`g〉
∣∣∣∣∣

≤ ‖Bmf − f̂n‖‖B`g − ĝn‖,
where

f̂n(z) =
n−1∑
k=0

〈Bmf,Bk〉Bk(z), ĝn(z) =
n−1∑
k=0

〈B`g,Bk〉Bk(z)

so that if the Hilbert–Schmidt norm dependence of matrix equivalence (1.3), (1.4) is
to be employed, then interest is centered on the behavior of the overbound

|Mn(f)Mn(g)−Mn(fg)| ≤ 1

n

n−1∑
m=0

n−1∑
`=0

‖Bmf − f̂n‖‖B`g − ĝn‖.(5.1)

Now, since |Bm| is bounded, then Bmf ∈ L2(T); so since {Bk} is a basis for H2(T),
since {z−k}, k > 0, is a basis for the orthogonal complement H2(T)⊥ [19], and since
L2 = H2 ⊕H⊥2 , then Bmf can be expanded as

Bmf =
∞∑
k=0

〈Bmf,Bk〉Bk +
∞∑
k=1

〈Bmf, z−k〉z−k



FOURIER AND TOEPLITZ RESULTS FOR RATIONAL ORTHONORMAL BASES 443

so that

‖Bmf − f̂n‖2 =
∞∑
k=n

|〈Bmf,Bk〉|2 +
∞∑
k=1

∣∣〈Bmf, z−k〉∣∣2(5.2)

and the task then becomes to try to show that as n and m increase, the terms in these
sums tend to zero sufficiently quickly. In the trigonometric case this is straightforward
since, for example, 〈Bmf,Bk〉 becomes 〈zmf, zk〉 = 〈f, zk−m〉 which is the k−mth term
in the Fourier expansion of f . Assuming f is sufficiently smooth that these Fourier
components die at some exponential rate (say, η|k−m| with |η| < 1) then provides
(with the same reasoning giving |〈zmf, z−k〉| = |〈f, z−(m+k)〉| ≤ |η|m+k) ‖Bmf −
f̂n‖ ≤ K(ηn−m + ηm) for some K < ∞ so that the sums in the overbound in (5.1)
are convergent and hence (5.1) tends to zero with increasing n thereby establishing
Tn(f)Tn(g) ∼ Tn(fg) as n→∞.

Generalizing this to the basis (1.5) is surprisingly more difficult. However, con-
sider the simplifying assumption that both f and g have finite dimensional (say, nth
order) spectral factors of the form f(z) = H(z)H(1/z), where

H(z) =

∞∑
r=0

hrz
r, hr =

n−1∑
i=0

γri

with |γi| < 1 and where for expediency (but without loss of generality) it is assumed
that the {γi} are isolated. Then the |〈Bmf,Bk〉| term can be simply bounded by the
calculation

〈Bmf,Bk〉 =
∞∑
r=0

∞∑
`=0

hrh`〈BmBkzr, z`〉

=

n−1∑
i=0

n−1∑
j=0

∞∑
r=0

∞∑
`=r+1

γri γ
`
j〈BmBkzr, z`〉

=

n−1∑
i=0

n−1∑
j=0

∞∑
r=0

γri γ
r
j

∞∑
`=1

γ`j〈BmBk, z`〉

=

n−1∑
i=0

n−1∑
j=0

∞∑
r=0

γri γ
r
j

γj
√

(1− |ξm|2)(1− |ξk|2)

(γj − ξk)(1− γjξm)

k∏
t=m+1

(
γj − ξt
1− ξtγj

)
,

where in progressing to the last line it has been recognized that the inner sum in the
second-to-last line is the evaluation at z = γj of a function Bm(z)Bk(z) with impulse
response terms 〈BmBk, z`〉 and without loss of generality it has also been assumed
that k > m. Therefore, since |γj | < 1 there exists |η| < 1, K <∞ both independent
of n such that (K is different in different parts of the following expressions)

|〈Bmf,Bk〉| ≤ K
n−1∑
i=0

n−1∑
j=0

∞∑
r=0

|γi|r|γj |rηk−m

= Kηk−m
n−1∑
i=0

n−1∑
j=0

1

1− |γiγj |
≤ Kη|k−m|,
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where in the last line the fact that the same argument works for k < m has been
taken into account. Using the same method, one can also bound |〈Bmf, z−k〉| to

arrive at ‖Bmf − f̂‖ ≤ K(ηp−m + ηm), and arguing as before for the trigonometric
case, the desired algebraic result Mn(f)Mn(g) ∼Mn(fg) can be extended to the case
of generalized Toeplitz matrix (1.6).

In passing, on an intuitive level this extended result may be understood by noting
that since the basis functions {Bm} contain order m all-pass factors ϕm as defined in
Theorem 3.1, then they approximate the order m shift zm in that they may be written
as ϕm(ejω) = ejψm(ω), where ψm(ω) is a monotonically nondecreasing function taking
values between 0 and 2mπ.

Note also in passing that this simplified development illustrates why convergence
in the strong matrix norm is not possible. Specifically, the bounds just developed
are of the form such that the difference |[Mn(f)Mn(g) −Mn(fg)]m,`| ≤ K(ηp−m +
ηm)(ηp−` + η`) is a matrix with “corners” not tending to zero with increasing n, so
that vectors exist that decay exponentially at rate ηk, have bounded norm, and when
used in quadratic forms of the matrix difference produce nonzero results no matter
how large n is.

Leaving this intuitive development aside, it may be considered that the assump-
tion that f and g have finite dimensional spectral factorization is too restrictive. In
this case a more general result may be offered, applicable to any Lipschitz continuous
f and g, but at the expense of somewhat weakening the definition of equivalence over
that discussed in section 1 to one in which two n× n matrices An and Bn are said to
be asymptotically equivalent as n→∞ with notation An ∼ Bn as n→∞ if

lim
n→∞

Γ?n(ω)[An −Bn][An −Bn]?Γn(ω)

Kn(ω, ω)
= 0 ∀ω ∈ [−π, π].

Note that this refinement of the definition of matrix equivalence makes no difference
for the system theoretic applications motivating this paper (see (7.4) and the accom-
panying discussion in section 7 following, or the work [37] for more detail on this
point). With this definition in hand, the following result on the algebraic structure of
generalized Toeplitz matrices is available.

Theorem 5.1. Consider two not necessarily real-valued functions f and g of
which at least one of them is Lipschitz continuous of order ε > 0 and the other one
bounded. Suppose that the poles {ξk} of the basis functions {Bk} in (1.5) satisfy
|ξk| ≤ 1− δ for some δ > 0. Then

Mn(f)Mn(g) ∼Mn(fg) as n→∞
with convergence rate faster than O(log4 n/nε/(ε+2)) as n→∞.

Proof. Without loss of generality assume that g is Lipschitz continuous and that f
is bounded. From the definition (1.6) of Mn(f) and the formulation (3.1) of Kn(ω, σ)
it follows that with the definition

∆n(ω) , [Mn(f)Mn(g)−Mn(fg)] Γn(ω),

then with the representation (1.6) and the formulation (3.1) in mind

∆n(ω) =

(
1

2π

∫ π

−π
Γn(µ)Γ?n(µ)f(µ) dµ

)(
1

2π

∫ π

−π
Γn(σ)Γ?n(σ)g(σ) dσ

)
Γn(ω)

−
(

1

2π

∫ π

−π
Γn(µ)Γ?n(µ)f(µ)g(µ) dµ

)(
1

2π

∫ π

−π
Γn(σ)Γ?n(σ) dσ

)
Γn(ω)
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=
1

4π2

∫ π

−π
Γn(µ)f(µ)

∫ π

−π
Γ?n(µ)Γn(σ)Γ?n(σ)Γn(ω)g(σ) dσ dµ

− 1

4π2

∫ π

−π
Γn(µ)f(µ)

∫ π

−π
Γ?n(µ)Γn(σ)Γ?n(σ)Γn(ω)g(µ) dσ dµ

=
1

4π2

∫ π

−π
Γn(µ)f(µ)

∫ π

−π
Kn(σ, µ)Kn(ω, σ)[g(σ)− g(µ)] dσ dµ

or more compactly

∆n(ω) =
1

2π

∫ π

−π
Γn(µ)Gn(ω, µ)f(µ) dµ,(5.3)

where the following definition has been used:

Gn(ω, µ) , 1

2π

∫ π

−π
Kn(σ, µ)Kn(ω, σ)[g(σ)− g(µ)] dσ.(5.4)

Therefore, denoting when x is a vector the Euclidean norm of x as ‖x‖, then

‖∆n(ω)‖2 =
1

2π

∫ π

−π
Gn(ω, λ)Hn(ω, λ)f(λ) dλ,(5.5)

where

Hn(ω, λ) , 1

2π

∫ π

−π
Gn(ω, µ)Kn(µ, λ)f(µ) dµ.(5.6)

However, by using Lemma 4.2

|Kn(ω, σ)| ≤


2n

δ
∀σ, ω,

1

| sin(ω − σ)/2| , ω 6= σ,

(5.7)

so that Lemma A.1 may be applied to (5.4) with fn(ω, σ) = Kn(ω, σ), gn(σ, µ) =
Kn(σ, µ)[g(σ)− g(µ)] and β = γ = 1 to conclude that

|Gn(ω, µ)| ≤


Cn2/(2+ε) ∀ω, µ,

C

| sin(ω − µ)/2| log n, ω 6= µ,
(5.8)

for n sufficiently large. Applying Lemma A.1 again, this time to (5.6) with the choices
fn(ω, σ) = Kn(ω, σ)f(ω), gn(σ, µ) = Gn(σ, µ)/ log n and β = 1, γ = 2/(2+ε) provides

|Hn(ω, λ)| ≤


Cn2/(2+ε) log2 n ∀ω, λ,

C

| sin(ω − µ)/2| log2 n, ω 6= λ.

Applying Lemma A.1 a final time, this time to (5.5) with the choices fn(ω, σ) =
Hn(ω, σ)/ log2 n and gn(σ, µ) = Gn(σ, µ)/ log n, β = 1, γ = 2/(2 + ε) provides

‖∆n(ω)‖2 ≤ Cn2/(2+ε) log4 n
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for some C < ∞ and for n sufficiently large. Therefore, under the assumption that
|ξk| < 1 − δ for some δ > 0, then by (4.8) Kn(ω, ω) ≥ κn for some κ > 0 so that for
some C <∞

lim
n→∞

‖∆n(ω)‖2
Kn(ω, ω)

≤ lim
n→∞

C log4 n

nε/(ε+2)
= 0

for any ε > 0 and the theorem is proved.
Again, something more than this result is actually required in system theoretic

applications where one is often concerned with multiple products that also contain
matrix inverses. Such cases may be handled by the following corollary to the preceding
result. In what follows, matrix products are to be interpreted in a left-to-right fashion
as
∏n
k=1Ak = A1A2 · · ·An.

Corollary 5.2. Suppose that the family of possibly complex valued functions
{fk}mk=1 are all Lipschitz continuous of order ε > 0. Suppose that the poles {ξk} of
the basis functions {Bk} in (1.5) satisfy |ξk| ≤ 1 − δ for some δ > 0. Then with
σk = ±1

m∏
k=1

Mσk
n (fk) ∼Mn

(
m∏
k=1

fσkk

)
as n→∞

with convergence rate faster than O(log4 n/nε/(ε+2)) as n → ∞ and provided the
functions {fk} are invertible where required by the values of σk.

Proof. An inductive argument will be used to obtain the result. Define the matrix
difference

∆n(m) ,Mn

(
m∏
k=1

fσkk

)
−

m∏
k=1

Mσk
n (fk)

which may be reexpressed as

∆n(m) = ∆′n(m) + ∆̃n(m),(5.9)

where

∆′n(m) ,Mn

(
m∏
k=1

fσkk

)
−

m∏
k=1

Mn(fσkk ),

∆̃n(m) ,
m∏
k=1

Mn(fσkk )−
m∏
k=1

Mσk
n (fk).

The terms ∆′n(m) and ∆̃n(m) will be considered separately. First, note that

∆′n(m) = ∆′n(m− 1)Mn(fσmm ) +

[
Mn

(
m∏
k=1

fσkk

)
−Mn

(
m−1∏
k=1

fσkk

)
Mn(fσmm )

]
(5.10)

and by Theorem 5.1 with the substitution f = fσmm , g =
∏m−1
k=1 fσkk the second term

in the above expression obeys

Mn

(
m∏
k=1

fσkk

)
∼Mn

(
m−1∏
k=1

fσkk

)
Mn(fσmm ) as n→∞.(5.11)
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Furthermore, denoting when A is a matrix the spectral norm of A as ‖A‖, then by
Lemma 6.1 ‖Mn(f)‖ ≤ ‖f‖∞ so that by the Cauchy–Schwarz inequality∣∣∣∣Γ?n(ω)∆′n(m− 1)Mn(fσmm )Γn(ω)

Kn(ω, ω)

∣∣∣∣2 ≤ ‖fσmm ‖2∞ ∣∣∣∣Γ?n(ω)∆′n(m− 1)[∆′n(m− 1)]?Γn(ω)

Kn(ω, ω)

∣∣∣∣
so that ∆′n(m) ∼ 0 as n → ∞ if ∆′n(m− 1) ∼ 0 as n → ∞. However, ∆′n(1) = 0, so
that by induction ∆′n(m) ∼ 0 as n→∞ for any m ≥ 1.

Now consider the term ∆̃n(m) and note that by labeling k1, . . . , kr as being

the indices k for which σk = −1, then ∆̃n(m) may be written as (given that if the
lower index of a matrix product is greater than the upper index, then the product is
understood to be equal to the identity matrix)

∆̃n(m) =
r∑
`=1

k`−1∏
k=1

Mσk
n (fk)M−1

n (fk`)
[
Mn(fk`)Mn(f−1

k`
)− I] m∏

k=k`+1

Mn(fσkk ).

This expression may be decomposed as ∆̃n(m) = Σn(m)+Λn(m) with the definitions

Σn(m) ,
r∑
`=1

k`−1∏
k=1

Mσk
n (fk)M−1

n (fk`)
[
Mn(fk`)Mn(f−1

k`
)− I]Mn

(
m∏

k=k`+1

fσkk

)
,

Λn(m) ,
r∑
`=1

k`−1∏
k=1

Mσk
n (fk)M−1

n (fk`)
[
Mn(fk`)Mn(f−1

k`
)− I]

×
[

m∏
k=k`+1

Mn(fσkk )−Mn

(
m∏

k=k`+1

fσkk

)]
.

Dealing with Σn(m) and Λn(m) in turn, note that

Σn(m) =

r∑
`=1

k`−1∏
k=1

Mσk
n (fk)M−1

n (fk`)

×
[
Mn(fk`)Mn(f−1

k`
)Mn

(
m∏

k=k`+1

fσkk

)
−Mn

(
m∏

k=k`+1

fσkk

)]
and by Lemma 6.1, the submultiplicativity of the matrix norm, and the continuity
and positive definiteness assumptions on the fk∥∥∥∥∥M−1

n (fk`)

k`−1∏
k=1

Mσk
n (fk)

∥∥∥∥∥ ≤
k∏̀
k=1

‖fσkk ‖∞ <∞

so that since it has been shown inductively that ∆′(m) ∼ 0 as n→∞ for any m ≥ 1,
then by the Cauchy–Schwarz inequality Σn(m) ∼ 0 as n→∞ for any n ≥ 1. Finally,
again notice that ∆′n(m) ∼ 0 as n→∞ implies that

m∏
k=k`+1

Mn(fσkk ) ∼Mn

(
m∏

k=k`+1

fσkk

)
as n→∞

so that once again using Lemma 6.1, the Cauchy–Schwarz inequality, and the
submultiplicativity of the matrix norm Λn(m) ∼ 0 as n → ∞, which completes the
proof.
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Combining this corollary with Theorem 4.3 then provides a further corollary rep-
resenting an extension of the generalized Fourier convergence of Theorem 4.3.

Corollary 5.3. Suppose that the family of possibly complex valued functions
{fk}mk=1 are all Lipschitz continuous of order ε > 0. Suppose that the poles {ξk}
of the basis functions {Bk} in (1.5) satisfy |ξk| ≤ 1 − δ for some δ > 0. Then the
following limit result holds:

lim
n→∞

1

Kn(ω, ω)
Γ?n(µ)

(
m∏
k=1

Mσk
n (fk)

)
Γm(ω) =


m∏
k=1

fσkk (ω), µ = ω,

0, µ 6= ω,

for any ω ∈ [−π, π] and where σk = ±1 with the functions {fk} assumed to be
invertible when required by the values of σk.

Proof.

Γ?n(µ)

(
m∏
k=1

Mσk
n (fk)

)
Γm(ω) = Γ?n(µ)Mn

(
m∏
k=1

fσkk

)
Γn(ω) + Γ?n(µ)∆nΓn(ω),

where

∆n ,
m∏
k=1

Mσk
n (fk)−Mn

(
m∏
k=1

fσkk

)
.

Now, by the Cauchy–Schwarz inequality∣∣∣∣Γ?n(µ)∆nΓn(ω)

Kn(ω, ω)

∣∣∣∣2 ≤ ∣∣∣∣Γ?n(ω)∆n∆?
nΓn(ω)

Kn(ω, ω)

∣∣∣∣ ∣∣∣∣Kn(µ, µ)

Kn(ω, ω)

∣∣∣∣ .
However, by Lemma 4.2, the lower bound Kn(ω, ω) ≥ δn/2 applies and the upper
bound Kn(µ, µ) ≤ 2n/δ also applies so that |Kn(µ, µ)/Kn(ω, ω)| ≤ 1/δ2 < ∞ inde-
pendently of n. As well, by Corollary 5.2

∆n ∼ 0 as n→∞
so that

lim
n→∞

∣∣∣∣Γ?n(µ)∆n∆?
nΓn(ω)

Kn(ω, ω)

∣∣∣∣ = 0.

Use of Theorem 4.3 with the substitution f =
∏m
k=1 f

σk
k then completes the

proof.
As a simple but important example of the utility of this corollary, it allows the

conclusion that when all the poles {ξk} are chosen in a closed subset of D, then

lim
n→∞

Γ?n(ω)M−1
n (f)Γn(ω)

Kn(ω, ω)
=

1

f(ω)
(5.12)

which has particular relevance to the study of reproducing kernels with respect to
weighted inner products.

More specifically, the emphasis so far has been on studying the reproducing kernel
Kn(z, µ) associated with the space Xn = Span{B0, . . . ,Bn−1} and with respect to the
inner product (2.1). However, as was illustrated in section 3 via a linear prediction
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example, there is utility in examining a related kernel K ′n(z, µ) which is still associated
with Xn, but exists with respect to an inner product which is (2.1) with the integrand
weighted by a positive function f(ω). In this case, since

〈Γ?n(µ)M−1
n (f)Γn(z),ΓTn (z)〉 = Γ?n(µ)M−1

n (f)〈Γn(z),ΓTn (z)〉 = Γ?n(µ),

then 〈Bk(z),Γ?n(µ)M−1
n (f)Γn(z)〉 = Bk(µ) for every k = 0, 1, . . . , n − 1, and hence

since K ′n(z, µ) is the unique function in Xn with this property, then in fact K ′n(z, µ) =
Γ?n(µ)M−1

n (f)Γn(z) and so the asymptotic result (5.12) provides a means for providing
the closed form approximation Kn(ω, ω)/f(ω) for K ′n(ω, ω).

As a concluding remark for this section, it should be noted that the only other
work known to the authors which addresses issues of generalizing Fourier convergence
and asymptotic Toeplitz matrix properties in a similar context to this paper is that
of Gunnarsson and Ljung [15, 16], wherein the generalization involves matrices not
necessarily being Toeplitz but at least being approximately so in some sense. The
details of this are such that the generalized matrices (and hence generalized Fourier
convergence) considered in [15, 16] are quite different from those of the form Mn(f)
considered here, which are not approximately Toeplitz in any sense except that the
spectral formulation (1.6) is reminiscent of the classical Toeplitz one (1.1).

6. Spectral properties of generalized Toeplitz matrices. A typical system
identification application of the orthonormal bases (1.5) would be to seek a parameter
vector θ ∈ Rn in order to model the input-output relationship between N samples of
an observed input sequence {uk} and output sequence {yk} as [46, 47, 40, 36]

yk =
m−1∑
n=0

θnBn(q)uk = φTk θ, k = 0, 1, . . . , N − 1,(6.1)

where q is the backward time shift operator and

φTk , [B0(q)uk,B1(q)uk, . . . ,Bn−1(q)uk]

is a vector of filtered versions of the signal {uk}, the filtering depending on the or-

thonormal basis functions chosen. The least-squares solution θ̂ for θ is then given
as

θ̂ = R−1
N

1

N

N−1∑
k=0

φkyk, RN ,
1

N

N−1∑
k=0

φkφ
T
k

provided that RN exists. It is well known [13] that the numerical robustness of solving

for θ̂ is intimately related to the condition number κ(RN ) of RN . By Parseval’s
theorem, for large N the matrix RN converges as [27]

lim
N→∞

RN = Mn(f),

where f is the spectral density of the observed input {uk} which, if containing deter-
ministic components, is defined in the sense of Wiener’s generalized harmonic anal-
ysis [51] or the quasi-stationarity sense of Ljung [27]. From a numerical point of
view there is therefore significant practical relevance in examining the spectrum of
generalized Toeplitz matrices.
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For the classical trigonometric case wherein ξk = 0 and Mn(f) is in fact a bonafide
Toeplitz matrix, it is well known [14, 50] that the eigenvalues of Mn(f) may be
bounded above and below by the maximum and minimum values of f . This result
can be easily extended to the general case, the classical case again emerging as a
special case by setting ξk = 0.

Lemma 6.1. For continuous and real-valued f(ω) > 0 let Mn(f) be defined by
(1.6). Then

min
ω∈[−π,π]

f(ω) ≤ λ(Mn(f)) ≤ max
ω∈[−π,π]

f(ω),

where λ(A) is any eigenvalue of the matrix A. In the case that f is complex valued,
then the upper bound

|λ(Mn(f))| ≤ max
ω∈[−π,π]

|f(ω)|

applies.
Proof. Consider the case of real-valued f > 0 first and take x ∈ Rn arbitrary but

such that x?x = 1. Then

x?Mn(f)x =
1

2π

n−1∑
r=0

n−1∑
k=0

xrxk

∫ π

−π
Br(ejω)Bk(ejω)f(ω) dω,

=
1

2π

∫ π

−π
f(ω)

∣∣∣∣∣
n−1∑
r=0

xrBr(ejω)

∣∣∣∣∣
2

dω,

≤ max
ω∈[−π,π]

f(ω)

2π

n−1∑
r=0

n−1∑
k=0

xrxk

∫ π

−π
Br(ejω)Bk(ejω) dω

= max
ω∈[−π,π]

f(ω).

However, since Mn(f) is symmetric positive definite then

max
x?x=1

x?Mn(f)x = λmax(Mn(f)).

Using a similar argument to underbound the eigenvalues of Mn(f) then completes the
first part of the lemma. For the case of complex valued f note that the upper bound
can be generated as a slight modification to the above reasoning as

|x?Mn(f)x| ≤ 1

2π

∫ π

−π
|f(ω)|

∣∣∣∣∣
n−1∑
r=0

xrBr(ejω)

∣∣∣∣∣
2

dω ≤ max
ω∈[−π,π]

|f(ω)|.

This result provides a guaranteed overbound

κ(Mn(f)) , λmax(Mn(f))

λmin(Mn(f))
≤ maxω∈[−π,π] f(ω)

minω∈[−π,π] f(ω)
(6.2)

on the condition number κ(Mn(f)) governing the numerical robustness of the least-
squares estimation problem. The existence of this overbound has been one of the
prime motivators for the recent interest in the use of orthonormal bases such as (1.5)
for system identification applications [46, 47, 18, 40].



FOURIER AND TOEPLITZ RESULTS FOR RATIONAL ORTHONORMAL BASES 451

It is then natural to examine how conservative the bound (6.2) is. Considering
that numerical robustness is of greatest concern when the dimension n is large, it is
not unreasonable to simplify the examination of conservatism by letting n→∞. This
allows the following result showing that for large n the bounds in Lemma 6.1 are tight
so that the condition number of Mn(f) actually achieves the bound (6.2).

Theorem 6.2. Define for continuous f(ω) > 0 the operator M(f) : {xk} ∈ `+2 7→
{yk} ∈ `+2 as

M(f) , lim
n→∞Mn(f),

where this is understood to mean that the infinite sequence {yk} is generated from the
infinite sequence {xk} as a natural limit of how finite length n {yk} are generated
from finite length n {xk} via matrix multiplication by Mn(f). Specifically

yk =
1

2π

∫ π

−π
Bk(ejω)g(ω) dω, g(ω) , f(ω)

∞∑
k=0

xkBk(ejω).

Then provided

∞∑
k=0

(1− |ξk|) =∞

it holds that

λ(M(f)) , {λ ∈ C : M(f)− λI is not invertible} = Range{f(ω)}.

Proof. Take any µ ∈ [minω f(ω),maxω f(ω)] and suppose µ 6∈ λ(M). Then since
by orthogonality M(1) is the identity operator, M(f − µ) is an invertible operator
from `+2 → `+2 so that in particular ∃x ∈ `+2 such that for e0 = (1, 0, 0, . . .)

xTM(f − µ) = e0.(6.3)

Therefore, defining g(z) ∈ H2(T) by g(z) , (x0− 1)B0(z) +
∑∞
k=1 xkBk(z) gives that

from (6.3) (f − µ)g ⊥ Span{Bk}. However, under the condition
∑

(1 − |ξk|) = ∞
by Theorem 2.1, Span{Bk} = H2 so that since L2 = H2 ⊕ H⊥2 then (f − µ)g ∈
H2. However, g ∈ H2 by construction and the product of two H2 functions is
in H1 [19]. Therefore (f − µ)|g|2 is a real-valued H1 function, and the only such
functions are constants [19]. However, since µ ∈ [minω f(ω),maxω f(ω)], this func-
tion cannot be of constant sign; hence it cannot be a constant. This contradiction
implies [minω f(ω),maxω f(ω)] ⊂ λ(M). Finally, Lemma 6.1 gives that λ(M) ⊂
[minω f(ω),maxω f(ω)].

Again, this result represents an expansion to the case of generalized Toeplitz
matrices (1.6) of results already known for conventional symmetric Toeplitz matri-
ces [14, 50], the latter results being encompassed as a special case of Theorem 6.2.
A practical conclusion arising from this theorem is that the numerical properties of
the solution of (6.1) are governed solely by the spectral density f of {uk} and are
independent of the particular orthonormal basis chosen in (6.1) via the selection of
{ξk}.

Another conclusion arising from Theorem 6.2 is that in the previous results on the
asymptotic algebraic structure of generalized Toeplitz matrices (a main conclusion of
which was to conclude that M−1

n (f) ∼Mn(1/f) as n→∞) the assumptions imposed
there of f being invertible cannot be weakened.
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7. Applications. To put these results in context, this section presents a very
brief outline of how they may be applied to certain system identification problems
that have been previously alluded to. A much more detailed exposition of the issues
raised here is contained in [37].

A result that has become of key importance to the intuitive understanding of
various system identification methods [2, 12, 28, 17] is that the variability of the

frequency response G(ejω, θ̂), of a model based on a least-squares estimate θ̂ of an
n dimensional parameter vector θ obtained from N observations of noise-corrupted
input-output measurements, is approximately given by [31, 29]

Var{G(ejω, θ̂)} ≈ n

N

Φν(ω)

Φu(ω)
,(7.1)

where Φu(ω) is the spectral density of the observed input process and Φν(ω) is the
spectral density of the noise-corrupting process.

This is established in [29] for a wide range of model structures, unified by the
requirement that a certain “shift” structure holds. In the interest of clarity, the
discussion here will focus only on the case of measurement noise being white and the
true system (including noise model) being encompassed by the model structure. In
this case, it is established in [29] that with Φν(ω) = σ2 being the constant white noise
spectral density, then for large N

N

n
Var{G(ejω, θ̂)} ≈ 1

n
Γ?n(ω)T−1

n (Φu)Tn(σ2Φu)T−1
n (Φu)Γn(ω).(7.2)

The reasoning of [29] then is that using the previously discussed classical results [14,
50] on the asymptotic algebraic structure of Toeplitz matrices, it can be argued that
T−1
n (Φu)Tn(σ2Φu)T−1

n (Φu) ≈ Tn(σ2/Φu) so that the right-hand side of (7.2) is ap-
proximately an nth order Cesàro mean reconstruction of σ2/Φu at frequency ω and
hence should be approximately equal to σ2/Φu(ω).

However, it is very common, in the interest of concentrating estimation accuracy
in certain frequency regions, to prefilter the measured data [27]. Identifying this
filter with its transfer function F (z) then allows the nature of the prefiltering to be
characterized by the spectral density change of Φu(ω) 7→ |F (ejω)|2Φu(ω). However,
at the same time the use of data prefiltering implies a revision of the “noise model”
as [29] Φν(ω) 7→ |F (ejω)|2Φν(ω). In this case, the approximate estimation variability
would be expected to be unchanged from (7.1) by reasoning that

Var{G(ejω, θ̂)} ≈ n

N

|F (ejω)|2Φν(ω)

|F (ejω)|2Φu(ω)
=

n

N

Φν(ω)

Φu(ω)
.(7.3)

However, as illustrated numerically in [37], the accuracy of this approximation depends
very much on the relationship between the order of the filter F and the model order.
The closer the two orders the more inaccurate the approximation.

In [37] this phenomenon is traced to the fact that as the filter order grows, the
underlying Fourier reconstruction involved in (7.1) and hence (7.3) is with respect to a
function with decreasing smoothness, and hence more terms (which grow with model
order) are required in the Fourier expansion before convergence will approximately
occur.

To circumvent this problem, a key observation of [37] is that the model can be
reparameterized into one in which the prefilter poles are absorbed into the model
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structure. In this case (7.2) is replaced with

N

Kn(ω, ω)
Var{G(ejω, θ̂)} ≈ Γ?n(ω)M−1

n (Φu)Mn(σ2Φu)M−1
n (Φu)Γn(ω)

Kn(ω, ω)
,(7.4)

where the poles of the basis functions forming the generalized Toeplitz matrix Mn(Φu)
are chosen the same as the prefilter. In this case, using Corollary 5.2 it can be argued
that M−1

n (Φu)Mn(σ2Φu)M−1
n (Φu) ∼Mn(σ2/Φu) as n→∞ so that

N

Kn(ω, ω)
Var{G(ejω, θ̂)} ≈ 1

Kn(ω, ω)
Γ?n(ω)Mn(σ2/Φu)Γn(ω)(7.5)

which is a generalized Fourier reconstruction of a function σ2/Φu that is invariant to
the choice of prefilter. Therefore, using Theorem 4.3 to argue that (7.5) is approxi-
mately σ2/Φu(ω) the work [37] is able to suggest that

Var{G(ejω, θ̂)} ≈ Kn(ω, ω)

N

Φν(ω)

Φu(ω)
(7.6)

is a more accurate approximation when all-pole prefiltering is employed and the ratio
of model order to filter order is low. In other words, data prefiltering can affect the
variability of the estimated model, and (7.6) quantifies how this occurs. The validity
of these conclusions is illustrated numerically in [37]. As a final applications-oriented
remark, note that when all poles {ξk} are chosen at the origin (which corresponds to
no prefiltering), then Kn(ω, ω) = n so that the new approximation (7.6) becomes the
“classical” one (7.1) as a special case.

8. Conclusion. The purpose of this paper was to consider certain results in the
study of Fourier series and Toeplitz matrices that have proved to be key to various
system theoretic applications, and expand them to the case where the underlying
orthonormal basis is not the classical trigonometric one but rather a rational formu-
lation that encompasses the trigonometric basis as a special case. These results, and
the ensuing generalizations developed in this paper, are summarized in Table 8.1.

One point worth clarifying is that in system theoretic settings for which these
results will be applicable (control, signal processing, system identification) it is more
common to associate the complex variable z with a forward time shift, rather than
the backward shift association used here. This discrepancy is easily accommodated
by simply transforming z 7→ 1/z in all the results presented here. A different basis
function definition will result, which is in accordance with certain so-called Laguerre
and Kautz bases studied in the control theory literature. However, the matricesMn(f)
and the associated Fourier reconstruction formulas will be unchanged.

Appendix A. Bounds on integrals of kernel-like functions.
Throughout this appendix, C will denote a finite positive constant which may be

different in different places of the same expression.
Lemma A.1. Let fn(ω, σ) : [−π, π]× [−π, π]→ C be subject to

|fn(ω, σ)| ≤


Cnβ ∀ω, σ,

C

| sin(ω − σ)/2| , ω 6= σ,
(A.1)
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Table 8.1
Summary of classical results and their relation to the generalizations derived here.

Classical Generalized

Basis ejωn Bn(ejω) ,
√

1−|ξn|2
1−ξnejω

∏n−1

k=0

ejω−ξk
1−ξkejω

Completeness H2(T) H2(T) provided
∑

(1− |ξn|) =∞

Toeplitz matrix Generalized Toeplitz matrix

Assoc. matrix [Tn(f)]k,` =

∫ π

−π
ejω(k−`)f(ω)

dω

2π
[Mn(f)]k,` =

∫ π

−π
Bk(ejω)B`(ejω)f(ω)

dω

2π

Cesàro mean fn(ω) =
1

n

n−1∑
k,`=0

ejω(`−k)[Tn(f)]k,` fn(ω) =

n−1∑
k,`=0

Bk(ejω)B`(ejω)

Kn(ω, ω)
[Mn(f)]k,`

Convergence lim
n→∞

sup
ω∈[−π,π]

|f(ω)− fn(ω)| = 0 lim
n→∞

sup
ω∈[−π,π]

|f(ω)− fn(ω)| = 0

Def. equivalence

An ∼ Bn lim
n→∞

|An −Bn| = 0 lim
n→∞

‖(An −Bn)Γn(ω)‖2
Kn(ω, ω)

= 0

as n→∞

Algebraic
properties Tn(f)Tn(g) ∼ Tn(fg) Mn(f)Mn(g) ∼Mn(fg)

Extensions

σk = ±1

m∏
k=1

T
σk
n (fk) ∼ Tn

(
m∏
k=1

f
σk
k

)
m∏
k=1

M
σk
n (fk) ∼Mn

(
m∏
k=1

f
σk
k

)

for some β ≥ 0 and let gn(σ, µ) : [−π, π]× [−π, π]→ C be subject to

|gn(σ, µ)| ≤


Cnγdε(σ, µ) ∀µ, σ,

C

| sin(µ− σ)/2| , ω 6= σ,
(A.2)

for some γ, ε ≥ 0 and where the meaning of d(σ, µ) is defined in (4.9). Then for n
sufficiently large

∣∣∣∣∫ π

−π
fn(ω, σ)gn(σ, µ) dσ

∣∣∣∣ ≤


C min(nλ, nδ log n) ∀ω, µ,

C

| sin(ω − µ)/2| log n, ω 6= µ,
(A.3)

where

λ , β + γ

2 + ε
, δ , min(β, γ).
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Proof. Suppose, to begin with, that ω 6= µ. Then for any α > 0, d(ω, µ) ≥ 6n−α

for sufficiently large n. Assuming this is the case, define the following regions:

Ω1 ,
{
σ ∈ [−π, π] : d(ω, σ) < n−α

}
,

Ω2 ,
{
σ ∈ [−π, π] : d(µ, σ) ≤ n−α} ,

Ω3 , {σ ∈ [−π, π] : σ 6∈ {Ω1 ∪ Ω2}} .

Therefore, using the assumed bounds on fn(ω, σ), gn(σ, µ), noticing that by definition
the regions Ω1 and Ω2 are disjoint, and using Lemma B.1 with ε = 0 lead to∣∣∣∣∫

Ω1

fn(ω, σ)gn(σ, µ) dσ

∣∣∣∣ ≤ ∫
Ω1

Cnβ

| sin(µ− σ)/2| dσ ≤ C
nβ−α

| sin(µ− ω)/2| .

Similarly∣∣∣∣∫
Ω2

fn(ω, σ)gn(σ, µ) dσ

∣∣∣∣ ≤ ∫
Ω2

Cnγ

| sin(ω − σ)/2| dσ ≤ C
nγ−α

| sin(µ− ω)/2| .

Finally, this time using Lemma B.2∣∣∣∣∫
Ω3

fn(ω, σ)gn(σ, µ) dσ

∣∣∣∣ ≤ ∫
Ω3

C

| sin(σ − ω)/2 sin(σ − µ)/2| dσ ≤
Cα

| sin(µ− ω)| log n

so that for ω 6= µ, choosing α = max(β, γ) provides the bound∣∣∣∣∫ π

−π
fn(ω, σ)gn(σ, µ) dσ

∣∣∣∣ ≤ C

| sin(ω − µ)/2| log n

for sufficiently large n. Now assume that ω = µ. In this case, again using the assumed
bounds on fn(ω, σ) and gn(σ, µ),∣∣∣∣∫

Ω1

fn(ω, σ)gn(σ, µ) dσ

∣∣∣∣ ≤ Cnβ+γ

∫
Ω1

dε(σ, µ) dσ ≤ Cnβ+γ

∫ n−α

0

xε dx

= Cnβ+γ−α(ε+1).

Also, using Lemma B.2∣∣∣∣∫
Ω3

fn(ω, σ)gn(σ, µ) dσ

∣∣∣∣ ≤ ∫
Ω3

C

sin2(σ − ω)/2
dσ ≤ C

sinn−α
≤ Cnα,

so that when ω = µ and hence Ω1 = Ω2, then for sufficiently large n∣∣∣∣∫ π

−π
fn(ω, σ)gn(σ, µ) dσ

∣∣∣∣ ≤ Cnβ+γ−α(ε+1) + Cnα.

This bound is minimized (for large n) by the choice α = (β+γ)/(2+ε) as Cn(β+γ)/(2+ε).
Alternatively, with the definition δ , min(β, γ) the integral on Ω3 can also be bounded
using Lemma B.2 as∣∣∣∣∫

Ω3

fn(ω, σ)gn(σ, µ) dσ

∣∣∣∣ ≤ ∫
Ω3

Cnδ

| sin(σ − ω)/2| dσ ≤ Cαn
δ log n
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to give the bound for ω = µ and sufficiently large n of∣∣∣∣∫ π

−π
fn(ω, σ)gn(σ, µ) dσ

∣∣∣∣ ≤ Cnβ+γ−α(ε+1) + Cαnδ log n.

This bound is minimized (assuming without loss of generality that β = min(β, γ)) by
the choice (for large n) α = γ/(1 + ε) as∣∣∣∣∫ π

−π
fn(ω, σ)gn(σ, µ) dσ

∣∣∣∣ ≤ Cnδ log n.

Note that this latter bound will be smaller than the previous one whenever β + γ >
(2 + ε) min(β, γ) and for n sufficiently large.

Appendix B. Integrals of reciprocals of sine functions.
Lemma B.1. Let 0 < α < π/8 and suppose that ω, µ ∈ [−π, π] satisfies d(µ, ω) ≥

4α. Then for any Ω ⊂ [µ − α, µ + α], ε ≥ 0 and where the meaning of d(µ, ω) is
defined in (4.9) ∫

Ω

dε(σ, µ)

| sin(σ − ω)/2| dσ ≤
16αε+1

(ε+ 1)| sin(µ− ω)/2| .

Proof. It holds that

sin

(
µ− ω

2
+
x

2

)
= cos

(x
2

)
sin

(
µ− ω

2

)
+ sin

(x
2

)
cos

(
µ− ω

2

)
= cos

(x
2

)
sin

(
µ− ω

2

)(
1 + tan

(x
2

)
cot

(
µ− ω

2

))
,(B.1)

and for x ∈ [−α, α]

1 + tan
(x

2

)
cot

(
µ− ω

2

)
> 1− α/2

cos(π/8)

4

d(µ, ω)
> 1/4.(B.2)

Without loss of generality, assume Ω is such that d(σ, µ) = |σ−µ| on Ω in which case
the change of variables x = σ − µ, together with (B.1)–(B.2), then gives∫

Ω

dε(σ, µ)

| sin(σ − ω)/2| dσ ≤
∫ α

−α

|x|ε
| sin(µ− ω + x)/2| dx

≤ 1

| sin(µ− ω)/2|
∫ α

−α

|x|ε
| cosx/2|

1

|1 + tan(x/2) cot(µ− ω)/2| dx

≤ 1

| sin(µ− ω)/2|
∫ α

−α
2 × 4|x|ε dx =

16α1+ε

(1 + ε)| sin(µ− ω)/2| .

Lemma B.2. Let −π ≤ α < β ≤ π and suppose that ω ∈ [−π, π] does not belong
to [α, β]. Then ∫ β

α

1

| sin(σ − ω)/2| dσ ≤ 4 log
8

γ
,(B.3)
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where γ , d(ω, [α, β]). Suppose also that µ ∈ [−π, π] does not belong to [α, β]. Then

∫ β

α

1

| sin(σ − ω)/2 sin(σ − µ)/2| dσ ≤


8

| sin(µ− ω)/2| log
4

γ
, ω 6= µ,

4

sin γ
, ω = µ,

(B.4)

where in this latter case γ , d({ω, µ}, [α, β]).
Proof. To begin with assume that ω < α. The change of variables x = (σ − ω)/2

then gives ∫ β

α

1

| sin(σ − ω)/2| dσ = 2

∫ β′

α′

1

sinx
dx,(B.5)

where 0 < α′ , (α − ω)/2 < β′ , (β − ω)/2 < π. Since sin(β′/2) > sin(α′/2) and
cos(α′/2) > cos(β′/2) it follows from (B.5) that∫ β

α

1

| sin(σ − ω)/2| dσ = 2 [log (tan(x/2))]
β′

α′ ,

= 2 log

(
sin(β′/2)

sin(α′/2)

)
+ 2 log

(
cos(α′/2)

cos(β′/2)

)
≤ 2 log

(
1

sin(α′/2)

)
+ 2 log

(
1

cos(β′/2)

)
= 2 log

(
1

sin(α′/2)

)
+ 2 log

(
1

sin(π/2− β′/2)

)
≤ 2 log

(
4

d(α′, 0)

)
+ 2 log

(
4

d(π − β′, 0)

)
= 2 log

(
4

d(α′, 0)

)
+ 2 log

(
4

d(β′, 0)

)
≤ 4 log

(
8

γ

)
.(B.6)

The case where β < ω follows analogously, and the proof of the bound (B.3) is
complete. Moving on to the proof of the bound (B.4), consider first the case ω 6= µ
and assume that

−π ≤ ω < µ < α < β < π.(B.7)

Let 0 < α′ , (α− µ)/2 < β′ , (β − µ)/2 < π. The change of variables x = (σ− µ)/2
then gives∫ β

α

1

|sin(σ − ω)/2 sin(σ − µ)/2| dσ

= 2

∫ β′

α′

1

sin ((µ− ω)/2 + x) sin(x)
dσ

= 2

∫ β′

α′

1

sin (π − (µ− ω)/2− x) sin(x)
dσ
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=
4

sin (π − (µ− ω)/2)

[
log

(
sin(x)

sin (π − (µ− ω)/2− x)

)]β′
α′

=
4

sin(µ− ω)/2

(
log (sin(β′))− log

(
sin

(
π − µ− ω

2
− β′

))
− log (sin(α′)) + log

(
sin

(
π − µ− ω

2
− α′

)))
=

4

sin(µ− ω)2

(
log

(
sin

(
β − µ

2

))
− log

(
sin

(
β − ω

2

))
− log

(
sin

(
α− µ

2

))
+ log

(
sin

(
α− ω

2

)))
≤ 4

sin(µ− ω)/2

(
− log

(
sin

(
β − ω

2

))
− log

(
sin

(
α− µ

2

)))
=

4

sin(µ− ω)/2

(
log

(
1

sin(β − ω)/2

)
+ log

(
1

sin(α− µ)/2

))
≤ 4

sin(µ− ω)/2

(
log

(
4

d(β, ω)

)
+ log

(
4

d(α, µ)

))
≤ 8

sin(µ− ω)/2
log

(
4

γ

)
,(B.8)

where use of (4.10) was made in the second-to-last inequality. This proves the lemma
for the case (B.7). The other cases for ω 6= µ follow analogously. Now suppose ω = µ.
Let 0 < α′ , (α − ω)/2 < β′ , (β − ω)/2 < π. Then the change of variables
x = (σ − ω)/2 gives∫ β

α

1

sin2(σ − ω)/2
dσ = 2

∫ β′

α′

1

sin2 x
dx =

[
−2

cosx

sinx

]β′
α′
≤ 4

sin γ
(B.9)

which proves the lemma when ω = µ.
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den, 1988.

[16] S. Gunnarsson and L. Ljung, Frequency domain tracking characteristics of adaptive algo-
rithms, IEEE Trans. Acoust. Speech Signal Process., 37 (1989), pp. 1072–1089.

[17] L. Guo and L. Ljung, The role of model validation for assessing the size of the unmodeled
dynamics, IEEE Trans. Automat. Control, 42 (1997), pp. 1230–1239.

[18] P. Heuberger, P. M. J. Van den Hof, and O. Bosgra, A generalized orthonormal basis for
linear dynamical systems, IEEE Trans. Automat. Control, AC-40 (1995), pp. 451–465.

[19] K. Hoffman, Banach Spaces of Analytic Functions, Prentice–Hall, Englewood Cliffs, NJ, 1962.
[20] C. Hwang and Y.-P. Shih, Parameter identification via Laguerre polynomials, Internat. J.

Systems Sci., 13 (1982), pp. 209–217.
[21] W. H. Kautz, Network Synthesis for Specified Transient Response, Tech. report 209, Mas-

sachusetts Institute of Technology, Research Laboratory of Electronics, Boston, MA, 1952.
[22] R. King and P. Paraskevopoulos, Digital Laguerre filters, Circuit Theory Appl., 5 (1977),

pp. 81–91.
[23] A. Kolmogorov, Interpolation und extrapolation von stationären zufälligen folgen, Bull. Acad.
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Abstract. We propose a new approach to study the observability of coupled linear distributed
systems. It is based on a generalization of some classical theorems of nonharmonic analysis to vector-
valued functions. Applying this method we answer some questions of J.-L. Lions [Contrôlabilité
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1. Introduction and formulation of the main results. Let Ω be a bounded
open domain in Rn having a boundary Γ of class C4. Fix four real numbers A,B,C,D
and consider the following coupled system:

u′′1 −∆u1 +Au1 +Bu2 = 0 in R× Ω,
u′′2 + ∆2u2 + Cu1 +Du2 = 0 in R× Ω,
u1 = u2 = ∆u2 = 0 on R× Γ,
ui(0) = ui0 and u′i(0) = ui1 in Ω, i = 1, 2.

(1.1)

One can readily verify by standard methods that (1.1) is well-posed in the following
sense:
• Given

(u10, u11, u20, u21) ∈ H1
0 (Ω)× L2(Ω)×H1

0 (Ω)×H−1(Ω)

arbitrarily, (1.1) has a unique weak solution u = (u1, u2) satisfying

u1 ∈ C(R;H1
0 (Ω)) ∩ C1(R;L2(Ω))

and

u2 ∈ C(R;H1
0 (Ω)) ∩ C1(R;H−1(Ω)).

• If the initial data also satisfy the conditions

(u10, u11, u20, u21) ∈ H2(Ω)×H1(Ω)×H2(Ω)× L2(Ω),
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then the following corresponding strong solutions are smoother:

u1 ∈ C(R;H2(Ω)) ∩ C1(R;H1(Ω))

and

u2 ∈ C(R;H2(Ω)) ∩ C1(R;L2(Ω)).

Let us denote by E0 the initial energy of the solution, defined by the formula

E0 = 1
2

(‖u10‖2H1
0 (Ω)

+ ‖u11‖2L2(Ω) + ‖u20‖2H1
0 (Ω)

+ ‖u21‖2H−1(Ω)

)
.

Here, as usual, L2(Ω) and H1
0 (Ω) are endowed with the norms defined by

‖v‖2L2(Ω) =

∫
Ω

|v|2 dx, ‖v‖2H1
0 (Ω) =

∫
Ω

|∇v|2 dx,

and H−1(Ω) is endowed with the dual norm of that of H1
0 (Ω).

Let us denote by ν the outward unit normal vector to Γ. We have the following
proposition.

Proposition 1.1. Fix a positive number T such that Ω belongs to a ball of
diameter < T . Then there exists a positive number α such that if |A| < α, |B| < α,
|C| < α, and |D| < α, then the strong solutions of (1.1) satisfy the estimates

c1E0 ≤
∫ T

0

∫
Γ

|∂νu|2 dΓ dt ≤ c2E0(1.2)

with two positive constants c1, c2 depending on T and α but not on the choice of the
initial data.

In the uncoupled case A = B = C = D = 0, Proposition 1.1 follows from earlier
results of Lasiecka and Triggiani [12], Lebeau [13], Lions [14], and Zuazua [21]. (See
also [8] for simplified proofs.) In the general case the theorem will be proved by
applying a perturbation method of Lions [15]. A general question raised in [15] is
whether the smallness of the coupling parameters is necessary for the validity of the
results or whether this restriction is merely related to the technique of the proof. Our
next result suggests the second alternative.

Theorem 1.2. Let Ω be an open ball of radius R in Rn. There exist countably
many hypersurfaces in R4 such that if (A,B,C,D) does not belong to any of them,
then the strong solutions of (1.1) satisfy the estimates (1.2) for every T > 2R. The
constants c1, c2 > 0 depend on A, B, C, D, and T but not on the choice of the initial
data.

Note that the exceptional parameters form a set of measure zero in R4.
The second inequality in (1.2) allows us to define the boundary integrals in these

estimates for weak solutions by a standard density argument. Then (1.2) remains
valid for weak solutions in both results.

Proposition 1.1 and Theorem 1.2 imply some boundary observability results. In-
deed, if a solution of (1.1) vanishes identically in a neighborhood of Γ in the time
interval (0, T ), then by the first inequality of (1.2) the solution of (1.1) is in fact
identically zero. Taking into account the linearity of the system it follows that two
solutions of (1.1) corresponding to different initial data can be distinguished by ob-
serving them only in a small neighborhood of the boundary Γ for 0 < t < T . Indeed,
it suffices to apply the preceding argument for their differences.
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Our proof of Theorem 1.2 will not show whether there are effectively exceptional
parameters or whether they are excluded only because of the method of the proof. In
fact there are exceptional parameters indeed; see the following proposition.

Proposition 1.3. Let Ω be an open ball in Rn. There exist countably many
two-dimensional surfaces in R4 such that if (A,B,C,D) belongs to one of them, then
for some nonzero initial data the solution of (1.1) satisfies the equality

∂νu = 0 on R× Γ.(1.3)

Hence the first inequality in (1.2) cannot hold.
It remains an interesting open problem to determine the exact dimension (between

2 and 3) of the set of exceptional quadruples.
J. E. Lagnese asked one of the authors whether the exceptional cases can be

eliminated if we require the estimates (1.2) only for initial data belonging to a suit-
ably chosen finite codimensional subspace. The answer is positive; see the following
proposition.

Proposition 1.4. Let Ω be an open ball of radius R in Rn, and fix A, B, C, D
arbitrarily. There exists a positive integer N such that the estimates (1.2) are satisfied
for every T > 2R for all strong solutions of (1.1) whose initial data are orthogonal to
the first N eigenspaces of −∆ in H1

0 (Ω). The constants c1, c2 > 0 depend on A, B, C,
D, and T but not on the particular choice of the initial data.

Now consider the same system with Neumann-type boundary conditions:
u′′1 −∆u1 +Au1 +Bu2 = 0 in R× Ω,
u′′2 + ∆2u2 + Cu1 +Du2 = 0 in R× Ω,
∂νu1 = ∂νu2 = ∂ν∆u2 = 0 on R× Γ,
ui(0) = ui0 and u′i(0) = ui1 in Ω, i = 1, 2.

(1.4)

Let us denote by Z the vector space of all quadruples whose components are finite
linear combinations of the eigenfunctions of −∆ in Ω with homogeneous Neumann
boundary conditions. Clearly, for every (u10, u20, u11, u21) ∈ Z the system (1.4) has
a unique solution, given by a natural trigonometric sum. Given a bounded interval I,
we define a seminorm in Z by setting

pI(u10, u20, u11, u21) := ‖u‖L2(I×Γ).

It follows easily from classical unique continuation theorems that pI is a norm if I is
sufficiently long. It turns out that all these norms are equivalent if Ω is a ball; see the
following theorem.

Theorem 1.5. Let Ω be an open ball of radius R in Rn. There exist countably
many hypersurfaces in R4 such that if (A,B,C,D) does not belong to any of them, then
for any two bounded intervals I and J of length > 2R, pI and pJ are equivalent norms
in Z.

Again, there exist exceptional parameters; see the following proposition.
Proposition 1.6. Let Ω be an open ball in Rn. There exist countably many

two-dimensional surfaces in R4 such that if (A,B,C,D) belongs to one of them, then
for some nonzero initial data the solution of (1.4) satisfies the equality

u = 0 on R× Γ.

Hence pI is not a norm in Z for any bounded interval I.
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On the other hand, we have a result analogous to Proposition 1.4. Given a positive
integer N, denote by ZN the subspace of those elements of Z, all of whose components
are orthogonal to the first N eigenspaces of −∆ in Ω with homogeneous Neumann
boundary conditions.

Proposition 1.7. Let Ω be an open ball of radius R in Rn, and fix A, B, C, D
arbitrarily. There exists a positive integer N such that for any two bounded intervals
I and J of length > 2R, pI and pJ are equivalent norms in ZN .

Applying the Hilbert uniqueness method of Lions [14], [15], Proposition 1.1 and
Theorems 1.2 and 1.5 yield several exact controllability results. Similarly, applying
an analogous method developed in [9], they yield uniform stabilizability results. In
order to not make the paper too long we do not study these questions here.

The norm equivalence in Theorem 1.5 implies that for a corresponding boundary
exact controllability problem the space of controllable states remains the same for all
sufficiently large time intervals (see [15, Vol. 1, pp. 156 and 218]). While this type of
equivalence is obtained automatically for Dirichlet-type boundary conditions where
the multiplier method is available, for Neumann-type boundary conditions it seems
that the only known method is the one applied in the present paper.

The proofs of Theorems 1.2 and 1.5 are based on the generalization of some results
of nonharmonic analysis to vector-valued functions and to complex exponents. Our
method is thus a generalization of the approach of Graham and Russell [3]. The
following two abstract theorems may represent some interest themselves. They can
be applied to the study of various other coupled distributed systems in the same way
as in this paper.

First we have the following generalization of a classical theorem of Ingham [5].

Theorem 1.8. Let (ωn)∞n=−∞ be a sequence of real numbers satisfying for some
positive integer M and for some γ > 0 the condition

ωn+M − ωn ≥ γ(1.5)

for all n. Let (un)∞n=−∞ be a sequence of vectors in a complex Hilbert space H,
satisfying for some 0 ≤ η < 1/(2M − 2) the inequalities

|(un, uk)H | ≤ η‖un‖ ‖uk‖(1.6)

whenever n 6≡ k mod M . Then

(a) for every bounded interval I there exists a constant C1 such that∫
I

∥∥∥ ∞∑
n=−∞

αne
iωntun

∥∥∥2

dt ≤ C1

∞∑
n=−∞

|αn|2‖un‖2(1.7)

for all sequences (αn) of complex numbers satisfying

∞∑
n=−∞

|αn|2‖un‖2 < +∞;(1.8)

(b) for every bounded interval I of length 2T with

T > π/γ and
T 2γ2 − π2

2T 2γ2 + π2
> (M − 1)η(1.9)
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there exists a constant C2 > 0 such that∫
I

∥∥∥ ∞∑
n=−∞

αne
iωntun

∥∥∥2

dt ≥ C2

∞∑
n=−∞

|αn|2‖un‖2(1.10)

for all sequences (αn) of complex numbers satisfying (1.8).
Remarks. 1. Since (M − 1)η < 1/2, the condition (1.9) is satisfied if T is suffi-

ciently large.
2. For M = 1, H = C, and un ≡ 1, Theorem 1.8 reduces to Ingham’s original

theorem.
3. Ingham’s theorem was later improved and generalized very much in several

works; see, e.g., [2], [17], [20], [18]. These works concern the scalar case and do not
directly imply our result. Concerning the vector coefficient case, the monograph of
Avdonin and Ivanov [1] contains several deep theorems and also includes many useful
references. In particular, Corollary II.2.2 in [1] states that a vector family has the
Riesz basis property if the associated scalar family does. However, in the case of our
Theorem 1.8 the associated scalar family does not necessarily have the Riesz basis
property because the assumption (1.5) for M > 1 does not imply that the exponents
are separated, so one cannot apply this result here. As it will be seen later, in the
typical applications to coupled systems there can even be repeated exponents, so that
the weakened assumption (1.5) of Theorem 1.8 is essential. On the other hand, using
the deep complex analytic tools of [1] one could probably obtain more general results
than Theorem 1.8. However, we prefer the present result because it is sufficient for
most applications to coupled linear systems and because its proof is much shorter and
more elementary than that of a more general case. Furthermore, this can be adapted
easily to prove some variants of Theorem 1.8 which are needed for the proof of typical
partial observability results, such as Theorem 1.10 below, and which could be proved
less easily by the general complex analytic approach.

4. In the proof we shall use some ideas of another earlier generalization of Ing-
ham’s theorem due to Loreti and Valente [16].

In our application the conditions of Theorem 1.8 will be satisfied only after the
removal of a finite numbers of exponents ωn. Then we shall complete our proof by
applying the following generalization of a former theorem of Haraux [4].

Proposition 1.9. Let (ωn)∞n=−∞ be a sequence of pairwise distinct complex
numbers such that

|ωn| → +∞ as n→ ±∞(1.11)

and

the sequence (=ωn) is bounded,(1.12)

and let (un) be a sequence of nonzero vectors in a complex Hilbert space H.
Let T0 be a nonnegative number. Assume that for every bounded interval I of

length > T0 there exists a finite set N of integers such that the estimates (1.7) and
(1.10) are satisfied for all complex sequences (αn) satisfying (1.8) and

αn = 0 for all n ∈ N.(1.13)

Then the same conclusion holds without the condition (1.13).
Remarks. 1. Proposition 1.9 improves Haraux’s earlier results in two aspects: we

allow nonreal exponents ωn and vector coefficients αn.
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2. Proposition 1.9 also extends an earlier result in [6] and in [8, Chap. 5], where
only real exponents were considered. Although intuitively the presence of complex
exponents does not present extra difficulties, in fact we had to change part of the
earlier proof where the reality of the exponents was used in a crucial way.

Let us note that Theorem 1.2 remains valid in fact for every bounded domain
of class C4: this more general result can be proved by an indirect compactness-
uniqueness method; see [11]. Unlike that approach, the proof given here provides
explicit constants in the estimates (1.2). On the other hand, we do not know another
approach to prove Theorem 1.5, and we conjecture that this theorem holds true only
if Ω is a ball.

The approach developed in this paper can also be applied to the study of partial
observability problems. For example, we have the following.

Theorem 1.10. Let Ω be an open ball of radius R in Rn. There exist countably
many hypersurfaces in R4 such that if (A,B,C,D) does not belong to any of them, then
the following estimates hold true:

(a) For every T > 2R there exist two positive constants c1, c2 such that

c1E0 ≤
∫ T

0

∫
Γ

|∂νu1|2 dΓ dt ≤ c2E0

for all strong solutions of (1.1) whose initial data satisfy the condition

u20 = u21 = 0 in Ω.

(b) For every T > 0 there exist two positive constants c1, c2 such that

c1E0 ≤
∫ T

0

∫
Γ

|∂νu2|2 dΓ dt ≤ c2E0

for all strong solutions of (1.1) whose initial data satisfy the condition

u10 = u11 = 0 in Ω.

Due to space limitations we shall not prove Theorem 1.10 here and we refer to
[10] for similar results. Its proof is analogous to that of Theorems 1.2 and 1.5, but it
requires modified versions of Theorem 1.8 and Proposition 1.9. Contrary to Theorems
1.2 and 1.5, we do not know whether there are effectively exceptional values in this
problem.

2. Proof of Proposition 1.1. Let us consider, along with (1.1), the following
two related systems:

v′′1 −∆v1 = 0 in R× Ω,
v′′2 + ∆2v2 = 0 in R× Ω,
v1 = v2 = ∆v2 = 0 on R× Γ,
vi(0) = ui0 and v′i(0) = ui1 in Ω, i = 1, 2,

(2.1)

and 
w′′1 −∆w1 +Au1 +Bu2 = 0 in R× Ω,
w′′2 + ∆2w2 + Cu1 +Du2 = 0 in R× Ω,
w1 = w2 = ∆w2 = 0 on R× Γ,
wi(0) = w′i(0) = 0 in Ω, i = 1, 2.

(2.2)
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Observe that u = v + w.
Since the system (2.1) is uncoupled, we may apply the earlier results of Lions [14]

and Zuazua [21] mentioned in the introduction. Hence

c3E0 ≤
∫ T

0

∫
Γ

|∂νv|2 dΓ dt ≤ c4E0(2.3)

for some positive constants c3, c4, independent of A,B,C,D (because these param-
eters do not appear in (2.1)). (All constants in this section are independent of the
particular choice of the initial data.)

Fix α > 0 (to be chosen later) and let |A| < α, |B| < α, |C| < α, |D| < α. It
follows from the well-posedness of the system (1.1) that

‖Au1‖2L1(0,T ;H1
0 (Ω)) + ‖Bu2‖2L1(0,T ;H1

0 (Ω)) + ‖Cu1‖2L1(0,T ;H1
0 (Ω))

+‖Du2‖2L1(0,T ;H1
0 (Ω)) ≤ c5(α)E0

for some constants c5(α) such that c5(α) → 0 as α → 0. Therefore, applying the
direct inequalities given in [14] for the wave equation and for the above Petrovsky
system, we obtain that ∫ T

0

∫
Γ

|∂νw|2 dΓ dt ≤ c6(α)E0(2.4)

for some constant c6(α) such that c6(α)→ 0 as α→ 0.
Since u = v + w, we deduce from (2.3) and (2.4) the following inequalities:∫ T

0

∫
Γ

|∂νu|2 dΓ dt ≤ 2

∫ T

0

∫
Γ

|∂νv|2 + |∂νw|2 dΓ dt ≤ 2(c4 + c6(α))E0,

2

∫ T

0

∫
Γ

|∂νu|2 dΓ dt ≥
∫ T

0

∫
Γ

|∂νv|2 − 2|∂νw|2 dΓ dt ≥ (c3 − 2c6(α))E0.

These inequalities imply (1.2) with

c1 = (c3 − 2c6(α))/2 and c2 = 2(c4 + c6(α)).

If we choose a sufficiently small α, then the constants c1, c2 are positive and the
proposition follows.

3. Proof of Theorem 1.8. If (1.7) and (1.10) are satisfied for an interval I =
(−T, T ), then they are also satisfied for every translate (−T +τ, T +τ) of this interval.
Indeed, applying (1.7) and (1.10) to the function

z(t) := u(t+ τ) =
∑
n

(
ane

iωnτ
)
eiωntun

and using the equalities |eiωnτ | = 1 (because the ωn’s are real), we obtain that (1.7)
and (1.10) are satisfied if we replace ‖u(t)‖2 by ‖z(t)‖2 in the integral. We conclude
by observing that ∫ T+τ

−T+τ

‖u(t)‖2 dt =

∫ T

−T
‖z(t)‖2 dt.
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Hence it is sufficient to consider intervals of the form I = (−T, T ).
Let us introduce for any fixed T > π/γ the continuous nonnegative function

k(t) =

{
cos πt

2T if |t| ≤ T ,
0 if |t| ≥ T.

We shall prove instead of (1.7) and (1.10) the estimates∫ ∞
−∞

k(t)
∥∥∥ ∞∑
n=−∞

αne
iωntun

∥∥∥2

dt ≤ C1

∞∑
n=−∞

|αn|2‖un‖2(3.1)

and ∫ ∞
−∞

k(t)
∥∥∥ ∞∑
n=−∞

αne
iωntun

∥∥∥2

dt ≥ C2

∞∑
n=−∞

|αn|2‖un‖2.(3.2)

Since k ≤ χ[−T,T ], (1.10) follows at once from (3.2). For the proof of (1.7) we
apply (3.1) with some T ′ > T instead of T. Then the corresponding function k satisfies

k ≥ cos
πT

2T ′
χ[−T,T ]

and hence (1.7) follows with C1/ cos(πT/(2T ′)) > 0 instead of C1.
Turning to the proofs of (3.1) and (3.2), let us denote by K(x) the Fourier trans-

form of k(t)

K(x) =

∫ ∞
−∞

k(t)eixt dt.

An easy computation shows that

K(x) =
4πT cos(xT )

π2 − 4T 2x2
.

Hence K(−x) ≡ K(x) and the maximum of |K(x)| over R is attained by K(0) = 4T/π.
Indeed, one can verify directly by looking at the graph of K(x) that |K(x)| ≤ K(0)
for all −1/T ≤ x ≤ 1/T . Furthermore, for x ≥ 1/T we have

|K(x)| =
∣∣∣4πT cos(xT )

π2 − 4T 2x2

∣∣∣ =
∣∣∣ πT sin(xT − (π/2))

(xT − (π/2))(xT + (π/2))

∣∣∣
=
∣∣∣ 2πT

2xT + π

sin(xT − (π/2))

xT − (π/2)

∣∣∣ ≤ 2πT

2xT + π
≤ 4T

π
.

Finally, for x ≤ −1/T we have |K(x)| = |K(−x)| ≤ 4T/π.
Developing the scalar product inside the integral in (3.1) and (3.2) we obtain∫ ∞

−∞
k(t)

∥∥∥∑
n

αne
iωntun

∥∥∥2

dt =
∑
n,k

αnαk(un, uk)HK(ωn − ωk),

from which∫ ∞
−∞

k(t)
∥∥∥∑

n

αne
iωntun

∥∥∥2

dt−K(0)
∑
n

|αn|2‖un‖2 = S1 + S2(3.3)
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with

S1 =
∑

n≡k,n 6=k
αnαk(un, uk)HK(ωn − ωk)

and

S2 =
∑
n 6≡k

αnαk(un, uk)HK(ωn − ωk),

where n ≡ k means n ≡ k mod M .
Using (1.5) and the inequality T > π/γ we have for every fixed n the following

estimate: ∑
k≡n,k 6=n

|K(ωn − ωk)| ≤
∑

n≡k,n 6=k

4πT

4T 2|ωn − ωk|2 − π2
(3.4)

≤
∑

n≡k,n 6=k

4πT

4T 2(n− k)2M−2γ2 − T 2γ2
=
∞∑
j=1

8πT

T 2γ2(4j2 − 1)

=
4π

Tγ2

∞∑
j=1

( 1

2j − 1
− 1

2j + 1

)
=

4π

Tγ2
.

Therefore

|S1| ≤
∑

n≡k,n 6=k
|αn| |αk| ‖un‖ ‖uk‖ |K(ωn − ωk)|(3.5)

≤ 1

2

∑
n≡k,n 6=k

(|αn|2‖un‖2 + |αk|2‖uk‖2)|K(ωn − ωk)|

=
∑

n≡k,n 6=k
|αn|2‖un‖2|K(ωn − ωk)|

≤ 4π

Tγ2

∑
n

|αn|2‖un‖2.

Next we remark that using (3.4) we have for any fixed n the estimate

∑
k 6≡n
|K(ωn − ωk)| ≤

M−1∑
i=1

∑
k≡n+i

|K(ωn − ωk)| ≤ (M − 1)
( 4π

Tγ2
+ 2K(0)

)
,

because by (1.5) for each fixed 1 ≤ i ≤M −1 there are at most two integers k ≡ n+ i
with |ωn − ωk| < γ. Therefore

|S2| ≤ η
∑
k 6≡n
|αn| |αk| ‖un‖ ‖uk‖ |K(ωn − ωk)|(3.6)

≤ η

2

∑
k 6≡n

(|αn|2‖un‖2 + |αk|2‖uk‖2)|K(ωn − ωk)|

= η
∑
k 6≡n
|αn|2‖un‖2|K(ωn − ωk)|

≤ η(M − 1)
( 4π

Tγ2
+ 2K(0)

)∑
n

|αn|2‖un‖2.
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Using (3.5), (3.6), and the equality K(0) = 4T/π we deduce from (3.3) the in-
equality ∣∣∣∫ ∞

−∞
k(t)

∥∥∥∑
n

αne
iωntun

∥∥∥2

dt− 4T

π

∑
n

|αn|2‖un‖2
∣∣∣

≤
[ 4π

Tγ2
+ η(M − 1)

(8T

π
+

4π

Tγ2

)]∑
n

|αn|2‖un‖2,

and (1.7) and (1.10) follow by the choice (1.9) of T.

4. Proof of Proposition 1.9. Given δ > 0 and ω ∈ C arbitrarily, for every
continuous function u : R → H we define another function Iδ,ωu : R → H by the
formula

Iδ,ωu(t) = u(t)− 1

2δ

∫ δ

−δ
e−iωsu(t+ s) ds.

We shall need two lemmas.
Lemma 4.1. (a) If u(t) = eiωtu0 with u0 ∈ H, then Iδ,ωu = 0.
(b) If u(t) = eiµtu0 with µ 6= ω and u0 ∈ H, then

Iδ,ωu(t) =

(
1− sin(µ− ω)δ

(µ− ω)δ

)
u(t).

(c) The linear operators Iδ,ω commute, i.e.,

Iδ,ωIδ′,ω′u = Iδ′,ω′Iδ,ωu

for all δ, ω, δ′, ω′, and u.
Observe that since the analytic function 1− (sin z/z) does not vanish identically,

the function in front of u(t) in part (b) cannot vanish for more than a countable set
of exceptional values of δ > 0.

Proof. (a) We have

Iδ,ωu(t) = u(t)− 1

2δ

∫ δ

−δ
e−iωseiω(t+s)u0 ds = u(t)− eiωtu0 = 0.

(b) We have

Iδ,ωu(t) = u(t)− 1

2δ

∫ δ

−δ
e−iωseiµ(t+s)u0 ds = u(t)− 1

2δ

[
ei(µ−ω)s

i(µ− ω)

]δ
−δ
eiµtu0

= u(t)− ei(µ−ω)δ − e−i(µ−ω)δ

2i(µ− ω)δ
eiµtu0 =

(
1− sin(µ− ω)δ

(µ− ω)δ

)
u(t).

(c) This follows at once from the definition of the operators Iδ,ω.
Lemma 4.2. For every continuous function u : R→ H we have∫ T

−T
‖Iδ,ωu(t)‖2 dt ≤

(
2 + 2e2|=ω|δ

)∫ T+δ

−T−δ
‖u(t)‖2 dt.(4.1)
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Proof. For every fixed t ∈ R we have

‖Iδ,ωu(t)‖2 ≤ 2‖u(t)‖2 + 2
∥∥∥ 1

2δ

∫ δ

−δ
e−iωsu(t+ s) ds

∥∥∥2

≤ 2‖u(t)‖2 +
1

2δ2

∫ δ

−δ
|e−iωs|2 ds

∫ δ

−δ
‖u(t+ s)‖2 ds

≤ 2‖u(t)‖2 + δ−1e2|=ω|δ
∫ t+δ

t−δ
‖u(x)‖2 dx.

Therefore ∫ T

−T
‖Iδ,ωu(t)‖2 dt

≤ 2

∫ T

−T
‖u(t)‖2 dt+ δ−1e2|=ω|δ

∫ T

−T

∫ t+δ

t−δ
‖u(x)‖2 dx dt

= 2

∫ T

−T
‖u(t)‖2 dt+ δ−1e2|=ω|δ

∫ T+δ

−T−δ

∫ min{T,x+δ}

max{−T,x−δ}
‖u(x)‖2 dt dx

≤ 2

∫ T

−T
‖u(t)‖2 dt+ 2e2|=ω|δ

∫ T+δ

−T−δ
‖u(t)‖2 dt

≤ (2 + 2e|=ω|δ
) ∫ T+δ

T−δ
‖u(x)‖2 dx.

Now we turn to the proof of the theorem. Fix ε > 0 arbitrarily. We proceed in
four steps.

Step 1. Fix ε/(2|N |) < δ < ε/|N | (to be chosen later), where |N | denotes the
number of elements in the set N, and let us denote by I = Iδ the composition of the
linear operators Iδ,ωj , where j runs over N. By Lemma 4.1 the definition does not
depend on the order of the operators Iδ,ωj . Therefore, using Lemma 4.1, if

u(t) =

∞∑
n=1

αne
iωntun,

then

(Iu)(t) =
∑
n/∈N

αn

∏
j∈N

(
1− sin(ωn − ωj)δ

(ωn − ωj)δ
) eiωntun =:

∞∑
n=−∞

α′ne
iωntun.

Next we choose ε/(2|N |) < δ < ε/|N | such that none of the products∏
j∈N

(
1− sin(ωn − ωj)δ

(ωn − ωj)δ
)
, n /∈ N,

vanishes. This is possible by the analyticity remark preceding the proof of Lemma 4.1
because the numbers ωn − ωj are all different from zero. (We have to exclude only a
countable set of values of δ.)

Then there exists a constant C ′ > 0 such that∣∣∣∏
j∈N

(
1− sin(ωn − ωj)δ

|(ωn − ωj)δ|
)∣∣∣2 ≥ C ′
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for all n /∈ N . Indeed, it is sufficient to observe that for any fixed j ∈ N we have∣∣∣ sin(ωn − ωj)δ
(ωn − ωj)δ

∣∣∣ ≤ cosh(=(ωn − ωj)δ)
|(ωn − ωj)δ| → 0

as n→ ±∞ because of our assumptions (1.11) and (1.12). Hence the above product
tends to 1 as n → ±∞, so that its absolute value is minorized, e.g., by 1/2 for all
sufficiently large |n|.

The above argument also implies that the above products are bounded with re-
spect to n so that (α′n) also satisfies (1.8). Furthermore, α′n = 0 for all n ∈ N so
that we may apply our hypothesis to the function Iu on any interval (−T, T ) with
T > T0/2. It follows that∫ T

−T
‖Iu(t)‖2 dt ≥ C2

∑
n/∈N
|α′n|2‖un‖2 ≥ C2C

′∑
n/∈N
|αn|2‖un‖2.

Applying (4.1) repeatedly with ω = ωj , j ∈ N , and taking into account that |N |δ < ε,
it follows that ∑

n/∈N
|αn|2‖un‖2 ≤ C ′′

∫ T+ε

−T−ε
‖u(t)‖2 dt(4.2)

with

C ′′ =
1

C2C ′
∏
j∈N

(
2 + 2e2|=ωj |ε/|N |).

Step 2. We are going to prove (1.7) for the interval I = (−T − ε, T + ε). Let us
first show that ∫ T+ε

−T−ε

∥∥∥∑
n/∈N

αne
iωntun

∥∥∥2

dt ≤ C1(ε)
∑
n/∈N
|αn|2‖un‖2(4.3)

with a suitable constant C1(ε) defined later. Indeed, let us cover (−T − ε, T + ε) by
a finite number of translates

(−T + τj , T + τj), 1 ≤ j ≤ m
of the interval (−T, T ) and apply the hypothesis (1.7) m times as follows:∫ T+ε

−T−ε

∥∥∥∑
n/∈N

αne
iωntun

∥∥∥2

dt ≤
m∑
j=1

∫ T+τj

−T+τj

∥∥∥∑
n/∈N

αne
iωntun

∥∥∥2

dt

=

m∑
j=1

∫ T

−T

∥∥∥∑
n/∈N

(
αne

iωnτj
)
eiωntun

∥∥∥2

dt

≤ C1

m∑
j=1

∑
n/∈N
|αneiωnτj |2 · ‖un‖2 = C1

∑
n/∈N
|αn|2

 m∑
j=1

e−2=ωnτj

 · ‖un‖2.
Thanks to hypothesis (1.12), the set of numbers

m∑
j=1

e−2=ωnτj , n /∈ N
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is bounded and therefore (4.3) follows with

C1(ε) = C1 sup
n/∈N

m∑
j=1

e−2=ωnτj .

Next we show that∫ T+ε

−T−ε

∥∥∥∑
n∈N

αne
iωntun

∥∥∥2

dt ≤ C ′1(ε)
∑
n∈N
|αn|2‖un‖2(4.4)

with some constant C ′1(ε). Indeed, applying the Cauchy–Schwarz inequality we have

∥∥∥∑
n∈N

αne
iωntun

∥∥∥2

≤
(∑
n∈N
|αn||eiωnt|‖un‖

)2

≤ |N |
∑
n∈N
|αn|2|eiωnt|2‖un‖2,

and (4.4) follows with

C ′1(ε) = |N |max

{∫ T+ε

−T−ε
|eiωnt|2 dt ∣∣ n ∈ N} .

Using the triangle inequality we deduce from (4.3) and (4.4) that∫ T+ε

−T−ε

∥∥∥ ∞∑
n=−∞

αne
iωntun

∥∥∥2

dt

≤
∫ T+ε

−T−ε
2
∥∥∥∑
n/∈N

αne
iωntun

∥∥∥2

+ 2
∥∥∥∑
n∈N

αne
iωntun

∥∥∥2

dt

≤ C1(ε)
∑
n/∈N
|αn|2‖un‖2 + C ′1(ε)

∑
n∈N
|αn|2‖un‖2,

and (1.7) follows with

max{C1(ε), C ′1(ε)}

in place of C1.
Step 3. Now we prove (1.10). First, using the triangle inequality, our hypothesis

(1.7), and the inequality (4.2) we obtain that∫ T

−T

∥∥∥∑
n∈N

αne
iωntun

∥∥∥2

dt ≤
∫ T

−T
2‖u(t)‖2 + 2

∥∥∥∑
n/∈N

αne
iωntun

∥∥∥2

dt

≤ 2

∫ T

−T
‖u(t)‖2 dt+ 2C1

∑
n/∈N
|αn|2‖un‖2

≤ 2

∫ T

−T
‖u(t)‖2 dt+ 2C1C

′′
∫ T+ε

−T−ε
‖u(t)‖2 dt

≤ (2 + 2C1C
′′)
∫ T+ε

−T−ε
‖u(t)‖2 dt.
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Let us observe that the expression∫ T

−T

∥∥∥∑
n∈N

αne
iωntun

∥∥∥2

dt

is a positive semidefinite quadratic form of the variable {αn | n ∈ N} ∈ C|N |. More-
over, it is positive definite because the functions eiωntun, n ∈ N , are linearly inde-
pendent. (Let us recall that N is a finite set, so that there is only one natural notion
of linear independence and of positive definiteness here; cf. [1, pp. 23–26].) Hence it
is minorized by a positive multiple of∑

n∈N
|αn|2‖un‖2,

and we deduce from the above inequality that

∑
n∈N
|αn|2‖un‖2 ≤ C ′′′

∫ T+ε

−T−ε
‖u(t)‖2 dt(4.5)

for a suitable constant C ′′′ > 0. Now (1.10) follows from (4.2) and (4.5) with 1/(C ′′+
C ′′′) in place of C2.

Step 4. Since T > T0/2 and ε > 0 were chosen arbitrarily, we have proved (1.7)
and (1.10) for all bounded intervals I of length > T0 which are symmetrical with
respect to 0. Finally, we prove that they remain valid for every interval I of length
2T > T0 even if it is not symmetrical with respect to 0.

Let us write I = (−T + τ, T + τ) and consider the function z(t) := u(t+ τ). We
have clearly ∫ T+τ

−T+τ

‖u(t)‖2 dt =

∫ T

−T
‖z(t)‖2 dt

and

z(t) =
∑
n

(
αne

iωnτ
)
eiωntun.

By hypothesis (1.12) there is a constant M such that |=ωn| ≤ M for all n. Applying
(1.7) and (1.10) to z(t) on the interval (−T, T ) and using the inequalities

e−Mτ ≤ |eiωnτ | ≤ eMτ

we obtain that u(t) satisfies (1.7) and (1.10) on the interval I = (−T + τ, T + τ) with
C1, C2 replaced by C1e

2Mτ and C2e
−2Mτ , respectively.

5. Proof of Theorem 1.2. We may assume without loss of generality that Ω is
the unit ball of Rn: the general case then follows easily by a linear change of variables.

We shall only consider the case n ≥ 2. The proof of the one-dimensional case
is similar and simpler; we shall indicate briefly the modifications at the end of this
section.

Let us denote by

ρm1 < ρm2 < · · ·
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the sequence of the (strictly) positive roots of the Bessel function Jm−1+n
2

(x) for
m = 0, 1, . . ., and let us introduce the eigenvalues

λmk = 1
2

(
ρ4
mk + ρ2

mk +A+D +
√

(ρ4
mk − ρ2

mk +D −A)2 + 4BC
)

(5.1)

and

µmk = 1
2

(
ρ4
mk + ρ2

mk +A+D −√(ρ4
mk − ρ2

mk +D −A)2 + 4BC
)

(5.2)

of the matrices

Amk =

(
ρ2
mk +A B
C ρ4

mk +D

)
for m = 0, 1, . . . and k = 1, 2, . . .. We recall from [19] that

ρmk →∞ as m+ k →∞.(5.3)

These relations imply that

ρ4
mk(λmk − ρ4

mk −D) = ρ4
mk(ρ2

mk +A− µmk)→ BC(5.4)

as m+ k →∞.
We shall assume that

B 6= 0, C 6= 0(5.5)

and that the numbers

0, λm1, µm1, λm2, µm2, . . .(5.6)

are all different for each m.
Observe that these assumptions exclude only a set of measure zero of the quadru-

ples (A,B,C,D) in R4. Indeed, more precisely, each of the countably many equations

B = 0,

C = 0,

λmk = 0, k = 1, 2, . . . ,

µmk = 0, k = 1, 2, . . . ,

λmk = µml, k, l = 1, 2, . . . ,

λmk = λml, k, l = 1, 2, . . . , k 6= l,

µmk = µml, k, l = 1, 2, . . . , k 6= l

defines a hypersurface in R4, so that the union of these hypersurfaces has zero measure,
and the conditions (5.5) and (5.6) are satisfied for all quadruples (A,B,C,D) outside
this set.

Using (5.1)–(5.6) one can show easily that the vectors vmk and wmk defined by
the formulas

{
vmk = (vmk1, vmk2) := (C−1(λmk − ρ4

mk −D), 1),
wmk = (wmk1, wmk2) := (1, B−1(µmk − ρ2

mk −A))
(5.7)
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satisfy the following conditions:

Amkvmk = λmkvmk and Amkwmk = µmkwmk,(5.8)

vmk and wmk are linearly independent,(5.9)

vmk2 = wmk1 = 1,(5.10)

vmk1, wmk2 = O(ρ−4
mk) as m+ k →∞.(5.11)

Applying the Fourier method we obtain that the solution of (1.1) is given by the
series (we use hyperspherical coordinates)

u(t, r, ϕ) =

∞∑
m=0

∞∑
k=1

r1−n2 Jm−1+n
2

(ρmkr)(5.12)

×{(amk(ϕ)ei
√
λmkt + bmk(ϕ)e−i

√
λmkt

)
vmk

+
(
cmk(ϕ)ei

√
µmkt + dmk(ϕ)e−i

√
µmkt

)
wmk

}
with suitable spherical harmonics amk, bmk, cmk, dmk of order m, depending on the
initial data, and such that

∞∑
m=0

∞∑
k=1

|ρmkJ ′m−1+n
2

(ρmk)|2
∫

Γ

|amk|2 + |bmk|2 + |cmk|2 + |dmk|2 dΓ <∞.

Expanding the initial data according to the eigenfunctions of −∆ with the homo-
geneous Dirichlet boundary condition, we obtain the orthogonal expansions

u10(r, ϕ) =
∑∞
m=0

∑∞
k=1 r

1−n2 Jm−1+n
2

(ρmkr)u10mk(ϕ),
u20(r, ϕ) =

∑∞
m=0

∑∞
k=1 r

1−n2 Jm−1+n
2

(ρmkr)u20mk(ϕ),
u11(r, ϕ) =

∑∞
m=0

∑∞
k=1 r

1−n2 Jm−1+n
2

(ρmkr)u11mk(ϕ),
u21(r, ϕ) =

∑∞
m=0

∑∞
k=1 r

1−n2 Jm−1+n
2

(ρmkr)u21mk(ϕ),

(5.13)

where u10mk, u20mk, u11mk, u21mk are suitable spherical harmonics of order m. Com-
paring (5.12) and (5.13) we obtain the algebraic relations

u10mk = (amk + bmk)vmk1 + (cmk + dmk)wmk1,
u20mk = (amk + bmk)vmk2 + (cmk + dmk)wmk2,
u11mk = i

√
λmk(amk − bmk)vmk1 + i

√
µmk(cmk − dmk)wmk1,

u21mk = i
√
λmk(amk − bmk)vmk2 + i

√
µmk(cmk − dmk)wmk2.

(5.14)

In order to simplify the notations we shall write f ≈ g if there exist two positive
constants c′ and c′′ such that

c′f ≤ g ≤ c′′f.
The constants c′ and c′′ will be assumed to be independent of ϕ ∈ Γ and of the choice
of the initial data in (1.1). Also, we shall write f ≈ g uniformly for m+ k ≥ K if we
can choose the same constants c′ and c′′ for all m and k satisfying m+ k ≥ K.

Let us first evaluate the initial energy.
Lemma 5.1. We have

E0 ≈
∞∑
m=0

∞∑
k=1

ρ2
mk

∫ 1

0

r|Jm−1+n
2

(ρmkr)|2 dr

×
∫

Γ

|amk|2 + |bmk|2 + |cmk|2 + |dmk|2 dΓ
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for all solutions of (1.1).
Proof. Using (5.13) we obtain by an easy computation the identity

E0 = n|Ω|
∞∑
m=0

∞∑
k=1

ρ2
mk

∫ 1

0

r|Jm−1+n
2

(ρmkr)|2 dr(5.15)

×
∫

Γ

|u10mk(ϕ)|2 + |u20mk(ϕ)|2 + ρ−2
mk|u11mk(ϕ)|2 + ρ−4

mk|u21mk(ϕ)|2 dϕ,

where |Ω| denotes the volume of Ω. Hence it suffices to show that

|u10mk|2 + |u20mk|2 + ρ−2
mk|u11mk|2 + ρ−4

mk|u21mk|2(5.16)

≈ |amk|2 + |bmk|2 + |cmk|2 + |dmk|2

uniformly for all m and k.
Since λmk 6= 0, µmk 6= 0 and since the vectors vmk and wmk are linearly indepen-

dent, we deduce easily from (5.14) the implications

u10mk = u20mk = u11mk = u21mk = 0(5.17)

⇐⇒ amk = bmk = cmk = dmk = 0

for each pair (m, k).
Furthermore, using (5.3), (5.4), (5.10), and (5.11) we deduce from (5.14) that

u10mk = (cmk + dmk) + (amk + bmk)o(1),

u20mk = (amk + bmk) + (cmk + dmk)o(1),

u11mk = ρmk(cmk − dmk)(i+ o(1)) + (amk − bmk)o(1),

u21mk = ρ2
mk(amk − bmk)(i+ o(1)) + (cmk − dmk)o(1)

as m+ k →∞. Hence

|u10mk|2 + |u20mk|2 + ρ−2
mk|u11mk|2 + ρ−4

mk|u21mk|2(5.18)

=
(
2 + o(1)

)(|amk|2 + |bmk|2 + |cmk|2 + |dmk|2
)

as m+ k →∞.
Now (5.17) and (5.18) imply (5.16).
Next we evaluate the boundary integral in (1.2).
Lemma 5.2. Fix T > 2 arbitrarily. Then ∫ T

−T

∫
Γ

|∂νu|2 dΓ dt

≈
∞∑
m=0

∞∑
k=1

ρ2
mk|J ′m−1+n

2
(ρmk)|2

∫
Γ

|amk|2 + |bmk|2 + |cmk|2 + |dmk|2 dΓ

for all solutions of (1.1).
We prove this lemma in several steps.
Step 1. It follows from (5.12) that

∂νu(t, 1, ϕ) =
∞∑
m=0

∞∑
k=1

ρmkJ
′
m−1+n

2
(ρmk)
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×{(amk(ϕ)ei
√
λmkt + bmk(ϕ)e−i

√
λmkt

)
vmk

+
(
cmk(ϕ)ei

√
µmkt + dmk(ϕ)e−i

√
µmkt

)
wmk

}
=:

∞∑
m=0

∞∑
k=1

rmkfmk(t, ϕ).

Since the spherical harmonics of different order are orthogonal in L2(Γ), we have∫
Γ

|∂νu|2 dΓ =
∞∑
m=0

∫
Γ

∣∣∣ ∞∑
k=1

rmkfmk(t, ϕ)
∣∣∣2 dϕ.

Hence, applying the Fubini–Tonelli theorem,∫ T

0

∫
Γ

|∂νu|2 dΓ dt =
∞∑
m=0

∫
Γ

(∫ T

0

∣∣∣ ∞∑
k=1

rmkfmk(t, ϕ)
∣∣∣2 dt) dϕ.

Therefore it suffices to prove that the estimates∫ T

0

∣∣∣ ∞∑
k=1

rmkfmk(t, ϕ)
∣∣∣2 dt(5.19)

≈
∞∑
k=1

r2
mk(|amk(ϕ)|2 + |bmk(ϕ)|2 + |cmk(ϕ)|2 + |dmk(ϕ)|2)

hold uniformly in m.
Step 2. Let us prove that the estimates (5.19) hold uniformly for m ≥ m′ for

some sufficiently large m′. We recall from [19] that if m − 1 + (n/2) ≥ 1/2, then
the difference sequence (ρm,k+1 − ρmk) is nonincreasing and tends to π as k → ∞.
Choosing π > γ > 2π/T arbitrarily and using (5.3) and (5.4), we conclude that

2
√
λm1, 2

√
µm1, inf

k

√
λm,k+1 −

√
λmk, and inf

k

√
µm,k+1 −√µmk

are all larger than γ if m is sufficiently large, say m ≥ m′′. Furthermore, it follows
from (5.3), (5.10), and (5.11) that (vmk, wml) → 0 uniformly in k and l if m → ∞.
Hence for any fixed 0 < η < 1/2 we may apply Theorem 1.8 for each sufficiently large
m with M = 2,

{ωn} = {±
√
λmk,±√µmk}

and with

un =

{
vmk if ωn = ±√λmk,
wmk if ωn = ±√µmk.

It follows that ∫ T

0

∣∣∣ ∞∑
k=1

rmkfmk(t, ϕ)
∣∣∣2 dt

≈
∞∑
k=1

r2
mk

(
(|amk(ϕ)|2 + |bmk(ϕ)|2)‖vmk‖2 + (|cmk(ϕ)|2 + |dmk(ϕ)|2)‖wmk‖2

)
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uniformly for all sufficiently large m.
It follows from (5.3), (5.10), and (5.11) that none of the vectors vmk and wmk

vanishes and that ‖vmk‖ → 1 and ‖wmk‖ → 1 if m + k → ∞. Therefore we deduce
from the above relation that for a suitably chosen integer m′ ≥ m′′ the relations (5.19)
hold uniformly for all m ≥ m′.

Step 3. Now it suffices to prove the estimates (5.19) for each fixed m < M . We
recall from [19] that ρm,k+1 − ρmk → π as k → ∞, for each m. Using (5.4) we may
therefore choose K such that

2
√
λm,K+1 > 2π/T, inf

k>K

√
λm,k+1 −

√
λmk > 2π/T

and

2
√
µm,K+1 > 2π/T, inf

k>K

√
µm,k+1 −√µmk > 2π/T.

Furthermore, by (5.3), (5.10), and (5.11) we have (vmk, wml)→ 0 if k, l→∞. There-
fore, choosing a larger K if necessary, we may apply Theorem 1.8 for the sequence
(ωn) containing the numbers ±√λmk and ±√µmk for all k > K and for the sequence
(un) defined as in the preceding step.

We conclude that (5.19) holds true under the extra hypothesis

amk = bmk = cmk = dmk = 0(5.20)

for all k ≤ K.
Step 4. It remains to remove the hypothesis (5.20). Thanks to hypothesis (5.6)

we may apply Proposition 1.9 for (ωn), (un) as in Step 2 and with N given by

{ωn | n ∈ N} = {±
√
λmk,±√µmk | k ≤ K}

and the proposition follows.
Now Theorem 1.2 follows from Lemmas 5.1 and 5.2 and from the identity (see

[19] or [7])

2

∫ 1

0

r|Jm−1+n
2

(ρmkr)|2 dr = |J ′m−1+n
2

(ρmk)|2.

In dimension n = 1 the proof is similar. Assuming for simplicity that Ω = (0, π),
now the solutions of (1.1) are given by the formula

u(t, x) =

∞∑
m=1

{(
ame

i
√
λmt + bme

−i√λmt)vm(5.21)

+
(
cme

i
√
µmt + dme

−i√µmt)wm} sinmx

instead of (5.12), where

λm = 1
2

(
m4 +m2 +A+D +

√
(m4 −m2 +D −A)2 + 4BC

)
and

µm = 1
2

(
m4 +m2 +A+D −√(m4 −m2 +D −A)2 + 4BC

)
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are the eigenvalues of the matrices

Am =

(
m2 +A B
C m4 +D

)
;

vm = (vm1, vm2) := (C−1(λm −m4 −D), 1),

and

wm = (wm1, wm2) := (1, B−1(µm −m2 −A))

are corresponding eigenvectors; and am, bm, cm, dm are arbitrary numbers such that

∞∑
m=1

|am|2 + |bm|2 + |cm|2 + |dm|2 <∞.

Then the proof given above can be adapted easily.

6. Proof of Proposition 1.3. As in the preceding section, assume first that Ω
is the unit ball of Rn, n ≥ 2. Fix a nonnegative integer m and fix three positive roots
ρmk1 < ρmk2 < ρmk3 of Jm−1+n

2
(x) arbitrarily. We will show later that for some

suitable choices of the parameters A,B,C,D, the matrices Amk1
, Amk2

, and Amk3

(defined at the beginning of the preceding section) have a common eigenvalue µ.
Then the theorem will follow easily. Indeed, denoting by β1, β2, β3 corresponding

nonzero eigenvectors in R2, the formula

u(t, r, ϕ) =

3∑
j=1

r1−n2 Jm−1+n
2

(ρmkjr)δjβjh(ϕ) cos
√
µt

defines a solution of (1.1) for every spherical harmonics h(ϕ) of order m and for every
choice of real numbers δ1, δ2, δ3. Furthermore, we have

∂νu(t, r, ϕ) =
3∑
j=1

ρmkjJ
′
m−1+n

2
(ρmkj )δjβjh(ϕ) cos

√
µt

on the boundary of Ω. Since the three vectors βj cannot be linearly independent in
R2, we can choose δ1, δ2, and δ3 such that not all of them are zero but

3∑
j=1

ρmkjJ
′
m−1+n

2
(ρmkj )δjβj = 0.

Now choose an arbitrary nonzero spherical harmonics h(ϕ) of order m. Then the
corresponding function u satisfies (1.1) and (1.3). Finally, u does not vanish identically
because the positive roots of the Bessel functions are simple and hence

ρmkjJ
′
m−1+n

2
(ρmkj ) 6= 0

for j = 1, 2, 3.
It remains to show that we can choose A,B,C,D so that the matrices Amk1 ,

Amk2 , and Amk3 have a common eigenvalue. Writing cj = ρmkj for brevity, first we



INGHAM-TYPE THEOREMS 481

choose two real numbers a and d such that c6j + ac4j + dc2j has the same value (say, P)
for j = 1, 2, 3. This is possible because the linear system

c61 + ac41 + dc21 = c62 + ac42 + dc22,

c61 + ac41 + dc21 = c63 + ac43 + dc23

is equivalent to

(c21 + c22)a+ d+ c41 + c21c
2
2 + c42 = 0,

(c21 + c23)a+ d+ c41 + c21c
2
3 + c43 = 0,

whose determinant c22 − c23 is different from zero.

Now fix a real number µ arbitrarily. Set A = a+ µ, D = d+ µ, and choose B,C
such that BC = P . Then we have

c6j + (A− µ)c4j + (D − µ)c2j + (A− µ)(D − µ)−BC = 0

for j = 1, 2, 3. In other words, µ is a common root of the characteristic polynomials
of the matrices Amk1

, Amk2
, Amk3

, and our assertion follows.

Since the set of such quadruples (A,B,C,D) forms a two-dimensional surface in
R4 for every choice of m and of the roots ρmk1

< ρmk2
< ρmk3

, the proposition follows.

The proof can be modified easily for dimension n = 1. Assume for simplicity
that Ω = (0, π). Fix three positive integers m1 < m2 < m3 having the same parity,
and then choose A,B,C,D so that the matrices Am1 , Am2 , and Am3 have a common
eigenvalue µ. Denoting by β1, β2, β3 corresponding nonzero eigenvectors in R2, the
formula

u(t, x) =
3∑
j=1

δjβj sinmjx cos
√
µt

defines a solution of (1.1) for any choice of δ1, δ2, δ3. It remains to choose them so
that

3∑
j=1

δjβjmj = 0,

although at least one of the numbers δj is different from zero.

For example, for (m1,m2,m3) = (2, 4, 6) and for any fixed real number µ we can
choose the parameters

A = −56 + µ, B = −52, C = 800, D = 784 + µ.

Then the nonzero function

u(t, x) =

{(
65
−65

)
sin 2x+

( −52
40

)
sin 4x+

(
13
−5

)
sin 6x

}
cos
√
µt

satisfies (1.1) and (1.3).
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7. Proof of Proposition 1.4. For brevity, henceforth we only consider the case
where Ω is the unit ball of Rn, n ≥ 2. We modify the proof of Theorem 1.2 as follows.
For any fixed A,B,C,D we define the eigenvalues of the matrices Amk by the same
formulas (5.1) and (5.2). Then the relations (5.4) remain valid.

Furthermore, we keep the definition (5.7) of the eigenvectors unchanged if B 6= 0
and C 6= 0 (otherwise they make no sense), but we define them differently in the
remaining cases: we set

vmk := (B(λmk − µmk)−1, 1) and wmk := (1, 0)

if B 6= 0 and C = 0,

vmk := (0, 1) and wmk := (1, C(µmk − λmk)−1)

if B = 0 and C 6= 0, and finally

vmk := (0, 1) and wmk := (1, 0)

if B = C = 0. Then (5.8), (5.9), (5.10), and (5.11) remain true.
Although we do not have (5.6) in the general case, for any fixed η > 0 there exists

a positive integer M such that

0 6= λmk 6= µmk 6= 0 whenever m+ k > M,

λm1, λm2, . . . has no repeated elements if m > M,

µm1, µm2, . . . has no repeated elements if m > M,

λmM+1, λmM+2, . . . has no repeated elements if m ≤M,

µmM+1, µmM+2, . . . has no repeated elements if m ≤M,

|(vmk, wml)H | ≤ η‖vmk‖ ‖wml‖ whenever m+ k,m+ l > M.

Using these properties we can repeat the proof of Theorem 1.2 except for Step 4
in the proof of Lemma 5.2. The proposition follows if we choose N so large that all
functions of the form

r1−n2 Jm−1+n
2

(ρmkjr)h(ϕ), m+ k ≤M,

where h runs over the spherical harmonics of order m, belong to the first N eigenspaces
of −∆ in Ω with homogeneous Dirichlet boundary conditions.

8. Proof of Theorem 1.5. We consider only initial data whose integral over
Ω is equal to zero. This orthogonality condition can be eliminated by applying the
method of Proposition 1.9, but we omit the details in order to keep the length of this
paper reasonable.

Now let us denote by

ρm1 < ρm2 < · · ·
the sequence of the (strictly) positive roots of(

1− n

2

)
Jm−1+n

2
(x) + xJ ′m−1+n

2
(x)

for m = 0, 1, . . .. Introducing the eigenvalues λmk and µmk by the same formulas
(5.1) and (5.2), we still have (5.3) and (5.4). Furthermore, assuming (5.5), (5.6), and
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defining vmk, wmk by (5.7), we still have (5.8)–(5.12). It follows that the restriction
of the solution of (1.4) to the boundary is given by the formula

u(t, 1, ϕ) =

∞∑
m=0

∞∑
k=1

Jm−1+n
2

(ρmk)

×{(amk(ϕ)ei
√
λmkt + bmk(ϕ)e−i

√
λmkt

)
vmk

+
(
cmk(ϕ)ei

√
µmkt + dmk(ϕ)e−i

√
µmkt

)
wmk

}
=:

∞∑
m=0

∞∑
k=1

Rmkfmk(t, ϕ).

(We used the above-mentioned orthogonality assumption here.) As in section 5, it
follows that ∫

Γ

|u|2 dΓ =

∞∑
m=0

∫
Γ

∣∣∣ ∞∑
k=1

Rmkfmk(t, ϕ)
∣∣∣2 dϕ

and then ∫
I

∫
Γ

|u|2 dΓ dt =
∞∑
m=0

∫
Γ

(∫
I

∣∣∣ ∞∑
k=1

Rmkfmk(t, ϕ)
∣∣∣2 dt) dϕ.

If the length of I is larger than 2, then by repeating the proof of Lemma 5.2 we obtain
that∫
I

∣∣∣ ∞∑
k=1

Rmkfmk(t, ϕ)
∣∣∣2 dt
≈
∞∑
k=1

R2
mk(|amk(ϕ)|2 + |bmk(ϕ)|2 + |cmk(ϕ)|2 + |dmk(ϕ)|2)

uniformly in m, and hence∫
I

∫
Γ

|u|2 dΓ dt ≈
∞∑
m=0

∞∑
k=1

R2
mk(|amk(ϕ)|2 + |bmk(ϕ)|2 + |cmk(ϕ)|2 + |dmk(ϕ)|2).

Since the length of I does not appear on the right-hand side of this estimate, the
theorem follows.

9. Proof of Proposition 1.6. As in the proof of Proposition 1.3, we are going
to construct a nontrivial solution of (1.4) which vanishes identically on the boundary
of Ω. Fix a nonnegative integer m arbitrarily and fix arbitrarily three different positive
roots c1, c2, c3 of the function(

1− n

2

)
Jm−1+n

2
(x) + xJ ′m−1+n

2
(x).

Repeating the proof of Proposition 1.3 we obtain for some exceptional values of the
coupling parameters a positive number λ and three nonzero vectors β1, β2, β3 in R2

such that the function

u(t, r, ϕ) :=
[
δ1J(c1r)β1 + δ2J(c2r)β2 + δ3J(c3r)β3

]
h(ϕ) cos

√
λt(9.1)
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is a solution of (1.4) (with suitable initial data) for any spherical harmonics h of order
m and for every choice of real numbers δ1, δ2, and δ3.

Fix a nonzero spherical harmonics h of order m arbitrarily and choose δ1, δ2, and
δ3 such that not all of them vanish but that the linear combination

δ1J(c1)β1 + δ2J(c2)β2 + δ3J(c3)β3

is equal to zero. This is possible because β1, β2, β3 cannot be linearly independent in
R2. Then the function (9.1) has the required properties.

10. Proof of Proposition 1.7. The proof is similar to that of Proposition 1.4,
and hence it is omitted.
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A DUALITY APPROACH IN THE OPTIMIZATION OF
BEAMS AND PLATES∗
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Abstract. We introduce a class of nonlinear transformations called “resizing rules” which
associate with optimal shape design problems certain equivalent distributed control problems while
preserving the state of the system. This puts into evidence the duality principle that the class of
system states that can be achieved, under a prescribed force, via modifications of the structure
(shape) of the system can be obtained as well via the modifications of the force action, under a
prescribed structure.

We apply such transformations to the optimization of beams and plates, and in the simply
supported or cantilevered cases, the obtained control problems are even convex. In all cases, we
establish existence theorems for optimal pairs by assuming only boundedness conditions. Moreover,
in the simply supported case, we also prove the uniqueness of the global minimizer. A general
algorithm that iterates between the original transformed problems is introduced and studied. The
applications also include the case of variational inequalities.

Key words. optimal design, nonconvex duality, resizing rules

AMS subject classification. 49D05

PII. S036301299732540X

1. Introduction. It is our aim to study a class of control into the coefficients
problems. The state equation has the form

∆(bu3∆y) = f in Ω,(1.1)

where Ω is a smooth bounded domain in Rn, n ≥ 1, f ∈ L2(Ω), u ∈ L∞(Ω), and b > 0
is a constant. If n ≤ 2, such models are used in the literature for the deflection y of
plates or beams of thickness u > 0 almost everywhere (a.e.) in Ω and are subject to
the transverse load f . The coefficient b is a material constant, and we shall fix b = 1
in what follows. For instance, (1.1) was recently proposed by Bendsoe [3] for modeling
plates made of a material with special properties. We also quote Hlavacek, Bock, and
Lovisek [12], [13], Haslinger and Neittaanmäki [11], Casas [4], Neto and Polak [21],
and Langenbach [17] for more complex beams or plate equations. To derive (1.1),
smoothness conditions are imposed on the thickness u. However, in the associated
minimization problems, we show that this assumption is not necessary and that is
why we take just u ∈ L∞(Ω).

To (1.1) we add various boundary conditions:

y = ∆y = 0 on ∂ Ω(1.2)

(simply supported plates), and

y =
∂y

∂n
= 0 on ∂ Ω(1.3)
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(clamped plates; ∂
∂n denotes the outward normal derivative to ∂Ω).

In space dimension one, cantilevered beams or unilaterally supported beams (vari-
ational inequalities) will be discussed as well.

We associate with (1.1) various optimization problems:

Min

∫
Ω

u(x) dx(1.4)

(minimization of the weight or volume), and

Min

∫
Ω

(
y(x) − yd(x)

)2
dx(1.5)

(identification-type problems: the function yd ∈ L2(Ω) is a “desired” or “observed”
deflection).

Moreover, natural control and state constraints will be imposed on u, y:

0 ≤ m ≤ u(x) ≤ M a.e. in Ω,(1.6)

y(x) ≥ − τ a.e. in Ω,(1.7)

(m, M, τ are positive constants),

y ∈ A.(1.8)

A ⊂ L2(Ω) is a prescribed closed subset, not necessarily convex.
Problems of this type are well known in the literature and their difficulty, from

both a theoretical and a numerical point of view, was put into evidence in the works of
Neto and Polak [21] (with an example of approximating local minimizers converging
to a nonstationary point of the original problem), Murat [20] (indicating counter-
examples to the existence of minimizers for control into coefficients problems governed
by second order equations) and Cheng and Olhoff [5] and Rozvany et al. [22], where
comprehensive numerical experiments are discussed.

In general, in nonconvex minimization problems one may expect just approxima-
tion of stationary points. In the case of optimal design of beams, this is discussed by
Polak and Neto [21] via the use of consistent approximations.

In this work, we introduce a class of nonlinear transformations which may be
applied to any of the problems (1.1)–(1.8). We call them “resizing rules” with refer-
ence to a partial similarity that exists with the fully stressed design method (FSD)
appearing in the engineering literature (see Haftka, Gürdal, and Kamat [10, Chap. 9].

Via the resizing rules, the control into coefficients problem is transformed into
an equivalent distributed control problem. In this way, we see that the problems
corresponding to simply supported or cantilevered boundary conditions are convex or
even strictly convex (after transformation). This gives the uniqueness of the global
minimum in the original problem. The optimization problem associated with clamped
plates remains nonconvex after the transformation. Moreover, this approach allows
us to relax the compactness assumptions on the set of admissible controls needed to
show the existence of the minimizers. The boundedness condition (1.6) is sufficient
for our method to work. In this respect, similar results were previously obtained by
Cox and Overton [6] and Senatorov [23] in the case of ordinary differential equations
and by a different approach.
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In sections 2 and 3 such results are proved for simply supported, respectively,
clamped, plates and beams. In section 4, an algorithmic approach is used for the
optimization of a unilaterally supported beam, and a numerical example is discussed.
This shows the multiple possibilities of the “resizing rule” method. Such algorithms
were previously used by Sprekels and Tiba [25] for classical types of beams (simply
supported, cantilevered, and clamped).

Finally, we point out that ours is a duality-type method: associated with the
original minimization problem is another optimization problem which is simpler and
gives relevant information on the first problem. From a theoretical point of view, the
equivalence results are essential in proving convexity, uniqueness, or existence. From
a numerical point of view, simple “dual” problems may be considered that provide
efficient approximations in the examples. Let us also notice that this duality approach
has a mechanical background and is not inspired by the convex duality theory or its
nonconvex extensions. A detailed comparison (from this point of view) was performed
by Sprekels and Tiba (see [25, sections 1 and 2].

2. Simply supported plates and beams. We start with a general equivalence
result which, roughly speaking, says that the set of deflections obtained under a given
load and for various thicknesses is the same as the set of deflections obtained for a
fixed thickness, but with variable load. Namely, we consider the following two “state”
systems:

∆(u3∆y) = f in Ω,(2.1)

y = ∆y = 0 on ∂ Ω,(2.2)

0 < m ≤ u(x) ≤ M a.e. in Ω,(2.3)

y ∈ A(2.4)

and

∆∆y = h in Ω,(2.5)

y = ∆y = 0 on ∂ Ω,(2.6)

min
{
m−3z(x),M−3z(x)

} ≤ ∆y(x) ≤ max
{
m−3z(x), M−3z(x)

}
a.e. in Ω,(2.7)

y ∈ A.(2.8)

In (2.1)–(2.4), f ∈ L2(Ω) is fixed, u ∈ L∞(Ω) is the optimization parameter, A ⊂
L2(Ω) is closed, and m,M are positive real constants. No sign conditions are imposed
on f , and the unique weak solution y satisfies y ∈ V := H2(Ω) ∩H1

0 (Ω), u3∆y ∈ V .
One (convex) example for the set A is obtained via the constraint

y ≥ −τ in Ω(2.9)

with τ > 0 given.
In (2.5)–(2.8) we assume that h ∈ V ∗, and we define g ∈ L2(Ω) as the unique

transposition solution (see Lions and Magenes [19]) to

∆g = h in Ω,(2.10)

g = 0 on ∂ Ω;(2.11)
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that is, by definition, we have∫
Ω

g∆ρ dx =

∫
Ω

h ρ dx ∀ ρ ∈ V.(2.12)

Then, y ∈ V is the strong solution to

∆y = g in Ω,(2.13)

y = 0 on ∂ Ω.(2.14)

The second boundary condition, ∆y = 0 on ∂ Ω, is included in the choice of test
mappings ρ in (2.12) and is not explicit. The mapping z ∈ V from (2.7) is the strong
solution to (2.10), (2.11), corresponding to h = f . We also mention that (2.10) is valid
in the sense of distributions although C∞0 (Ω) is not dense in V . The constraint (2.7)
shows that, for admissible y, the boundary condition ∆y = 0 on ∂Ω has an explicit
meaning.

Theorem 2.1. For any admissible pair [y, u] for (2.1)–(2.4), there is some h ∈ V ∗
such that the pair [y, h] is admissible for (2.5)–(2.8). The converse is also true if
meas {x ∈ Ω; z(x) = 0} = 0.

Proof. If [y, u] is admissible for (2.1)–(2.4), then

∆y =
1

u3
z ∈ L2(Ω).(2.15)

We denote by h̃ ∈ V ∗ the linear bounded functional on V defined by

〈h̃, ρ〉V ∗×V =

∫
Ω

1

u3
z∆ρ dx ∀ ρ ∈ V.(2.16)

Then, (2.16), (2.12) show that g̃ = (1/u3)z is the transposition solution to (2.10)–
(2.11) associated with this h̃. By (2.15) and (2.2), it follows that y satisfies (2.5),
(2.6) with h̃ given by (2.16). Then, (2.7) is a clear consequence of (2.15) and (2.3).

Conversely, taking [ŷ, ĥ] admissible for (2.5)–(2.8), and ĝ satisfying (2.10), (2.11)

with h = ĥ, we see that

∆ŷ = ĝ a.e. in Ω.(2.17)

We shall multiply (2.17) by z(x) · [ĝ(x)]−1 which we denote v(x). By (2.7) and
(2.17), we notice that v ∈ L∞(Ω), and û = v1/3 satisfies constraint (2.3). To see this,
we analyze in (2.7) the situations z(x) > 0, z(x) < 0 to get

0 < M− 3 ≤ ĝ(x)

z(x)
= [û(x)]− 3 ≤ m− 3.(2.18)

Under our hypothesis, (2.18) is valid a.e. in Ω, and we obtain (2.3). Moreover,

û3(x)∆ŷ(x) = z(x) a.e. in Ω.(2.19)

The definition of z and (2.19) show that ŷ is a weak solution of (2.1) as well, and the
proof is finished.
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Corollary 2.2. For any admissible pair [y, u] for (2.1)–(2.4), there is some
l ∈ L2(Ω) such that the pair [y, l] is admissible for the system

∆y = zl in Ω,(2.20)

y = 0 on ∂ Ω,(2.21)

M−3 ≤ l(x) ≤ m−3 a.e. in Ω,(2.22)

y ∈ A.(2.23)

The converse is also true.
The proof is just a variant of the proof of Theorem 2.1.
Remark. While Theorem 2.1 has a physical interpretation which we have stressed

from the very beginning, Corollary 2.2 represents a mathematical equivalence trick.
Its advantages are to transform the fourth order equation into a second order one and
to replace the “state” constraint (2.7) by the “control” constraints (2.22). Notice that
no special assumption on z is necessary.

Remark. Theorem 2.1 and Corollary 2.2 are controllability-type results. They
say that the reachable set of states is the same in the systems (2.1)–(2.4), (2.5)–(2.8),
or (2.20)–(2.23).

Remark. One basic property for the above results is that the set of admissible
pairs [y, h] defined by (2.5)–(2.7), as well as the set of admissible [y, l] given by (2.20)–
(2.22), are convex. If A is convex (which is generally the case; see (2.9)), then the
systems (2.5)–(2.8) or (2.20)–(2.23) define convex pair sets in the appropriate product
spaces.

This fundamental property is not valid, in general, for the original set of admissible
pairs [y, u] since the transformation that we use is nonlinear. However, there is one
example, due to Kawohl [15] and Kawohl and Lang [16], where the system (2.1)–(2.3)
and (2.9) define a convex set of admissible “control” mappings u in L2(Ω).

Example 2.3. We assume that f ≤ 0 a.e. in Ω. Then the maximum principle
gives that z > 0 in Ω, and we have the representation formula

y(x) = −
∫

Ω

σ(x, y)
z(y)

u3(y)
dy,(2.24)

with σ being the Green function, again positive. Let u1, u2 be two admissible thick-
nesses for the system (2.1)–(2.3), (2.9), and uλ(x) = λu1(x) + (1 − λ)u2(x) ∀x ∈
[0, 1], ∀ λ ∈ [0, 1]. We denote by y1, y2, yλ the solutions of (2.1), (2.2) corresponding
to u1, u2, uλ, respectively.

Then, (2.24) and the positivity of σ, z give

yλ(x) ≥ λ y1(x) + (1 − λ) y2(x) ≥ − τ,(2.25)

since the function −u−3 is concave. We conclude that uλ is admissible for any λ ∈
[0, 1], that is, the admissible set of controls is convex. For the set of admissible
states y this is also true since the function ȳλ = λ y1 + (1− λ) y2 corresponds to the
thickness (ūλ)3 = (λu−3

1 + (1 − λ)u−3
2 )−1 which satisfies (2.3) and (2.9). However,

since the operator u 7→ y is nonlinear, we cannot expect ȳλ = yλ in (2.25), and the
set of admissible pairs [y, u] is not convex. Moreover, such properties do not extend
beyond the condition (2.9) to general convex state constraints expressed by (2.4) or
to nonnegative f .
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It is our aim now to apply this equivalence, especially in the form given by Corol-
lary 2.2, which is the simplest one, to certain optimization problems. Let us associate
with the system (2.1)–(2.4) one of the following cost functionals, to be minimized:

Min

∫
Ω

u(x) dx,(2.26)

Min

∫
Ω

(−u− 3(x)
)
dx,(2.27)

Min

∫
Ω

(y(x) − yd(x))
2
dx.(2.28)

The minimization parameter is u ∈ L∞(Ω), and we denote by (Pi), i = 1, 3, the
obtained minimization problems, in this order. Obviously, (P1) is the minimization
of weight (volume) problem, subject to the given constraints. (P2) is related to
this question, as will be explained later, and (P3) is an identification-type problem
(yd ∈ L2(Ω) is an “observed” or “desired” deflection of the plate).

With the system (2.20)–(2.23) we associate the following cost functionals:

Min

∫
Ω

l−
1
3 (x) dx,(2.29)

Min

∫
Ω

(− l(x)
)
dx,(2.30)

Min

∫
Ω

(
y(x) − yd(x)

)2
dx.(2.31)

The minimization distributed control is the mapping l ∈ L2(Ω), and we denote by
(Di), i = 1, 3, the obtained optimization problems, in this order.

Theorem 2.4. The problems (Pi) are equivalent to the problems (Di), i = 1, 3,
in the sense that if [y, u] is admissible for (Pi), then [y, l], l = 1/u3, is admissible for
(Di) with the same cost, and conversely.

This follows directly from Corollary 2.2 and the definitions (2.26)–(2.31).
Corollary 2.5. Under admissibility assumptions, if A is convex, then problem

(P1) has a unique global minimum u∗ ∈ L∞(Ω).
Proof. The existence of u∗ can be established from standard estimates in (2.1),

(2.2) and the boundedness of minimizing sequences given by (2.3). The passage to the
limit is a simplified variant of the one performed in Theorem 3.2. By Theorem 2.4,
l∗ = (u∗)−3 is the (global) minimizer for (D1). By Corollary 2.2 and its subsequent

remarks, the set of admissible pairs [y, l] is convex if A is convex. Since l−
1
3 is a

strictly convex function for l > 0, then the integral cost (2.29) is strictly convex and
the uniqueness of l∗, u∗ follows.

Remark. Instead of solving the nonconvex problems (Pi), i = 1, 3, we suggest
solving the equivalent convex problems (Di), i = 1, 3. In numerical experiments, this
avoids the “trap” of local minimum points, and the uniqueness of the global optimum
enhances the numerical stability.
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Remark. It is known that, in discussing weight minimization problems, any in-
creasing function µ(u) may be relevant as an integrand in the cost functional. The
problem (P2) uses the increasing mapping

µ(u) = − 1

u3
, u > 0,

which has the advantage that the equivalent problem (D2) is a linear optimization
problem.

Remark. Similar results may be obtained in dimension one for the simply sup-
ported beam and the cantilevered beam, i.e., for the boundary conditions

y(0) = y′(0) = 0,

y′′(1) = (u3 y′′)′(1) = 0.

One basic property which is important for the above analysis is that the state system
can be decoupled into two independent second order differential equations. In the
next sections, this property is no longer true; however, the results can be extended.

3. Clamped plates and beams. We investigate first the classical optimal
shape design problem:

Min

∫
Ω

u(x) dx(3.1)

subject to

∆(u3 ∆y) = f in Ω,(3.2)

y =
∂y

∂n
= 0 on ∂ Ω,(3.3)

0 < m ≤ u(x) ≤ M a.e. in Ω,(3.4)

y ∈ A .(3.5)

As usual, f ∈ L2(Ω), A ⊂ L2(Ω) are given, and u ∈ L∞(Ω) is the thickness of the
plate, the minimization parameter.

The existence of a unique weak solution y ∈ H2
0 (Ω) to (3.2), (3.3) is obvious since

the bilinear form

a(u, y, v) =

∫
Ω

u3 ∆y∆v dx

is coercive on H2
0 (Ω)×H2

0 (Ω).
Fix the mapping g ∈ H2(Ω) ∩H1

0 (Ω) by

∆g = f in Ω,(3.6)

g = 0 on ∂ Ω.(3.7)

Here, we use that f ∈ L2(Ω) and use the regularity of linear elliptic equations.
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Theorem 3.1. (a) The equation (3.2), (3.3) is equivalent to

∆y = g l + h l in Ω(3.8)

and (3.3) (both conditions), where h ∈ L2(Ω) is a harmonic mapping in Ω and l =
u−3 ∈ L∞(Ω).

(b) The optimization problem (3.1)–(3.5) is equivalent to

Min

∫
Ω

l−
1
3 (x) dx(3.9)

subject to (3.8), (3.3), (3.5), and

M− 3 ≤ l(x) ≤ m− 3 a.e. in Ω.(3.10)

Proof. (a) By (3.2), (3.3), and the definition of a(u, ·, · ), we see that∫
Ω

(u3 ∆y − g) ∆v dx = 0 ∀ v ∈ H2
0 (Ω).(3.11)

We denote h = u3 ∆y − g ∈ L2(Ω), and (3.11) gives ∆h = 0 in the sense of distri-
butions. The converse is obvious.

(b) This is a clear consequence of (a) and of l−1/3 = u.
Remark. The above transformation shows that the obtained problem remains

nonconvex. Conceptually, the harmonic mapping h may be determined from the
“supplementary” boundary condition ∂y

∂n = 0 on ∂ Ω. One such situation is explained

in Corollary 3.4. In general, we interpret h as an extra control variable and ∂y
∂n = 0

on ∂ Ω as a new state constraint.
Theorem 3.2. Under admissibility assumptions, the problem (P4) given by

(3.1)–(3.5) has at least one solution ũ ∈ L∞(Ω).
Proof. By admissibility, there exists a minimizing sequence {un} ⊂ L∞(Ω) such

that ∫
Ω

un(x) dx → inf (P4)(3.12)

for n → ∞. We denote by ln = u−3
n and yn ∈ H2

0 (Ω) the corresponding weak
solution of (3.2), (3.3). Conditions (3.4), (3.10) show that {un}, {ln} are bounded

in L∞(Ω), and hence we may assume that un ⇀ û, ln ⇀ l̂ weakly* in L∞(Ω). In

general, l̂ 6= û−3!
We also notice that {yn} is bounded in H2

0 (Ω):

m

∫
Ω

[
∆yn(x)

]2
dx ≤

∫
Ω

u3
n(∆yn)2 dx =

∫
Ω

f yn dx ≤
∣∣f ∣∣

L2(Ω)

∣∣yn∣∣L2(Ω)
.

We may, as well, assume that yn ⇀ ỹ weakly in H2
0 (Ω), where ỹ ∈ A since A is closed

in L2(Ω). Moreover, by (3.8), we see that hn = u3
n ∆yn − g is bounded in L2(Ω), and

we may write hn ⇀ h̃ weakly in L2(Ω). We now use a lemma that will be proved
later.
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Lemma 3.3. If a sequence of harmonic mappings is weakly convergent in L1(Ω),
then it is pointwisely convergent.

We remark that the right-hand side in (3.8) is bounded in L2(Ω), and hence we
may assume that, with some z ∈ L2(Ω),

g ln + hn ln ⇀ z weakly in L2(Ω).(3.13)

The difficulty is just to identify z, that is, the limit of the product hn ln. By Lemma
3.3 and the Egorov theorem, for any ε > 0, there is Ωε ⊂ Ω measurable, such that
meas (Ω\Ωε) < ε and hn → h̃ uniformly in Ωε. Then, we can pass to the limit in

(3.13) on Ωε, and we get z = g l̂ + h̃ l̂ in Ωε. Since ε is arbitrarily small, we obtain

that z(x) = g(x) l̂(x) + h̃(x) l̂(x) a.e. in Ω. Hence we can pass to the limit in (3.8) to
obtain

∆ỹ = g l̂ + h̃ l̂ in Ω.(3.14)

Using Theorem 3.1 in (3.14), we see that ũ = l̂−1/3 is the thickness in (3.2) which
generates the deflection ỹ. Obviously, the pair [ỹ, ũ] is admissible for the problem
(P4), and (3.12) yields

inf (P4) = lim

∫
Ω

un(x)dx = lim

∫
Ω

l
− 1

3
n (x)dx ≥ lim inf

∫
Ω

l
− 1

3
n (x) dx ≥

∫
Ω

l̂−
1
3 (x) dx

=

∫
Ω

ũ(x) dx ≥ inf (P4).

Here, we also use the weak lower semicontinuity of the integral functional (3.9). This
ends the proof.

Proof of Lemma 3.3. Since hn, h̃ are harmonic in Ω, the Weyl lemma, (see
Hörmander [14]) shows that they belong to C∞(Ω). For any x ∈ Ω and any ball
centered in x and of radius ρ, Bρ(x) ⊂ Ω, we have the solid mean property

hn(x) =
m

wm ρm

∫
Bρ(x)

hn(y) dy → m

wm ρm

∫
Bρ(x)

h̃(y) dy = h̃(x).

Here, m is the dimension of Ω, and wm denotes the area of the unit ball in Rm.
Remark. The passage to the limit in Theorem 3.2 is based on the following

general property: If {wn} is bounded in Lp(Ω), p > 1 and wn(x) → w(x) a.e. in Ω,
then wn → w strongly in Ls(Ω) for any s such that 1 < s < p.

Proof. Let ε > 0 be fixed and let Ωε ⊂ Ω measurable, with meas (Ω \Ωε) < ε be
such that wn → w uniformly in Ωε (by Egorov’s theorem). We have∫

Ω

|wn − w|s dx =

∫
Ωε

|wn − w|s dx +

∫
Ω\Ωε

|wn − w|s dx ≤
∫

Ωε

|wn − w|s dx

+

(∫
Ω \Ωε

|wn − w|p
) s
p

meas (Ω \Ωε)
p− s
p ≤

∫
Ωε

|wn − w|s dx + C ε
p− s
p .

If n ≥ N(ε), we get
∫

Ω
|wn − w|s dx ≤ c(ε), where c(ε)→ 0 for ε→ 0.

This is a slight extension of Lemma 1.3 of Lions [18].
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Remark. By Theorem 3.2, we see that the “optimal” thickness ũ is obtained by
twice inverting the minimizing sequence {un}. If un is pointwisely convergent, then
ũ = û = limun. This is the case used in the existing literature; see Haslinger and
Neittaanmäki [11], Casas [4], Hlavacek, Bock, and Lovisek [12], [13], Neto and Polak
[21], and Bendsoe [2]. Our result just shows that the strong compactness assumption
(the boundedness of {∇un}) is not necessary to get existence in the optimal shape de-
sign problem. The numerical experiments from [5], [22] put into evidence the so-called
“stiffeners” into the process of optimization of beams and plates, which correspond
to unbounded gradients.

Remark. Obviously, the same argument applies to the cost functionals (2.27) or
(2.28).

Corollary 3.4. In the case of beams, the equation

(u3 y′′)′′ = f in ]0, 1[,

y(0) = y(1) = y′(0) = y′(1) = 0

is equivalent to

y′′ = g l + (al x + bl) l in ]0, 1[

with the same boundary conditions and with al, bl ∈ R, g satisfying (3.6), (3.7), and
l = u−3.

Remark. It is clear, by direct integration, that the harmonic mapping hl =
al x+ bl can be uniquely determined from the “supplementary” boundary conditions
y′(0) = y′(1) = 0. In general, by a finite element approximation, the discretization of
h will introduce a finite number of new entries into the state system (3.8) that can,
in principle, be determined from the discretization of ∂y

∂n = 0, which will generate the
same finite number of nonlinear algebraic equations.

In the recent work of Arnautu et al. [1], a finite element approach is examined
which combines the decomposition (3.8) together with a penalization of the boundary
condition ∂y

∂n = 0 in the cost.
Remark. Sprekels and Tiba [25] proved that if f ≤ 0 in [0, 1], y′′ has exactly two

distinct roots in [0, 1], and that y ≤ 0 in [0, 1] (see also Theorem 4.5). For general
f ∈ L2(0, 1), it is easy to see that y′′ has at least two distinct roots in [0, 1]. Otherwise
u3 y′′ (which is continuous) has at most one change of sign in [0, 1], and the maximum
principle together with the Hopf maximum principle will contradict the boundary
conditions.

Then, denoting by ξ < ζ two such roots, one can find al, bl, and hl from the
simple relations

g(ξ) + al · ξ + bl = 0,

g(ζ) + al · ζ + bl = 0.

In general, the determination of h is related to the zeros of ∆y in Ω. This is an
extension to the case of the clamped plate of the relation (2.7) which ensures (in the
case of simply supported plates) that the zeros and the sign of ∆y remain unmodified
via the resizing transformation. The roots distribution is connected to the famous
conjecture of Hadamard [9] on the positivity of the Green function for the biharmonic
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operator. While Duffin [7] provided a first counterexample, he also noticed that the
sign of ∆y in a neighborhood of ∂ Ω is the same as that of y. Later, Garabedian
[8] and Shapiro and Tegmark [24] obtained counterexamples in eccentric ellipses. By
reworking this last one, which has an elementary character, we see that ∆y may
change sign on an interior subdomain but also in the neighborhood of ∂ Ω (even with
f of constant sign). Therefore, the properties of ∆y in dimension two are essentially
different from [25, Thm. 3.1] in the one-dimensional case.

4. Variational inequalities. We consider the elastic beam with a unilateral
obstacle at the right end:(

u3 y′′, y′′ − z′′
)
L2(0,1)

≤ (f, y − z)V ∗×V ∀ z ∈ K,(4.1)

y ∈ K = {w ∈ V ; y(1) ≥ α} (α ∈ R given),(4.2)

V = {y ∈ H2(0, 1) ; y(0) = y′(0) = 0}.(4.3)

The beam is clamped at the left end.
To any u ∈ L∞(0, 1) we associate the linear bounded operator A(u) : V → V ∗

via the bilinear form on V

a (u, y, z) =

∫ 1

0

u3 y′′ z′′ dx ∀ y, z ∈ V.(4.4)

Then the variational inequality (4.1), (4.2) may be rewritten in the abstract form(
A (u) y, y − z

)
= a (u, y, y − z) ≤ (f, y − z)V ∗×V(4.5)

for any z ∈ K and with y ∈ K.
If u ∈ L∞(0, 1) is positive, A(u) is strictly maximal monotone, and if u(x) ≥ m >

0 in [0, 1], then A(u) is strongly monotone and coercive. This gives a unique weak
solution y ∈ V to the variational inequality (4.5), for any f ∈ V ∗.

We now define two auxiliary problems. First, we consider a cantilevered beam
(without unilateral conditions):(

u3 y′′1
)′′

= f in ]0, 1[,(4.6)

y1(0) = y′1(0) = 0,

y′′1 (1) = 0,
(
u3 y′′1

)′
(1) = 0.

Second, we introduce a clamped–simply supported beam:(
u3 y′′2

)′′
= f in ]0, 1[,(4.7)

y2(0) = y′2(0) = 0,

y′′2 (1) = 0, y2(1) = α.

It is simple to check by direct integration that both y1, y2 are in H2(0, 1) and u3 y′′1 ,
u3 y′′2 ∈ H2(0, 1) for f ∈ L2(0, 1).

Theorem 4.1. If f ∈ L2(0, 1), then the solution y of the variational inequal-
ity (4.1) is either the solution of (4.6) or the solution of (4.7). It satisfies u3 y′′ ∈
H2(0, 1).
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Proof. Assume first that y1(1) ≥ α (that is, y1 ∈ K). We multiply (4.6) by y1− z
for any z ∈ K, and we see (by partial integration) that y1 is also a solution of (4.1),
y = y1, and the claimed regularity is clear.

Assume now that y1 6∈ K. By (4.7), it is obvious that y2 ∈ K. We multiply (4.7)
by y2 − z, z ∈ K, and integrate by parts:

(f, y2 − z)L2(0,1) =
(
u3 y′′2

)′
(1)
(
α − z(1)

)
+

∫ 1

0

u3 y′′2 (y′′2 − z) dx.(4.8)

Assume that

γ =
(
u3 y′′2

)′
(1) > 0,(4.9)

and denote w = y2 − y1. By (4.6), (4.7), (4.9), we see that w satisfies(
u3 w′′

)′′
= 0 in ]0, 1[,

w(0) = w′(0) = 0,

w′′(1) = 0,
(
u3 w′′

)′
(1) = γ > 0.

Then, u3(x)w′′(x) = γ x − γ ≤ 0 in [0, 1]. That is, w is a concave function, and
w(0) = w′(0) = 0 gives w ≤ 0 in [0, 1]. Therefore, y2(1) ≤ y1(1) < α, according to
the assumption y1 6∈ K. However, this is a contradiction to y2(1) = α, and it follows
that (4.9) is false. Then (4.8) gives that y2 is now the solution of (4.1); i.e., y = y2

again has the claimed regularity.
Remark. The boundary conditions in x = 1, associated with (4.5), are

y′′(1) = 0, y(1) ≥ α,
(
u3 y′′

)′
(1) ≤ 0,

(
y(1) − α

) (
u3 y′′

)′
(1) = 0.

We formulate the optimization problem (P5):

Min

∫ 1

0

u(x) dx,(4.10)

subject to (4.1) and to

m ≤ u(x) ≤ M a.e. in [0, 1],(4.11)

y(x) ≥ − τ in [0, 1].(4.12)

Without loss of generality, we may assume

α > − τ.(4.13)
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Otherwise, all the admissible pairs of (P5) correspond to an inactive variational
inequality (the case y = y1), that is, to a cantilevered beam (by Theorem 4.1), and
we can refer to section 2. We call extremal for (P5) any admissible “thickness”
u ∈ L∞(0, 1) such that the associated state is active with respect to the constraint
(4.12).

Proposition 4.2. If α ≥ 0 and m = 0, any local minimum of (P5) is an
extremal of (P5).

Proof. If [u, y] is local optimum for (P5), but not extremal, there is some λ > 1
such that the pair [λ−1/3 u, λ y] is admissible for (P5)—it clearly satisfies the con-
straints and the variational inequality since λ y ∈ K by α ≥ 0.

Obviously λ−
1
3 u gives a lower cost which contradicts the local optimality of u

when λ→ 1+.
Remark. The case α = 0 was considered by Hlavacek, Bock, and Lovisek [12].
Proposition 4.3. Assume that f < 0 in [0, 1]. Then any extremal pair has

exactly one active point in ]0, 1[.
Proof. The existence of at least one point xu ∈ [0, 1] such that y(xu) = −τ is

obvious by the definition. Assume that there are at least two such points xu 6= x̄u,
i.e., y(xu) = y(x̄u) = −τ . Again by definition, xu and x̄u are minimum points for y,
different from 0 and 1, that is, y′(xu) = y′(x̄u) = 0. Then y + τ satisfies the clamped
beam conditions on [xu, x̄u]. By [25, Thm. 3.1], we see that y ≤ −τ on [xu, x̄u];
therefore y ≡ −τ on [xu, x̄u]. This contradicts f < 0 a.e. in [0, 1].

Remark. Notice that by y(0) = 0 and y(1) ≥ α > −τ (by (4.13)) the end points
cannot be active with respect to the state constraint.

Corollary 4.4. If f≤0, any extremal of (P5) satisfies (4.7) and (u3y′′)′(1) ≤0.
Proof. If f ≤ u, then the cantilevered beam y1 has the global minimum in

x = 1 and y1(1) ≥ α by (4.2). Condition (4.13) shows that y1 cannot be extremal
and Theorem 4.1 gives that y should satisfy (4.7) in order to be extremal for (P5).
Then, relation (4.9) is false, as in the proof of Theorem 4.1, and this completes the
argument.

Remark. By Corollary 4.4 and Proposition 4.2, the shape optimization prob-
lem (P5), governed by variational inequalities, is reduced to the linear state system
(4.7). Some cases of control problems governed by variational inequalities of obstacle
type which can be equivalently reformulated as convex control problems with state
constraints are discussed in Tiba [26, Chap. III.5], by different approaches.

We formulate the “dual” problem

(D5) Min

∫ 1

0

f(x) dx,

(ū3 y′′)′′ = f in ]0, 1[,(4.14)

y(0) = y′(0) = 0,

y(1) = α, y′′(1) = 0,

f ≤ 0 a.e. in [0, 1],

y ≥ − τ in [0, 1].(4.15)

Notice that this is again a linear optimization problem (ū is a prescribed thickness).
Remark. The control constraint f ≤ 0 is a simplified stronger variant of (2.7), due

to the maximum principle. Then, the equivalence results from Theorems 2.1 and 2.4
are not valid in this setting. However, we put into evidence that between the problems
(P5) and (D5) there still exists a very useful relationship explained in Algorithm 4.6
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and in Theorem 4.7. In the cases discussed in sections 2 and 3 (only for beams),
this weaker relationship was studied in Sprekels and Tiba [25]. The problem (D5)
is, in fact, a slightly simplified variant of the problem (D2) of section 2. Moreover,
this approach allows us to consider m = 0 and gives another form for the resizing
transformation.

Theorem 4.5. Assume that ū is continuous and let [y, f ] be extremal for (D5).
Then y′′ has exactly one root in [0, 1[. Moreover, y ≤ max{0;α} in [0, 1].

Proof. We have ū3 y′′ = g in [0, 1], where, moreover, g′′ = f in [0, 1] and g(1) = 0.
Since f ≤ 0, then g is concave in [0, 1] and it may have at most one root in [0, 1[,
unless it is identically 0 in some subinterval.

In the last subcase, by concavity and g(1) = 0, there is some ξ ∈]0, 1[ such
that g(x) ≡ 0, x ∈ [ξ, 1], and g(x) < 0 in [0, ξ[. Then y′′ < 0 in [0, ξ[ and, since
y(0) = y′(0) = 0, we see that y(ξ) < 0, y′(ξ) < 0, and y(x) = y′(ξ) (x− ξ) + y(ξ) for
x ∈ [ξ, 1]. We obtain that

α = y(1) < y(x) ∀ x ∈ [0, 1],

which contradicts the extremality of [y, f ] and (4.13).
Therefore g has at most one root in [0, 1[. Since [y, f ] is extremal, there is some

ξ̄ in ]0, 1[ such that y(ξ̄) = −τ , and this is a minimum point for y on ]0, 1[. Then
y′(ξ̄) = 0, and there is some η ∈]0, ξ̄[ such that y′′(η) = 0, since y′(0) = 0 and y′′ is
continuous by the assumption on ū.

We conclude that y′′ has exactly one root in ]0, ξ̄[. Let η be this root. Then y′′ ≤ 0
in [0, η] and y′′ ≥ 0 in [η, 1]. By y(0) = y′(0) = 0 and the concavity of y, we get y ≤ 0
in [0, η]. By y(η) ≤ 0, y(1) = α, and the convexity of y, we get y ≤ max{0;α} in [η, 1]
as well. This ends the proof.

Based on Theorem 4.5, we can formulate the following algorithm.
[4]ALGORITHM 4.6 (m = 0, M = +∞).

1. n = 0, u0 admissible for (P5), continuous.
2. Min(D̃n) gives [yn, fn], where (D̃n) is given by (4.14) with ū replaced by un.
3. If fn − f “small,” then STOP! Otherwise
4. (“resizing step”)
α) compute the unique root ξn in [0, 1[ of y′′n
β) denote gn = u3

n y
′′
n and define g̃n by

i)

{
g̃′′n = f in ]ξn, 1[,
g̃n(ξn) = 0, g̃n(1) = 0,

ii)

{
g̃′′n = f in ]0, ξn[,
g̃n(ξn) = 0, g̃′n(ξn−) = g̃′n(ξn +).

γ) resize un by u3
n+ 1 = u3

n
g̃n
gn

, and set n := n + 1, GO TO step 2.

Remark. The resizing rule (γ) is well defined even in ξn and in 1 by the Hopf
maximum principle and l’Hospital’s rule. The sequence {un} remains continuous in
all iterations and 1/u3

n ∈ L2(0, 1) if 1/u3
0 ∈ L2(0, 1).

Theorem 4.7. Algorithm 4.6 generates extremals un for (P5) in each step n ≥
1.

Proof. If fn is a minimum for (D̃n), then it is extremal for (D̃n). Otherwise,
yn(x) ≥ −τ + ε in [0, 1] for some positive ε. Consider fδ = f − δ, δ positive constant,
and yδ the corresponding solution of (4.11).

Clearly yδ → yn uniformly in [0, 1] for δ → 0. Then, for some small δ, [yδ, fδ] is
an admissible pair for (D̃n) with a lower cost. This is a contradiction to the optimality
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of fn. Extremality is obviously preserved by the resizing rule, since (γ) and (β) give(
u3
n+ 1 y

′′
n

)′′
= (g̃n)′′ = f in ]0, 1[ ;

i.e., yn is the state associated with un+ 1 in (4.7), or equivalently in (4.1).
Remark. The algorithm has a global character since it iterates between extremals

of (P5). If the cost functional (4.10) is replaced by (2.28), then Algorithm 4.6 has
the descent property as well (again by the resizing rule).

We close this section with a numerical example.
Example 4.8. We have made several experiments with Algorithm 4.6 applied to

the minimum weight problem (P5). The state equation was discretized by usual finite
difference approximations for the derivatives, using the grid xi = i h, i = 0,m, h =
1/m. By the discretization process, the problem (D5) is approximated by a linear
programming problem (LPP) (this is one of the advantages of an algorithm). The
variables of the LPP are given by the discrete values of the pair [y, f ]. The cost
functional is evaluated using Simpson’s approximation rule.

The numerical tests have been made with m = 50 which allows the LPP to be
accurately solved via the simplex algorithm. The root ξn in step 4α) of Algorithm
4.6 was found using a cubic spline approximation of yn. The differential equations
corresponding to g̃n were solved by integrating first mathematically, using convolu-
tion formulae, and approximating next the definite integrals by a sharp numerical
integration routine.

Generally, the algorithm stopped by failing to solve the problem (D̃n) when it
cannot further decrease the thickness u. The numerical tests have been made on a PC
Pentium with floating point arithmetic accuracy of order 10−20. We have fixed the
load f̄ ≡ −50 in ]0, 1[ and f̄ ≡ −1 in x = 0, x = 1 or f̂ ≡ −1 in [0, 0.5], and f̂ ≡ −50
in ]0.5, 1]. The obstacle α had the values 0.1 or 0 or −0.1, the state constraint was
τ = 0.6 or τ = 0.5, and the initial iteration (thickness) was ū0 = 2 + x (x − 1) or
û0 = 2− x. In all these variants a sharp decrease in the thickness was obtained in a
maximum of seven iterations, but usually only in three iterations. This information
is collected in the following table (each column gives an experiment and v(ui) is the
L1 norm of ui):

f f̄ f̄ f̄ f̂ f̂

α 0.0 - 0.1 0.1 - 0.1 0.1

τ 0.6 0.6 0.6 0.6 0.5

u0 û0 û0 ū0 ū0 û0

v (u1) 1.1369 1.2987 1.5064 1.6727 1.2513

v (u2) 0.9194 1.1146 1.2586 1.5916 1.1598

v (u3) 0.7583 0.9823 1.2682 1.5693 1.1100

v (u4) 0.9280 1.4288 1.0740

v (u5) 0.7596 1.3296 1.0468

v (u6) 0.6540 1.3760

v (u7) 0.5781 1.2778

Acknowledgments. The numerical tests were performed with the help of Dr.
V. Arnautu and Dr. A. Ignat of the University of Iaşi, Romania.
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APPROXIMATE SOLUTION OF MARKOV RENEWAL PROGRAMS
WITH FINITE TIME HORIZON∗
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Abstract. The present paper investigates the error committed by using an infinite time horizon
Markov renewal program as an approximation of the (often more realistic) Markov renewal program
with a finite time horizon t0. Under weak assumptions the error is shown to converge to zero
exponentially fast when t0 →∞. The convergence is based on explicit error bounds. Improved error
bounds hold when the (transformed) transition law has a nontrivial stochastic lower bound. Some
bounds use the discounted renewal function. For the latter, monotone upper and lower bounds are
obtained by an iterative method combined with an extrapolation. Several examples demonstrate the
applicability of the results.

Key words. Markov renewal programs, finite time horizon, approximate solution, discounted
renewal function

AMS subject classifications. 90C40, 90C42

PII. S0363012997317207

1. Introduction. A Markov renewal program (also known as a semi-Markov
decision process) with infinite time horizon and infinitely many stages, denoted by
MRP∞, is an important and intensively studied extension of the classical infinite-
stage Markovian decision process. The extension concerns the time (points) 0 ≡
T0 ≤ T1 ≤ T2 ≤ · · · where decisions (also called actions) are made. They are no
longer fixed and equidistant, but random. In particular, at each time Tν an action
aν = πν(s) is taken, depending on the present state ζν = s by means of a decision rule
πν . Associated with a sequence π := (πν)∞0 of decision rules, known as a policy, is a
sequence of rewards earned during the decision epochs [Tν , Tν+1). These rewards are
discounted to time zero with a discount rate α > 0. The goal consists of maximizing
the expected total discounted reward within the set of all policies. As usual, it is
assumed that (Tν+1 − Tν , ζν), ν ≥ 1, form a Markov chain for each policy.

Many applications in Markov renewal programming require a finite time horizon
t0 for a realistic modelling; i.e., the decision process runs for at most t0 time units.
This concerns, e.g., the many models of control of queues in cases where the servers
only work during an interval of finite length or during a sequence of disjoint finite time
intervals (e.g., during daytime) with identical initial states (e.g., an empty queue).

Despite its importance there is only a small amount of literature on Markov
renewal programs with a finite time horizon t0 (MRPt0 for short). The first paper
in this area is Jewell [6]. A thorough investigation of the foundations was made
by Schellhaas [11]. Bounds for the value function are derived in Waldmann [13].
An application to asset selling and a survey on papers with applications (including
Gertsbakh [4]) is given in Mamer [10].

The scarcity of the literature is probably due to the following reasons:
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(i) As already observed by Jewell [6], the solution of a Markov renewal program
with a finite time horizon can be formally reduced to one with an infinite time horizon
with augmented states (s, t), consisting of the “internal” state s and the remaining
time horizon t. Thus the action taken at time Tν usually depends not only on the
present internal state s but also on the remaining time horizon t. This enlarges the set
of relevant policies considerably, and, as a consequence, much more effort is required
for both a qualitative analysis and a numerical computation of MRPt0 compared with
MRP∞. Therefore it is customary (usually without mentioning it) to use the solution
of MRP∞ as approximation for the solution of MRPt0 .

(ii) It seems to be a general belief that the error made in solving MRPt0 approx-
imately by the corresponding infinite time horizon MRP∞ is “small,” at least if t0
is “large.” The goal of the present paper is to confirm this belief by deriving explicit
bounds for the errors made.

In particular, we are interested in the following questions:
(a) Denote by V t0(s) (resp., V (s)) the maximal expected total reward in MRPt0

(resp., in MRP∞) for a given initial state s. Then, using V (s) as approximation for
V t0(s), we want to know “good” upper and lower bounds for the error V t0(s)− V (s)
and conditions under which V t0(s) converges “quickly” to V (s) for t0 →∞.

(b) Let π∗ be an optimal policy for MRP∞, and let V t0π∗(s) be the associated
expected total reward in MRPt0 . Then we want to know lower bounds for the perfor-
mance of π∗ when applied in MRPt0 as a substitute for an optimal horizon-dependent
policy, i.e., lower bounds for the error V t0π∗(s)− V t0(s).

To the best of our knowledge, no results about problems (a) and (b) are known in
the literature. (In Jewell [6, p. 745], a proof for the convergence of V t0(s) to V (s) is
indicated for a special model, but it seems that only the convergence of V t0π (s) toward
Vπ(s) for a fixed stationary policy π is shown; cf. also De Cani [2, p. 730].)

The main purpose of the present paper is to answer the questions in (a) and
(b) by deriving under weak assumptions and for general transition law and general
reward structure upper and lower bounds for V t0(s) − V (s) and lower bounds for
V t0π∗(s)− V t0(s) of the form

e−δt0 b(s)K(t0).(1.1)

Here s 7→ b(s) is a bounding function of MRP∞, which, as usual, ensures the existence
and finiteness of V t0(s) and of V (s). Moreover, K is an explicitly given function, and
δ can be chosen in some subinterval of [0, α], determined by integrability conditions;
cf. assumptions (A1) and (A2) below. In general K depends on δ and is bounded in t
for fixed δ. Then δ is crucial for the quality of the bounds (1.1). Moreover, we obtain
exponential convergence of V t0(s) to V (s) for t0 →∞ if upper and lower bounds for
V t0(s)− V (s) of the form (1.1) hold for some δ > 0.

Some of our functions K (e.g., (3.19)) contain the discounted renewal function
H∞ :=

∑∞
i=0 γ

iHi∗, determined by a constant γ, defined in (3.7), and a distribution
function H on R+, which is a lower stochastic bound for the “transformed” transition
law G, defined in (3.8). As H∞ is explicitly known in a few cases only, we obtain
easily computable upper bounds for it (and hence for K) in the following way: One
selects a distribution function H̃ ≥ H, whose probability distribution is concentrated
on {0, ε, 2 ε, . . . ,m ε} for some m ∈ N and some ε > 0. Then the upper bound H̃∞(k ε)
of H∞(k ε), k ∈ N, can be found by a recursion, combined with an extrapolation. The
latter is of general interest for approximate solutions of linear difference equations with
constant coefficients without solving the characteristic equation.
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For technical reasons we mainly study models MRP∞ and MRPt0 , which have
a finite number n of decision epochs only, i.e., planning horizon Tn and min (t0, Tn),
resp. These problems are of independent interest and they allow to derive easily the
corresponding results for the case n = ∞ by letting n tend to infinity (cf. Theorem
3.7, Proposition 4.2(c) and Theorem 4.3(b)).

Another paper where both stages and a continuous-time horizon play a role is
van Dijk [12].

This paper is organized as follows. In section 2 we rigorously introduce the model
MRP∞, for simplicity denoted by MRP from now on, and the model MRP′, which
comprises all models MRPt0 , t0 > 0. The flexibility of MRPt0 is increased by including
an additional reward h̃ which is obtained when the process passes the horizon t0.
Special cases of the reward structure which are important for many applications are
considered in (2.1) and (2.3). In Theorems 3.5 through 3.7 we present upper bounds,
which always hold for H :≡ 1, and which yield improved bounds if a nontrivial
stochastic lower bound H for the transformed transition law exists. In section 4 lower
and absolute bounds are derived, and the performance of optimal policies for MRP,
when applied to MRPt0 , is studied. Section 5 is devoted to an efficient (approximate)
computation of the discounted renewal function. Section 6 contains four examples.

Notation. N0 := {0, 1, . . .}; N := {1, 2, . . .}; R+ := [0,∞); x± := max{0,±x},
x ∈ R; δx is the one-point measure in the point x ∈ R; 0/0 := 0; σn(x) :=

∑n−1
i=0 x

i

for n ∈ N0 and x ∈ R+; “measurable” means “measurable with respect to the σ-
algebras under consideration.” On countable sets we use the power set as σ-algebra.
Probability distribution is abbreviated by p.d.

2. The models MRP and MRP′. Our infinite time-horizon Markov renewal
program MRP with a fixed number n ∈ N of decision epochs (stages) consists of a
tuple (S,A,D, κ, r̃, α, V0) of the following meaning. S and A are the (arbitrary) state
space and action space, endowed with some σ-algebra S and A, resp., D(s) ⊂ A is the
set of admissible actions in state s; the constraint set D := {(s, a) ∈ S×A | a ∈ D(s)}
is assumed to be measurable and to contain the graph of a measurable mapping from S
into the action space A. The transition p.d. κ(s, a, d(z, u)) from D into R+×S defines
the joint p.d. of the sojourn time z in s (i.e., the length of the decision epoch) and of the
next state u. (It is common to ensure by appropriate assumptions that Tν →∞ almost
surely (a.s.) for ν → ∞. However, our optimization problem makes sense and our
results hold without such assumptions.) The one-stage reward r̃(s, a, z, u) is earned at
the beginning of the decision epoch. Further we allow a terminal reward V0(s), which
is realized at the end of the last decision epoch. We suppose r̃ : D×R+×S → R and
V0 : S → R to be measurable. Finally, all rewards are discounted to time zero with
rate α > 0.

In applications, r̃ often has the form

r̃(s, a, z, u) = r̃1(s, a) +

∫ z

0

e−αy r̃2(s, a, y) dy + e−αz r̃3(s, a, z, u).(2.1)

Here r̃1(s, a) and r̃3(s, a, z, u) are earned at the beginning and the end, resp., of the
decision epoch, while r̃2(s, a, y) is a reward rate for continuously earned rewards.

For establishing existence and finiteness of the value functions, we must strengthen
the well-known concept of a bounding function. We impose the condition that there
exists some parameter δ ∈ [0, α], which is kept fixed, for which the subsequent as-
sumptions (A1) and (A2) hold.
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(A1) There exists a measurable function b from S into (0,∞) and a constant
% ≥ 0 such that for all (s, a) ∈ D

(i)
∫
κ(s, a, d(z, u))eδz |r̃(s, a, z, u)| ≤ % b(s),

(ii) |V0(s)| ≤ % b(s),
(iii) 0 <

∫
κ(s, a, d(z, u))e−(α−δ)z b(u) ≤ % b(s).

If (A1) holds for some δ ∈ [0, α], then it also holds for δ = 0, which means that
b is a bounding function of MRP. Let B be the set of measurable functions v on S,
which have finite weighted supremum norm

‖v‖b := sup
s∈S

[|v(s)|/b(s)].

Because of (A1) there exists

r(s, a) :=

∫
κ(s, a, d(z, u)) r̃(s, a, z, u).

As usual, a measurable mapping f : S → A with f(s) ∈ D(s), s ∈ S, is called
a decision rule. A finite sequence π = (fn, fn−1, . . . , f1) of decision rules, specifying
action fk(s) to be taken in state s at the beginning of the (n−k+1)th decision epoch
(i.e., having k stages left), is called an n-stage (Markovian) policy. Let ∆n denote
the set of all n-stage policies. For each policy π = (fn, fn−1, . . . , f1) and initial state
s there exists, as b is a bounding function, the expected n-stage reward

Vnπ(s) := Eπs

[
n−1∑
ν=0

e−αTν · r̃(ζν , fn−ν(ζν), Zν+1, ζν+1) + e−αTn · V0(ζn)

]
.

Here ζ0 := s, ζν for 1 ≤ ν ≤ n denotes the random state at time Tν , and Zν+1 :=
Tν+1−Tν is the sojourn time in state ζν . Eπs denotes the expectation determined by
the initial state s, the policy π, and the transition law κ in the usual way.

A policy π∗ ∈ ∆n is called optimal if Vn,π∗(s) = Vn(s) := supπ∈∆n
Vn,π(s) holds

for all s ∈ S. We call Vn, which belongs to B as b is a bounding function, the n-stage
value function.

Next we introduce the finite time-horizon version MRPt0 of MRP, which consists
of the MRP (S,A,D, κ, r̃, V0, α), a finite time-horizon (called also initial residual time)
t0 > 0, and an additional measurable function h̃ on R+ ×D × R+ × S.

To explain the meaning of h̃, let us have k > 0 stages left and a residual time
t ≥ 0. Interpret s, a, z, and u as above. Then, if t − z < 0, the process stops with
a terminal payoff eαt h̃(t, s, a, z, u), which is realized at time t0. Otherwise, i.e., if
t− z ≥ 0, the process earns immediately r̃(s, a, z, u) and continues with k − 1 stages
left and residual time t − z. Finally, in case of k = 0 stages left and a residual time
t ≥ 0, there is a terminal reward V0(s) again.

All finite time-horizon problems MRPt0 , t0 > 0, can be modelled by an infinite
time-horizon model MRP′, say, with extended state space X = R × S, where the
extended state x = (t, s) consists of two parts, the momentary residual time t, and
the momentary internal state s. (The states with t < 0 are only needed for a convenient
modelling.) The other data are as follows:

• A is the action space.

• D(s) is the set of admissible actions in state x = (t, s).

• A transition occurs from x = (t, s) to x̂ = (t− z, u) according to κ(s, a, d(z, u)).
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• The one-stage reward is

r̃′(t, s, a, z, u) := 1R+(t)
[
r̃(s, a, z, u)1[0,t](z) + h̃(t, s, a, z, u)1(t,∞)(z)

]
.(2.2)

• V0(s)1R+(t) is the terminal reward.
• α is the discount rate.
If r̃ has the special form (2.1), we use as special form of r̃′ for t ≥ 0

r̃′(t, s, a, z, u) := r̃1(s, a) +

∫ z∧t

0

e−αy r̃2(s, a, y) dy

+e−αz r̃3(s, a, z, u) 1[0,t](z) + e−αtR(t, s, a, z, u)1(t,∞)(z).(2.3)

Here R(t, s, a, z, u) is an appropriately chosen reward, earned at time t0. This case is
covered by (2.2) by putting for t ≥ 0

h̃(t, s, a, z, u) := r̃1(s, a) +

∫ t

0

e−αy r̃2(s, a, y) dy + e−αtR(t, s, a, z, u).(2.4)

We additionally suppose the following:
(A2) There exists a measurable function h : D × R+ × S → R+ such that there

holds for all t, s, a, z, u

|h̃(t, s, a, z, u)| ≤ h(s, a, z, u)

and ∫
κ (s, a, d(z, u)) eδz h(s, a, z, u) ≤ % b(s).

(A1) and (A2) hold with b ≡ 1 if either V0, e
δz r̃(s, a, z, u) and eδzh(s, a, z, u) are

bounded or if V0, r̃, h and
∫
κ(s, a, d(z, u))eδz are bounded.

Define rt by rt(s, a) := 0 for t < 0 and for t ≥ 0 by

rt(s, a) : =

∫
κ(s, a, d(z, u))r̃′(t, s, a, z, u)(2.5)

= r(s, a) +

∫
κ(s, a, d(z, u))1(t,∞)(z)

[
h̃(t, s, a, z, u)− r̃(s, a, z, u)

]
.

In MRP′ the set ∆′n of policies π′ = (f ′n, f
′
n−1, . . . , f

′
1) is defined as in MRP, except

that the decision rules f ′k depend on both the internal state s and the residual time
t. For π′ ∈ ∆′n and initial state s there exists, as (t, s) 7→ b(s) 1R+

(t) is a bounding
function of MRP′ by (A1) and (A2), the expected n-stage reward

V tnπ′(s) := Eπ′(t,s)

[ n−1∑
ν=0

e−αTν · r̃′(τν , ζν , f ′n−ν(τν , ζν), Zν+1, ζν+1)

+e−αTn · V0(ζn) · 1R+(τn)

]
.

Here τν denotes the random residual time at time Tν , and Eπ′(t,s) is the expectation
determined by the residual time t, the initial state s, the policy π′, and the transition
law in MRP′ in the usual way.
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A policy π′∗ ∈ ∆′n is called optimal if V tn,π′∗(s) = V tn(s) := supπ′∈∆′n
V tn,π′(s) holds

for all (t, s) ∈ X. The function (t, s) 7→ V tn(s), which is the n-stage value function in
MRP′, belongs to the set B′ of measurable functions v′ on X with v′(t, s) = 0 for
t < 0 and which have finite weighted supremum norm

‖v′‖b := sup
(t,s)∈X

[|v′(t, s)|/b(s)].

Our bounds for V tn − Vn are based on the value iteration in MRP and in MRP′, i.e.,
on the recursions

Vn(s) = sup
a∈D(s)

[
r(s, a) +

∫
κ (s, a, d(z, u)) e−αz Vn−1(u)

]
(2.6)

and for t ∈ R

V tn(s) = sup
a∈D(s)

[
rt(s, a) +

∫
κ (s, a, d(z, u)) e−αz V t−zn−1(u)

]
.(2.7)

As there exist a variety of approaches to ensure the validity of the value iterations,
some of which are quite elementary, we do not make any topological assumptions on
S and/or A (such as being Borel spaces), but instead make the following assumption:

(A3) The functions s→ Vn(s) and (t, s)→ V tn(s) are measurable and satisfy (2.6)
and (2.7), resp.

Clearly, if S and A are finite, (A3) holds trivially. Note that (2.7) implies that
V tn(s) = 0 for t < 0.

3. Upper bounds for V tn − Vn. We first make some preparations. For v ∈ B
and (s, a) ∈ D put

ψv(s, a) : =

∫
κ (s, a, d(z, u)) e−αzv(u),

ψt v(s, a) : =

∫
κ(s, a, d(z, u))1(t,∞)(z)e

−αzv(u), t ≥ 0.

Application to b yields the constants

β : = inf
(s,a)∈D

ψb(s, a)/b(s),

β : = sup
(s,a)∈D

ψb(s, a)/b(s),

and a transition measure µ from D into R+, defined by

µ(s, a, (t,∞)) := ψt b(s, a)/b(s), t ≥ 0.

Finally, let

d := sup
s∈S

(V0(s)− V1(s))/b(s),

and for n ∈ N0,

en := d σn(β) if d ≥ 0, and en := d σn(β) otherwise.

Note that d is finite as V0, V1 ∈ B.
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Lemma 3.1. Assume (A1)–(A3). Then

V0(s)− Vn(s) ≤ enb(s) for all s ∈ S, n ∈ N.
Proof. The assertion follows by an inductive argument based on

V0(s)− Vn(s) =
(
V0(s)− V1(s)

)
+
(
V1(s)− Vn(s)

)
≤ d b(s) + sup

a
ψ (V0 − Vn−1) (s, a), n ≥ 1.

For

∆t(s, a) : = eδt
[
rt(s, a)− r(s, a)− ψtV0(s, a)

]
, t ≥ 0,(3.1)

we obtain the next result.
Lemma 3.2. Assume (A1) and (A2). Then

0 ≤ w := sup {∆t(s, a)/b(s) : (s, a) ∈ D, t ≥ 0} <∞.
Proof. From (2.5) we see that ∆t(s, a) =

∫
κ(s, a, d(z, u)) gt(s, a, z, u), where

gt(s, a, z, u) := eδt 1(t,∞)(z)
[
h̃(t, s, a, z, u)− r̃(s, a, z, u)− e−αz · V0(u)

]
.

Because of gt(s, a, z, u) = 0 for t ≥ z, gt(s, a, z, u) trivially converges for t → ∞ to
zero. Moreover,

|gt(s, a, z, u)| ≤ Λ(s, a, z, u)

:= eδz
(
h(s, a, z, u) + |r̃(s, a, z, u)|

)
+ e−(α−δ)z · |V0(u)|.

Utilizing (A1) and (A2) we obtain∫
κ(s, a, d(z, u)) Λ(s, a, z, u) ≤

∫
κ(s, a, d(z, u))

[
eδz h(s, a, z, u)

+eδz · |r̃(s, a, z, u)|+ e−(α−δ)z · |V0(u)|
]

≤ % (2 + %) b(s).

By the dominated convergence theorem ∆t(s, a) converges for t → ∞ to zero, from
which the assertion follows.

We define operators L on B and L′ on B′, resp., by

Lv(s, a) : = r(s, a) +

∫
κ(s, a, d(z, u))e−αzv(u), (s, a) ∈ D,

L′v′(t, s, a) : = rt(s, a) +

∫
κ(s, a, d(z, u))e−αzv′(t− z, u), (t, s, a) ∈ R×D.

The next two results are our main tools for deriving bounds.
Lemma 3.3. Assume (A1) and (A2). Let v ∈ B, v′ ∈ B′, and

v′(t, s)− v(s) ≤ e−δt b(s)K(t), t ≥ 0, s ∈ S,(3.2)

for some lower bounded measurable function K on R+. Then

L′v′(t, s, a)− Lv(s, a) ≤ e−δtb(s)K̂v(t), t ≥ 0, (s, a) ∈ D,(3.3)
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where

K̂v(t) := w + sup
(s,a)∈D

[
d̂v e

δtµ(s, a, (t,∞)) +

∫
[0,t]

µ(s, a, dz)eδzK(t− z)
]

and d̂v := sups∈S(V0(s)− v(s))/b(s) (which is finite as v, V0 ∈ B).

Proof. Fix t ≥ 0, (s, a) ∈ D. Then

L′v′(t, s, a)− Lv(s, a)

= rt(s, a) +

∫
κ(s, a, d(z, u))1[0,t](z) e

−αz v′(t− z, u)− r(s, a)− ψv(s, a)

= e−δt
[

∆t(s, a) + eδtψt(V0 − v)(s, a)

+

∫
κ(s, a, d(z, u))1[0,t](z)e

δt−αz(v′(t− z, u)− v(u))

]
.(3.4)

As V0(s)− v(s) ≤ d̂v b(s), we have

ψt(V0 − v)(s, a)/b(s) ≤ d̂v ψtb(s, a)/b(s) = d̂v µ(s, a, (t,∞)).

Now the assertion follows, using equation (3.2), by taking the supremum over (s, a)
in equation (3.4).

Lemma 3.4. Assume (A1)–(A3). Then there holds for all n ∈ N and t ≥ 0

V tn(s)− Vn(s) ≤ e−δtb(s)Kn(t), s ∈ S,(3.5)

for each sequence (Kn)∞0 of lower bounded measurable functions on R+, fulfilling
K0 ≡ 0 and for n ∈ N0, t ≥ 0 and (s, a) ∈ D the condition

Kn+1(t) ≥ w + en e
δtµ(s, a, (t,∞)) +

∫
[0,t]

µ(s, a, dz)eδzKn(t− z).(3.6)

Proof. For n = 1, (3.5) follows from Lemma 3.3 with v′(t, s) := V0(s) 1R+(t) and
v(s) := V0(s). Thus assume (3.5) to hold for some n ≥ 0. From (2.6) and (2.7) we
know that

V ′n+1(t, s)− Vn+1(s) = sup
a∈D(s)

L′V ′n(t, s, a)− sup
a∈D(s)

LVn(s, a)

≤ sup
a∈D(s)

(L′V ′n(t, s, a)− LVn(s, a)),

where V ′n(t, s) = V tn(s). Now (3.5) follows for n + 1 from Lemma 3.3 with v′ := V ′n
and v := Vn, as d̂v ≤ en by Lemma 3.1.

Now we construct explicitly given sequences (Kn)∞1 of bounded functions satis-
fying (3.5). They lead to our main results, Theorems 3.5–3.7 and the supplementary
Remark 3.3. Define

γ := sup
(s,a)∈D

{
b(s)−1 ·

∫
κ(s, a, d(z, u))e−(α−δ)zb(u)

}
,(3.7)
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and for fixed (s, a) ∈ D a distribution function G(s, a, ·) with G(s, a, t) := 0 for t < 0
by

G(s, a, t)(3.8)

:=

∫
κ(s, a, d(z, u))1[0,t](z)e

−(α−δ)zb(u)

/∫
κ(s, a, d(z, u))e−(α−δ)zb(u), t ≥ 0.

We call G(s, a, ·) the transformed transition law. Because of (A1) we have 0 < β ≤
γ ≤ ρ, and γ = β if and only if δ = 0.

We additionally suppose the following:
(A4) There is some distribution function H with H(t) = 0 for t < 0 such that

H(t) ≥ G(s, a, t), (s, a) ∈ D, t ≥ 0.

Assumption (A4) is equivalent to saying that H is stochastically smaller than
G(s, a, ·) for all (s, a) ∈ D, or equivalently, that H is a stochastic lower bound of the
transformed transition law. Clearly (A4) is always fulfilled for H ≡ 1. Therefore the
subsequent bounds hold already under (A1)–(A3) when Hi∗, the i-fold convolution of
H with itself, is replaced everywhere by 1. If both S and A are finite, (A4) holds with
H(t) := max(s,a) G(s, a, t). In applications, often κ has the form κ(s, a, d(z, u)) =
Q(dz) × P (s, a, z, du). Then, if either P (s, a, z, du) does not depend on z or if (A1)
and (A2) hold for b ≡ 1, G(s, a, ·) = G(·) is independent of (s, a) ∈ D, and then (A4)
holds with H := G. Some of our bounds use

Hn :=
n−1∑
i=0

γiHi∗.

As Hi∗ ≤ Hi, we have the simple bound Hn ≤ σn(γ H), with equality when H ≡ 1.
Observe that the subsequent bounds depend on the constants d, w, γ, and β or β.

Theorem 3.5. Assume (A1)–(A4). Then (3.5) holds for the bounded functions

Kn = max{w, d} ·
[
σn(β) + (γ − β) ·

n−2∑
i=0

γiHi∗σn−i−1(β)

]
(3.9)

≤ max{w, d} · {1 + σn−1(β) [β + (γ − β)Hn−1]}(3.10)

Remark 3.1. Let ên := max{w, d}σn(β). Then (Kn)∞1 as defined in (3.9) can be
computed recursively via

Kn+1 − ên+1 = (γ − β)ên + γH ∗ (Kn − ên), n ≥ 0.(3.11)

Proof of Theorem 3.5. For use later in the proof of Proposition 4.2, we prove a
bit more than needed for the moment. (a) Consider Kn as defined in (3.9), but with
arbitrary numbers w ∈ R+, d ∈ R. Then (Kn)∞0 still satisfies (3.11). We show that
(Kn)∞0 satisfies (3.6). First, (3.6) holds for n = 0. Thus assume (3.6) to hold for
some n ≥ 0. Since ên ≥ 0 ensures eδz ên ≥ eδtên for z ≥ t, since ê1 ≥ w and since
γ ≥ ∫ µ(s, a, dz)eδz we get

ên+1 + (γ − β)ên = ê1 + γên ≥ w + ên

∫
µ(s, a, dz)

(
1[0,t](z)e

δz + 1(t,∞)(z)e
δt
)
.
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Further, since H ≤st G(s, a, ·), (s, a) ∈ D, and since Kn(t − z) − ên is nonnegative
and decreasing in z by (3.9),

γH ∗ (Kn − ên) (t) ≥ γ
∫

[0,t]

G(s, a, dz) [Kn(t− z)− ên]

≥
∫

[0,t]

µ(s, a, dz)eδz [Kn(t− z)− ên] .

By combining (3.11) with both inequalities, (3.6) is obtained for n+ 1.
(b) Using (a) for the original w and d, the assertion follows immediately from

Lemma 3.4.
Our second type of bounds uses en instead of ên.
Theorem 3.6. Assume (A1)–(A4). Then (3.5) holds for the bounded function

Kn = en +
n−1∑
i=0

γiHi∗ [w − d+ (γ − β)e+
n−i−1

]+
(3.12)

≤ en +
[
w − d+ (γ − β)e+

n−1

]+ ·Hn.(3.13)

Remark 3.2. (Kn)∞1 as defined in (3.12) can be computed recursively via

Kn+1 − en+1 =
[
w − d+ (γ − β)e+

n

]+
+ γH ∗ (Kn − en), n ∈ N0.(3.14)

Proof of Theorem 3.6. (a) Consider Kn as defined in (3.12), but with arbitrary
numbers w ∈ R+, d ∈ R. Then (Kn)∞1 still satisfies (3.14). We show that (Kn)∞0
satisfies (3.6). First, it follows from (3.14) by induction that Kn − en ≥ 0. Then,
using

β(x) := β if x ≥ 0, and β(x) := β else,

we obtain from (3.14)

Kn+1 = d+ β(d)en +
[
w − d+ (γ − β)e+

n

]+
+ γH ∗ (Kn − en)

= max{d+ β(d)en, w + β(d)en + (γ − β)e+
n }+ γH ∗ (Kn − en).

As β(d) en − β e+
n = −βe−n we get

Kn+1 ≥ w + γe+
n − βe−n + γH ∗ (Kn − en).(3.15)

Obviously (3.6) holds for n = 0. Assume it to hold for n ≥ 0. Then from (3.15), as
Kn(t− z)− en is nonnegative and decreasing in z by (3.12),

Kn+1 − w ≥ e+
n

∫
[0,t]

µ(s, a, dz)eδz + e+
n e

δtµ(s, a, (t,∞))

− e−n
∫

[0,t]

µ(s, a, dz)eδz − e−n eδtµ(s, a, (t,∞))

+

∫
[0,t]

µ(s, a, dz)eδz (Kn(t− z)− en)

= ene
δtµ(s, a, (t,∞)) +

∫
[0,t]

µ(s, a, dz)eδzKn(t− z).

Thus (3.6) holds for n+ 1.
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(b) Now the assertion follows from Lemma 3.4, using (a) for the original w
and d.

In general neither of the two bounds in (3.9) and (3.12) are better than the other.
For example, if w = 0 and d < 0, then Kn from (3.9) equals zero while Kn from (3.12)

equals d
∑n−1
i=0 (βi − γiHi∗), which may be positive or negative.

Simpler, yet weaker bounds than those in Theorems 3.5 and 3.6 can easily be
obtained in case γ ≤ 1 from (3.9) and (3.13) by incorporating the discounted renewal
function

H∞ :=
∞∑
i=0

γiHi∗.

Note that H∞ is bounded for γ < 1 by 1/(1− γ H) ≤ 1/(1− γ) and (by a well-known
result in renewal theory) affinely upper bounded for γ = 1. The condition γ ≤ 1 in
Remark 3.3 and Theorem 3.7 below is fulfilled if (A1) holds with b ≡ 1. If in addition
S and A are finite, then β < 1.

Remark 3.3. Assume (A1)–(A4) and γ ≤ 1. The upper bound (3.5) holds for

Kn := en +
[
w − d+ (γ − β)e+

n−1

]+ ·H∞(3.16)

and also for

Kn := en + (w + d−)Hn(3.17)

≤ en + (w + d−)H∞.(3.18)

Note that (3.17) follows from (3.16) as (γ − β)e+
n−1 ≤ (1− βn)d+ ≤ d+.

It is well known that under β < 1 the value functions Vn and V tn converge toward
the value functions V and V t of the infinite-stage Markov renewal programs MRP
and MRP′, resp. (This holds also if T∞, the limit of the sequence of decision epochs
Tn for n → ∞, is finite with positive probability. Therefore we did not include the
usual condition which ensures that T∞ =∞ a.s.)

From (3.10), (3.16), and (3.18) we immediately get the following theorem.
Theorem 3.7. Assume (A1)–(A4), γ ≤ 1, and β < 1. Then there hold the upper

bounds

V t(s)− V (s) ≤ e−δt b(s)K(t),

where

K :=
max{w, d}

1− β
(

1 + (γ − β)H∞
)

(3.19)

or

K :=
d

1− β(d)
+

[
w − d+

(γ − β)d+

1− β
]+

H∞(3.20)

≤ d

1− β(d)
+ (w + d−)H∞.(3.21)

Note that d and w depend on V0, and each V0 with bounded V0/b is admissible.
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4. Further bounds and the performance of optimal policies for MRP
when applied to MRP′. Assume (A1)–(A3). Define d and w like d and w, resp.,
with “sup” replaced by “inf.” Set

en := d · σn(β) if d ≥ 0, and en := d · σn(β) otherwise.

We now investigate the performance of an optimal policy π ∈ ∆n for MRP, when
applied to MRP′. Note that policies for MRP are also policies for MRP′, but not
vice versa. We need as preparation a counterpart to Lemma 3.4 which as by-product
yields lower bounds for V tn − Vn.

Lemma 4.1. Assume (A1)–(A2).
(a) Let π ∈ ∆n be any policy for MRP. Let (Kn)∞0 be any sequence of upper

bounded measurable functions on R+, fulfilling K0 ≡ 0 and for n ∈ N0, t ≥ 0, and
(s, a) ∈ D the condition

Kn+1(t) ≤ w + en e
δtµ(s, a, (t,∞)) +

∫
[0,t]

µ(s, a, dz)eδzKn(t− z).(4.1)

Then

V tnπ(s)− Vnπ(s) ≥ e−δtb(s)Kn(t), t ≥ 0.(4.2)

(b) Any sequence (Kn)∞0 which satisfies (4.1) and is independent of π yields the
lower bound

V tn(s)− Vn(s) ≥ e−δtb(s)Kn(t), t ≥ 0.(4.3)

Proof. (a1) For v ∈ B put d̂v := infs∈S(V0(s) − v(s))/b(s). Let F be the set of
decision rules in MRP. Exactly as in the proof of Lemma 3.3 one shows the following:
If

v′(t, s)− v(s) ≥ e−δt b(s)K(t), t ≥ 0, s ∈ S,(4.4)

for some upper bounded measurable function K on R+, then for f ∈ F, t ≥ 0, s ∈ S
U ′fv

′(t, s)− Ufv(s) := L′v′(t, s, f(s))− Lv(s, f(s)) ≥ e−δtb(s)K̂v(t),

where

K̂v(t) : = w + inf
(s,a)∈D

[
d̂v e

δtµ(s, a, (t,∞))

+

∫
[0,t]

µ(s, a, dz)eδzK(t− z)
]
.

(a2) Assertion (a) for n = 1 follows from (a1) with v′(t, s) := V0(s) 1R+(t), v(s) :=
V0(s). Assume it to hold for some n ≥ 1. It is well known that for any (n + 1)-
stage policy π := (fn+1, fn, . . . , f1) =: (f, σ) there holds V ′n+1,π = U ′fn+1

V ′nσ with

V ′nσ(t, s) := V tnσ(s) and Vn+1,π = Ufn+1
Vnσ. Now (a) follows for n+ 1 from (a1) with

v′ := V ′nσ and v := Vnσ, as

d̂v = inf
s

(V0(s)− Vnσ(s))/b(s) ≥ inf
s

(V0(s)− Vn(s))/b(s) = en.

(b) The assertion follows from (a) as

V tn(s) ≥ sup
π∈∆n

V tnπ(s) ≥ sup
π∈∆n

Vnπ(s) + e−δtb(s)Kn(t).

We now list a few consequences of Lemma 4.1.
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Proposition 4.2. Assume (A1)–(A4).
(a) The inequalities (4.2) and (4.3) hold for both

Kn := min{w, d} · [1 + σn−1(β)(β + (γ − β)Hn−1)](4.5)

and

Kn := en − [w − d− (γ − β)e−n−1]− ·Hn.(4.6)

(b) Put

d0 := sup
s∈S

(|V0(s)− V1(s)|/b(s)) = max (d,−d)

and

w0 := sup {|∆t(s, a)|/b(s) : (s, a) ∈ D, t ≥ 0} = max (w,−w).

There holds

|V tn(s)− Vn(s)| ≤ e−δtb(s)Kn(t), t ≥ 0,(4.7)

for

Kn := max{w0, d0} · [1 + σn−1(β)(β + (γ − β)Hn−1)] .(4.8)

(c) If γ ≤ 1, then (4.7) holds for

Kn := d0 σn(β) + (w0 + d0)Hn.

If in addition β < 1, there holds

|V t(s)− V (s)| ≤ e−δt b(s)K(t),

both for

K :=
max{w0, d0}

1− β (1 + (γ − β)H∞)(4.9)

and for

K :=
d0

1− β + (w0 + d0)H∞.(4.10)

Proof. (a) Instead of (4.5) we verify the stronger assertion that (4.1) holds for

Kn := −max{−w,−d} ·
[
σn(β) + (γ − β) ·

n−2∑
i=0

γiHi∗σn−i−1(β)

]
≥ min{w, d} · {1 + σn−1(β) [β + (γ − β)Hn−1]} .

In fact, part (a1) of the proof of Theorem 3.5 with w and d replaced by −w and by
−d, resp., shows that (Kn)∞0 satisfies (4.1).

(b) The proof of (4.6) is similar, and the other bounds follow easily.
Combining (4.2) with Kn from (4.5) and (3.5) with Kn from (3.10), we obtain

part (a) of our subsequent main result of this section. Part (b) follows by letting n
tend to ∞. Several similar bounds may be derived from the preceding results.
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Theorem 4.3. Assume (A1)–(A4). Put Θ := max (w, d)−min(w, d).
(a) If π ∈ ∆n is optimal for MRP, then

V tnπ(s) ≥ V tn(s)− e−δtb(s)Kn(t),(4.11)

where

Kn := Θ · [1 + σn−1(β)(β + (γ − β)Hn−1)] .(4.12)

(b) If β < 1, γ ≤ 1 and if (f, f, . . .) is a stationary optimal policy for the infinite-
stage MRP, then

V tf (s) ≥ V t(s)− e−δtb(s)K(t),(4.13)

where

K := Θ · [1 + (γ − β)H∞] /(1− β).(4.14)

5. Bounds for the discounted renewal function H∞. Throughout this sec-
tion we assume γ < 1. In what follows we are interested in deriving easy-to-calculate
bounds for H∞ =

∑∞
i=0 γ

iHi∗. First, Hn ≤ σn(γ H) implies H∞ ≤ 1/(1− γ H). Our
further bounds for H∞ are obtained by means of bounds for

W (t) := (1− γ)H∞(t) = 1− γ + γH ∗W (t), t ∈ R+,

(and W (t) := 0 for t < 0). W can be thought of as the distribution function of a
random sum Z = Y1 + · · · + Yτ of independently and identically distributed (i.i.d.)
nonnegative random variables Y1, Y2, . . . with distribution functionH such that τ+1 ∼
Geo(1−γ). In general, W has to be determined numerically, as explicit representations
of W are only known for some special cases. Denote by Geo(p), 0 < p ≤ 1, the
p.d. with discrete density p(1 − p)k−1, k ∈ N. Using, e.g., Laplace transforms one
obtains

(a) If Y1 ∼ Bi(1, p), 0 ≤ p ≤ 1, then Z + 1 ∼ Geo(p′), where
p′ := (1− γ)/(1− γ(1− p)). Hence

W (k) = 1− (1− p′)k+1, k ∈ N0.(5.1)

(b) If Y1 + 1 ∼ Geo(p), then Z ∼ (1 − γ)δ0 + γGeo(p′), where
1− p′ = (1− p)/(1− γp), i.e.,

W (k) = 1− γ(1− p′)k+1, k ∈ N0.

(c) If Y1 ∼ Exp(λ), then Z ∼ (1− γ)δ0 + γ Exp((1− γ)λ), i.e.,

W (t) = 1− γe−(1−γ)λt, t ≥ 0.(5.2)

Our numerical approach for calculating W is based on the following:
(A5) The p.d. corresponding to H is concentrated on {0, 1, . . . ,m} for some m ∈

N, and the discrete density g of H satisfies g(m) > 0.
Then the relation W = 1− γ + γH ∗W yields the following recursive method for

computing W , starting with W (0) = (1− γ) / (1− γg(0)):

W (k) =
1

1− γg(0)
·
{

1− γ + γ ·
k∧m∑
i=1

g(i)W (k − i)
}
, k ∈ N,(5.3)



516 KARL HINDERER AND KARL-HEINZ WALDMANN

(It is obvious how (5.3) must be modified for the more general case where the prob-
ability distribution corresponding to H is concentrated on {0, ε, . . . ,mε} for some
m ∈ N and some ε > 0.)

Having computed W (k) by means of (5.3) up to some k0 ≥ m, we can find bounds
for W (k), k > k0, by extrapolation. As the method may be of independent interest,
we state it for more general difference equations than (5.3), as follows.

Proposition 5.1. Let (bk)∞0 be the solution of the homogeneous linear difference
equation of order m ∈ N

bk =
m∑
i=1

di bk−i, k ≥ m,

with nonnegative coefficients di, 1 ≤ i ≤ m, with dm > 0 and positive initial values
bj , 0 ≤ j ≤ m− 1. Put

ck := min
1≤i≤m

bk−i+1

bk−i
, k ≥ m.

Then (ck)∞m is increasing, and for k ≥ m and j ∈ N we have

bk+j ≥ cj−1
k+1 · bk+1 ≥ cjk · bk.

Analogously, for the decreasing sequence of numbers

ck := max
1≤i≤m

bk−i+1

bk−i
, k ≥ m,

we obtain

bk+j ≤ cj−1
k+1 · bk+1 ≤ cjk · bk.

Proof. First, dm > 0 and bj > 0 for 0 ≤ j ≤ m − 1 implies bi > 0 for i ≥ m and
hence ck > 0 for k ≥ m. Fix k ≥ m. The definition of ck implies bk−i+1 ≥ ckbk−i for
1 ≤ i ≤ m. Therefore

bk+1 ≥ ck
m∑
i=1

dibk−i = ckbk, k ≥ m.(5.4)

Thus bk+1

bk
≥ ck, which implies

ck+1 = min

{
bk+1

bk
, . . . ,

bk−m+2

bk−m+1

}
≥ min

{
bk+1

bk
, ck

}
≥ ck.(5.5)

Finally the first assertion follows from (5.4) and (5.5) by induction on j, while the
second one can be obtained analogously.

For k ≥ m the recursion (5.3) may be written in terms of W = 1−W, yielding

W (k) =
γ

1− γg(0)

m∑
i=1

g(i)W (k − i), k ≥ m.(5.6)

Equation (5.3) implies W (k) ≤W (0) +W (0)W (k − 1), from which we infer both

W (k)/W (k − 1) ≥W (0) = γ(1− g(0))/(1− γg(0)) > 0

and W (k) ≥W (0)k > 0, k ∈ N.
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Applying Proposition 5.1 to the difference equation (5.3) yields the announced
upper bounds for W, as follows.

Theorem 5.2. Assume (A5). For all k ≥ m, j ∈ N

W (k + j) ≤ 1− cj−1
k+1 ·W (k + 1) ≤ 1− cjk ·W (k),(5.7)

where

ck := min
1≤i≤m

W (k − i+ 1)

W (k − i) ∈ [W (0), 1]

is increasing in k.
Note that in the special case m = 1, which corresponds to Y1 ∼ Bi(1, 1 − g(0)),

the bounds for W coincide with the exact values given in (5.1). Concerning the
asymptotic behavior of the numbers ck, the following can be said. Assume that the
different roots of the characteristic equation of the difference equation (5.6), i.e., of
the equation

B(λ) := (1− γg(0))λm − γg(1)λm−1 − · · · − γg(m) = 0,(5.8)

have distinct moduli. By Descartes’s rule of signs, (5.8) has a unique positive root λ∗,
and λ∗ < 1, as B(0) = −γg(m) < 0 < B(1) = 1−γ. Now a well-known result (cf., e.g.,
Elaydi [3, p. 310]) implies that limk→∞W (k+1)/W (k) = λ∗, and hence limk→∞ ck =
λ∗. Similar monotone lower bounds for W can be obtained, using the numbers ck,
defined like ck with “min” replaced by “max.” Also the asymptotic behavior of ck is
the same.

We finally remark that our monotone upper (and lower) bounds for W are of in-
dependent interest, e.g., they may be exploited for evaluating the equilibrium waiting
time distribution for an M/G/1 queue. Further, there is an application in the collec-
tive risk theory, where one refers to W as the distribution function of the total claim
amounts. These fields of active research have led to various (nonadaptive) exponential
bounds on the tails of W. We only refer to Lin [8] and the references given there.

A second type of upper bounds for W is due to Kalashnikov [7], who utilizes
Jensen’s inequality to prove

W (t) ≤ 1− γR(t), t ≥ 0,(5.9)

where R(t) :=
∑∞
i=0H

i∗ denotes the standard renewal function. Some elementary
upper bounds for R(t) (e.g., the well-known ones of an affine type ν1t+ ν2 proved by
Lorden [9] and Brown [1]) may be used to obtain from (5.9) simple upper bounds for
W, too.

6. Examples. As a test for the quality of our bounds we first derive from our
bounds the classical ones for the standard Markovian decision model. Then we look
at three special examples: a stopping problem, a renewal problem, and an allocation
problem. In all examples r̃ and r̃′ have the special form (2.1) and (2.3) with r̃3 ≡ 0,
resp. The computation of w is facilitated by the formula

rt(s, a)− r(s, a) =

∫
κ(s, a, d(z, u)) 1(t,∞)(z)

[
e−αtR(t, s, a, z, u)

−
∫ z

t

e−αy r̃2(s, a, y)dy

]
.(6.1)
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Example 6.1 (the standard Markovian decision model). Consider the familiar
infinite-stage Markovian decision model with transition law P (s, a, du), bounded one-
stage rewards r(s, a), and discount factor β < 1. Being interested in the approximation
of the infinite-stage model by a finite-stage one without terminal reward (or the other
way around), the results of sections 3–5 can be applied to the MRP and MRP′ with
κ(s, a, d(z, u)) = δ1(dz) × P (s, a, du), r̃1 = r, r̃2 = R ≡ 0. Then V t and V are the
value function of the t-stage (t ∈ N) and the infinite-stage model, resp.

(A1) and (A2) hold for 0 ≤ δ ≤ α with b ≡ 1, and (A3) is assumed to be true.
(A4) holds with H = 1[1,∞], hence H∞(t) = σt+1(γ). For δ ∈ [0, α] we have rt−r ≡ 0,

hence w = 0; β = β = e−α < 1; γ = e−(α−δ) ≤ 1. From (3.21) we obtain in case
d ≥ 0

V t(s)− V (s) ≤ d (β/γ)
t

1− β ,(6.2)

and in case d < 0

V t(s)− V (s) ≤ d (β/γ)
t

(
1

1− β − σt+1(γ)

)
.(6.3)

The bounds in (6.2) and (6.3) are minimal for δ = α (hence γ = 1) and δ = 0, resp.
Then (6.2) becomes a classical bound while (6.3) yields the slightly weaker bound
V t(s) − V (s) ≤ dβt+1/(1 − β). Similar arguments also work for lower bounds for
V t − V.

Example 6.2 (an optimal stopping problem). Consider a homogenous Markov
chain in continuous time with finite state space S′ ⊂ R. Interpret the states of the
Markov chain as offers, which, at the time points the jumps occur, can be accepted
(action a = 1) or not (action a = 0). If an offer is accepted, there is a utility g(s)
with mins g(s) = 0 and the process stops. As long as the process is not stopped there is
a cost c > 0 per unit time. If the process is not stopped during the time interval [0, t0]
under consideration, there is an additional terminal reward R0 ∈ R. Future payoffs
are discounted with rate α > 0.

Denote by λ > 0 the parameter of the exponentially distributed sojourn time.
We say that the process goes to ∞ when the stop action is chosen. Then the above
is a two action MRP with S = S′ ∪ {∞}, κ(s, a, [0, z] × {u}) = (1 − e−λz)Ps,u(a),
where Ps,∞(a) = a for s < ∞ and P∞,∞(a) = 1. For s < ∞ we have r̃1(s, a) =
a g(s); r̃2(s, a, y) = −(1 − a)c; R(t, s, a, z, u) = (1 − a)R0, while for s = ∞ these
quantities vanish.

(A1) and (A2) hold for b ≡ 1 if δ < λ, (A3) holds as A is finite, and (A4) holds
with H ∼ Exp(α + λ − δ). Now we get—using V0 :≡ 0, d = 0, β = λ/(α + λ) < 1—
γ = λ/(α+ λ− δ) ≤ 1 and

w =

[
R0 +

c

λ+ α

]+

.

From (3.21) we obtain for δ < α, hence γ < 1, using (5.2)

V t(s)− V (s) ≤ e−δtw1− γe−(α+λ−δ)(1−γ)t

1− γ ,

and for δ = α

V t(s)− V (s) ≤ e−αtw(λt+ 1).
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Example 6.3 (an optimal renewal problem). Consider a system (or unit) which
is subject to failure. Upon failure the system is renewed instantaneously at a cost
c(a) ≥ 0, depending on the type a of renewal. Associated with a renewal of type
a (action a ∈ {1, . . . ,m} with m ∈ N) is an exponentially distributed lifetime with
parameter λa > 0 fulfilling λ1 ≥ λ2 ≥ · · · ≥ λm > 0. Further we assume 0 ≤ c(1) ≤
c(2) ≤ · · · ≤ c(m).

We want to find the successive renewals for which the expected total cost guar-
anteeing a total lifetime of at least t0 time units becomes minimal.

Note that S consists of one element only. Letting r̃1(s, a) = −c(a) and r̃2 = R ≡ 0,
we see, that (A1) and (A2) hold for b ≡ 1 if δ < λm. (A3) holds as A is finite and
(A4) holds with H ∼ Exp(α+λ− δ). Now we get from (3.21), using β = λ1/(λ1 +α)
and V0 :≡ 0, w = 0 and d = c(1) ≥ 0 for all δ ≤ α, δ < λm,

V t(s)− V (s) ≤ e−δtc(1) (λ1 + α) /α.

Example 6.4 (optimal N -stage allocation with decision times according to a
Poisson process). Initially a capital of amount s > 0 is available. The times between
successive investment decisions are i.i.d. random variables distributed as Exp(λ). Let
s be the momentarily available capital. Then each investment of amount a ∈ [0, s] has
utility

√
a. The terminal utilities are R(t, s, a, z, u) =

√
s− a and V0(s) =

√
s, resp.

The discount rate is α > 0. It follows that κ(s, a, d(z, u)) = Exp(λ)× δs−a, r̃1(s, a) =√
a, and r̃2 ≡ 0. From (2.4) we get

h̃(t, s, a, z, u) =
√
a+
√
s− a e−αt ≤ 2

√
s =: h(s, a, z, u).

We assume 0 ≤ δ ≤ α and δ < λ. Then (A1) and (A2) hold with b(s) = ε +
√
s

for any ε > 0, while (A3) can be verified sequentially using Lemma 4.2 in Hinderer
and Stieglitz [5]. Furthermore, β = λ/(α+ λ). Using

sup
0≤a≤s

(√
a+ c

√
s− a) =

√
1 + c2

√
s, c ≥ 0,

we get from (2.6) by induction the well-known result that

Vn(s) =
√
σn+1(β2)

√
s,

and in the same way from (2.7)

V tn(s) = dn(t)
√
s for t ≥ 0,

where d0(·) :≡ 1, and

d2
n+1(t) = 1 +

[
e−(α+λ)t +

λ

α+ λ
· Exp(α+ λ) ∗ dn(t)

]2

, n ≥ 0.

With η := λ+ α− δ we have γ = λ/η ≤ 1, d = 0, w ≤ α/(α+ λ). By applying (3.17)
with H(t) = 1− e−ηt and letting ε tend to zero, we obtain the following upper bound
for the complicated function dn(·):

dn(t) ≤
√
σn+1(β2) + α e−δtσn(γ H(t))/(α+ λ).(6.4)

If δ < α it follows, using (5.2), that σn(γ H(t)) in (6.4) can be replaced by

H∞(t) =
(
η − λe−(α−δ)t

)
/ (α− δ) .
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Note added in proof. Recursion formula (5.6) has already been used by F.
Dufresne and H. Gerber, Three methods to calculate the probability of ruin, Astin
Bulletin, 19 (1989), pp. 71–90.
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Abstract. In 1988 Lions obtained observability and exact controllability results for linear ho-
mogeneous isotropic elastodynamic systems [SIAM Rev., 30 (1988), pp. 1–68]. Applying some new
identities we extend his theorems to nonisotropic systems. In 1991 Lagnese obtained uniform stabi-
lizability results for two-dimensional linear homogeneous isotropic systems by applying a somewhat
artificial feedback [Nonlinear Anal., 16 (1991), pp. 35–54]. Then he asked whether analogous results
hold for a natural and physically implementable boundary feedback. Using some new identities and
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1. Introduction and formulation of the main results. Let n be a positive
integer, and let (aijkl) be a tensor such that

aijkl = ajikl = aklij

(all indices run over the integers 1, . . . , n), satisfying for some α > 0 the ellipticity
condition

aijklεijεkl ≥ αεijεij(1.1)

for every symmetric tensor εij . (Here and in what follows we shall use the summation
convention for repeated indices.)

Let Ω be a nonempty bounded open set in Rn having a boundary Γ of class C2.
Given a function ξ = (ξ1, . . . , ξn) : Ω→ Rn, we shall use the notations

εij = 1
2 (ξi,j + ξj,i), σij = aijklεkl,

where ξi,j = ∂ξi/∂xj and ξj,i = ∂ξj/∂xi. If it is necessary to be more precise, we shall
write εij(ξ) and σij(ξ) instead of εij , σij .
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Consider the problem
ξ′′i − σij,j = 0 in Ω× R,
ξi = 0 on Γ× R,
ξi(0) = ξ0

i and ξ′i(0) = ξ1
i in Ω,

i = 1, . . . , n,

(1.2)

where ξ′i = ∂ξi/∂t and ξ′′i = ∂2ξi/∂t
2. For n = 1, 2, 3 this is the linear model of

homogeneous elastodynamic systems.

We recall (see, e.g., [7]) that this problem is well-posed in the following sense:

• Given (ξ0, ξ1) ∈ H1
0 (Ω)n × L2(Ω)n arbitrarily, the problem (1.2) has a unique

(so-called weak) solution

ξ ∈ C(R;H1
0 (Ω)n) ∩ C1(R;L2(Ω)n).

• If (ξ0, ξ1) ∈ (H2(Ω) ∩H1
0 (Ω))n ×H1

0 (Ω)n, then the solution is more regular:

ξ ∈ C(R; (H2(Ω) ∩H1
0 (Ω))n) ∩ C1(R;H1

0 (Ω)n) ∩ C2(R;L2(Ω)n);

it is called a strong solution.

• The energy of the (weak) solutions, defined by the formula

E = 1
2

∫
Ω
ξ′iξ
′
i + σijεij dx,(1.3)

is independent of the time t ∈ R.

In order to simplify we shall only consider in this paper time-independent homo-
geneous systems: the coefficients aijkl do not depend on x ∈ Ω or on t ∈ R.

Fix a point x0 ∈ Rn arbitrarily and fix a measurable partition Γ0, Γ1 of Γ such
that

(x− x0) · ν(x) ≤ 0 for all x ∈ Γ0,(1.4)

where ν = (ν1, . . . , νn) denotes the outward unit normal vector to Γ. In other words,
Γ1 contains all points x ∈ Γ for which (x−x0) ·ν(x) > 0. (The simplest way to satisfy
(1.4) is to choose Γ0 = ∅ and Γ1 = Γ.) Set

R = sup{|x− x0| : x ∈ Ω}.(1.5)

Then we have the following theorem.

Theorem 1.1. Assume (1.1), (1.4), and let T > 2
√

2/αR. Then there exist
two positive constants c1 and c2 such that every strong solution of (1.2) satisfies the
inequalities

c1E ≤
∫ T

0

∫
Γ1

σijεij dΓ dt ≤ c2E.(1.6)

Remarks.

• In the isotropic case Theorem 1.1 reduces to a former result of Lions [21].
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• Theorem 1.1 means that in some sense the observation of the solution in a
neighborhood of the boundary during a sufficiently large time allows one to
determine the initial data. Indeed, if two solutions coincide in this set, then
the boundary integral in (1.6) for their difference vanishes, and therefore the
energy of their difference is equal to zero by the first inequality in (1.6). This
implies that the two solutions correspond in fact to the same initial data, and
hence they are identical.
• By a simple density argument, the second estimate in (1.6) allows us to define

the trace of σijεij on Γ1 ×R as an element of L2
loc(R;L2(Γ1)) for every weak

solution of (1.2). Then the estimates (1.6) remain valid for all weak solutions,
too.
• Due to the finite propagation property of the system of elasticity, the first

inequality in (1.6) cannot hold for arbitrarily small T . The proof of Theorem
2 in [13] shows that the condition T > 2

√
2/αR is the best possible if the

system is isotropic, i.e., when

aijkl = λδijδkl + µ(δikδjl + δilδjk),

where λ and µ are the (positive) Lamé constants.
Applying the Hilbert uniqueness method (HUM) we shall deduce from Theo-

rem 1.1 an exact controllability result for the nonhomogeneous problem
y′′i − σij,j(y) = 0 in Ω× R,
yi = vi on Γ× R,
yi(0) = y0

i and y′i(0) = y1
i in Ω,

i = 1, . . . , n.

(1.7)

Theorem 1.2. Assume (1.1), (1.4) and fix T > 2
√

2/αR arbitrarily. Then for
any given y0, ỹ0 ∈ L2(Ω)n and y1, ỹ1 ∈ H−1(Ω)n there exists v ∈ L2

loc(R;L2(Γ)n) such
that the solution of (1.7) satisfies

y(T ) = ỹ0 and y′(T ) = ỹ1 in Ω.

Moreover, we may assume that v vanishes outside of Γ1 × (0, T ).
This extends an earlier theorem of Lions [21] to nonisotropic systems.
In the second half of the paper we shall study the uniform stabilizability of elas-

ticity systems by applying suitable dissipative boundary feedbacks. A natural and
physically implementable system of this type was proposed by Lagnese [17], [18]:

ξ′′i − σij,j = 0 in Ω× (0,∞),

ξi = 0 on Γ0 × (0,∞),

σijνj +Aξi +Bξ′i = 0 on Γ1 × (0,∞),

ξi(0) = ξ0
i and ξ′i(0) = ξ1

i in Ω,

i = 1, . . . , n.

(1.8)

Here A, B are given nonnegative numbers for simplicity. It is easy to generalize our
results to the case where A and B are nonnegative functions of class C1 on Γ1. Indeed,
defining the energy of the solutions of (1.8) by

E =
1

2

∫
Ω

ξ′iξ
′
i + σijεij dx+

1

2

∫
Γ1

Aξiξi dΓ,(1.9)
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an easy computation shows that the energy is a nonincreasing function of t ∈ [0,+∞).
We shall consider this problem under a rather strict geometric assumption on Ω

and Γ0, Γ1: we assume that

Ω = Ω1\Ω0,(1.10)

where Ω1 is an open ball, say Ω1 = B(x0;R), Ω0 is a star-shaped domain with respect
to x0 whose closure belongs to Ω1, and

Γ0 = ∂Ω0, Γ1 = ∂Ω1.

We do not exclude the case Ω0 = ∅; then Ω = B(x0;R), Γ0 = ∅, and Γ1 = Γ. Another
typical case is

Ω = {x ∈ Rn : r < |x− x0| < R}
for some 0 < r < R, and

Γ0 = {x ∈ Rn : |x− x0| = r},
Γ1 = {x ∈ Rn : |x− x0| = R}.

We shall prove the following theorem.
Theorem 1.3. Assume (1.1), and let Ω, Γ0, and Γ1 be as described above. Given

two positive constants A and B with A < α/(4R), there exists a positive number ω
such that all (weak) solutions of (1.8) satisfy the energy estimate

E(t) ≤ E(0)e1−ωt(1.11)

for all t ≥ 0.
If Γ0 6= ∅, then the result holds also for A = 0.
Remarks.
• This result seems to be new even in the isotropic case.
• Our proof will be based on a Liapunov-type method introduced in [15] and

then modified in [10]. We shall also need a crucial new identity (see (4.4))
which will allow us to estimate some boundary integrals.
• The interest of this result can be questioned because of the very restrictive

geometric assumptions. We recall, however, that the validity of this result
was not at all obvious, and some researchers even conjectured that this result
does not hold for any domain. See also a remark in [18, p. 37] in this respect.
• In fact, our proof given below can be easily adapted for slightly more general

domains such that Ω1 is close to a ball. We shall outline the suitable modifica-
tions of the proof at the end of section 4 for a special case (see Theorem 4.4),
and we refer to [22] for more general results. It is plausible that the theorem
remains valid if we allow Ω1 to be a general star-shaped domain with respect
to x0. However, our “elementary” method may not be sufficiently powerful for
this. A similar problem for the wave equation was solved earlier by Lasiecka
and Triggiani [19] by using microlocal estimates: they relaxed a geometric
condition of an earlier result of Lagnese [16]. Adapting their approach, re-
cently Horn [8] obtained very interesting stabilization results for the system
of elasticity: she established similar results to our Theorem 1.3, without geo-
metric conditions on Ω, in the particular case of isotropic elasticity systems.
Unlike our result, due to an indirect compactness-uniqueness argument, she
did not obtain explicit constants in the estimates.
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• Theorem 1.3 probably remains valid without the condition A < α/(4R), but
we could not prove it.

The proof of Theorem 1.3 will provide an explicit constant ω. If ω is bigger, then
the energy decay is faster. However, some results of Koch and Tataru [9] indicate that
we cannot achieve arbitrarily large decay rates ω by using feedbacks of the type as in
(1.8). On the other hand, in [14] a general method was developed for this purpose. This
method, similar in its spirit to HUM, allows us to construct boundary feedbacks for
observable systems which lead to arbitrarily large decay rates. Applying this approach
we shall deduce from Theorem 1.1 the following theorem.

Theorem 1.4. Assume (1.1), (1.4), and assume that Γ0 is closed. Fix ω > 0
arbitrarily. Then there exist two bounded linear maps

P : H−1(Ω)n → H1
0 (Ω)n and Q : L2(Ω)n → H1

0 (Ω)n

and a constant M > 0 such that the problem

ξ′′i − σij,j = 0 in Ω× R,
ξi = 0 on Γ0 × R,
ξi = σij(Pξ

′ +Qξ)νj on Γ1 × R,
ξi(0) = ξ0

i and ξ′i(0) = ξ1
i in Ω,

i = 1, . . . , n

(1.12)

is well-posed in H = L2(Ω)n ×H−1(Ω)n and its solutions satisfy the estimate

‖(ξ, ξ′)(t)‖H ≤M‖(ξ, ξ′)(0)‖He−ωt(1.13)

for all t ≥ 0.
Remarks.
• Note that (unlike in the preceding theorem) we do not have any geometric

assumption on Ω. Thus Theorem 1.4 applies to all bounded domains of class
C2, choosing, for example, Γ0 = ∅ and Γ1 = Γ.

• Although the feedback has a more complicated structure than in Theorem 1.3,
it can be constructed explicitly. Let us note that Bourquin and Briffaut [3]
tested numerically the method of [14]; this required the use of the explicit
form of the operators P and Q.

• Our proof allows us to estimate the constant M in (1.13).
Some results of this paper were announced without proof in [1].

2. Observability: Proof of Theorem 1.1. We proceed in three steps.
Step 1. Fix an arbitrary function h ∈W 1,∞(Ω)n and a number T > 0. Integrating

by parts it follows from the equation in (1.2) that

0 =

∫ T

0

∫
Ω

(hmξi,m)(ξ′′i − σij,j) dx dt

=

[∫
Ω

hmξi,mξ
′
i dx

]T
0

−
∫ T

0

∫
Γ

hmξi,mσijνj dΓ dt

+

∫ T

0

∫
Ω

hm,jσijξi,m + hmσijξi,jm − 1

2
hm(ξ′iξ

′
i),m dx dt.
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Since

σijξi,jm = σijεij,m =
1

2
(σijεij),m,

integrating by parts the last two terms in the last integral and then multiplying by
two the whole expression we obtain the following identity:

(2.1)

∫ T

0

∫
Γ

2hmξi,mσijνj + (h · ν)(ξ′iξ
′
i − σijεij) dΓ dt

=

[∫
Ω

2hmξi,mξ
′
i dx

]T
0

+

∫ T

0

∫
Ω

2hm,jσijξi,m + (div h)(ξ′iξ
′
i − σijεij) dx dt.

Note that in the proof of identity (2.1) we did not use the boundary conditions
in (1.2).

Step 2. Using the Korn inequality and the assumption h ∈ W 1,∞(Ω)n, the right-
hand side of (2.1) can be easily majorized by a constant multiple cE of the energy E.
(Let us recall that in this case the Korn equality is easy to establish; see the identity
(2.4) below.)

Furthermore, we deduce from the homogeneous Dirichlet boundary conditions
(1.2) that ξ′i = 0 and

ξi,mνj = ξi,ννmνj = ξi,jνm

on Γ, and hence

hmξi,mσijνj = (h · ν)σijξi,j = (h · ν)σijεij .

Therefore the left-hand side of (2.1) reduces to∫ T

0

∫
Γ

(h · ν)σijεij dΓ dt.

Choosing h such that h = ν on Γ, the second inequality in (1.6) follows with c2 = c.
Step 3. Choosing now h(x) = x− x0, the identity (2.1) reduces to∫ T

0

∫
Γ

(h · ν)σijεij dΓ dt

=

[∫
Ω

2hmξi,mξ
′
i dx

]T
0

+

∫ T

0

∫
Ω

(2− n)σijεij + nξ′iξ
′
i dx dt.

Furthermore, we also deduce from (1.2) that

0 =

∫ T

0

∫
Ω

ξi(ξ
′′
i − σij,j) dx dt

=

[∫
Ω

ξiξ
′
i dx

]T
0

−
∫ T

0

∫
Γ

ξiσijνj dΓ dt+

∫ T

0

∫
Ω

σijεij − ξ′iξ′i dx dt

=

[∫
Ω

ξiξ
′
i dx

]T
0

+

∫ T

0

∫
Ω

σijεij − ξ′iξ′i dx dt.



CONTROL OF ELASTODYNAMIC SYSTEMS 527

Combining with the preceding identity we obtain that∫ T

0

∫
Γ

(h · ν)σijεij dΓ dt

=

[∫
Ω

(2hmξi,m + (n− 1)ξi)ξ
′
i dx

]T
0

+

∫ T

0

∫
Ω

σijεij + ξ′iξ
′
i dx dt

whence

R

∫ T

0

∫
Γ1

σijεij dΓ dt ≥ 2TE −
∣∣∣[∫

Ω

(2hmξi,m + (n− 1)ξi)ξ
′
i dx

]T
0

∣∣∣.(2.2)

Let us majorize the last integral. Thanks to the boundary condition in (1.2) we have

‖2hmξi,m + (n− 1)ξi‖L2(Ω) ≤ ‖2hmξi,m‖L2(Ω)

for each fixed i. Indeed, as it was shown in [10], we have

‖2hmξi,m + (n− 1)ξi‖2L2(Ω) − ‖2hmξi,m‖2L2(Ω)

=

∫
Ω

(n− 1)2ξ2
i + 4(n− 1)hmξiξi,m dx

=

∫
Ω

(n− 1)2ξ2
i − 2n(n− 1)ξ2

i dx+

∫
Γ

(2n− 2)hmνmξ
2
i dΓ

= (1− n2)

∫
Ω

ξ2
i dx ≤ 0.

Therefore for any fixed δ > 0 we have

(2.3)
∣∣∣∫

Ω

(2hmξi,m + (n− 1)ξi)ξ
′
i dx

∣∣∣
≤ 2R

n∑
i=1

∫
Ω

|∇ξi|2 dx
)1/2(∫

Ω

(ξ′i)
2 dx

1/2

≤ Rδ
∫

Ω

ξi,mξi,m dx+Rδ−1

∫
Ω

ξ′iξ
′
i dx.

Furthermore, applying the Green formula and using the boundary condition in (1.2),
we have

∫
Ω

ξi,mξi,m dx =

∫
Ω

2εimξi,m dx−
∫

Ω

ξm,iξi,m dx =

∫
Ω

2εimεim − ξm,mξi,i dx,

i.e., ∫
Ω

2εimεim dx =

∫
Ω

ξi,mξi,m dx+

∫
Ω

|div ξ|2 dx.(2.4)

It follows from (1.1) and (2.4) that∫
Ω

ξi,mξi,m dx ≤ (2/α)

∫
Ω

σimεim dx.
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Substituting into (2.3), choosing δ =
√
α/2, and using the definition (1.3) of the

energy we obtain that∣∣∣∫
Ω

(2hmξi,m + (n− 1)ξi)ξ
′
i dx

∣∣∣ ≤ 2
√

2/αRE.

Therefore we deduce from (2.2) the inequality

R

∫ T

0

∫
Γ1

σijεij dΓ dt ≥ (2T − 4
√

2/α1R)E,

and the first estimate of (1.6) follows with c1 = (2T − 4
√

2/αR)/R. The proof of
Theorem 1.1 is completed.

In the next section we shall also need the following result, which gives an equiv-
alent form of the integral in (1.6).

Lemma 2.1. Assume (1.1) and put

β =
∑
i,j,k,l

|aijkl|2.

Then every strong solution of (1.2) satisfies on Γ× R the inequalities

(α/2)σijεij ≤
n∑
i=1

|σijνj |2 ≤ (β/α)σijεij .(2.5)

Proof. The proof of the second inequality does not use the boundary conditions∑
i

|σijνj |2 ≤
∑
i,j

|σij |2 =
∑
i,j

|aijklεkl|2

≤
∑
i,j

∑
k,l

|aijkl|2
∑
k,l

|εkl|2
 = βεklεkl ≤ (β/α)σijεij .

For the proof of the reverse inequality first we note that, thanks to the boundary
conditions in (1.2), we have

ξi,jξi,j =
1

2

∑
i,j

(ξi,j + ξj,i)
2 − ξi,jξj,i = 2εijεij − ξi,ννjξj,ννi = 2εijεij − |div ξ|2,

i.e.,

2εijεij = ξi,jξi,j + |div ξ|2 on Γ.(2.6)

(Compare with (2.4).) Therefore

σijεij = σijξi,j = σijνjξi,ν ≤
(∑

i

|σijνj |2
)1/2

(ξi,νξi,ν)1/2

≤
(∑

i

|σijνj |2
)1/2

(2εijεij)
1/2 ≤

(∑
i

|σijνj |2
)1/2

(2α−1σijεij)
1/2,

and the first inequality in (2.5) follows.
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3. Controllability: Proof of Theorem 1.2. Let us first study the well-posedness
of the nonhomogeneous problem (1.7). In order to find a reasonable definition of the
solution, let us multiply the equation in (1.7) by an arbitrary solution of the problem
(1.2) and integrate by parts formally. We obtain that∫ T

0

∫
Ω

ξi(y
′′
i − σij,j(y)) dx dt

=

∫ T

0

∫
Ω

(ξ′′i − σij,j(ξ))yi dx dt+

[∫
Ω

ξiy
′
i − ξ′iyi dx

]T
0

+

∫ T

0

∫
Γ

−ξiσij(y)νj + σij(ξ)νjyi dΓ dt

=

[∫
Ω

ξiy
′
i − ξ′iyi dx

]T
0

+

∫ T

0

∫
Γ

σij(ξ)νjvi dΓ dt.

Hence, putting

H = H−1(Ω)n × L2(Ω)n, and H ′ = H1
0 (Ω)n × L2(Ω)n

for brevity, we have

(3.1) 〈(y′(T ),−y(T )), (ξ(T ), ξ′(T )〉H,H′

= 〈(y1
i ,−y0

i ), (ξ0
i , ξ

1
i )〉H,H′ −

∫ T

0

∫
Γ

σij(ξ)νjvi dΓ dt.

This leads to the following definition.
Definition. A solution of (1.7) is a continuous function (y′,−y) : R → H sat-

isfying the identity (3.1) for all T ∈ R and for all (weak) solutions of the problem
(1.2).

This definition is justified by the following theorem.
Theorem 3.1. Assume (1.1). Then for any given

y0 ∈ L2(Ω)n, y1 ∈ H−1(Ω)n, and v ∈ L2
loc(R;L2(Γ)n)

the problem (1.7) has a unique solution satisfying

y ∈ C(R;L2(Ω)n) ∩ C1(R;H−1(Ω)n).

Furthermore, the linear map (y0, y1, v) 7→ y is continuous with respect to these topolo-
gies.

Proof. We apply Theorem 1.1. Thanks to the second estimate in (1.6), the right-
hand side of the equality (3.1) defines a bounded linear form of (ξ0, ξ1) ∈ H ′. Since the
linear map (ξ0, ξ1) 7→ (ξ(T ), ξ′(T )) is an automorphism of H ′ (because the problem
(1.2) is reversible), the right-hand side of the equality (3.1) can also be considered as a
bounded linear form of (ξ(T ), ξ′(T )) ∈ H ′. Since H ′′ = H, we conclude the existence
of a unique (y′(T ),−y(T )) ∈ H satisfying (3.1).

Since the bounded linear form used in this proof depends continuously on t ∈ R,
the solution y has the regularity required in the theorem. Finally, the bounded linear
form clearly depends continuously on the initial data and on the boundary value,
hence y also has this property.
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Turning to the proof of Theorem 1.2, let us first note that it is sufficient to
consider the case where ỹ0 = ỹ1 = 0 in Ω. The general case then follows by a standard
argument, valid for every linear reversible problem; see, e.g., [12], [14].

The main idea is to seek a control in the form vi = σij(ξ)νj , where ξ is the solution
of (1.2) for some suitable initial data. (Thanks to Theorem 1.1 and to Lemma 2.1,
these controls have the required regularity for the well-posedness of (1.7).)

Given (ξ0, ξ1) ∈ H ′ arbitrarily, first solve the problem (1.2), then solve the prob-
lem 

y′′i − σij,j(y) = 0 in Ω× R, 1 ≤ i ≤ n,
yi = 0 on Γ0 × R, 1 ≤ i ≤ n,
yi = σij(ξ)νj on Γ1 × R, 1 ≤ i ≤ n,
yi(T ) = y′i(T ) = 0 in Ω, 1 ≤ i ≤ n,

(3.2)

and set

Λ(ξ0, ξ1) = (y′(0),−y(0)).

(The problem (3.2) is well-posed in an analogous sense as (1.7) because the different
choice of the initial time does not change the character of a time-reversible problem.)
Obviously, Λ : H ′ → H is a bounded linear map. Applying HUM, it is sufficient to
show that Λ is onto. Indeed, then for any given (y0, y1) ∈ L2(Ω)n ×H−1(Ω)n it will
suffice to choose the control v defined by vi = 0 on Γ0 × (0,∞) and vi = σij(ξ)νj on
Γ1× (0,∞), where ξ is the solution of (1.2) corresponding to (ξ0, ξ1) = Λ−1(y1,−y0).

We shall prove that Λ is in fact an isomorphism. For this first we prove the identity

〈Λ(ξ0, ξ1), (ξ0, ξ1)〉H,H′ =

∫ T

0

∫
Γ1

∑
i

|σij(ξ)νj |2 dΓ dt.(3.3)

This follows from the equality∫ T

0

∫
Ω

ξi(y
′′
i − σij,j(y)) dx dt

=

[∫
Ω

ξiy
′
i − ξ′iyi dx

]T
0

+

∫ T

0

∫
Ω

(ξ′′i − σij,j(ξ))yi dx dt

+

∫ T

0

∫
Γ

−ξiσij(y)νj + σij(ξ)νjyi dΓ dt,

using the definition of Λ and the equations of (1.2) and (3.2).
Applying the first estimate of (1.6) in Theorem 1.1 and Lemma 2.1, we conclude

from the identity (3.3) that Λ is coercive. Applying the Lax–Milgram theorem we
conclude that Λ is an isomorphism.

4. Stabilizability: Proof of Theorem 1.3. We assume throughout this section
that Ω, Γ0, and Γ1 satisfy the conditions of Theorem 1.3. The well-posedness of the
problem (1.8) can be established by standard methods as, e.g., in [17], [18]; we omit
the details. Setting

V = {v ∈ H1
0 (Ω) : v = 0 on Γ0}
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we have the following proposition.
Proposition 4.1. Assume (1.1). Then for every given ξ0 ∈ V n and ξ1 ∈ L2(Ω)n

the problem (1.8) has a unique (weak) solution satisfying

ξ ∈ C([0,+∞);V n) ∩ C1([0,+∞);L2(Ω)n).

Now assume also that ξ0 ∈ (H2(Ω)∩V )n, ξ1 ∈ V n and σij(ξ
0)νj +Aξ0

i +Bξ1
i = 0

on Γ1, i = 1, . . . , n. Then the corresponding (strong) solution is more regular:

ξ ∈ C([0,+∞); (H2(Ω) ∩ V )n) ∩ C1([0,+∞);V n) ∩ C2([0,+∞);L2(Ω)n).

Let us turn to the proof of Theorem 1.3. All computations which follow will
be justified for strong solutions. Since the constant ω in (1.11) will not depend on
the choice of the initial data, once the estimates (1.11) will be established for regular
solutions, they will also be satisfied for all weak solutions by an easy density argument.
So in the rest of this section we shall only consider strong solutions.

Furthermore, we shall assume that n ≥ 2. The case n = 1 is similar and even
simpler, but we have to choose some constants differently. In any case, for n = 1,
our problem reduces to the usual wave equation which has been studied extensively
before; see, e.g., [15], [23], [11].

First we show the dissipativity of the problem (1.8).
Lemma 4.2. The energy of the strong solutions of (1.8) is a nonincreasing function

of the time t ≥ 0. More precisely, we have

E(S)− E(T ) =

∫ T

S

∫
Γ1

Bξ′iξ
′
i dΓ dt, 0 ≤ S < T < +∞.(4.1)

Proof. We have

E′ =

∫
Ω

ξ′iξ
′′
i + σijε

′
ij dx+

∫
Γ1

Aξiξ
′
i dΓ

=

∫
Ω

ξ′iσij,j + σijξ
′
i,j dx+

∫
Γ1

Aξiξ
′
i dΓ

=

∫
Γ

ξ′iσijνj dΓ +

∫
Γ1

Aξiξ
′
i dΓ = −

∫
Γ1

Bξ′iξ
′
i dΓ ≤ 0;

integrating between S and T the lemma follows.
Now we are going to establish a basic identity for the solutions of (1.8). Given

0 ≤ S < T < +∞ arbitrarily, we have

0 =

∫ T

S

∫
Ω

ξi(ξ
′′
i − σij,j) dx dt

=

[∫
Ω

ξiξ
′
i dx

]T
S

−
∫ T

S

∫
Γ

ξiσijνj dΓ dt+

∫ T

S

∫
Ω

σijεij − ξ′iξ′i dx dt

whence ∫ T

S

∫
Γ

ξiσijνj dΓ dt =

[∫
Ω

ξiξ
′
i dx

]T
S

+

∫ T

S

∫
Ω

σijεij − ξ′iξ′i dx dt.(4.2)



532 FATIHA ALABAU AND VILMOS KOMORNIK

Note that the identity (2.1) of section 2 remains valid if we replace the lower integral
limit 0 by S; just take the difference of this identity taken for T and for S instead of
T . Apply this identity with h(x) ≡ x− x0 and combine it with (4.2). Writing

Mξi = 2hmξi,m + (n− 1)ξi

for brevity, we have∫ T

S

∫
Γ

(Mξi)σijνj + (h · ν)(ξ′iξ
′
i − σijεij) dΓ dt

=

[∫
Ω

(Mξi)ξ
′
i dx

]T
S

+

∫ T

S

∫
Ω

σijεij + ξ′iξ
′
i dx dt.

Taking into account the definition (1.9) of the energy, we can rewrite it in the following
form:

2

∫ T

S

E dt+

[∫
Ω

(Mξi)ξ
′
i dx

]T
S

=

∫ T

S

∫
Γ

(Mξi)σijνj + (h · ν)(ξ′iξ
′
i − σijεij) dΓ dt

+

∫ T

S

∫
Γ1

Aξiξi dΓ dt.

Now using the boundary conditions in (1.8) we obtain that

(4.3) 2

∫ T

S

E dt+

[∫
Ω

(Mξi)ξ
′
i dx

]T
S

=

∫ T

S

∫
Γ0

(h · ν)σijεij dΓ dt

+

∫ T

S

∫
Γ1

Aξiξi − (Mξi)(Aξi +Bξ′i) + (h · ν)(ξ′iξ
′
i − σijεij) dΓ dt.

(The term on Γ0 is obtained in the same way as in Step 2 of the proof of Theorem 1.1.)
Next we transform the integral over Γ1. Applying the Green formula twice and

using the boundary condition on Γ0 we have∫
Ω

ξm,iξi,m dx =

∫
Γ

ξm,iξiνm dΓ−
∫

Ω

ξm,imξi dx

=

∫
Γ

ξm,iξiνm − ξm,mνiξi dΓ +

∫
Ω

ξm,mξi,i dx

=

∫
Γ1

2εmiξiνm − ξi,mξiνm − εmmνiξi dΓ +

∫
Ω

εmmεii dx.

On the other hand,∫
Ω

ξm,iξi,m dx =

∫
Ω

2εmiξi,m − ξi,mξi,m dx =

∫
Ω

2εmiεmi − ξi,mξi,m dx,
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and therefore

(4.4)

∫
Ω

2εmiεmi − ξi,mξi,m − εmmεii dx

=

∫
Γ1

2εmiξiνm − ξi,mξiνm − εmmνiξi dΓ.

This is a crucial new identity. Since h = Rν on Γ1, we deduce the following equality:

(4.5)

∫ T

S

∫
Γ1

−2Ahmξi,mξi dΓ dt

=

∫ T

S

∫
Ω

4ARεmiεmi − 2ARξi,mξi,m − 2AR|div ξ|2 dx dt

+

∫ T

S

∫
Γ1

2AR(div ξ)(ν · ξ)− 4ARεmiξiνm dΓ dt.

Next we obtain by a similar computation that

∫ T

S

∫
Ω

ξm,iξ
′
i,m dx dt

=

∫ T

S

∫
Γ

ξm,iξ
′
iνm dΓ dt−

∫ T

S

∫
Ω

ξm,imξ
′
i dx dt

=

∫ T

S

∫
Γ

ξm,iξ
′
iνm − ξm,mνiξ′i dΓ dt+

∫ T

S

∫
Ω

ξm,mξ
′
i,i dx dt

=

∫ T

S

∫
Γ1

2εmiξ
′
iνm − ξi,mξ′iνm − εmmνiξ′i dΓ dt+

[
1

2

∫
Ω

|div ξ|2 dx
]T
S

.

Furthermore,

∫ T

S

∫
Ω

ξm,iξ
′
i,m dx dt =

∫ T

S

∫
Ω

2εmiε
′
mi − ξi,mξ′i,m dx dt

=

[∫
Ω

εmiεmi − 1

2
ξi,mξi,m dx

]T
S

.

Using again the relation h = Rν on Γ1, it follows that∫ T

S

∫
Γ1

−2Bhmξi,mξ
′
i dΓ dt

=

∫ T

S

∫
Ω

2BRξm,iξ
′
i,m dx dt−

[∫
Ω

BR|div ξ|2 dx
]T
S

+

∫ T

S

∫
Γ1

2BRεmmνiξ
′
i − 4BRεmiξ

′
iνm dΓ dt

=

[∫
Ω

2BRεmiεmi −BRξi,mξi,m −BR|div ξ|2 dx
]T
S

+

∫ T

S

∫
Γ1

2BR(div ξ)(ν · ξ′)− 4BRεmiξ
′
iνm dΓ dt.
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Substituting the equalities (4.5) and (4.6) into the identity (4.3) and using the
equality h · ν = R on Γ1 we obtain that

(4.6) 2

∫ T

S

E dt

=

[∫
Ω

−(Mξi)ξ
′
i + 2BRεmiεmi −BRξi,mξi,m −BR|div ξ|2 dx

]T
S

+

∫ T

S

∫
Ω

4ARεmiεmi − 2ARξi,mξi,m − 2AR|div ξ|2 dx dt

+

∫ T

S

∫
Γ0

(h · ν)σijεij dΓ dt

+

∫ T

S

∫
Γ1

Aξiξi − (n− 1)ξi(Aξi +Bξ′i) +R(ξ′iξ
′
i − σijεij) + 2AR(div ξ)(ν · ξ)

− 4ARεmiξiνm + 2BR(div ξ)(ν · ξ′)− 4BRεmiξ
′
iνm dΓ dt.

Let us rewrite it in the following form:

(4.7) 2

∫ T

S

E dt

=

[∫
Ω

−(Mξi)ξ
′
i + 2BRεmiεmi −BRξi,mξi,m −BR|div ξ|2 dx

]T
S

+

[
1

2

∫
Γ1

(1− n)Bξiξi dΓ

]T
S

+

∫ T

S

∫
Ω

4ARεmiεmi − 2ARξi,mξi,m − 2AR|div ξ|2 dx dt

+

∫ T

S

∫
Γ0

(h · ν)σijεij dΓ dt

+

∫ T

S

∫
Γ1

(2− n)Aξiξi +R(ξ′iξ
′
i − σijεij) + 2AR(div ξ)(ν · ξ)

− 4ARεmiξiνm + 2BR(div ξ)(ν · ξ′)− 4BRεmiξ
′
iνm dΓ dt.

This is our main identity.
Let us majorize the right-hand side of this identity. First of all, using the definition

of the energy and the Korn inequality,∣∣∣∣∣
∫

Ω

−(Mξi)ξ
′
i + 2BRεmiεmi −BRξi,mξi,m −BR|div ξ|2 dx

∣∣∣∣∣ ≤ c1E
with some constant c1, depending on A, B but independent of S, T and of the par-
ticular choice of the initial data in (1.8). We have similarly∣∣∣∣∣12

∫
Γ1

(1− n)Bξiξi dΓ

∣∣∣∣∣ ≤ c2E.
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For the estimate of the third term on the right-hand side note that∫
Ω

4ARεmiεmi − 2ARξi,mξi,m − 2AR|div ξ|2 dx ≤ 8ARα−1E

with α defined by the ellipticity condition (1.1):

σijεij ≥ αεijεij .
Since h · ν = −r ≤ 0 on Γ0, the integral on Γ0 is ≤ 0. In the integral over Γ1 we have
(2− n)Aξiξi ≤ 0 because n ≥ 2, and we have

−Rσijεij ≤ −Rαεijεij
by using (1.1) again. Finally, applying Lemma 4.2 we deduce from the identity (4.7)
the following inequality:

(4.8) 2

∫ T

S

E dt ≤ c3E(S) + 8ARα−1

∫ T

S

E dt

+

∫ T

S

∫
Γ1

Rξ′iξ
′
i −Rαεijεij + 2AR(div ξ)(ν · ξ)

− 4ARεmiξiνm + 2BR(div ξ)(ν · ξ′)− 4BRεmiξ
′
iνm dΓ dt.

Here c3 = 2c1 + 2c2 is a constant depending on A and B but not on the choice of the
initial data.

From now on we shall distinguish three cases. Consider first the case A = 0; then
Γ0 6= ∅ by assumption. For any fixed δ > 0 we have

2BR(div ξ)(ν · ξ′) ≤ δ|div ξ|2 +B2R2δ−1|ξ′|2,

−4BRεmiξ
′
iνm ≤ δεmiεmi + 4B2R2δ−1|ξ′|2.

Using these inequalities and the obvious inequality |div ξ|2 ≤ εmiεmi, we deduce from
(4.8) that

2

∫ T

S

E dt ≤ c3E(S) +

∫ T

S

∫
Γ1

(R+ 5B2R2δ−1)|ξ′|2 + (2δ −Rα)εijεij dΓ dt.

Choosing δ = Rα/2 and using (4.1), it follows that

2

∫ T

S

E dt ≤ c4E(S)

with

c4 = c3 +RB−1 + 10BRα−1.

Hence there exists a constant ω > 0, independent of the choice of the initial data,
such that

ω

∫ T

S

E dt ≤ E(S)(4.9)
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for all 0 ≤ S < T < +∞. Since the function E(t) is nonnegative and nonincreasing
and applying a well-known Gronwall-type inequality (see, e.g., [12, Theorem 8.1]),
hence we conclude that the inequality (1.11) is satisfied.

Now let us consider the case where 0 < A < α/(24R). Applying the Young
inequality, for any fixed δ > 0 we have

2AR(div ξ)(ν · ξ) ≤ Aδ|ξ|2 +AR2δ−1|div ξ|2,

2BR(div ξ)(ν · ξ′) ≤ B2A−1δ|ξ′|2 +AR2δ−1|div ξ|2,

−4ARεmiξiνm ≤ Aδ|ξ|2 + 4AR2δ−1εmiεmi,

−4BRεmiξ
′
iνm ≤ B2A−1δ|ξ′|2 + 4AR2δ−1εmiεmi.

Substituting them into (4.8) and using the inequality |div ξ|2 ≤ εmiεmi again, we
obtain that

2

∫ T

S

E dt ≤ c3E(S) + 8ARα−1
1

∫ T

S

E dt

+

∫ T

S

∫
Γ1

(R+ 2B2A−1δ)|ξ′|2 + 2Aδ|ξ|2 + (10AR2δ−1 −Rα1)εijεij dΓ dt.

Using (4.1) we have

∫ T

S

∫
Γ1

(R+ 2B2A−1δ)|ξ′|2 dΓ dt

= (RB−1 + 2BA−1δ)(E(S)− E(T )) ≤ (RB−1 + 2BA−1δ)E(S).

Substituting into the preceding inequality and choosing δ = 10AR/α, we conclude
that

2

∫ T

S

E dt ≤ c4E(S) + 8ARα−1

∫ T

S

E dt+

∫ T

S

∫
Γ1

20A2Rα−1|ξ|2 dΓ dt(4.10)

with

c4 = c3 +RB−1 + 20BRα−1.

Now observe that∫ T

S

∫
Γ1

20A2Rα−1|ξ|2 dΓ dt ≤ 40ARα−1

∫ T

S

E dt

by the definition of the energy; therefore we conclude from (4.10) the estimate (4.9)
with

ω = (2− 48ARα−1)/c4.

If 0 < A < α/(24R), then ω > 0 and the estimate (1.11) follows as in the first case.
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Now let us turn to the case α/(24R) ≤ A < α/(4R). In this case we have to
estimate the last integral of (4.10) in a different way. Applying a method of [5] we
shall prove the following lemma.

Lemma 4.3. There exists a constant c5 > 0 such that∫ T

S

∫
Γ1

|ξ|2 dΓ dt ≤ c5ε−1E(S) + ε

∫ T

S

E dt

for all 0 < ε < 1 and for all 0 ≤ S < T < +∞.
Assuming this lemma for the moment, we deduce from (4.10) the inequality

(2− 8ARα−1 − ε)
∫ T

S

E dt ≤ (c4 + 20A2Rα−1c5ε
−1)E(S).

Choosing ε < 2 − 8ARα−1, the integral inequality (4.9) follows again and the proof
can be completed as before.

It remains to prove the lemma. For every t ≥ 0 let us denote by η(t) the solution
of the problem {

−σij,j = 0 in Ω,

η = ξ on Γ.

Then we have

‖η‖L2(Ω)n ≤ c‖ξ‖L2(Γ)n ≤ c
√
E(4.11)

by the elliptic regularity theory. (See, e.g., [4] or [6] for the proof of the ellipticity of
the above system.) Applying this result with ξ′ instead of ξ we also obtain that

‖η′‖L2(Ω)n ≤ c‖ξ′‖L2(Γ)n ≤ c
√
|E′|.(4.12)

Let us also observe that

(4.13)

∫
Ω

σij(η)εij(ξ − η) dx

= −
∫

Ω

σij,j(η)(ξi − ηi) dx+

∫
Γ

σij(η)νj(ξi − ηi) dΓ = 0;

hence ∫
Ω

σij(η)εij(ξ) dx =

∫
Ω

σij(η)εij(η) dx ≥ 0.(4.14)

Now consider the following equality:

0 =

∫ T

S

∫
Ω

ηi(ξ
′′
i − σij,j(ξ)) dx dt

=

[∫
Ω

ηiξ
′
i dx

]T
S

+

∫ T

S

∫
Ω

−η′iξ′i + σij(ξ)εij(η) dx dt−
∫ T

S

∫
Γ

ηiσij(ξ)νj dΓ dt

=

[∫
Ω

ηiξ
′
i dx

]T
S

+

∫ T

S

∫
Ω

−η′iξ′i + σij(ξ)εij(η) dx dt+

∫ T

S

∫
Γ

ξi(Aξi +Bξ′i) dΓ dt.
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(In the last step we used the boundary conditions on ξ and on η.) Using (4.13) we
deduce the following inequality:

(4.15) A

∫ T

S

∫
Γ

|ξ|2dΓ dt

≤
∣∣∣∣[∫

Ω

ηiξ
′
i dx

]∣∣∣∣T
S

+

∫ T

S

∫
Ω

η′iξ
′
i dx dt−B

∫ T

S

∫
Γ

ξiξ
′
i dΓ dt.

Using (4.11), (4.12) and applying the Poincaré inequality we can estimate the
right-hand side of this inequality as follows:∣∣∣∣[∫

Ω

ηiξ
′
i dx

]∣∣∣∣ ≤ ‖η‖L2(Ω)n‖ξ′‖L2(Ω)n ≤ cE;

∫ T

S

∫
Ω

η′iξ
′
i dx dt ≤

∫ T

S

‖η′‖L2(Ω)n‖ξ′‖L2(Ω)n dt

≤ c
∫ T

S

√
|E′|
√
E dt ≤

∫ T

S

(Aε/2)E + (c/ε)|E′| dt

=

∫ T

S

(Aε/2)E dt+ (c/ε)E(S)− (c/ε)E(T )

≤
∫ T

S

(Aε/2)E dt+ (c/ε)E(S),

and finally

−B
∫ T

S

∫
Γ

ξiξ
′
i dΓ dt ≤

∫ T

S

‖ξ‖L2(Γ)n‖ξ′‖L2(Γ)n dt

≤ c
∫ T

S

√
E
√
|E′| dt ≤

∫ T

S

(Aε/2)E + (c/ε)|E′| dt

≤
∫ T

S

(Aε/2)E dt+ (c/ε)E(S).

Substituting these inequalities into (4.15) the lemma follows.

We end this section by showing that Theorem 1.3 can be extended to cases where
the outer boundary of Ω is not exactly (but is close to) a sphere. Fix n numbers
β1, β2, . . . , βn ∈ (0, 1), and set

Ω =

{
x ∈ Rn : 1 <

n∑
i=1

βix
2
i < 4

}
,

Γ0 =

{
x ∈ Rn :

n∑
i=1

βix
2
i = 1

}
,

Γ1 =

{
x ∈ Rn :

n∑
i=1

βix
2
i = 4

}
.
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Theorem 4.4. Assume (1.1) and fix two positive constants A and B with A <
α/48. If β1, β2, . . . , βn are sufficiently close to 1, then there exists a positive number
ω such that all (weak) solutions of (1.8) satisfy the energy estimate

E(t) ≤ E(0)e1−ωt

for all t ≥ 0.
The idea of the proof is to modify the multiplier so as to preserve the property

h = Rν on Γ1. The price to pay will be to have some extra terms in the modified
identity (4.7). Fortunately these extra terms can be easily estimated by applying the
Korn inequality.

More precisely, let us define a function h : Ω→ Rn by the formula

h(x) =

(
β1x

2
1 + · · ·+ βnx

2
n

β2
1x

2
1 + · · ·+ β2

nx
2
n

)1/2

(β1x1, . . . , βnxn).

Then h is of class C∞ and h = −ν on Γ0, h = 2ν on Γ1.
Applying the identity (2.1) with this h and repeating the proof of Theorem 1.3

we obtain instead of (4.3) the identity

2

∫ T

S

E dt+

[∫
Ω

(Mξi)ξ
′
i dx

]T
S

=

∫ T

S

∫
Γ0

(h · ν)σijεij dΓ dt

+

∫ T

S

∫
Γ1

Aξiξi − (Mξi)(Aξi +Bξ′i) + (h · ν)(ξ′iξ
′
i − σijεij) dΓ dt

−
∫ T

S

∫
Ω

2fm,jσijξi,m + (div f)(ξ′iξ
′
i − σijεij) dx dt,

where f is defined by the formula f(x) = h(x)− x.
Leaving the last two new terms unchanged and transforming the boundary inte-

grals as before (now R = 2), we obtain instead of (4.10) the identity

2

∫ T

S

E dt ≤ c4E(S) + 16Aα−1

∫ T

S

E dt+

∫ T

S

∫
Γ1

40A2α−1|ξ|2 dΓ dt

−
∫ T

S

∫
Ω

2fm,jσijξi,m + (div f)(ξ′iξ
′
i − σijεij) dx dt.

Majorizing the boundary integral by using the definition of the energy as before, we
deduce the inequality

2

∫ T

S

E dt ≤ c4E(S) + 96Aα−1

∫ T

S

E dt

−
∫ T

S

∫
Ω

2fm,jσijξi,m + (div f)(ξ′iξ
′
i − σijεij) dx dt.

It remains to show that for any given ε > 0 the last integral can be majorized by

ε

∫ T

S

E dt
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if β1, β2, . . . , βn are sufficiently close to 1.
First we note that∣∣∣∣∣
∫ T

S

∫
Ω

2fm,jσijξi,m + (div f)(ξ′iξ
′
i − σijεij) dx dt

∣∣∣∣∣
≤ c

n∑
i,j=1

‖fi,j‖L∞(Ω)

∫ T

S

E dt

with a constant c = c(β1, β2, . . . , βn) coming from the Korn inequality. Looking
at the proof of this inequality in [7] we see that c remains uniformly bounded as
β1, β2, . . . , βn all tend to 1. (The constants appear at the moment of using a par-
tition of unity and the approximated domain, a ball, is very smooth.) It remains to
show that the functions fi,j converge to 0 uniformly on Ω as β1, β2, . . . , βn all tend
to 1. Now a direct easy computation shows that hi,j converges to δi,j uniformly on Ω,
and hence the claim follows. (At this point we use the fact that Ω has a hole inside,
in order to remove a possible singularity of h at the origin.)

5. Stabilizability: Proof of Theorem 1.4. Let us first consider the homoge-
neous problem (1.2) of Theorem 1.1 with the boundary observation ψi = σij,j(ξ)νj |Γ1 :

ξ′′i − σij,j = 0 in Ω× R,
ξi = 0 on Γ× R,
ξi(0) = ξ0

i and ξ′i(0) = ξ1
i in Ω,

ψi = σij,j(ξ)νj |Γ1
in R,

i = 1, . . . , n.

(5.1)

Putting ϕ = (ξ, ξ′), ϕ0 = (ξ0, ξ1) and introducing two linear operators A∗ and B∗ by
the formulas

D(A∗) = D(B∗) = (H2(Ω) ∩H1
0 (Ω))n ×H1

0 (Ω)n,

A∗(η0, η1) = −(η1, σij,j(η
0)),

B∗(η0, η1) = σij,j(ξ)νj |Γ1
,

we may rewrite (5.1) in the following operational form:

ϕ′ = −A∗ϕ, ϕ(0) = ϕ0, ψ = B∗ϕ.(5.2)

Let us introduce the Hilbert spaces H = H−1(Ω)n × (L2(Ω)n) and G = L2(Γ1)n.
Identifying L2(Ω) and L2(Γ1) with their duals, we have H ′ = H1

0 (Ω)n × L2(Ω)n and
G′ = L2(Γ1)n.

We claim that the following four conditions are satisfied:
(H1) The operator A∗ generates a group esA

∗
in H ′.

(H2) We have D(A∗) = D(B∗) and there exist two numbers λ ∈ C and c ∈ R
such that

‖B∗φ‖ ≤ c‖(A+ λI)∗φ‖

for all φ ∈ D(A∗).



CONTROL OF ELASTODYNAMIC SYSTEMS 541

(H3) There exist two positive numbers T ′ and c′ such that

‖ψ‖L2(0,T ′;G′) ≤ c′‖ϕ0‖H′

for all ϕ0 ∈ D(A∗).
(H4) There exist two positive numbers T and c such that

‖ψ‖L2(0,T ;G′) ≥ c‖ϕ0‖H′

for all ϕ0 ∈ D(A∗).
Indeed, property (H1) is satisfied by the well-posedness and time-reversibility of

the problem (1.2) studied in section 1. Property (H2) (with λ = 0) follows from the
elliptic regularity of the system of elasticity; see, e.g., [4] or [6]. The properties (H3)
and (H4) are equivalent to the two inequalities (1.6) in Theorem 1.1; we can choose
any T ′, T > 2

√
2/αR.

We may now apply the following theorem proved in [14].
Theorem 5.1. Assume (H1) to (H4) for some T > 0. Then for every fixed ω > 0

there exists an isomorphism Λω of H ′ onto H such that putting F = −B∗Λ−1
ω the

operator A + BF generates (in some sense) a strongly continuous group in H, and
there exists a constant M such that the solutions of the closed-loop problem

x′ = Ax+BFx, x(0) = x0(5.3)

satisfy the estimate

‖x(t)‖H ≤M‖x0‖He−ωt, for all t > 0,

for all x0 ∈ H, and for all t ≥ 0.
Let us remark that the operator Λω is constructed explicitly and that the constant

M can also be estimated explicitly. See [14] for details.
Let us write the problem (5.3) in a more explicit form. First of all, it follows from

the proof of Theorem 3.1 in section 3 that the open-loop problem

x′ = Ax+Bu, x(0) = x0,

where x = (−y′, y) and x0 = (−y1, y0), can be written in the following form:

y′′i − σij,j(y) = 0 in Ω× R,
yi = 0 on Γ0 × R,
yi = ui on Γ1 × R,
yi(0) = y0

i and y′i(0) = y1
i in Ω,

i = 1, . . . , n.

Therefore it only remains to show that u = Fx can be written as

ui = σij(Py
′ +Qy)νj on Γ1 × R

with suitable bounded linear maps P , Q as given in Theorem 1.4. This follows easily
from the properties of Λω and from the definition of B∗. Indeed, writing the operator

Λ−1
ω : H−1(Ω)n × L2(Ω)n → H1

0 (Ω)n × L2(Ω)n
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in the matrix form

Λ−1
ω =

(
P −Q
−R S

)
,

we have

u = −B∗Λ−1
ω x = σij(Py

′ +Qy)

on Γ1, and the proof of Theorem 1.4 is completed.
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Abstract. We consider boundary control of the distributed parameter system described by the
Korteweg–de Vries (KdV) equation posed on a finite interval α ≤ x ≤ β:{

ut + ux + uux + uxxx = 0

u(α, t) = h1(t), u(β, t) = h2(t), ux(β, t) = h3(t)u
(∗)

for t ≥ 0. It is shown that by choosing appropriate control inputs (hj(t), j = 1, 2, 3), one can always
guide the system (∗) from a given initial state φ ∈ Hs(α, β) to a given terminal state ψ ∈ Hs(α, β)
in the time period [0, T ] so long as φ and ψ satisfy

‖φ(·)− w(·, 0)‖Hs(α,β) ≤ δ and ‖ψ(·)− w(·, T )‖Hs(α,β) ≤ δ
for some δ > 0 independent of φ and ψ, where s ≥ 0 and w ≡ w(x, t) is a given smooth solution of
the KdV equation. This exact boundary controllability is established by considering a related initial
value control problem of the KdV equation posed on the whole line R. Various recently discovered
smoothing properties of the KdV equation have played important roles in our approach.

Key words. boundary control, exact controllability, the KdV equation, smoothing properties
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PII. S0363012997327501

1. Introduction. In this paper we continue our earlier work [27] to study control
of the system described by the Korteweg–de Vries (KdV) equation

ut + uux + uxxx = 0,(1.1)

where u ≡ u(x, t) is a real-valued function of the two real variables x and t and
the subscripts denote the corresponding partial derivatives. The equation was first
derived by Korteweg and de Vries in 1895 as a model for propagation of some surface
water waves along a channel [16]. Its original form is

ηt =
3

2

√
g

l

(
1

2
η2 +

2

3
αη +

1

3
σηxx

)
x

,(1.2)

where η is the surface elevation above the equilibrium level l, α is a small constant
related to the uniform motion of the liquid, g is the gravitational constant, and σ =
l3/3 − T l/ρg with surface capillary tension T and density ρ. When posed on the
whole line R or on a periodic domain, (1.2) can always be reduced by certain variable
transformations to its standard form (1.1). The KdV equation has been intensively
studied from various aspects of both mathematics and physics since the 1960s, [2],
[7], [8], [28], [29] when solitons were discovered through solving the KdV equation and
the inverse scattering method, a so-called nonlinear Fourier transform, was invented
to seek solitons [1], [9], [6]. It turns out that the equation is not only a good model
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for some water waves but also a very useful approximation model in nonlinear studies
whenever one wishes to include and balance a weak nonlinearity and weak dispersive
effects [19]. In particular, the equation is now commonly accepted as a mathematical
model for the unidirectional propagation of small-amplitude long waves in nonlinear
dispersive systems. In such applications, u is typically an amplitude or velocity, x is
often proportional to distance in the direction of propagation, and t is proportional
to elapsed time. In [27], we considered distributed control of the KdV equation

ut + uux + uxxx = f(1.3)

on the domain 0 ≤ x ≤ 2π, t ≥ 0 with periodic conditions

u(0, t) = u(2π, t), ux(0, t) = ux(2π, t), uxx(0, t) = uxx(2π, t).(1.4)

The distributed control f ≡ f(x, t) is restricted so that the “volume”
∫ 2π

0
u(x, t)dx of

the solution is conserved. If f is allowed to act on the whole spatial domain (0, 2π),
the system is shown to be globally exactly controllable, i.e., for given T > 0 and
functions φ(x), ψ(x) with the same “volume,” one can always find a control f so that
the system (1.3)–(1.4) has a solution u(x, t) satisfying

u(x, 0) = φ(x) and u(x, T ) = ψ(x).

If the control f is allowed to act on only a small subset of the domain (0, 2π), then the
system is locally exactly controllable in the sense that the initial and terminal states,
φ and ψ, are required to have small “amplitude” in a certain sense (cf. [27] for the
details).

In this paper we consider boundary control of the KdV equation

ut + ux + uux + uxxx = 0(1.5)

on the domain (α, β), t ≥ 0 with the boundary conditions

u(α, t) = h1(t), u(β, t) = h2(t), ux(β, t) = h3(t).(1.6)

The boundary value functions hj(t), j = 1, 2, 3, are considered as control inputs. Note
that there is an extra term ux in (1.5) as compared with the standard KdV equation
(1.1). This occurs because, when posed on a finite interval, one cannot reduce the
original KdV equation (1.2) to its standard form; the term ux does not go away.
On the other hand, the existence of the term ux does make some differences for the
equation when posed on a finite interval.1

Our main concern for the system (1.5)–(1.6) is the following exact control problem.

1For instance, while the boundary value problem{
ut + uxxx = 0, x ∈ (0, 2π), t > 0,

u(0, t) = u(2π, t) = ux(2π, t) = 0

has no nontrivial steady solutions, the problem{
ut + ux + uxxx = 0, x ∈ (0, 2π), t > 0,

u(0, t) = u(2π, t) = ux(2π, t) = 0

does have some nontrivial steady solutions.
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Let T > 0 and s ≥ 0 be given. For any φ ∈ Hs(α, β) and ψ ∈ Hs(α, β), can
one find appropriate boundary control inputs hj , j = 1, 2, 3, such that the system
(1.5)–(1.6) has a solution u ∈ C([0, T ];Hs(α, β)) satisfying

u(x, 0) = φ(x) and u(x, T ) = ψ(x)

on the interval (α, β)?
Here, by saying that f(x) = g(x) on the interval (α, β), we mean that∫ β

α

f(x)ξ(x)dx =

∫ β

α

g(x)ξ(x)dx for any ξ ∈ C∞0 (α, β).

In other words, f and g are equal in the interval (α, β) in the sense of distributions.
In the case of s > 1/2, this is equivalent to saying that φ(x) = ψ(x) in the pointwise
sense for any x ∈ (α, β).

Recently this exact boundary control problem was considered by Rosier [21] and
the following result was obtained.

Let T > 0 be given. Let

N =

{
2π

√
k2 + kl + l2

3
; k and l are any positive integers

}
.

If α < β satisfying β−α /∈ N , then there exists a δ > 0 such that for φ, ψ ∈ L2(α, β)
satisfying

‖φ‖|L2(α,β) ≤ δ and ‖ψ‖L2(α,β) ≤ δ,
one can choose h1 = h2 ≡ 0 and h3 ∈ L2(0, T ) so that (1.5)–(1.6) has a solution
u ∈ C([0, T ];L2(α, β)) ∩ L2(0, T ;H1(α, β)) satisfying

u(x, 0) = φ(x) and u(x, T ) = ψ(x)

on the interval (α, β).
In this paper we present the following theorem.
Theorem 1.1. Let T > 0 and s ≥ 0 be given and [α, β] ⊂ (α1, β1). Suppose that

w ≡ w(x, t) ∈ C∞(α1, β1)× (−ε, T + ε)

for some ε > 0 satisfies

wt + wx + wwx + wxxx = 0, (x, t) ∈ (α1, β1)× (−ε, T + ε).

Then there exists a δ > 0 such that for any φ, ψ ∈ Hs(α, β) satisfying

‖φ(·)− w(·, 0)‖Hs(α,β) ≤ δ and ‖ψ(·)− w(·, T )‖Hs(α,β) ≤ δ,
one can find control inputs h1, h2, and h3 ∈ L2(0, T ) (hj ∈ C[0, T ], j = 1, 2, 3, if
s > 3/2) such that the system (1.5)–(1.6) has a solution

u ∈ C([0, T ];Hs(α, β)) ∩ L2(0, T ;Hs+1(α, β))

satisfying

u(x, 0) = φ(x) and u(x, T ) = ψ(x)

on the interval (α, β).
Several remarks are now in order.
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(i) The local controllability result presented in Theorem 1.1 is stronger than the
usual sense of local controllability. In general, we say a nonlinear system has
exact local controllability if one can find control inputs to guide the system
from a given initial state to a given terminal state so long as the “amplitude”
of the initial and terminal states are small in a certain sense. The exact
controllability we established for the system (1.3)–(1.4) is of this type and
so is the result of Rosier cited earlier. In Theorem 1.1, the “amplitude” of
the given initial and terminal states does not have to be small. In fact their
“amplitudes” can be as large as one wishes so long as they locate in a δ-
neighborhood of the initial state and terminal state, respectively, of a smooth
solution of the KdV equation.

(ii) The solution u in the theorem is usually called the “path” to connect the
given initial state φ and the terminal state ψ. Theorem 1.1 shows that the
“smoother” φ and ψ are, the “smoother” the path—as are the control inputs
one needs. In particular, if s > 7/2, then the solution

u ∈ C1([0, T ];C[α, β]) ∩ C([0, T ];C3[α, β])

and the KdV equation is satisfied in the classical sense.
(iii) In the linear case (dropping the nonlinear term uux from the equation), The-

orem 1.1 holds without any size restriction on the initial and terminal states.
Moreover, the control inputs hj , j = 1, 2, 3, are C∞-smooth functions in the
interval (0, T ) and the corresponding solution u ≡ u(x, t) is also a C∞-smooth
function in the domain (α, β)× (0, T ), although its initial state φ and the ter-
minal state ψ may belong only to the space L2(α, β). In other words, the
interior regularity of the control inputs and the corresponding solution are all
C∞ no matter what the regularity of the initial state and the terminal state
is. Consequently, both (1.5) (dropping uux) and the boundary conditions
(1.6) are satisfied in the pointwise sense for any x ∈ (α, β) and t ∈ (0, T ),
rather than in the sense of distributions. We believe that this should also be
the case for the nonlinear system.

(iv) The function w(x, t) in Theorem 1.1 is assumed to be C∞-smooth only for
simplicity. In fact it will be sufficient to require w ∈ C(−ε, T+ε,Hs+1(α1, β1)).

Consider a control system in a Hilbert space X described by the following abstract
semilinear evolution equation:

dy

dt
= Ay + F (y) +Bh,(1.7)

where A is the infinitesimal generator of a C0-semigroup W (t) in the space X, F is
a nonlinear mapping from X to X, B is a linear operator from another Hilbert space
Y to the space X, and h ∈ L2(0, T ;Y ) is considered as a control input. A standard
approach to establish exact controllability of the system (1.7) can be summarized as
the following three steps.

Step 1. Establish exact controllability of the corresponding linear control system

dy

dt
= Ay +Bh

by showing that there exists a bounded linear operator G from X ×X to the space
L2(0, T ;Y ) such that for any φ, ψ ∈ X, the unique solution y(t) of the initial value
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problem

dy

dt
= Ay +BG(φ, ψ), y(0) = φ

satisfies y(T ) = ψ.
Step 2. Rewrite the nonlinear system (1.7) in its integral form:

y(t) = W (t)y(0) +

∫ t

0

W (t− τ)F (y(τ))dτ +

∫ t

0

W (t− τ)Bh(τ)dτ.

For given φ, ψ ∈ X, let

ω(T, u) ≡
∫ T

0

W (t− τ)F (u(τ))dτ

and define

Γ(u) = W (t)φ+

∫ t

0

W (t− τ)F (u(τ))dτ +

∫ t

0

W (t− τ)BG(φ, ψ − ω(T, u))(τ)dτ.

Note that

Γ(u)(0) = φ and Γ(u)(T ) = ω(T, u) + ψ − ω(T, u) = ψ

by virtue of the operator G.
Step 3. Show that the map Γ has a fixed point in a complete metric space X

which is contained in the space C([0, T ], X).
However, there are some difficulties when applying this approach for the dis-

tributed control system (1.3)–(1.4). In particular, Step 3 is hard to carry out. Par-
tially this is caused by the nonlinear term uux in the equation whose regularity is less
than that of u because of differentiation. In order to show that the map Γ has a fixed
point, it is necessary that the corresponding linear equation

ut + uxxx = f,

u(x, 0) = 0, 0 < x < 2π, t > 0,

u(0, t) = u(2π, t), ux(0, t) = ux(2π, t), uxx(0, t) = uxx(2π, t)

(1.8)

has certain smoothing properties to recover the lost regularity. But it is well known
that, in contrast to the heat equation and the wave equation, f ∈ L1(0, T ;Hs

p) can
only lead to a solution u of (1.8) in the space C([0, T ];Hs

p). Here Hs
p denotes the set

of all periodic functions in the space Hs(0, 2π). Thus the spatial regularity of the
solution u of (1.8) is the same as that of the forcing term f . For many years people
thought that it might be impossible for the solution u of (1.8) to possess higher spatial
regularity than that of f . It came as a surprise when Bourgain [4], [5] discovered a
rather subtle smoothing property for periodic solutions of the KdV equation in 1993.
This type of smoothing property of Bourgain played a key role in establishing exact
controllability of the system (1.3)–(1.4) in [27].

As for the boundary control system (1.5)–(1.6), there are even more difficulties
using this approach. The spatial regularity is not only lost through the term uux but
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also through the boundary value functions h1, h2, and h3 when they are considered
as the trace of the solution u.

To obtain his result for the exact boundary control problem of the KdV equation,
Rosier used the following type of smoothing property to carry out Step 3. For the
initial-boundary value problem

ut + ux + uxxx = f, x ∈ (α, β), t > 0,

u(x, 0) = φ(x),

u(α, t) = u(β, t) = ux(β, t) = 0,

(1.9)

φ ∈ L2(α, β) and f ∈ L2(0, T ;L2(α, β)) implies that the solution u of (1.9) belongs
to the space C([0, T ];L2(α, β)) ∩ L2(0, T ;H1(α, β)) and ux(α, t) ∈ L2(0, T ) with

sup
t∈(0,T )

‖u(·, t)‖L2(0,T ) + ‖u‖L2(0,T ;H1(α,β)) + ‖ux(α, t)‖L2(0,T )

≤ c (‖φ‖L2(0,T ) + ‖f‖L2(0,T ;L2(α,β))

)
,

where c > 0 is independent of f and φ. To establish the needed exact controllability
of the associated linear system, he used the Hilbert uniqueness method together with
a compactness argument.

Our approach is different from Rosier’s. Our strategy to overcome these difficulties
caused by losing regularity is to bypass them rather than look for some stronger
smoothing properties. More precisely, instead of considering boundary control of the
KdV equation posed on the finite interval (α, β), we consider initial value control of
the KdV equation posed on the whole real line R: ut + ux + uux + uxxx = 0, x, t ∈ R,

u(x, 0) = h(x).
(1.10)

Initial value control problem. Let T > 0 and s ≥ 0 be given. For any
φ, ψ ∈ Hs(R), can we find an external modification of φ(x), h ∈ Hs(R), such that
the corresponding solution u of the initial value problem (IVP) (1.10) satisfies

u(x, 0) = φ(x) and u(x, T ) = ψ(x)

on the interval (α, β)?

An affirmative answer to this initial value control problem leads to a positive
answer to the boundary control problem asked earlier, but not vice versa. Indeed, for
any given φ, ψ ∈ Hs(α, β), we can extend φ and ψ to be functions in Hs(R) (let us
still write their extensions as φ and ψ). If we could find an h ∈ Hs(R) such that the
corresponding unique solution u of the IVP (1.10) satisfies

u(x, 0) = φ(x) and u(x, T ) = ψ(x)

on the interval (α, β), then we could simply choose h1(t) = u(α, t), h2(T ) = u(β, t),
and h3(t) = ux(β, t). The restriction of u to the domain [α, β] × [0, T ] would be the
desired solution of the boundary control system (1.5)–(1.6).
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We point out that this kind of problem is of interest in its own right. Let us take
the linearized KdV equation

ut + ux + (a(x, t)u)x + uxxx = 0, x, t ∈ R,(1.11)

as an example. For given φ, ψ ∈ Hs(R), to find a solution u of (1.11) satisfying

u(x, 0) = φ(x) and u(x, T ) = ψ(x)(1.12)

on the interval (−∞,∞) is an overdetermined problem; there is no solution in general.
A further question then is the following.

Is there a solution of (1.11) satisfying (1.12) on a given finite interval?
As we will see later, there are infinitely many such solutions! We will prove the

following result for the initial value control problem.
Theorem 1.2. Let T > 0 and s ≥ 0 be given. Suppose that w ∈ C(R;H∞(R))

is a given solution of

wt + wx + wwx + wxxx = 0, x, t ∈ R.
Then there exists a δ > 0 such that for any φ, ψ ∈ Hs(α, β) satisfying

‖φ(·)− w(·, 0)‖Hs(α,β) ≤ δ, ‖ψ(·)− w(·, T )‖Hs(α,β) ≤ δ,
one can find h ∈ Hs(R) such that the corresponding solution u of the IVP (1.10)
satisfies

u(x, 0) = φ(x) and u(x, T ) = ψ(x)

on the interval (α, β).
This theorem is proved using the approach outlined earlier for the abstract system.

In contrast with the boundary control problem of the KdV equation, the initial value
control problem is easier to handle although it is more general. First of all the needed
smoothing properties of the KdV equation have been well established in the literature.
Second, we do not need to handle some difficult regularity problems associated with
the boundary value problem.

The idea of dealing with a problem posed on a finite interval by extending it to a
related problem on the whole line R is not new in the literature. To our knowledge,
it is Russell [22], [23] who first used this idea in the field of control theory to establish
exact boundary controllability of a class of linear hyperbolic equations. Later this
idea was explored by Littman [17] and Littman and Taylor [18]. A systematic method
has been developed to handle exact boundary control problems of partial differential
equations; the method is summarized by Littman and Taylor [18] as follows:

reversibility + smoothing property + uniqueness → controllability.

We will use this method to establish exact controllability of the associated linear
KdV equation which is one of the key steps leading to the exact controllability of the
nonlinear KdV equation.

The remainder of the paper is organized as follows.
In section 2, we recall various smoothing properties of the linear KdV equation

posed on the whole line R. As we have explained earlier, those smoothing properties
will play a major role in the proof of our main theorems.

In section 3, the exact controllability of the associated linear system is established
using a method due to Littman [17] with some modification.

The proofs of our main results, Theorems 1.1 and 1.2, are provided in section 4.
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2. Smoothing properties. In this section we recall several smoothing proper-
ties of the KdV equation. Those smoothing properties not only play important roles
in establishing exact controllability of the KdV equation but also are very useful in
studying other aspects of the KdV equation. We refer to [3], [4], [5], [11], [12], [13],
[14], [31], [32], [33] for other applications of those smoothing properties.

To begin, let {W (t)}+∞−∞ denote the unitary group generated by the linear third
order operator A from L2(R) to L2(R):

Af = −f ′ − f ′′′

with D(A) = H3(R). Then the solution of the IVP associated with the linear KdV
equation  ut + ux + uxxx = 0, x, t ∈ R,

u(x, 0) = φ(x)
(2.1)

is given by

u(t) = W (t)φ,

and the solution of the inhomogeneous equation ut + ux + uxxx = f, x, t ∈ R ,

u(x, 0) = 0
(2.2)

is represented by

u(t) =

∫ t

0

W (t− τ)f(·, τ)dτ.

For given b > 0 let L2
b denote the weighted Sobolev space L2(e2bxdx). The operator

A also generates a semigroup Wb(t) in the space L2
b which is formally equivalent to

the semigroup

Wb(t) = exp[−t(D − b)3 − t(D − b)](2.3)

in the space L2(R) (cf. [10]).
The following two smoothing properties of the linear KdV equation are due to

Kato [10]. Lemma 2.1 asserts that the solution u of the IVP (2.1) is smoother than
its initial data φ if φ belongs to a certain weighted Sobolev space. Lemma 2.2 shows
that the solutions of the inhomogeneous problem (2.2) possess a similar smoothing
property.

Lemma 2.1. {Wb(t), t > 0} is an infinitely differentiable semigroup on Hs(R)
for each real s. Moreover, for any s ≤ s′, Wb(t) is bounded as an operator from Hs(R)
to Hs′(R),

‖Wb(t)‖L(Hs, Hs′ ) ≤ ct−(s′−s)/2 exp(b3t),(2.4)

where ‖ · ‖L(Hs, Hs′ ) denotes the operator norm for bounded linear operators from

Hs(R) to Hs′(R).
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As a result, if φ ∈ Hs(R) has compact support, then W (t)φ is infinitely smooth
everywhere except at t = 0.

Lemma 2.2. For any real s, let

ebxu ∈ L∞([0, T ];Hs(R)), ebxf ∈ L∞([0, T ];Hs−1(R)),

and

ut + uxxx + ux = f, 0 < t < T.

Then

ebxu ∈ C([0, T ];H0) ∩ C([0, T ];Hs) for every s′ < s+ 1,

and

ebxu(t) = Wb(t)u(0) +

∫ t

0

Wb(t− τ)ebxf(τ)dτ.

Next we recall several more subtle smoothing properties of the linear KdV equa-
tion due to Bourgain [4], [5] and Kenig, Ponce, and Vega [13]. First we introduce a
special Sobolev-type space used by Kenig, Ponce, and Vega in [13].

For any s, b ∈ R, let Ys,b be the completion of the space S(R2) of tempered test
functions with respect to the norm

‖f‖2Ys,b =

∫ ∞
−∞

∫ ∞
−∞

(1 + |τ − ξ − ξ3|)2b(1 + |ξ|)2s|f̂(ξ, τ)|2dξdτ,

where f̂(ξ, τ) denotes the Fourier transform of f(x, t). As shown in [13], if u ∈ Ys,b
with s > −1 and b > 1/2, one has

u ∈ C [1+s],α
loc (R;L2

t (R))

for any 0 ≤ α ≤ 1 + s− [1 + s], and consequently

u ∈ Lpx,loc(R;L2
t (R)),

for 1 ≤ p ≤ ∞. Here [1 + s] denotes the integer part of 1 + s. In particular, if s ≥ 0,
then u ∈ C1(R;L2

t (R)).
The following lemmas can be found in [13] or followed directly from the results

there (cf. also [3], [33]).
Lemma 2.3. Let there be given s > −3/4 and σ ∈ C∞0 (R). Then there exists a

β0 ∈ (1/2, 1) such that for any b ∈ (1/2, β0), there is a constant c > 0 for which

‖σ(t)∂x(uv)‖Ys,b−1
≤ c‖u‖Ys,b‖v‖Ys,b(2.5)

for any u, v ∈ Ys,b.
Equation (2.5) is a key estimate, which reveals a subtle smoothing property of

the linear KdV equation. When s = 0 and b = 1/2, the estimate was established by
Bourgain in [5]. Then it was proved by Kenig, Ponce, and Vega in [13] for s > −5/8,
and for s > −3/4 in [14]. Estimate (2.5) is not true for s < −3/4 (see [14]).
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Lemma 2.4. Let b > 1/2 and s ∈ R be given. Then Ys,b ⊂ C(R;Hs(R)) and
there is a constant c > 0 such that for any f ∈ Ys,b,

sup
t∈R
‖f(·, t)‖Hs(R) ≤ c‖f‖Ys,b .

Lemma 2.5. Suppose σ ∈ C∞0 (R). For given s ∈ R and b ∈ (1/2, 1], there is a
constant c > 0 such that

‖σ(t)W (t)u0‖Ys,b ≤ c‖u0‖Hs(R)(2.6)

and ∥∥∥∥σ(t)

∫ t

0

W (t− τ)f(τ)dτ

∥∥∥∥
Ys,b

≤ c‖f‖Ys,b−1
(2.7)

for any u0 ∈ Hs(R) and f ∈ Ys,b−1.
Remark 2.1. Combining (2.5) and (2.7), one has∥∥∥∥σ1(t)

∫ t

0

W (t− τ)σ2(τ)(∂x(uv))(·, τ)dτ

∥∥∥∥
Ys,b

≤ c‖u‖Ys,b‖v‖Ys,b .(2.8)

This constitutes a global smoothing property of the linear KdV equation.
In order to prove the main exact control results in the paper we need to extend the

above smoothing properties to solutions of the linearized KdV equation with variable
coefficient:

ut + ux + (a(x, t)u)x + uxxx = 0, u(x, 0) = φ(x)(2.9)

for x, t ∈ R. We assume a ∈ C(R;H∞(R)) for the sake of simplicity. By the
standard semigroup theory, for each given real s and φ ∈ Hs(R), (2.9) possesses a
unique solution u ∈ C(R;Hs(R)) satisfying

sup
t∈[−T,T ]

‖u(·, t)‖Hs(R) ≤ c‖φ‖Hs(R),(2.10)

where the constant c depends only on s, T , and a. In addition, if ebxφ ∈ Hs(R)
for some b > 0, then ebxu ∈ C(R;Hs(R)). The following lemma is an extension of
Lemma 2.1.

Lemma 2.6. For given T > 0, s ∈ R, and b > 0, suppose ebxφ(x) ∈ Hs(R) and
u is the solution of (2.9). Then ebxu(x, t) belongs to the space C((0, T ];Hs′(R)) for
any s ≤ s′ < s+ 1. Moreover,

‖eb·u(·, t)‖Hs′ (R) ≤ ct−(s′−s)/2‖φ(·)‖Hs(R)(2.11)

for any 0 < t < T , where c > 0 depends only on s, s′, a, and T .
Proof. Since ebxu ∈ C([0, T ];Hs(R)) and

ut + ux + uxxx = −(a(x, t)u)x

with ebx(a(x, t)u)x ∈ C([0, T ];Hs−1(R)), it follows from Lemma 2.2 that ebxu ∈
C((0, T ];Hs′(R)) for any s′ < s+ 1 and

ebxu(t) = Wb(t)φ(x)−
∫ t

0

Wb(t− τ)ebx(a(x, τ)u(x, τ))xdτ.
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Applying Lemma 2.1 yields

‖eb·u(·, t)‖Hs′ (R) ≤ ‖Wb(t)φ‖Hs′ (R) +

∫ t

0

‖Wb(t− τ)eb·(a(·, t)u(·, t))x‖Hs′ (R)dτ

≤ ct−(s′−s)/2eb
3t‖φ‖Hs(R) + c

∫ t

0

(t− τ)−(s′−s+1)/2eb
3(t−τ)‖eb·(a(·, τ)u(·, τ))x‖Hs−1(R)dτ

≤ ct−(s′−s)/2eb
3t‖φ‖Hs(R) + c

∫ t

0

(t− τ)−(s′−s+1)/2eb
3(t−τ)‖eb·u(·, τ)‖Hs(R)dτ

for any t > 0. Let

w(t) = t(s
′−s)/2e−b

3t‖eb·u(·, τ)‖Hs′ (R).

Then

w(t) ≤ c‖φ‖Hs(R) + c

∫ t

0

t(s
′−s)/2τ−(s′−s)/2(t− τ)−(s′−s+1)/2w(τ)dτ.

One can choose T ∗ small enough so that

c

∫ t

0

t(s
′−s)/2τ−(s′−s)/2(t− τ)−(s′−s+1)/2dτ < 1/2

for 0 < t ≤ T ∗. Then

w(t) ≤ c‖φ‖Hs(R) +
1

2
sup

0≤τ≤t
w(τ)

for any 0 < t ≤ T ∗. This implies that

w(t) ≤ c‖φ‖Hs(R)

for any 0 < t ≤ T ∗, i.e.,

‖eb·u(·, t)‖Hs′ (R) ≤ ct−(s′−s)/2eb
3t‖φ‖Hs(R)

for any t ∈ (0, T ∗]. As the chosen T ∗ does not depend on φ, a standard argument
enables us to extend T ∗ to T ∗ = T so that for any t ∈ (0, T ),

‖eb·u(·, t)‖Hs′ (R) ≤ ct−(s′−s)/2e3t‖φ‖Hs(R).

Here c > 0 depends only on T , s, and s′ as well as a. The proof is complete.
The next lemma is an extension of Lemma 2.5 for the linearized KdV equation

(2.9). Its proof can be found in [3].
Lemma 2.7. Suppose s > −3/4 is given, T > 0, b is as in Lemma 2.3 with

1/2 < b ≤ 1, and a ∈ Ys,b. Then for any u0 ∈ Hs(R) and f ∈ Ys,b−1, the IVP (2.9)
has a unique solution u ∈ C(−T, T ;Hs(R)) which is the restriction to (−T, T ) of a
function ū ∈ Ys,b that satisfies the estimate

‖ū‖Ys,b ≤ c1
(‖u0‖Hs(R) + ‖f‖Ys,b−1

)
,(2.12)

where c1 = c1(T, ‖a‖Ys,b).
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3. The linear system. In this section we consider the initial value control
problem for the linearized KdV equation posed on the whole line R: zt + zx + (a(x, t)z)x + zxxx = 0, x, t ∈ R,

z(x, 0) = h(x).
(3.1)

Again we assume a ≡ a(x, t) is H∞ smooth for simplicity. The theorem below is
a linear version of Theorem 1.2 but without the restriction on the amplitude of the
initial and terminal states.

Theorem 3.1. Let s ≥ 0 and T > 0 be given. There exists a bounded linear
operator G: Hs(α, β)×Hs(α, β)→ Hs(R) such that for any φ and ψ in Hs(α, β) if
one chooses h = G(φ, ψ) ∈ Hs(R), then the corresponding solution z of (3.1) satisfies

z(x, 0) = φ(x), z(x, T ) = ψ(x)

on the interval ∈ (α, β) and

‖h‖Hs(R) = ‖G(φ, ψ)‖Hs(R) ≤ c(‖φ‖Hs(α,β) + ‖ψ‖Hs(α,β)),

where c > 0 is independent of φ and ψ.
Remark 3.1. By the standard semigroup theory, the solution

u ∈ C([0, T ];Hs(R)) ∩ L2(0, T ;H
(s+1)
loc (R)).

However, from the proof of the theorem one can see that, in fact, u ∈ C∞(R× (0, T ))
even though its initial state and the terminal state belong only to L2(R).

Proof. Without loss of generality, we may assume that ψ ≡ 0 since the system is
time reversible. We split the proof into several steps.

Step 1. Let ε > 0 be small and let p(x) be a smooth function satisfying

p(x) =

 1 for x ∈ (α, β),

0 for x ∈ (α− ε, β + ε).

We define an operator P from Hs(R) to Hs(R) by

P(f)(x) = p(x)f(x)

for any f ∈ Hs(R). Obviously P is a bounded linear operator and the support of
P(f) is in the interval (α− ε, β + ε) for any f ∈ Hs(R). In addition, let E denote the
usual extension operator from Hs(α, β) to Hs(R): for any f ∈ Hs(α, β),

• E(f) ∈ Hs(R) and E(f)(x) = f(x) on (α, β);
• E(f) has a compact support;
• ‖E(f)‖Hs(R) ≤ c‖f‖Hs(α,β), where c > 0 does not depend on f .

Let Wa(t) denote the continuous group associated to the IVP (3.1). Then for any
given h ∈ Hs(R), the unique solution of (3.1) is represented by

z(t) = Wa(t)h.

For given T > 0, let K = Wa(−T )PWa(T )E . Consider the following function equation
in the space Hs(α, β):

(I −K)f = φ.(3.2)
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Claim 3.1. For any φ ∈ Hs(α, β), if (3.2) has a solution f ∈ Hs(α, β), then
there exists an h ∈ Hs(R) such that the corresponding solution z of the IVP (3.1)
satisfies

z(x, 0) = φ(x), z(x, T ) = 0

in the interval (α, β).
Indeed, if f ∈ Hs(α, β) is a solution of (3.2) for given φ, let

h = Ef −Wa(−T )PWa(T )Ef(3.3)

be the initial value of (3.1); then the unique solution z = Wa(t)h of (3.1) satisfies

z(x, 0) = Wa(0)h = φ(x), on (α, β)

and

z(x, T ) = Wa(T )h

= Wa(T )Ef − PWa(T )Ef
= 0 on (α, β).

Remark 3.2. If h is given by (3.3), then z = Wa(t)h ∈ C∞(R × (0, T )). This is
because h1 ≡ Ef has compact support, and h2 ≡ Wa(−T )PWa(T )Ef ∈ H∞(R) for
PWa(T )Ef ∈ H∞(R).

Step 2. We seek a necessary and sufficient condition for (3.2) to have a solution.
By the definition of the operator E , for any f ∈ Hs(α, β), the function Ef belongs

to the space Hs(R) and has compact support in R. Therefore ebxEf ∈ Hs(R). By
Lemma 2.6,

‖eb·Wa(T )Ef‖Hs′ (R) ≤ cT−(s′−s)/2‖Ef‖Hs(R) ≤ cT−(s′−s)/2‖f‖Hs(α,β)

for any s ≤ s′ < s+ 1. It then follows that

‖Wa(T )Ef‖Hs′ (R) ≤ c‖eb·Wa(T )Ef‖Hs′ (R) ≤ cT−(s′−s)/2‖f‖Hs(α,β).

Consequently, as an operator from Hs(α, β) to Hs(α, β), Wa(T )E is a compact opera-
tor and so is the operator K = Wa(−T )PWa(T )E . Equation (3.2) is then a Fredholm
equation in the space Hs(α, β). According to the Fredholm theory, the following
statements are true for the operator (I −K):

(a) the range R(I −K) of the operator I −K is a closed subspace of Hs(α, β);
(b) the null space N (I−K) of I−K is a finite dimensional subspace of Hs(α, β),

and its dimension equals the dimension of the null space N (I −K∗) of the
operator I −K∗. Here K∗ is the adjoint of K;

(c) φ ∈ R(I −K) if and only if φ is orthogonal to the space N (I −K∗);
(d) considered as an operator from (N (I − K))⊥, the orthogonal complement

of N (I − K) in the space Hs(α, β), to R(I − K), the operator I − K has
a bounded inverse (I − K)−1 fromR(I − K) to (N (I − K))⊥, i.e., for any
φ ∈ R(I −K) there exists a unique f ∈ (N (I −K))⊥ satisfying

‖f‖Hs(α,β) = ‖(I −K)−1φ‖Hs(α,β) ≤ c‖φ‖Hs(α,β),(3.4)

where c > 0 is independent of φ.
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As a result, we may assume thatN (I−K∗) is a space of dimension m with {ψ1, ψ2, . . . ,
ψm} as its orthonormal basis; (ψi, ψj)Hs(α,β) = δij for i, j = 1, 2, . . . ,m. The follow-
ing claim then holds.

Claim 3.2. For a given function φ ∈ Hs(α, β), (3.2) has a solution, i.e., φ ∈
R(I −K), if and only if

(φ, ψj)Hs(α,β) = 0, j = 1, 2, . . . ,m.

Step 3. We show that the set of all φ ∈ Hs(α, β) such that (3.2) has a solution is
a dense subset of the space Hs(α, β).

Claim 3.3. For any given φ ∈ Hs(α, β) and ε > 0, one can find h ∈ H∞(R) and
φ1 ∈ H∞(α, β) with

‖φ− φ1‖Hs(α,β) ≤ ε
such that the solution z = Wa(t)h of (3.1) satisfies

z(x, 0) = φ1(x) and z(x, T ) = 0 on (α, β).

The following technical lemma is needed for the proof of Claim 3.3.
Lemma 3.2. Let Q = (α, β)× (0, T ),

L ≡ ∂t + ∂x + ∂x(a(x, t)u) + ∂3
x,

and L be the set of the collection of all smooth functions f(x, t) in the cylinder R ×
[−2T, 2T ] vanishing near the top and the bottom of Q̄. Then the set

L(L) = {the restriction of Lf on (α, β)× (0, T ) : f ∈ L}
is dense in the space L2(0, T ;Hs(α, β)).

We prove Lemma 3.2 by contradiction. Suppose that the set L(L) is not dense
in L2(0, T : Hs(α, β)). Then there exists a nonzero g ∈ L2(0, T ;Hs(α, β)) which is
orthogonal to L(L). Thus

L∗g = 0 in Q

and g has Cauchy data zero on the lateral boundary of Q (as a matter of fact, g can
be extended to be zero outside the lateral boundary of Q). In other words, g solves

gt + gx + a(x, t)gx + gxxx = 0, x ∈ R, t ∈ (0, T ),

and vanishes outside (α, β)× (0, T ). By the smoothing properties of the equation, we
know that g(·, t) ∈ C∞(R) for any t ∈ (0, T ), which leads to g ≡ 0 by the unique
continuation property of the equation (cf. [30]). This is a contradiction.

Now we prove Claim 3.3. First we choose ψ ∈ H∞(R) such that

‖ψ − φ‖Hs(α,β) ≤ ε.
Let v be the solution of the IVP

vt + vx + (a(x, t)v)x + vxxx = 0, v(x, 0) = ψ(x)

for x ∈ R and t ∈ (0, T ). Suppose that θ(t) is a given cutoff function: θ(t) ≡ 1
near t = 0 and θ(t) ≡ 0 near T . Let L(θ(t)v) = F (x, t). Note that F is C∞-
smooth and F ∈ Ck(R;Hm(R)) for any k ≥ 1, m ≥ 1. Then there exists a smooth
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function u ∈ C∞(R,H∞(R)) vanishing near the top and the bottom of Q such that
F1 := Lu ∈ C∞(R,H∞(R)) satisfying

‖F − F1‖L2(0,T ;Hs(α,β)) ≤ ε
for L(L) is dense in the space L2(0, T ;Hs(α, β)) (Lemma 3.2). Let w be the unique
solution of

wt + wx + (a(x, t)w)x + wxxx = F − F1, w(x, 0) = 0

for x ∈ R and t ∈ (0, T ) and set

z(x, t) = θ(t)v − u− w − y,
where y(x, t) solves the linear KdV equation on R posed backward in time:

yt + yx + (a(x, t)y)x + yxxx = 0, y(x, T ) = w(x, T ).

Then Lz = 0 and z(x, T ) = w(x, T )− y(x, T ) = 0 on (α, β) and

‖z(·, 0)− φ(·)‖Hs(α,β) ≤ ‖z(·, 0)− ψ(·)‖+ ‖ψ(·)− φ(·)‖

≤ ε+ ‖y(·, 0)‖Hs(α,β)

≤ ε+ c‖w(·, T )‖Hs(α,β)

≤ ε+ c‖F − F1‖L2(0,T ;Hs(α,β))

≤ cε.
Consequently, we only need to choose h(x) = φ1(x) = z(x, 0) to complete the proof
of Claim 3.3.

Step 4. We construct the needed control operator G to complete the proof of
Theorem 3.1.

Recall from Step 2 that the set {ψ1, . . . , ψm} is an orthonormal basis for the space
N (I −K∗) and

(ψi, ψj)Hs(α,β) = δij

for i, j = 1, 2, . . . ,m. According to Claim 3.3, we can find φj ∈ H∞(α, β) sufficiently
close to ψj , and hj ∈ H∞(R) for j = 1, 2, ·,m such that

det((φj , ψi)Hs(α,β)) 6= 0(3.5)

and wj(t) = Wa(t)hj satisfies

wj(x, 0) = φj(x), wj(x, T ) = 0(3.6)

on the interval (α, β) for j = 1, 2, . . . ,m.
For any given φ ∈ Hs(α, β), consider the following system of linear equations for

a1, a2, . . . , am:

n∑
i=1

(ψj , φi)Hs(α,β)ai = (φ, ψj), j = 1, 2, . . . ,m.(3.7)
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By (3.5), it has a unique solution ~a = (a1, a2, . . . , am). Moreover,

m∑
j=1

|aj | ≤ c‖φ‖Hs(α,β)(3.8)

for some constant c > independent of φ. If we let

φN =
m∑
j=1

ajφj , hN =

m∑
j=1

ajhj ,(3.9)

then zN (t) = Wa(t)hN =
∑m
j=1Wa(t)ajhj satisfies

zN (x, 0) =

m∑
j=1

ajφj(x) = φN (x), zN (x, T ) = 0(3.10)

on the interval (α, β). In addition,

‖hN‖Hs(R) ≤
m∑
j=1

|aj |‖hj‖Hs(R)

≤ max
j=1,2,...,m

‖hj‖Hs(R)

m∑
j=1

|aj |.

By (3.8), there exists a constant c > 0 independent of φ such that

‖hN‖Hs(R) ≤ c‖φ‖Hs(α,β).(3.11)

Furthermore, if we let

φR = φ− φN ,

then it follows from (3.7) that

(φR, ψi)Hs(α,β) = 0, i = 1, 2, . . . ,m.

Hence φR ∈ R(I − K) by Claim 3.2. According to what we have proved in Step 2
there exists a unique fR ∈ (N (I −K))⊥ which solves (3.2) and satisfies

‖fR‖Hs(α,β) ≤ c‖φR‖Hs(α,β) ≤ c‖φ‖Hs(α,β)(3.12)

for some constant c > 0 independent of φ. Define

hR = EfR −Wa(−T )PWa(T )EfR.(3.13)

By Claim 3.1, the solution wR(t) ≡Wa(t)hR of (3.1) satisfies

wR(x, 0) = φR(x), wR(·, T ) = 0

on the interval (α, β) and

‖hR‖Hs(R) ≤ c‖φR‖Hs(α,β) ≤ c‖φ‖Hs(α,β),(3.14)
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where c is independent of φ. Consequently, if we define

Gφ = hN + hR for any φ ∈ Hs(α, β),

where hN and hR are as given by (3.9) and (3.14), respectively, then G is a bounded
linear operator from Hs(α, β) to Hs(R) and z(t) = Wa(t)Gφ is a solution of (3.1)
with h = G(φ), which satisfies

z(x, 0) = φ(x), z(x, T ) = 0

on the interval (α, β). Moreover, Wa(t)G(φ) ∈ C∞(R × (0, T )) since both Wa(t)hN
and Wa(t)hR belong to C∞(R× (0, T )). The proof is complete.

As a corollary of Theorem 3.1, we have the following result for the two point (in
time) boundary value problem for the linearized KdV equation: ut + ux + (a(x, t)u)x + uxxx = 0, x ∈ R, t ∈ (0, T ),

u(x, 0) = φ(x) and u(x, T ) = ψ(x) on the interval (α, β).
(3.15)

Corollary 3.3. Let s ≥ 0 and T > 0 be given. Then for any φ, ψ ∈ Hs(R), the
problem (3.15) has a solution

u ∈ C([0, T ];Hs(R)) ∩ L2(0, T ;Hs+1
loc (R)) ∩ C∞(R× (0, T )).

Remark 3.3. In fact, there are infinitely many such solutions.
As another corollary to Theorem 3.1, we have the following result for boundary

control of the linearized KdV equation posed on a bounded domain (α, β): ut + ux + (a(x, t)u)x + uxxx = 0, x ∈ (α, β), t ∈ (0,∞),

u(α, t) = h1(t), u(β, t) = h2(t), ux(β, t) = h3(t),
(3.16)

where hj(t), j = 1, 2, 3, are considered as control inputs.
Corollary 3.4. Let s ≥ 0 and T > 0 be given. For any φ ∈ Hs(α, β), ψ ∈

Hs(α, β), there exist h1, h2, and h3 ∈ L2(0, T ) (hj ∈ C[0, T ], j = 1, 2, 3, if s > 3/2)
such that (3.16) has a solution

u ∈ C([0, T ];Hs(α, β)) ∩ L2(0, T ;Hs+1(α, β))

satisfying

u(x, 0) = φ(x), u(x, T ) = ψ(x)

in the interval (α, β).
Remark 3.4. In fact we have hj ∈ C∞(0, T ), j = 1, 2, 3, and the corresponding

solution

u ∈ C∞((α, β)× (0, T )).

Proof. For given ψ, φ ∈ Hs(α, β), let h = G(φ, ψ) and w(t) = Wa(t)h. Then
w ∈ C([0, T ];Hs(R)) ∩ L2(0, T ;Hs+1

loc (R)) and by Theorem 3.1,

w(x, 0) = φ(x), w(x, T ) = ψ(x)



560 BING-YU ZHANG

in the interval (α, β). Thus if we let u(x, t) be the restriction of w(x, t) to the domain
[α, β] × [0, T ], then u ∈ C([0, T ];Hs(α, β)) ∩ L2(0, T ;Hs+1(α, β)) solves (3.16) with
the boundary value functions there given by

h1(t) = w(α, t), h2(t) = w(β, t), h2(t) = wx(β, t)

and satisfies

u(x, 0) = φ(x), u(x, T ) = ψ(x).

The proof is complete.

4. Nonlinear system. Before presenting the proofs for our main results, Theo-
rems 1.1 and 1.2, we consider initial value control of the following nonlinear system
described by the KdV equation with variable coefficient: vt + vx + vvx + (a(x, t)v)x + vxxx = 0, x ∈ R, t ∈ R,

v(x, 0) = h(x).
(4.1)

Here a(x, t) is assumed to be smooth for simplicity. When the initial value h is consid-
ered as a control input, the system possesses the following type of exact controllability.

Proposition 4.1. Let s ≥ 0, T > 0, and b > 0 as given in Lemma 2.3. In
addition, suppose a ∈ Ys,b. Then there exists δ > 0 such that if φ, ψ ∈ Hs(α, β) with

‖φ‖Hs(α,β) ≤ δ and ‖ψ‖Hs(α,β) ≤ δ,
one can find h ∈ Hs(R) such that the corresponding solution v of (4.1) satisfies

v(x, 0) = φ(x), v(x, T ) = ψ(x)

on the interval (α, β).
Proof. Using the notation of the C0-group Wa(t) we write (4.1) in its equivalent

integral equation form:

v(t) = Wa(t)h−
∫ t

0

Wa(t− τ)(vvx)(τ)dτ.(4.2)

Let

ω(T, v) ≡
∫ T

0

Wa(T − τ)(vvx)(τ)dτ.

Then, according to Theorem 3.1, for given φ, ψ ∈ Hs(α, β), if one chooses

h = G(φ, ψ + ω(T, v))

in (4.2), then

v(t) = Wa(t)G(φ, ψ + ω(T, v))−
∫ t

0

Wa(t− τ)(vvx)(τ)dτ

satisfies

v(x, 0) = φ(x), v(x, T ) = ψ(x)
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on the interval (α, β) by virtue of the definition of the operator G. This suggests that
we consider the map

Γ(v) = Wa(t)G(φ, ψ + ω(T, v))−
∫ t

0

Wa(t− τ)(vvx)(τ)dτ.

If we can show that the map Γ is a contraction in an appropriate Banach space,
then its fixed point v is a solution of (4.1) with h = G(φ, ψ + ω(T, v)) which satisfies
v(x, 0) = φ(x) and v(x, T ) = ψ(x) on the interval (α, β). We show that this is the
case in the space Ys,b given earlier in section 2.

To this end, we modify the map Γ as follows:

Γ(v) = σ1(t)Wa(t)Φ(φ, ψ + ω(T, v))− σ1(t)

∫ t

Wa(t− τ)σ2(τ)(vvx)(τ)dτ

for any v ∈ Ys,b, where σ1(t) is a smooth nonnegative function satisfying σ1(t) = 1 for
any t ∈ (−T, T ) but with its support inside the interval (−T −1/2, T +1/2), and σ2 is
also a nonnegative smooth function with its support contained in (−T −1/2, T +1/2)
but is identically equal to 1 on the support of σ1. By Lemma 2.7,

‖Γ(v)‖Ys,b ≤ c‖G(φ, ψ + ω(T, v))‖Hs(R) + c‖v‖2Ys,b

≤ c(‖φ‖Hs(R) + ‖ψ‖Hs(R) + ‖ω(T, v)‖Hs(R) + c‖v‖2Ys,b).

As

‖ω(T, v)‖Hs(R) =

∥∥∥∥∥
∫ T

0

Wa(T − τ)(vvx)(τ)dτ

∥∥∥∥∥
Hs(R)

≤ sup
t∈R
‖σ1(t)

∫ t

0

Wa(t− τ)σ2(τ)(vvx)(τ)dτ‖Hs(R)

≤ c‖σ1(t)

∫ t

0

Wa(t− τ)σ2(τ)(vvx)(τ)dτ‖Ys,b
≤ c‖v‖2Ys,b ,

we have

‖Γ(v)‖Ys,b ≤ c
(‖φ‖Hs(α,β) + ‖ψ‖Hs(α,β)

)
+ c‖v‖2Ys,b .

For M > 0, let

SM = {v ∈ Ys,b; ‖v‖Ys,b ≤M}.

Then for any v ∈ SM ,

‖Γ(v)‖Ys,b ≤ c
(‖φ‖Hs(α,β) + ‖ψ‖Hs(α,β)

)
+ cM2

for some appropriate constant c > 0 independent of v.
Choose δ > 0 and M such that

2cδ + CM2 ≤M, cM < 1/2.(4.3)
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Then

‖Γ(v)‖Ys,b ≤M
for any v ∈ SM if ‖φ‖Hs(α,β) ≤ δ, ‖ψ‖Hs(α,β) ≤ δ. In addition, for any v1, v2 ∈ SM ,

Γ(v1)− Γ(v2) = σ1(t)Wa(t)(G(φ, ψ + ω(T, v1))−G(φ, ψ + ω(T, v2)))

− σ1(t)

∫ t

0

Wa(t− τ)σ2(τ)

(
1

2
∂x((v1 + v2)(v1 − v2))

)
(τ)dτ

= σ1(t)Wa(t)G(φ, ω(T, v1)− ω(T, v2))

− σ1(t)

∫ t

0

Wa(t− τ)σ2(τ)

(
1

2
∂x((v1 + v2)(v1 − v2))

)
(τ)dτ

and

ω(T, v1)− ω(T, v2) =

∫ T

0

Wa(T − τ)

(
1

2
∂x((v1 + v2)(v1 − v2))

)
(τ)dτ.

A similar argument shows that

‖Γ(v1)− Γ(v2)‖Ys,b ≤
1

2
‖v1 + v2‖Ys,b‖v1 − v2‖Ys,b

≤ cM‖v1 − v2‖Ys,b

≤ 1

2
‖v1 − v2‖Ys,b .

Thus the map Γ is a contraction on SM provided that δ and M are chosen according
to (4.3). As a result, its fixed point v ∈ SM is a solution of the integral equation

v(t) = σ1(t)Wa(t)G(φ, ψ + ω(T, v))− σ1(t)

∫ t

σ2(τ)Wa(t− τ)(vvx)(τ)dτ

for any t ∈ R. In particular, for t ∈ (0, T ),

v(t) = Wa(t)G(φ, ψ + ω(T, v))−
∫ t

0

Wa(t− τ)(vvx)(τ)dτ.

That is to say, v ∈ C([0, T ];Hs(R)) solves the IVP vt + vvx + vx + (a(x, t)v)x + vxxx = 0,

v(x, 0) = G(φ, ψ + ω(T, v)) = h(x)

for any t ∈ (0, T ) and satisfies

v(x, 0) = φ(x), v(x, T ) = ψ(x), on the interval (α, β).

The proof is complete.
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Now we turn to the proof of the main theorems described in the introduction of
this paper.

Proof of Theorem 1.1. Let u be a solution of (1.5)–(1.6) satisfying

u(x, 0) = φ(x)

and let

z(x, t) = u(x, t)− w(x, t),

where w is as given in the assumption. Then z(x, t) solves
zt + zzx + zx + (w(x, t)z)x + zxxx = 0,

z(x, 0) = φ(x)− w(x, 0),

z(α, t) = h̃1(t), z(β, t) = h̃2(t), zx(β, t) = h̃3(t)

(4.4)

with

h̃1(t) = h1(t)− w(α, t), h̃2(t) = h2(t)− w(β, t), h̃3(t) = h3(t)− wx(β, t).

Let ξ(x, t) be a smooth function of x and t with compact support in (α1, β1)×(−T, T+
1) and ξ(x, t) = 1 for any (x, t) ∈ (α, β) × [0, T ]. Setting a(x, t) = ξ(x, t)w(x, t), we
consider the following KdV equation posed on the whole line R:

vt + vx + vvx + (a(x, t)v)x + vxxx = 0, v(x, 0) = h(x).(4.5)

Note that a ∈ Ys,b by its definition. It follows from Proposition 4.1 that there exists a
δ > 0 such that if ‖(φ(·)−w(·, 0))‖Hs(α,β) ≤ δ and ‖(ψ(·)−w(·, T ))‖Hs(α,β) ≤ δ, then
one can find an h ∈ Hs(R) such that the corresponding solution v of (4.5) satisfies

v(x, 0) = φ(x)− w(x, 0), v(x, T ) = ψ(x)− w(x, T )

on the interval (α, β). When restricted to the interval (α, β), a(x, t) ≡ w(x, t) and
v(x, t) solves (4.4) on the domain (α, β)× (0, T ) with

h1(t) = v(α, t) + w(α, t), h2(t) = v(β, t) + w(β, t), h3(t) = vx(β, t) + wx(β, t).

Consequently, u = z(x, t) + w(x, t) is the desired solution we are looking for. The
proof is complete.

Proof of Theorem 1.2. Let

φ̃(x) = φ(x)− w(x, 0) and ψ̃(x) = ψ(x)− w(x, T ).

Applying Proposition 4.1 to

vt + vx + vvx + (a(x, t)v)x + vxxx = 0, v(x, 0) = h̃(x)(4.6)

for x, t ∈ R, where a(x, t) = σ(t)w(x, t) and σ(t) is a smooth function with compact
support and σ(t) = 1 for t ∈ [0, T ], yields that there exists an h̃ ∈ Hs(R) such that
(4.6) has a solution v satisfying

v(x, 0) = φ̃(x) and v(x, T ) = ψ̃(x)
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on the interval (α, β). Consequently, if we let

h(x) = h̃(x) + w(x, 0)

in (1.9), then the corresponding solution u satisfies

u(x, 0) = φ(x) and u(x, T ) = ψ(x)

on the interval (α, β). The proof is complete.
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Abstract. We study the relationships between three concepts which arise in connection with
variational inequality problems: central paths defined by arbitrary barriers, generalized proximal
point methods (where a Bregman distance substitutes for the Euclidean one), and Cauchy trajectory
in Riemannian manifolds. First we prove that under rather general hypotheses the central path
defined by a general barrier for a monotone variational inequality problem is well defined, bounded,
and continuous and converges to the analytic center of the solution set (with respect to the given
barrier), thus generalizing results which deal only with complementarity problems and with the
logarithmic barrier. Next we prove that a sequence generated by the proximal point method with
the Bregman distance naturally induced by the barrier function converges precisely to the same
point. Furthermore, for a certain class of problems (including linear programming), such a sequence
is contained in the central path, making the concepts of central path and generalized proximal point
sequence virtually equivalent. Finally we prove that for this class of problems the central path also
coincides with the Cauchy trajectory in the Riemannian manifold defined on the positive orthant
by a metric given by the Hessian of the barrier (i.e., a curve whose direction at each point is the
negative gradient of the objective function at that point in the Riemannian metric).

Key words. convex programming, linear programming, variational inequalities, complemen-
tarity problems, interior point methods, central path, generalized distances, proximal point method,
Riemannian manifolds
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PII. S0363012995290744

1. Introduction. We study in this paper the connection among three concepts
which arise in relation to convex optimization problems and, more generally, monotone
variational inequality problems.

These three concepts are central paths derived from barrier functions, proximal
point algorithms with generalized distances, and Cauchy trajectories in Riemannian
manifolds. In recent years these notions have been the object of intense study, and
many results have been obtained regarding each of them in an independent way.

We will prove that in some cases, including linear programming, these three
concepts are in a certain way equivalent, opening the road to a process of cross-
fertilization, exchanging the results obtained with each approach. For other problems
this equivalence breaks down, but there are nevertheless striking connections, which
will be brought forth in our discussion.

It happens to be the case that though many results obtained for these concepts are
quite similar, the technical hypotheses made in their proofs are somewhat different.
As a consequence, the comparison among results becomes difficult. To overcome
this obstacle, we present in section 2 a development of the concept and convergence
properties of central paths which generalizes previous expositions both with regard to
the type of problems being considered and to the class of barrier functions.
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We start with an informal presentation of these three concepts, beginning with
central paths. Given a monotone operator T : Rn → P(Rn) and a closed and convex
set C ⊂ Rn, the variational inequality problem VIP(T ,C) consists of finding z ∈ C
such that, for some u ∈ T (z), it holds that 〈u, z − x〉 ≥ 0 for all x ∈ C (see [Kin]).
Assuming that the interior Co of C is nonempty, we consider a barrier h for C. The
function h : Co → R is assumed to be strictly convex and differentiable, and its
gradient ∇h must diverge at the boundary ∂C of C. For µ ∈ R++ let x(µ) ∈ C be
such that

− 1

µ
∇h(x(µ)) ∈ T (x(µ)).(1)

The set {x(µ) : µ > 0} is called the central path for VIP(T ,C) with barrier h. We
analyze in section 2 conditions on T , C, and h guaranteeing existence and uniqueness
of the central path, which is contained in Co. (For this reason h is said to be a barrier
for VIP(T ,C).) If T = ∂f for a convex f : Rn → R ∪ {∞}, then (1) is equivalent to

x(µ) = argmin
x∈C

{µf(x) + h(x)}.(2)

The problem of interest is the behavior of x∗ = limµ→∞ x(µ). One expects this
limit to exist and to be a solution of VIP(T ,C). We will prove in section 2 that this
result holds under quite general hypotheses. Another issue to be considered is the
characterization of such a limit in a more precise way, particularly when VIP(T ,C)
has multiple solutions. Here we have to consider two possibilities. Let S(T,C) be the
set of solutions of VIP(T ,C). We will prove that if the effective domain ED(h) of h
intersects S(T,C), then x∗ is the solution of

minh(x)(3)

subject to x ∈ S(T,C).(4)

The solution of this problem (unique if it exists, by strict convexity of h) is called the
analytic center of S(T,C) with respect to the barrier h.

Most of the work concerned with central paths for linear programming use the
logarithmic barrier h(x) = −∑n

j=1 log xj , which in general diverges at all optimal
solutions, since they belong to the boundary of Rn

+. For cases such as this, we are
still able to provide a characterization of x∗ in some special cases. Theorem 2 of this
paper says that x∗ is the solution of

min h̃(x)(5)

s.t. x ∈ S(T,C)(6)

for some appropriate h̃. This theorem covers the cases of linear programming, con-
vex quadratic programming, some monotone linear complementarity problems, and
also some cases of linearly constrained nonlinear convex optimization problems and
nonlinear complementarity problems.

At this point, it is convenient to relate these results with the existing litera-
ture on central paths. The concept of central path has aroused a keen interest in
connection with interior point methods for linear programming, because sequences
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which lie close enough to the central path with respect to the logarithmic barrier
h(x) = −∑n

j=1 log xj enjoy very interesting convergence properties (see [Gon]). The
concept can be traced back to [McL], where a very special case is considered. The
central path with the logarithmic barrier for the linear programming problem has
been considered in [Meg1], and its convergence to the analytic center of the solu-
tion set has been proved in [Meg2]. [Adl2] considers the weighted logarithmic barrier
h(x) = −∑n

j=1 σj log xj , with σj > 0, and proves furthermore that limµ→∞ ẋ(µ)
exists and can be well characterized, again in the case of linear programming. The
central path with logarithmic barrier for linear complementarity problems is consid-
ered in [Koj] and [Mon]. The fact that the central path with logarithmic barrier
coincides with the affine scaling path in the case of linear programming has been es-
tablished in [Bay] and is a particular case of Theorem 4 (see section 4). The central
path with the weighted logarithmic barrier for the nonlinear complementarity prob-
lem has been studied in [Gul], where it is proved that under adequate assumptions
the path is continuous and bounded and that its cluster points are solutions of the
problem.

Now we discuss generalized proximal point methods for variational inequality
problems. We start with a strictly convex function g : C → R, continuously differen-
tiable in Co, and we define Dg : C×Co → R as Dg(x, y) = g(x)−g(y)−〈∇g(y), x−y〉.
Several technical hypotheses are made on g. (One of them is akin to divergence of
∇g at ∂C; see section 3.) The generalized proximal point algorithm (GPPA) for
VIP(T ,C) using Dg generates a sequence {xk} ⊂ Co in the following way. It starts
with x0 ∈ Co, and given xk it defines the operator Tk as

Tk(x) = T (x) + λk∂1Dg(x, x
k),(7)

where λk is an exogenously given positive number (called the regularization param-
eter) and ∂1 indicates the subdifferential with respect to the first argument. Then
xk+1 is chosen so that

0 ∈ Tk(xk+1).(8)

Existing results on this method, established in [Bur2] and [Ius3], are formally
presented in section 3, where we study the connection between central paths and
GPPA sequences. We prove that the GPPA sequence {xk} converges to the same
point as the central path with barrier h(x) = Dg(x, x

0). One could be tempted to
conjecture that the sequence {xk} is contained in this central path. We prove that
this is the case for linear programming and, more generally, for problems of the type
min ctx s.t. Ax = b, x ∈ C, where C is any closed and convex set with nonempty
interior. Moreover, any sequence {x(µk)} with increasing {µk} can be realized as a
GPPA sequence {xk} for a specific choice of the regularization parameters λk, making
the concepts of central path and GPPA sequence virtually identical in this case and,
in particular, for linear programming problems.

On the other hand, for other problems for which convergence to the analytic
center holds both for central paths and GPPA sequences (e.g., convex quadratic pro-
gramming, monotone linear complementarity problems, etc.), the GPPA sequence is
not contained in the central path, though both converge to the same point.

We summarize now the history of GPPA. It is an extension of the classical proxi-
mal point method (see [Lem]), with Dg(x, y) substituting for ‖x− y‖2. It was consid-
ered first only for the case of linear programming with g(x) =

∑n
j=1 xj log xj in [Eri]

and then for the same g and general convex optimization problems in [Egg]. The next
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four steps also dealt only with the convex optimization case (T = ∂f with convex f).
In [Cen1] a general g is allowed, but it is assumed that there exist solutions in Co

(so that the constraint set C is superfluous). This hypothesis was removed in [Che],
which imposed an additional condition on g (see H4 in section 2) and then in [Ius1],
which resulted in a weaker condition (see H2 in section 2). More recently, the method
was further generalized in [Kiw2], the results of which are discussed in section 3.

Moving beyond the convex optimization case, the method was studied in [Eck]
for the problem of finding zeros of monotone operators and later on in [Bur1], [Bur2]
for the more general case of variational inequality problems.

Finally, we discuss in section 4 Cauchy trajectories in Riemannian manifolds.
Given a function f defined on a Riemannian manifold M , it is possible to define its
gradient grad f with respect to the metric of M , and a Cauchy trajectory x(t) is
a curve contained in M such that ẋ(t) = −grad f(x(t)) for all t. We prove that
the central paths introduced in section 2 can be seen in certain cases as Cauchy
trajectories in a Riemannian manifold, whose metric is given by the Hessian matrix of
the barrier h. The ability of looking at central paths in this way has given, in the case
of linear programming with the logarithmic barrier, new insights into the properties
of the path. For instance, computational complexity of path following methods has
been related to the total Riemannian curvature of the central path (see [Kar]). We
hope that our results for general barriers will give rise to similar new insights.

The Cauchy trajectory, also called gradient trajectory, has been studied in con-
nection with algorithms for optimization problems in Riemannian manifolds; see, e.g.,
[Hel].

2. Central paths with general barriers for variational inequalities. The
main goal of this section is to prove that, under quite general hypotheses, the central
path {x(µ)} for VIP(T ,C) with barrier h converges, as µ goes to ∞, to a solution
of VIP(T ,C) and that, under more restrictive assumptions, the limit of {x(µ)} is the
analytic center of the solution set S(T,C). The set C is assumed to be closed and
convex, with nonempty interior Co.

Next we enumerate the various assumptions on h, T , and C which will be used in
this section. Some of them are required in all our results, while others are alternative
hypotheses required for some specific results. The first group of assumptions does
not involve the operator T . h : Rn → R ∪ {∞} is assumed to satisfy the following
conditions:

H1. h is strictly convex, closed, and continuous on its effective domain and con-
tinuously differentiable in Co.

H2. If {xk} is a sequence contained in Co which converges to a point x̄ in the
boundary ∂C of C, and y is any point in Co, then limk→∞〈∇h(xk), y−xk〉 =
−∞.

These two assumptions are needed in practically all our results. H2, called bound-
ary coerciveness, has been introduced in [Ius1]. It is closely connected to essential
smoothness, as defined in [Roc1].

Some of our results will require the following additional assumptions:
H3. h is finite, continuous, and strictly convex on C.
We will say that a function satisfying H3 is finite at the boundary.
H4. For all y ∈ Rn there exists x ∈ Co such that ∇h(x) = y.
H3, which entails finiteness of h at any solution of VIP(T ,C), simplifies the proof

of convergence of the central path to the analytic center. In its absence, the analytic
center has to be defined in a more complicated way, with an auxiliary function h̃
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instead of h. H4, called zone coerciveness, has been introduced in [Cen2], where the
relations among H2, H4, and essential smoothness are treated in detail. It has been
proved in [Cen2] that when h is twice continuously differentiable with nonsingular
Hessian matrix at any point in Co, H4 implies H2 and they are equivalent when C is
bounded. With H4 it is possible to prove existence of the central path without any
hypotheses on T beyond monotonicity.

For the case in which C is a generalized box, i.e., C = [α1, β2] × · · · × [αn, βn],
with αj ∈ [−∞,∞), βj ∈ (−∞,∞], αj < βj , we also consider the following condition,
called separability:

H5. h(x) =
∑n
j=1 hj(xj) with hj : (αj , βj)→ R.

H5 will be used to prove convergence of the central path to the analytic center,
in the absence of H3.

For the case of C = Rn
+, two examples of barrier functions are h(x) = −∑n

j=1 log xj ,

which satisfies H1, H2, and H5 but neither H3 nor H4, and h(x) =
∑n
j=1 xj log xj ,

which satisfies H1–H5 (with the convention that 0 log 0 = 0).
The second group of hypotheses refers to the operator T : Rn → P(Rn). The

first two of them, which are needed in most of our results, are the following:
H6. T is maximal monotone; i.e., it is monotone, meaning that 〈u− v, x− y〉 ≥ 0

for all x, y ∈ Rn, u ∈ T (x), v ∈ T (y), and if T (x) ⊂ T ′(x) for some monotone
operator T ′ and all x ∈ Rn, then T (x) = T ′(x) for all x ∈ Rn.

H7. T is paramonotone, meaning that it is maximal monotone and additionally
〈u− v, x− y〉 = 0 with u ∈ T (x), v ∈ T (y) implies u ∈ T (y), v ∈ T (x).

Paramonotonicity has been introduced in [Cen2]. The main properties of para-
monotone operators are summarized in the following proposition. For a matrix
B ∈ Rn×n, Bs will denote its symmetric part, i.e., Bs = 1/2(B + Bt) and rk(B)
its rank. The Jacobian matrix of a point-to-point and differentiable operator U at a
point x will be denoted by JU (x).

Proposition 1.
i) If T = ∂f for some convex f : Rn → R ∪ {∞}, then T is paramonotone.
ii) If T is paramonotone, z ∈ S(T,C) and 〈u, z − x〉 ≥ 0 for some x ∈ C and

some u ∈ T (x), then x ∈ S(T,C).
iii) If T1 and T2 are paramonotone, then T1 + T2 is paramonotone.
iv) If T is point-to-point and differentiable, JT (x) is positive semidefinite (not

necessarily symmetric) and Ker(JT (x)) = Ker(JT (x)s) for all x ∈ Rn, then
T is paramonotone.

v) If T is point-to-point and differentiable, JT (x) is positive semidefinite and
rk(JT (x)) = rk(JT (x)s) for all x ∈ Rn, then T is paramonotone.

Proof. See [Ius2, Propositions 1, 2, and 6].
The following assumption is needed to prove existence of the central path in the

absence of H4. Before presenting it, we recall certain known facts on normal cones.
For a closed, convex, and nonempty set V ⊂ Rn, let δV be the indicator function of
V , i.e.,

δV (x) =
{

0 if x ∈ V,
+∞ otherwise.

We define the normality operator NV of V as NV (x) = ∂δV (x) (i.e., the set of sub-
gradients of δV at x). It is easy to check that NV (x) = ∅ if x /∈ V ; NV (x) = {0} if
x ∈ V o; NV (x) is a positive cone for all x; and, given x ∈ V , v ∈ NV (x) if and only if

〈v, x′ − x〉 ≤ 0.(9)
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The assumption is the following.
H8. T = T̂ + NV for some point-to-point, continuous, and paramonotone T̂ :

Rn → Rn and some nonempty, closed, and convex V ⊂ Rn.
The rationale behind H8 is the following. It is easy to check (e.g., [Roc2]) that

the set of solutions of VIP(T ,C) is the set of zeros of T +NC and more generally that

S(T, V ∩ C) = S(T +NV , C).(10)

Now, in many cases the problem of interest is a variational inequality problem with
a well-behaved operator T in a constraint set with empty interior, which makes the
introduction of barrier functions difficult. The trick to avoid this obstacle is to write
the constraint set as C ∩ V with Co 6= ∅ and then to transfer the additional con-
straints, given by V , to the operator, as in (10). For instance, for linear programming
we take C = Rn

+, V = {x ∈ Rn : Ax = b}. It is easy to check that for this V we have
NV (x) = Im(At) for all x ∈ Rn. Our proofs would become much simpler assuming
that T is point-to-point and continuous, or at least bounded over bounded sets, but
then we lose the option of including affine constraints in the operator.

It follows from Proposition 1(i) and (iii) and the definition of NV that H8 implies
paramonotonicity of T (see H7). It can be easily checked that H8 also implies maximal
monotonicity of T (see H6).

The following assumption is needed in order to prove convergence to the analytic
center without finiteness of h at the boundary (see H3).

H9. Let T̂ and V be as given in H8. V is an affine manifold, T̂ is continuously
differentiable, and there exists a subspace W such that Ker(J

T̂
(x)) = W for

all x ∈ C ∩ V .
As examples for which H9 holds we have linear programming, in which case

T̂ (x) = c ∈ Rn so that J
T̂

(x) = 0 and W = Rn; monotone linear complementarity

problems (including convex quadratic programming problems), in which case T̂ (x) =
Qx with Q ∈ Rn×n and W = Ker(Q); and also many cases of nonlinear operators.
Among them we can mention the gradients of self-concordant functions, introduced
in [Nes], which satisfy H9 by [Nes, Corollary 2.1.1]. Another case of interest is T̂ (x) =
At∇f(Ax), with f twice continuously differentiable and ∇2f(x) positive definite for
all x ∈ C ∩ V . Then J

T̂
(x) = At∇2f(Ax)A and it is easy to check that H9 holds

with W = Ker(A). This case occurs in maximum likelihood estimation problems. A
proof of convergence of the central path to the analytic center of the solution set with
respect to a special smoothing barrier for this type of problem can be found in [Ius4],
from which we took some of the main ideas for this paper.

Finally the third group of assumptions involve both T and C (i.e., VIP(T ,C)) and
in some cases also the barrier h. First we have two basic and elementary assumptions
on VIP(T ,C). Let dom(T ) = {x ∈ Rn : T (x) 6= ∅}.

H10. dom(T ) ∩ Co 6= ∅.
A variational inquality problem satisfying H10 will be said to be regular.

H11. S(T,C) 6= ∅.
We remark that in the presence of H8, H10 becomes equivalent to V ∩ Co 6= ∅,

because dom(T ) = dom(T̂ ) ∩ dom(NV ), dom(T̂ ) = Rn, and dom(NV ) = V .
Next we need two assumptions in order to guarantee existence of the central path

in the absence of zone coerciveness (see H4).
H12. h attains its minimum on dom(T ) ∩ Co at some point x̃.

H12 holds automatically when h(x) = Dg(x, x̃) for some x̃ ∈ Co and Dg is a
Bregman function (see section 3). The next assumption requires introduction of the
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gap function qT,C : Rn → R for VIP(T ,C), defined as

qT,C(x) := sup
(v,y)∈GC(T )

〈v, x− y〉,(11)

where GC(T ) := {(v, y) : v ∈ T (y), y ∈ C}. Note that, taking y = x in (11), we get
that qT,C(x) ≥ 0 for all x ∈ dom(T ) ∩ C. The assumption on the gap function is the
following:

H13. qT,C(x) <∞ for all x ∈ dom(T ) ∩ C.
Similar gap functions for variational inequality problems have been considered,

e.g., in [Mar] and [Ngu]. We take our qT,C from [Bur1], where it has been proved that
H13 holds, e.g., when T is coercive, when T is the subdifferential of a convex function
bounded below, when T is strongly monotone, or when dom(T ) ∩ C is bounded
(see [Bur1, Proposition 3.1]). It follows easily from (17) that q is convex and that
qT,C(x) ≥ 0 for all x ∈ C. Also, it is easy to check, and is proved in [Bur1] that in the
presence of H10 and H11, qT,C(x) = 0 if and only if x ∈ S(T,C). Finiteness of qT,C
is a regularity condition which ensures that T + ∂h has zeros for any strictly convex
h which attains its global minimizer, even when ∂h is not onto and T does not have
zeros (see Proposition 2(ii)).

The last assumption is needed to ensure boundedness of the central path without
H4.

H14. Either
i) S(T,C) is bounded and T = ∂f for some convex f : Rn → R ∪ {∞},
ii) there exists y ∈ Co ∩ dom(T ) such that limk→∞〈uk, xk − y〉 =∞ for all {xk}

such that limk→∞
∥∥xk∥∥ =∞ and all {uk} such that uk ∈ T (xk), or

iii) dom(T ) ∩ C is bounded.
H14(ii) holds, e.g., when T is coercive, though it is much weaker than coerciveness.

We conjecture that H14 can be replaced, in the proof of boundedness of the central
path, by the much simpler and weaker hypothesis of boundedness of S(T,C), but we
have not been able to prove the result under this weaker assumption.

We end this preliminary discussion with a few technical lemmas on monotone
operators.

Lemma 1. If h satisfies H1 and is either zone or boundary coercive (see H4 and
H2, respectively), then dom(∂h) = Co.

Proof. See [Bur2, Lemma 1].
Lemma 2. i) If T1 and T2 are maximal monotone operators such that dom(T1) ∩

dom(T2)o 6= ∅, then T1 + T2 is maximal monotone.
ii) If furthermore T2 is the subdifferential of a closed and proper convex function,

and T2 is onto, then T1 + T2 is onto.
Proof. See [Bur2, Corollary 1].
Lemma 3. If T is maximal monotone and dom(T ) is bounded, then T is onto.
Proof. See [Brez, Corollary 2.2].
Finally, after all these preliminaries, we start the study of the central path. For an

operator T : Rn → P(Rn), a convex function h, and a scalar µ > 0, let Tµ = µT +∂h.
Proposition 2. Assume that h satisfies H1, T is maximal monotone (see H6),

VIP(T ,C) is regular (see H10), and either
i) h is zone coercive (see H4), or
ii) h is boundary coercive (see H2) and attains its minimum on dom(T )∩Co (see

H12), the gap function is finite everywhere (see H13), and T satisfies H8.
Then the operator Tµ has a unique zero x(µ) which belongs to dom(T ) ∩ Co.
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Proof. i) Let T1 = µT , T2 = ∂h. By Lemma 1, dom(T2) = Co. By regularity,
dom(T1) ∩ dom(T2)o 6= ∅. By Lemma 2(i), using H1 and maximal monotonicity of
T , Tµ = T1 + T2 is maximal monotone. By zone coerciveness of h, T2 is onto. By
Lemma 2(ii) Tµ is onto; i.e., there exists x ∈ dom(Tµ) such that 0 ∈ Tµ(x). Since h
is strictly convex, ∂h is strictly monotone, and therefore, by monotonicity of T , Tµ is
strictly monotone, so that the zero is unique. Note that x ∈ dom(Tµ) = dom(T1) ∩
dom(T2) = dom(T1) ∩ Co. The result holds.

ii) Now, in the absence of zone coerciveness, ∇h is not onto and the argument is
more involved. Let x̃ be the minimizer of h in dom(T ) ∩ Co (which exists by H12).
By H13, qT,C(x̃) <∞. We consider two cases:

a) qT,C(x̃) = 0. In this case, as mentioned above, x̃ ∈ S(T,C). Since x̃ ∈ Co, it
follows that 0 ∈ T (x̃); i.e., using H8,

0 = T̂ (x̃) + v(12)

with v ∈ NV (x̃). On the other hand, since x̃ minimizes h in dom(T ) and x̃ belongs to
Co, x̃ solves VIP(∂h,dom(T )); i.e., 0 ∈ (∂h+Ndom(T ))(x̃) (note that Co ⊂ dom(T ) ⊂
C by Lemma 1). By H8, dom(T ) = dom(T̂ ) ∩ dom(NV ) = Rn ∩ V = V ; i.e.,

0 = ∇h(x̃) + v′,(13)

with v′ ∈ NV (x̃). Let v̄ = µv+ v′. Since NV (x̃) is a cone, v̄ ∈ NV (x̃). From (12) and
(13), 0 = µT̂ (x̃) + v̄+∇h(x̃); i.e., 0 ∈ (µT + ∂h)(x̃) = Tµ(x̃). Since x̃ ∈ dom(T )∩Co,
the result follows.

b) qT,C(x̃) > 0. Let W = {x ∈ C : h(x) ≤ µqT,C(x̃) + h(x̃)}. W is closed and
convex by H1. Observe that W o = {x ∈ Co : h(x) < µqT,C(x̃) + h(x̃)}. We claim
that V ∩W is bounded. By H8, dom(T ) = V , so that V ∩W is the intersection of a

level set of h with dom(T ) ∩ C, i.e., a level set of ĥ defined as

ĥ(x) =
{
h(x) if x ∈ dom(T ) ∩ C,
∞ otherwise.

ĥ attains its minimum by H12, and the minimizer x̃ is unique by strict convexity of
h (see H1). So {x ∈ C : ĥ(x) ≤ ĥ(x̃)} = {x̃}. Since ĥ has one bounded level set, all
its level sets are bounded, in particular V ∩W , and the claim is established, noting
that µqT,C(x̃) is finite by H13.

Let U = Tµ + NW . As proved in item (i), Tµ is maximal monotone. By as-
sumption, x̃ ∈ dom(Tµ). Since qT,C(x̃) > 0, x̃ ∈ W o = dom(NW )o. By Lemma
2(i), U is maximal monotone. Note that dom(U) = dom(Tµ) ∩ dom(NW ) = dom

(T̂ ) ∩ V ∩ dom(∂h) ∩W = V ∩ Co ∩W ⊂ W , using Lemma 1. Since W is bounded,
dom(U) is bounded, and then U is onto by Lemma 3. Therefore there exists x ∈
dom(U) = V ∩ Co ∩W such that 0 ∈ U(x). By H8,

0 = µT̂ (x) + µv + w +∇h(x)(14)

with v ∈ NV (x), w ∈ NW (x). We claim that x ∈ W o. This is immediate if x = x̃,
because qT,C(x̃) > 0. Otherwise, multiplying (14) by x− x̃ and using strict convexity
of h,

h(x)− h(x̃) < 〈∇h(x), x− x̃〉 = µ〈T̂ (x), x̃− x〉+ µ〈v, x̃− x〉+ 〈w, x̃− x〉.(15)
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Note that both x̃ and x belong to V ∩W . It follows from (9) that the last two inner
products in the rightmost expression of (15) are nonpositive, so that

h(x) < h(x̃) + µ〈T̂ (x), x̃− x〉 ≤ h(x̃) + µqT,C(x̃)(16)

using the definition of qT,C in the last inequality of (16). It follows from (16) and the
definition of W that x ∈ W o, and the claim is established. Then NW (x) = {0}, i.e.,
w = 0. Thus, we get from (14) that 0 = µT̂ (x) + v+∇h(x), with v ∈ NV (x). By H8,
0 ∈ (µT + ∂h)(x) = Tµ(x). Uniqueness follows as in item (i).

Proposition 2 states that the central path {x(µ) : µ > 0} given by (1) is well
defined and contained in Co. As mentioned in section 1, if T (x) = ∂f(x), then

x(µ) = argmin
x∈C

{µf(x) + h(x)}.(17)

corresponding to the standard definition of the central path. We prove now that the
central path has cluster points. A cluster point of {x(µ)} is a point x̄ such that
x̄ = limk→∞ x(µk) for some sequence {µk} such that limk→∞ µk = ∞. We need a
preparatory result, of some interest on its own.

Proposition 3. Under the assumptions of Proposition 2,
i) h(x(µ)) is nondecreasing in µ,
ii) x(µ) is continuous at any µ > 0.
Proof. Take µ1, µ2 > 0 and let xi = x(µi) (i = 1, 2). By definition of x(µ),

0 ∈ Tµ(x(µ)), which is equivalent to −µ−1∇h(x(µ)) ∈ T (x(µ)). Let ui = −µ−1
i ∇h(xi)

(i = 1, 2). Then, it holds that

ui ∈ T (xi) (i = 1, 2),(18)

1

µ1
(h(x1)− h(x2)) ≤ 1

µ1
〈∇h(x1), x1 − x2〉 = 〈u1, x2 − x1〉,(19)

1

µ2
(h(x2)− h(x1)) ≤ 1

µ2
〈∇h(x2), x2 − x1〉 = 〈u2, x1 − x2〉,(20)

using convexity of h in the inequalities. Adding (19) and (20)(
1

µ1
− 1

µ2

)
(h(x1)− h(x2)) ≤ 1

µ1
〈∇h(x1), x1 − x2〉+

1

µ2
〈∇h(x2), x2 − x1〉

= 〈u1 − u2, x2 − x1〉 ≤ 0,(21)

using (18) and monotonicity of T in the second inequality. Assume now that µ1 > µ2.
Looking at the extreme expressions in (21), we get

h(x1) ≥ h(x2),(22)

establishing (i). By (19), (21), and (22)

0 ≤ 1

µ1
[h(x1)− h(x2)] ≤ 1

µ1
〈∇h(x1), x1 − x2〉 ≤ 1

µ2
〈∇h(x2), x1 − x2〉.(23)
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Fix now µ̄ > 0, and take µ̂, µ̃ such that µ̃ > µ̄ > µ̂. For any µ ∈ (µ̂, µ̃) we get

h(x(µ)) ≤ h(x(µ̃))(24)

using (22) with µ1 = µ̃, µ2 = µ, and

0 ≤ 〈∇h(x(µ̂)), x(µ)− x(µ̂)〉(25)

using (23) with µ1 = µ, µ2 = µ̂. Let L1 = {x ∈ C : h(x) ≤ h(x(µ̃))}, L2 = {x ∈
C : 〈∇h(x(µ̂)), x − x(µ̂)〉 ≥ 0}, and L = L1 ∩ L2. By Proposition 2, (24), and (25),
{x(µ) : µ̂ ≤ µ ≤ µ̃} ⊂ L. We claim that L is bounded. Define h̄ as

h̄(x) =
{
h(x) if x ∈ L2,
∞ otherwise.

It is easy to see that h̄ is strictly convex and that x(µ̂) is its unique minimizer, so that
h̄ has one bounded level set, and therefore all its level sets are bounded, among them
L, which can be written as {x ∈ Rn : h̄(x) ≤ h̄(x(µ̃))}. The claim is established, and
therefore {x(µ) : µ̂ ≤ µ ≤ µ̃} is bounded. In order to prove that x(µ) is continuous
at µ̄, it suffices to prove that limk→∞ x(µk) = x(µ̄) for any sequence {µk} such that
limk→∞ µk = µ̄. Given such a sequence {µk}, µk ∈ (µ̂, µ̃) for large enough k, so that
{x(µk)} is bounded. Let y be any cluster point of {x(µk)}, x̄ = x(µ̄), and xk = x(µk).
Without loss of generality (i.e., refining the sequence if necessary), we may assume
that y = limk→∞ xk.

Let K1 = {k : µk ≤ µ̄} and take k ∈ K. Using (23) with µ1 = µ̄, µ2 = µk, we
get, by convexity of h,

(26)

1

µ̄
[h(x̄)− h(xk)] ≤ 1

µ̄
〈∇h(x̄), x̄− xk〉 ≤ 1

µk
〈∇h(xk), x̄− xk〉 ≤ 1

µk
[h(x̄)− h(xk)].

Note that {xk} ⊂ L1 ⊂ ED(h). By H1, h is continuous at y = limk→∞ xk, and hence
y ∈ ED(h). Then, if K1 is infinite, we take limits in (26) as k goes to∞, with k ∈ K1,
obtaining

1

µ̄
[h(x̄)− h(y)] ≤ 1

µ̄
〈∇h(x̄), x̄− y〉 ≤ 1

µ̄
[h(x̄)− h(y)].(27)

From (27), we get h(x̄) − h(y) = 〈∇h(x̄), x̄ − y〉. By strict convexity of h, y = x̄. If
K1 is finite (or empty), then we consider the complement K2 of K1, which certainly
is infinite, and apply (23) with µ1 = µk, µ2 = µ̄, obtaining a chain of inequalities
similar to (26). After passing to the limit as k goes to ∞, with k ∈ K2, we get a
chain of inequalities like (27) with the roles of x̄ and y reversed and obtain again that
y = x̄. We have proved that in any case all cluster points of xk are equal to x̄. We
conclude that limk→∞ xk = x̄, i.e., that x(µ) is continuous at µ̄.

With the help of Proposition 3(i), we prove now, under several alternative hy-
potheses, that the set {x(µ) : µ ≥ µ̄} is bounded for any µ̄ > 0.

Proposition 4. Assume that T satisfies H8, that VIP(T ,C) has solutions (see
H11), that h attains its minimum in dom(T ) ∩ Co (see H12) and that all the hy-
potheses of Proposition 2 hold. If either

i) h is finite at the boundary (see H3), or
ii) H14 holds,

then {x(µ)} has cluster points.
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Proof. We start with a basic chain of inequalities which will be used in this and
other proofs. By definition of x(µ), −µ−1∇h(x(µ)) ∈ T (x(µ)). Then, for all y ∈ V ,

1

µ
〈∇h(x(µ)), x(µ)− y〉 = 〈T̂ (x(µ)), y − x(µ)〉+ 〈v, y − x(µ)〉

≤ 〈T̂ (x(µ)), y − x(µ)〉 ≤ 〈T̂ (y), y − x(µ)〉,(28)

with v ∈ NV (x(µ)), using H8 in the equality, (9) in the first inequality, and mono-
tonicity of T in the second one.

Consider the first case (i). By H11, S(T,C) 6= ∅. Take z ∈ S(T,C). Since h is
finite at the boundary (see H3), z ∈ ED(h). Take y = z in (28), and get

1

µ
[h(x(µ))− h(z)] ≤ 1

µ
〈∇h(x(µ)), x(µ)− z〉 ≤ 〈T̂ (x(µ)), z − x(µ)〉,(29)

using H1 in the first inequality. Since NV (x(µ)) is a positive cone, 0 ∈ NV (x(µ)),
i.e., T̂ (x(µ)) ∈ T (x(µ)), and, since z ∈ S(T,C), 〈T̂ (x(µ)), z − x(µ)〉 ≤ 0. It follows
from (29) that h(x(µ)) ≤ h(z) for all µ > 0. As in the proof of Proposition 2, H12
implies that the intersections of V with the level sets of h are bounded, and {x(µ)}
is contained in one of them. The result follows.

Now we consider hypothesis (ii). If h fails to be finite at the boundary, we may
have h(z) = ∞ for all z ∈ S(T,C) and the previous argument breaks down. Now,
under H14(i), T = ∂f , so that −µ−1∇h(x(µ)) ∈ T (x(µ)) = ∂f(x(µ)). Fix µ̄ > 0 and
take any µ ≥ µ̄. Therefore

1

µ
[h(x(µ))− h(x(µ̄))] ≤ 1

µ
〈∇h(x(µ)), x(µ)− x(µ̄)〉 ≤ f(x(µ̄))− f(x(µ))(30)

using convexity of h in the first inequality and convexity of f in the second one. Use
Proposition 3 and (30) to conclude that f(x(µ)) ≤ f(x(µ̄)). So, {x(µ) : µ ≥ µ̄} is
contained in a level set of f . By C5, VIP(T ,C) is equivalent to min f(x) s.t. x ∈ C
and the set of solutions of this problem, which is a level set of the restriction of f to C,
is bounded. Then all such level sets are bounded, and it follows that {x(µ) : µ ≥ µ̄}
is bounded. Thus, {x(µ)} has cluster points.

Consider next assumption H14(ii). Fix µ̄ > 0. Let u = −µ−1∇h(x(µ)) ∈ T (x(µ)).
By H1, with µ ≥ µ̄ and y as in H14(ii),

〈u, x(µ)− y〉 ≤ 1

µ
[h(y)− h(x(µ))] ≤ 1

µ
[h(y)− h(x(µ̄))]

≤ 1

µ
|h(y)− h(x(µ̄))| ≤ 1

µ̄
|h(y)− h(x(µ̄))| ,(31)

using Proposition 3(i) in the second inequality. Let θ be the rightmost expression
in (31). If {x(µ) : µ ≥ µ̄} is unbounded, there exists a sequence {µk} such that
limk→∞ ‖x(µk)‖ =∞ and 〈uk, x(µk)− y〉 ≤ θ for all k, with uk = −µ−1

k ∇h(x(µk)) ∈
T (x(µk)), in contradiction with H14(ii). So {x(µ) : µ ≥ µ̄} is bounded and the result
holds.

The result is immediate under assumption H14(iii), because {x(µ)} ⊂ dom(T )
∩ C.
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Now we prove that the cluster points of {x(µ)} solve VIP(T ,C). This is the point
where the paramonotonicity assumption implicit in H8 is used for the first time.

Proposition 5. Under the assumptions of Proposition 4, all cluster points of
{x(µ)} are solutions of VIP(T ,C).

Proof. Take z ∈ S(T,C) and y ∈ V ∩ Co (both sets are nonempty by H10,
H11). Let x̄ be a cluster point of {x(µ)} (which exists by Proposition 4) and {µk}
a sequence such that limk→∞ µk = ∞ and limk→∞ x(µk) = x̄. Let xk = x(µk) and
y(ε) = (1− ε)z + εy with ε ∈ (0, 1). Then y(ε) ∈ V ∩ Co and using (28)

1

µk
〈∇h(y(ε)), xk − y(ε)〉 ≤ 〈T̂ (xk), y(ε)− xk〉.(32)

Since limk→∞〈∇h(y(ε)), xk − y(ε)〉 has the finite value 〈∇h(y(ε)), x̄− y(ε)〉, the left-
most expression in (32) converges to 0 as k goes to ∞. Thus, taking limits in (32) we
get

0 ≤ 〈T̂ (x̄), y(ε)− x̄〉(33)

using H8. Taking limits in (33) as ε goes to 0, we get 0 ≤ 〈T̂ (x̄), z − x̄〉. Since x̄ ∈ V
because V is closed, 0 ∈ NV (x̄), and therefore T̂ (x̄) ∈ T (x̄). By Proposition 1(i) and
(iii) and paramonotonicity of T̂ , T is paramonotone. By Proposition 1(ii), x̄ solves
VIP(T ,C).

Now we establish convergence of {x(µ)} to the analytic center of S(T,C) when h
is finite at the boundary (see H3). In this case H9 is not needed.

Proposition 6. Under the assumptions of Proposition 4 if h is finite at the
boundary (see H3), then limµ→∞ x(µ) exists and is the solution of

minh(x)(34)

s.t. x ∈ S(T,C).(35)

Proof. Let x̄ be a cluster point of {x(µ)}. x̄ ∈ S(T,C) by Proposition 5. Take a
sequence {xk} as in the proof of Proposition 5, and z ∈ S(T,C). Then, using (28),

1

µk
〈∇h(xk), xk − z〉 ≤ 〈T̂ (xk), z − xk〉.(36)

Since xk ∈ V , 0 ∈ NV (xk), and so T̂ (xk) ∈ T (xk). Since z ∈ S(T,C) and xk ∈ C, it
follows that the right-hand side of (36) is nonpositive, so that, using convexity of h
in (36), we get

h(xk)− h(z) ≤ 〈∇h(xk), xk − z〉 ≤ 0.(37)

Since h is finite at the boundary, taking limits in (37) as k goes to ∞, we get h(x̄) ≤
h(z). Since z is an arbitrary element in S(T,C), it follows that x̄ minimizes h in
S(T,C). Since S(T,C) is convex for monotone T and h is strictly convex in C by H3,
the minimizer is unique. Therefore all cluster points coincide and {x(µ)} converges,
as µ goes to ∞, to the solution of (34)–(35).

Before proving a result similar to Proposition 6 without finiteness of h at the
boundary, we summarize the results of Propositions 2–6 in the following theorem.
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Theorem 1. Assume that h satisfies H1, is boundary coercive (see H2), and
attains its minimum on dom(T ) ∩ Co (see H12); that T satisfies H8; that VIP(T ,C)
is regular and has solutions (see H10 and H11); and additionally that either

i) h is zone coercive and finite at the boundary (see H4 and H3), or
ii) the gap function is finite (see H13) and any of the alternatives in H14 holds.

Then for any µ̄ > 0 the curve {x(µ) : µ ≥ µ̄} is well defined, continuous, bounded,
and contained in Co, and all its limit points are solutions of VIP(T ,C). In the case
in which h is finite at the boundary, the path converges to the analytic center of the
solution set with respect to the barrier h, i.e., to the solution of (34)–(35).

Proof. We get that {x(µ)} is well defined and contained in Co from Proposition 2.
We remark that the hypotheses of Proposition 2 hold in all the cases we are considering
here, because H8 implies maximal monotonicity of T . The remaining results follow
from Propositions 3(ii), 4, 5, and 6, all of whose hypotheses are included in the
assumptions of this theorem.

We mention here specifically the case of the optimization problem, i.e., min f(x)

s.t. x ∈ C, where f is the restriction of a convex and differentiable function f̂ : Rn →
R to a closed and convex set V . In this case H8 holds with T̂ = ∇f̂ , and we get
boundedness of the central path and optimality of the cluster points under H1, H2,
H10, H11, H12, and additionally either H3 and H4, or boundedness of the solution set
and convergence of the whole path to the analytic center of the solution set under H3.
The case of a nondifferentiable function is not precisely covered here, because, taking
T̂ = ∂f , T̂ is not point-to-point in general. This is part of the bit of generality lost
when we decided to use H8 instead of pseudomonotonicity (see section 3). The result
can be obtained for this case also, at the cost of quite a few technical complications
in the proofs.

Finally we proceed to study the limit of x(µ) without finiteness of h at the bound-
ary (see H3). We impose more restrictive assumptions. First we assume that C is a
box and that h is separable (see H5). For the sake of simplicity we will take C = Rn

+,
but the result holds without any changes in an arbitrary box, either bounded or
unbounded. We will assume also that T satisfies both H8 and H9. We need two
preparatory results. The first one establishes that under these hypotheses S(T,C) is
a polyhedron.

Proposition 7. Assume that T satisfies H8–H9, and that VIP(T ,C) is regular
and has solutions (see H10 and H11). Fix any z ∈ S(T,C) and any x̃ ∈ C ∩ V . Then

S(T,C) = {x ∈ V ∩ C : T̂ (x̃)tx = T̂ (x̃)tz, J
T̂

(x̃)x = J
T̂

(x̃)z}.(38)

Proof. See [Ius3, Proposition 2.4].
We remark that the proof of Proposition 7 does not require V to be an affine

manifold, as in H9, but just a closed and convex set, as in H8. But it requires that
the kernel of the Jacobian matrix of T̂ be constant. When C ∩ V is a polyhedron, it
follows that S(T,C) is also a polyhedron, namely the intersection of V ∩ C with the
affine manifold defined by the linear equations in (38).

We need also an intermediate optimality result, for which polyhedrality of C ∩ V
is essential.

Proposition 8. Let C = Rn
+. Under the assumptions of Propositions 2 and 7,

the point x(µ) belonging to the central path is the solution of

minh(x)(39)

s.t. x ∈ S(µ),(40)
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where

S(µ) = {x ∈ Rn : T̂ (x̃)tx = T̂ (x̃)tx(µ), J
T̂

(x̃)x = J
T̂

(x̃)x(µ), Ax = b, x ≥ 0},(41)

V = {x ∈ Rn : Ax = b}, and x̃ is any point in C ∩ V .
Proof. x(µ) is well defined and contained in Co by Proposition 2. Since x(µ) ∈

Co∩V , it follows that x(µ) ∈ S(µ). By convexity of h, it suffices to check the Karush–
Kuhn–Tucker conditions for (39)–(40), which are x(µ) ∈ S(µ) (already checked), and
existence of u ∈ Rm, w ∈ Rn, and ξ ∈ R such that

∇h(x(µ)) +Atu+ J
T̂

(x̃)tw + ξT̂ (x̃) ≥ 0,(42)

x(µ)t[∇h(x(µ)) +Atu+ J
T̂

(x̃)tw + ξT̂ (x̃)] = 0.(43)

We will exhibit u, w, and ξ such that (42) holds with equality and consequently
(43) also holds. By definition of x(µ), −1/µ∇h(x(µ)) ∈ T (x(µ)); i.e., there exists
v ∈ NV (x(µ)) such that

− 1

µ
∇h(x(µ)) = T̂ (x(µ)) + v.(44)

It is easy to check that NV (x) = Im(At) for all x ∈ V . Thus µv ∈ Im(At); i.e.,
µv = Atu for some u ∈ Rm and (44) can be rewritten as

∇h(x(µ)) + µT̂ (x(µ)) +Atu = 0.(45)

Now, we write T̂ (x(µ)) as

T̂ (x(µ)) = T̂ (x̃) +

∫ 1

0

J
T̂

(y(τ))(x(µ)− x̃)dτ,(46)

with y(τ) = x̃ + τ(x(µ) − x̃). It is well known and easy to prove (e.g., see [Ius3,
Proposition 2.2]) that for a monotone and differentiable operator U it holds that
Ker(JU (x)) = Ker(JU (x)t). Then, using H9,

J
T̂

(y(τ))(x(µ)− x̃) ∈ Im[J
T̂

(y(τ))] = Ker[J
T̂

(y(τ))t]⊥ = Ker[J
T̂

(y(τ))]⊥ = W⊥.

It follows that
∫ 1

0
J
T̂

(y(τ))(x(µ) − x̃)dτ ∈ W⊥, and therefore, by (46) and H9,

µT̂ (x(µ)) = µT̂ (x̃) + p, with p ∈ W⊥ = Ker[J
T̂

(x̃)]⊥ = Im[J
T̂

(x̃)t], so that p =

J
T̂

(x̃)tw for some w ∈ Rn. We conclude that

µT̂ (x(µ)) = µT̂ (x̃) + J
T̂

(x̃)tw.(47)

Replacing (47) in (45),

∇h(x(µ)) + µT̂ (x̃) + J
T̂

(x̃)tw +Atu = 0,(48)

which gives equality in (42) with ξ = µ.
The idea now is to push the optimality property of x(µ) given in Proposition 8

to the limit as µ→∞, so that S(µ) becomes S(T,C) by Proposition 7. The problem
is that limµ→∞ x(µ) may belong to ∂C where h is possibly ∞. We must work now
with the optimal face of the orthant and use the separability of h (H5), under which
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h(x) =
∑n
j=1 hj(xj). Let J = {j ∈ {1, . . . , n} : ∃z ∈ S(T,C) such that zj > 0}. By

convexity of S(T,C) the set {z ∈ S(T,C) : zj > 0 for all j ∈ J} is nonempty, and it

is in fact the relative interior of S(T,C). We define h̃ : Rn
++ → R as

h̃(x) =
∑
j∈J

hj(xj).(49)

We prove now the optimality property of limµ→∞ x(µ) without finiteness of h at
the boundary (see H3).

Theorem 2. Let C = Rn
+. Assume that h satisfies H1, is boundary coercive (see

H2) and separable (see H5) and attains its minimum in dom (T )∩Co (see H12); that
T satisfies H8–H9; that VIP(T ,C) is regular (see H10) and has solutions (see H11),
and its gap function is finite (see H13); and that some of the alternatives in H14 hold.
Then the central path {x(µ)} converges as µ→∞ to the solution x∗ of

min h̃(x)(50)

s.t. x ∈ S(T,C),(51)

with h̃ as in (49).
Proof. By Theorem 1, {x(µ)} has cluster points. Let x̄ be a cluster point of

{x(µ)} and {µk} a sequence such that limk→∞ µk = ∞, limk→∞ x(µk) = x̄. Call
xk = x(µk). Fix some x̃ ∈ V ∩ C as in Propositions 7 and 8. Take any z ∈ S(T,C).
We will prove that

h̃(x̄) ≤ h̃(z).(52)

We consider first the case in which z belongs to the relative interior of S(T,C); i.e.,
zj > 0 for all j ∈ J . Define yk = z − x̄ + xk. We claim that yk ∈ S(µk) for large
enough k, with S(µk) as in (41). Let I = {1, . . . , n} \J . It follows from the definition
of J that xj = 0 for all j ∈ I and all x ∈ S(T,C). Since x̄ ∈ S(T,C) by Theorem 1
and z ∈ S(T,C) by assumption, we get

ykj = xkj (j ∈ I).(53)

Since xk ∈ Co by Proposition 2, we have ykj > 0 for j ∈ I. For j ∈ J , we have

ykj = zj − x̄j + xkj . Since limk→∞ xkj = x̄j and zj > 0 for j ∈ J , we have ykj > 0 for

j ∈ J and k large enough. We conclude that yk > 0 for large enough k.
Let the set V of H8, H9 be equal to {x ∈ Rn : Ax = b}. Since x̄, z ∈ S(T,C) ⊂

dom(T ) = Rn ∩ V = V , we have Az = Ax̄ = b, and therefore Ayk = Axk = b,
because x(µ) ∈ dom(T ) ⊂ V . So, it suffices to check that T̂ (x̃)t(xk−yk) = 0 and that
J
T̂

(x̃)(yk − xk) = 0. Since xk − yk = x̄− z, this follows from Proposition 7, because

x̄ ∈ S(T,C) by Theorem 1. We have proved that yk ∈ S(µk). By Proposition 8,
h(xk) ≤ h(yk); i.e.,

h̃(xk) +
∑
j∈I

hj(x
k
j ) ≤ h̃(yk) +

∑
j∈I

hj(y
k
j ).(54)

From (53) and (54),

h̃(xk) ≤ h̃(yk).(55)
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Now, since we do not have finiteness of h at the boundary (see H3), we must be careful
with the behavior of h̃ at the boundary of Rn

+. It follows from H1 and the separability
of h (see H5) that hj : R++ → R is continuous and closed. Thus, limt→0 hj(t) is well
defined (possibly infinity), and we can take limits in (55) as k goes to ∞. Since
limk→∞ yk = z, limk→∞ xk = x̄, and zj > 0 for all j ∈ J , we conclude that

h̃(x̄) ≤ h̃(z) <∞(56)

for any z in the relative interior of S(T,C). By the same argument as above, (56)
holds in fact for all z ∈ S(T,C) (note that h̃(z) might be infinite for some z in the
relative boundary of S(T,C), i.e., such that zj = 0 for some j ∈ J). So x̄ solves (50)–

(51). Observe that h̃ is not strictly convex in Rn
++, but it is strictly convex in S(T,C)

because hj is strictly convex by H1 and xj = 0 for all j /∈ J and all x ∈ S(T,C),
by definition of J . Therefore problem (50)–(51) has a unique solution, and since all
cluster points of {x(µ)} are equal to this solution, we conclude that limµ→∞ x(µ)
exists and that the result holds.

3. Generalized proximal point methods for variational inequalities. Let
C be a closed and convex subset of Rn, with nonempty interior. Consider a function
g : C → R satisfying H1 and H3 of section 2, and define Dg : C × Co → R as

Dg(x, y) = g(x)− g(y)− 〈∇g(y), x− y〉.
g is said to be a Bregman function if it satisfies H1 and H3 of section 2 and, addition-
ally, the following hold.

B1. For all ν ∈ R the partial level sets Γ(x, ν) = {y ∈ Co : Dg(x, y) ≤ ν} are
bounded for all x ∈ C.

B2. If {yk} ⊂ Co converges to y∗, then Dg(y
∗, yk) converges to 0.

B3. If {xk} ⊂ C and {yk} ⊂ Co are sequences such that {xk} is bounded,
limk→∞ yk = y∗ and limk→∞Dg(x

k, yk) = 0, then limk→∞ xk = y∗.
Co is called the zone of g. This definition originates in the results of [Breg]. It is

easy to check that Dg(x, y) ≥ 0 for all x ∈ C, y ∈ Co, and Dg(x, y) = 0 if and only if
x = y. Also, Dg(·, y) is strictly convex and continuous in C for all y ∈ Co.

As examples of Bregman functions for the case of C = Rn
+ we have the following.

Example 1. g(x) =
∑n
j=1 xj log xj , extended with continuity to ∂Rn

+ with the

convention that 0 log 0 = 0. In this case Dg(x, y) =
∑n
j=1(xj log

xj
yj

+ yj − xj), which

is the Kullback–Leibler divergence, widely used in statistics (see [Lie]).

Example 2. g(x) =
∑n
j=1(xαj − xβj ) with α ≥ 1, 0 < β < 1. For α = 2, β = 1

2

we get Dg(x, y) = ‖x− y‖2 +
∑n
j=1

1
2
√
yj

(
√
xj −√yj)2, and for α = 1, β = 1

2 , we get

Dg(x, y) =
∑n
j=1

1
2
√
yj

(
√
xj −√yj)2.

The functions g of Examples 1 and 2 satisfy B1–B3 and H1–H5, except for the
case of g as in Example 2 with α = 1, which fails to satisfy only H4. Examples
of Bregman functions for other convex sets, like balls, boxes, and polyhedra with
nonempty interiors, can be found in [Cen2].

If we discard H3, we can consider also g(x) = −∑n
j=1 log xj , which satisfies H1,

H2, H5, and B1–B3. In this case Dg : Co × Co → R is given by

Dg(x, y) =

n∑
j=1

[
xj
yj
− log

(
xj
yj

)
− 1

]
(57)

and is called the Itakura–Saitu distance (see [Csi]).
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The GPPA algorithm for VIP(T ,C) is defined as follows. Take a Bregman function
g with zone Co and a sequence {λk} of positive numbers bounded above by some
λ̃ > 0. Let {xk} be defined by the following.

Initialization:

x0 ∈ Co.
Iterative step: Given xk, consider the operator Tk defined by

Tk(·) = T (·) + λk[∇g(·)−∇g(xk)].(58)

Then, take xk+1 such that

0 ∈ Tk(xk+1).(59)

We summarize the convergence properties of this algorithm in the following propo-
sition.

PROPOSITION 9. Assume that g satisfies H1, H3, and B1–B3, T satisfies H8–
H9, and VIP(T ,C) satisfies H10–H11. If either H2 and H13 or H4 holds, then the
sequence {xk} generated by GPPA (i.e., by (58)–(59)) converges to the solution of

minDg(x, x
0)(60)

s.t. x ∈ S(T,C).(61)

Proof. See [Ius3, Theorem 5.1].
The proof of Proposition 9 addresses mainly the issue of characterizing the limit

of the sequence as the solution of (60)–(61), using H9. The fact that the sequence
does converge was previously proved in [Bur2, Corollary 3], and does not require
H9. This proof uses H6, H7, and a hypothesis which is weaker than H8, namely
pseudomonotonicity, which is rather technical.

We study next the connection between the central path and the GPPA. Our first
result is just a corollary of Theorem 1 and Proposition 9 and shows that in many
relevant cases the GPPA sequence and the central path (with the Bregman function
as a barrier) converge precisely to the same point.

Corollary 1. Assume that T satisfies H8 and H9; that g satisfies both H1
and the Bregman assumptions B1–B3 and is zone coercive (H4) and finite at the
boundary (H3); and that VIP(T ,C) is regular and has solutions (H10–H11). Let {xk}
be the sequence generated by GPPA with Bregman function g starting at some x0 ∈
dom(T ) ∩ Co and {x(µ)} the central path with barrier h(x) = Dg(x, x

0). Then both
limk→∞ xk and limµ→∞ x(µ) are equal to the solution of (60)–(61), i.e., the analytic
center of S(T,C) with respect to the barrier h.

Proof. The result for {xk} follows from Proposition 9, and the result for {x(µ)}
follows from Theorem 1(i), which holds because g(·) and Dg(·, x0) differ by the affine
term 〈∇h(x0), x− xo〉, and H1, H3, and H4 are invariant through additions of affine
functions, so that h also satisfies H1, H3, and H4. Also, in this case H12 holds because
the function h(x) = Dg(x, x

0) attains its minimum at x0 ∈ dom(T ) ∩ Co.
We remark that in the central path approach, convergence to the analytic center

under finiteness of h at the boundary (see H3) does not require S(T,C) to be a
polyhedron, as is the case when H9 holds. In the case of GPPA assumption, H9 seems
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to be necessary. The validity of Proposition 9 without demanding H9 remains as an
open problem.

Another interesting issue is the convergence of GPPA without finiteness of g at
the boundary (see H3). An extension of the notion of Bregman function has been
recently presented in [Kiw1], where H3 is omitted and H1 is weakened (g need not
be differentiable in Co). GPPA for the kind of g’s considered by Kiwiel is studied in
[Kiw2], where only the optimization case (T = ∂f) is considered. The GPPA of [Kiw2]
works for g’s which do not satisfy H3, like the Itakura–Saitu distance (57), which,
when looked at as a barrier function, produces the logarithmic barrier considered in
the references mentioned in section 1. However, the convergence results in [Kiw2]
request S(T,C) ∩ ED(g) 6= ∅. If the effective domain of g is Co, as in the case of
(57), this implies existence of solutions in the interior of C, which leaves out most
interesting problems (e.g., linear programming).

Corollary 1 raises the following question: Is it the case that the sequence {xk}
generated by GPPA is contained in the central path with barrier h(x) = Dg(x, x

o)?

The answer is affirmative when the operator T̂ is constant and V is an affine manifold
(e.g., in the linear programming case) and negative otherwise, as we show next.

Theorem 3. Consider VIP(T ,C) with T (x) = c+NV and V = {x ∈ Rn : Ax =
b}. Assume that VIP(T ,C) is regular and has solutions (see H10–H11) and that g
satisfies H1 and is boundary coercive (see H2). Let {xk} be the sequence generated by
GPPA with x0 ∈ V ∩Co and {x(µ)} be the central path with barrier h(x) = Dg(x, x

0).
Then {xk} ⊂ {x(µ) : µ > 0}, and for each increasing sequence {µk} ⊂ R++ there
exists a sequence {λk} ⊂ R++ such that x(µk) = xk, where {xk} is the sequence
generated by GPPA with Bregman function g and regularization parameters λk.

Proof. First we check that under these hypotheses both xk and x(µ) are well
defined. We start with x(µ). We are within hypothesis (ii) of Proposition 2 be-
cause it has been proved in [Bur1, Proposition 3.1] that H13 follows from H11 in the
optimization case. For xk, the result follows from [Bur2, Theorem 2].

Next, we observe that in this case (59) can be written as

1

λ`
(c+Atw`) +∇g(x`+1)−∇g(x`) = 0(62)

for some w` ∈ Rm, because NV (x) = Im(At) for all x ∈ V . Summing (62) from ` = 0

to k − 1 and taking µk =
∑k−1
`=1 λ

−1
` , w̄k = µ−1

k

∑k−1
`=0 λ

−1
` w`, we get

0 = µk(c+Atw̄k) +∇g(xk)−∇g(x0) = µk(c+Atw̄k) +∇h(xk).(63)

By (63), xk=x(µk). If an increasing sequence {µk} is given, then we get by the same
argument xk = x(µk), where {xk} is generated with λk = (µk − µk−1)−1 > 0.

Theorem 3 says that in the case of linear programming (i.e., when C = Rn
++) the

notions of central path and generalized proximal point sequence coincide. The result
depends in an essential way on the fact that T̂ is constant. It does not hold in more
general cases, not even for quadratic programming, as we show next.

Let n = 2, and consider the problem min 1
2 ‖x‖2 s.t. x ≥ 0. Take g(x) =

−∑2
j=1 log xj and x0 = (1/8, 1/2). Then x(µ) = argmin{µ2 ‖x‖2 + Dg(x, x

0)} with

Dg as in (57), and a direct calculation gives x(µ) = µ−1(
√

16 + µ−4,
√

1 + µ−1). Now

we look at the GPPA sequence, given by xk+1 = argmin{ 1
2 ‖x‖2 +λkDg(x, x

k)}. Take

λ0 = 1/48, λ1 = 1/9. Then x1 = (1/12, 1/8), which coincides with x(λ−1
0 ) = x(48),

but x2 = ((
√

5 − 2)/6, 1/18), and it follows from the formula above for x(µ) that
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x2 6= x(µ) for all µ > 0. Therefore, the GPPA sequence is not contained in the
central path.

It is interesting to discuss some consequences of Theorem 3. Consider, for in-
stance, the case of h(x) = −∑n

j=1 log xj . Since h is not continuous on the boundary
of Rn

+ (i.e., it does not satisfy H3) convergence of the GPPA sequence with the
Itakura–Saitu distance given by (57) is not dealt with by most papers on GPPA
(e.g., [Cen1], [Che], [Eck], [Ius1], [Bur2], or [Kiw2] for the case of solutions in ∂C).
On the other hand, it follows from our Theorem 2 that, for a linear programming
problem with a bounded set of solutions, the central path converges to the analytic
center of the solution set; and then from our Theorem 3, that such central path con-
tains the GPPA sequence {xk}; and furthermore that limk→∞ xk = limk→∞ x(µk)

with µk =
∑k−1
`=0 λ

−1
` . Since {λk} is bounded above, limk→∞ µk = ∞, and so {xk}

converges to the analytic center of the solution set.
Of course, the central path trajectory for this h converges also in the more general

cases included in the hypotheses of Theorem 2 (quadratic programming, paramono-
tone linear complementarity problems, etc.), but in these cases the GPPA sequence
is not contained in the central path, and therefore its convergence for the case of the
solution set contained in the boundary of C remains as an open problem.

Another interesting consequence of Theorem 3 is related to the limiting direction
of the central path, i.e., limµ→∞ ẋ(µ). For the case of linear programming with the
logarithmic barrier, existence of this limit has been established in [Adl2], where a pre-
cise characterization of this limiting direction is given. Similar results with the same
barrier for monotone linear complementarity problems have been proved in [Mon]. In
view of Theorem 3, such results apply to the GPPA for linear programming with the
Itakura–Saitu distance given by (57), since the limiting direction limµ→∞ ẋ(µ) can be
seen as the limiting direction of the GPPA sequence {xk}. This limiting direction has
not been considered in the GPPA literature. Extensions of the results in [Adl2] to
more general barriers (e.g., h(x) =

∑n
j=1 xj log xj) will, by virtue of Theorem 3, hold

also for the GPPA sequence.

4. The relation between central paths and Cauchy trajectories in Rie-
mannian manifolds. Let M be a Riemannian manifold of dimension s, with met-
ric 〈·, ·〉. Given a local coordinate system in a neighborhood U of a point p ∈ M ,
the metric in M is given by the symmetric and positive definite matrix H(q), with
H(q)ij = 〈 ∂∂xi |q, ∂

∂xj
|q〉 for all q ∈ U , where { ∂

∂xi
} is a basis of the tangent space to

M . If f : M → R is differentiable, the gradient of f is the vector field grad f defined
by

〈grad f,X〉 = df(X) =
∂f

∂X
,

where X is any vector field and ∂f
∂X is the derivative of f in the direction of X. It is

well known that grad f(q) = H(q)−1∇f(q), where ∇f(q) = ( ∂f∂x1
(q), . . . , ∂f∂xs (q)).

Let N ⊂ M be a submanifold of M . For x ∈ N , let TxM and TxN be the
tangent spaces to M and N at x, respectively, and let Πx : TxM → TxN be the
orthogonal projection onto TxN with respect to the metric of the manifold. If f/N is
the restriction of f to N , then the gradient of f/N with respect to the induced metric
in N turns out to be given by grad f/N (x) = Πx(grad f(x)). A Cauchy trajectory for
f in N is a curve x : [0, β)→ N given by

x(0) = x0,(64)

ẋ(t) = −grad f/N (x(t))(65)
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for a given x0 ∈ N and some β > 0. It is well known that for each x0 ∈ N there exists
β > 0 such that (64)–(65) has a unique solution.

We remark that if M is an open subset of Rs, then the representation of the
metric given by H(x) is global, rather than local, H : M → Rs×s is differentiable,
and ∇f coincides with the ordinary gradient in Rs.

We prove now that, under the hypotheses of Theorem 3, the Cauchy trajectory
and the central path for a certain barrier associated with the metric coincide.

Theorem 4. Let M be an open subset of Rn, N = M ∩ {x ∈ Rn : Ax = b}, and
f(x) = ctx. Let H represent the metric in M and assume that there exists h : M → R
such that ∇2h(x) = H(x) for all x ∈ M and ∇h(x0) = 0. If the Cauchy trajectory
{x(t)} and the central path {x(µ)} exist, then they coincide.

Proof. The central path in this case, as in (63) with an arbitrary µ, satisfies

0 = µ(c+Atw(µ)) +∇h(x(µ)).(66)

By (66), ∇h(x(0)) = 0. Since ∇h(x0) = 0, by strict convexity of h we get x(0) = x0;
i.e., (64) holds. We must check that (65) holds. Let PA be the orthogonal projection
onto Ker(A). By (66), µc+∇h(x(µ)) ∈ Im(At), so that, for all µ > 0,

0 = PA[µc+∇h(x(µ))].(67)

Since PA is linear, differentiating with respect to µ in (67) we get

0 = PA[c+∇2h(x(µ))ẋ(µ)] = PA[c+H(x(µ))ẋ(µ)](68)

or, equivalently,

H(x(µ))ẋ(µ)− c ∈ Im(At).(69)

Now we look at grad f/N (x(µ)). As observed above,

(70)

gradf/N (x(µ)) = Πx(µ)gradf(x(µ)) = Πx(µ)H(x(µ))−1∇f(x(µ)) = Πx(µ)H(x(µ))−1c,

where Πx(µ) is the orthogonal projection of Tx(µ)M onto Tx(µ)N with respect to the
inner product induced by the metric; i.e., 〈u, v〉 = utH(x(µ))v. Since M is open and
N is an affine manifold, we have Tx(µ)M = Rn and Tx(µ)N = Ker(A), so that, for
any y ∈ Rn, Πx(µ)(y) is the unique solution z of

min(z − y)tH(x(µ))(z − y)(71)

s.t. Az = 0,(72)

whose sufficient Karush–Kuhn–Tucker conditions are (72), plus

H(x(µ))(z − y) = Atw(73)

for some w ∈ Rm. Note that H(x(µ)) is the Hessian of h at x(µ), and so it is
symmetric and positive semidefinite. For y = H(x(µ))−1c, (73) reduces to

−H(x(µ))z + c ∈ Im(At).(74)
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By (69), z = −ẋ(µ) satisfies (74). Since x(µ) ∈ dom(T ) ⊂ V = N , we have Ax(µ) = b
for all µ > 0, which implies 0 = Aẋ(µ) = A(−ẋ(µ)), so that z = −ẋ(µ) satisfies (72)
and (74) and is therefore equal to Πx(µ)y = Πx(µ)H(x(µ))−1c. By (70), ẋ(µ) = −grad
f/N (x(µ)); i.e., (65) holds. We have proved that the path {x(µ)} coincides with the
Cauchy trajectory.

As mentioned above, the result of Theorem 4 covers the case of linear pro-
gramming (with M = Rn

++). It is worthwhile to remark that only one of the
two conditions imposed on h in the hypotheses of Theorem 4 is indeed relevant,
namely ∇2h(x) = H(x). If this relation is satisfied by some h̄, then we define
h(x) = h̄(x)−∇h̄(x0)tx, and we get ∇2h(x) = H(x) and ∇h(x0) = 0.

In view of (70) and (74), it is easy to prove that, when A has full rank, (65) can
be rewritten as

ẋ(t) = −H(x(t))−1[I −At(AH(x(t))−1At)−1AH(x(t))−1]∇f(x(t)).(75)

Theorem 4 says that, when H(x) = ∇2h(x) and ∇h(x0) = 0, the curve given by (64),
(75) coincides with the curve

x(µ) = argmin{µc+ h(x)}(76)

s.t. Ax = b.(77)

It is worthwhile to consider the form of (75) under different choices of H. For h as in
Example 1, i.e., h(x) =

∑n
j=1 xj log xj , we get

H(x)−1 = diag(x1, . . . , xn).(78)

The curve given by (64) and (75), (78) has been considered in [Fay], while, by The-
orems 3 and 4, this curve contains any sequence generated by GPPA for the linear
programming problem with the Kullback–Leibler divergence, a particular case of the
methods for linear programming considered in [Ius5].

For h as in Example 2, with α = 1, β = 1/2, we get

H(x)−1 = 4diag(x
3/2
1 , . . . , x3/2

n ).(79)

This “scaling” has not been particularly studied, either from the perspective of inte-
rior point methods for linear programming or from the point of view of generalized
proximal point methods. We feel that it deserves more attention.

Finally, for h(x) = −∑n
j=1 log xj , we get

H(x)−1 = diag(x2
1, . . . , x

2
n).(80)

In this case, (64), (75), with H(x)−1 as in (80) gives the affine scaling trajectory,
widely studied from the point of view of interior point methods for linear programming
(see, e.g., [Adl1]).
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Abstract. A variational inequality problem with a mapping g : <n → <n and lower and up-
per bounds on variables can be reformulated as a system of nonsmooth equations F (x) = 0 in <n.
Recently, several homotopy methods, such as interior point and smoothing methods, have been em-
ployed to solve the problem. All of these methods use parametric functions and construct perturbed
equations to approximate the problem. The solution to the perturbed system constitutes a smooth
trajectory leading to the solution of the original variational inequality problem. The methods gen-
erate iterates to follow the trajectory. Among these methods Chen–Mangasarian and Gabriel–Moré
proposed a class of smooth functions to approximate F . In this paper, we study several properties
of the trajectory defined by solutions of these smooth systems. We propose a homotopy-smoothing
method for solving the variational inequality problem, and show that the method converges globally
and superlinearly under mild conditions. Furthermore, if the involved function g is an affine function,
the method finds a solution of the problem in finite steps. Preliminary numerical results indicate
that the method is promising.

Key words. smoothing approximation, variational inequalities, P0 function, finite convergence,
homotopy

AMS subject classifications. 65H10, 90C30, 90C33
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1. Introduction. We consider the following variational inequality problem (VIP).
Given a continuously differentiable mapping g : <n → <n, l ∈ {< ∪ −∞}n, and
u ∈ {< ∪∞}n, where l < u, find x ∈ [l, u] such that

(y − x)T g(x) ≥ 0 for any y ∈ [l, u].

Such problem is called a box-constrained VIP or mixed complementarity problem in
[6, 9, 11, 15, 17, 18, 19, 24]. We denote this problem by VI(l, u, g).

Several algorithms have been developed for solving VIP [17, 20]. In the last few
years, smoothing methods have been studied extensively. Smoothing methods for
solving VI(l, u, g) are based on the reformulation of nonsmooth equations

F (x) := x−mid(l, u, x− g(x)) = 0,(1.1)

where mid(·) denotes the componentwise median operator, i.e.,

mid(li, ui, xi − gi(x)) =

 li, xi − gi(x) ≤ li,
xi − gi(x), li ≤ xi − gi(x) ≤ ui,
ui, xi − gi(x) ≥ ui.

These methods use parametric smooth functions and construct perturbed equations
to approximate nonsmooth equations (1.1). The solution to the perturbed system
constitutes a smooth trajectory leading to the solution of the original VIP.
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In contrast with Newton methods using generalized Jacobian [3, 15, 16, 35, 38],
smoothing methods have a notable advantage in that they can be extended to solve
nonsmooth problems in function spaces [7, 10, 26]. In fact, smoothing methods are
closely related to splitting methods for solving nonsmooth equations in function spaces
for which the nonlinear function can be split into smooth and nonsmooth parts. Such
problems arise from differential equations with nondifferentiable terms, nonsmooth
compact fixed point problems, etc. In particular, a class of problems arises in optimal
control problems for parabolic partial differential equations with bound constraints
on the control. In a survey paper [26], Kelley considered the splitting methods for
solving the nonsmooth equations

x(t)− P (K(x))(t) = 0,(1.2)

where K is a completely continuous map from L∞(Ω) to C(Ω) for some bounded
Ω ⊆ <m, and P is the map on C(Ω) given by

P (K(x))(t) =

 l(t), K(x)(t) ≤ l(t),
K(x)(t), l(t) ≤ K(x)(t) ≤ u(t),
u(t), K(x)(t) ≥ u(t),

for given l and u in C(Ω). A paradigm for problems of the form (1.2) is the Urysohn
equation [27]. Nonsmooth equation (1.1) may be considered as a special case of the
form (1.2) in <n.

In this paper, we will use the Jacobian of smooth approximation functions and
directional derivative consistency property [7, 19] in the smoothing algorithm and its
convergence analysis. Thus, these results can be extended to function spaces without
difficulties.

The box-constrained VIP includes the nonlinear complementarity problem (NCP)
[29, 30, 34], where li = 0 and ui =∞ for i = 1, . . . , n. In the NCP case, (1.1) is reduced
to

F (x) = x−max(0, x− g(x)) = 0.(1.3)

Chen and Mangasarian [6] introduced a class of parametric smooth approximation
functions for the nonsmooth function F in (1.3). A family of homotopy continuation
methods, including an interior point path-following method, can be constructed to
solve the NCP based on Chen–Mangasarian smooth approximation equations. Us-
ing the proving techniques developed in Kojima, Megiddo, and Noma [28], Chen and
Harker [5] established the existence, uniqueness, and limiting properties of the trajec-
tory defined by these approximation equations under certain conditions. Recently, Xu
and Burke [40] gave a polynomial complexity bound for an interior point smoothing
method for the monotone linear complementarity problem (LCP) based on the Chen–
Harker–Kanzow–Smale function [4, 23] and Tseng’s convergence analysis for a class
of infeasible interior point methods [39]. More recently, Burke and Xu [2] and Hotta
and Yoshise [22] studied the global convergence of non–interior point algorithms using
the Chen–Harker–Kanzow–Smale function.

A number of important problems in engineering and economics have lower and/or
upper bounds on the variables, rather than just nonnegative constraints as in the
NCP. The VI(l, u, g) model includes more general problems and attracts researchers’
attention [6, 9, 11, 15, 17, 18, 19, 24]. Gabriel and Moré [19] defined a parametric
function f : <n × R++ → <n to approximate function F in (1.1), where f(x, ε) is



HOMOTOPY-SMOOTHING METHODS FOR BVI 591

continuously differentiable with respect to variable vector x and ‖F (x)−f(x, ε)‖ ≤ µε.
Here µ is a positive constant.

In section 2, we reformulate VI(l, u, g) as a generalized complementarity problem
(GCP) in <n :

q(x) ≥ 0, p(x) ≥ 0, p(x)T q(x) = 0,

where the set {x : p(x) ≥ 0, q(x) ≥ 0} is usually called the feasible set of the GCP. We
show that for any ε > 0, if x is a solution of f(x, ε) = 0, then x is approximately fea-
sible for the GCP—q(x) ≥ 0 and p(x) ≥ −O(ε)e, and for each i, |pi(x)qi(x)| ≤ O(ε2)
(which is stronger than the current result that |pi(x)qi(x)| is bounded). Furthermore,
if the VIP or GCP is merely an NCP, then any solution of f(x, ε) = 0 is an exactly
feasible point of the NCP, i.e., x ≥ 0 and g(x) ≥ 0, and for each i, xigi(x) ≤ O(ε2).

Under the assumptions that g is a P0 function and the level sets {x : ‖F (x)‖ ≤
Γ} with Γ > 0 are bounded, we investigate the trajectory formed by solutions of
f(x, ε) = r as ε > 0 and r ∈ <n vary. We show that the monotone complementarity
problem with a feasible interior point satisfies the assumptions on certain level sets.
Our trajectory analysis is related to the one established in Chen and Harker [5].
However, there are several fundamental distinctions. For example, the Gabriel–Moré
approximation function is not convex. Consequently, assumptions A1, A2, and A4
in [5], which play an important role in their proof, do not hold for the Gabriel–Moré
approximation function.

In section 3, we modify a smoothing Newton method for solving VI(l, u, g), which
was originally proposed in [9]. The new method simplifies the ε update step in the
Chen–Qi–Sun method without loss of its feature that it solves a system of linear
equations at each step and generates iterates converging to a solution of (1.1) globally
and superlinearly when g is a uniform P function. Moreover, motivated by the finite
convergence result of other algorithms [16, 42], we use a Newton step in the new
method. The resulting method finds a solution of VI(l, u, g) in finite steps if the
involved function g is an affine function.

It is notable that the existence of smooth path and global convergence of the
smoothing method requires the same condition that g be a P0 function and the level
sets {x : ‖F (x)‖ ≤ Γ} with Γ > 0 be bounded. Like the central path in interior
point methods, the smooth path plays a key role in smoothing methods although it
does not appear in algorithms.

We have tested the hybrid Newton-smoothing method with three approximation
functions on seven types of samples which contain 27 linear VIPs and 4 nonlinear
VIPs. Our preliminary numerical results reported in section 4 show that the new
method is promising.

Some words about our notation are in order. Let N = {i : i = 1, 2, . . . , n}. The
n× n identity matrix is denoted by I. The ith row of an n× n matrix M is denoted
by Mi. We use ‖ · ‖ to denote the Euclidean norm. Let e denote the vector of ones,
i.e.,

e = (1, 1, . . . , 1)T .

We denote

<+ = {ε : ε ∈ <, ε ≥ 0} and <++ = {ε : ε ∈ <, ε > 0}.
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2. Smoothing approximations. Let ρ : < → <+ be a density function with a
bounded absolute mean, that is,

κ :=

∫ ∞
−∞
|s|ρ(s)ds <∞.(2.1)

In addition, let ρ satisfy

ζ2 := max

{
sup
t≥0

∫ ∞
t

tsρ(s)ds, sup
t≤0

∫ t

−∞
tsρ(s)ds

}
<∞.(2.2)

It is easy to verify that

ζ2 ≤
∫ ∞
−∞

s2ρ(s)ds.

The three density functions used in our computational experiment satisfy these two
conditions (see section 4). Note that if the second moment of ρ is bounded, then ρ
satisfies (2.1) and (2.2). The condition (2.2) is new. We introduce it to establish a
strong complementarity error bound in Theorem 2.1.

The class of Gabriel–Moré approximation functions to function F in (1.1) is de-
fined by

fi(x, ε) = xi −
∫ ∞
−∞

mid(li, ui, xi − gi(x)− εs)ρ(s)ds, i = 1, . . . , n.(2.3)

By using (2.3), a smooth approximation function can be generated by an appropriate
density function. The following proposition is known.

Proposition 2.1 (see [7, 9, 19]). The function f : <n × <++ → <n defined by
(2.3) satisfies the following four conditions:

(i) For any (x, ε) ∈ <n ×<++,

|Fi(x)− fi(x, ε)| ≤ κε, i = 1, 2, . . . , n.(2.4)

(ii) f is continuously differentiable with respect to the variable x, and for any
(x, ε) ∈ <n ×<++,

fx(x, ε) = I −D(x)(I − g′(x)),(2.5)

where D(x) is a diagonal matrix whose diagonal elements are

Dii(x) =

∫ (x−g(x)−l)i/ε

(x−g(x)−u)i/ε

ρ(s)ds, i = 1, 2, . . . , n.

(iii) For any x ∈ <n,

lim
ε↓0

fx(x, ε) = f0(x),(2.6)

where for i ∈ N ,

f0
i (x) =



g′i(x) if xi − gi(x) ∈ (li, ui),
Ii if xi − gi(x)i 6∈ [li, ui],

Ii −
(∫ 0

−∞
ρ(s)ds

)
(Ii − g′i(x)) if xi − gi(x) = li,

Ii −
(∫ ∞

0

ρ(s)ds

)
(Ii − g′i(x)) if xi − gi(x) = ui.
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(iv) For any x ∈ <n, f satisfies the directional derivative consistency property at
x [7], i.e.,

lim
h→0

F (x+ h)− F (x)− f0(x+ h)h

‖h‖ = 0.(2.7)

It is shown in [9] that f0(x) ∈ ∂CF (x) for any x ∈ <n, where ∂CF (x) is the
generalized Jacobian at x. This property is called Jacobian consistency property in
[9]. However, the definition of the generalized Jacobian and the semismoothness for
superlinear convergence [9, 35] are restricted in <n. In order to make smoothing meth-
ods applicable in function spaces, we use the definition of f0(x) and the directional
derivative consistency property in this paper.

We now develop the following proposition which will be used in our analysis.
Proposition 2.2. For a given ε ∈ <++ and a pair a, b ∈ < ∪ {−∞,∞} such

that a < b, let ρ(s) = ρ(−s) and

h(t) =

∫ ∞
−∞

mid(a, b, t− εs)ρ(s)ds.

Then

0 ≤ h′(t) ≤ 1(2.8)

and

h(t) ≥ mid(a, b, t) ⇔ t ≤ a+ b

2
.(2.9)

Furthermore, if supp{ρ} = <, then

0 < h′(t) < 1(2.10)

and

h(t) > mid(a, b, t) ⇔ t <
a+ b

2
.(2.11)

Proof. The result on h′(t) was proved in Lemma 2.3 of Gabriel and Moré [19].
We focus on proving the rest of the proposition.

Using ρ(s) = ρ(−s), we have ∫ ∞
−∞

sρ(s)ds = 0,

which implies ∫ ∞
−∞

(t− εs)ρ(s)ds = t.

By the definition of the median operator, we obtain

h(t) =

∫ (t−b)/ε

−∞
bρ(s)ds+

∫ ∞
(t−a)/ε

aρ(s)ds+

∫ (t−a)/ε

(t−b)/ε
(t− εs)ρ(s)ds
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=

∫ (t−b)/ε

−∞
bρ(s)ds+

∫ ∞
(t−a)/ε

aρ(s)ds+

∫ ∞
−∞

(t− εs)ρ(s)ds

−
∫ (t−b)/ε

−∞
(t− εs)ρ(s)ds−

∫ ∞
(t−a)/ε

(t− εs)ρ(s)ds

=

∫ (t−b)/ε

−∞
(b− t+ εs)ρ(s)ds+

∫ ∞
(t−a)/ε

(a− t+ εs)ρ(s)ds+ t.(2.12)

Suppose that t ≤ (a + b)/2. Then there are only two cases: mid(a, b, t) = t or
mid(a, b, t) = a.

If mid(a, b, t) = t, then from (2.12), b− t ≥ t− a ≥ 0, and ρ(s) = ρ(−s) we have

h(t)−mid(a, b, t)

=

∫ (t−b)/ε

−∞
(a+ b− 2t)ρ(s)ds+

∫ (b−t)/ε

(t−a)/ε

(a− t+ εs)ρ(s)ds ≥ 0.(2.13)

If mid(a, b, t) = a, then from (2.12) and 0 ≥ t− a ≥ t− b we have

h(t)−mid(a, b, t)

=

∫ (t−b)/ε

−∞
(b− a+ εs)ρ(s)ds+

∫ ∞
(t−b)/ε

(t− a)ρ(s)ds+

∫ ∞
(t−a)/ε

(a− t+ εs)ρ(s)ds

=

∫ (t−b)/ε

−∞
(b− a)ρ(s)ds+

∫ (t−a)/ε

(t−b)/ε
(t− a− εs)ρ(s)ds ≥ 0.

(2.14)

Hence, we obtain the ⇐ part of (2.9) from (2.13) and (2.14).
Assume that t ≥ (a + b)/2. Then following the same argument above, we can

show that h(t) ≤mid(a, b, t). This implies the ⇒ part of (2.9). So the proof of (2.9)
is completed.

Notice that supp{ρ} = < implies that for any α, β satisfying α < β,∫ α

β

ρ(s)ds > 0.

Using this fact and following the above argument, we can prove (2.11).
To study the smooth path defined by the smooth equations f(x, ε) = 0 for ε > 0,

we introduce a generalized complementarity problem. Let z ∈ <n and E be a diagonal
matrix whose diagonal elements are

Eii(z) =

{
1, zi ≥ 0,
−1, zi < 0, i = 1, 2, . . . , n.

It is easy to verify that a vector x ∈ <n solves (1.1) if and only if x solves the
following complementarity problem:

q(x) := min(x− l, u− x) ≥ 0,(2.15)

p(x) := E

(
l + u

2
− x
)
g(x) ≥ 0,(2.16)

q(x)T p(x) = 0.(2.17)
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In the complementarity formulation (2.15)–(2.17), for i ∈ N we regard li · 0 = 0 and
ui · 0 = 0 even for li = −∞ or ui =∞.

Based on the complementarity problem (2.15)–(2.17), we define a restricted fea-
sible set of the variational inequality problem VI(l, u, g) by

X0 = {x : q(x) ≥ 0, p(x) ≥ 0}.

q(x) ≥ 0 implies that x ∈ [l, u], which is desired, but p(x) ≥ 0 implies that g(x) ≥ 0
if x ≤ l+u

2 and g(x) ≤ 0 if x > l+u
2 , which is strictly contained in the feasible set of

the original VIP

{x : q(x) ≥ 0, gi(x) ≥ 0 if xi = li; gi(x) ≤ 0 if xi = ui, i = 1, . . . , n}.

Thus, we define another set X associated with X0 as

X =

{
x : q(x) ≥ 0, E

(
l + u

2
+ g(x)− x

)
g(x) ≥ 0

}
and its interior by

intX =

{
x : q(x) > 0, E

(
l + u

2
+ g(x)− x

)
g(x) > 0

}
.

Obviously, we have

X0 ⊆ X,

and both X0 and X contain the solution set of the VIP if it exists. Furthermore, if
li = 0 and ui =∞ for each i ∈ N , then VI(l, u, g) reduces to the NCP and

X0 = X = {x : x ≥ 0, g(x) ≥ 0},

which is known as the feasible set for the NCP.
The following theorem shows that the homotopy equation f(x, ε) = 0 possesses

several desired features and is closely related to the interior point homotopy equation
for the GCP (2.15)–(2.17).

Theorem 2.1. Suppose that ρ(s) = ρ(−s). Let x be a solution of

f(x, ε) = 0.

Then
(i) For any ε ∈ <++,

x ∈ X.

Furthermore, if supp(ρ) = {s : ρ(s) > 0} = <, then

x ∈ intX ∪
{
x : xi =

li + ui
2

, ∃ i ∈ N
}
.

(ii) For ε ∈ <++ satisfying ε < 1
2κ min1≤i≤n(ui − li),

x ∈ Xε = {x : q(x) ≥ 0, p(x) ≥ −κεe}.
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(iii) For any ε ∈ <++,

|qi(x)pi(x)| ≤ ε2(ζ2 + κ2/2), i = 1, 2, . . . , n.

Proof. To simplify the proof, we denote y = g(x).
(i) Since li ≤ mid (li, ui, xi − yi − εs) ≤ ui and ρ(s) ≥ 0, we have

li ≤ xi − fi(x, ε) = xi ≤ ui, i = 1, 2, . . . , n.

Now we show

Eii

(
l + u

2
+ y − x

)
yi ≥ 0, i = 1, 2, . . . , n.(2.18)

By Proposition 2.2, f(x, ε) = 0 implies that for any i ∈ N

xi ≥ mid(li, ui, xi − yi) ⇔ xi − yi ≤ li + ui
2

.(2.19)

Suppose that xi − yi ≤ li+ui
2 . Then from (2.19), we have either

xi ≥ xi − yi ≥ li or xi ≥ li ≥ xi − yi.

In either case, yi ≥ 0.
Suppose that xi − yi ≥ li+ui

2 . Then from (2.19), we have either

xi ≤ xi − yi ≤ ui or xi ≤ ui ≤ xi − yi.

In either case, yi ≤ 0.
Therefore (2.18) holds, and hence x ∈ X.
The assumption supp(ρ) = < implies that ρ vanishes in any nontrivial interval.

In such a case, from

xi = xi − fi(x, ε)

=

∫ xi−yi−ui
ε

−∞
uiρ(s)ds+

∫ ∞
xi−yi−li

ε

liρ(s)ds+

∫ xi−yi−li
ε

xi−yi−ui
ε

(xi − yi − εs)ρ(s)ds

we have li < xi < ui. Furthermore, using (2.11) and following the same argument
above, we can show

Eii

(
l + u

2
+ y − x

)
yi > 0 for xi − yi 6= li + ui

2
i = 1, 2, . . . , n.

If xi − yi = (li + ui)/2, then by (2.11) yi = 0. Hence, we obtain x ∈ int X ∪ {x :
xi = (li + ui)/2,∃ i ∈ N}.

(ii) By (2.4) and f(x, ε) = 0, we have

|Fi(x)| = |xi −mid(li, ui, xi − yi)| ≤ κε.

This implies

xi − κε ≤ mid(li, ui, xi − yi) ≤ xi + κε.(2.20)
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If xi ≤ (li + ui)/2, then from the second inequality in (2.20) and ε < ui−li
2κ , we have

either

mid(li, ui, xi − yi) = li(2.21)

or

mid(li, ui, xi − yi) = xi − yi.(2.22)

Moreover, (2.21) implies that yi ≥ xi−li ≥ 0, and (2.22) with (2.20) implies yi ≥ −κε.
If xi ≥ (li + ui)/2, then from the first inequality in (2.20) and ε < ui−li

2κ we have
either

mid(li, ui, xi − yi) = ui(2.23)

or

mid(li, ui, xi − yi) = xi − yi.(2.24)

Moreover, (2.23) implies that yi ≤ xi−ui ≤ 0, and (2.24) with (2.20) implies yi ≤ κε.
Hence, pi(x) = Eii(

l+u
2 − x)yi ≥ −κε.

(iii) For a fixed i, we consider three cases.
Case 1. mid(li, ui, xi − yi) = li. We have

xi − yi ≤ li < ui, xi − li ≥ 0, yi ≥ 0,

and

xi − li ≤ κε.
Moreover,

xi − li

=

∫ xi−yi−ui
ε

−∞
(ui − xi + yi + εs)ρ(s)ds−

∫ xi−yi−li
ε

−∞
(li − xi + yi + εs)ρ(s)ds

= ε

(∫ xi−yi−ui
ε

−∞

(
ui − xi + yi

ε
+ s

)
ρ(s)ds−

∫ xi−yi−li
ε

−∞

(
li − xi + yi

ε
+ s

)
ρ(s)ds

)

≤ −ε
∫ xi−yi−li

ε

−∞

(
li − xi + yi

ε
+ s

)
ρ(s)ds

≤ −ε
∫ xi−yi−li

ε

−∞
sρ(s)ds,

since the first integral in the parenthesis has a negative value and li − xi + yi ≥ 0.
Thus,

yi(xi − li) ≤ (li − xi + yi + xi − li)
(
−ε
∫ xi−yi−li

ε

−∞
sρ(s)ds

)

≤ (li − xi + yi + κε)

(
−ε
∫ xi−yi−li

ε

−∞
sρ(s)ds

)

= ε2xi − yi − li
ε

∫ xi−yi−li
ε

−∞
sρ(s)ds− ε2κ

∫ xi−yi−li
ε

−∞
sρ(s)ds

≤ ε2

(
ζ2 + κ2

2

)
.
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Case 2. mid(li, ui, xi − yi) = ui. The proof of Case 2 is similar to Case 1, where
we have

li < ui ≤ xi − yi, ui − xi ≥ 0, yi ≤ 0,

and

ui − xi ≤ κε.
Case 3. mid(li, ui, xi − yi) = xi − yi and li < xi − yi < ui. We have

|yi| ≤ κε.
Moreover,

yi =

∫ xi−yi−ui
ε

−∞
(ui − xi + yi + εs)ρ(s)ds+

∫ ∞
xi−yi−li

ε

(li − xi + yi + εs)ρ(s)ds.

Since the first integral has negative value and the second has positive value, we have∫ xi−yi−ui
ε

−∞
(ui − xi + yi + εs)ρ(s)ds ≤ yi ≤

∫ ∞
xi−yi−li

ε

(li − xi + yi + εs)ρ(s)ds.

Furthermore, since ui − xi + yi ≥ 0 and li − xi + yi ≤ 0, we have∫ xi−yi−ui
ε

−∞
εsρ(s)ds ≤ yi ≤

∫ ∞
xi−yi−li

ε

εsρ(s)ds.

Thus,

min(xi − li, ui − xi)yi ≤ (xi − li)
∫ ∞
xi−yi−li

ε

εsρ(s)ds

= (xi − li − yi + yi)

∫ ∞
xi−yi−li

ε

εsρ(s)ds

≤ (xi − li − yi + κε)

∫ ∞
xi−yi−li

ε

εsρ(s)ds

= ε2xi − li − yi
ε

∫ ∞
xi−yi−li

ε

sρ(s)ds+ ε2κ

∫ ∞
xi−yi−li

ε

sρ(s)ds

≤ ε2

(
ζ2 + κ2

2

)
.

Similarly, we can prove

min(xi − li, ui − xi)yi ≥ −ε2(ζ2 + κ2/2).

Therefore,

|min(xi − li, ui − xi)yi| ≤ ε2(ζ2 + κ2/2).

Theorem 2.1 presents some properties of the smooth path

{x(ε) : f(x, ε) = 0, ε > 0}.
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Result 1 shows that the smooth path is in the box [l, u], i.e., l ≤ x(ε) ≤ u and
l < x(ε) < u if supp(ρ) = {s : ρ(s) > 0} = <. Result 2, together with result 1, shows
that x(ε) is approximately feasible, and the distance from x(ε) to the feasible set goes
to zero as ε goes to zero. Result 3 shows that the complementarity gap goes to zero
quadratically in ε. Hence, the solution trajectory x(ε), if it exists, converges to the
solution set of the VIP as ε→ 0.

The following corollary further illustrates the behavior of the trajectory for NCP.
Corollary 2.1. Suppose that ρ(s) = ρ(−s) and consider the NCP problem, i.e.,

li = 0 and ui =∞ for each i ∈ N . Let x be a solution of

f(x, ε) = 0.

Then we have the following:
(i) For any ε ∈ <++,

x ∈ X.
Furthermore, if supp(ρ) = {s : ρ(s) > 0} = <, then

x ∈ intX.

(ii) If

ξ2 := inf
t≤0

(∫ t

−∞
(t− s)ρ(s)ds

)(∫ t

−∞
(t− s)ρ(s)ds− t

)
> 0,(2.25)

then for any ε ∈ <++ and each i ∈ N ,

xigi(x) ≥ ε2ξ2.

Proof. Result (i) follows from Theorem 2.1. We now prove (ii), which is similar
to the proof of (iii) of Theorem 2.1. (Note that Case 2 no longer exists here.)

Case 1. yi := gi(x) ≥ xi. We have

xi − yi ≤ 0, xi ≥ 0, yi ≥ 0.

Let t = xi−yi
ε . Then t ≤ 0, yi = xi − εt, and

xi = −
∫ xi−yi

ε

−∞
(−xi + yi + εs)ρ(s)ds

= ε

∫ xi−yi
ε

−∞

(
xi − yi
ε

− s
)
ρ(s)ds

= ε

∫ t

−∞
(t− s)ρ(s)ds.

Thus,

yixi = (xi − εt)xi
= ε2

(∫ t

−∞
(t− s)ρ(s)ds

)(∫ t

−∞
(t− s)ρ(s)ds− t

)
≥ ε2ξ2.
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Similarly, we can prove Case 3 where yi ≤ xi.
The density function generating the Chen–Harker–Kanzow–Smale smooth ap-

proximation function satisfies condition (2.25). Moreover, it provides(∫ t

−∞
(t− s)ρ(s)ds

)(∫ t

−∞
(t− s)ρ(s)ds− t

)
≡ 1.

By the proof of Corollary 2.1, we have

xigi(x) = ε2, i = 1, 2, . . . , n,

for this density function. However, the other two density functions used in section 4
do not satisfy condition (2.25).

If both (iii) of Theorem 2.1 and (ii) of Corollary 2.1 hold, then for each i ∈ N ,

xigi(x)

xT g(x)/n
≥ ξ2

ζ2 + κ2/2
> 0.

This inequality implies that x(ε) converges to a maximal complementary solution
(the number of positive components in x and g(x) is maximal) if g(x) is a monotone
function (see [41] and references therein). This also implies that x(ε) converges to a
strictly complementary solution if g(x) is monotone and the NCP has a strictly com-
plementary solution, which property is possessed by most interior point algorithms.

We now turn our attention to the existence of the trajectory defined by

{x(ε, r) : f(x, ε) = r, ε > 0, r ∈ <n}.

The following two assumptions will be used to establish a sufficient condition for the
existence of a solution to f(x, ε) = r, where r is a given n-dimensional vector.

A1. The level sets

D(Γ) = {x ∈ <n : ‖F (x)‖ ≤ Γ}

are bounded for all positive numbers Γ.
A2. For any ε > 0 and x ∈ <n, fx(x, ε) is nonsingular.
Assumptions related to A1 and A2 have been used in several papers on smoothing

methods. We state some results here.
Proposition 2.3. Any of the following conditions implies assumption A1:
(i) g is a uniform P function [24];
(ii) −∞ < li < ui <∞ for i = 1, 2, . . . , n [9];
(iii) li = 0 for i = 1, 2, . . . , n, and g is an R0 function [5].
Any of the following conditions implies assumption A2:
(i) g is a uniform P function [19];
(ii) g is a P0 function and supp{ρ} = < [19].
Many interior point algorithms (e.g., [28, 41]) for solving the NCP use the follow-

ing assumption:
AIP. g is monotone and the set of all the strictly positive feasible solutions

S++(g) = {x ∈ <n : g(x) > 0, x > 0}

is nonempty.
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The existence of a feasible interior point is the standard assumption for any
interior point algorithm, and the monotonicity of g is necessary to have a convex
objective for the LCP [41]

min xT g(x),

subject to g(x) = Mx+ q, (x, g(x)) ≥ 0.

The existence and uniqueness of trajectories defined by

{x(ε, 0) : f(x, ε) = 0, ε > 0}
were established in [5, 28] under assumption AIP. It is interesting to see the rela-
tion between interior point methods and smoothing methods from the difference of
assumptions A1, A2, and AIP.

Since the monotonicity is stronger than the P0 property, the assumption AIP
implies A2 for smooth functions with supp{ρ} = <. However, neither of the two
assumptions, A1 and AIP, implies the other. A1 does not imply AIP, because the
uniform P property satisfies A1 but fails to satisfy the monotonicity. Kanzow, Ya-
mashita, and Fukushima [25] gave a simple example to show that AIP does not imply
A1. In their example, g(x) ≡ 1, for x ∈ <. Then g is monotone and S++(g) is
nonempty. However, for Γ ≥ 1, [1,∞) ⊂ D(Γ).

Nevertheless, the following proposition shows that AIP implies the boundedness
of certain level sets for the NCP.

Proposition 2.4. Under assumption AIP, the level sets D(Γ) are bounded for
all positive numbers Γ < Γ0, where

F (x) := min(x, g(x))

and

Γ0 := sup

{
min
i∈N

Fi(x), x ∈ S++(g)

}
.

Proof. Let Γ < Γ0 and x̂ ∈ S++(g) satisfy

Γ < min
i∈N

Fi(x̂).

This means that for each i ∈ N , gi(x̂) > Γ and x̂i > Γ.
Suppose on the contrary that we have an unbounded sequence {xk} ⊂ D(Γ).

Since xk ∈ D(Γ) implies that |min(xki , gi(x
k))| ≤ Γ for each i ∈ N , there is no index j

such that xkj → −∞ or gj(x
k)→ −∞. Define the index sets J = {i : xki →∞, i ∈ N}

and L = {` : g`(x
k)→∞, ` ∈ N}. Since {xk} is unbounded by assumption, the set

J is nonempty, while the set L can be either empty or nonempty.
Then there is a k′ ≥ 0 such that for all k ≥ k′,

|min(xki , gi(x
k))| = |gi(xk)| ≤ Γ for i ∈ J

and

|min(xk` , g`(x
k))| = |xk` | ≤ Γ for ` ∈ L (if L 6= ∅).

Hence we have

xki − x̂i →∞, |gi(xk)| ≤ Γ < gi(x̂) for k ≥ k′, i ∈ J
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and

g`(x
k)− g`(x̂)→∞, |xk` | ≤ Γ < x̂` for k ≥ k′, ` ∈ L (if L 6= ∅).

Note this results in a contradiction to the monotonicity of g, i.e,

(g(xk)− g(x̂))T (xk − x̂) ≥ 0.

Thus D(Γ) must be bounded.
Subsequent to the writing of this paper, several interesting results on the bound-

edness of the level set D(Γ) and the existence of an interior feasible point for the
P0-function NCP were established [3, 14, 37]. We summarize these results by the
following theorem.

Theorem 2.2. Suppose that g is a P0 function and the solution set of the NCP
is nonempty and bounded. Then we have the following:

(i) D(Γ) is bounded for all sufficiently small Γ > 0 [14, 37];
(ii) S++(g) is nonempty [3, 37].
The assumption of Theorem 2.2 is weaker than assumption AIP, because every

monotone function is a P0 function and that S++(g) is nonempty implies that the so-
lution set of the monotone NCP is nonempty and bounded. On the other hand, under
assumption AIP, by Proposition 2.4, we can have a bounded level set for smoothing
methods after we find an interior point (see Corollary 3.1). Precisely, if x̃ ∈ S++(g),
then

min
i∈N

Fi(x̃) ≤ Γ0 = sup

{
min
i∈N

Fi(x), x ∈ S++(g)

}
.

Hence for every point x0 satisfying

‖F (x0)‖ < min
i∈N

Fi(x̃),

the level set D(‖F (x0)‖) is bounded. However, we cannot define a bounded level set
by using an interior point based on Theorem 2.2.

Theorem 2.3. Suppose that assumptions A1 and A2 hold; then for any ε > 0
and r ∈ <n, there is a solution x(ε, r) of f(x, ε) = r. Furthermore, if g is a P0

function and supp{ρ} = <, then, x(ε, r) is unique.
Proof. Let µ = κ

√
n. We choose x0 ∈ <n and a positive number Γ satisfying

Γ > µε+ ‖r‖ and Γ− µε− ‖r‖ > ‖F (x0)‖. We define

Cε,r(Γ) = {x : ‖f(x, ε)− r‖ ≤ Γ}.
By (2.4), we have

‖f(x, ε)− r‖ ≤ ‖F (x)‖+ µε+ ‖r‖(2.26)

and

‖F (x)‖ ≤ ‖f(x, ε)− r‖+ µε+ ‖r‖.(2.27)

Since x0 ∈ D(Γ − µε − ‖r‖), (2.26) implies that x0 ∈ Cε,r(Γ), and hence Cε,r(Γ) is
nonempty. By (2.27), we have

Cε,r(Γ) ⊆ D(Γ + µε+ ‖r‖).
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Hence, from assumption A1, the level set Cε,r(Γ) is bounded.
Let θ(x) := 1

2‖f(x, ε) − r‖2. The boundedness of Cε,r(Γ) and the continuous
differentiability of f(·, ε) imply that θ has a global minimum point x∗ in Cε,r(Γ)
[33, Thm. 4.2.2]. Since θ(x∗) ≤ θ(x0) and ‖f(x0, ε) − r‖ < Γ, x∗ ∈ int Cε,r(Γ).
Moreover, by assumption A2, f ′1(x∗, ε) is nonsingular. Therefore, by [33, Thm. 4.1.3],
θ′(x∗) = f ′1(x∗, ε)T (f(x∗, ε)− r) = 0, and so f(x∗, ε) = r.

Now we prove the uniqueness of x(ε, r).
Let y = g(x), t = x− y, and

hi(t) =

∫ ∞
−∞

mid(li, ui, ti − εs)ρ(s)ds, i = 1, . . . n.

By Proposition 2.2, hi(t) is an increasing function—therefore, an increasing func-
tion in xi and a decreasing function in yi. Furthermore, by Lemma 2.3 in [19], we can
claim h′i(t) ∈ (0, 1).

Suppose on the contrary that we have both x1 and x2 as solutions. Let y1 = g(x1)
and y2 = g(x2). Since g(x) is a P0 function, we have an index i such that

x1
i 6= x2

i and (y1
i − y2

i )(x1
i − x2

i ) ≥ 0.

Assume that, without loss of generality, x1
i > x2

i . Then we have y1
i ≥ y2

i . Moreover,

x1
i − x2

i

= hi(x
1
i − y1

i )− hi(x2
i − y2

i )

≤ hi(x1
i − y2

i )− hi(x2
i − y2

i )

= h′i(θ)(x
1
i − x2

i )

< x1
i − x2

i ,

where θ is between x1
i − y2

i and x2
i − y2

i according to the Taylor theorem. Note that
this results in a contradiction. Thus, we must have x1 = x2.

3. Algorithm and convergence. In this section, we propose a hybrid Newton-
smoothing algorithm for solving VI(l, u, g). We show that the algorithm converges
globally and superlinearly under assumptions A1 and A2. Furthermore, the method
is finitely convergent if

g(x) = Mx+ q,

where M is an n×n matrix and q is an n-dimensional vector. In this case, we denote
the linear variational inequality problem by VI(l, u,M, q).

We denote

Θ(x) =
1

2
‖F (x)‖2

and

θk(x) =
1

2
‖f(x, εk)‖2.

Algorithm 3.1. Given ρ, α, η ∈ (0, 1) and a starting point x0 ∈ <n, choose a
scalar σ ∈ (0, 1

2 (1− α)). Let ν = α
2
√
nκ
. Let β0 = ‖F (x0)‖ and ε0 = νβ0.

For k ≥ 0:
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1. Find a solution d̂k of the system of linear equations

F (xk) + f0(xk)d = 0.(3.1)

If ‖F (xk + d̂k)‖ ≤ ηβk, let xk+1 = xk + d̂k. Otherwise perform step 2.
2. Find a solution dk of the system of linear equations

F (xk) + fx(xk, εk)d = 0.(3.2)

Let mk be the smallest nonnegative integer m such that

θk(xk + ρmdk)− θk(xk) ≤ −2σρmΘ(xk).(3.3)

Set tk = ρmk and xk+1 = xk + tkd
k.

3. 3.1. If ‖F (xk+1)‖ = 0, terminate.
3.2. If

0 < ‖F (xk+1)‖ ≤ max{ηβk, α−1‖F (xk+1)− f(xk+1, εk)‖},(3.4)

let

βk+1 = ‖F (xk+1)‖ and εk+1 = min
{
νβk+1,

εk
2

}
.

3.3. Otherwise, let βk+1 = βk and εk+1 = εk.
Algorithm 3.1 is a modification of the smoothing method proposed in [9]. This

algorithm simplifies the ε update step in [9] and has finite convergence property for
linear box constrained VIP.

Theorem 3.1. Suppose that assumptions A1 and A2 hold. Then for any starting
point x0 ∈ <n, Algorithm 3.1 is well defined and the generated sequence {xk} remains
in D0 := D((1 + α)‖F (x0)‖) and satisfies

lim
k→∞

‖F (xk)‖ = 0.(3.5)

Proof. By Lemma 3.1 in [9], there exists a finite nonnegative integer mk such that
(3.3) holds. Hence, Algorithm 3.1 is well defined.

Let

K = {k : ‖F (xk + d̂k)‖ ≤ ηβk, k ≥ 0}.

By the construction of Algorithm 3.1, for k ∈ K, xk+1 = xk + d̂k and βk+1 =
‖F (xk+1)‖ ≤ ηβk ≤ (1 + α)‖F (x0)‖. Hence, xk+1 ∈ D0 for k ∈ K. Moreover,
following the proof of Theorem 3.1 in [9], we can show xk+1 ∈ D0 for k 6∈ K. Hence,
{xk} remains in D0.

Now we prove (3.5).
If K is finite, then there exists k0 ≥ 0 such that step 2 is performed for all k ≥ k0.

By Theorem 3.1 in [9],

lim
k→∞
k≥k0

‖F (xk)‖ = 0.

Hence the whole sequence {xk} satisfies (3.5).
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If K is infinite, then by the construction of Algorithm 3.1,

lim
k→∞
k∈K

‖F (xk)‖ = 0.

Let

K̄ = {k : ‖F (xk+1)‖ ≤ max{ηβk, α−1‖F (xk+1)− f(xk+1, εk)‖}}.
Then K ⊆ K̄. Assume that K̄ consists of k0 = 0 < k1 < k2 < · · ·.

Let k be an arbitrary nonnegative integer. Let kj be the largest number in K̄
such that kj ≤ k. Then εk = εkj and βk = βkj . By the line search rule

‖f(xk, εkj )‖ ≤ ‖f(xkj , εkj )‖.
Hence by (2.4), for j ≥ 0,

‖F (xk)‖ ≤ ‖f(xk, εk)‖+ ‖F (xk)− f(xk, εk)‖
= ‖f(xk, εkj )‖+ ‖F (xk)− f(xk, εkj )‖
≤ ‖f(xkj , εkj )‖+ µεkj

≤ ‖F (xkj )‖+ 2µεkj
= βkj + 2µεkj ,

where µ = κ
√
n.

Since K is infinite, K̄ is infinite and hence βkj → 0 and εkj → 0 as j → ∞.
Therefore, the whole sequence {xk} satisfies (3.5).

Corollary 3.1. Suppose that assumption AIP holds and li = 0, ui =∞ for each
i ∈ N . Then for any smooth function f with supp{ρ} = < and any starting point
x0 ∈ <n, Algorithm 3.1 is well defined and the generated sequence {xk} remains in
D0 := D((1 + α)‖F (x0)‖). Furthermore, if x0 satisfies

(1 + α)‖F (x0)‖ < sup

{
min
i∈N

Fi(x), x ∈ S++(g)

}
,(3.6)

then limk→∞ ‖F (xk)‖ = 0.
Proof. By Theorem 4.2 in [19], the monotonicity of g implies assumption A2.

By Lemma 3.1 in [9], there is a finite nonnegative integer mk such that (3.3) holds.
Hence Algorithm 3.1 is well defined. Following the proof of Theorem 3.1 in [9] and
Theorem 3.1 here, we can show {xk} ⊂ D0 for any starting point x0 ∈ <n. By
Proposition 2.4, if x0 satisfies (3.6), then D0 is bounded. Therefore, we can show that
limk→∞ ‖F (xk)‖ = 0 by following the proof of Theorem 3.1.

The following lemma shows that if an iterate is sufficiently close to a solution of
VI(l, u,M, q), Algorithm 3.1 finds the solution in one step. We define

γ(x) = min
1≤i,j≤n

{|x−Mx− q − l|i, |x−Mx− q − u|j :

(x−Mx− q − l)i 6= 0, (x−Mx− q − u)j 6= 0}.
Since li < ui for all i ∈ N , γ(x) > 0 for any x ∈ <n.
Lemma 3.1. Let x∗ ∈ <n be a solution of VI(l, u,M, q). Let

B :=

{ {x ∈ <n : ‖x− x∗‖∞ ≤ γ(x∗)/‖I −M‖∞} if I 6= M,
<n otherwise.

(3.7)
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Then for any x ∈ B,

F (x) + f0(x)(x∗ − x) = 0.(3.8)

Proof. If M = I, then f0(x) = I for any x ∈ <n. Moreover, x∗ =mid(l, u,−q) is
a solution of F (x) = 0. Hence, in this case for any x ∈ <n,

F (x) + f0(x)(x∗ − x) = x−mid(l, u,−q) + (x∗ − x) = 0.

Suppose that I 6= M and x ∈ B. Then

|x−Mx− q − x∗ +Mx∗ + q|i ≤ ‖I −M‖∞‖x− x∗‖∞
≤ γ(x∗).(3.9)

For a fixed i, we consider two cases.
Case 1. (x∗ −Mx∗ − q)i 6= li and (x∗ −Mx∗ − q)i 6= ui.
By the definition γ(x) and (3.9), we have

(x∗ −Mx∗ − q)i < li ⇒ (x−Mx− q)i < li,(3.10)

li < (x∗ −Mx∗ − q)i < ui ⇒ li < (x−Mx− q)i < ui,(3.11)

and

(x∗ −Mx∗ − q)i > ui ⇒ (x−Mx− q)i > ui.(3.12)

If (x∗ −Mx∗ − q)i ∈ (li, ui), then (Mx∗ + q)i = 0. By (3.11) and (2.6), f0
i (x) = Mi

and

Fi(x)+f0
i (x)(x∗−x) = xi−(x−Mx−q)i+Mi(x

∗−x) = (Mx∗+q)i = 0.(3.13)

If (x∗ −Mx∗ − q)i < li, then x∗i = li. By (3.10) and (2.6), f0
i (x) = Ii and

Fi(x) + f0
i (x)(x∗ − x) = xi − li + Ii(x

∗ − x) = x∗i − li = 0.(3.14)

Similarly, we can show

Fi(x) + f0
i (x)(x∗ − x) = x∗i − ui = 0,

for (x∗ −Mx∗ − q)i > ui.
Case 2. (x∗ −Mx∗ − q)i = li or (x∗ −Mx∗ − q)i = ui.
If (x∗ −Mx∗ − q)i = li, then x∗i = li and (Mx∗ + q)i = 0.
If (x−Mx− q)i > li or (x−Mx− q)i < li, we can find Fi(x) + f0

i (x)(x∗−x) = 0
by following the same argument in (3.13) and (3.14). If (x −Mx − q)i = li, then
f0
i (x) = Ii − λ(Ii −Mi), where λ ∈ (0, 1). Furthermore, we have

Fi(x) + f0
i (x)(x∗ − x)

= xi − li + (Ii − λ(Ii −Mi))(x
∗ − x)

= λ(Mi − Ii)(x∗ − x)

= λ(xi − li + (Mx∗ + q −Mx− q)i)
= λ((x− l −Mx− q)i + (Mx∗ + q)i) = 0.
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The proof of the case (x∗ −Mx∗ − q)i = ui is similar.
Theorem 3.2. Suppose that A1 and A2 hold. Assume that for an accumulation

point x∗ of {xk}, there is an open ball B̂ := B̂(x∗, r̄) = {x : ‖x − x∗‖ < r̄} and a
positive number Υ such that for any x ∈ B̂, f0(x) is nonsingular and ‖f0(x)−1‖ ≤ Υ.
Then x∗ is a solution of (1.1) and {xk} converges to x∗ superlinearly. Moreover,
if g has a locally Lipschitz continuous derivative around x∗, the convergence rate is
quadratic. In addition, if g is an affine function, the convergence is finite.

Proof. By Theorem 3.1, x∗ is a solution of (1.1). By Lemma 2.4 in [7], x∗ is the
unique solution of (1.1) in B̂. Let K∗ be a subsequence of {0, 1, . . .} such that

lim
k→∞
k∈K∗

xk = x∗.

By the directional derivative consistency property of f at x∗, for k ∈ K∗,

‖xk + d̂k − x∗‖
= ‖xk − f0(xk)−1F (xk)− x∗‖
= ‖f0(xk)−1(f0(xk)(xk − x∗)− F (xk) + F (x∗))‖
≤ Υ‖F (xk)− F (x∗)− f0(xk)(xk − x∗)‖
= o(‖xk − x∗‖).(3.15)

Following the proof of Theorem 3.1 in [35],

‖F (xk + d̂k)‖ = o(‖F (xk)‖).

This implies that there is k∗ ∈ K∗ such that for all k ≥ k∗,

‖F (xk + d̂k)‖ ≤ η‖F (xk)‖

and xk+1 = xk + d̂k. Hence, {xk} converges to x∗ superlinearly.
Moreover, if g has a locally Lipschitz continuous derivative, F is directionally

differentiable of degree 2 at x∗. Thus

‖F (xk)− F (x∗)− f0(xk)(xk − x∗)‖ = O(‖xk − x∗‖2).

Following the argument in (3.15), we obtain the quadratic convergence rate.
The finite convergence follows from Lemma 3.1 and the fact that k ∈ K∗ for all

k ≥ k∗.
Remark 3.1. If g is a uniform P function, by Theorem 4.3 in [19], for any x ∈ <n,

f0(x) is nonsingular. Hence, by Proposition 2.3, Algorithm 3.1 converges globally
and superlinearly for VI(l, u, g), and converges globally and finitely for VI(l, u,M, q),
assuming only that g is a uniform P function. It is notable that global convergence of
Algorithm 3.1 requires only that g be a P0 function and the level sets {x : ‖F (x)‖ ≤
Γ} with Γ > 0 be bounded. Furthermore, Algorithm 3.1 converges to the solution
set of the NCP if g is monotone, S++(g) is nonempty, and the starting point is in a
certain level set.

4. Numerical experiments. We numerically tested Algorithm 3.1 with seven
examples containing 27 linear box-constrained VIPs and 4 nonlinear VIPs. We use
three smooth approximation functions which are generated by (2.3) and density func-
tions ρ satisfying (2.1) and (2.2) (cf. [5, 6, 7, 8, 9, 15, 19, 23, 36]).
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Let

z = x−Mx− q.

Neural networks smooth approximation function (S1):
Let the density function be

ρ(x) =
e−s

(1 + e−s)2
.

The smooth approximation function is

fi(x, ε) = xi − ui − εlog(1 + e(li−zi)/ε) + εlog(1 + e(ui−zi)/ε)

and fx(x, ε) = I −D(x)(I −M), where

dii(x) =
−e(li−zi)/ε

1 + e(li−zi)/ε +
e(ui−zi)/ε

1 + e(ui−zi)/ε .

Chen–Harker–Kanzow–Smale smooth approximation function (S2):
Let the density function be

ρ(s) =
2

(s2 + 4)
3
2

.

The smooth approximation function is

fi(x, ε) = xi − 1

2

(√
(li − zi)2 + 4ε2 −

√
(ui − zi)2

i + 4ε2 + ui + li

)
and fx(x, ε) = I −D(x)(I −M), where

dii(x) =
1

2

(
zi − li√

(zi − li)2 + 4ε2
− zi − ui√

(zi − ui)2 + 4ε2

)
.

Uniform smooth approximation function (S3):
Let the density function be

ρ(s) =

{
1, |s| ≤ 0.5,
0 otherwise.

For 0 < ε ≤ min1≤i≤n{ui − li},

fi(x, ε) =

 1/2(Mx+ q + x)i + 1/2ε(ui − zi)2 + ε/8− ui/2 if |ui − zi| ≤ ε/2,
1/2(Mx+ q + x)i − 1/2ε(li − zi)2 − ε/8− li/2 if |li − zi| ≤ ε/2,
Fi(x) otherwise,

and

fx(x, ε) =

 1/2(Ii +Mi) + 1/ε(ui − zi)(Mi − Ii) if |ui − zi| ≤ ε/2,
1/2(Ii +Mi)− 1/ε(li − zi)(Mi − Ii) if |li − zi| ≤ ε/2,
F ′i (x) otherwise.
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Table 1
Example 4.1, iterations, total number of line search steps, CPU (sec.).

l = 0, u = 107e
n 100 200 400 500
S1 2, 0, 0.3 2, 0, 2.1 2, 0, 20.5 2, 0, 45.0
S2 2, 0, 0.2 2, 0, 1.6 2, 0, 18.3 2, 0, 45.5
S3 2, 0, 0.2 2, 0, 1.5 2, 0, 10.0 2, 0, 30.9

l = 0.5e, u = e
n 50 100 200 400
S1 2, 0, 0.1 2, 0, 0.3 2, 0, 1.8 2, 0, 12.5
S2 2, 0, 0.0 2, 0, 0.2 2, 0, 2.0 4, 0, 24.3
S3 2, 0, 0.0 2, 0, 0.2 2, 0, 1.9 2, 0, 7.3

l = −e, u = e
n 50 100 200 300
S1 12, 32, 0.8 16, 57, 3.4 22, 103, 25.3 28, 143, 114.1
S2 12, 32, 0.3 18, 57, 2.2 22, 97, 20.8 28, 142, 106.0
S3 13, 35, 0.5 16, 58, 2.4 24, 107, 21.9 27, 141, 66.9

l = −e, u = 0
n 50 100 200 400
S1 3, 0, 0.1 3, 0, 0.4 3, 0, 3.0 3, 0, 29.6
S2 3, 0, 0.1 3, 0, 0.3 3, 0, 2.9 3, 0, 29.6
S3 3, 0, 0.1 3, 0, 0.3 3, 0, 2.6 3, 0, 18.9

l = 0, ui = 1 for i is even, ui = 107 for i is odd.
n 50 100 150 180
S1 2, 0, 0.1 2, 0, 0.2 2, 0, 0.8 2, 0, 1.5
S2 2, 0, 0.0 2, 0, 0.2 2, 0, 0.7 2, 0, 1.4
S3 2, 0, 0.0 2, 0, 0.2 2, 0, 0.8 2, 0, 1.0

li = −1.0, ui = 0.5 for i is even, li = −0.5, ui = 1.0 for i is odd.
n 50 100 150 180
S1 14, 32, 0.7 18, 58, 3.0 25, 108, 26.4 26, 104, 17
S2 14, 30, 0.3 17, 53, 1.7 24, 101, 21.4 7, 10, 3.4
S3 14, 32, 0.5 18, 58, 2.2 25, 108, 19.2 45, 307, 24.4

The three density functions have a common property: ρ(−s) = ρ(s). By (2.6), this
implies that for any x ∈ <n, the derivatives fx(x, ε) of the three smooth approximation
functions have the same limit f0(x) as ε ↓ 0, where

f0
i (x) =

 Mi if zi ∈ (li, ui),
Ii if zi 6∈ [li, ui],
1/2(Ii +Mi) otherwise.

(4.1)

Furthermore, the three density functions satisfy (2.1) and (2.2).
We chose x0 = e, ρ = 0.75, α = 0.56, η = 0.87, and σ = 0.2 in Algorithm 3.1.

The stopping criterion was ‖F (xk)‖ ≤ 10−8. Numerical results were obtained using
MATLAB 4.2c on a Sun 2000 workstation. These testing problems are constructed
from some testing problems for LCP and NCP. We added different lower and upper
bounds on the variables. We report the iterations k, the total numbers of line search
steps

∑k
i=1mi, and CPU time in Tables 1–5 for solving these problems with different

dimensions in Examples 4.1–4.5. We report the iterations k, the numbers of iterations
where the Newton step in step 1 was accepted, and the number of iterations where the
smooth step and line search were taken in step 2 as well as the function values at the
final step ‖F (xk)‖ in Tables 6 and 7 for solving these problems in Examples 4.6 and
4.7. The three smooth approximation functions perform similarly in our numerical
test.
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Table 2
Example 4.2, iterations, total number of line search steps, CPU (sec.).

l = 0, u = 107e
n 100 200 300 400
S1 8, 21, 1.1 9, 34, 7.7 8, 19, 24.5 9, 22, 81.0
S2 8, 21, 0.9 9, 34, 7.8 8, 19, 26.0 9, 22, 89.7
S3 8, 21, 0.8 9, 34, 5.3 8, 19, 12.9 9, 22, 40.9

l = 0.5e, u = e
n 100 200 300 400
S1 2, 0, 0.2 2, 0, 1.4 2, 0, 5.6 2, 0, 16.2
S2 2, 0, 0.2 2, 0, 1.3 2, 0, 5.4 2, 0, 16.6
S3 2, 0, 0.2 2, 0, 1.0 2, 0, 3.0 2, 0, 9.2

l = −e, u = 0
n 100 200 300 400
S1 3, 0, 0.3 3, 0, 2.2 3, 0, 8.4 3, 0, 24.2
S2 3, 0, 0.2 3, 0, 2.0 3, 0, 8.1 3, 0, 25.5
S3 3, 0, 0.2 3, 0, 1.4 3, 0, 4.5 3, 0, 13.4

l = −10e, u = 5
n 64 128 256 320
S1 17, 69, 1.4 26, 147, 10.3 15, 207, 43.1 26, 187, 140.1
S2 12, 57, 0.5 11, 108, 3.2 25, 164, 66.3 20, 153, 100.4
S3 17, 71, 1.0 10, 101, 2.8 25, 180, 41.5 16, 236, 43.5

l = 0, ui = 1 for i is even, ui = 107 for i is odd.
n 32 64 128 256
S1 5, 3, 0.1 7, 13, 0.4 6, 4, 2.0 8, 14, 19.1
S2 5, 3, 0.1 7, 13, 0.3 6, 4, 1.9 8, 14, 20.6
S3 5, 3, 0.1 7, 13, 0.3 6, 4, 1.3 8, 14, 10.1

u = 0, li = −1.0 for i is even, li = −107 for i is odd.
n 32 64 128 256
S1 4, 0, 0.1 4, 0, 0.2 6, 0, 2.1 4, 0, 10.8
S2 4, 0, 0.0 4, 0, 0.2 6, 0, 1.9 4, 0, 10.4
S3 4, 0, 0.1 4, 0, 0.2 6, 0, 1.6 4, 0, 6.7

Example 4.1 (see Murty [32]).

M =


1 2 2 . . . 2
0 1 2 . . . 2
0 0 1 . . . 2
...

...
...

. . .
...

0 0 0 . . . 1

 , q = −e.

Example 4.2 (see Fathi [13]).

M =


1 2 2 . . . 2
2 5 6 . . . 6
2 6 9 . . . 10
...

...
...

. . .
...

2 6 10 . . . 4(n− 1) + 1

 , q = −e.
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Table 3
Example 4.3, iterations, total number of line search steps, CPU (sec.).

l = 0, u = 107e
n 100 200 300 400
S1 3, 0, 0.3 3, 0, 2.2 3, 0, 8.8 3, 0, 24.7
S2 3, 0, 0.3 3, 0, 2.1 3, 0, 8.5 3, 0, 25.3
S3 3, 0, 0.2 3, 0, 1.4 3, 0, 4.6 3, 0, 14.8

l = 0, u = e
n 100 200 300 400
S1 4, 2, 0.5 4, 2, 3.1 4, 2, 11.7 4, 2, 33.2
S2 4, 2, 0.3 4, 2, 2.8 4, 2, 11.3 4, 2, 33.0
S3 4, 2, 0.3 4, 2, 2.0 4, 2, 6.2 4, 2, 20.9

l = −e, u = e
n 100 200 300 400
S1 2, 0, 0.2 2, 0, 1.3 2, 0, 5.7 2, 0, 16.2
S2 2, 0, 0.2 2, 0, 1.3 2, 0, 5.6 2, 0, 16.3
S3 2, 0, 0.1 2, 0, 0.9 2, 0, 3.0 2, 0, 8.6

l = −e, u = 0
n 100 200 300 400
S1 3, 0, 0.3 3, 0, 2.2 3, 0, 8.6 3, 0, 24.0
S2 3, 0, 0.3 3, 0, 2.1 3, 0, 8.4 3, 0, 24.5
S3 3, 0, 0.2 3, 0, 1.5 3, 0, 4.6 3, 0, 13.8

li = −1, ui = 1 for i is even, li = 0, ui = 107 for i is odd.
n 100 200 300 400
S1 2, 0, 0.2 2, 0, 1.6 2, 0, 6.0 2, 0, 22.3
S2 2, 0, 0.2 2, 0, 1.4 2, 0, 5.8 2, 0, 21.5
S3 2, 0, 0.2 2, 0, 1.0 2, 0, 3.1 2, 0, 12.9

li = −1.0, ui = 0.5 for i is even, li = −0.5, ui = 1.0 for i is odd.
n 100 200 300 400
S1 3, 0, 0.3 3, 0, 2.3 3, 0, 8.6 3, 0, 30.6
S2 3, 0, 0.3 3, 0, 2.1 3, 0, 10.6 3, 0, 33.3
S3 3, 0, 0.2 3, 0, 1.4 3, 0, 4.6 3, 0, 18.6

Example 4.3 (see Ahn [1]).

M =


4 −2 0 0 . . . 0
1 4 −2 0 . . . 0
0 1 4 −2 0 . . . 0
...

. . .
. . .

. . .
. . .

...
0 . . . . . . 0 1 4

 , q = −4e.

Example 4.4. We randomly generated 100% dense A ∈ <n×n and q ∈ <n
whose elements distributed in (−5, 5). We used the QR decomposition of A to get a
upper triangular matrix N . Then we replaced the diagonal elements of N by their
absolute values and obtained a triangular matrix M with positive diagonal elements.
The matrix M is P -matrix.

Example 4.5 (see Harker and Pang [21]). We randomly generated 100% dense
A ∈ <n×n, B ∈ <n

2×n2 , d ∈ <n, and q ∈ <n, where aij ∈ (−5, 5), bi,j ∈ (−5, 5),
di ∈ (0, 0.3), and qi ∈ (−500, 500). We define a P-matrix as

M = ATA+

(
0 BT

−B 0

)
+ diag(d).
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Table 4
Example 4.4, iterations, total number of line search steps, CPU (sec.).

l = 0, u = 107e
n 100 200 300 400

Max 8, 12, 1.1 8, 3, 8.3 7, 0, 28.1 7, 0, 69.1
S1 Avg 7, 2, 0.8 7, 0, 5.2 7, 0, 27.7 7, 0, 67.1

Min 5, 1, 0.6 6, 2, 6.4 6, 0, 24.8 6, 0, 62.5
Max 9, 5, 0.8 9, 7, 8.9 8, 4, 31.4 7, 0, 67.6

S2 Avg 7, 5, 0.7 8, 6 6.6 7, 0, 28.6 7, 0, 67.5
Min 6, 1, 0.6 7, 0, 4.9 6, 0, 23.9 6, 0, 60.0
Max 8, 12, 0.8 12, 17, 10.4 7, 1, 21.1 7, 0, 39.1

S3 Avg 7, 4, 0.7 7, 2, 6.7 7, 0, 19.1 7, 0, 38.9
Min 5, 1, 0.5 7, 0, 3.6 6, 0, 18.4 6, 0, 38.7

li = −1, ui = 1.0 for i is even, li = 0, ui = 107 for i is odd
n 100 200 300 400

Max 24, 78, 4.0 33, 180, 33.7 30, 133, 115.7 42, 202, 421.3
S1 Avg 22, 87, 3.9 32, 126, 31.4 28, 119, 109.2 41, 200, 342.1

Min 22, 53, 3.4 28, 113, 26.8 27, 119, 103.5 41, 196, 337.1
Max 20, 67, 1.8 35, 160, 26.4 42, 188, 157.4 41, 196, 398.7

S2 Avg 19, 58, 1.8 32, 135, 24.2 34, 146, 126.1 38, 193, 300.0
Min 15, 30, 1.3 26, 101, 20.6 32, 145, 117.3 31, 147, 243.8
Max 24, 90, 2.8 32, 141, 21.2 33, 149, 85.4 43, 203, 338.8

S3 Avg 19, 75, 2.4 27, 100, 16.8 32, 138, 82.4 40, 183, 206.1
Min 14, 37, 1.6 25, 99, 15.9 27, 113, 70.2 37, 174, 190.1

li = −100, ui = 0.0 for i is even, li = 0, ui = 100 for i is odd
n 100 200 300 400

Max 9, 7, 1.2 10, 2, 7.3 13, 16, 40.4 16, 32, 132.2
S1 Avg 7, 0, 0.8 8, 0, 5.7 12, 14, 35.4 12, 18, 100.0

Min 6, 0, 0.7 7, 1, 5.1 10, 14, 30.3 10, 4, 82.4
Max 8, 5, 0.7 9, 4, 6.0 11, 8, 31.4 12, 18, 95.3

S2 Avg 7, 0, 0.6 8, 0, 5.4 10, 7, 29.4 12, 7, 93.5
Min 6, 0, 0.5 7, 0, 4.8 10, 3, 27.9 11, 2, 88.2
Max 7, 2, 0.8 10, 6, 5.5 15, 27, 27.1 16, 33, 69.6

S3 Avg 7, 1, 0.7 8, 1, 4.4 12, 18, 21.4 15, 31, 67.6
Min 6, 0, 0.5 7, 1, 3.9 12, 16, 21.4 13, 14, 62.0

Example 4.6. We randomly generated 100% dense A ∈ <n×n and q ∈ <n
whose elements distributed in (−5, 5). We used the QR decomposition of A to get an
orthogonal matrix Q. We randomly generated a diagonal matrix D ∈ <n×n whose
diagonal elements distributed in [0, 1) with 10% zero elements. We set M = QDQT .
Then the matrix M is positive semidefinite with n× 10% zero eigenvalues.

Example 4.7 (see the Kojima-Shindo NCP test problem [31]).

g(x) =


3x2

1 + 2x1x2 + 2x2
2 + x3 + 3x4 − 6

2x2
1 + x1 + x2

2 + 10x3 + 2x4 − 2
3x2

1 + x1x2 + 2x2
2 + 2x3 + 9x4 − 9

x2
1 + 3x2

2 + 2x3 + 3x4 − 3

 .

Remark 4.1. Both Lemke’s complementarity pivot algorithm and the Cottle and
Dantzig principal pivoting method are known to run in exponential time for Examples
4.1 and 4.2 with li = 0, ui =∞ (i.e., the LCP). Tables 1 and 2 show that the hybrid
Newton-smoothing method takes only a few iterations for the LCP. It is notable that
the LCP is relatively easier than the problem having different lower and upper bounds.
To see the reason, we consider Example 4.1. The solution for the LCP is

x∗ = (0, 0, . . . , 0, 1)T
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Table 5
Example 4.5, iterations, total number of line search steps, CPU (sec.).

l = 0, u = 107e
n 50 100 200 300

Max 15, 114, 1.3 19, 132, 4.4 7, 0, 6.8 7, 0, 30.7
S1 Avg 9, 33, 0.6 9, 25, 2.1 6, 0, 6.7 7, 0, 29.3

Min 5, 1, 0.2 7, 0, 1.2 6, 0, 5.9 6, 0, 24.8
Max 31, 271, 1.0 48, 534, 7.1 7, 0, 6.4 7, 0, 30.2

S2 Avg 22, 210, 1.0 36, 295, 6.1 6, 0, 6.0 7, 0, 29.0
Min 19, 144, 0.6 7, 0, 1.1 6, 0, 5.7 6, 0, 25.5
Max 14, 66, 0.9 15, 67, 2.8 7, 0, 5.4 7, 0, 22.2

S3 Avg 6, 1, 0.2 10, 7, 2.1 6, 0, 4.9 7, 0, 20.2
Min 5, 0, 0.2 7, 0, 1.1 6, 0, 4.7 6, 0, 16.4

l = −107, u = 0
n 100 200 300 400

Max 23, 171, 6.0 8, 0, 10.7 10, 19, 36.0 10, 21, 101.3
S1 Avg 14, 60, 3.0 8, 0, 10.0 7, 0, 24.4 8, 0, 77.3

Min 7, 0, 0.9 7, 0, 9.4 7, 0, 23.7 7, 0, 23.7
Max 18, 57, 24.5 8, 0, 9.9 10, 10, 34.5 10, 3, 99.3

S2 Avg 12, 26, 1.3 8, 0, 9.5 7, 0, 23.6 8, 0, 72.9
Min 7, 0, 0.7 7, 0, 8.4 7, 0, 23.6 8, 0, 72.7
Max 23, 145, 4.5 8, 0, 10.1 10, 19, 22.5 10, 21, 58.8

S3 Avg 14, 55, 2.2 8, 0, 9.8 7, 0, 15.0 8, 0, 45.5
Min 7, 0, 0.8 7, 0, 9.2 7, 0, 14.6 8, 0, 42.3

li = 0, ui = 107 for i is even, li = −107, ui = 0 for i is odd.
n 100 200 300 400

Max 7, 0, 0.9 7, 0, 8.9 7, 0, 24.2 8, 0, 78.4
S1 Avg 6, 0, 0.8 7, 0, 8.8 7, 0, 23.9 8, 0, 77.2

Min 6, 0, 0.7 6, 0, 7.5 6, 0, 20.4 7, 0, 68.2
Max 7, 0, 0.8 7, 0, 8.3 7, 0, 23.5 8, 0, 73.7

S2 Avg 6, 0, 0.7 7, 0, 8.2 7, 0, 22.9 8, 0, 73.1
Min 6, 0, 0.6 6, 0, 7.5 6, 0, 20.1 7, 0, 61.4
Max 7, 0, 0.8 7, 0, 8.9 7, 0, 15.7 8, 0, 46.8

S3 Avg 6, 0, 0.7 7, 0, 8.7 7, 0, 14.4 8, 0, 45.4
Min 6, 0, 0.6 6, 0, 7.1 6, 0, 12.7 7, 0, 40.4

Table 6
Example 4.6, iterations, number of iterations accepted in step 1, and number of iterations used

in step 2 with line search steps (LS).

l = 0, u = 1014, n = 200

k Step 1 Step 2 LS ‖F (xk)‖ CPU

S1 4 3 1 1 1.5× 10−14 3.2

S2 4 3 1 1 1.3× 10−14 3.0

S3 4 3 1 1 1.3× 10−14 2.9
l = −e, u = e, n = 300

S1 9 2 7 8 1.7× 10−14 27.6

S2 8 3 5 5 1.4× 10−14 23.2

S3 10 5 5 6 1.6× 10−14 28.7

l = −1014, u = e, n = 400

S1 9 9 0 0 4.6× 10−14 73.4

S2 9 9 0 0 4.6× 10−14 73.4

S3 9 9 0 0 4.6× 10−14 77.2
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Table 7
Example 4.7, iterations, number of iterations accepted in step 1, and number of iterations used

in step 2 with line search steps (LS).

l = 0, u = 1014e

k Step 1 Step 2 LS ‖F (xk)‖ CPU

S1 5 4 1 3 2.1× 10−10 0.03

S2 6 4 2 4 1.1× 10−13 0.03

S3 5 4 1 3 2.1× 10−10 0.02
l = (0,−1,−2,−3), u = 2e

S1 10 4 6 20 3.3× 10−9 0.06

S2 9 4 5 17 7.5× 10−11 0.06
S3 9 4 5 20 0 0.06
l = (0,−10,−200,−3000), u = (2, 20, 200, 3000)

S1 7 5 2 10 2.2× 10−11 0.05

S2 9 6 3 8 9.9× 10−16 0.05

S3 7 5 2 10 1.0× 10−9 0.05
l = (−1, 1,−2, 3), u = (3, 2, 1, 4)
S1 2 2 0 0 0 0.03
S2 2 2 0 0 0 0.03
S3 2 2 0 0 0 0.03

and

Mx∗ + q = (1, 1, . . . , 1, 0)T .

In this case qi(x) + pi(x) > 0, i = 1, 2, . . . , n, i.e., x∗ is a strictly complementary
solution. The function F is differentiable at x∗.

For 0 < l < u = 1, the solution for VI(l, u,M, q) is

x∗ = (l1, . . . , ln−1, u)

and

(Mx∗ + q)i > 0, i = 1, . . . , n− 1, (Mx∗ + q)n = 0.

In this case, qi(x) + pi(x) > 0, i = 1, 2, . . . , n− 1, and qn(x) + pn(x) = 0.

This problem is relatively easy to solve, if l ≥ 0 or u ≤ 0. However, this problem
becomes hard if l < 0 but u > 0. For example, if li = −1 and ui = 1 for each i ∈ N ,
the solution is

x∗ = (1,−1, 1,−1, . . . , 1) if n is odd

or

x∗ = (−1, 1,−1, 1, . . . , 1) if n is even,

and

Mx∗ + q = 0.

This means pi(x) + qi(x) = 0 for i = 1, . . . , n.
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Abstract. We study theoretical and computational aspects of an exact penalization approach
to mathematical programs with equilibrium constraints (MPECs). In the first part, we prove that a
Mangasarian–Fromovitz-type condition ensures the existence of a stable local error bound at the root
of a real-valued nonnegative piecewise smooth function. A specification to nonsmooth formulations
of equilibrium constraints, e.g., complementarity conditions or normal equations, provides conditions
which guarantee the existence of a nonsmooth exact penalty function for MPECs. In the second part,
we study a trust region minimization method for a class of composite nonsmooth functions which
comprises exact penalty functions arising from MPECs. We prove a global convergence result for
the general method and incorporate a penalty update rule. A further specification results in an SQP
trust region method for MPECs based on an `1 penalty function.

Key words. bilevel program, error bound, exact penalization, `1 penalty function, Manga-
sarian–Fromovitz constraint qualification, mathematical program with equilibrium constraints
(MPEC), piecewise smooth, sequential quadratic programming, trust region
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1. Introduction. Mathematical programs with equilibrium constraints (MPECs)
are mathematical programs which involve, besides the usual differentiable equality and
inequality constraints, a so-called equilibrium constraint. Such MPECs arise natu-
rally in different areas, such as economics, computational mechanics, neural network
training, and traffic control, and have been the subject of a number of recent studies
(e.g., [1, 19, 20, 21, 22, 24, 25, 26, 34]). An equilibrium constraint requires that some
of the variables, the state variables, satisfy an equilibrium condition which, however,
changes with the remaining so-called design variables. The equilibrium condition
is usually formulated in terms of a variational inequality induced by a parametric
vector field F (., y) over a set S(y), where y is the design variable. Recall that a vec-
tor x satisfies the variational inequality for a fixed design vector y if x ∈ S(y) and
F (x, y)>(z − x) ≥ 0 for every z ∈ S(y). If S(y) has a functional representation

S(y) = {x ∈ Rn | h(x, y) = 0, g(x, y) ≤ 0},
where g, h are smooth vector valued functions, then the variational inequality is often
replaced by the corresponding stationarity condition

F (x, y) +∇xh(x, y)>µ+∇xg(x, y)>λ = 0,

h(x, y) = 0,

g(x, y) ≤ 0,(1.1)

λ ≥ 0,

g(x, y)>λ = 0.
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Two special cases are of particular interest. If, on the one hand, F (., y) is the
gradient with respect to the state variable x of a function f(., y), then condition
(1.1) corresponds to the Karush–Kuhn–Tucker (KKT) conditions of the parametric
mathematical program min{f(x, y) | x ∈ S(y)}. If, on the other hand, the function h
is absent and g(x, y) = −x, then the multipliers λ and µ can be eliminated and (1.1)
turns into the parametric nonlinear complementarity problem

F (x, y) ≥ 0,

x ≥ 0,(1.2)

x>F (x, y) = 0.

We shall assume throughout that the functions F, g, and h are smooth so that (1.1)
and (1.2) are systems of smooth equations and inequalities. If all further constraints of
the MPEC are smooth equations or inequalities, then the problem turns into a smooth
nonlinear program and one may want to apply the well-developed methods for such
problems. Unfortunately, any set of constraints which involves a complementarity
condition of the general form

Φ(z) ≥ 0, Ψ(z) ≥ 0, Φ(z)>Ψ(z) = 0(1.3)

is inherently unstable so that standard methods are likely to fail in the presence of
round-off errors. The instability is due to the fact that the Mangasarian–Fromovitz
constraint qualification, which is necessary for the stability of a nonlinear program
[14, 35], is violated at any feasible point of the constraint set [4].

It is possible to circumvent these difficulties by reformulating system (1.1) as a
system of nonsmooth equations

F (x, y) +∇xh(x, y)>µ+∇xg(x, y)>λ = 0,

h(x, y) = 0,(1.4)

min{−g(x, y), λ} = 0.

From the viewpoint of nonsmooth optimization, there is no severe problem with this
set of equations, i.e., constraint qualifications are satisfied under reasonable conditions
[18].

If the constraint set S for the variational inequality is closed, convex, and inde-
pendent of y, one may avoid the explicit use of the multipliers λ and µ in (1.1) and
instead use an alternative nonsmooth formulation of the variational inequality either
as a direct normal equation

ΠS(x− F (x, y))− x = 0

or as Robinson’s normal equation [38]

ΠS(z)− F (ΠS(z), y)− z = 0.

The solutions of the two equations are related via x = ΠS(z) and z = x− F (x, y).
Our aim in this paper is to study the classical nonsmooth exact penalization tech-

nique for optimization problems which involve nonsmooth formulations of equilibrium
conditions. In the next section, we recall some results from the theory of piecewise
smooth functions which we shall employ in the subsequent sections, and we give a
short review of the principle of exact penalization. In section 3 we derive conditions
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for the existence of local error bounds for piecewise smooth constraints. By specify-
ing these conditions to piecewise smooth formulations of equilibrium constraints we
obtain exact penalization results for MPECs. In section 4 we present a globally con-
vergent trust region method for the minimization of the type of composite piecewise
smooth functions which arise, e.g., as exact penalty functions for MPECs. We in-
clude a penalty update rule and specify the method to MPECs with complementarity
constraints in section 5. The study is complemented by some preliminary numerical
results.

2. Preliminaries.

2.1. Piecewise smooth functions. In this first section we review some prop-
erties of piecewise differentiable functions which we shall use in subsequent sections.
For a detailed account we refer to [41]. A continuous function f :U → Rm defined on
an open set U ⊆ Rn is said to be a PCr-function at x0 ∈ U if there exists an open
neighborhood V ⊆ U of x0 and a finite family of Cr-functions f1, . . . , fl : V → Rm
such that

f(x) ∈ {f1(x), . . . , fl(x)} ∀x ∈ V.(2.1)

The function f is called piecewise affine (piecewise linear) if U = V = Rn and (2.1)
holds for affine (linear) functions f1, . . . , fl. A collection of functions f1, . . . , fl satis-
fying (2.1) is called a collection of selection functions of f at x0 and f is said to be a
continuous selection of the functions f1, . . . , fl on V . A selection function fi is called
essentially active at x0 if x0 ∈ clint{x ∈ V | f(x) = fi(x)}, where clS and intS de-
note the closure and interior, respectively, of a set S. The subcollection of essentially
active selection functions is still a collection of selection functions at x0, i.e., f is a
continuous selection of the essentially active selection functions on a possibly smaller
open neighborhood Ṽ of x0 [41].

The function f is called a PCr-function if it is a PCr-function at every point of
its domain. When we use the term PCr-function, we tacitly assume that r ≥ 1. The
term piecewise differentiable function refers to a PC1-function. Some properties of
piecewise differentiable functions are summed up in the following proposition.

Proposition 2.1. Let U ⊆ Rn be open and f :U → Rm be a piecewise differ-
entiable function with C1-selection functions f1, . . . , fp : V → Rm in a neighborhood
V ⊆ U of x0 ∈ U .

1. f is Lipschitzian and B-differentiable in the sense of [37] in a neighborhood of
x0 and its B-derivative f ′(x0; .) is a continuous selection of the F-derivatives
of the essentially active selection functions at x0.

2. f is semismooth in the sense of [23, 30].
3. The set of all Jacobians of the essentially active selection functions of f at x

coincides with the set

{M ∈ Rm×n | ∃xk → x such that f is F-differentiable
at xk and ∇f(xk)→M},

the convex hull of which is Clarke’s generalized Jacobian [5].
A proof of the first statement can be found in [41]. The second statement has

been proved in [3] (cf. also [30, Cor. 2.4]). The final statement is an immediate
consequence of the first statement and the definitions involved.

The notion of coherent orientation plays an important role in connection with in-
verse and implicit function theorems for piecewise differentiable functions. We slightly
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extend the standard definition and call a collection of p× q matrices M1, . . . ,Mk with
p ≤ q coherently oriented if there exists a (q − p)× q matrix A such that all matrices[

Mi

A

]
, i = 1, . . . , k,(2.2)

have the same nonvanishing determinantal sign. In the case p = q the matrix A is
superfluous. We shall employ the following implicit function theorem from [33] in the
sequel.

Theorem 2.2. Let f : Rn × Rm → Rn be a PCr function with Cr-selection
functions f1, . . . , fp : U × V → Rn in a neighborhood of (x0, y0) ∈ U × V and let
z0 = f(x0, y0). Then the following two statements are equivalent:

1. There exist neighborhoods Ũ , Ṽ , W̃ of x0, y0, and z0, respectively, such that
the equation

f(x, y) = z

has a unique solution x(y, z) in Ũ for every (y, z) ∈ Ṽ × W̃ .
2. The partial Jacobians with respect to x of the essentially active selection func-

tions of f at (x0, y0) are coherently oriented and the piecewise linear equation

f ′((x0, y0); (u, v)) = w

has a unique solution u(v, w) for every (v, w) ∈ Rm × Rn.
Moreover, if either of the statements is true, then the solution function x(., .) is a
PCr function and x′((y0, z0); (v, w)) = u(v, w).

The following result is an immediate consequence of the foregoing theorem and
Corollary 19 of [33].

Corollary 2.3. Let f : Rn × Rm → Rn be a PCr function with Cr-selection
functions f1, . . . , fp : U × V → Rn in a neighborhood of (x0, y0) ∈ U ×V and let z0 =
f(x0, y0). LetM(x0, y0) be the collection of all matrices whose jth row coincides with
the jth row of the partial Jacobian ∇xfi(x0, y0) of some essentially active selection
function fi of f at (x0, y0). If the matrices in M(x0, y0) have the same nonvanishing
determinantal sign, then statement 1 of Theorem 2.2 holds.

2.2. The principle of exact penalization. The exact penalization approach
toward constrained optimization problems

min{f(x) | x ∈ C}

goes back to Eremin [8] and Zangwill [48]. It aims at replacing the constrained
problem by an equivalent unconstrained problem by augmenting the objective function
f through the addition of a term which penalizes infeasibility. From a geometric point
of view, infeasibility is most naturally measured in terms of the distance

dC(y) = min{‖x− y‖ | x ∈ C}

of the point y to the closed set C. The following seminal result of Clarke shows that
the distance function dC is indeed an appropriate tool for exact penalization. Recall
that a function f :S → R is said to be Lipschitz of rank K on S if

|f(y)− f(z)| ≤ K‖y − z‖
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for all y, z ∈ S.
Theorem 2.4. [5] Let x ∈ S ⊆ Rn and let C ⊆ S be nonempty and closed.

Suppose f : S → R is Lipschitz of rank K on S and let K̂ > K. Then x is a global
minimizer of f over C if and only if x is a global minimizer of the function f + K̂dC
over S.

A result analogous to Theorem 2.4 for local minima is readily obtained using the
following well-known properties of the distance function which are direct consequences
of the triangle inequality.

Lemma 2.5. Let C ⊆ Rn be nonempty and closed.
1. If dC(y) = ‖x̄ − y‖ for some x̄ ∈ C, then dC(αy + (1 − α)x̄) = αdC(y) for

every α ∈ [0, 1].
2. If x ∈ C, B(x, ε) is a closed ball around x with positive radius ε and y ∈
B(x, ε2 ), then dC(y) = dC∩B(x,ε)(y).

Corollary 2.6. Let x ∈ Rn, f : Rn → R be Lipschitz of rank K in a ball
around x which intersects a closed and nonempty set C ⊆ Rn. If K̂ > K, then x is
a local minimizer of f over C if and only if x is an unconstrained local minimizer of
f + K̂dC .

Proof. First we show that every local minimizer of f + K̂dC is contained in C.
Suppose x is a local minimizer of f+K̂dC and let x̄ ∈ C be such that ‖x−x̄‖ = dC(x).
Then there exists a scalar α ∈ [0, 1) such that

f(x) + K̂dC(x) ≤ f(αx+ (1− α)x̄) + K̂dC(αx+ (1− α)x̄)

= f(αx+ (1− α)x̄) + K̂αdC(x),

where the last equation is a consequence of the first part of Lemma 2.5. Since f is
Lipschitz of rank K in a ball around x which intersects C and thus contains x̄, we
further obtain

f(αx+ (1− α)x̄)− f(x) ≤ (1− α)K‖x− x̄‖.
Putting the foregoing two inequalities together, we arrive at

(1− α)K‖x− x̄‖ ≥ f(αx+ (1− α)x̄)− f(x) ≥ (1− α)K̂‖x− x̄‖.
Since K̂ > K and α < 1 we conclude that x = x̄ ∈ C. Hence if x is a local minimizer
of f + K̂dC , then it is contained in C and, since f and f + K̂dC coincide on C, it is
a local minimizer of f over C.

To see the reverse implication, suppose that x is a local minimizer of f over C.
Then there exists a closed ball B(x, ε) around x with positive radius ε such that x
is a global minimizer of f over C ∩ B(x, ε) and f is Lipschitz of rank K on B(x, ε).
Hence Theorem 2.4 implies that x is a global minimizer of g̃ = f + K̂dC∩B(x,ε) on
B(x, ε) and thus an application of the second part of Lemma 2.5 shows that x is a
local minimizer of f + K̂dC .

Although the foregoing results are theoretically very appealing, they are only of
limited practical value since the mere evaluation of the penalty function involves the
solution of a constrained optimization problem. Thus, nothing is won in passing from
the constrained problem min{f(x) | x ∈ C} to the unconstrained problem min{(f +
K̂dC)(x) | x ∈ Rn}. One is therefore interested in finding upper bounds for the
distance function in terms of functions which are easier to evaluate. Such majorants
can again be used as penalization terms as pointed out in the following corollary. In
[20] this fact is called the principle of exact penalization.
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Corollary 2.7. If the assumptions of Theorem 2.4 hold and if ψ :S → R is a
function such that

1. ψ(y) ≥ dC(y) for every y ∈ S,
2. ψ(y) = dC(y) for every y ∈ C,

then x is a global minimizer of f over C if and only if x is a global minimizer of
f + K̂ψ over S.

The foregoing statement is indeed an immediate corollary of Theorem 2.4 because
the functions f+K̂dC and f+K̂ψ coincide on C and the latter function majorizes the
former over S, so that, by Theorem 2.4, the sets of global minimizers of both functions
coincide. The foregoing principle is the basis for many exact penalty results. We refer
to the surveys in [2, 20] and the references therein. Notice that a function ψ which
satisfies the majorization assumptions

1. ψ(y) ≥ dC(y) for every y ∈ S,
2. ψ(y) = dC(y) for every y ∈ C,

where C is a closed set contained in the interior of a set S, is necessarily nonsmooth
at every x ∈ C which is a distance minimizer of some point y 6= x. In fact, if
dC(y) = ‖y−x‖ for some y 6= x, then Lemma 2.5 shows that dC(x+λ(y−x)) = λdC(y)
for every λ ∈ [0, 1] and hence the function dC has positive slope dC(y) at x in the
direction y−x, while a smooth majorant ψ would have zero slope at x in all directions
because x is a minimizer of ψ.

Unfortunately, a direct pendant of the local exact penalization result of Corollary
2.6 does not hold with dC being replaced by a majorant ψ. In fact, the simple one-
dimensional example f(x) = 0, C = {0} and ψ(x) = |x|+ |2x2 sin 1/x| shows that the
function f + K̂ψ may have strict local minima outside C that are arbitrarily close
to a global minimum in C. However, the following result, which requires the local
minimizer x to be contained in C, holds without additional assumptions on ψ (cf.,
e.g., [6, 20]).

Corollary 2.8. If the assumptions of Corollary 2.6 hold and if ψ :Rn → R is a
function such that for some neighborhood U of x

1. ψ(y) ≥ dC(y) for every y ∈ U ,
2. ψ(y) = dC(y) for every y ∈ C ∩ U ,

then x is a local minimizer of f over C if and only if x is an unconstrained local
minimizer of f + K̂ψ and x ∈ C.

Proof. Since f and f + K̂ψ coincide on C ∩ U , x is a local minimizer of f over
C, provided it is a local minimizer of f + K̂ψ. Conversely, if x is a local minimizer
of f over C, then it is a local minimizer of f + K̂dC , by Corollary 2.6, and thus it is
a local minimizer of f + K̂ψ which coincides with f + K̂dC at x ∈ C and majorizes
the latter function in a neighborhood of x.

A pendant of the result of Corollary 2.6 with dC replaced by a majorant ψ holds
under the additional, rather strong assumption that

lim inf
z→y

ψ(z)− ψ(y)

‖z − y‖ ≤ −1(2.3)

for every y not contained in C. In fact, if under the assumptions of Corollary 2.6 the
point x is a local minimizer of f + K̂ψ, then f(x) + K̂ψ(x) ≤ f(z) + K̂ψ(z) for every
z close to x. Hence if f is Lipschitz of rank K < K̂, then

ψ(z)− ψ(x)

‖z − x‖ ≥ f(x)− f(z)

K̂‖x− z‖ ≥
−K‖x− z‖
K̂‖x− z‖ > −1.



EXACT PENALIZATION OF MPECs 623

Since (2.3) holds if x is not contained in C we conclude that x ∈ C. Note that, in
view of the first part of Lemma 2.5, ψ = dC satisfies (2.3) for every y 6∈ C.

3. Local error bounds. In this section we focus attention on sets of the form

C = {z ∈ Rn | φ(z) = 0},

where φ is a continuous nonnegative and real-valued function. Any closed set C can be
represented in this way with φ = dC . However, the function φ in this representation
may be much easier to evaluate than the distance function. If, e.g., C is of the form

C = {z ∈ Rn | hi(z) = 0, i = 1, . . . ,m,
gj(z) ≤, 0 j = 1, . . . , k}(3.1)

for continuous functions hi and gj , then C is the set of roots of the continuous
nonnegative function

φ(z) = max{|h1(z)|, . . . , |hm(z)|, g1(z), . . . , gk(z)}.(3.2)

If the function φ is easy to evaluate, then a positive multiple γφ is a desirable candidate
for the penalization of infeasibility. The principle of exact penalization implies that
γφ is an admissible penalty term in a neighborhood of a root z0 if

dφ−1(0)(z) ≤ γφ(z)

for all z in a neighborhood of z0. If that is the case for a scalar γ, then the function
φ is said to admit a local error bound at the root z0. A continuous parametric family
of nonnegative functions φt = φ(., t) is said to admit a stable local error bound at the
root (z0, t0) if there exists a scalar γ such that

dφ−1
t (0)(z) ≤ γφ(z, t)

for every (z, t) in a neighborhood of (z0, t0). For the sake of simplicity we shall focus
on finite dimensional parameters t. Robinson [35] has shown that the function φ in
(3.2) admits a local error bound at a root z0 if the functions hi, gj are smooth and the
constraint set (3.1) satisfies the Mangasarian–Fromovitz constraint qualification at z0.
Moreover, this local error bound is stable if the functions hi and gj are embedded in
Lipschitzian families of functions.

Notice, however, that Robinson’s result does not apply to MPECs with comple-
mentarity constraints since, as mentioned before, any set of constraints that includes
a complementarity constraint necessarily violates the Mangasarian–Fromovitz con-
straint qualification at any feasible point. In [20, Chap. 2] Luo, Pang, and Ralph give
conditions which ensure the existence of error bounds for complementarity constraints.
In particular, they give conditions which ensure that the function

φ(x, y) = ‖min{F (x, y), x}‖

admits an error bound. However, since they obtain bounds which are global with
respect to x, their conditions have to be rather restrictive. In fact, their conditions
imply that the solution of the complementarity problem is a single valued Lipschitz
continuous function of the parameters y in a given compact set (cf. [20, Lem. 2.3.15]).
The aim of this section is to develop conditions which ensure the existence of a local



624 STEFAN SCHOLTES AND MICHAEL STÖHR

error bound without an implicit function assumption. The conditions to be devel-
oped will be related to the Mangasarian–Fromovitz-type condition of [18] and to the
piecewise Mangasarian–Fromovitz constraint qualification studied in [20, 39]. To this
end, we shall first extend Robinson’s result for functions φ of the form (3.2) to ar-
bitrary piecewise differentiable functions φ. This will then enable us to derive local
error bound results for constraint sets involving piecewise smooth formulations of
equilibrium conditions and, a fortiori, exact penalization results for MPECs.

3.1. Local error bounds for piecewise smooth functions. The starting
point for our discussion is the following lemma, which is a direct consequence of more
general results in [36].

Lemma 3.1. If φ : Rn → R is a nonnegative piecewise affine function, then it
admits a local error bound at every root.

The trivial example φ(z) = |z| versus φ̃(z) = |z3| with z0 = 0 shows that the
local error bound property is not a topological property, i.e., it depends on the chosen
local coordinate system. However, the property is preserved under local Lipschitzian
coordinate changes. This fact has been implicitly used in the proof of Theorem 1 of
[11].

Lemma 3.2. Let φ :Rn → R be a nonnegative continuous function, W ⊆ Rn, and
γ a positive scalar, and suppose that

dφ−1(0)(ζ) ≤ γφ(ζ) ∀ζ ∈W.
If Ψ :W → Rn is Lipschitzian of rank L on W and maps W homeomorphically onto
U , then

d(φ◦Ψ−1)−1(0)(z) ≤ γL(φ ◦Ψ−1)(z) ∀z ∈ U.
Proof. Let z ∈ U , ζ = Ψ−1(z) ∈ W , and ξ ∈ φ−1(0) with dφ−1(0)(ζ) = ‖ζ − ξ‖.

Then x = Ψ(ξ) is a root of φ ◦Ψ−1 and hence

d(φ◦Ψ−1)−1(0)(z) ≤ ‖z −Ψ(ξ)‖
= ‖Ψ(ζ)−Ψ(ξ)‖
≤ L‖ζ − ξ‖
= Ldφ−1(0)(ζ)

≤ γLφ(ζ)

= γL(φ ◦Ψ−1)(z).

Clarke’s inverse function theorem [5] can be used in connection with Lemmas 3.1 and
3.2 to prove the following stable local error bound result, which is the main result
of this section. The main idea of the proof is borrowed from [13], where a similar
argument is used in a different context.

Theorem 3.3. Let φ :Rn×Rm → R be a nonnegative continuous function and let
(z0, t0) ∈ Rn×Rm be a root of φ. Suppose that at every point (z, t) in a neighborhood
of (z0, t0) the function φ coincides with at least one of the functions

si(z, t) =

q∑
j=1

αijhj(z, t) + βig(z, t) + ρi, i = 1, . . . , l,

where αij , βi, and ρi are scalars, h1, . . . , hq are C1 functions, and g is a locally
Lipschitz continuous function. Suppose the following conditions hold:
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1. The gradients ∇zh1(z0, t0), . . . ,∇zhq(z0, t0) are linearly independent.
2. There exists a vector v ∈ Rn with ∇zh1(z0, t0)v = · · · = ∇zhq(z0, t0)v = 0

and w>v < 0 for every w ∈ ∂zg(z0, t0), where ∂z denotes Clarke’s partial
subgradient operator with respect to z [5].

Then φ(., t) admits a stable local error bound at (z0, t0).
Proof. Let h = (h1, . . . , hq) and define

Φ(z, t) =
(
h(z, t), g(z, t), Az, t

)>
,

where A is a matrix whose rows complement the gradients ∇zhi(z0, t0) to a basis of
the orthogonal complement of v. Let (ζ0, t0) = Φ(z0, t0). We shall use Clarke’s inverse
function theorem [5] to show that Φ is a Lipschitzian homeomorphism at (z0, t0). Let
Im denote the m×m identity matrix and consider the (n+m)× (n+m) matrix

M =


∇zh(z0, t0) ∇th(z0, t0)
−v 0
A 0
0 Im

 .
By our choice of A the matrix M is nonsingular. Now suppose the row (−v, 0) is
replaced by an element (w, u) of ∂g(z0, t0), where w ∈ ∂zg(z0, t0). If the new matrix
is singular, then w is contained in the span of the vectors∇zhi(z0, t0) and the rows ofA
and is thus orthogonal to v which, however, contradicts the assumption that w>v < 0.
Hence the matrix M remains nonsingular if the row (−v, 0) is replaced by a gradient
(w, u) ∈ ∂g(z0, t0). Thus the generalized Jacobian ∂Φ(z0, t0) is regular and Clarke’s
inverse function theorem [5] shows that Φ is a local Lipschitzian homeomorphism
mapping an open neighborhood S of (z0, t0) onto an open neighborhood T of (ζ0, t0).

Let B(x, ε) denote the ball around x of radius ε and let ε ≥ δ > 0 be such that

B(ζ0, ε)×B(t0, ε) ⊆ T,
B(z0, δ)×B(t0, δ) ⊆ Φ−1(B(ζ0, ε)×B(t0, ε)).

Let Ψ(ζ, t) be the vector of the first n components of Φ−1(ζ, t), i.e., z = Ψ(ζ, t) is the
unique solution of the equation

(h(z, t), g(z, t), Az) = ζ

for (ζ, t) ∈ T . If L is a Lipschitz constant of Ψ on B(ζ0, ε)×B(t0, ε), then

‖Ψ(ζ, t)−Ψ(ζ̃, t)‖ ≤ L‖ζ − ζ̃‖

for every ζ, ζ̃ ∈ B(ζ0, ε) and every t ∈ B(t0, ε), i.e., for every t ∈ B(t0, ε) the mapping
Ψt = Ψ(., t) is Lipschitzian of rank L in B(ζ0, ε). Moreover, the mappings Ψt map the
balls B(ζ0, ε) homeomorphically onto Ψt(B(ζ0, ε)). Note that B(z0, δ) ⊆ Ψt(B(ζ0, ε))
for every t ∈ B(t0, δ).

Reducing ε if necessary, we may assume that φ is a continuous selection of the
functions

si(z, t) =

q∑
j=1

αijhj(z, t) + βig(z, t) + ρi
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on Φ−1(B(ζ0, ε)×B(t0, ε)). By the definition of Ψt we obtain

si(Ψt(ζ), t) =

q∑
j=1

αijζj + βiζq+1 + ρi

for every t ∈ B(t0, ε) and ζ ∈ B(ζ0, ε). Hence the function

φ̃(ζ, t) = φ(Ψt(ζ), t)

is a continuous selection of the latter affine functions in the ballB(ζ0, ε) and, moreover,
is independent of t for t ∈ B(t0, ε). Further reducing ε if necessary, we may thus
assume, in view of Lemma 3.1, that there exists a positive constant γ such that

dφ̃−1
t (0)(ζ) ≤ γφ̃(ζ, t)

for every ζ ∈ B(ζ0, ε), where φ̃t = φ̃(., t). Note that

φt(z) := φ(z, t) = φ̃(Ψ−1
t (z), t) = φ̃t(Ψ

−1
t (z)).

Recall that Ψt is Lipschitzian of rank L on B(ζ0, ε) ⊇ Ψ−1
t (B(z0, δ)) and that the

latter set is mapped homeomorphically onto B(z0, δ) by Ψt. Hence Lemma 3.2 shows
that

dφ−1
t (0)(z) ≤ γLφ(z, t)

for every z ∈ B(z0, δ) and every t ∈ B(t0, δ), which proves the assertion.
The relation of the assumptions of Theorem 3.3 to the classical Mangasarian–

Fromovitz constraint qualification is obvious in view of part 3 of Proposition 2.1.
Corollary 3.4. If in the setting of Theorem 3.3 the function g is piecewise

smooth in a neighborhood of (z0, t0) with selection functions g1, . . . , gp, then φ(., t)
admits a stable local error bound at a root (z0, t0), provided the following conditions
hold:

1. The gradients ∇zh1(z0, t0), . . . ,∇zhq(z0, t0) are linearly independent.
2. There exists a vector v ∈ Rn with ∇zh1(z0, t0)v = · · · = ∇zhq(z0, t0)v = 0

and ∇zgj(z0, t0)>v < 0 for every j ∈ {1, . . . , p} with gj(z
0, t0) = g(z0, t0).

The foregoing result is a generalization of the aforementioned result of Robinson
[35] which applies to sets of the form

C(t) = {z | hi(z, t) = 0, i = 1, . . . , q, gj(z, t) ≤ 0, j = 1, . . . , p}.

Indeed, for g(z, t) = max{g1(z, t), . . . , gp(z, t)} the set C(t) is the set of roots of the
nonnegative piecewise smooth function

φ(z, t) = max{g(z, t), |h1(z, t)|, . . . , |hq(z, t)|}

and the assumptions of Corollary 3.4 hold at (z0, t0) if and only if the Mangasarian–
Fromovitz constraint qualification is satisfied at z0 ∈ C(t0). Note that g is not needed
as a local selection function if g(z0, t0) < 0. A linear independence–type result can
be readily obtained from Corollary 3.4 in view of the following well-known fact.

Lemma 3.5. If the gradients ∇zgi(z0, t0), i = 1, . . . , p, and ∇zhj(z0, t0), j =
1, . . . , q, are linearly independent, then assumptions 1 and 2 of Corollary 3.4 hold.
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Nonsmooth formulations of equilibrium constraints often involve composite equa-
tions of the form

G ◦H(z) = 0,(3.3)

where the function G is nonsmooth and is thought of as a structure function determin-
ing a problem class, while H is smooth and represents the data of a problem instance
[33]. A typical example is the equation

min{x, F (x, y)} = 0,

which reformulates a parametric nonlinear complementarity problem. If we apply
Corollary 3.4 to constraints involving composite equations, we obtain the following
corollary.

Corollary 3.6. Consider the set

Ω(t) = {z ∈ Rn | G(H(z, t)) = 0, g(z, t) ≤ 0, h(z, t) = 0}

with t ∈ Rm, G(H(z, t)) ∈ Rr, g(z, t) ∈ R, h(z, t) ∈ Rq and suppose H and h are
smooth, g is piecewise smooth, and G is piecewise affine. Let z0 ∈ Ω(t0) and let
g1, . . . , gl be a collection of smooth selection functions for g at (z0, t0). If

1. the matrix [∇zH(z0, t0)>,∇zh(z0, t0)>] has full column rank,
2. there exists a vector v ∈ Rn such that

∇zH(z0, t0)v = 0, ∇zh(z0, t0)v = 0, ∇zgi(z0, t0)v < 0 ∀i : gi(z
0, t0) = 0,

then there exist neighborhoods U of z0 and V of t0 and a constant γ such that

dΩ(t)(z) ≤ γφ(z, t) ∀(z, t) ∈ U × V,

where

φ(z, t) = max{‖G(H(z, t))‖∞, ‖h(z, t)‖∞, g(z, t)}.

Proof. Locally around (z0, t0) the function φ has the selection functions gi, i :
gi(z

0, t0) = 0, ±hi, and

±
p∑
j=1

αijHj(z, t) + ρi,

where αijvj + ρi is a selection function of the piecewise affine function Gi. Hence,
replacing the function h in the statement of Corollary 3.4 by the function (H,h), we
obtain the result.

3.2. Local error bounds for MPECs.

3.2.1. Stationarity constraints. We shall next apply the foregoing results to
constraint sets which involve equilibrium constraints in the form of stationarity con-
ditions for variational inequalities. In order not to overload the exposition with too
many technicalities, we confine ourselves to variational inequalities over inequality
constrained sets and assume that all further constraints of the MPEC are expressed
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as a single piecewise smooth inequality. More precisely, we assume that the constraint
set of the MPEC is of the form

Ω(t) = {(x, y, λ) | F (x, y, t) +∇xΨ(x, y, t)>λ = 0,
min{−Ψ(x, y, t), λ} = 0,
g(x, y, t) ≤ 0}

(3.4)

for some fixed perturbation parameter t, where F is a C1-function, Ψ is a C2-function,
and g is a real-valued PC1-function. The set Ω(t) is the set of roots of the function

φ(x, y, λ, t) = max{‖F (x, y, t) +∇xΨ(x, y, t)>λ‖∞,
‖min{−Ψ(x, y, t), λ}‖∞, g(x, y, t)}.(3.5)

Note that φ coincides in a neighborhood of a root (x0, y0, λ0, t0) with the function

φ̃(x, y, λ, t) = max{‖F (x, y, t) +∇xΨ(x, y, t)>λ‖∞,
‖ΨI(x, y, t)‖∞, ‖λK‖∞,
‖min{−ΨJ(x, y, t), λJ}‖∞, g(x, y, t)},

where

I = {i | Ψi(x
0, y0, t0) = 0 < λ0

i },
J = {j | Ψj(x

0, y0, t0) = 0 = λ0
j},

K = {k | Ψk(x0, y0, t0) < 0 = λ0
k}.

(3.6)

Given a vector z and an index set I we have used the notation zI to denote the vector
with components zi, i ∈ I. In view of the above observation, Corollary 3.6 yields the
following stable local error bound conditions.

Corollary 3.7. Let (x0, y0, λ0, t0) be a root of the function φ defined by (3.5),
let the index sets I and J be defined by (3.6), and let

Mxλ =

 ∇xF (x0, y0, t0) +
∑
i∈I

λ0
i∇2

xxΨi(x
0, y0, t0) ∇xΨI(x

0, y0, t0)>

−∇xΨI∪J(x0, y0, t0) 0

 ,

My =

 ∇yF (x0, y0, t0) +
∑
i∈I

λ0
i∇2

xyΨi(x
0, y0, t0)

−∇yΨI∪J(x0, y0, t0)

 .

Then φ(., t) admits a stable local error bound at (x0, y0, λ0, t0) if the following condi-
tions hold:

1. The matrix M = (Mxλ,My) has full row rank.
2. If g(x0, y0, t0) = 0, then there exists a collection of C1 selection functions
g1, . . . , gp of g at (x0, y0, t0) and vectors u, v, w such that Mxλ(u, v)>+Myw =
0 and

∇xgk(x0, y0, t0)u+∇ygk(x0, y0, t0)w < 0

for every k = 1, . . . , p.
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Lemma 3.5 shows that the assumptions of the corollary are particularly satisfied
if the gradients of the active constraint functions are linearly independent, i.e., if the
matrix 

Mxλ My

(∇xg1(x0, y0, t0), 0) ∇yg1L(x0, y0, t0)
...

...
(∇xgp(x0, y0, t0), 0) ∇ygpL(x0, y0, t0)


has full row rank. The first condition of the corollary can be viewed as a regularity
condition for the variational inequality at the solution point x0 for the given parameter
vector y0. Recall that the global error bound conditions of [20], which are concerned
with the problem for fixed parameter t0, imply that the stationary solution x of the
variational inequality is a Lipschitz continuous function of y. If t0 is fixed and the
linear independence constraint qualification and strict complementarity, i.e., J = ∅,
hold for the lower level problem, then the Lipschitz continuity of x as a function of y
is equivalent to the nonsingularity of the matrix ∇xF (x0, y0, t0) +

∑
i∈I

λ0
i∇2

xxΨi(x
0, y0, t0) ∇ΨI(x

0, y0, t0)>

−∇ΨI(x
0, y0, t0) 0

 ,

which implies that the first condition of the above corollary holds. However, the
latter condition is considerably weaker. In particular it does not imply Lipschitzian
behavior of the stationary point x as a function of y. In fact, if g is of the type

g(x, y) = max{g1(x, y), . . . , gp(x, y)}

with smooth functions gi and strict complementarity holds at (x0, y0, λ0, t0), i.e.,
J = ∅, then the condition of the corollary is equivalent to the Mangasarian–Fromovitz
condition for the set

{(x, y, λ) | F (x, y, t) +∇xΨ(x, y, t)>λ = 0,
ΨI(x, y, t) = 0,
λK = 0,
g(x, y, t) ≤ 0},

which coincides with Ω(t) in a neighborhood of (x0, y0, λ0, t0) and the assertion follows
from Robinson’s result [35] in this special case.

It follows from the results of [40] that the conditions of Corollary 3.7 serve as a
constraint qualification for MPECs in the sense that they guarantee that a local min-
imizer is a stationary point. Alternative constraint qualifications based on piecewise
smooth formulations of MPECs have been suggested [18, 20]. In the first reference
condition 1 of Corollary 3.7 is relaxed to the requirement that either M has full row
rank or every square submatrix of M of maximal dimension has full row rank. This
relaxation allows for more active constraints than variables and is in the spirit of a
constant rank assumption. In [20, 39], a so-called piecewise Mangasarian–Fromovitz
constraint qualification was suggested. Here, we confine ourselves to the setting of
[20] which assumes that

g(x, y) = max{g1(x, y), . . . , gp(x, y)}
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for smooth functions gi. The approach is based on the observation that the constraint
set (3.4) is in a neighborhood of (x0, y0, λ0, t0) locally representable as the finite union
of the constraint sets

Ωα(t) = {(x, y, λ) | F (x, y, t) +∇xΨ(x, y, t)>λ = 0,
ΨI∪α(x, y, t) = 0,
λI∪α ≥ 0,
ΨK∪ᾱ(x, y, t) ≤ 0,
λK∪ᾱ(x, y, t) = 0,
g1(x, y, t) ≤ 0,
...
gp(x, y, t) ≤ 0},

where I, J,K are as defined in (3.6), α ⊆ J, and ᾱ is the complement of α in J .
The piecewise Mangasarian–Fromovitz constraint qualification requires that all sets
Ωα(t0) with α ⊆ J satisfy the smooth Mangasarian–Fromovitz constraint qualification
at (x0, y0, λ0). This condition is weaker than the condition of Corollary 3.7 which is
equivalent to the requirement that the set

Ω∗(t) = {(x, y, λ) | F (x, y, t) +∇xΨ(x, y, t)>λ = 0,
ΨI∪J(x, y, t) = 0,
λK∪J = 0,
g1(x, y, t) ≤ 0,
...
gp(x, y, t) ≤ 0}

satisfies the smooth Mangasarian–Fromovitz constraint qualification. The weaker
piecewise Mangasarian–Fromovitz constraint qualification still gives rise to local error
bounds by means of the maximum of the local error bounds for the pieces Ωα(t), since
the distance to Ω(t) is locally the minimum of the distances to Ωα(t) and φ coincides
locally with the minimum of the functions φα corresponding to the sets Ωα(t).

3.2.2. Complementarity constraints. If Ψ(x, y, t) = −x, then the multiplier
λ of the stationarity condition for the variational inequality can be eliminated and
the stationarity condition turns into a nonlinear complementarity problem. The con-
straint set of the MPEC is then of the form

Ω(t) = {(x, y) | min{x, F (x, y, t)} = 0, g(x, y, t) ≤ 0}(3.7)

for some parameter t. This feasible set is the set of roots of the nonnegative function

φ(x, y, t) = max{‖min{x, F (x, y, t)}‖∞, g(x, y, t)}(3.8)

and we obtain the following conditions for a stable local error bound of φ(., t) at a
root (x0, y0, t0).

Corollary 3.8. Let (x0, y0, t0) be a root of the function φ defined by (3.8) and
let

I = {i | Fi(x0, y0, t0) = 0}, J = {i | x0
i > 0}.

Then φ(., t) admits a stable local error bound at (x0, y0, t0) if the following conditions
hold:
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1. The matrix (∇xJFI(x0, y0, t0), ∇yFI(x0, y0, t0)
)

has full row rank.
2. If g(x0, y0, t0) = 0, then there exists a collection of C1 selection functions
g1, . . . , gp of g at (x0, y0, t0) and vectors u, v such that

∇xJFI(x0, y0, t0)u+∇yFI(x0, y0, t0)v = 0

and

∇xJ gk(x0, y0, t0)u+∇ygk(x0, y0, t0)v < 0

for every k = 1, . . . , p.

3.2.3. Normal equation constraints. Next we derive error bound conditions
for constraints involving normal equations. We assume that P is a closed convex set
and F (., .) is a parametric vector field. Recall that ξ satisfies the variational inequality
induced by F (., y) over P if and only if ξ = ΠP (x) and x solves Robinson’s normal
equation [38]

H(x, y) := ΠP (x)− F (ΠP (x), y)− x = 0.(3.9)

Recall that H is locally Lipschitzian, provided F is locally Lipschitzian. We can thus
apply the following result, which is a direct consequence of Lemmas 3.1 and 3.2.

Lemma 3.9. Let

Ω(t) = {z ∈ Rn | g(z, t) ≤ 0, h(z, t) = 0},
where g :Rn×Rm → R and h :Rn×Rm → Rp are locally Lipschitzian, let z0 ∈ Ω(t0),
let f :O → Rn−p−1 be a locally Lipschitzian function defined in a neighborhood O of
(z0, t0), and let Ψ:Rn × Rm → Rn be defined by

Ψ(z, t) =
(
g(z, t), h(z, t), f(z, t)

)
.

If the equation Ψ(z, t) = u has a locally unique and Lipschitzian solution z(u, t) in a
neighborhood of (z0, t0,Ψ(z0, t0)), then there exists a constant γ and neighborhoods U
of z0 and V of t0 such that

dΩ(t)(z) ≤ γφ(z, t) ∀(z, t) ∈ U × V,
where

φ(z, t) = max{‖h(z, t)‖∞, g(z, t)}.

Proof. Let Ψ−1
t (u) be the locally unique solution z of Ψ(z, t) = u. If u = (α, v, w)

with α ∈ R, v ∈ Rp, and w ∈ Rn−p−1, then φ ◦ Ψ−1
t (u) = max{‖v‖∞, α} which is

piecewise linear. Hence the Lipschitz continuity of the solution function z(., .) implies
the result in view of the Lemmas 3.1 and 3.2.

The foregoing result can be used to derive stable local error bound conditions
for normal maps if ΠP is piecewise differentiable and F is differentiable. Sufficient
conditions for the piecewise smoothness of ΠP have been derived in [17, 28]. In fact,
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if P = {x ∈ Rn | gi(x) ≤ 0} with convex Cr+1-functions gi and Janin’s constant rank
condition [12] holds at ΠP (x) ∈ P , then ΠP is a PCr function in a neighborhood of
x.

Proposition 3.10. Let

Ω(t) = {(x, y) ∈ Rp × Rq | ΠP (x)− F (ΠP (x), y, t)− x = 0,
h(ΠP (x), y, t) = 0,
g(ΠP (x), y, t) ≤ 0},

where F :Rp × Rq × Rm → Rp, h :Rp × Rq × Rm → Rs and g :Rp × Rq × Rm → Rr
are C1 functions, and P ⊆ Rp is a closed convex set. Let (x0, y0) ∈ Ω(t0) and
let J = {j | gj(ΠP (x0), y0, t0) = 0}. Suppose ΠP is PC1 with selection functions
P1, . . . , Pl in a neighborhood of x0. If the matrices

Mi =

 ∇Pi(x0)−∇xF (ΠP (x0), y0, t0)∇Pi(x0)− I −∇yF (ΠP (x0), y0, t0)
∇xh(ΠP (x0), y0, t0)∇Pi(x0) ∇yh(ΠP (x0), y0, t0)
∇xgJ(ΠP (x0), y0, t0)∇Pi(x0) ∇ygJ(ΠP (x0), y0, t0)


with i ∈ {1, . . . , l} are coherently oriented (cf. (2.2)), then there exist neighborhoods
U of (x0, y0) and V of t0 and a constant γ such that

dΩ(t)(x, y) ≤ γφ(x, y, t) ∀(x, y, t) ∈ U × V,
where

φ(x, y, t) = max{‖ΠP (x)− F (ΠP (x), y, t)− x‖∞, ‖h(ΠP (x), y, t)‖∞,
g1(ΠP (x), y, t), . . . , gr(ΠP (x), y, t)}.

Proof. Since φ(x, y, t) locally coincides with the function

φ̃(x, y, t) = max
j∈J
{‖ΠP (x)− F (ΠP (x), y, t)− x‖∞, ‖h(ΠP (x), y, t)‖∞, gj(ΠP (x), y, t)},

we may neglect nonactive inequalities and assume for simplicity that J = {1, . . . , r}.
Recall that coherent orientation requires the existence of a matrix A = (Ax, Ay) such
that all matrices (

Mi

A

)
have the same nonvanishing determinantal sign. The foregoing matrices are in fact
the partial Jacobians with respect to (x, y) of the selection functions of the mapping

Ψ(x, y, t) =


ΠP (x)− F (ΠP (x), y, t)− x

h(ΠP (x), y, t)
g(ΠP (x), y, t)
Axx+Ayy


at (x0, y0, t0). To apply Theorem 2.2, it thus remains to show that the first-order
approximation of the equation Ψ(x, y, t) = s defines a unique solution function. The
B-derivative of Ψ is given by

Ψ′((x0, y0, t0); (u, v, w)) =


Π′P (x0;u)−∇xF (ΠP (x0), y0, t0)Π′P (x0;u)−
∇yF (ΠP (x0), y0, t0)v −∇tF (ΠP (x0), y0, t0)w − u

∇h(ΠP (x0), y0, t0)(Π′P (x0;u), v, w)>

∇g(ΠP (x0), y0, t0)(Π′P (x0;u), v, w)>

Axu+Ayv

 .
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Recall that the B-derivative of a piecewise differentiable function is piecewise linear.
In fact, the B-derivative Π′P (x0; .) is the projection onto a polyhedral cone (cf., e.g.,
[28]). Hence the branching number of the underlying subdivision is 4 (cf. [32, 42]) and
thus the fact that the block matrices with rows Mi and A have the same nonvanishing
determinantal sign ensures that the equation Ψ′((x0, y0, t0); (u, v, w)) = r has a unique
solution u(w, r), v(w, r) [16]. Hence we can apply Theorem 2.2 to deduce that the
equation Ψ(x, y, t) = s has a locally unique solution x(t, s), y(t, s). An application of
Lemma 3.9 thus proves the assertion.

To check the assumption of the foregoing proposition one has to calculate a col-
lection of selection functions for ΠP at the point x0. This has been done in [17, 28]
for sets of the form P = {z ∈ Rn | qi(z) ≤ 0, i = 1, . . . ,m} with convex C2-functions
qi under certain constraint qualifications. For the sake of completeness we repeat the
arguments for the most important case that the linear independence constraint qual-
ification holds at a point p0 = ΠP (x0). The linear independence assumption implies
that for every index set I ⊆ I0 = {i | qi(x0) = 0} there exists a unique solution
pI(x), λI(x) of the stationary point equation

p+∇qI(p)>λI = x,

qI(p) = 0

in a neighborhood of (p0 +∇qI(p0)>λ0
I , p

0, λ0
I) and furthermore that the point pI(x

0)
coincides with the point p0 if and only if I+ ⊆ I ⊆ I0, where I+ = {i | λ0

i > 0}.
Hence, the functions pI(.), I

+ ⊆ I ⊆ I0 constitute a collection of selection functions
for ΠP in a neighborhood of x0. The inverse function theorem yields the gradients of
the functions pI at x0.

In [19, 20] it has been shown that a parametric normal equation H(x, y) = t
admits a local error bound at a solution, provided the solution x of the normal equation
is locally a Lipschitz continuous function of the parameters y and t. This result is
encompassed by the above proposition if one chooses the matrix A = (Ax, Ay) = (0, I)
to augment the matrices in the coherency condition. Our result, however, is in the
spirit of a full rank assumption rather than an implicit function assumption. In
fact, if specialized to the case P = Rn, in which case ΠP is the identity mapping
and the normal equation turns into the equation −F (x, y) = 0, then for smooth F
the condition in [19] requires that ∇xF (x0, y0, t0) is nonsingular, while our condition
requires that the matrix (∇xF (x0, y0, t0),∇yF (x0, y0, t0)

)
has full row rank.

The proof of Proposition 3.10 can mutatis mutandis be adopted to prove an
analogous result for constraint sets involving the direct normal equation

ΠP (x− F (x, y))− x = 0.

We leave the details to the reader.
The results of this section hold not only for the specified functions φ but in fact

for any other nonnegative piecewise affine composition of the constraint functions of
the MPEC; e.g., the function

φ(x, y, t) =
∑
|min{xi, Fi(x, y, t)}|+

∑
max{gj(x, y, t), 0}
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admits a local error bound at a point (x0, y0, t0) if the conditions of Corollary 3.8
hold. We shall make use of a penalty function of the latter type in section 5.

The stable error bound results of this section can be refined and extended to
infinite dimensional perturbation parameters by using Theorem 11 and Corollary 21
of [33] instead of Clarke’s inverse function theorem [5], Theorem 2.2, or Corollary 2.3.
The former results allow for general perturbations in the C1 topology rather than
merely for parametric perturbations.

In view of the principle of exact penalization, the foregoing local error bound
results yield the following concluding exact penalty result for MPECs.

Theorem 3.11. Suppose the assumptions of Corollary 3.7, Corollary 3.8, or
Proposition 3.10 hold and let f(x, y) be a locally Lipschitz continuous function. Then
there exists a neighborhood U of (x0, y0, t0) and a positive scalar γ0 such that for all
(x, y, t) ∈ U with (x, y) ∈ Ω(t) the following two statements are equivalent:

1. (x, y) is a local minimizer of the MPEC min{f(ξ, η) | (ξ, η) ∈ Ω(t)},
2. (x, y) is a local minimizer of the function f(., .) + γφ(., ., t) for every γ ≥ γ0.

4. A trust region method. The MPEC penalty functions that we encountered
in the last section are of the type

f(x) = g(x) + p(h(x)),

where g is the C1 objective function, p is piecewise affine, and h is a vector valued
C1-function. Such functions are locally Lipschitz and B-differentiable and one can
thus associate two different stationarity concepts with them. We call a point x a
Bouligand stationary (B-stationary) point of f if f ′(x; .) ≥ 0, and we call it Clarke
stationary (C-stationary) if 0 ∈ ∂f(x), where ∂f denotes Clarke’s subdifferential [5].
Since the B-derivative is always majorized by Clarke’s derivative, a B-stationary point
is C-stationary as well. The reverse statement holds generally only if f is regular at
x, i.e., its B-derivative at x coincides with Clarke’s derivative at this point.

A suitable tool for the minimization of the penalty functions f is the bundle-
trust-region method of Schramm and Zowe [43]. However, their method is designed
to find a C-stationary point and, in fact, their convergence theory states that under
suitable assumptions at least one of the accumulation points of the computed sequence
will be C-stationary. To apply the method it is necessary to be able to compute a
Clarke subgradient of the penalty function at a given point x. Since the B-derivative is
majorized by the Clarke derivative, the subdifferential of the first-order approximation
of f is a subset of the subdifferential of f . It thus suffices to calculate a subgradient
of the piecewise linear B-derivative

f ′(x; y) = ∇g(x)y + p′(h(x);∇h(x)y)

at y = 0. Recall that the Clarke subdifferential of a piecewise differentiable function
is the convex hull of the collection of all gradients of its essentially active selection
functions. So it suffices to determine an essentially active selection function of the
piecewise linear function f ′(x; .). However, this can be a nontrivial combinatorial
problem and the best way to do it depends heavily on the function p. We will not
go into the details of the bundle-trust-region approach here, but instead propose a
different trust region method which is applicable to the nonsmooth MPEC penalty
functions and is designed to find a B-stationary point.

4.1. The trust region framework. In this section, we present a general trust
region framework for the minimization of locally Lipschitz continuous B-differentiable
functions f :Rn → R.
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Given a point xk, a trust region method employs a local model mk(.) of the
function f(xk + .) which is assumed to be sufficiently accurate within the so-called
trust radius δk about xk. In order to determine a better point xk+1, one determines
an approximation sk of the optimal solution of the problem

min
‖s‖≤δk

mk(s).(4.1)

Having determined sk, one checks whether the model mk(.) of the function f(xk + .)
is indeed sufficiently accurate at the point sk by comparing the actual reduction
f(xk)− f(xk + sk) of the function value with the predicted reduction mk(0)−mk(sk)
given by the model mk(.). If, on the one hand, the actual reduction does not exceed a
fixed fraction of the predicted reduction, then the model is considered to be inadequate
in the ball around xk with radius δk; the method will reduce the trust radius and
possibly improve the model, but it will not move to the point xk+sk. If, on the other
hand, the actual reduction exceeds a certain fixed fraction of the predicted reduction,
then xk is updated to xk+1 = xk + sk and a new model mk+1 along with a suitable
update δk+1 ≥ δk of the trust radius is determined. We shall use the following setup
for the trust region method.

Trust Region Method. Let f :Rn → R be a function and let 0 < c0 < c1 < 1
be fixed parameters.
kth iteration: Let xk ∈ Rn, δk > 0 and mk :Rn → R be given.

Determine a vector sk with ‖sk‖ ≤ δk and mk(sk) < mk(0). If no such
vector exists, then stop.

Set rk :=
f(xk)− f(xk + sk)

mk(0)−mk(sk)
.

If rk ≤ c0, then set xk+1 := xk, δk+1 := Reduce(δk),
else if c0 < rk ≤ c1, then set xk+1 := xk + sk, δk+1 := δk,

else set xk+1 := xk + sk, δk+1 := Increase(δk).

Determine mk+1.

A sequence {xk}k∈N is called a trust region sequence if it can be generated by the
above procedure from some initial vector x0. The above method is clearly a descent
method, i.e., f(xk+1) ≤ f(xk) for every k ∈ N. This framework can thus be employed
for the minimization of an arbitrary function f . However, to obtain convergence
results, one has to impose a number of assumptions. Our first assumption concerns
the function class for which we analyse the method.

(A1) The function f :Rn → R is locally Lipschitz continuous and B-differentiable.

In order to convert the trust region framework into an algorithm, one has to
specify the model function mk, a method for the determination of sk, as well as
the trust radius adjustments Reduce(.) and Increase(.). We will not give specific
recipes for these selections but instead impose certain restrictions on such recipes.
The assumptions that we use here are not the most general convergence assumptions,
but they are general enough to cover the case of MPEC penalty functions and at the
same time allow a fairly straightforward convergence proof. They are not implied
by the assumptions made in [7, 31]. A convergence proof for the method under
slightly more general assumptions as well as a comparison of the assumptions with
the convergence conditions used in [7, 27, 31] is given in [44].
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We first assume that sk is chosen in such a way that a certain fixed fraction of
the optimal model reduction can be guaranteed in each step.

(A2) There is a number τ ∈ (0, 1] (independent of k) such that

mk(0)−mk(sk) ≥ τ(mk(0)−m∗k),(4.2)

where m∗k = min‖s‖≤δk mk(s).
Our next assumption concerns the functions Reduce(.) and Increase(.).
(A3) For each δ0 > 0 the assignment δk := Reduce(δk−1) generates a strictly

decreasing positive nullsequence and there exists cR ∈ (0, 1) such that

Reduce(δ) ≥ cRδ.

For each δ0 > 0 the assignment δk := Increase(δk−1) generates an increasing sequence
and there exists cI > 1 and δmax > 0 such that

Increase(δ) ≥ cIδ

for every δ ≤ δmax.
The final set of assumptions concerns the choice of the model function and its

approximation properties.
(A4) The model function mk is of the form

mk(s) = Φ(xk; s) +
1

2
sTBks,(4.3)

where Bk is an n×n-matrix and Φ:Rn×Rn → R is a function which does not depend
on k and has the following properties:

(A4.1) For every x ∈ Rn the function Φx = Φ(x; .) :Rn → R is locally Lipschitz
continuous and B-differentiable.

(A4.2) Φx(0) = f(x) and Φ′x(0; s) = f ′(x; s).
(A4.3) If x̄ is an accumulation point of the trust region sequence, then

1. lim
(x,s)→(x̄,0)

f(x+ s)− Φ(x; s)

‖s‖ = 0,

2. there exists a positive number ε such that for every fixed s with ‖s‖ < ε the
function x→ Φs(x) := Φ(x; s) :Rn → R is upper semicontinuous at x̄.

(A4.4) There exists a number M such that ‖Bk‖ ≤M for every k.
assumption (A4.3) is rather restrictive. In general the first-order approximation

f(x)+f ′(x; s) does not satisfy this assumption. We have seen, however, that a typical
MPEC penalty function has the form

f(x) = g(x) + p(h(x)),(4.4)

where g :Rn → R and h :Rn → Rm are differentiable and p :Rm → R is piecewise
linear. A natural approximation of such functions f is of the form

Φ(x; s) = g(x) +∇g(x)s+ p(h(x) +∇h(x)s).(4.5)

The following theorem shows that this approximation function satisfies assump-
tion (A4).
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Theorem 4.1. Let g :Rn → R and h :Rn → Rm be C1-functions and p :Rm → R
be locally Lipschitz continuous and B-differentiable. If f has the form (4.4) and Φ is
defined by (4.5), then Φ satisfies the conditions of assumption (A4).

Proof. The function Φx is certainly locally Lipschitz continuous and B-
differentiable. Moreover, Φx(0) = f(x) and

Φ′x(0; s) = ∇g(x)s+ p′(h(x);∇h(x)s)

= f ′(x; s),

in view of the chain rule for the B-derivative [35]. Since the function Φs is continuous
for every s ∈ Rn, it remains to be shown that

lim
(x,s)→(x̄,0)

f(x+ s)− Φ(x; s)

‖s‖ = 0.(4.6)

Note first of all that

lim
(x,s)→(x̄,0)

g(x+ s)− g(x)−∇g(x)s

‖s‖ = 0(4.7)

since g is a C1-function. Moreover, if L is a Lipschitz constant of p, then

‖p(h(x+ s))− p(h(x) +∇h(x)s)‖
‖s‖ ≤ L‖h(x+ s)− h(x)−∇h(x)s‖

‖s‖ .

Since h is a C1-function, the right-hand side of the inequality tends to zero, provided
x tends to x̄ and s tends to zero. This proves (4.6) in view of (4.7).

Note that the iteration function Φ(x; s) does not satisfy the assumptions of the
trust region methods found in [7, 31] since it is generally neither regular nor subho-
mogeneous in s.

4.2. Convergence analysis. Having set out the method along with some gen-
eral assumptions, we shall next study properties of the accumulation points of the
trust region sequence. The first rather trivial observation tells us that the trust re-
gion method will not stop unless a Bouligand stationary point of the function f is
found.

Proposition 4.2. Suppose assumptions (A1), (A4.1), and (A4.2) are satisfied.
If the trust region method stops at iteration k and δk > 0, then xk is a Bouligand
stationary point of f .

Proof. If δk > 0, then the trust region method stops at iteration k if and only if
the origin is a local minimizer and a fortiori a Bouligand stationary point of mk(.), i.e.,
Φ′xk(0; .) ≥ 0. Assumption (A4) thus implies that f ′(xk; .) ≥ 0, i.e., xk is a Bouligand
stationary point of f .

Next, we show that if xk is not B-stationary, then the trust region sequence will
eventually move to a new point.

Proposition 4.3. Suppose assumptions (A1)–(A4) hold. If xk is not a B-
stationary point of f , then there exists a number r ∈ N such that xk+r 6= xk.

Proof. Since xk is not a B-stationary point of f , the method cannot terminate
at the point xk in view of Proposition 4.2. It thus either moves to a new point
at some iteration or produces a stationary sequence. Let us assume the latter, i.e.,
xk = xk+r for every r ≥ 1. Then the trust radius is reduced at every iteration and
thus assumption (A3) implies that δk is a nullsequence. Since xk is not a B-stationary
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point of f , there exists a direction s with ‖s‖ = 1 and a real number α > 0 such that
f ′(xk; s) = −α. Since we have assumed that the sequence is stationary, the point
xk is an accumulation point of the trust region sequence and hence assumption (A4)
implies that

m′k(0; s) = Φ′xk(0; s) = f ′(xk; s) = −α.

Thus, there exists a number δ̄ > 0 such that

mk(δs)−mk(0) ≤ −αδ
2

for every δ ∈ [0, δ̄]. Set m∗k = min{mk(s) | ‖s‖ ≤ δk}. If 0 < δk ≤ δ̄, which is
eventually the case since δk is a positive nullsequence, then

mk(0)−m∗k ≥ mk(0)−mk(δks) ≥ αδk
2

> 0.(4.8)

Now we expand

f(xk)− f(xk + sk)

mk(0)−mk(sk)
=
mk(0)−mk(sk)− f(xk + sk) +mk(sk)

mk(0)−mk(sk)

= 1− [f(xk + sk)−mk(sk)]

mk(0)−mk(sk)

= 1− [mk(0)−m∗k]

[mk(0)−mk(sk)]

‖sk‖
[mk(0)−m∗k]

[f(xk + sk)−mk(sk)]

‖sk‖ .

First, assumption (A2) ensures that the positive number
mk(0)−m∗k

mk(0)−mk(sk)
is bounded

above by 1
τ . Second, since ‖sk‖ ≤ δk, inequality (4.8) implies

‖sk‖
mk(0)−m∗k

≤ 2δk
αδk

=
2

α
.

Finally, since δk tends to zero and xk is an accumulation point of the stationary
sequence, assumption (A4) implies that

lim
k→∞

f(xk + sk)−mk(sk)

‖sk‖ = 0.

Hence (f(xk) − f(xk + sk))/(mk(0) −mk(sk)) tends to unity and thus xk + sk will
eventually be accepted by the method. This contradicts the stationarity of the se-
quence.

The next proposition shows that an accumulation point of a trust region sequence
is B-stationary, provided the corresponding sequence of trust radii does not tend to
zero.

Proposition 4.4. Let {xk}k∈N be an infinite trust region sequence and let x∗ be
an accumulation point of this sequence. Suppose assumptions (A1), (A2), and (A4)
hold. If x∗ is not a B-stationary point of f , then there exists a subsequence {xki}i∈N
tending to x∗ such that the sequence of trust radii δki tends to zero.

Proof. Since x∗ is an accumulation point of the trust region sequence, there exists
a subsequence {xki}i∈N converging to x∗. In view of Propositions 4.2 and 4.3, we may
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assume that xki 6= xki+1, i.e., the step xki+1 := xki+ski was accepted at each iteration
ki, i ∈ N. Hence

f(xki)− f(xki+1) > c0[mki(0)−mki(s
ki)].(4.9)

By assumption (A4.4) we may pass to a subsequence with the property that the
sequence of matrices Bki converges to a matrix B∗. Since x∗ is not a B-stationary
point of f , assumption (A4.2) shows that it is not a B-stationary point of the function
m∗(.) defined by m∗(s) = Φ(x∗, s) + 1

2s
TB∗s. Hence, for an arbitrarily chosen ε > 0

we can find a point s∗ ∈ Rn with ‖s∗‖ ≤ ε such that

m∗(s∗) < m∗(0).(4.10)

Now suppose the statement of the proposition is false, i.e., there exists a scalar µ > 0
such that δki ≥ µ for every i ∈ N. Choose ε ≤ µ in such a way that Φ(., s∗) is upper
semicontinuous at x∗, which is possible in view of assumption (A4.3). Hence

lim sup
i→∞

mki(s
∗) ≤ m∗(s∗),(4.11)

and since ‖s∗‖ ≤ ε ≤ µ ≤ δki for every i ∈ N, we further obtain

mki(0)− min
‖s‖≤δki

mki(s) ≥ mki(0)−mki(s
∗).(4.12)

In view of assumptions (A2) and (A4.2), the inequalities (4.11) and (4.12) imply that

mki(0)−mki(s
ki) ≥ τ [mki(0)−mki(s

∗)]
≥ τ

2 [m∗(0)−m∗(s∗)](4.13)

for every sufficiently large i ∈ N. Hence, in view of (4.9), the inequality

f(xki)− f(xki+1) >
c0τ

2
[m∗(0)−m∗(s∗)]

holds for every sufficiently large i ∈ N. On the one hand, by (4.10), the term
on the right-hand side of the foregoing inequality is positive, and hence the series∑∞
i=1[f(xki) − f(xki+1)] tends to infinity. On the other hand, f(xki+1) ≥ f(xki+1)

since the trust region method is a descent method, and hence

∞∑
i=1

[f(xki)− f(xki+1)] ≤
∞∑
i=1

[f(xki)− f(xki+1)] = f(xk1)− f(x∗).

Thus the assumption that δki ≥ µ > 0 for every i ∈ N leads to a contradiction.
The final proposition shows that an accumulation point of the trust region method

is a C-stationary point of the function if it is the limit point of a subsequence xki whose
corresponding sequence of trust radii δki tends to zero.

Proposition 4.5. Let {xki}i∈N be a convergent subsequence of an infinite trust
region sequence {xk}k∈N. Suppose assumptions (A1)–(A4) hold. If the sequence of
trust radii δki tends to zero, then the limit point x∗ of the sequence {xki}i∈N is a
C-stationary point.

Proof. Suppose x∗ is not a C-stationary point. Then there exists a direction
ȳ ∈ Rn with ‖ȳ‖ = 1 and f◦(x∗; ȳ) < 0, where f◦(.; .) denotes Clarke’s generalized
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derivative [5]. The definition of f◦(x∗; .) yields the existence of positive numbers ν̄, ε̄,
and δ̄ such that

f(xk)− f(xk + δkȳ) ≥ ν̄δk
for every k ∈ N satisfying

‖xk − x∗‖ ≤ ε̄,
δk ≤ δ̄.

(4.14)

If we set m∗k = min{mk(s) | ‖s‖ ≤ δk}, then we obtain

f(xk)−m∗k
δk

≥ f(xk)−mk(δkȳ)

δk
≥ ν̄ +

f(xk + δkȳ)−mk(δkȳ)

δk

for every k satisfying (4.14). Assumptions (A4.3) and (A4.4) imply that

f(xk)−m∗k
δk

≥ ν̄

2
(4.15)

for every k satisfying (4.14), provided we have chosen ε̄ and δ̄ small enough. Now we
show that the ratio rk is arbitrarily close to 1, provided ε̄ and δ̄ are chosen sufficiently
small. Expand

rk =
f(xk)− f(xk + sk)

f(xk)−mk(sk)

= 1− f(xk + sk)−mk(sk)

f(xk)−mk(sk)

= 1− f(xk + sk)−mk(sk)

‖sk‖
‖sk‖
δk

δk
f(xk)−m∗k

f(xk)−m∗k
f(xk)−mk(sk)

.(4.16)

Note that

‖sk‖
δk

≤ 1,

δk
f(xk)−m∗k

≤ 2

ν̄
,

f(xk)−m∗k
f(xk)−mk(sk)

≤ 1

τ
,

where the second inequality follows from (4.15) and the last inequality follows from
assumption (A2) since mk(0) = f(xk). Assumptions (A4.3) and (A4.4) ensure that
the term

f(xk + sk)−mk(sk)

‖sk‖
will be arbitrarily small, provided k satisfies (4.14) and ε̄ > 0 and δ̄ > 0 are chosen
small enough. Hence we conclude that for sufficiently small positive numbers ε̄ and δ̄
the inequality

rk > c1, c1 ∈ [c0, 1)(4.17)
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holds for every k satisfying (4.14). Now consider the subsequence {xki}i∈N. Reducing
δ̄ if necessary, we may assume that δ̄ ≤ δmax, where the latter constant is given in
(A3). Thus the trust radius will always be increased for sufficiently large ki, i.e.,
δki+1 ≥ cIδki , where cI > 1 is the constant given in assumption (A3). Now let ki be
such that δki < cRδ̄, where cR is again given in assumption (A3) and ‖xki−x∗‖ ≤ ε̄/2.
Let ji ≤ ki be the smallest index such that all ratios rji+1, . . . , rki exceed c1. Let us
first show that

‖xji − x∗‖ > ε̄.(4.18)

We may assume without loss of generality that ε̄ has been chosen small enough so that
‖x0−x∗‖ > ε̄ since we have assumed that x∗ is not C-stationary and, a fortiori, not B-
stationary and thus, in view of Proposition 4.3, x∗ 6= x0. Hence (4.18) holds if ji = 0.
To see that the inequality also holds for ji ≥ 1, note that δji ≤ δ̄ since the trust region
bound has been increased in the steps ji + 1, . . . , ki; hence δji+1 ≤ δki ≤ cRδ̄ and, in
view of assumption (A3), cRδji ≤ Reduce(δji) ≤ δji+1. Since rji ≤ c1 and (4.17) holds
for every k satisfying (4.14), we conclude that (4.18) holds. Since ‖xki − x∗‖ ≤ ε̄/2,
we obtain from (4.18) and assumption (A3) that

ε̄

2
≤ ‖xki − xji‖ ≤

ki−ji−1∑
m=0

‖sji+m‖ ≤ δji +

ki−ji−1∑
µ=1

δki−µ.

Note that, in view of assumption (A3), δki−µ ≤ δki
cµ
I

for µ = 1, . . . , ki−ji−1. Moreover,

again due to (A3), δji ≤ δki/cR. Hence

ε̄

2
≤ δki
cR

+
∞∑
µ=1

δki
cµI

= [
1

cR
+

1

cI − 1
]δki .

Since, by (A3), cR > 0 and cI > 1, we conclude that δki is bounded away from zero
which, however, leads to a contradiction as we have assumed that δki tends to zero.
Thus x∗ is a C-stationary point.

4.3. A penalty update rule. In order to apply the trust region method to
nonsmooth penalty functions g+αp◦h arising from constrained optimization problems

min{g(x) | p(h(x)) = 0}

with nonnegative function p ◦ h, one has to specify a penalty parameter α. Rather
than determining this parameter in advance, one may update it in the course of the
method. To allow for penalty parameter updates, we consider the model functions

mk(s) = g(xk) +∇g(xk)s+ αkp(h(xk) +∇h(xk)s) +
1

2
s>Bks.

In this section we show how the penalty update rule suggested by Yuan [47] can be
incorporated into our method. Yuan’s method determines the sequence of penalty
parameters αk by means of a control sequence βk which is also determined during
the course of the method. In fact, starting from some initial positive parameters α0

and β0, the method generates the sequences αk and βk which are updated after each
accepted step sk using the following rule.
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Penalty update rule for iteration k.
Let ᾱ, β̄ be constants independent of k with 0 < β̄ < 1 < ᾱ.
If

mk(0)−mk(sk) < βkαk min{δk, p(h(xk))},

then

αk+1 = ᾱαk and βk+1 = β̄βk,

else

αk+1 = αk and βk+1 = βk.

Theorem 4.6. Let {xk} be a bounded trust region sequence and suppose (A1),
(A2), and (A4) hold.

1. If αk
k→∞−→ ∞, then there exists a subsequence which converges to a C-stationary

point of p ◦ h.
2. If limk→∞ αk <∞ and (A3) holds, then every accumulation point of the trust

region sequence is a feasible Clarke stationary point of the function g+α(p◦h)
for every α ≥ limk→∞ αk.

Proof. Define ρk = min{δk, p(h(xk))}.
1. Since αk

k→∞−→ ∞ and {xk} is bounded, there exists a subsequence xki such

that αki+1 > αki and xki
i→∞−→ x∗. We first prove that

lim
i→∞

p(h(xki))− min
||d||≤ρki

p(h(xki) +∇h(xki)d)

ρki
= 0.(4.19)

Note that p(h(xki)) > 0 ∀ i. Let dki be a solution of

min
||d||≤ρki

p(h(xki) +∇h(xki)d).

Since αki+1 > αki , we obtain

αkiβkiρki > mki(0)−mki(s
ki)

≥ τ [mki(0)−mki(s
∗)]

≥ τ [mki(0)−mki(d
ki)]

≥ τ
[
−∇g(xki)dki − 1

2
(dki)>Bkid

ki(4.20)

+ αki
(
p(h(xki))− p(h(xki) +∇h(xki)dki)

) ]
.

Dividing the inequalities by αkiρki we obtain

βki ≥ τ

[−2∇g(xki)dki − (dki)>Bkid
ki

2αkiρki

+
p(h(xki))− p(h(xki) +∇h(xki)dki)

ρki

]
.

(4.21)



EXACT PENALIZATION OF MPECs 643

Note that∣∣∣∣−2∇g(xki)dki − (dki)>Bkid
ki

2αkiρki

∣∣∣∣ ≤ 2‖∇g(xki)‖2‖dki‖2 + ‖dki‖2‖Bki‖∗2‖dki‖2
αkiρki

≤ 2‖∇g(xki)‖2 + ‖dki‖2‖Bki‖∗2
αki

,

where ‖.‖2 and ‖.‖∗2 denote the `2 vector and operator norm, respectively. Since Bk

is bounded, xki converges to x∗, and αki
i→∞−→ ∞, we conclude that the first term in

the right-hand bracket of (4.21) tends to zero. Note that βki
i→∞−→ 0 since αki

i→∞−→ ∞;
hence we conclude that the nonnegative term

p(h(xki))− p(h(xki) +∇h(xki)dki)

ρki

tends to 0 as i tends to ∞, thus proving (4.19).
Now suppose x∗ is not a Clarke stationary point of p(h(.)), i.e., there exists a

descent direction d ∈ Rn : ||d|| = 1 in x∗ of Clarke’s generalized derivative [5]. In
other words, there exist positive constants ε, δ̃, γ such that

p(h(x))− p(h(x+ δd)) > γδ ∀||x− x∗|| ≤ ε, 0 < δ ≤ δ̃
and hence, reducing ε and δ̃ if necessary, that

p(h(x))− p(h(x) +∇h(x)δd)) >
1

2
γδ ∀||x− x∗|| ≤ ε, 0 < δ ≤ δ̃.

Now suppose, on the one hand, that ρki ≤ δ̃. Then

p(h(xki))− p(h(xki) +∇h(xki)dki)

ρki
≥ p(h(xki))− p(h(xki) +∇h(xki)ρkid)

ρki

≥ 1

2
γ.

If, on the other hand, ρki > δ̃, then

p(h(xki))− p(h(xki) +∇h(xki)dki)

ρki
≥ p(h(xki))− p(h(xki) +∇h(xki)δ̃d)

ρki

≥ 1

2
γ
δ̃

ρki
.

Note that lim sup ρki is bounded above by p(h(x∗)). Hence both inequalities taken
together constitute a contradiction to (4.19).

2. Because of the assumption limk→∞ αk < ∞ we know that the penalty pa-
rameter sequence remains constant for sufficiently large k, i.e., αk = α and βk = β
for every k > k0. Therefore we can apply the convergence results of our trust region
method. Hence every accumulation point of the trust region sequence is stationary in
the sense of Clarke. We have only to show that these points are also feasible.

Let x∗ be an arbitrary accumulation point and (xki) a subsequence of successful
steps which converges to x∗. Suppose x∗ is not a feasible point. Then there exists a
positive number δ̂ such that

p(h(xki)) ≥ δ̂ ∀ ki ∈ N large enough.
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Hence the definition of the penalty update rule yields

mki(0)−mki(s
ki) ≥ αβρki ≥ αβmin{δki , δ̂}

for every sufficiently large ki and thus, since the left-hand side of this inequality tends
to zero, there exists c̃ > 0 such that

mki(0)−mki(s
ki) ≥ c̃δki .(4.22)

We have

∞ > f(xk1)− f(x∗) =
∞∑
i=1

[f(xki)− f(xki+1)] ≥
∞∑
i=1

[f(xki)− f(xki+1)] ≥
∞∑
i=1

c0c̃δki

and conclude that (δki) is a nullsequence. Expanding rki as in (4.16), we conclude
from (4.22) that limi→∞ rki = 1. Now we can apply similar arguments as in the
proof of Proposition 4.5 to verify that the corresponding trust radius sequence (δki) is
bounded away from zero and thus obtain a contradiction to our assumptions.

5. An `1 penalty function for MPECs. In order to apply the proposed trust
region method to MPECs, we have to specify the matrices Bk along with a method
for the determination of an approximate solution sk of the subproblem

min ∇g(xk)s+ p(h(xk) +∇h(xk)s) + 1
2s
>Bks

s.t. ‖s‖ ≤ δk.(5.1)

We shall use a specification which turns into the S`1QP method of Fletcher [10, Chap.
12] if no complementarity constraints are present. We choose the `∞ norm for the
trust region and consider `1 penalty terms of the form φ = p ◦ h, where

p(z) =

m∑
i=1

|min{zi, zm+i}|+
2m+p∑
v=2m+1

max{zv, 0}+

2m+p+q∑
w=2m+p+1

|zw|.(5.2)

Such penalty terms arise from MPECs with complementarity constraints. The term
|min{zi, zm+i}| is used to penalize the violation of the complementarity conditions
zi ≥ 0, zm+i ≥ 0, zizm+i = 0. Notice that, by our choice of p, the subproblem (5.1) is
nonconvex, even if the matrix Bk is positive semidefinite. To overcome the inherent
combinatorial difficulties, we suggest solving a related subproblem which is obtained
by replacing the nonconvex function p by a suitable convex majorant

pI(z) =
m∑
i=1
i∈I

max{|zi|,−zm+i}+
m∑
j=1

m+j∈I

max{|zm+j |,−zj}

+

2m+p∑
v=2m+1

max{zv, 0}+

2m+p+q∑
w=2m+p+1

|zw|,
(5.3)

where I ⊆ {1, . . . , 2m} and for every i ∈ {1, . . . ,m} either i ∈ I or m+ i ∈ I, but not
both. Notice that the function p is the pointwise minimum over all functions pI and
if

{i | hi(x) < hm+i(x)} ∪ {m+ i | hm+i(x) < hi(x)} ⊆ I,
{i | hi(x) ≤ hm+i(x)} ∪ {m+ i | hm+i(x) ≤ hi(x)} ⊇ I,

(5.4)
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then pI(h(x)) = p(h(x)). Thus, if x is a B-stationary point of g + α(p ◦ h), then it
is a B-stationary point of g + α(pI ◦ h) for every I satisfying (5.4). Initially we set
I0 = {i | hi(x0) ≤ hm+i(x0)} ∪ {m+ j | hm+j(x0) < hj(x0)}, where x0 is the starting
point.

To incorporate second-order information in the model we make use of multiplier
vectors λk ∈ R2m+p+q which correspond to the Lagrangian

L(x, λ) = g(x) + h(x)>λ.

These multipliers will be obtained by employing the above majorant of the model
function. Initially we set λ0 = 0.

At iteration k we are given the current iterate xk, a multiplier vector λk, a trust
radius δk, a penalty parameter αk, a matrix Bk, and an index set Ik. We determine
sk as a locally optimal solution of the program

min ∇g(xk)s+ αkpIk(h(xk) +∇h(xk)s) + 1
2s
>Bks

s.t. −δk ≤ st ≤ δk, t = 1, . . . , n,
(5.5)

where Bk = ∇2
xxL(xk, λk). If sk is a local minimizer of (5.5), then it satisfies Clarke’s

stationarity condition [2, 5], i.e., there exist multipliers (µk, rk, ξ
k) such that

∇g(xk)> +Bks
k +∇h(xk)>µk + rkξ

k = 0,
µk ∈ αk∂pIk(h(xk) +∇h(xk)sk),
ξk ∈ ∂‖sk‖∞,
rk ≥ 0,

rk(‖sk‖ − δk) = 0.

(5.6)

We solve (5.5) by rewriting it as the quadratic program

min ∇g(xk)s+ αk[
∑m
i=1 γi +

∑p
v=1 ρv +

∑q
w=1 σw] + 1

2s
>Bks

s.t.
−γi ≤ hi(x

k) +∇hi(xk)s ≤ γi, i ∈ Ik ∩ {1, . . . ,m},
−γi ≤ hm+i(x

k) +∇hm+i(x
k)s, i ∈ Ik ∩ {1, . . . ,m},

−γj ≤ hm+j(x
k) +∇hm+j(x

k)s ≤ γj , m+ j ∈ Ik ∩ {m+ 1, . . . , 2m},
−γj ≤ hj(x

k) +∇hj(xk)s, m+ j ∈ Ik ∩ {m+ 1, . . . , 2m},
h2m+v(x

k) +∇h2m+v(x
k)s ≤ ρv, v = 1, . . . , p,

0 ≤ ρv, v = 1, . . . , p,
−σw ≤ h2m+p+w(xk) +∇h2m+p+w(xk)s ≤ σw, w = 1, . . . , q,
−δk ≤ st ≤ δk, t = 1, . . . , n.

Given the Lagrange multipliers for this quadratic program at a local minimizer sk, we
define a vector (µk, νk) ∈ R2m+p+q×Rn as follows. Let 1 ≤ i ≤ 2m+p+q. If the term
hi(x

k) +∇hi(xk)s is constrained from two sides, e.g., −γi ≤ hi(xk) +∇hi(xk)s ≤ γi,
and µki,+ ≥ 0 and µki,− ≤ 0 are the multipliers corresponding to the right-hand and

left-hand sides, respectively, of the two-sided inequality, then we set µki = µki,+ +

µki,−. Otherwise, we let µki be the multiplier corresponding to the one-sided inequality

constraining the term hi(x
k) + ∇hi(xk)s. The multipliers corresponding to 0 ≤ ρv

are neglected and we finally set νkt = νkt,+ + νkt,−, where νkt,+ ≥ 0 and νkt,− ≤ 0 are the
multipliers corresponding to the right-hand and left-hand sides, respectively, of the
two-sided inequality −δk ≤ st ≤ δk. A straightforward but rather lengthy comparison
of the KKT conditions of the above quadratic program with the stationarity conditions
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(5.6) shows that (µk, νk) is of the form (µk, rkξ
k), where (µk, rk, ξ

k) satisfies (5.6).
Note that this implies in particular that

‖µk‖∞ ≤ αk,(5.7)

since the subdifferential of every function pI at every point is contained in the `∞
unit-ball.

If step sk is rejected by the trust region method, then we set λk+1 := λk and
Ik+1 := Ik. Otherwise, we set λk+1 := µk and determine the index set Ik+1 by the
following rule, which makes use of two predetermined positive tolerances τ1, τ2. For
every i = 1, . . . ,m we have to decide whether to include i or m+ i in Ik+1:

If max{|hi(xk+1)|, |hm+i(x
k+1)|} < τ1 and λk+1

i > τ2, then m+ i ∈ Ik+1,
else if max{|hi(xk+1)|, |hm+i(x

k+1)|} < τ1 and λk+1
m+i > τ2, then i ∈ Ik+1,

else if hi(x
k+1) ≤ hm+i(x

k+1), then i ∈ Ik+1,
else m+ i ∈ Ik+1.

The first part of this rule needs some explanation. Let us focus attention on the
first if statement. Note first that the multiplier λk+1

i can be positive only if i is already
contained in Ik, i.e., we had forced hi to be close to zero at the last iteration and
allowed the complementary function hm+i to become positive. The first if statement,
however, indicates that the objective function seems to force the function hm+i to
be close to zero anyway. Therefore, instead of allowing hm+i to become positive and
forcing hi to be zero, we swap, i.e., in the next step we force hm+i to be close to zero
and allow hi to become positive. This is done by including m+i in Ik+1. The positive
multiplier λk+1

i indicates that this swap seems to be favorable.

5.1. Relation to SQP methods. If the gradients ∇hi(x∗) of the active func-
tions hi are linearly independent and x∗ is a local minimizer of the MPEC, then there
exists a uniquely determined Lagrange multiplier vector λ∗ ∈ R2m+p+q such that

(5.8)

∇g(x∗)> +∇h(x∗)>λ∗ = 0,
hi(x

∗)λ∗i = 0 ∀i = 1, . . . , 2m+ p,
λ∗i , λ

∗
m+i ≤ 0 ∀i ∈ {1, . . . ,m} s.t. hi(x

∗) = hm+i(x
∗) = 0,

λ∗l ≥ 0 ∀l = 2m+ 1, . . . , 2m+ p,

and this is equivalent to B-stationarity of x∗ for g+αp ◦ h for every sufficiently large
α, [20, 40]. The next proposition gives conditions under which the estimates λk of
the method converge to the Lagrange multipliers λ∗.

Proposition 5.1. Suppose the sequence of matrices Bk is bounded, the sequence
of iterates xk tends to a feasible C-stationary point x∗, and the gradients of the active
functions hi at x∗ are linearly independent. Then there exists a unique multiplier λ∗

such that

∇g(x∗)> +∇h(x∗)>λ∗ = 0,
hi(x

∗)λ∗i = 0 ∀i = 1, . . . , 2m+ p+ q,
λ∗l ≥ 0 ∀l = 2m+ 1, . . . , 2m+ p.

(5.9)

If the trust radius sequence δk is bounded away from zero, then there exists a positive
scalar τ̄1, such that for every choice of the tolerance τ ∈ (0, τ̄1) the sequence λk
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converges to λ∗. Moreover, there exists a second positive scalar τ̄2 such that

λ∗i , λ
∗
m+i ≤ 0 ∀i ∈ {1, . . . ,m} s.t. hi(x

∗) = hm+i(x
∗) = 0,

provided τ2 ∈ [0, τ̄2).
Proof. The existence and uniqueness of λ∗ satisfying (5.9) follows from the defi-

nition of C-stationarity and the linear independence assumption. Let

τ̄1 = min{hj(x∗) | hj(x∗) > 0, j = 1, . . . , 2m}
and suppose 0 < τ1 < τ̄1. Note first that for sufficiently large k the index set
I = Ik satisfies (5.4) with x = x∗ and hence pIk(h(x∗)) = p(h(x∗)). Indeed, for
every i = 1, . . . ,m the equation min{hi(x∗), hm+i(x

∗)} = 0 holds since x∗ is fea-
sible. Hence, if, on the one hand, 0 = hi(x

∗) < hm+i(x
∗) and k is sufficiently

large, then max{|hi(xk)|, |hm+i(x
k)|} > τ1 and thus i ∈ Ik. On the other hand,

if i ∈ Ik, then hi(x
∗) ≤ hm+i(x

∗) because, if 0 = hm+i(x
∗) < hi(x

∗), then again
max{|hi(xk)|, |hm+i(x

k)|} > τ1 for sufficiently large k and hence m + i ∈ Ik and
i 6∈ Ik. The same argument holds with i and m+ i swapped.

Recall that λk+1 = λk if sk is not accepted by the method. Let ski be the subse-
quence of accepted steps. Since the steps ski tend to zero and hence the corresponding
trust radius is thus eventually inactive, (5.6) implies that λki+1 satisfies

0 = ∇g(xki)> +Bkis
ki +∇h(xki)>λki+1,

λki+1 ∈ αki∂pIki (h(xki) +∇h(xki)ski),

provided ki is sufficiently large. If hj(x
∗) 6= p(h(x∗)) = 0, then hj(x

∗) 6= pIki (h(x∗)) =

p(h(x∗)); hence hj(x
ki)+∇hj(xki)ski 6= 0 for sufficiently large ki and thus λki+1

j = 0.
Now consider the chain of inequalities

0 = ‖∇g(xki)> +∇h(xki)>λki+1 +Bkis
ki‖

= ‖∇g(xki)> +∇h(xki)>λki+1 +Bkis
ki

−∇g(x∗)> −∇h(x∗)>λ∗︸ ︷︷ ︸
=0

+(∇h(x∗)−∇h(x∗))>λki+1‖

≥ ‖∇h(x∗)>(λki+1 − λ∗)‖ −
‖∇g(xki)> −∇g(x∗)> − (∇h(x∗)−∇h(xki))>λki+1 +Bkis

ki‖︸ ︷︷ ︸
→0 if ki→∞

.

We conclude that

lim
ki→∞

‖∇h(x∗)>(λki+1 − λ∗)‖ = 0.(5.10)

Since λki+1
j = 0 if hj(x

∗) 6= p(h(x∗)) = 0, we obtain

∇h(x∗)>(λki+1 − λ∗) = ∇hI0(x∗)>(λki+1
I0

− λ∗I0),(5.11)

where I0 is the set of indices of those functions hj which vanish at x∗. The convergence
thus follows from (5.10), (5.11), and the full column rank of ∇hI0(x∗)>.

Finally, suppose hi(x
∗) = hm+i(x

∗) and λ∗i > 0. Then there exists k̄ such that
λki > 0 for every k ≥ k̄; hence

i ∈ Ik ∀k ≥ k̄.(5.12)
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Now let

τ2 < min{λ∗i | λ∗i > 0, i = 1, . . . , 2m}.
Enlarging k̄ if necessary, we may assume that max{|hi(xk)|, |hm+i(x

k)|} < τ1 for every
k ≥ k̄. Since λk converges to λ∗, we may further assume that λki > τ2 for every k ≥ k̄.
Now let k ≥ k̄ be such that sk is accepted and hence λk+1 = µk. Since λk+1 > τ2, the
rule for the determination of Ik+1 yields m+ i ∈ Ik+1, contradicting (5.12).

Note that we solve in iteration k the subproblem of Fletcher’s trust region SNQP
method [10] applied to the nonlinear program

min g(x),
s.t. hi(x) = 0, i ∈ Ik,

hj(x) ≥ 0, j = {1, . . . , 2m}\Ik,
hl(x) ≤ 0, l = 2m+ 1, . . . , 2m+ p,
hr(x) = 0, r = 2m+ p+ 1, . . . , 2m+ p+ q.

(5.13)

If the trust region bound is eventually inactive and the sequence of iterates converges,
then the trust region SNQP method turns into a local SNQP method. Theorem
14.4.1 of [10] gives conditions under which the nonglobalized SNQP method turns
asymptotically into an SQP method and thus inherits the favorable local convergence
properties. If these conditions hold, then

pIk(h(xk) +∇h(xk)sk) = 0.(5.14)

If, in addition, upper-level strict complementarity holds, i.e., λ∗i λ
∗
m+i 6= 0 for every

i with hi(x
∗) = hm+i(x

∗), then the first branch in the rule for determination of Ik
will not be used for sufficiently large k and thus pIk(h(xk)) = p(h(xk)). This equation
together with (5.14) implies that the step sk of the SNQP method is accepted by our
method, provided it is accepted by the trust region SNQP method [10], since the ratio
of actual reduction by predicted reduction in our method is at least as large as the
same ratio with p replaced by pIk . Note that our method may change the index set
Ik after each iteration. However, a direct extension of the proof of [20, Thm. 6.4.3]
shows that the convergence results for the SNQP method carry over to the present
case.

The most severe assumption in the above arguments is the boundedness of 1/δk,
[46]. In order to ensure this, Fletcher [10] suggests the use of second-order correc-
tion steps and, indeed, Yuan [45] shows that under mild assumptions the trust region
radius is bounded away from zero if second-order correction steps are used. The in-
corporation of second-order correction steps into our method, however, would require
a modification of the outer trust region framework and is beyond the scope of the
present study.

6. Numerical experiments. We have tested the method on various small-scale
examples of MPECs. The performance of the method was found to be comparable
with the reported performance of the S`1QP method in the literature [10]. Occasion-
ally, slow convergence due to the Maratos effect has been observed. As mentioned
above, this phenomenon could possibly be prevented if second-order correction steps
were included. A very important feature of the method is its apparent insensitivity
to violated strict complementarity in the lower-level problem at the optimal solution.

We give some numerical results for two particular instances, a simple three-
dimensional example and a five-dimensional example from the literature. For the
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Table 6.1
f(x, y) = (x1 + 1)2 + (x2 − 2.5)2 + (x3 + 1)2.

Iteration (xk, yk1 , y
k
2 ) δk αk PFV FV

0 (1.0000,1.0000,1.0000) 1 4 28.9963 10.2500

1 (0.3673,1.9970,0.3673) 2 4 7.5552 3.9922

2 (0.0000,1.8270,0.0000) 4 4 3.8370 2.4529

3 (0.0000,2.0000,0.0000) 8 4 2.2500 2.2500

4 (0.0000,2.5000,0.0000) 16 4 2.0000 2.0000

Table 6.2
f(x, y) = (x1 + 1)2 + x2

2 + 10(x3 − 1)2.

Iteration (xk, yk1 , y
k
2 ) δk αk PFV FV

0 (1.0000,1.0000,1.0000) 1 4 22.7463 5.0000

1 (0.0000,1.5632,0.5751) 1 4 10.1055 5.2493

2 (-0.7627,1.4775,0.7021) 2 8 11.1816 3.1268

3 (-0.3646,2.1074,0.6040) 4 16 13.0761 6.4132

4 (0.0000,2.6579,0.5389) 4 16 11.0891 10.1911

5 (0.0000,2.7101,0.5365) 8 16 10.4926 10.4924

6 (0.0000,2.7101,0.5365) 16 16 10.4925 10.4925

7 (0.0000,2.7101,0.5365) 32 16 10.4925 10.4925

experiments the method was implemented in MATLAB 5.0 and the built-in QP-Solver
was used for the solution of the subproblems. In the examples below, we have used
the following parameters: α0 = 4, β0 = 1, ᾱ = 2, β̄ = 0.25, c0 = 0.25, c1 = 0.75, δ0 =
1, τ1 = 10−6, τ2 = 0, Reduce(δ) = 0.25δ, Increase(δ) = 2δ. Stopping criterion for
the method was that ‖∇g(xk)> + ∇h(xk)>λk‖ ≤ 10−10 and that the multipliers
corresponding to violated strict complementarity in the lower level are less than τ1.

6.1. A three-dimensional example. We first tested the method on the prob-
lem

min f(x, y)
s.t. min{x,−ex + y1 − ey2} = 0,

y2 ≥ 0

for various quadratic objective functions f . Tables 6.1 and 6.2 show two typical runs.
The abbreviations FV and PFV refer to the values of f((x, y)k) and f((x, y)k) +
αkp(h((x, y)k)), respectively. Note that the point (0, 2, 0) is a Clarke stationary point
and that this point is localized at iteration 3 of the first example. However, one of
the corresponding Lagrange multipliers is positive and thus a change of the index set
Ik occurs, which then allows the method to find the minimizer in iteration 4. Strict
complementarity in the lower-level problem is violated at the optimal point in the
second example, i.e., both functions in the min expression are active. This has no
negative effect on the performance of the method.

6.2. Outrata’s example. The following example is due to Outrata [25], who
used it to illustrate an implicit function-based bundle trust region method for MPECs.
The example also was applied in [9] to illustrate a homotopy method. The MPEC is
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Table 6.3
Number of solved QPs in Outrata’s example.

f1 f2 f3 f4

y0 = 0 20 27 14 11
y0 = 10 9 9 10 10

of the form

min f(x, y),
s.t. min{x1, (1 + 0.2y)x1 − (1 + 1.333y)− 0.333x3 + 2x1x4} = 0,

min{x2, (1 + 0.1y)x2 − y + x3 + 2x2x4} = 0,
min{x3, 0.333x1 − x2 + 1− 0.1y} = 0,
min{x4, 9 + 0.1y − x2 − x2} = 0,
0 ≤ y ≤ 10.

The equilibrium constraints are stationary point conditions of a convex programming
problem and are uniquely solvable for every feasible parameter value y. This fact has
been exploited by Outrata [25] and is also important in the theoretical convergence
analysis of [9]. Although our method does not make use of such information, it gives
competitive results, as reported in Table 6.3. The method was started at the points
x0 = (0, 0, 0, 0) and y0 = 0 as well as y0 = 10 with the objective functions

f1(x, y) = 1
2 [(x1 − 3)2 + (x2 − 4)2],

f2(x, y) = 1
2 [(x1 − 3)2 + (x2 − 4)2 + (x3 − 1)2],

f3(x, y) = 1
2 [(x1 − 3)2 + (x2 − 4)2 + 10x2

4],

f4(x, y) = 1
2 [(x1 − 3)2 + (x2 − 4)2 + (x3 − 1)2 + (x4 − 1)2 + y2].

The method detected the optimal solutions reported in [25] and the numerical results
indicate local quadratic convergence in all cases. Note that lower-level strict comple-
mentarity is violated at the optimal solution corresponding to the objective function
f1.

The method showed similar behavior on the small-scale test problems used in
[9]. For all these problems, global convergence and local quadratic convergence to the
local minimum reported in [9] was observed.

7. Conclusion. We have studied theoretical and computational aspects of the
exact penalization approach to MPECs and more general composite piecewise smooth
programs. In the first part, we have extended the local error bound result of Robin-
son [35] to piecewise smooth programs and then specified the result to MPECs. This
yields a theoretical justification for the use of exact penalization methods. We then
proposed a general trust region method for composite piecewise smooth functions
which combines the approaches of Fletcher [10] and Dennis, Li, and Tapia [7] and
includes the penalty update rule of Yuan [47]. We have proved a global conver-
gence result. Finally, we have specified the method to make it applicable for MPECs
with complementarity constraints. The resulting method extends Fletcher’s S`1QP
method to MPECs. Some preliminary numerical results are reported.
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[16] D. Kuhn and R. Löwen, Piecewise affine bijections of Rn and the equation Sx+ − Tx− = y,
Linear Algebra Appl., 96 (1987), pp. 109–129.

[17] L. Kuntz and S. Scholtes, Structural analysis of nonsmooth mappings, inverse functions,
and metric projections, Math. Anal. Appl. 188 (1994), pp. 59–75.

[18] L. Kuntz and S. Scholtes, A nonsmooth variant of the Mangasarian-Fromovitz constraint
qualification, J. Optim. Theory Appl., 82 (1994), pp. 59–75.

[19] Z. Q. Luo, J.-S. Pang, D. Ralph, and S. Q. Wu, Exact penalization and stationarity con-
ditions for mathematical programs with equilibrium constraints, Math. Programming, 75
(1996), pp. 19–76.

[20] Z. Q. Luo, J.-S. Pang, and D. Ralph, Mathematical Programs with Equilibrium Constraints,
Cambridge University Press, Cambridge, UK, 1996.

[21] Z. Q. Luo, J.-S. Pang, and D. Ralph, Piecewise sequential quadratic programming for mathe-
matical programs with nonlinear complementarity constraints, in Multilevel Optimization:
Algorithms and Applications, A. Migdalas et al., eds., Kluwer, Dordrecht, The Netherlands,
1998, pp. 209–229.

[22] P. Marcotte and D. L. Zhu, Exact and inexact penalty methods for the generalized bilevel
programming problem, Math. Programming, 74 (1996), pp. 141–157.

[23] R. Mifflin, Semismooth and semiconvex functions in constrained optimization, SIAM J. Con-
trol Optim., 15 (1977), pp. 959–972.

[24] J. V. Outrata, On the numerical solution of a class of Stackelberg problems, ZOR—Meth.
Model Oper. Res., 34 (1990), pp. 255–277.

[25] J. V. Outrata, On Optimization Problems with Variational Inequality Constraints, SIAM J.
Optim., 4 (1994), pp. 340–357.

[26] J. V. Outrata and J. Zowe, A numerical approach to optimization problems with variational
inequality constraints, Math. Programming, 68 (1995), pp. 105–130.

[27] J.-S. Pang, S.-P. Han, and N. Rangaraj, Minimization of locally Lipschitzian functions,
SIAM J. Optim., 1 (1991), pp. 57–82.

[28] J.-S. Pang and D. Ralph, Piecewise smoothness, local invertibility, and parametric analysis
of normal maps, Math. Oper. Res., 21 (1996), pp. 401–426.



652 STEFAN SCHOLTES AND MICHAEL STÖHR
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Abstract. We study the convergence of a class of penalty and barrier methods for solving
monotone variational inequalities with constraints. This class of methods is an extension of penalty
and barrier methods for convex optimization to the setting of variational inequalities. Primal con-
vergence is established under weaker conditions than usual: the solution set is supposed either to
be a compact set or, for the case of interior barrier methods, the sum of a compact set and a linear
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1. Introduction. Let C be a nonempty closed convex set in RN and let A be
a multivalued map from RN into RN such that dom A :=

{
x ∈ RN : A(x) 6= φ

}
contains C. In this paper we consider the variational inequality

“find x∗ ∈ C and c∗ ∈ A(x∗) satisfying(VI)

〈c∗, x− x∗〉 ≥ 0 ∀x ∈ C”

and we denote by S the set of such x∗, solutions of (VI).
All the notations and definitions used in this paper are standard in convex analysis

and can be found in Rockafellar’s book [18].
When A is a monotone operator, most of the methods for solving (VI) are ex-

tensions of well-known methods in optimization theory. In optimization, A is the
subdifferential ∂f0 of a closed proper convex function f0, and (VI) consists of mini-
mizing f0 on C. The usual assumption which ensures convergence is that the optimal
set S is a nonempty compact set, which can be expressed equivalently in many ways,
in particular, in terms of recession analysis (see for example [18, Thm. 27.1]). These
characterizations are, in general, useful to prove convergence of numerical methods.
In contrast, when (VI) does not reduce to an optimization problem, most conver-
gence results are based on a coercivity assumption stronger than the compactness of
the solution set S.

For instance, it is often supposed that the “feasible set is compact” (see, for
example, Fukushima [11]; Marcotte and Dussault [15]) or that there exists v0 ∈ C
such that

lim
‖x‖→+∞

〈
c(x),

x− v0

‖x− v0‖
〉

= +∞ with c(x) ∈ A(x),
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a condition satisfied by strongly monotone operators (see for example Pang and Chan
[17]).

If we consider the classical exterior penalty methods and interior barrier methods
which were introduced more than twenty years ago, there have been no proofs of
convergence under the weaker assumption that the solution set S is compact, as is
the case for optimization problems. There is a real technical difficulty. So the first
challenge of this paper is to find completely new techniques to overcome this difficulty.
To do this, in section 2 we establish a simple but truly new formula (formula (2.11))
related to recession analysis for monotone operators.

This formula is of particular interest. It plays a fundamental role not only in
proving convergence of algorithms but also in characterizing the compactness of the
set of solutions S. Such a characterization has recently been established independently
by Crouzeix [10] and by Rockafellar and Wets [19]. In [10], A is pseudomonotone,
upper semicontinuous, and for each x ∈ C, A(x) is compact (which is unnecessary
in our case). In [19] the result is given for A assumed monotone, single valued,
and continuous on C. But in fact it can be stated, without effort, for more general
situations as an immediate consequence of formula (2.11). We shall do so in section
2.

When S is a nonempty compact set we say that (VI) is “coercive”; when S is
a sum of a nonempty compact set and a linear space we say that (VI) is “weakly
coercive.” These properties are discussed in section 2, and then by exploiting the
recession formula (2.11), the proof of convergence of the algorithms will be established,
assuming only coercivity, and for interior methods weak coercivity.

Very recently Auslender, Cominetti, and Haddou [4] introduced a wide class of
penalty and barrier methods for convex programming including most of the specific
functions proposed in the literature as well as some new ones. They gave also a
systematic way to generate penalty and barrier functions in this class. This clearly
calls for an extension of the approach to variational inequalities. This is done in detail
in section 3 and is the main purpose of this paper. The idea is the following: Suppose
the feasible set C is defined by

C = {x ∈ RN : fi(x) ≤ 0, i = 1, 2 . . .m}
where fi : RN → R ∪+∞ are closed proper convex functions.
In order to solve the variational inequality (VI) we approximate it by solving a family
of unconstrained generalized equations of the form

(VI)r find xr satisfying

(1.1) 0 ∈ A(xr) + Fr(xr)

with

(1.2)

Fr(x) = α(r)∂gr(x), gr(x) =
m∑
i=1

θ

(
fi(x)

r

)
, if x ∈

m⋂
i=1

dom fi ,+∞ otherwise,

where ∂gr(x) is the subdifferential of gr at x and r > 0 is a penalty parameter which
will ultimately go to 0. The functions θ : R→ R ∪ {+∞} and α : R+ → R+ are such
that θ is closed, proper, convex, and nondecreasing with

domθ := {u : θ(u) < +∞} =]−∞, η[, 0 ≤ η ≤ +∞,
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and

lim
r→0+

α(r) = 0, lim inf
r→0+

α(r)

r
> 0.

Additional assumptions concerning the recession function of θ (the same as in
[4]) are needed for ensuring convergence when (VI) is coercive. Concrete examples
concerning the functions θ (the same as in [4]) are given that will convince the reader
of the breath of the framework. Primal convergence is proved for interior methods
(η = 0) under a weaker assumption than in [4]: weak coercivity instead of coercivity.

Finally, section 4 concerns the convergence of dual paths corresponding to primal
paths. In contrast to optimization problems, a complete and useful duality theory is
not available for variational inequalities. Nevertheless, a dual variational inequality
(VID) is associated with the primal variational inequality (VI). Roughly speaking,
the dual variables correspond to Kuhn–Tucker multipliers. The properties relating
(VI) and (VID) are outlined in [3], [5].

In this last section, these relations are improved and new results obtained. For
example, we prove in Theorem 4.3 that under reasonable conditions (VID) is related
to a maximal monotone operator which allows us to exploit the rich structure of this
type of operator. In particular, it is possible to prove the convergence of the whole
dual path to a single point for some methods.

2. Coercive and weakly coercive variational inequalities. For optimiza-
tion problems, the fact that the optimal solution set S is a nonempty compact set
can be written in terms of recession functions. Recall that for a set Q ⊂ RN , its
asymptotic or recession cone is denoted by Q∞ or 0+Q and is defined by

Q∞ =
{
y : ∃tk → +∞, xk ∈ Q, with y = lim

k→∞
xk
tk

}
.

Recall also that for a closed and proper function f : RN → R ∪ +∞, the recession
function f∞ of f is defined by

epi (f∞) = (epif)∞, where epif =
{

(x, r) ∈ RN × R : f(x) ≤ r}.
As a straightforward consequence of this definition we obtain

(2.1) f∞(y) = inf
{

lim inf
k→∞

f(tkxk)

tk

∣∣∣ tk → +∞, xk → y
}
,

where {tk} and {xk} are sequences in R and RN , respectively.
For closed proper convex functions, we also have

f∞(y) = lim
t→+∞

f(x+ ty)− f(x)

t
∀x ∈ domf,

and

(2.2) f∞(y) = sup {〈y, d〉 | d ∈ ∂f(x), x ∈ dom∂f}.
Then, when A = ∂f0, it is well known that the assumption “S is nonempty and
compact” is equivalent to

(2.3) (f0)∞(d) > 0 ∀d ∈ C∞, d 6= 0.
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Recall also that when C is defined by

(2.4) C =
{
x : fi(x) ≤ 0, i = 1, 2, ...,m

}
,

where fi : RN → R ∪+∞ are closed, proper, and convex functions, then C∞ is given
by

(2.5) C∞ =
{
d : (fi)∞(d) ≤ 0, i = 1, ...,m

}
.

Such an equivalence is very advantageous and has been largely used for proving con-
vergence of algorithms in [4]. Can we extend such a characterization to variational
inequalities? To answer this, we have to refer to the recession analysis for general
maximal monotone operators.

The first attempts to define a notion of recession function for monotone operators,
well suited to characterize existence of solutions of (VI), can be found in the seminal
work of Brezis and Nirenberg [7], Lions [13], and Browder [8]. More recently, Attouch,
Chbani, and Moudafi [1] have compared the various definitions and, for different
reasons, have concluded that the best choice is the support function of the range of
the operator. For the rest of this paper we shall denote, as in [1],

(2.6) fB∞ (d) = sup
{〈c, d〉 | c ∈ R(B)

}
,

where B is a multivalued map from RN into RN and R(B) is the range of the map,
and, as in [1], we shall call this function the recession function of B. When B is
a maximal monotone map it is worthwhile to note that it was proven by Lions [13]
that the subdifferential of this recession function is a maximal monotone operator B∞
which is the graphical limit of B(t.) when t→ +∞. Furthermore, thanks to Theorem
13.3 in [18], this definition coincides with the usual notion in the case of a convex
function.

In order to illustrate the use of the recession function of an operator, consider the
generalized equation

(2.7) 0 ∈ B(x),

where B is a maximal monotone operator, and let T = B−1(0) denote its solution
set. Recall that R(B) = dom B−1 and that T is a nonempty compact set if and only
if 0 ∈ int R(B). This has been proved in [19, Thm. 12.35] and [14] but appears as an
immediate consequence of the formula

B−1 (0)∞ = NR(B) (0)

given in [2, formula (2.2)] (NR(B)(0) denotes the usual normal cone of R(B) at 0).
Since by Minty’s theorem [16] int R(B) is convex, it follows from [18, Thm. 13.1]

that T is a nonempty compact set if and only if

(2.8) fB∞ (d) > 0 ∀d 6= 0.

In such a case we shall say that B is coercive.
Let us now return to our initial variational inequality and let NC(x) denote the

usual normal cone of C at x. Recall that if δ(. | C) is the indicator function of C, i.e.,

δ(x | C) = 0 if x ∈ C, +∞ else,

then

NC(x) = ∂δ(x | C),

where ∂ is the subdifferential operator.
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From the above formula it follows that NC is a maximal monotone operator.
Furthermore, it is well known that the set of solutions S of (VI) is given by

(2.9) S = (A+NC)−1 (0).

So, if we want to use criteria such as (2.8) we are led to suppose that A + NC is
maximal monotone.

If E and F are maximal monotone operators, defined on RN , there exist many
criteria which ensure that E + F is maximal monotone (see, in particular, [19] and
the references therein).
Special cases of interest are the following:

i) int dom E ∩ dom F 6= φ,
ii) ri dom E ∩ ri dom F 6= φ (ri dom E denotes the relative interior of dom E

and is nonempty and convex thanks to Minty’s theorem).
iii) F is a single valued map defined on C, monotone and continuous on C and

E = NC .
If we consider criteria (2.3) we see that it is equivalent to saying that

[f0 + δ(|C)]∞(d) > 0 ∀d 6= 0,

since we have

[f0 + δ(|C)]∞(d) = (f0)∞(d) + δ(d | C∞).

Unfortunately, such a formula cannot be extended to maximal monotone operators,
as can be seen in the following counterexample given by Brezis and Haraux [6]: A is
the rotation with angle π

2 in R2 and C = R × 0. In this case if we set B = A + NC ,
then

fB∞ (d1, d2) = 0 if d2 = 0, +∞ else and fA∞ (d) + fNC∞ (d) = +∞.
Thus, even when A and A+NC are maximal monotone, we cannot expect, in general,
the formula

fB∞(d) = fA∞(d) + fNC∞ (d) = fA∞ (d) + δ(d|C∞)

with B = A+NC .
Such a formula is valid only under strict conditions such as those given in [6,

Thm. 3]. By avoiding such restrictive assumptions, we give, in the next proposition,
a formula that is useful for proving convergence of algorithms and that is extensively
used in section 3.

Proposition 2.1. Let B = A+NC and define fA,C∞ by

(2.10) fA,C∞ (d) = sup
{〈c, d〉|c ∈ A(x), x ∈ C} if d ∈ C∞,+∞ else.

Suppose that dom A ⊃ C and that C is a nonempty closed convex set in RN . Then

(2.11) fB∞ = fA,C∞ .

Furthermore, if A + NC is maximal monotone, then S is a nonempty compact set if
and only if

(2.12) fA,C∞ (d) > 0 ∀d 6= 0.
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Proof. Thanks to the above discussion, we have only to prove formula (2.11).
Recall that the Fenchel conjugate δ∗(|C) of δ(|C) is the support functional of C and
let us denote by ba(C) the barrier cone of C. By definition ba(C) = dom δ∗(|C).

1) Let d 6∈ C∞. Then, since ba(C) is the polar cone of the recession cone [18,
Cor. 14.2.1], there exist ũ ∈ ba(C) such that 〈ũ, d〉 > 0.

Let us prove that there exists (x, u) such that

(2.13) x ∈ C, u ∈ NC(x) and 〈u, d〉 > 0.

Since ũ ∈ ba(C) we have ũ = lim
n→∞un with un ∈ ri ba(C). Then since un ∈ ri ba(C),

δ∗(|C) is subdifferentiable at un and vn ∈ ∂δ∗(un|C) if and only if vn ∈ C with un ∈
NC(vn). As a consequence (2.13) is satisfied for (u, x) = (un, vn) and n sufficiently
large.

Now let u be such that (2.13) holds. Since λu ∈ NC(x) for all λ > 0, it follows
that fB∞(d) = +∞ and then (2.11) holds for each d /∈ C∞.

2) Now let d ∈ C∞. Since ba(C) is the polar cone for C∞ and since R[NC ] ⊂
ba(C), we have

〈u, d〉 ≤ 0 ∀u ∈ R[NC ]

and then fB∞(d) ≤ fA,C∞ (d). Furthermore, let xn ∈ C, cn ∈ A(xn) such that fA,C∞ (d) =
lim
n→∞〈cn, d〉. Then since un = 0 ∈ NC(xn), we have 〈cn + un, d〉 = 〈cn, d〉 ≤ fB∞(d)

and then fA,C∞ (d) ≤ fB∞(d).
Now we want to weaken conditions (2.8) and (2.12) in order to consider variational

inequalities with noncompact solution sets. For optimization problems, condition
(2.8) corresponds to the assumption “0 ∈ int dom f∗0 ,” where f∗0 is the usual Fenchel
conjugate, and it is well known that the assumption 0 ∈ ri dom f∗ weakens the above
and plays a fundamental role in convex analysis. Since ri dom f∗0 = ri dom ∂f∗0 , the
natural extension will be

(2.14) 0 ∈ ri R(B).

In this case we shall say that B is weakly coercive.
From [18, Thm. 13.1], this is equivalent to saying that

(2.15) fB∞(d) ≥ 0 ∀d and LB :=
{
d : fB∞(d) = 0

}
is a linear space

or equivalently

(2.16) fB∞(d) > 0 ∀d ∈ L⊥B , d 6= 0

(with LB supposedly a linear space and L⊥B the orthogonal of LB).
Example. Suppose that B is coercive and let F be a matrix (m,N) with m > N

such that rank F t = N . Then, by [19, Thm. 12.38], the operator D = F ◦ B ◦ F t
is maximal monotone. Since B is coercive and F is of full rank, it follows in a
straightforward way that D is weakly coercive and that

(2.17) LD = ker F t.

Let us now characterize weakly coercive maximal monotone operators B via the
structure of the set of solutions T of the generalized equation (2.7).
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For this, as in [2, p. 167] we denote by Et the affine hull of dom B−1, E the
parallel subspace to Et, and ΠE the projector operator on E. Since Et + E⊥ = RN ,
every x ∈ RN can be uniquely decomposed as follows:

x = ΠEtx+ xE⊥ with xE⊥ ∈ E⊥.

Following [2, p. 168], we define the extension operator B−1
E of B−1 by

(2.18) B−1
E (x) = B−1 (ΠEtx) ∩ E ∀x ∈ RN .

It has been proved in [2, Prop. 2.4 and Cor. 2.5] that B−1
E is a maximal monotone

operator and that

(2.19) B−1(x) = B−1
E (x) + E⊥ if x ∈ Et,= φ else,

(2.20) int dom B−1
E = ri dom B−1 + E⊥ 6= φ,

(2.21) d(x∗|B−1(0)) = d(ΠEx
∗|B−1

E (0)) ∀x∗,

with d(.|B−1(0)) denoting the distance to the set B−1(0).
Furthermore, we have the following.
Proposition 2.2. Let B be a multivalued maximal monotone map. Then 0 ∈ ri

R(B) if and only if the solution set T of (2.7) is given by the formula

(2.22) T = B−1
E (0) + E⊥,

where B−1
E (0) is a nonempty compact set.

In addition, in this case we have

E⊥ = LB = {d : 〈c, d〉 = 0 ∀c ∈ R(B)}.

Proof. a) Suppose that 0 ∈ ri R(B) = ri dom B−1. Then by [2, Cor. 3.2] (2.22)
holds and B−1

E (0) is a nonempty compact set. Conversely, suppose that (2.22) holds
and that B−1

E (0) is a nonempty compact set. Then from [2, formula (2.2)] it follows
that 0 ∈ int domB−1

E , and by (2.20) we deduce that 0 ∈ ri dom B−1.
b) When 0 ∈ ri dom B−1, then from the definition of fB∞, and since LB defined

in (2.15) is a linear space, it follows that

LB = R(B)⊥ = (dom B−1)⊥ = E⊥.

Corollary 2.3. Let S be the solution set of (VI). Set B = A + NC . Suppose
dom A ⊃ C, C is a nonempty closed convex set in RN , and B is maximal monotone.
Then S = B−1

E (0) + E⊥, where E = L⊥B and B−1
E (0) is a nonempty compact set if

and only if 0 ∈ ri R(B), or equivalently, if and only if

(2.23) fA,C∞ (d) > 0 ∀d ∈ L⊥B d 6= 0

with

(2.24) LB = {d ∈ C∞ ∩ −C∞ : 〈c, d〉 = 0 ∀c ∈ A(x), ∀x ∈ C}.
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Proof. From the definition of LB (see formula (2.15)) and the fact that LB is a
linear space, it follows from Proposition 2.1 that

LB = {d : fA,C∞ (d) = fA,C∞ (−d) = 0}.
Using the definition of fA,C∞ (see formula (2.10)) we then get formula (2.24). Then,
as it was recalled above, 0 ∈ ri (B) if and only if (2.16) holds. Using formula (2.11)
this is equivalent to saying that 0 ∈ ri (B) if and only if (2.23) is satisfied.

Remark. When C is defined by (2.4), then formula (2.24) becomes
(2.25)
LB = {d : (fi)∞(d) = (fi)∞(−d) = 0 ∀ i = 1, 2 . . .m, 〈c, d〉 = 0 ∀c ∈ A(u), ∀u ∈ C}.
Furthermore, let us denote by x the projection of x onto L⊥B . Since x = x+ ΠLB (x),
and since for each d ∈ C∞ ∩ −C∞ we have fi(x+ d) = fi(x), it follows that

(2.26) fi(x) = fi(x) ∀i = 1, 2, . . . ,m, 〈c, x〉 = 〈c, x〉 ∀c ∈ A(u) ∀u ∈ C.
This formula will be used for proving the convergence of the forthcoming algorithms.

3. Penalty and barrier methods for variational inequalities. In this sec-
tion we suppose that A is a maximal monotone operator with int dom A ⊃ C. This
implies that [int dom A] ∩ dom NC is nonempty and then, as it was recalled in section
2, it follows that A+NC is maximal monotone. Furthermore, suppose that C is now
defined by

C =
{
x ∈ RN : fi(x) ≤ 0, i = 1, . . . ,m

}
,

where fi : RN → R∪+∞ are closed proper convex functions. Recall that in this case
C∞ is given by (2.5).

In this section we propose to extend the methods introduced in [4] for optimiza-
tion problems to variational inequalities. Therefore, and in order to solve (VI), we
introduce a new class of penalty and barrier methods which consists of solving a family
of unconstrained generalized equations of the following form.
(VI)r find xr satisfying

(3.1) 0 ∈ A(xr) + Fr(xr)

with

(3.2)

Fr(x) = α(r)∂gr(x), gr(x) =
m∑
i=1

θ

(
fi(x)

r

)
, if x ∈

m⋂
i=1

dom fi , +∞ otherwise,

where r > 0 is a penalty parameter which will ultimately go to 0. The functions
θ : R→ R ∪ {+∞} and α : R+ → R+ are such that

(H0)


θ is closed proper, convex, and nondecreasing
with dom θ =]−∞, η[ and 0 ≤ η ≤ +∞,
limu→η− θ(u) = +∞, θ∞(1) > 0,
limr→0+ α(r) = 0, lim infr→0+ α(r)/r > 0.

For the case η = 0, we assume Slater’s condition

“There exists x0 ∈
m⋂
i=1

ri dom fi such that fi(x0) < 0 for each i”
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and then it follows by [18, Thms. 6.5 and 7.6] that

ri C =

{
x∈

m⋂
i=1

ri dom fi : fi(x)< 0, ∀i = 1, . . . ,m

}

and every solution xr of (VI)r satisfies fi(xr) < 0 for each i.
For the case η > 0 we suppose that dom A = RN .
With these assumptions gr is a closed convex proper function and dom gr ∩ C is

nonempty. Then dom gr ∩ int dom A is nonempty and since ri dom gr = ri dom ∂gr,
it follows that ri dom ∂gr ∩ int dom A is nonempty. As a consequence, as it was
recalled in section 2, A+ Fr is maximal monotone.

We shall study two classes of methods. For the first class we suppose

(H1)

 limt→−∞ θ(t) = 0,
θ∞(1) < +∞,
limr→0+ α(r)/r = +∞,

while for the second class of methods we suppose

(H2)

 θ∞(−1) = 0,
θ∞(1) = +∞,
α(r) = r.

In [4] a systematic way to generate functions satisfying (H1) and (H2) is given. In
fact, for functions θ satisfying (H1) the method of generation was given by Chen and
Mangasarian [9] and consists of integrating twice a function p which is a piecewise
continuous probability density function with a finite number of pieces and with supp
(p) = R. In order to obtain functions satisfying (H2), one can start from functions
of class C2 satisfying (H1) and take a primitive of such functions as indicated in [4],
but there are also many other ways to do it as described in [4].

Functions satisfying (H2) can be divided into two subclasses: those for which
η > 0 as penalty-barrier functions used in augmented Lagrangian methods, and those
for which η = 0, which may be designated as interior methods.

Specific cases of interest for η > 0 are

θ1(u) = exp (u) (exponential penalty),
θ2(u) = −ln(1− u) for u < 1 (modified barrier),

θ3(u) =

{
u+ 1

2u
2 if u ≥ − 1

2

− 1
4 ln(−2u)− 3

8 if u ≤ − 1
2

(quadratic logarithmic method).

In this last method the second derivative θ′′3 is continuous and bounded, which is
advantageous for algorithms based on Newton steps. Another example in the same
class is given by

θ4(u) = u/(1− u) for u < 1 (hyperbolic MBF (modified barrier formula)).

The idea of combining barrier methods and quadratic penalty methods as in θ6

can be extended to other types of barrier functions, for example:

θ5(u) =

{
u/(1− u) if u ≤ −η,
au2 + bu+ c otherwise,

with a > 0, b, c and η > −1 conveniently chosen so that θ5 is of class C2.
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For η = 0 specific cases of interest are

θ6(u) = −ln(−u) (log barrier),
θ7(u) = −(1/u) (inverse barrier method),

θ8(u) =

{−ln(−u) if δ ≤ u < 0,

a+ b/u2 − c/u if u ≤ δ,
where δ < 0, and the parameters a, b > 0, and c > 0 are chosen so that θ8 is twice
differentiable.

Theorem 3.1. Let B = A+NC ; suppose that the functions fi are closed proper
convex functions defined on RN , that A is maximal monotone with int dom A ⊃ C,
and that 0 ∈ ri R(B). Consider the case where θ and α satisfy (H0) and (H2).
Suppose in addition that

1) when η = 0, A is single valued on C and Slater’s condition holds;
2) when η > 0,dom A = RN and int R(B) is nonempty.

Then for each r > 0, the solution set Sr of (VI)r defined by (3.1) is nonempty.
Proof. Consider for r, n fixed the variational inequality

(VI)r,n find xn ∈ Bn := {x : ‖x‖ ≤ n} such that there exists dn ∈ (A + Fr)(xn)
with

〈dn, x− xn〉 ≥ 0 ∀x ∈ Bn.

Since A + Fr is maximal monotone and since Bn is convex compact, then for n
sufficiently large dom (A + Fr) ∩ int Bn is nonempty and such an xn exists. This
is a classical result (see, for example, [14, Cor. 4.(b)]). Then there exists c(xn) ∈
A(xn), e(xn) ∈ ∂gr(xn) such that

〈c(xn), x− xn〉+ r〈e(xn), x− xn〉 ≥ 0 ∀x ∈ Bn.

Furthermore, since gr is convex we get

(3.3) 〈c(xn), x− xn〉+ rgr(x) ≥ rgr(xn) ∀x ∈ Bn,

and from this inequality, since A is monotone it follows that

(3.4) 〈c, x〉+ rgr(x) ≥ 〈c, xn〉+ rgr(xn) ∀x ∈ Bn ∩ dom A, ∀c ∈ A(x).

a) Let xn be the projection of xn on L⊥B ; then from (2.26) and (3.4) it follows
that

(3.5) 〈c, x〉+ rgr(x) ≥ 〈c, xn〉+ rgr(xn) ∀x ∈ Bn ∩ C, c ∈ A(x).

Let us prove now that the sequence {xn} is bounded. In the contrary case, we can
suppose, without loss of generality, that

lim
n→∞‖xn‖ = +∞, lim

xn
‖xn‖ = d with d ∈ L⊥B , d 6= 0.

Let x ∈ C if η > 0 and x ∈ ri C if η = 0. In both cases gr(x) < +∞, and then
dividing both members of (3.5) by ‖xn‖, it follows from formula (2.1), if we pass to
the limit, that

〈c, d〉+ r(gr)∞(d) ≤ 0 ∀c ∈ A(x).



ALGORITHMS FOR VARIATIONAL INEQUALITIES 663

Set

hi(x) = rθ

(
fi(x)

r

)
if x ∈ dom fi,= +∞ otherwise.

Then by [4, Prop. 2.1], hi is a closed proper convex function and we have

(hi)∞(d) = θ∞((fi)∞(d)) if d ∈ dom (fi)∞,= +∞ otherwise

and since θ∞(1) = +∞, θ∞(−1) = 0, it follows from the definition of gr that

(3.6) (fi)∞(d) ≤ 0 ∀i = 1, 2, ...,m, 〈c, d〉 ≤ 0 ∀c ∈ A(x).

Furthermore, if η > 0, since (3.6) holds for all x ∈ C, it follows that fA,C∞ (d) ≤ 0, a
contradiction to (2.23). If η = 0, for each y ∈ C consider xλ = λx0 + (1 − λ)y with
λ ∈]0, 1] and x0 ∈ ri C. It follows that xλ ∈ ri C, and by (3.6) we have 〈A(xλ), d〉 ≤ 0.
Since A is single valued on C and int dom A ⊃ C, A is locally bounded and closed on
C. As a consequence A is continuous on C and, passing to the limit when λ → 0+,
we obtain

〈A(y), d〉 ≤ 0 ∀y ∈ C

and again fA,C∞ (d) ≤ 0, a contradiction to (2.23).
b) Now let x be a limit point of the sequence {xn}. Such a point exists and,

without loss of generality, we can suppose that x = limn→+∞xn.
b1) Consider the case where η = 0. Then, A is single valued and continuous on

C. Since in this case x ∈ C, A is continuous at x. Take in formula (3.5) x ∈ ri C.
Then passing to the limit in this formula, we obtain

〈A(x), x− x〉+ rgr(x)− rgr(x) ≥ 0.

Let xt = x+ t(x− x) with t ∈]0, 1]. Then from the above formula it follows that

〈A(xt), x− x〉+
[rgr(xt)− rgr(x)

t

]
≥ 0.

Passing to the limit when t→ 0+ in this inequality, we obtain

〈A(x), x− x〉+ rg′r(x;x− x) ≥ 0,

and since gr is convex it follows that

(3.7) 〈A(x), x〉+ rgr(x) ≥ 〈A(x), x〉+ rgr(x).

Let y ∈ C and set yλ = (1− λ)y + λx0 with λ ∈]0, 1] and x0 ∈ ri C. Then yλ ∈ ri C,
and from (3.7) we have

〈A(x), yλ〉+ rgr(yλ) ≥ 〈A(x), x〉+ rgr(x).

Since gr(y) = limλ→0gr(yλ), passing to the limit it follows that (3.7) holds for each
x ∈ C and which is, by the way, valid for all x ∈ RN . As a consequence x minimizes
on RN the function x→ h(x) = 〈A(x), x〉+rgr(x). Then 0 ∈ ∂h(x) = A(x)+r∂gr(x)
and Sr is nonempty.
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b2) Suppose now that η > 0. Then int R(B) is nonempty, and L⊥B = RN so that
xn = xn. Since A is locally bounded and closed at x, passing to the limit in (3.3) we
get

〈c, x− x〉+ rgr(x)− rgr(x) ≥ 0 ∀x
for some c ∈ A(x). Then x minimizes the function x→ 〈c, x〉+ rgr(x) and, as above,
it follows that Sr is nonempty.

Theorem 3.2. Suppose the assumptions of Theorem 3.1 hold. For each solution
xr ∈ Sr, let x1

r = uE(xr) be the projection of xr on E = L⊥B (the linear space generated
by R(B)). Then the sequence {x1

r} stays bounded when r → 0+ with all its limit points
in S and

lim
r→0+

d(xr|S) = 0.

Furthermore, if η > 0, the same result holds with xr instead of x1
r.

Proof. Let xr ∈ Sr, x
1
r = ΠE(xr) with E = L⊥B . Since A is monotone and gr

convex, it follows from (3.1) that there exists c(xr) ∈ A(xr) such that

(3.8) 〈c(xr), x− xr〉+ rgr(x) ≥ rgr(xr) ∀x
and that

(3.9) 〈c, x〉+ rgr(x) ≥ 〈c, xr〉+ rgr(xr) ∀c ∈ A(x), x ∈ dom A

a) From formulas (3.9) and (2.26) it follows that

(3.10) 〈c, x〉+ rgr(x) ≥ 〈c, x1
r〉+ rgr(x

1
r) ∀x ∈ C, ∀c ∈ A(x).

Let us prove that each selection {x1
r} with r → 0+ is bounded. In the contrary case,

there would exist a sequence rk → 0+ and an associated sequence
{
xk =

x1
rk

‖x1
rk
‖
}

such

that

‖x1
rk
‖ → +∞, xk → d with d 6= 0 and d ∈ L⊥B .

Let x ∈ C when η > 0 and x ∈ ri C when η = 0. Let a(x) = max {fi(x) | i =
1, ...,m}.
Since θ is nondecreasing, it follows from (3.10) that

(3.11) 〈c, x〉+m rk θ

(
a(x)

rk

)
≥ 〈c, x1

rk
〉+ rk

m∑
i=1

θ

(
fi(x

1
rk

)

rk

)
.

Let εi < (fi)∞(d) for i = 1, 2, ...,m. Then from formula (2.1) there exists k0 such that
fi(x

1
rk

) ≥ εi ‖x1
rk
‖ for all k ≥ k0. Again since θ is nondecreasing, we deduce from

(3.11)

〈c, x〉
‖x1

rk
‖ +

m rk
‖x1

rk
‖ θ

(
a(x)

rk

)
≥ 〈c, xk〉+

m∑
i=1

θ

(
εi
‖x1

rk
‖

rk

)
rk
‖x1

rk
‖ .

Since a(x) ≤ 0, θ∞(a(x)) = 0. Then passing to the limit in the above inequality, we
obtain

(3.12) 〈c, d〉+

m∑
i=1

θ∞(εi) ≤ 0.
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Since θ∞(1) = +∞, it follows that εi ≤ 0 so that (fi)∞(d) ≤ 0, for each i, and
d ∈ C∞. Furthermore, θ∞(εi) = −εiθ∞(−1) = 0, and from (3.12) it follows that

〈c, d〉 ≤ 0 ∀c ∈ A(x) with x ∈ C if η > 0 and x ∈ ri C else.

Then as in part a) of the proof of Theorem 3.1, it follows that in both cases fA,C∞ (d) ≤ 0
which is a contradiction to (2.23).

b) Now let x = lim x1
rk

be a limit point of the sequence {x1
r} when r → 0+. Such

a point exists. Take in formula (3.10) x ∈ ri C if η = 0, and x ∈ C if η > 0. Take also
δi < fi(x) for each i. Since fi is closed, then δi < fi(x

1
rk

) for k sufficiently large and
from (3.10) we obtain

(3.13) 〈c, x〉+m rk θ

(
a(x)

rk

)
≥ 〈c, x1

rk
〉+ rk

m∑
i=1

θ

(
δi
rk

)
∀c ∈ A(x)

with a(x) = max {fi(x) | i = 1, ...,m}.
b1) Suppose that η = 0. Then obviously x ∈ C. Furthermore in this case A is

single valued, δi < 0, a(x) < 0. Since θ∞(−1) = 0, passing to the limit in 3.13 it
follows that

〈A(x), x− x〉 ≥ 0 ∀x ∈ riC.
Then taking the same arguments as in part b1) of the proof of Theorem 3.1, it follows
that

〈A(x), x− x〉 ≥ 0 ∀x ∈ C
and x is a solution of (VI). As a consequence, d(x1

r | S)→ 0 if r → 0 and from (2.21)
we have limr→0d(xr | S) = 0.

b2) Suppose now that η > 0. Since a(x) ≤ 0, θ∞(−1) = 0, θ∞(1) =∞; if we pass
to the limit in (3.13) it follows that δi ≤ 0 for each i so that fi(x) ≤ 0 and x ∈ C.
Furthermore, in this case x1

r = xr and from (3.8) we get

(3.14) 〈c(xrk), x− xrk〉+m rk θ

(
a(x)

rk

)
≥ rk

m∑
i=1

θ

(
δi
rk

)
.

Since A is locally bounded and closed at x, taking the same arguments as above, we
obtain by passing to the limit in (3.14)

(c, x− x) ≥ 0 ∀x ∈ C
for some c ∈ A(x). As a consequence x ∈ S and limr→0d(xr | S) = 0.

Remark 3.1. When θ and α satisfy (H0) and (H1), similar theorems such as
Theorems 3.1 and 3.2 can be obtained using the same kinds of arguments. The only
difference is that Sr is nonempty only for r sufficiently small. The proofs are left to
the reader.

Remark 3.2. When C = RN+ (complementarity problems), for θ = θ6 the method
coincides with the classical logarithm interior point method studied by Güler [12].
The existence theorem and the proof of primal convergence given in [12] suppose a
stronger condition (condition 1.2 in [12]) than ours. Moreover, the use of formula
(2.11) simplifies the proofs considerably, since we don’t need the Brezis–Haraux’s
theorem as in [12], for which it is difficult to apply.
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4. Dual convergence. The setting in this section is the same as in section 3.

4.1. The dual variational inequality. For each λ ∈ Rm+ we define M(λ) as
the set of vectors x∗ ∈ C for which there exist c0 ∈ A(x∗), ci ∈ ∂fi(x∗), i ∈ I(x∗)
such that

(4.1) c0 +
∑

i∈I(x∗)
λici = 0, λi = 0 for i /∈ I(x∗),

where I(x∗) = {i : fi(x
∗) = 0}.

We denote by M the set of all vectors λ ∈ Rm+ such that M(λ) is nonempty and
the dual problem to (VI) is defined as follows:

(VID) Find a point λ ∈M .

The next proposition in particular will help us to justify the denomination of “dual
problem.”

Proposition 4.1. Suppose that the functions fi are closed proper convex func-
tions defined on RN , that Slater’s condition holds, and that x∗ ∈ C. Then x∗ ∈ S if
and only if there exists λ ∈ Rm+ such that x∗ ∈M(λ). Furthermore, if S is a nonempty
compact set, if each fi is continuous on S and if A is maximal monotone with int
dom A ⊃ S, then M is nonempty and compact.

Proof. i) Let x∗ ∈ C with λ ∈ Rm+ such that x∗ ∈ M(λ). Take c0 and ci as in
(4.1); then for each x ∈ C it follows from (4.1) that

〈c0, x−x∗〉 ≥ 〈c0, x−x∗〉+
∑

i∈I(x∗)
λi [fi(x)− fi(x∗)] ≥

〈
c0 +

∑
i∈I(x∗〉

λici, x− x∗
〉

= 0

and as a consequence x∗ ∈ S.
ii) Conversely if x∗ ∈ S, then there exists c∗0 ∈ A(x∗) such that

〈c∗0, x− x∗〉 ≥ 0 ∀x ∈ C.
Set J(x) = 〈c∗0, x − x∗〉. From the above inequality it follows that x∗ minimizes J
on C, and since Slater’s condition is satisfied, this implies the existence of multipliers
λi ≥ 0 for i ∈ I(x∗) such that

c∗0 +
∑

i∈I(x∗)
λic
∗
i = 0, λi = 0 for i /∈ I(x∗),

where c∗i ∈ ∂fi(x∗). In other words x∗ ∈M(λ).
iii) Suppose now that the other assumptions are satisfied. As a consequence of part

i) M is nonempty. Let us prove that M is bounded. In the contrary case there would
exist a sequence {(λn, xn, cn0 , cni )} with λn ∈ Rm+ , xn ∈ S, cn0 ∈ A(xn), cni ∈ ∂fi(xn) for
i = 1, . . . ,m such that

‖λn‖ → +∞, λn

‖λn‖ → λ 6= 0, xn → x, λni = 0 for i /∈ I(xn)

and

cn0 +
∑

i∈I(xn)

λni c
n
i = 0.
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From the above equation it follows that

〈cn0 , x0 − xn〉
‖λn‖ +

∑
i∈I(xn)

λni
‖λn‖ fi(x0) ≥ 0,

where x0 satisfies Slater’s condition.
Since A is locally bounded at x ∈ S and the functions fi are continuous at x,

passing to the limit in the above inequality we obtain∑
i∈I(x)

λifi(x0) ≥ 0, λi = 0 for i /∈ I(x), λ 6= 0,

which is impossible since Slater’s condition holds at x0.
If the variational inequality corresponds to a convex minimization problem (A =

∂f0), then Proposition 4.1 tells us that M coincides with the set of Kuhn–Tucker
vectors associated with each optimal solution. As a consequence, it follows from [18,
Cor. 28.4.1] that M coincides with the optimal set of the usual dual problem. This
justifies the denomination of dual problem for (VID).

4.2. The dual trajectory and its accumulation points.
Theorem 4.2. Consider the case where θ and α satisfy (H0) and (H2), and

suppose that
i) θ is C1 on ]−∞, η[.
ii) the functions fi are closed proper convex functions defined on RN , and Slater’s

condition holds.
iii) A is maximal monotone, C ⊂ int dom A.
iv) when η = 0, we assume that A is single valued on C, and when η > 0 we

suppose that dom A = Rn.
Set B = A + NC and suppose in addition that 0 ∈ int R(B). Then, all the

assumptions of Theorems 3.1 and 3.2 are satisfied and to each solution xr ∈ Sr we
can associate a “dual” vector λr with coordinates given by

(4.2) λri = θ′
(
fi(xr)

r

)
∀i = 1, 2, . . . ,m.

If we suppose also that all the functions fi are continuous on a neighborhood V of the
solution set S, then the sequence {xr, λr} stays bounded when r → 0+ and all its limit
points (x, λ) are in S ×M with x ∈M(λ).

Proof. a) Obviously all the assumptions of Theorems 3.1 and 3.2 are satisfied and
as a consequence, λr is well defined and the sequence {xr} is bounded with all its
limit points in S. Furthermore, since θ is nondecreasing λr ∈ Rm+ .

b) Set λ
r

= λr

‖λr‖ and suppose that the sequence {λr} is not bounded when

r → 0+. Then there exists a sequence {λrn , xrn} such that

rn → 0+, xrn → x, ‖λrn‖ → ∞, λrn → λ ≥ 0, λ 6= 0.

From Theorem 3.2, x ∈ S and since the functions fi are continuous at x, it follows

that
fi(xrn )
rn

→ −∞ for i /∈ I(x), and then from (4.2) we have

(4.3) λi = lim
n→∞λ

rn
i = lim

n→∞λ
rn
i = 0 for i /∈ I(x).
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Now since the functions fi are continuous on a neighborhood V of S, for r sufficiently
small we have

r∂gr(xr) =
m∑
i=1

θ′
(fi(xr)

r

)
∂fi(xr)

and then from the definition of xr and λr there exist cr0 ∈ A(xr) and cri ∈ ∂fi(xr)
such that

(4.4) 0 = cr0 +
m∑
i=1

λri c
r
i .

As a consequence we get

0 =
crn0
‖λrn‖ +

m∑
i=1

λ
rn
i c

rn
i .

Then since the maps A and ∂fi are locally bounded and closed at x (relative to C if
η = 0), passing to the limit in the above equation, we obtain

0 =

m∑
i=1

λici

for some ci ∈ ∂fi(x), i = 1, ...,m.
Since λi = 0 for i /∈ I(x), λ 6= 0, and λi ≥ 0 for each i, obviously this yields a

contradiction to Slater’s condition.
c) Now let (x, λ) be a limit point of the sequence {xr, λr} when r → 0+. Since

this sequence is bounded, such a point exists. By Theorem 3.2 x ∈ S, and as in
formula (4.3) we have λi = 0 for each i /∈ I(x). Since (4.4) is always valid, passing to
the limit in this equation, we get

0 = c0 +

m∑
i=1

ciλi,

where c0 ∈ A(x), ci ∈ ∂fi(x) (for the same reasons as in part b).
Since λ ≥ 0 and λi = 0 for i /∈ I(x), this is equivalent to saying that λ ∈ M and

x ∈M(λ).

4.3. Convergence to a single point. In this section we suppose that A is
maximal monotone with dom A = RN and that A is strongly monotone; i.e., there
exists α > 0 such that

(4.5) 〈c− d, x− y〉 ≥ α ‖x− y‖2 ∀c ∈ A(x) d ∈ A(y) ∀x, y ∈ RN .
As a consequence, A+NC is maximal monotone and S is reduced to a single point.

We suppose also that Slater’s condition holds and that the functions fi are finite
on RN and satisfy the following condition:

(4.6) lim sup
‖y‖→∞

|fi(x+ y)− fi(x)|
‖y‖2 < +∞.

This condition is not too restrictive since it is satisfied in particular by Lipschitz convex
functions on RN , or more generally [16, Thm. 10.3] by uniformly continuous convex
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functions and also by quadratic functions and piecewise linear-quadratic functions.
Since A is strongly monotone, for each p ∈ Rm+ the map x → A(x) +

∑m
i=1 pi∂fi(x)

is maximal monotone and strongly monotone, and it follows that the generalized
equation

(V I)(p) 0 ∈ A(x) +

m∑
i=1

pi∂fi(x)

admits one and only one solution x(p).
We write

F (x) = (f1(x), ..., fm(x)), G(p) = −F (x(p)),

G̃(p) = G(p) +NRm
+

(p) if p ∈ Rm+ , G̃(p) = φ else.

Theorem 4.3. Suppose that A is a maximal monotone map, strongly monotone
with dom A = RN . Suppose also that Slater’s condition holds and that the functions
fi are convex, finite on RN , and satisfy condition (4.6). Then G(.) is monotone on
Rm+ . More precisely, we have

(4.7) 〈G(p)−G(p′), p− p′〉 ≥ α ‖x(p)− x(p′)‖2 ∀p, p′ ∈ Rm+ .
Furthermore, the function p→ x(p) is continuous on Rm+ and G̃ is maximal monotone
and coercive. Finally, λ belongs to the dual set M of solutions (which is now a
nonempty convex compact set) if and only if λ satisfies the variational inequality

(4.8) λ ∈ Rm+ , (G(λ), p− λ) ≥ 0 ∀p ∈ Rm+
which is equivalent to

(4.9) 0 ∈ G̃(λ).

Proof. a) Let p, q ∈ Rm+ ; since the functions fi are convex, from the definition of
x(p) and x(q) we have〈

c(p), x(q)− x(p)
〉

+
〈
p, F (x(q)

)− F (x(p)
)〉 ≥ 0,〈

c(q), x(p)− x(q)
〉

+
〈
q, F (x(p)

)− F (x(q)
)〉 ≥ 0

with c(p) ∈ A(x(p)) and c(q) ∈ A(x(q)).
Then if we add both these inequalities we obtain

〈c(p)− c(q), x(p)− x(q)〉+ 〈p− q, F (x(p)
)− F (x(q)

)〉 ≤ 0

and (4.7) follows immediately by using (4.5) in the above inequality.
b) Let us prove now that the function x(.) is continuous on Rm+ . We first prove

that it is locally bounded. In the contrary case there would exist p ∈ Rm+ and a
sequence pn ∈ Rm+ converging to p such that

‖x(pn)‖ → +∞, x(pn)

‖x(pn)‖ → d 6= 0.

From (4.7) we obtain

‖p− pn‖ ‖F (x(pn))− F (x(p))‖
‖x(p)− x(pn)‖2 ≥ α > 0

and then since (4.6) holds, letting n→∞ we get α = 0 which is impossible.
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Now let pn ∈ Rm+ converging to p, and let x∗ be a limit point of the sequence
{x(pn)}. Since this sequence is bounded, such a point exists and, without loss of
generality, we can suppose that x∗ = limn→∞x(pn). From the definition of x(pn)
there exists cn ∈ A(x(pn)) such that

〈cn, x− x(pn)〉+ 〈pn, F (x)− F (x(pn))〉 ≥ 0 ∀x.

Then, since A is locally bounded and closed and F is continuous, passing to the limit,
we get for some c ∈ A(x∗)

〈c, x− x∗〉+ 〈p, F (x)− F (x∗)〉 ≥ 0 ∀x ∈ RN

from which it follows that x∗ = x(p). As a consequence x(.) is continuous on Rm+ , and
by the way, G(.) is also.

Then from [19, Example 12.43] it follows that G̃ is maximal monotone. Obviously
(4.8) and (4.9) are equivalent, and λ satisfies (4.8) if and only if λ ∈ M . Then, from

Proposition 4.1 and since G̃−1(0) is closed and convex, it follows that M is a nonempty
convex compact set.

Let us now return to our algorithm and remark first that from the definitions of
xr, λ

r, x(λr), we have

(4.10) xr = x(λr).

Let θ∗ be the Fenchel conjugate of θ and write t(λ) =
∑m
i=1 θ

∗(λi). Since ∂θ∗ = (θ′)−1,
it follows from (4.2) that fi(xr) = r∂θ∗(λri ). In other words we have

(4.11) 0 ∈ G(λr) + r∂t(λr).

Since 0 ∈ NRm
+

(λ) for each λ ∈ Rm+ , it follows that λr satisfies the generalized equation

0 ∈ G̃(λr) + r∂t(λr).

Hence λr can be interpreted as a result of a “viscosity” or “Tikhonov” regulariza-
tion method, and the next proposition proves that the whole sequence {λr} converges
to a single point under additional assumptions on θ.

Proposition 4.4. Consider the case where θ and α satisfy (H0) and (H2).
Suppose that the conditions of Theorem 4.3 are satisfied, and suppose that θ is C1 on
] −∞, η[ and that either θ is bounded from below or there exists λ ∈ M with λi > 0
for each i. Then there exists exactly one and only one λ which minimizes t on M and
the whole sequence {λr} converges to λ when r → 0+.

Proof. With the above assumptions we remark that Theorem 4.2 is valid. Observ-
ing that dom θ∗ = [0,+∞[ if θ is bounded below and dom θ∗ =]0,+∞[ otherwise, it
follows that dom t∩M is nonempty. Furthermore, since θ is differentiable on ]−∞, η[,
it follows from [16, Thm. 26.3] that t is strictly convex on its domain. Now from (4.11)
we have

〈G(λ), λ− λr〉+ r [t(λ)− t(λr)] ≥ 0 ∀λ ∈M ∩ dom t.

Since 〈G(λ), λ− λr〉 ≤ 0 for each λ ∈M it follows that

t(λ) ≥ t(λr) ∀λ ∈M.
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Let λ̃ be a limit point of the sequence {λr}. From Theorem 4.2 such a point exists,
and λ̃ ∈ M . Since t is lower semicontinuous, passing to the limit it follows that λ̃
minimizes t on M . But since M is convex compact and t is strictly convex on its
domain with M∩ dom t 6= φ, there exists only one point λ which minimizes t on M
and λ̃ = λ.

Remark. The assumption “θ is bounded from below” holds, for instance, in the
case of θ1, θ4, θ5, θ7, θ8.
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Abstract. We improve several earlier results on the boundary stabilization of the wave equation
in a bounded domain. First we weaken the usual geometrical conditions. Second, we improve the
estimate of the decay rate in the case of polygonal domains. Then we show how to modify this
method to study Maxwell’s equations. The proofs are based on the construction of new multipliers,
better adapted to the domain.
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1. Introduction. The problem of exponential decay of the energy of the solu-
tions of the wave equation in a bounded domain by the use of a boundary feedback
has been studied by several authors. Bardos, Lebeau, and Rauch proved that the
energy decays exponentially:

∀t ≥ 0, E(t) ≤ CE(0)e−ωt(1.1)

if and only if a “geometric control condition” is satisfied [2]. However, their method
closely relies on the hyperbolic structure of the problem, requires smooth geometric
conditions, and does not give any information on the constants C and ω. On the
other hand, the elementary multiplier methods developed, for example, by Lagnese
[11], Lions [13], or Komornik [8] prove (1.1) with explicit constants, so as to measure
the observability cost, but only under special geometrical conditions. Lasiecka and
Triggiani [12] combined these two methods to obtain intermediate results.

The aim of this paper is to weaken the usual assumption of star-shapedness of the
domain using adapted multipliers. In section 2, we introduce the notion of “almost
star-shaped domains,” and we give some examples. In section 3, we give a result
of fast decay of the energy in such domains. In section 4, we use these results to
improve the decay rate estimate of the energy in special plane star-shaped domains.
At last, we show how to adapt this method to study Maxwell’s equations in some non-
star-shaped domains. This method is presented in a very well known situation but
can also be applied to problems that microlocal analysis techniques are not yet able
to solve, for example, to study the nonlinear stabilization of Kirchhoff plate models
on some non-star-shaped domains. We can apply this method in another situation:
Zuazua [18] studied the stabilization of a semilinear wave equation, with Dirichlet
boundary conditions, damped by a linear velocity dissipation that is localized on a
neighborhood of a part of the boundary; the notion of an “almost star-shaped domain”
allows us to find analogous results for the similar problem with Neumann boundary
condition (see [14]). This also allows us to improve the results found on a ball by
Alabau and Komornik [1] in the study of the uniform decay of the solutions of general
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elastodynamic systems (see also Horn [6] for the study of isotropic elastodynamic
systems).

2. Almost star-shaped domains: Definition and examples. In the follow-
ing, Ω will be a bounded open set of RN . Let {Γ0,Γ1} be a partition of the boundary
Γ of Ω. Let us denote by ν the outward unit normal vector to Γ and by ( | ) the
canonical Euclidean structure of RN .

Definition. (Ω,Γ0,Γ1) is an almost star-shaped domain if there exists φ ∈ C2(Ω)
such that

Sup {∆φ(x)− 2λ1(x), x ∈ Ω} < Inf {∆φ(x), x ∈ Ω},(2.1)

∂νφ ≤ on Γ0,(2.2)

∂νφ ≥ on Γ1,(2.3)

where λ1(x) is the smallest eigenvalue of the real symmetric squared matrix D2φ(x).
In particular, (Ω,Γ0,Γ1) is almost star-shaped if there exists φ ∈ C2(Ω) such that

∆φ = 1 in Ω,(2.4)

λ1(φ) := Inf {λ1(x), x ∈ Ω} > 0,(2.5)

∂νφ ≤ 0 on Γ0,(2.6)

∂νφ ≥ 0 on Γ1.(2.7)

Remark. Lagnese [11] and Kapitonov [7] introduced similar notions.
The simplest example is the case where Ω is a star-shaped domain with respect

to x0; i.e., there exists a point x0 such that (x− x0|ν(x)) ≥ 0 for all x ∈ Γ. Then the
function

φ0(x) =
1

2N
|x− x0|2(2.8)

verifies (2.4)–(2.7) with Γ0 = ∅ and Γ1 = Γ, so (Ω, ∅,Γ) is almost star-shaped.

2.1. Perturbation of a star-shaped domain. In this section, we show that
any sufficiently small perturbation of class C2 of a star-shaped domain Ω of class
C2 gives an almost star-shaped domain. Let Ω be a bounded domain of class C2,
star-shaped with respect to x1. We can construct f ∈ C2(RN ) such that

Γ = {x ∈ RN , f(x) = 0} and |f(x)| −→ +∞ as |x| −→ +∞,
∀x ∈ Γ, ∇f(x) 6= 0,

∀x ∈ Γ,
(
x− x1|∇f(x)

)
≥ 0,

using the signed distance to Γ, for example.
Set ε > 0 and g ∈ C2(RN ). Let Ωε be the bounded domain whose boundary Γε is

the set of points xε verifying

f(xε) + εg(xε) = 0.

We apply the implicit functions theorem to deduce that if ε is small enough, xε is well
defined and the function ε 7→ xε =: x(ε) is of class C2 on the neighborhood of each
point of the boundary Γ.
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Let us show that if ε is small enough, (Ωε, ∅,Γε) is almost star-shaped: set c > 0
and define

φ(x) =
1

2N
|x− x1|2 + εcf(x).

Then

∆φ(x) = 1 + εc∆f(x),

∆φ(x)− 2λ1(x) = 1− 2

N
+ εc(∆f(x)− 2λ1(f)(x)),

where λ1(f)(x) is the smallest eigenvalue of D2f(x). So (2.1) is satisfied if εc is small
enough. Now look at the normal derivative of φ: if xε ∈ Γε,(
∇φ(xε)|∇f(xε) + ε∇g(xε)

)
=
( 1

N
(xε − x1) + εc∇f(xε)|∇f(xε) + ε∇g(xε)

)
=

1

N

(
xε−x1|∇f(xε)

)
+εc‖∇f(xε)‖2+

ε

N

(
xε−x1|∇g(xε)

)
+ε2c

(
∇f(xε)|∇g(xε)

)
.

Let us recover Γ by a finite number of neighborhoods Vxi of points xi ∈ Γ such that
ε 7→ xε = x(ε) is of class C2 on Vxi . Then it is easy to see that there exists M > 0
such that∣∣∣ 1

N

(
xε − x1|∇f(xε)

)
+

ε

N

(
xε − x1|∇g(xε)

)
− 1

N

(
x(0)− x1|∇f(x(0))

)∣∣∣ ≤Mε.

Since x(0) ∈ Γ, (x(0)− x1|∇f(x(0))) ≥ 0. Thus it is sufficient to take c large enough
so that

M ≤ c

4
‖∇f(x(0))|2 ≤ c

2
‖∇f(xε)|2

if ε is small enough. Then (2.3) follows if ε is small enough.
Now assume that (Ω,Γ0,Γ1) is almost star-shaped with some φ verifying (2.4)–

(2.7). Set x0 ∈ RN and φ0 defined by (2.8). Define P by

P := φ− φ0.(2.9)

Then P verifies

∆P = 0 in Ω,(2.10)

λ1(P ) +
1

N
> 0,(2.11)

∂νP +
1

N

(
x− x0|ν(x)

)
≥ 0 on Γ1,(2.12)

∂νP +
1

N

(
x− x0|ν(x)

)
≤ 0 on Γ0.(2.13)

Reciprocally, if there exists P ∈ C2 (Ω) and x0 ∈ RN such that (2.10)–(2.13) are
verified, then φ defined by (2.9) verifies (2.4)–(2.7). So the problems (2.4)–(2.7) and
(2.10)–(2.13) are equivalent through (2.9). The second problem will be easier to look
at, particularly in the case of plane domains, using complex analysis.
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2.2. Study of the plane domains using complex analysis. Let Ω be an
open bounded connected set of R2. Let f be a holomorphic function of the complex
variable z = x + iy on Ω. We will identify the real vector (x, y) and the complex
number z = x + iy. Assume that f belongs to C2(Ω). Let us denote by P its real
part and by Q its imaginary part. Differentiating with respect to x and using the
Cauchy–Riemann equations, we obtain that

f ′(z) =
∂P

∂x
(x, y) + i

∂Q

∂x
(x, y) =

∂P

∂x
(x, y)− i∂P

∂y
(x, y),

f ′′(z) =
∂2P

∂x2
(x, y)− i ∂

2P

∂x∂y
(x, y).

Hence the vector ∇P (x, y) corresponds to the complex number f ′(z).
Next we look at the Hessian matrix of the function φ defined by (2.9):

D2φ =
1

2
Id+D2P.

Thus

λ1(φ) =
1

2
+ λ1(P ).(2.14)

We have to compute λ1(P ). Since P is a harmonic function, the two eigenvalues of the
real symmetric matrix D2P (x, y), for all (x, y) ∈ Ω, are real and opposite numbers.
Denote them by µ and −µ. We have

−µ2 = det D2P (x, y) =
∂2P

∂x2

∂2P

∂y2
−
( ∂2P

∂x∂y

)2

= −
(∂2P

∂x2

)2

−
( ∂2P

∂x∂y

)2

= −|f ′′(z)|2.

Hence

λ1(φ) =
1

2
− ‖f ′′‖∞,(2.15)

where ‖f ′′‖∞ = sup{|f ′′(z)|, z ∈ Ω}.
Now assume (Ω,Γ0,Γ1) is almost star-shaped and that there exists a harmonic

function P that satisfies (2.10)–(2.13). If Ω is simply connected, then there exists a
holomorphic function called f whose real part is P . Then f satisfies

‖f ′′‖∞ <
1

2
,(2.16) (

f ′(z)|ν(z)
)

+
1

2

(
z − z0|ν(z)

)
≤ 0 on Γ0,(2.17) (

f ′(z)|ν(z)
)

+
1

2

(
z − z0|ν(z)

)
≥ 0 on Γ1.(2.18)

f ′′ must be small enough (condition (2.16)), but f ′ must be important enough, to
correct the lack of star-shapedness of Ω if it is necessary (condition (2.18)). These
two conditions are not always compatible; in the following section we show how to use
them to obtain an explicit example of a domain that is almost star-shaped, although
not star-shaped.

2.3. Application: Example of a truly almost star-shaped domain. Let
Ω be the following polygonal domain ABCDEFGH (see Fig. 2.1).
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Ωz0
H G

O x

C D−z0

F E

Fig. 2.1. Example of an almost star-shaped domain.

Denote

• ρ := min {|z|, z ∈ Γ},
• R := max {|z|, z ∈ Γ},
• z0 the medium of the segment [GH],
• L the length of the segment [GH].

In order to simplify the calculations, assume that [CD] and [GH] are symmetric with
respect to O.

Proposition 2.1. Let Ω be the polygonal domain ABCDEFGH. If z0, L, ρ,R
verify

0 < Im z0 ≤ ρ

R

(
|z0| − L

2

)
,(2.19)

then (Ω, ∅,Γ) is almost star-shaped without being star-shaped.

Remark. This provides an explicit example of an almost star-shaped domain that
is not star-shaped. Then it is sufficient to smooth the corners to obtain an explicit
example of an almost star-shaped domain of class C2.

Proof of Proposition 2.1. The hypothesis Im z0 > 0 ensures that Ω is not star-
shaped. In order to correct that lack of star-shapedness, we perturb φ0(z) = 1

4 |z|2 by
a harmonic function, chosen to be small enough so that (2.16) can be true, but whose
normal derivative will correct ∂νφ0 where it is necessary.

Set η > 0; we construct a holomorphic function f such that

f ′(z0) = −ηi and f ′(−z0) = ηi.

We can choose

f(z) =
1

2
ηi
z2

z0
.(2.20)
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Let us define φ by

φ(x, y) =
1

4
|z|2 + Re f(z).

We have already shown that

∇φ(x, y) =
1

2
z + f ′(z),

λ1(φ) =
1

2
− ‖f ′′‖∞.

First we study ∂νφ on [CD] and on [GH]; using the symmetries of the domain and of
the function, it is sufficient to study on [GH], using the following parametrization:

z = t
(
z0 +

L

2

)
+ (1− t)

(
z0 − L

2

)
= z0 +

(
t− 1

2

)
L, t ∈ [0, 1].

So

∂νφ(z) = −1

2
Im z0 +

(ηi
z0

(
z0 +

(
t− 1

2

)
L
)
| − i

)
= −1

2
Im z0 − Im

(ηi
z0

(
z0 +

(
t− 1

2

)
L
))

≥ η − 1

2
Im z0 − ηL

2|z0| .

Next we study ∂νφ on the other sides:

∂νφ(z) =
1

2

(
z|ν(z)

)
+
(
f ′(z)|ν(z)

)
≥ 1

2
ρ− η R

|z0| .

That gives us the following conditions:

‖f ′′‖∞ =
η

|z0| <
1

2
,(2.21)

η − 1

2
Im z0 − ηL

2|z0| ≥ 0,(2.22)

ρ− 2η
R

|z0| ≥ 0.(2.23)

Equation (2.21) is satisfied when (2.23) is true, and the hypothesis (2.19) allows us to
find η verifying (2.22)–(2.23). Thus (Ω, ∅,Γ) is almost star-shaped without being star-
shaped.

3. Uniform boundary stabilization of the wave equation in a smooth
almost star-shaped domain. Let Ω be a bounded open set of RN of class C2.
Let us denote by ν the outward unit normal vector to Γ. Assume that the partition
{Γ0,Γ1} of the boundary satisfies

Γ0 ∩ Γ1 = ∅.(3.1)

Let q be a bounded nonnegative function on Ω, and a, ` be two nonnegative functions
of class C1 on Γ1 such that

q 6≡ 0 or Γ0 6≡ 0 or a 6≡ 0.(3.2)
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As usual, let us denote H1
Γ0

(Ω) := {u ∈ H1(Ω), u = 0 on Γ0}. We consider the
following evolutionary problem that has been studied by several authors, such as
Komornik and Zuazua [10], Komornik [8], and Tcheugoué Tébou [17], on star-shaped
domains:

u′′ −∆u+ qu = 0 in Ω,(3.3)

u = 0 on Γ0,(3.4)

∂νu+ au+ `u′ = 0 on Γ1,(3.5)

u(0) = u0, u′(0) = u1.(3.6)

Applying a carefully chosen feedback and using a method introduced in Komornik
and Zuazua [10], we shall obtain uniform stabilization with rather precise decay rate
estimates. Then we will show how to use this result to improve the decay rate on
some domains, carefully choosing the function φ that satisfies (2.4)–(2.7).

3.1. Existence and regularity theorem.
Theorem 3.1. Assume (3.1)–(3.2).
1. Given (u0, u1) ∈ H1

Γ0
(Ω) × L2(Ω), the problem (3.3)–(3.6) has a unique (so-

called weak) solution

u ∈ C
(
R+, H

1
Γ0

(Ω)
)
∩ C1

(
R+, L

2(Ω)
)
.(3.7)

The energy E : R+ −→ R+ of the solution u defined by

E(t) =
1

2

∫
Ω

(
u′2 + |∇u|2 + qu2

)
dx+

1

2

∫
Γ1

au2 dσ(3.8)

is a nonincreasing function.
2. If u0 and u1 satisfy the stronger conditions{

(u0, u1) ∈ H2(Ω) ∩H1
Γ0

(Ω)×H1
Γ0

(Ω),

∂νu
0 + au0 + `u1 = 0 on Γ1,

(3.9)

then the solution u has the stronger regularity property:

u ∈ L∞
(
R+, H

2(Ω)
)
, u′ ∈ L∞

(
R+, H

1
Γ0

(Ω)
)
, u′′ ∈ L∞

(
R+, L

2(Ω)
)
.(3.10)

In this case, u will be called strong solution of the problem (3.3)–(3.6).
This theorem is well known (see, for example, Komornik [9]).

3.2. Uniform stabilization under a carefully chosen feedback.
Theorem 3.2. Let Ω be a bounded open set of RN of class C2; assume (Ω,Γ0,Γ1)

is almost star-shaped. Assume that there exists φ ∈ C2(Ω) satisfying (2.4)–(2.7).
Define

C := max

(
2

3
, 1− λ1(φ)

)
and Q1 := ‖√q∇φ‖∞,(3.11)

and assume that

C +Q1 < 1.(3.12)
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Define the functions a and ` by

a =
C

2‖∇φ‖2∞
∂νφ and ` =

1

‖∇φ‖∞ ∂νφ.(3.13)

Given (u0, u1) ∈ H1
Γ0

(Ω) × L2(Ω), the energy of the weak solution u satisfies the
following estimate:

∀t ≥ 0, E(t) ≤ E(0)e1−ωt with ω :=
1− C −Q1

2‖∇φ‖∞ .(3.14)

Remarks. 1. If φ satisfies only (2.1)–(2.3), the estimate (3.14) holds true. The
only difference comes from the value of C.

2. One can easily generalize Theorem 3.2 to more general functions a, `, and
q, for example, assuming that a, `, and ∂νφ are positive on Γ1 or using a nonlinear
feedback as in Komornik [9].

3. Assume now that Ω is a bounded polygonal domain without crack such that
each side belongs to Γ0 or to Γ1. Moreover, assume that the angles of the corners
where there is a change of boundary condition have a measure strictly less than π.
Then it is easy to adapt the method that Grisvard [4] or Moussaoui [15] used to
study the regularity of the solutions of the problem of the wave equation with mixed
boundary conditions (Dirichlet condition on Γ0 and Neumann condition on Γ1) in
such domains. We find that the strong solutions of (3.3)–(3.6) have the following
regularity:

u ∈ L∞(R+, H
s(Ω))

for some s > 3
2 . This regularity allows us to justify the computations that lead to

the key identity given in Lemma 3.4. Thus the estimate (3.14) holds true in such
domains.

Proof of Theorem 3.2. The proof of this theorem is based on the multiplier
method. We will prove only the estimate (3.14) for smooth initial data, i.e., (u0, u1)
satisfying (3.9). The general case then follows by an easy density argument. The
validity of all the computations is guaranteed by the regularity of u given by (3.10).
We use the following convention:

∫ T

S

∫
Ω

means

∫ T

S

∫
Ω

dx dt and

∫ T

S

∫
Γ

means

∫ T

S

∫
Γ

dσ dt.

Lemma 3.3. Given (u0, u1) verifying (3.9), the strong solution of (3.3)–(3.6)
satisfies

∀0 ≤ S < T < +∞, E(S)− E(T ) =

∫ T

S

∫
Γ1

`u′2.(3.15)

Proof of Lemma 3.3. We multiply (2.5) by u′ and we integrate by parts on



BOUNDARY STABILIZATION IN ALMOST STAR-SHAPED DOMAINS 681

Ω× [S, T ]:

0 =

∫ T

S

∫
Ω

u′(u′′ −∆u+ qu)

=
1

2

[∫
Ω

u′2 + |∇u|2 + qu2

]T
S

−
∫ T

S

∫
Γ

u′∂νu

=
1

2

[∫
Ω

u′2 + |∇u|2 + qu2 +

∫
Γ1

au2

]T
S

+

∫ T

S

∫
Γ1

`u′2.

Set c ∈ R and

M(u) = 2∇φ · ∇u+ cu.

The key to the proof of Theorem 3.2 is the following basic identity.
Lemma 3.4. Given (u0, u1) verifying (2.11) and 0 ≤ S < T < +∞, we have

(3.16)

∫ T

S

∫
Γ0

(∂νu)2∂νφ+

∫ T

S

∫
Γ1

−(au+ `u′)M(u) + ∂νφ (u′2 − |∇u|2)

=

[∫
Ω

u′M(u)

]T
S

+

∫ T

S

∫
Ω

(1− c)(u′2 − |∇u|2) + quM(u) + 2
(
D2φ · ∇u|∇u

)
.

Proof of Lemma 3.4. We multiply (3.3) by M(u) and we integrate by parts on
Ω× [S, T ].

0 =

∫ T

S

∫
Ω

(u′′ −∆u+ qu)M(u)

=

[∫
Ω

u′M(u)

]T
S

−
∫ T

S

∫
Ω

u′(2∇φ · ∇u′ + cu′)−
∫ T

S

∫
Γ

∂νu M(u)

+

∫ T

S

∫
Ω

∇u · ∇(2∇φ · ∇u+ cu) +

∫ T

S

∫
Ω

quM(u)

=

[∫
Ω

u′M(u)

]T
S

−
∫ T

S

∫
Γ1

∂νu M(u)−
∫ T

S

∫
Γ0

2(∂νu)2∂νφ+

∫ T

S

∫
Ω

quM(u)

−
∫ T

S

∫
Ω

∇φ · ∇(u′2) + cu′2 +

∫ T

S

∫
Ω

c|∇u|2 + 2∂iu ∂i(∂jφ ∂ju)

=

[∫
Ω

u′M(u)

]T
S

−
∫ T

S

∫
Γ1

∂νuM(u)−
∫ T

S

∫
Γ0

2(∂νu)2∂νφ+

∫ T

S

∫
Ω

quM(u)

−
∫ T

S

∫
Γ

u′2∂νφ+

∫ T

S

∫
Ω

u′2− c(u′2− |∇u|2) + 2
(
D2φ ·∇u|∇u

)
+∇φ ·∇

(
|∇u|2

)
.



682 PATRICK MARTINEZ

Thus, putting the boundary integrals in the left-hand side,∫ T

S

∫
Γ0

(∂νu)2∂νφ+

∫ T

S

∫
Γ1

∂νu M(u) + ∂νφ (u′2 − |∇u|2)

=

[∫
Ω

u′M(u)

]T
S

+

∫ T

S

(1− c)(u′2 − |∇u|2) + 2(D2φ · ∇u|∇u) + quM(u).

Remark. As u = 0 on Γ0, we used the fact that

∇u = (∂νu)ν on Γ0.

First we estimate the terms of the left-hand side of (3.16). In the following, we
will take c > 0, and we define a and ` by

a =
c

2‖∇φ‖2∞
∂νφ and ` =

1

‖∇φ‖∞ ∂νφ.(3.17)

Lemma 3.5. Assume a and ` are defined by (3.17). Given (u0, u1) satisfying
(3.9), we have

(3.18)

∫ T

S

∫
Γ0

(∂νu)2∂νφ+

∫ T

S

∫
Γ1

−(au+ `u′)M(u) + ∂νφ (u′2 − |∇u|2)

≤ 2‖∇φ‖∞
(
E(S)− E(T )

)
− c

2

∫ T

S

∫
Γ1

au2.

Proof of Lemma 3.5. According to (3.17), denote a = α∂νφ and ` = λ∂νφ. Then

−(au+ `u′)(2∇φ · ∇u+ cu) + ∂νφ(u′2 − |∇u|2)

≤ ∂νφ
(
‖∇φ‖2∞(αu+ λu′)2 + |∇u|2 − cαu2 − cλuu′ + u′2 − |∇u|2

)
≤ ∂νφ

(
(1 + λ2‖∇φ‖2∞)u′2 + (α2‖∇φ‖2∞ − cα)u2 + (2αλ‖∇φ‖2∞ − cλ)uu′

)
.

Equation (3.18) follows from the carefully chosen values of α and λ given by (3.17),
from the identity (3.15), and from (2.6).

Lemma 3.6. ∣∣∣∣∣
∫

Ω

u′M(u)

∣∣∣∣∣ ≤ 2‖∇φ‖∞E(t) if c ∈ [0, 2].(3.19)

Proof of Lemma 3.6.∫
Ω

(M(u))2 =

∫
Ω

(2∇φ · ∇u+ cu)2 =

∫
Ω

(2∇φ · ∇u)2 + c2u2 + 2c∇φ · ∇(u2)

=

∫
Ω

(2∇φ · ∇u)2 + c2u2 + 2c

∫
Γ

∂νφ u
2 −

∫
Ω

2cu2

=

∫
Ω

(2∇φ · ∇u)2 + c(c− 2)u2 + 2c

∫
Γ1

∂νφ u
2.
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Assume c ∈ [0, 2]. Then∫
Ω

M(u)2 ≤
∫

Ω

(2∇φ · ∇u)2 + 2c

∫
Γ1

∂νφ u
2.

Set d2 = 2‖∇φ‖∞. Applying the Cauchy–Schwarz inequality, we obtain∣∣∣∣∣
∫

Ω

u′M(u)

∣∣∣∣∣ ≤
(∫

Ω

u′2
)1/2(∫

Ω

M(u)2

)1/2

≤ d2

2

∫
Ω

u′2 +
1

2d2

∫
Ω

(2∇φ · ∇u)2 +
c

d2

∫
Γ1

∂νφ u
2

≤ 2‖∇φ‖∞E(t).

Using the estimates (3.18) and (3.19), (3.16) becomes

(3.20)

∫ T

S

∫
Ω

(1− c)(u′2 − |∇u|2) + 2(D2φ · ∇u|∇u) + quM(u)

+
c

2

∫ T

S

∫
Γ1

au2 ≤ 4‖∇φ‖∞E(S).

Thanks to (2.5), we can say that

(3.21)

∫ T

S

∫
Ω

(1− c)u′2 +
(

2λ1(φ)− (1− c)
)
|∇u|2 + cqu2 + 2qu∇φ · ∇u

+
c

2

∫ T

S

∫
Γ1

au2 ≤ 4‖∇φ‖∞E(S).

Last, using the Cauchy–Schwarz inequality in the same way, we have∣∣∣∣∣
∫

Ω

2qu∇φ · ∇u
∣∣∣∣∣ ≤ 2‖√q∇φ‖∞E(t) = 2Q1E(t).(3.22)

Thus

2
(

inf
{ c

2
, (1− c), 2λ1(φ)− (1− c)

}
−Q1

)∫ T

S

E ≤ 4‖∇φ‖∞E(S).(3.23)

It is easy to see that the constant c gives the better result, obtained when the coef-

ficient of
∫ T
S
E in (3.23) is the biggest, i.e., when c has the value C given by (3.11).

Then (3.23) becomes

2(1− C −Q1)

∫ T

S

E ≤ 4‖∇φ‖∞E(S).(3.24)

If 1−C−Q1 > 0, letting T go to +∞, we see that E is a nonnegative and nonincreasing
function that satisfies

∀S ≥ 0,

∫ +∞

S

E ≤ 1

ω
E(S).
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Using a Gronwall-type inequality as in Haraux [5], we conclude that

∀t ≥ 0, E(t) ≤ E(0)e1−ωt.

We recall the proof of this inequality briefly: set g(t) =
∫ +∞
t

E(τ) dτ . g satisfies the
differential inequality

∀t ≥ 0, g′ (t) + ωg(t) ≤ 0.

Thus

∀t ≥ 0, g(t) ≤ g(0)e−ωt ≤ 1

ω
E(0)e−ωt.

Then since E is nonnegative and nonincreasing, for all ε > 0 we have

E(t) ≤ 1

ε

∫ t

t−ε
E(τ) dτ ≤ 1

ε
g(t− ε) ≤ 1

ωε
E(0)eωεe−ωt,

and the best estimate is obtained for ωε = 1.
Remark. When φ satisfies only the weaker conditions (2.1)–(2.3), one has to

replace the coefficient (1 − c) by (∆φ − c) in (3.20). The assumption (2.1) allows us
to choose a constant c such that (3.24) holds true.

4. Application: Fast decay of the energy in regular polygons. Let Ω be
a convex polygon and x0 ∈ Ω. The function φ(x) = φ0(x) := 1

4 |x− x0|2 satisfies

∆φ =
1

2
+

1

2
= 1 in Ω,(4.1)

λ1(φ)

(
=

1

2

)
> 0,(4.2)

∂νφ =
(
x− x0|ν(x)

)
≥ 0 on Γ.(4.3)

Define a and ` by (2.15). Given (u0, u1) ∈ H1(Ω) × L2(Ω), the solution of the
evolutionary system

u′′ −∆u = 0 in Ω,(4.4)

∂νu+ au+ `u′ = 0 on Γ,(4.5)

u(0) = u0, u′(0) = u1,(4.6)

satisfies the energy estimate:

E(t) ≤ E(0)e1−ωt, with ω =
inf{ 1

3 , λ1(φ)}
2‖∇φ‖∞ =

1

3R(x0)
,(4.7)

where R(x0) := supx∈Ω |x − x0|. Our purpose is to improve this decay rate, first
found by Tcheugoué Tébou [17], perturbing φ0 by harmonic functions adapted to the
domain.
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4.1. Main result and first properties. Let Ω be the n-sided regular polygon
centered in O whose vertices are the points Re2ikπ/n, 0 ≤ k ≤ n− 1.

Theorem 4.1. Let Ω be the n-sided regular polygon centered in O. Thanks to a
careful choice of the function φ (and consequently the choice of a and `), the solutions
of the problem (4.4)–(4.6) satisfy the estimate

∀t ≥ 0, E(t) ≤ E(0)e1−t/ρn ,(4.8)

with

ρn =

(
3− 1

n− 1

)
R if 3 ≤ n ≤ 8,(4.9)

ρn = (3− 6εn)R with εn =
sin2 π

2n

1 + (cos π
n )n−1

' π2

8n2
if n ≥ 9.(4.10)

Moreover, in the case of the equilateral triangle (n = 3), improved computations give
the better estimate

ρ3 ≤ 2, 36R.(4.11)

The function φ will be explicitly given in the proof.

Remarks. 1. A general principle of Russell [16] shows that uniform stabilization
implies the exact controllability of the associated system in time T > T0 = ρn.
Applying this principle for the equilateral triangle, we obtain T0 ≥ ρ3 ≥ 2R > R

√
3.

Thus the method is not powerful enough to find results that are already known (exact
controllability in time T > 2R). So we cannot expect to find optimal results like
Bardos, Lebeau, and Rauch [2] obtained when the domain is analytical.

2. It is an interesting question whether there exists an “optimal” function φ
providing an optimal decay rate.

3. A technical difficulty (that Lemma 4.3 can help to imagine) prevents us from
applying this method in dimension 3 to improve the decay rate for the tetrahedron,
for example.

Proof of Theorem 4.1. Equation (4.8) is a consequence of Theorem 3.2 with a
good choice of φ. We have to find φ such that ω(φ) is the biggest possible. Because
of (4.1), φ can be written as the perturbation of φ0 by a harmonic function. It is
clear that ∇P has to be entering at the vertices of Ω in order to reduce ‖∇φ‖∞. For
example, if Ω is the equilateral triangle, ∇P has to be as indicated in Fig. 4.1.

First we study some properties we need to optimize the decay rate.
Lemma 4.2. Set φ ∈ C2(Ω) such that λ1(φ) > 0. Then ‖∇φ‖ attains its upper

bound only on the boundary of Ω.
Proof of Lemma 4.2. An easy continuity argument shows that ‖∇φ‖ is bounded

and attains its upper bound on Ω. Assume this happens in z1 = (x1, y1) ∈ Ω. As φ
is C2,

∂

∂x

((∂φ
∂x

)2

(x1, y1) +
(∂φ
∂y

)2

(x1, y1)
)

= 0,

∂

∂y

((∂φ
∂x

)2

(x1, y1) +
(∂φ
∂y

)2

(x1, y1)
)

= 0.
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y

B

A

O x

C

Fig. 4.1. Behavior of ∇P on Γ.

Thus we deduce that

D2φ · ∇φ(x1, y1) = 0,

and this is impossible because D2φ is invertible everywhere, and so ∇φ(x1, y1) cannot

be equal to
−→
0 because of its definition.

Lemma 4.3. Given φ verifying (4.1)–(4.3) and

∇φ(O) = 0,(4.12)

the decay rate given by φ can be optimal only if

λ1(φ) ≥ 1

3
.(4.13)

Remark. We will see next that the additional hypothesis (4.12) is only a conse-
quence of the symmetries of the polygon.

Proof of Lemma 4.3. Assume φ verifies (4.1)–(4.3), (4.12), and λ1(φ) < 1
3 . As

usual, denote φ(z)− 1
4 |z|2 = P (z) = Re f(z). Define

φε = φ0 + εP,(4.14)

and choose ε > 0 such as

λ1(φε) =
1

2
− ‖εf ′′‖∞ =

1

3
.
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Then φε verifies (4.1), (4.2), (4.12), and (4.13). Assume φε verifies (4.3). Then we
shall prove that

ω(φε) =
1

6‖∇φε‖∞ ≥ ω(φ) =
λ1(φ)

2‖∇φ‖∞ .(4.15)

Effectively,

φ = φ0 + P = φ0 + εP + (1− ε)P = φε + (1− ε)P,
∇φ(z) = ∇φε(z) + (1− ε)f ′(z).

As f ′(0) = ∇P (O) = 0, |f ′(z)| ≤ R‖f ′′‖∞ . So

‖∇φ‖∞ ≥ ‖∇φε‖∞ − (1− ε)‖f ′‖∞,
λ1(φ) =

1

2
− ‖f ′′‖∞ =

1

2
− ε‖f ′′‖∞ − (1− ε)‖f ′′‖∞ =

1

3
− (1− ε)‖f ′′‖∞.

We deduce from this study that

2‖∇φ‖∞
λ1(φ)

≥ 2
‖∇φε‖∞ − (1− ε)R‖f ′′‖∞

1
3 − (1− ε)‖f ′′‖∞

,(4.16)

but on the other hand

M :=
‖∇φε‖∞

R
≥ 1

2
− ε

R
‖∇P‖∞ ≥ 1

2
− ε‖f ′′‖∞ =

1

3
,

so (4.16) gives

2‖∇φ‖∞
λ1(φ)

≥ 2R
M − (1− ε)‖f ′′‖∞
1
3 − (1− ε)‖f ′′‖∞

≥ 2R
M
1
3

= 6‖∇φε‖∞.

Next we study the problem of the normal derivative of φε.
Lemma 4.4. Set φ ∈ C2(Ω) verifying (4.1), (4.12), and (4.13); then the condition

(4.3) is automatically satisfied: ∂νφ ≥ 0 on the boundary.

Proof of Lemma 4.4. Set zk = Re2ikπ/n, 0 ≤ k ≤ n−1, and denote νk the outward
unit normal vector to ]zk, zk+1[.

νk =
zk+1 − zk
|zk+1 − zk|e

−iπ/2.(4.17)

All along the segment ]zk, zk+1[, the normal derivative of φ is

∂νφ(z) =
(z

2
+ f ′(z)|νk

)
=
(z

2
|νk
)

+
(
f ′(z)|νk

)
=
(zk

2
|νk
)

+
(
f ′(z)|νk

)
≥ R

2
cos

π

n
−R‖f ′′‖∞.

However, cos π
n ≥ cos π

3 ≥ 1
2 and ‖f ′′‖∞ = 1

2 − λ1(φ) ≤ 1
6 , so (4.3) follows.

This drives us to study the following optimization problem:{
‖f ′′‖∞ ≤ 1

6 ,

6‖∇φ‖∞ the smallest possible.
(4.18)
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First assume that Ω is the equilateral triangle.
Lemma 4.5. If n = 3, we will seek only the functions f that have a development

of the form

f(z) =

+∞∑
k=1

a3kz
3k.(4.19)

This lemma has a simple geometrical application: it is sufficient to study the har-
monic functions P such that the gradient in each vertex S of the polygon is colinear to−→
the vector OS.

Proof of Lemma 4.5. Set f a holomorphic function on Ω defined by a power series
whose convergence radius is bigger than R:

f(z) =

+∞∑
k=0

akz
k.

Then define for i = 0 to 2

gi(z) =

+∞∑
k=1

a3k+iz
3k+i.(4.20)

We show in the following that g0 is better than f for our optimization problem: if
φ (respectively, ψ0) represents the function associated with f (respectively, with g0),
then {

‖g′′0‖∞ ≤ ‖f ′′‖∞,
‖∇ψ0‖∞ ≤ ‖∇φ‖∞.

(4.21)

Let z0 be a maximum point of g′′0 : ‖g′′0‖∞ = |g′′0 (z0)|. Let us show that the following
system cannot be possible:

|f ′′(z0)| < |g′′0 (z0)|,
|f ′′(z0e

2iπ/3)| < |g′′0 (z0e
2iπ/3)|,

|f ′′(z0e
−2iπ/3)| < |g′′0 (z0e

−2iπ/3)|.
(4.22)

Denote βi := g′′i (z0). Since f = g0 + g1 + g2, the system (4.22) can be written
|β0 + β1 + β2| < |β0|,
|β0e

−4iπ/3 + β1e
−2iπ/3 + β2| < |β0e

−4iπ/3|,
|β0e

4iπ/3 + β1e
2iπ/3 + β2| < |β0e

4iπ/3|.
(4.23)

If β0 = 0, the result is clear. Otherwise, define

γ1 :=
β1

β0
and γ2 :=

β2

β0
.

Dividing each equation by |β0|, we get from (4.23)
|1 + γ1 + γ2| < 1,

|1 + γ1e
2iπ/3 + γ2e

−2iπ/3| < 1,

|1 + γ1e
−2iπ/3 + γ2e

2iπ/3| < 1.

(4.24)
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But this is impossible:

|1 + γ1 + γ2|2 + |1 + γ1e
2iπ/3 + γ2e

−2iπ/3|2 + |1 + γ1e
−2iπ/3 + γ2e

2iπ/3|2
= 3(1 + |γ1|2 + |γ2|2) ≥ 3.

Thus

‖g′′0‖∞ ≤ ‖f ′′‖∞.
We can proceed in the same way to prove that

‖∇ψ0‖∞ ≤ ‖∇φ‖∞.
In the same way, when Ω is the n-sided regular polygon centered in O, we will

seek f in the form

f(z) =

+∞∑
k=0

aknz
kn.(4.25)

4.2. Explicit computations: First study. Let Ω be the n-sided regular poly-
gon. Thanks to the preliminary results, we study the results given by the function

f(z) = −ε 1

nRn−2
zn with ε > 0.(4.26)

That gives the relations

∇φ(z) =
z

2
− ε z

n−1

Rn−2
,(4.27)

λ1(φ) =
1

2
− ε(n− 1).(4.28)

Because of Lemma 4.3, we will take ε ∈ [0, 1
6(n−1) ]. Moreover, the relation

|∇φ(z)| = |∇φ(ze2iπ/n)|
allows us to study ‖∇φ‖∞ on only one side side of Ω. We shall treat the case “n odd,”
n = 2n′ + 1; in order to simplify the computations, we will study the problem on the

vertical side In′ := [Re2in′π/n,Re2i(n′+1)π/n]. When n is even, it is convenient to do
a rotation on Ω so that it has a vertical side. Set z ∈ In′ :

z = R cos
2πn′

n
+ iy, y ∈

[
−R sin

2πn′

n
,R sin

2πn′

n

]
.

Denote

ρ := R cos
2πn′

n
= −R cos

π

n
,(4.29)

Y := y2 and Ymax :=
(
R sin

2πn′

n

)2

= R2 sin2π

n
.(4.30)

So we have on In′

‖∇φ(z)‖2 =
1

4
(ρ2 +Y )− ερ

Rn−2

n′∑
q=0

C2q
n (−1)qρn−2q−1Y q +

( ε

Rn−2

)2

(ρ2 +Y )n−1.
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Denote by Fε(Y ) this function. In order to calculate ‖∇φ‖∞, we study the variations
of Fε. Let us show Fε is a convex function on [0, Ymax]:

F ′′ε (Y ) = − ερ

Rn−2

n′∑
q=0

q(q − 1)C2q
n (−1)qρn−2q−1Y q−2

+ (n− 1)(n− 2)
( ε

Rn−2

)2

(ρ2 + Y )n−3.

• If n′ ≤ 2, F ′′ε is clearly nonnegative.
• If n′ ≥ 3, putting the terms two by two, we see that F ′′ε is the sum of the

terms

J2k(Y ) = 2kρn−4k−3Y 2k−2
(

(2k − 1)C4k
n ρ2 − (2k + 1)C4k+2

n Y
)

=
n!2kρn−1−4k−2Y 2k−2

(4k)!(n− 4k − 2)!

(
2k − 1

(n− 4k)(n− 4k − 1)
ρ2 − 2k + 1

(4k + 2)(4k + 1)
Y

)
.

So it is sufficient to show that each term J2k(Y ) is nonnegative. J2k(Y ) has the same

sign than V2k(Y ) :=
(

2k−1
(n−4k)(n−4k−1)ρ

2 − 2k+1
(4k+2)(4k+1)Y

)
. By monotonicity,

V2k(Y ) ≥ V2(Ymax) =
1

(n− 4)(n− 5)
ρ2 − 1

10
Ymax

≥
(

10

(n− 4)(n− 5)
− tan2π

n

)
ρ2

10
,

but for all n ≥ 7,

tan2π

n
≤ 10

(n− 4)(n− 5)
.

Thus Fε is convex, and then

‖Fε‖∞ = sup{Fε(0), Fε(Ymax)}.
That ends the study of Fε for ε fixed. Next we study the behavior of ‖Fε‖∞ with
respect to ε:

Fε(0) =

(
1

2
ρ− ε ρ

n−1

Rn−2

)2

increases when ε increases, because ρ < 0;

Fε(Ymax) = |∇φ(Re
2iπn′
n )|2 = |∇φ(R)|2 =

(
1

2
− ε
)2

R2 decreases when ε increases.

In order to minimize ‖∇φ‖∞, we will take, if it is possible, ε such that Fε(0) =
Fε(Ymax). That gives the value given in Theorem 4.1: ε = εn. However, we have still
to verify that this value belongs to the interval [0, 1

6(n−1) ] in which we search for ε.

Computing the numerical values, we see that
• if n ≤ 8, εn >

1
6(n−1) ; hence the best value of ε is 1

6(n−1) , and

ω(φ) = 6‖∇φ‖∞ = 6|∇φ(R)| =
(

3− 1

n− 1

)
R;

• if n ≥ 9, εn ≤ 1
6(n−1) ; hence the best value of ε is εn, and

ω(φ) = (3− 6εn)R.
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4.3. Explicit computations: Second study. When Ω is the equilateral tri-
angle, we can go further and study the results given by

f(z) = az3 + bz6 and φ(z) =
1

4
|z|2 + ε Re f(z).(4.31)

Assume ∇P (R) = (−R, 0). A careful study of the variations of G(Y ) := |f ′′(z)|2 on
the vertical side of Ω shows that

• if −5 baR
3 ∈ [0, 1

4 ], G is increasing on [0, Ymax]; so the smallest value of f ′′ is
obtained when

aR = −10

27
and bR4 =

1

54
; then ‖f ′′‖∞ = f ′′(R) =

5

3
;

• if −5 baR
3 ∈ [ 1

4 ,
1
2 ], G attains its upper bound only once and in ]0, Ymax[; we

see with numerical values that

if aR ' −0, 4 and bR3 ' 0, 033, then ‖f ′′‖∞ ' 1, 56.

Then it is easy to see that ‖∇φ‖ is an increasing function of Y on [0, Ymax] if ε‖f ′′‖∞ ≤
1
6 . So

6‖∇φ‖∞ = 6|∇φ(R)| = 6

(
1

2
− ε
)
R ≤ 2, 36R,

which proves the estimate (4.11).

5. Uniform stabilization of Maxwell’s equations in almost star-shaped
domains. The notion of “almost star-shaped domains” allows us to extend results of
Komornik [9] on the uniform stabilization of Maxwell’s equations. Kapitonov [7] also
treated this problem in another class of “substarlike domains.”

5.1. Statement of the problem and main results. We consider the following
evolutionary system:

E′ − rot H = 0 = H ′ + rot E in Ω× R+,(5.1)

div E = 0 = div H in Ω× R+,(5.2)

ν × (E × ν +H) = 0 on Γ× R+,(5.3)

E(0) = E0, H(0) = H0 in Ω.(5.4)

As usual denote the energy space

H = {(E,H) ∈ L2(Ω)6,div E = div H = 0 dans Ω}.
According to Barucq and Hanouzet [3], we have the following existence theorem.

Theorem 5.1. Let Ω be a bounded open domain of R3 of class C2.
1. Given (E0, H0) ∈ H, there exists a unique weak solution

(E,H) ∈ C(R+,H).(5.5)

2. Given (E0, H0) ∈ {(E,H) ∈ H1(Ω)6, ν × (E × ν + H) = 0 on Γ}, which is a
dense subspace of H, there exists a unique strong solution

(E,H) ∈ C1(R+,H) ∩ C(R+, H
1(Ω)6).(5.6)



692 PATRICK MARTINEZ

Define the energy of solutions by

E(t) =
1

2

∫
Ω

|E(t)|2 + |H(t)|2 dx = ‖(E,H)‖2H(t).(5.7)

Assume there exists φ ∈ C2(Ω) such that
∆φ = 1 in Ω,

λ1(φ) > 1
4 ,

∂νφ > 0 on Γ.

(5.8)

The method exposed before allows us to construct almost star-shaped domains that
are not star-shaped (and are not strictly starlike) that verify (5.8). On such domains
we have the following stabilization result.

Theorem 5.2. Given (E0, H0) ∈ H, the energy of the associated weak solution
satisfies the estimate

∀t ≥ 0, E(t) ≤ E(0)e1− 4λ1(φ)−1

R(φ)+‖∇φ‖∞ t with R(φ) = sup
Γ

‖∇φ‖2∞
∂νφ

.(5.9)

5.2. Key elements of the proof of Theorem 5.2. We prove (5.9) only for
smooth initial data. Thanks to the boundary condition, the energy is nonincreasing
and we have the following.

Lemma 5.3.

∀ 0 < S < T < +∞ : E(S)− E(T ) =

∫ T

S

∫
Γ

|Eτ |2 =

∫ T

S

∫
Γ

|Hτ |2,(5.10)

where Eτ and Hτ designate the tangential components of E and H.
The key to the proof of Theorem 5.2 is the following identity.
Lemma 5.4.

(5.11)

∫ T

S

∫
Γ

(|E|2 + |H|2)∂νφ− 2

∫ T

S

∫
Γ

(H · ∇φ)(H · ν) + (E · ∇φ)(E · ν)

= −2

[∫
Ω

(E ×H).∇φ
]T
S

+

∫ T

S

∫
Ω

|E|2 + |H|2 − 2
(
D2φ · E|E

)
− 2
(
D2φ ·H|H

)
.

Proof. Using (5.1) and (5.2), it is easy to verify that

2

[∫
Ω

(E1H2 − E2H1)φ,3

]T
S

= −
∫ T

S

∫
Γ

(H2
1 +H2

2 +H2
3 + E2

1 + E2
2 + E2

3)φ,3ν3

+ 2

∫ T

S

∫
Γ

φ,3H3(H1ν1 +H2ν2) + φ,3E3(E1ν1 + E2ν2)

+ 2

∫ T

S

∫
Γ

(H2
3 + E2

3)φ,3ν3 +

∫ T

S

∫
Ω

(H2
1 +H2

2 +H2
3 + E2

1 + E2
2 + E2

3)φ,3,3

− 2

∫ T

S

∫
Ω

H3H2φ,3,2 +H3H1φ,3,1 + E3E1φ,3,1 + E3E2φ,3,2 +H2
3φ,3,3 + E2

3φ,3,3.
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Two similar identities are obtained by cyclical permutation of the indexes 1, 2, and
3. Adding the three identities, we obtain (5.11). Then it is easy to conclude, thanks
to (5.8) and to the boundary condition (5.3), that we have

(5.12)

∫
Ω

|E|2 + |H|2 − 2
(
D2φ · E|E

)
− 2
(
D2φ ·H|H

)
≥ (4λ1(φ)− 1)

∫
Ω

|E|2 + |H|2,

(5.13) (|E|2 + |H|2)∂νφ− 2(E.∇φ)(E.ν)− 2(H.∇φ)(H.ν)

≤ ‖∇φ‖
2

∂νφ
(|Eτ |2 + |Hτ |2).

Then using the estimates (5.10), (5.12), and (5.13), the identity (5.11) gives

2(4λ1(φ)− 1)

∫ T

S

E ≤
∫ T

S

∫
Γ

‖∇φ‖2
∂νφ

(|Eτ |2 + |Hτ |2) + 2‖∇φ‖∞(E(S) + E(T ))

≤ 2R(φ)(E(S)− E(T )) + 2‖∇φ‖∞(E(S) + E(T )).

Since by definition R(φ) ≥ ‖∇φ‖∞, we obtain that

(4λ1(φ)− 1)

∫ T

S

E ≤
(
R(φ) + ‖∇φ‖∞

)
E(S).(5.14)

We conclude using the Gronwall-type inequality we used in section 3.

Acknowledgments. I wish to thank B. Rao for fruitful discussions that led to
the construction of Figure 2.1 and V. Komornik for his remarks.
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Masson, Paris, 1998.
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Abstract. Constrained supremum and supremum operators are introduced to obtain a general
procedure for computing supremal elements of upper semilattices. Examples of such elements include
supremal (A,B)-invariant subspaces in linear system theory and supremal controllable sublanguages
in discrete-event system theory. For some examples, we show that the algorithms available in the
literature are special cases of our procedure. Our iterative algorithms may also provide more insight
into applications; in the case of supremal controllable subpredicate, the algorithm enables us to derive
a lookahead policy for supervisory control of discrete-event systems.
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1. Introduction. In system theory, we sometimes encounter lattice structures
[2], [5]. Examples are the lattice of equivalence relations in the theory of sequential
machines [9], the lattice of subspaces in geometric control [29], and the lattice of sub-
languages in algebraic discrete-event system theory [24]. In these cases, we are usually
interested in computing the supremal (or dually, infimal) element of an upper (resp.,
lower) semilattice: for instance, supremal (A,B)-invariant subspaces [29] or supremal
controllable sublanguages [28]. For some of these supremal elements, algorithms are
available in the literature. For example, in [14] certain supremal and infimal elements
are obtained as extremal solutions to systems of inequalities over the corresponding
lattices. In this paper we present a general framework based on constrained supremum
and supremum operators for computing supremal elements, which unifies many of the
above-mentioned algorithms, including those of [14]. We will see that previous results
are special cases of our general procedure, which we call the ∆-method. In some cases,
these procedures provide us with more insight into the applications of system theory.
For example, in the computation of supremal controllable subpredicate, we are led to
a lookahead policy for supervisory control.

The supremum operator (referred to as the maximum operator in [9]) is used in [9]
in the computation of the supremal elements of finite lattices. There, the underlying
binary relation is assumed to be a pair algebra, and therefore is closed with respect to
component-wise join and meet operations. In system theory, however, we are usually
interested in the supremal elements of infinite upper semilattices. In these cases, the
underlying relation of the supremum operator is not a pair algebra. In this paper,
we will generalize the approach of [9] and obtain a procedure suitable for computing
supremal elements in system theory. We will also introduce a constrained supremum
operator, based on which we will present a second iterative algorithm for computing
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supremal elements. Although our focus will be on computing supremal elements, dual
results for infimal elements will be presented without proof to complete the discussion.

In section 2, we define constrained supremum and supremum operators and derive
procedures for computing supremal elements. Next, in section 3, we apply our results
to a number of examples in system theory. Dual results for computing infimal elements
are given in section 4. Finally, we summarize our work in section 5.

In this paper, the bottom and top elements of lattices are denoted by ⊥ and >.
In a poset L, x ∈ L is a fixpoint of an operator ϕ : L → L iff ϕ(x) = x, and ϕ(·)
is monotone iff x ≤ x′ implies ϕ(x) ≤ ϕ(x′) for all x, x′ ∈ L. Also |Q| denotes the
cardinality of the set Q.

2. Supremum operators. Throughout this section, ≤ denotes a partial order
on the corresponding lattice (or poset). For any two elements x and y of a lattice
(poset), x ≥ y means y ≤ x. We shall also denote the meet and join operations by ∧
and ∨ and use ∨ (resp., ∧) and sup (resp., inf) interchangeably.

Consider a complete lattice L. Let S ⊆ L be a complete upper semilattice under
the join operation ∨ of L. For every z ∈ L, define

z↑ := sup{x | x ∈ S, x ≤ z}.

Of course z↑ ∈ S. In this section, we will present algorithms for computing z↑. Toward
this end, the supremum operators will be introduced.

We begin by defining contractive operators.
Definition 1. Let L be a poset. An operator ϕ : L → L is contractive iff

ϕ(x) ≤ x for all x ∈ L.
Theorem 1 presents the main algorithm for computing z↑.
Theorem 1. Let L be a complete lattice, S ⊆ L be an upper semilattice under

the join operation ∨ of L, and ϕ : L→ L be an operator with the following properties:
(i) S = {x ∈ L | ϕ(x) = x},
(ii) ϕ(·) is monotone,
(iii) ϕ(·) is contractive.

Let z ∈ L, and suppose there exists an integer k∗ ≥ 0 such that the recursion

z0 = z,

zk+1 = ϕ(zk)

terminates in k∗ steps. Then

z↑ = sup{x | x ∈ S, x ≤ z} = zk for all k ≥ k∗.

Proof. Since ϕ(·) is contractive, zk+1 = ϕ(zk) ≤ zk for all k ≥ 0. Therefore {zk} is
a nonincreasing sequence. Since zk+1 = zk for all k ≥ k∗ by assumption, ϕ(zk∗) = zk∗ ;
hence zk∗ ∈ S. Moreover zk∗ ≤ z0 = z; therefore zk∗ ∈ {x | x ∈ S, x ≤ z}. For
any x ∈ S such that x ≤ z, if x ≤ zk then x = ϕ(x) ≤ ϕ(zk) = zk+1. Therefore,
by induction, x ≤ zk for all k ≥ 0. As a result, zk∗ is the supremal element sought:
z↑ = zk∗ .

Remark 1. In the theorem, the sequence {zk} is required to be finite. A poset
in which, for any chain z0 ≥ z1 ≥ · · · ≥ zk ≥ · · · of elements there exists an integer
n ≥ 0 such that zk = zn for all k ≥ n is said to satisfy the descending chain condition
(DCC) [5]. A lattice of finite length, i.e., one in which the length of the longest chain
is finite, satisfies the DCC. Graded lattices and finite lattices are of finite length and
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therefore satisfy the DCC [2]. Clearly, in Theorem 1, satisfaction of the DCC (by
L) guarantees finite termination of the recursion. However, if L does not satisfy the
DCC, then finite termination has to be established before the theorem can be used.
One way to do this is to show that the chain {zk} is contained in a subset of L which
satisfies the DCC. Formally we express this simple result as the following lemma.

Lemma 1. Suppose the chain z0 ≥ z1 ≥ · · · ≥ zk ≥ · · · of elements of a given poset
is contained in a subset of the poset which satisfies the descending chain condition.
Then there exists an integer n ≥ 0 such that zk = zn for all k ≥ n.

In the next section, we shall see an application of this lemma in the computation
of supremal controllable sublanguages.

Remark 2. Theorem 1 still holds if L is a complete upper semilattice.
In Theorem 1, z↑ is computed as the greatest fixpoint of the contractive monotone

operator ϕ(·). By assumption, the set of fixpoints of ϕ coincides with the upper
semisublattice S. We note that the fixpoints of a contractive monotone operator
always form a complete upper semilattice (under the join operation of the underlying
lattice). To see this, recall that by the Knaster–Tarski fixpoint theorem [26], the set
of fixpoints of a monotone operator is nonempty. Now let {xα | α ∈ A} be a subset of
the set of fixpoints of a contractive monotone operator ϕ. Then ∨αxα = ∨αϕ(xα) ≤
ϕ(∨αxα) because ϕ is monotone. Also since ϕ is contractive, ϕ(∨αxα) ≤ ∨αxα.
Therefore ∨αxα = ϕ(∨αxα); i.e., ∨αxα is a fixpoint of ϕ.

Theorem 1 presents a list of properties for the operator ϕ(·) sufficient to guarantee
the convergence of the algorithm, but it does not suggest any particular structure for
the operator explicitly. The constrained supremum operator, to be introduced shortly,
is contractive and, as will be illustrated in the next section, with a suitable choice of
its underlying binary relation can be made to satisfy the assumptions of Theorem 1.

Definition 2. Let L be a complete lattice and ∆ ⊆ L × L. The constrained
supremum operator Ψ̂ : L→ L is defined as

Ψ̂(y) := sup{x | (x, y) ∈ ∆, x ≤ y}.
The symbol Ψ̂(·) does not show the dependency of the constrained supremum

operator on its underlying relation ∆. In this paper, no ambiguity will result because
we will not work with more than one binary relation at a time. We will denote the
supremum operator (Definition 4) and the infimum operators (section 4) following the
same convention.

If for some y ∈ L the set of x’s in Definition 2 is empty, then by “empty set logic”
Ψ̂(y) = ⊥.

Lemma 2. The constrained supremum operator is contractive.
Proof. The proof follows immediately from Definition 2.
We will need the definition of S-reflexive relations.
Definition 3. Let L be a poset and S ⊆ L. A relation ∆ ⊆ L × L is reflexive

with respect to S or simply S-reflexive iff

L∆ := {x ∈ L | (x, x) ∈ ∆} = S.

A reflexive relation on L is obviously L-reflexive too.
Theorem 2 follows from Theorem 1 and presents an iterative procedure for com-

puting z↑ in terms of the constrained supremum operator.
Theorem 2. Assume that L is a complete lattice and S ⊆ L is an upper semi-

lattice under the join operation ∨ of L. Let ∆ ⊆ L × L be S-reflexive, and assume
that
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(i) L∆ = {x ∈ L | Ψ̂(x) = x},
(ii) Ψ̂(·) is monotone.

Let z ∈ L, and suppose there exists an integer k∗ ≥ 0 such that the iteration

z0 = z,

zk+1 = Ψ̂(zk)

terminates in k∗ steps. Then

z↑ = sup{x | x ∈ S, x ≤ z} = zk for all k ≥ k∗.

Proof. The proof follows from Theorem 1 and Lemma 2.
Remarks 1 and 2 apply to Theorem 2 as well. Regarding assumption (i) in

Theorem 2, we note that L∆ ⊆ {x ∈ L | Ψ̂(x) = x} is always true but the reverse
inclusion ⊇ depends on ∆. Assumptions (i) and (ii) are expressed in terms of Ψ̂(·).
As we shall see in the next section, in order to use Theorem 2, we start by defining
a suitable ∆, and then we compute Ψ̂. Sometimes verifying (i) and (ii) directly in
terms of Ψ̂ is difficult. The following propositions provide sufficient conditions for the
satisfaction of (i) and (ii) in terms of ∆. These conditions are usually easier to check.

Proposition 1. Let L be a complete lattice, ∆ ⊆ L×L and Ψ̂(·) the correspond-
ing constrained supremum operator. If, for every set of pairs {(xα, y) ∈ ∆ | α ∈ A},
with A being some index set, we have (∨αxα, y) ∈ ∆, then

L∆ = {x ∈ L | Ψ̂(x) = x}.

Proof. If x ∈ L∆, then (x, x) ∈ ∆, therefore Ψ̂(x) = x. Conversely, if x = Ψ̂(x),
then (x, x) ∈ ∆ (i.e., x ∈ L∆) because (Ψ̂(x), x) ∈ ∆ by assumption.

Proposition 2. Let L be a complete lattice and ∆ ⊆ L × L. If (x, y) ∈ ∆
and y ≤ y′ imply (x, y′) ∈ ∆, then the constrained supremum operator Ψ̂ must be
monotone.

Proof. If y ≤ y′, then it follows from the assumption that

{x | (x, y) ∈ ∆, x ≤ y} ⊆ {x | (x, y′) ∈ ∆, x ≤ y}
⊆ {x | (x, y′) ∈ ∆, x ≤ y′};

therefore Ψ̂(y) ≤ Ψ̂(y′).
Now we discuss another iterative algorithm which is probably more familiar.
Definition 4. Let L be a complete lattice and ∆ ⊆ L × L. The supremum

operator Ψ : L→ L is defined according to

Ψ(y) := sup{x | (x, y) ∈ ∆}.

If, for some y ∈ L, there exists no x ∈ L such that (x, y) ∈ ∆, then Ψ(y) = ⊥ by
“empty set logic.”

Theorem 3. Assume that L is a complete lattice and S ⊆ L is an upper semi-
lattice under the join operation ∨ of L. Let ∆ ⊆ L × L be S-reflexive, and assume
that

(i) L∆ = {x ∈ L | x ≤ Ψ(x)},
(ii) Ψ(·) is monotone.
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Let z ∈ L and suppose there exists an integer k∗ ≥ 0 such that the iteration

z0 = z,

zk+1 = Ψ(zk) ∧ z
terminates in k∗ steps. Then

z↑ = sup{x | x ∈ S, x ≤ z} = zk for all k ≥ k∗.
Proof. Let ϕ(x) := Ψ(x) ∧ x for x ∈ L. Obviously ϕ(·) is contractive. It follows

from the assumptions of the theorem that ϕ(·) is also monotone and L∆ is its set of
fixpoints. Using induction, we can show that with ϕ(x) = Ψ(x) ∧ x, the sequence in
Theorem 1 is identical to the sequence generated in Theorem 3 and hence terminates
in k∗ steps. By Theorem 1, z↑ = zk for all k ≥ k∗.

Remark 1 applies to Theorem 3 as well.
L∆ ⊆ {x ∈ L | x ≤ Ψ(x)} always holds, but the reverse inclusion ⊇ depends

on ∆. The following propositions will help in verifying assumptions (i) and (ii) of
Theorem 3.

Proposition 3. Let L be a complete lattice, ∆ ⊆ L× L, and Ψ(·) be the corre-
sponding supremum operator. Suppose that

(i) for every set of pairs {(xα, y) ∈ ∆ | α ∈ A} with A being some index set,
(∨αxα, y) ∈ ∆; and

(ii) (x, y) ∈ ∆ and x′ ≤ x imply (x′, y) ∈ ∆.
Then

L∆ = {x ∈ L | x ≤ Ψ(x)}.
Proof. If x ∈ L∆, then (x, x) ∈ ∆; therefore x ≤ Ψ(x). Conversely, let x ≤ Ψ(x).

It follows from (i) that (Ψ(x), x) ∈ ∆. Hence by (ii), (x, x) ∈ ∆; i.e., x ∈ L∆.
Proposition 4. Let L be a complete lattice and ∆ ⊆ L × L. If (x, y) ∈ ∆ and

y ≤ y′ imply (x, y′) ∈ ∆, then the supremum operator Ψ(·) must be monotone.
Proof. If y ≤ y′, then {x | (x, y) ∈ ∆} ⊆ {x | (x, y′) ∈ ∆}. Therefore Ψ(y) ≤

Ψ(y′).
Remark 3. In Theorems 2 and 3, one “sup” operation (over L∆) is replaced with

another one (over x’s satisfying (x, zk) ∈ ∆). As we shall see in the following section,
the latter operation is usually easier to do. The usefulness of Theorems 2 and 3 is
due to this fact.

Remark 4. Theorems 1, 2, and 3 compute the supremal element as the greatest
fixpoint of monotone operators. This is a standard technique (see, e.g., [22], [27])
which relies on the Knaster–Tarski fixpoint theorem [26], [15]. In this paper we are
presenting a method for obtaining these monotone operators, i.e., defining a suitable
S-reflexive relation ∆ and computing Ψ̂(·) or Ψ(·). We shall refer to this method as
the ∆-method. Examples given in the following section will show that the method
is fairly general. Note that in this paper no systematic way for defining a suitable
relation ∆ is provided; however, the next section will demonstrate how such a relation
can be chosen in a number of cases.

3. Applications. In this section, we will apply the ∆-method to some examples
in system theory. In each example, the first step is to identify the lattice L, then define
an appropriate S-reflexive relation ∆. Next we have to compute the (constrained)
supremum operator. If L does not satisfy the DCC, we also have to see if the iteration
terminates in a finite number of steps.



700 S. HASHTRUDI ZAD, R. H. KWONG, AND W. M. WONHAM

Example 1. Extremal solutions of inequalities. In [14], the existence and compu-
tation of extremal solutions of inequalities over lattices are studied. Based on this,
algorithms for the computation of some of the supremal and infimal elements in su-
pervisory control of discrete-event systems are obtained. Specifically the following
result is established.

Theorem 4 (see [14]). Consider the system of inequalities {fi(x) ≤ gi(x)}1≤i≤n
over a complete lattice L, with fi’s being disjunctive and gi’s monotone. Let f⊥i denote
the dual of fi, and define h1 : L→ L as

h1(x) :=
n∧
i=1

f⊥i (gi(x)).

If the iteration

z0 = >,
zk+1 = h1(zk)

terminates in a finite number of steps—say k∗—then

zk∗ = sup{x | for all i ≤ n : fi(x) ≤ gi(x)}.
In a complete lattice L, the dual of a function f : L→ L has been defined to be

a function f⊥ : L → L, with f⊥(y) = sup{x ∈ L | f(x) ≤ y} for every y ∈ L [14].
Moreover f : L → L is called disjunctive iff for every subset {xα ∈ L | α ∈ A}, with
A being an index set, f(∨αxα) = ∨αf(xα) [7], [14]. Note that f disjunctive implies f
monotone.

The remaining results in [14] are derived from the above theorem. We shall
show that Theorem 4 and hence the resulting algorithms of [14] are special cases of
Theorem 3.

Let S = {x | for all i ≤ n : fi(x) ≤ gi(x)}. Define ∆ ⊆ L× L to be

∆ = {(x, y) | x, y ∈ L and for all i ≤ n : fi(x) ≤ gi(y)}.
For every x ∈ L, (x, x) ∈ ∆ iff x is a solution of {fi(x) ≤ gi(x)}1≤i≤n; therefore ∆ is
S-reflexive and

sup{x | for all i ≤ n : fi(x) ≤ gi(x)} = sup{x | x ∈ L∆}.
For a set {(xα, y) ∈ ∆ | α ∈ A}

fi

(∨
α

xα

)
=
∨
α

fi(xα) (fi is disjunctive)

≤ gi(y).

Therefore (∨αxα, y) ∈ ∆. If (x, y) ∈ ∆ and x′ ≤ x, then fi(x
′) ≤ fi(x) ≤ gi(y) for all

i ≤ n; hence (x′, y) ∈ ∆. Also (x, y) ∈ ∆ and y ≤ y′ imply fi(x) ≤ gi(y) ≤ gi(y
′) for

all i ≤ n, which in turn implies (x, y′) ∈ ∆.
By Definition 4

Ψ(y) = sup{x | for all i ≤ n : fi(x) ≤ gi(y)}
= sup{x | x ≤ h1(y)} (by Lemma 5 of [14])

= h1(y).
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Now it is easy to see that Theorem 4 follows from Theorem 3 and Propositions 3
and 4.

The framework presented in this paper is more general than the one given in
[14]. To see this, consider the lattice L = {⊥, x1, x2,>} with ⊥ < x1 < x2 < >.
Define functions f and g according to f(⊥) = ⊥, f(x1) = >, f(x2) = >, f(>) = x2,
g(⊥) = ⊥, g(x1) = x1, g(x2) = x2, g(>) = x2. Consider the problem of finding
sup{x ∈ L | f(x) ≤ g(x)}. Theorem 4 does not apply to this case, because f
is not disjunctive. However, it is easy to see that the iteration in Theorem 2 with
∆ = {(x, y) ∈ L×L | f(x) ≤ g(y)} will give us the supremal solution of the inequality.
Note that there are problems that can be solved using our approach but cannot be
(easily) cast into a problem of solving a system of inequalities. The “relational coarsest
partition” problem [11], [23] is one example, to be discussed later in this paper.

Example 2. Supremal (A,B)-invariant subspace. Consider the finite-dimensional
linear time-invariant system

ẋ(t) = Ax(t) +Bu(t),

where x(t) ∈ X . A subspace V ⊆ X is called (A,B)-invariant iff AV ⊆ V + ImB
[29], where ImB is the subspace spanned by the columns of B. For every K ⊆ X ,
there exists a supremal (A,B)-invariant subspace K↑ contained in K(K↑ ⊆ K) [29].
A recursion for computing K↑ can be derived as follows.

The set of subspaces V ⊆ X partially ordered by subspace inclusion ⊆ and under
operations sum + and intersection ∩ of subspaces forms a complete lattice; call it L.
In this case ⊥ = 0 and > = X . Let S be the set of (A,B)-invariant subspaces. Define
∆ ⊆ L× L as follows:

∆ = {(V1,V2) | V1,V2 ⊆ X and AV1 ⊆ V2 + ImB}.
For every V ⊆ X , (V,V) ∈ ∆ iff V is (A,B)-invariant; hence ∆ is S-reflexive and

K↑ = sup{V | V ∈ L∆, V ⊆ K}.
Moreover ∆ satisfies the assumptions of Propositions 3 and 4. Define A−1V := {x ∈
X | Ax ∈ V} and observe that (A−1(V+ImB),V) ∈ ∆ for any V ⊆ X since A(A−1(V+
ImB)) ⊆ V+ImB. Also if for some V1 ⊆ X we have (V1,V) ∈ ∆, then AV1 ⊆ V+ImB
and hence V1 ⊆ A−1(V + ImB). Therefore Ψ(V) = A−1(V + ImB). The lattice L is
not finite, but it is of finite length (in fact, graded) with d(V), denoting dimension of
V ⊆ X , as the height function (in a poset of finite length, the height of an element
is the least upper bound of the lengths of the chains that start at ⊥ and end at the
element) [2]. Therefore by Theorem 3 and Propositions 3 and 4

K0 = K,
Kk+1 = K ∩A−1(Kk + ImB),

K↑ = Kk, k ≥ d(K).

This is a well-known result [29].
Similarly, Theorem 2 gives the following iteration:

K0 = K,
Kk+1 = Ψ̂(Kk) = Kk ∩A−1(Kk + ImB),

K↑ = Kk, k ≥ d(K).
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Example 3. Supremal controllable sublanguage. Let Σ be a nonempty finite al-
phabet of elements and Σ∗ be the set of all finite strings of elements of Σ, including
the empty string. A subset K ⊆ Σ∗ is called a language. Let N be a fixed language
and Σu be a fixed subset of Σ. A language K ⊆ Σ∗ is controllable (with respect to N
and Σu) iff KΣu ∩N ⊆ K, where K is the prefix closure of K [24]. Every language
E has a supremal controllable sublanguage, denoted here by E↑ [24].

Let L = Pwr(Σ∗) be the power set of Σ∗. Then L, partially ordered by set inclu-
sion ⊆ and under the operations union ∪ and intersection ∩ of sets, forms a complete
lattice, with ⊥ = ∅ and > = Σ∗. Let S be the set of controllable sublanguages. Define
∆ ⊆ L× L to be

∆ = {(K1,K2) | K1,K2 ∈ L and K1Σu ∩N ⊆ K2}.

For every K ∈ L, (K,K) ∈ ∆ iff K is controllable; as a result ∆ is S-reflexive and

E↑ = sup{K | K ∈ L∆, K ⊆ E}.

We see that for the set {(Kα
1 ,K2) ∈ ∆ | α ∈ A}⋃

α

Kα
1 Σu ∩N =

⋃
α

(Kα
1 Σu ∩N) ⊆ K2;

hence (∪αKα
1 ,K2) ∈ ∆. Also if (K1,K2) ∈ ∆ and K ′1 ⊆ K1, then

K ′1Σu ∩N ⊆ K1Σu ∩N ⊆ K2;

i.e., (K ′1,K2) ∈ ∆. Therefore by Proposition 3, L∆ = {x ∈ L | x ≤ Ψ(x)}. Similarly,
using Proposition 4, we can show that Ψ(·) is monotone. According to Definition 4,
for K ∈ L,

Ψ(K) = sup{D | DΣu ∩N ⊆ K}.

The iteration in Theorem 3 becomes

E0 = E,

Ek+1 = E ∩ sup{D | DΣu ∩N ⊆ Ek},

which, when E and N are regular languages, is known to converge in a finite number
of steps [28]—say, k∗. Hence by Theorem 3: E↑ = Ek for all k ≥ k∗. Here the lattice
L does not satisfy the DCC. However, when E and N are regular over the fixed, finite
alphabet Σ, the languages Ek belong to the finite set {K | ‖K‖ ≤ ‖E‖ · ‖N‖ + 1}
[28]. Here ‖K‖ denotes the minimal cardinality of the state set of an automaton
that “recognizes” K [10]. Therefore, finite termination of the recursion follows from
Lemma 1.

Example 4. Supremal normal sublanguage. With Σ and Σ∗ as in Example 3, let K
be a fixed language. Suppose that Σo is a fixed subset of Σ, and let P : Σ∗ → Σ∗o denote
the natural projection. A language N ⊆ K is (K,P )-normal iff K ∩ P−1(PN) = N
[20], [21]. Note that N ⊆ K ∩ P−1(PN) always holds. Every language E ⊆ K has a
unique supremal normal sublanguage, denoted here by E∗ [21].

Let L be the set of sublanguages of K; i.e., L := {N | N ⊆ K ⊆ Σ∗}. Then
L is partially ordered by set inclusion ⊆ and, under the operations union ∪ and
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intersection ∩ of sets, forms a complete lattice, with ⊥ = ∅ and > = K. Let S be the
set of (K,P )-normal languages. Now define

∆ = {(N1, N2) | N1, N2 ∈ L and K ∩ P−1(PN1) ⊆ N2}.

For every N ∈ L, (N,N) ∈ ∆ iff N is (K,P )-normal; hence ∆ is S-reflexive and

E∗ = sup{N | N ∈ L∆, N ⊆ E}.

Using Propositions 1 and 2 it is straightforward to verify that Ψ̂(·) satisfies assump-
tions (i) and (ii) of Theorem 2. In this case the constrained supremum operator is

Ψ̂(N) = sup{N ′ ⊆ K | K ∩ P−1(PN ′) ⊆ N, N ′ ⊆ N ⊆ K}
= {x ∈ N | K ∩ P−1(Px) ∈ N ⊆ K}.

Using Figure 1 with

X = (K ∩ P−1(PN))−N

we can see that N∩P−1(PX) contains those strings x ∈ N that violateK∩P−1(Px) ∈
N . Therefore

Ψ̂(N) = N − P−1(PX)

= N − P−1P (K −N).

The last equality holds because P (K − (X ∪ N)) ∩ P (N) = ∅. The recursion in
Theorem 2 will be

E0 = E,

Ek+1 = Ek − P−1P (K − Ek).

The above iteration converges in one step since E∗ = E − P−1P (K − E) [12]. We
note that in this example the lattice L does not satisfy the DCC. If K and E are
closed and L contains only the closed sublanguages of K, then the iteration becomes

E0 = E,

Ek+1 = Ek − P−1P (K − Ek)Σ∗

to keep Ek’s closed. The above recursion also converges in only one step because
E∗ = E − P−1P (K − E)Σ∗ [3].

Example 5. Supremal controllable subpredicate. Predicates and predicate trans-
formers [6] are used in state-based control of discrete-event systems [25]. For other
examples refer to [18] and [13] and their references. Using the notation in [18], let
Q be the set of states of a discrete-event system G. A predicate P is controllable
(with respect to G) iff P � Mσ(P ) for all σ ∈ Σu and P � R(G,P ) [17], where �
means “implies,” Σu is the set of uncontrollable events, Mσ(P ) the “weakest liberal
precondition” of P , and R(G,P ) the “reachability predicate.” For every predicate P ,
there exists a supremal controllable subpredicate P ↑(� P ) [18].

Let L be the family of predicates on Q. Then L is partially ordered by � and
under operations disjunction ∨ and conjunction ∧ of predicates forms a complete
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Fig. 1. Computing Ψ̂(N).

lattice. Here ⊥ = FALSE and > = TRUE. Let S be the set of controllable predicates.
If ∆ ⊆ L× L is defined as

∆ = {(P1, P2) | P1, P2 ∈ L and (P1 �Mσ(P2) for all σ ∈ Σu) and P1 � R(G,P2)},
then for every predicate P , (P, P ) ∈ ∆ iff P is controllable; therefore ∆ is S-reflexive
and

P ↑ = sup{P ′ | P ′ ∈ L∆, P ′ � P}.
Moreover, using the fact that Mσ(·) and R(G, ·) are monotone, along with Proposi-
tions 1 and 2, it can be shown that ∆ satisfies assumptions (i) and (ii) of Theorem 2.
Theorem 2 provides the following recursion, which converges in a finite number of
steps when the number of states is finite, |Q| <∞:

P0 = P,

Pk+1 = sup{P ′ | P ′ �Mσ(Pk) for all σ ∈ Σu, P ′ � R(G,Pk)}

= R(G,Pk)
∧( ∧

σ∈Σu

Mσ(Pk)

)
,

P ↑ = Pk, k ≥ |P |.
In the above recursion, |P | := |{q ∈ Q | q ∈ P}|. Computing R(G,Pk) is computa-
tionally complex. The above iteration can be replaced with the simpler recursion:

P0 = P,

Pk+1 = sup{P ′ | P ′ �Mσ(Pk) for all σ ∈ Σu, P ′ � Pk}

= Pk
∧( ∧

σ∈Σu

Mσ(Pk)

)
,

P ∗ = Pk for all k ≥ k∗,
P ↑ = R(G,P ∗).
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Fig. 2. Petri net of the small factory.

Here k∗ ≤ |P |. To verify the above iteration, we have to note only that [25] P ∗ = [P ]
(the weakest subpredicate of P that is invariant under the flow induced by uncontrol-
lable events) and use Proposition 8 of [18].

For the purpose of supervisory control, only [P] has to be computed and P ↑ is
not required [19]. We claim that knowing [P ] is not always necessary; knowing k∗ is
enough. To see this, recall that the above recursion for computing [P ] ends after k∗

steps. This means that if a state q ∈ P , then either q ∈ [P ] or q 6∈ [P ] and there
exists a string s of uncontrollable events of length less than or equal to k∗ such that
δ(q, s) 6∈ P (δ is the transition function of the discrete-event system). Therefore, to
check whether q ∈ [P ] at any state q, we need only examine strings of uncontrollable
events of length less than or equal to k∗. This is a lookahead policy. (See [4] and its
references for other approaches to and applications of lookahead policies.) If k∗ is not
large, this forward search can be done on-line. Note that computation of k∗ is done
off-line. When the number of states, |Q|, is not finite, e.g., in vector discrete-event
systems (VDES), k∗ may still be finite. For VDES, k∗ (if finite) may be calculated
off-line using integer linear programming without the burden of computing [P ]. The
details are left for future research.

To illustrate the above point, consider a small factory consisting of 2 machines
and a buffer with capacity 3. The Petri net of the factory is shown in Figure 2. Here
x1 is the number of idle machines, x2 is the number of working machines, and x3 is
the number of workpieces produced. Event α (“take a workpiece”) is controllable,
while β (“one workpiece done”) is uncontrollable. Since x1 + x2 = 2, the state of the
system is described by two variables; we take x := [x2, x3]. The state graph of the
system is shown in Figure 3. Horizontal transitions are α and diagonal ones β. The
objective of supervision is to prevent buffer overflow; i.e., x ∈ P iff 0 ≤ x3 ≤ 3 and
0 ≤ x2 ≤ 2. We assume initially x2 = x3 = 0. The sequence Pk can be obtained
by inspection and is shown in Figure 3. In this figure, predicate Pk holds on those
states that are below its corresponding dashed line. We see that k∗ = 2, so to check
whether x ∈ [P ], one has to examine strings β and ββ. In general with n machines
and a buffer capacity b, k∗ = min(n, b).

Example 6. The relational coarsest partition problem (RCP). Consider a finite-
state labeled transition system [1] S = (Q,Σ, R, q0), where Q is the set of states and
Σ the set of elementary actions (events). For simplicity we assume Σ = {α}, |Σ| = 1.
R is a binary relation on Q such that (q, q′) ∈ R iff q′ ∈ α(q) with α(q) denoting the
set of states reachable from q via a single α transition. Let π = {B1, . . . , Bp} be a
partition of Q, with Bi denoting the blocks of π. Then π is compatible with R [8] iff
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Fig. 3. State graph.

whenever q, q′ are in the same block Bi, for any block Bj ,

α(q) ∩Bj 6= ∅ ⇔ α(q′) ∩Bj 6= ∅.
Equivalently π is compatible with R iff for each pair of blocks Bi and Bj , either
Bi ⊆ R−1(Bj) or Bi ∩ R−1(Bj) = ∅ [8]. Given a partition ρ, the RCP is to find
the coarsest partition ρ↑ which is finer than ρ and compatible with R [11], [23]. For
applications of the RCP in observer theory and the study of equivalence of labeled
transition systems, the reader may refer to [1] and [16] and their references.

Let L be the set of partitions of (or equivalence relations on) Q. For two partitions
π1 and π2, let π1 ≤ π2 iff for every pair of blocks B1 ∈ π1 and B2 ∈ π2, either B1 ⊆ B2

or B1 ∩ B2 = ∅. Then L partially ordered by ≤ forms a complete lattice [2]. In this
lattice ⊥ = {{q} | q ∈ Q} and > = {Q}. Let S be the set of partitions compatible
with R. Now we define ∆ ⊆ L× L to be

∆ = {(π1, π2) | π1, π2 ∈ L and

((for all B1 ∈ π1, for all B2 ∈ π2) B1 ⊆ R−1(B2) or B1 ∩R−1(B2) = ∅)}.
Note that (π1, π2) ∈ ∆ iff whenever q and q′ are in the same block B1 ∈ π1, then for
any block B2 ∈ π2,

α(q) ∩B2 6= ∅ ⇔ α(q′) ∩B2 6= ∅.
∆ is the generalization of the set of partition pairs of [9] to nondeterministic systems.
When S is deterministic, ∆ is a pair algebra [9]. In our case, S can be nondeterminis-
tic; therefore ∆ is not a pair algebra in general. For example, consider Q = {a, b, c, d}
and α(a) = {a, c}, α(b) = {b, d}, α(c) = α(d) = ∅. Let π1 = π′1 = {{a, b}, {c, d}},
π2 = {{a, b}, {c, d}}, π′2 = {{a, d}, {b, c}}. Then (π1, π2) ∈ ∆, (π′1, π

′
2) ∈ ∆, but

(π1 ∧ π′1, π2 ∧ π′2) 6∈ ∆. Obviously π is compatible with R iff (π, π) ∈ ∆; therefore ∆
is S-reflexive and

ρ↑ = sup{π | π ∈ L∆, π ≤ ρ}.
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Using Propositions 1 and 2, the reader can show that ∆ satisfies the assumptions (i)
and (ii) of Theorem 2.

By Definition 2, for every ρ ∈ L,

Ψ̂(ρ) = sup{π | (π, ρ) ∈ ∆, π ≤ ρ}.
Let ρ = {B1, . . . , Bm}. Following [23], for a partition π ∈ L and a subset X ⊆ Q, let
split(X,π) be the refinement of π obtained by replacing each block B ∈ π such that
B ∩ R−1(X) 6= ∅ and B − R−1(X) 6= ∅, with the two blocks B′ = B ∩ R−1(X) and
B′′ = B −R−1(X). The reader can now verify that the following iteration computes
Ψ̂(ρ):

π0 = ρ,

πk = split(Bk, πk−1), 1 ≤ k ≤ m,
Ψ̂(ρ) = πm.

Therefore, using Theorem 2, the relational coarsest partition problem can be solved
with the following recursion:

ρ0 = ρ,

ρk+1 = Ψ̂(ρk),

ρ↑ = ρk for all k ≥ |Q| − 1.

This procedure can be generalized to the case |Σ| > 1. The resulting algorithm turns
out to be the one given in Proposition 3.10 of [8].

4. Dual results. Dual results for computing infimal elements are presented here.
The proofs are similar to those in section 2 and are omitted.

Given a poset L, an operator ϕ : L → L is called expansive iff x ≤ ϕ(x) for all
x ∈ L.

Theorem 5. Let L be a complete lattice, S ⊆ L be a lower semilattice under the
meet operation ∧ of L, and ϕ : L→ L be an operator with the following properties:

(i) S = {x ∈ L | ϕ(x) = x},
(ii) ϕ(·) is monotone,
(iii) ϕ(·) is expansive.
Let z ∈ L, and suppose that there exists an integer k∗ ≥ 0 such that ϕk

∗
(z) =

ϕk
∗+1(z). Then

z↓ := inf{x | x ∈ S, z ≤ x} = ϕk(z) for all k ≥ k∗.
For a binary relation ∆ ⊆ L× L, the constrained infimum operator is defined as

ψ̂(x) := inf{y | (x, y) ∈ ∆, x ≤ y}.
This operator is expansive. If ∆ is S-reflexive and ψ̂(·) satisfies properties (i) and (ii)
of Theorem 5, then the iteration of the theorem can be used for computing z↓. If
for every set of pairs {(x, yα) ∈ ∆ | α ∈ A}, with A being some index set, we have

(x,∧αyα) ∈ ∆, then L∆ = {x | ψ̂(x) = x}. Also, if (x, y) ∈ ∆ and x′ ≤ x imply

(x′, y) ∈ ∆, then ψ̂(·) is monotone.
Let the infimum operator corresponding to a relation ∆ ⊆ L× L be

ψ(x) := inf{y | (x, y) ∈ ∆}.
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Assume that ∆ is S-reflexive, L∆ = {x ∈ L | ψ(x) ≤ x}, and ψ(·) is monotone. If the
iteration

z0 = z,

zk+1 = ψ(zk) ∨ z

terminates in a finite number of steps—say, k∗—then

z↓ = inf{x | x ∈ S, z ≤ x} = zk for all k ≥ k∗.

If (i) for every set of pairs {(x, yα) ∈ ∆ | α ∈ A}, with A being some index set,
(x,∧αyα) ∈ ∆, and (ii) (x, y) ∈ ∆ and y ≤ y′ imply (x, y′) ∈ ∆, then L∆ = {x ∈ L |
ψ(x) ≤ x}. If (x, y) ∈ ∆ and x′ ≤ x imply (x′, y) ∈ ∆, then ψ(·) is monotone.

5. Conclusion. In this paper, we introduced constrained supremum and supre-
mum operators to obtain a general procedure, the ∆-method, for computing supremal
elements of upper semilattices. These elements are used in system theory, and for some
of them, specific algorithms are given in the literature. We applied our procedure to
some well-known examples, and in all cases the algorithms available in the literature
turned out to be instances of our procedure. These iterations are also informative
from a practical point of view. For instance, in the case of supremal controllable
subpredicate, the recursion resulted in a lookahead policy for supervisory control in
which the required length of the lookahead window was equal to the number of the
recursion steps.

Dual results for infimal elements of lower semilattices were presented for com-
pleteness.

Defining a suitable binary relation on the lattice is an important step in the pro-
cedure. This is not always easy. Also for lattices that do not satisfy the descending
chain condition, establishing finite termination of the iteration is not necessarily triv-
ial; see, e.g., [28]. Nevertheless, the procedure covers a variety of cases in control
theory, especially in discrete-event system theory.
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Abstract. A sequence (Mk) of closed subsets of Rn converges normally to M ⊂ Rn if (sc) M =
lim supMk = lim inf Mk in the sense of Painlevé–Kuratowski and (nc) lim sup G(NMk ) ⊂ G(NM ),
where G(NM ) (resp., G(NMk )) denotes the graph of NM (resp., NMk ), Clarke’s normal cone to M
(resp., Mk).

This paper studies the normal convergence of subsets of Rn and mainly shows two results. The
first result states that every closed epi-Lipschitzian subset M of Rn, with a compact boundary, can
be approximated by a sequence of smooth sets (Mk), which converges normally to M and such that
the sets Mk and M are lipeomorphic for every k (i.e., the homeomorphism between M and Mk

and its inverse are both Lipschitzian). The second result shows that, if a sequence (Mk) of closed
subsets of Rn converges normally to an epi-Lipschitzian set M , and if we additionally assume that
the boundary of Mk remains in a fixed compact set, then, for k large enough, the sets Mk and M
are lipeomorphic.

In Cornet and Czarnecki [Cahier Eco-Maths 95-55, 1995], direct applications of these results
are given to the study (existence, stability, etc.) of the generalized equation 0 ∈ f(x∗) + NM (x∗)
when M is a compact epi-Lipschitzian subset of Rn and f : M → Rn is a continuous map (or more
generally a correspondence).

Key words. epi-Lipschitzian, normal convergence, smooth approximation, lipeomorphism,
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1. Introduction. A closed subset M of Rn is said to be epi-Lipschitzian if its
Clarke’s normal cone NM (x) is pointed (i.e., if NM (x)∩−NM (x) = {0}) at every x ∈
M . This class of sets, introduced in optimization by Rockafellar [16], is of particular
importance since it includes both (i) closed convex sets with a nonempty interior and
(ii) sets defined by finite smooth inequality constraints satisfying a nondegeneracy
assumption (independence of the binding constraints). Closed epi-Lipschitzian subsets
M of Rn are equivalently defined as sets that can be locally written as the epigraph
of a Lipschitzian function (see [16]).

A sequence (Mk) of closed subsets of Rn converges normally to M ⊂ Rn if
(sc) M = lim supMk = lim inf Mk in the sense of Painlevé–Kuratowski and (nc)
lim sup G(NMk

) ⊂ G(NM ), where G(NM ) = {(x, y) ∈ Rn × Rn|x ∈ M,y ∈ NM (x)}
(resp., G(NMk

)) denotes the graph of NM (resp., NMk
), Clarke’s normal cone to M

(resp., Mk).
This paper studies the normal convergence of subsets of Rn and mainly shows

two results. The first result (Theorem 2.1) states that every closed epi-Lipschitzian
subset M of Rn, with a compact boundary, can be approximated by a sequence of
smooth sets (Mk), which converges normally to M and such that, for every k, the sets
Mk and M are lipeomorphic (i.e., the homeomorphism between M and Mk and its
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inverse are both Lipschitzian). Moreover, we prove that one can additionally assume
that the approximating sequence (Mk) is internal (resp., external) in the following
sense: Mk ⊂ intMk+1 (resp., Mk+1 ⊂ intMk) for all k ∈ N. This result extends
previous ones in the literature (which do not consider the lipeomorphism properties);
see Benoist [1] and (with a different formalism, without the geometrical concept of
Clarke’s cones) Nečas [15] (in Russian), Massari and Pepe [13], and Doktor [8].

In the above result, the lipeomorphism property is in fact a consequence of the
normal convergence of the sequence (Mk). This is a consequence of our second re-
sult (Theorem 2.2), which states that if (Mk) is a sequence of closed subsets of Rn
which converges normally to an epi-Lipschitzian set M , then the sets Mk and M
are lipeomorphic for k large enough if we additionally assume that, for all k, bdMk

remains in some given compact set K ⊂ Rn. In fact, we shall show (Theorem 2.3)
that one can weaken assertion (nc) by only assuming that the convex hull of the set
{p ∈ Rn|(x, p) ∈ lim sup G(NMk

)} is pointed for every x ∈M .
In [7], direct applications of these results are given to the study (existence, sta-

bility, etc.) of the generalized equation 0 ∈ f(x∗) + NM (x∗) when M is a compact
epi-Lipschitzian subset of Rn and f : M → Rn is a continuous map (or more generally
a correspondence).

The paper is organized as follows. The definitions and the main results are given
in section 2. The proof of the approximation result (Theorem 2.1) is given in section
3, and the proof of the lipeomorphism result (Theorem 2.3) is given in section 4.

2. Definitions and statement of the results.

2.1. Preliminaries1. Let M be a closed subset of Rn and let x ∈M . We define
Clarke’s normal cone to M at x, denoted NM (x), in two steps as follows. We first
call perpendicular vector to M at x every vector in the set

⊥M (x) = {v ∈ Rn|∃α > 0, B(x+ αv, α‖v‖) ∩M = ∅}.
Then Clarke’s normal cone to M at x is the closure of the convex hull of the following
limiting cone:

N̂M (x) = {v ∈ Rn|∃(xk)k∈N ⊂M, ∀k ∈ N, ∃vk ∈ ⊥M (xk), (xk)→ x, (vk)→ v}.
We now define Clarke’s tangent cone to M at x, denoted TM (x), as the negative polar
cone of NM (x), i.e.,

TM (x) = {u ∈ Rn | ∀v ∈ NM (x), (u|v) ≤ 0}.
We recall that a closed subset M of Rn is said to be epi-Lipschitzian if NM (x) is
pointed (i.e., NM (x)∩−NM (x) = {0}) for all x ∈M . We say that M is Ck-smooth if
it is a Ck (with k ∈ {1, . . . ,∞}) submanifold with a boundary of Rn of full dimension,

1We let R+ = {x ∈ R|x ≥ 0}. If x = (x1, . . . , xn) and y = (y1, . . . , yn) belong to Rn, we denote

the scalar product of Rn by (x|y) =
∑n

i=1
xiyi, the Euclidean norm by ‖x‖ =

√
(x|x); we denote

B(x, r) = {y ∈ Rn| ‖x− y‖ < r}, B(x, r) = {y ∈ Rn| ‖x− y‖ ≤ r}, S(x, r) = {y ∈ Rn| ‖x− y‖ = r},
B = B(0, 1), and S = S(0, 1). If X ⊂ Rn, Y ⊂ Rn, and x ∈ Rn, we let d(x,X) = infy∈X ‖x − y‖
(also denoted dX(x)), and we denote by X + Y = {x + y|x ∈ X, y ∈ Y } the sum of X and Y ,
B(X, r) = X + B(0, r), clX or X the closure of X, intX the interior of X, bdX the boundary
of X, and coX the convex hull of X. If X and Y are two nonempty compact subsets of Rn,
δ(X,Y ) = max{supx∈X d(x, Y ), supy∈Y d(y,X)} is the Hausdorff distance between X and Y . A
correspondence Φ from X ⊂ Rn to Rm is a map from X to the set of all the subsets of Rm and the
graph of Φ, denoted G(Φ), is defined by G(Φ) = {(x, y) ∈ X × Rm|y ∈ Φ(x)}.
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i.e., if for all x ∈M , there is an open neighborhood U of x and a Ck function f : U → R
such that M ∩U = {x ∈ U |f(x)≤0}, and such that ∇f(x) 6= 0 if f(x) = 0. M is said
to be smooth if it is C∞-smooth.

We recall the following definitions and properties associated with a sequence (Mk)
of subsets of Rn (see, for example, Kuratowski [12]):

lim inf Mk = {x ∈ Rn|∃(xk) ⊂ Rn, xk → x, xk ∈Mk for all k};
lim supMk = {x ∈ Rn|∃(xk) ⊂ Rn,∃ϕ ∈ I, xk → x, xk ∈Mϕ(k) for all k},2

where I is the set of all increasing maps ϕ : N→ N.
We recall that the inclusion lim inf Mk ⊂ lim supMk always holds true; the se-

quence (Mk) is said to be set-convergent if lim inf Mk = lim supMk. We say that the
sequence (Mk) is smooth if the set Mk is smooth for k large enough. We say that
it is increasing (resp., decreasing) if Mk ⊂ intMk+1 (resp., Mk+1 ⊂ intMk) for all
k ∈ N. If (Mk) is an increasing (resp., decreasing) sequence, then one notices that it
set-converges to some M ⊂ Rn if and only if M = cl(∪k∈NMk) (resp., M = ∩k∈NMk).
An increasing (resp., decreasing) converging sequence is also called an internal (resp.,
external) approximation of its set-limit.

2.2. Statement of the results. We give a stronger notion of set-convergence
which involves both the set-convergence and the convergence of the graph of the
normal cones in the following sense.

Definition 2.1. We say that a sequence (Mk) of closed subsets of Rn is a nor-
mal approximation of a closed subset M ⊂ Rn (or converges normally to M) if the
two following assertions hold:

(sc) (set convergence) M = lim supMk = lim inf Mk;
(nc) (normal convergence) lim sup G(NMk

) ⊂ G(NM ).

Remark 2.1 (the convex case). Let (Mk) be a sequence of closed convex subsets
of Rn. Assume that (Mk) set-converges to some subset M ⊂ Rn. Then one easily
notices that the set M is convex and that (Mk) is a normal approximation of M .

The next theorem shows the existence of internal and external smooth normal
approximations of a compact epi-Lipschitzian subset of Rn, which satisfy additional
properties also of interest for themselves (in fact we weaken the compactness assump-
tion by assuming only that M is closed and that bdM is compact). We recall that
subsets M and N of Rn are lipeomorphic if there exists a map Φ : M → N which is
a lipeomorphism, i.e., is a Lipschitzian invertible map with a Lipschitzian inverse.

Theorem 2.1. Let M be a closed epi-Lipschitzian subset of Rn, such that bdM
is nonempty and compact. Then there exists a smooth internal normal approxi-
mation and a smooth external normal approximation of M which both additionally
satisfy the following properties:

(lip) the sets Mk and M are lipeomorphic for all k;
(lipc) the sets Rn \ intMk and Rn \ intM are lipeomorphic for all k;
(L) there is ` > 0 and a compact subset K ⊂ Rn such that, for all k,

bdMk ⊂ K and

δ(bdMk,bdMk+1) ≤ `min{‖x− y‖ |x ∈ bdMk, y ∈ bdMk+1}.
Theorem 2.1 is proved in section 3. A general discussion about assertion (L) is given

in the next section.

2Equivalently, lim supMk = ∩p∈Ncl(∪k≥pMk). Note also that for every subsequence (Mϕ(k)) of
(Mk), one has that lim inf Mk ⊂ lim inf Mϕ(k) ⊂ lim supMϕ(k) ⊂ lim supMk.
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At this stage, it is worth pointing out that in Theorem 2.1 the two lipeomorphism
assertions (lip) and (lipc) are a consequence of the normal convergence of the sequence
(Mk) as is shown in the next result.

Theorem 2.2. Let (Mk) be a sequence of closed subsets of Rn such that the
boundaries bdMk remain in a given compact subset K ⊂ Rn. Assume that (Mk)
set-converges to some subset M ⊂ Rn and that

(∗) (Mk) converges normally to M , and M is epi-Lipschitzian.
Then, for k large enough,

(i) the sets M , Rn \ intM , Mk and Rn \ intMk are epi-Lipschitzian;
(ii) Mk is lipeomorphic to M and Rn \ intMk is lipeomorphic to Rn \ intM .
Theorem 2.2 is a consequence of the following result, which slightly weakens

assertion (∗) by noticing that the condition (nc) of normal convergence implies that

{p ∈ Rn|(x, p) ∈ lim sup G(NMk
)} = lim sup

x′→x,k→∞
NMk

(x′) ⊂ NM (x).

Theorem 2.3. Theorem 2.2 remains true if one replaces assertion (∗) with the
following assertion:

(∗∗) co lim supx′→x,k→∞NMk
(x′) is pointed for all x ∈M .

The proof of Theorem 2.3 is given in section 4.
Remark 2.2. Theorem 2.2 and Theorem 2.3 may not be true if bdMk does not

remain in a fixed compact set K. Consider M = R × R+ and the smooth internal
normal approximation of M defined by Mk = R×[1/k,∞)\B((k, 3/k), 1/k) for k ≥ 1.
Then, for every k, Mk is clearly not homeomorphic to M .

Remark 2.3. Theorem 2.2 may not be true if the set-limit M is not epi-
Lipschitzian. Consider M = {0} in R and the smooth external normal approxi-
mation of M defined by Mk = [−1/k, 1/k]. Then for every k, Mk is not home-
omorphic to M . Similarly, Theorem 2.3 may not be true without the assumption
that co lim supx′→x,k→∞NMk

(x′) is pointed for all x ∈ M , even if one assume that
M is epi-Lipschitzian. Consider M = [1, 1] in R and the smooth internal nor-
mal approximation of M defined by Mk = [−1,−1/k] ∪ [1/k, 1], and notice that
co lim supx′→0,k→∞NMk

(x′) = R.
Remark 2.4. Theorem 2.3 may not be true if we do not assume that lim supMk =

lim inf Mk. Consider M2k = B(0, 1), M2k+1 = B(0, 1) \ B(0, 1/2) (or M2k+1 = ∅),
and notice that B(0, 1) = lim supMk.

2.3. General remarks about assertion (L).
Remark 2.5. There may exist a normal (external or internal) approximation

satisfying all the conclusions of Theorem 2.1 except for assertion (L). Consider the
subset M = [0, 1] of R and the sets Mk = [−1/k, 1 + 1/2k].

Remark 2.6. If bdM is not compact, there may not exist an internal (or an exter-
nal) normal approximation of M which satisfies assertion (L). Consider the following
closed epi-Lipschitzian subset of R:

M =

(
R− \ ∪∞k=1

(
−k − 1

k + 1
,−k +

1

k + 1

))
∪
(
∪∞k=1

[
k − 1

k + 1
, k +

1

k + 1

])
.

Then, if (Mk) is any smooth internal (or external) normal approximation of M , we
let the reader check that it does not satisfy assertion (L).

Remark 2.7. Note that the inequality

δ(X,Y ) ≥ min{‖x− y‖ |x ∈ X, y ∈ Y }
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is always true if X and Y are two nonempty compact subsets of Rn. Hence, one
necessarily has ` ≥ 1 in assertion (L) of Theorem 2.1.

Remark 2.8. If we additionally assume that (Mk) is increasing or decreasing, then

(L′) ∀k, δ(bdMk,bdM) ≤ `min{‖x− y‖ |x ∈ bdM,y ∈ bdMk}.
Indeed, one just needs to notice that δ(bdMk,bdM) ≤ ∑∞i=k δ(bdMi,bdMi+1) and
that

min{‖x− y‖ |x ∈ bdM,y ∈ bdMk} ≥
∞∑
i=k

min{‖x− y‖ |x ∈ bdMi, y ∈ bdMi+1}.

Assertion (L′) is no longer true if we do not assume that the sequence (Mk) is
increasing or decreasing. Consider the set M = [0, 1], the sets M2k = [−1/k, 1] and
M2k+1 = [0, 1 + 1/(k+ 1)] for all k ≥ 1. Then (Mk) is a smooth approximation of M
which satisfies assertion (L), but the above property (L′) is not true.

2.4. Other concepts of normal convergence.

2.4.1. Involving the subdifferential of the distance function. We first
recall the definition of Clarke’s subdifferential of a locally Lipschitzian function.3 Let
U be an open subset of Rn and consider f : U → R; if f is differentiable at x ∈ U , we
denote ∇f(x) the gradient of f at x. If f is locally Lipschitzian, its subdifferential
∂f(x) at x ∈ U is defined by

∂f(x) = co{ lim
k→∞

∇f(xk)|xk → x, xk ∈ Dom(∇f)},

where Dom(∇f) is the set on which f is differentiable. In the case of the distance
function dM to a closed set M ⊂ Rn, one can be more precise. Indeed, from Clarke
[4, Thm. 2.5.6],

∂dM (x) = co
(

(N̂M (x) ∩ S) ∪ {0}
)
,(1)

where N̂M (x) is the limiting normal cone defined previously and S is the unit sphere
in Rn.

It seems natural to compare the normal convergence with the following concept
of ∂-convergence, in which one replaces the normal cone by the subdifferential of the
distance function. More precisely, we say that a sequence (Mk) of closed subsets of
Rn ∂-converges to a closed subset M ⊂ Rn if it satisfies assertion (sc) together with

(∂c) lim sup G(∂dMk
) ⊂ G(∂dM ).

It is worth noticing that the ∂-convergence can be formulated only in terms of the
distance function, by noticing that assertion (sc) can be equivalently reformulated as
follows:

(sc′) ∀x ∈ Rn, limk→∞ dMk
(x) = dM (x).

The link between normal convergence and ∂-convergence can be summarized as
follows. It will appear that the concept of ∂-convergence is too strong (for a mat-
ter of normalization), even in the epi-Lipschitzian case. Indeed, in this paper we

3If X ⊂ Rn, a map f : X → Rm is locally Lipschitzian if, for all x ∈ X, there is a neighborhood
U of x and a real number K ≥ 0 such that ‖f(y)− f(z)‖ ≤ K‖y − z‖ for all y and z in U .
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show that every compact epi-Lipschitzian set can be approximated in the sense of
normal convergence by a sequence of smooth sets. This result is no longer true with
the ∂-convergence as shown below (Proposition 2.2) by taking M = R2 \ intR2

+.
Furthermore, in the epi-Lipschitzian case, the following proposition shows that the
∂-convergence implies the normal convergence, a result which is no longer true in
general (see Remark 2.9).

Proposition 2.1. Let (Mk) be a sequence of closed subsets of Rn which ∂-
converges to some epi-Lipschitzian set M ⊂ Rn. Then (Mk) converges normally to
the set M .

Proof of Proposition 2.1. Let (x, p) ∈ lim sup G(NMk
). Then there is a sequence

(xk) converging to x, a sequence (pk) converging to p, and an increasing map ϕ :
N → N, such that xk ∈ Mϕ(k) and pk ∈ NMϕ(k)

(xk) for all k. Since NMϕ(k)
(xk) =

cl[∪λ≥0λ∂dMϕ(k)
(xk)] (see Clarke [4]) for all k, there is a sequence (λkr )r∈N in R+

and a sequence (vkr )r∈N in ∂dMϕ(k)
(xk) such that λkrv

k
r converges to pk when r →∞.

Hence, without any loss of generality (using a diagonal argument), we may assume
that p = limk→∞ λkvk, with λk ≥ 0 and vk ∈ ∂dMϕ(k)

(xk) ⊂ B(0, 1), and that the
bounded sequence (vk) converges to some v ∈ Rn. Then, from above and (1), for
every integer k,

vk ∈ ∂dMϕ(k)
(xk) = co

(
(N̂Mϕ(k)

(xk) ∩ S) ∪ {0}
)
.

Hence, from Carathéodory’s theorem, there are n+1 elements (vik, λ
i
k) (i ∈ {1, . . . , n+

1}) in Rn × R+ such that vik ∈ N̂Mϕ(k)
(xk) ∩ S ⊂ ∂dMϕ(k)

(xk),
∑n+1
i=1 λ

i
k = 1, and

µk ∈ [0, 1] such that

vk = µk

n+1∑
i=1

λikv
i
k.

Again, without any loss of generality, we may assume that (v1
k, . . . , v

n+1
k , (λ1

k,. . . ,
λn+1
k ), µk) converges to some element (v1, . . . , vn+1, (λ1,. . . ,λn+1), µ) ∈ Sn+1 × Σ ×

[0, 1], where Σ is the unit simplex of Rn+1. From assertion (∂c), we get that v ∈
∂dM (x) and that vi ∈ ∂dM (x) for all i ∈ {1, . . . , n + 1}. But for all i, from above

vi ∈ S and vi ∈ co
(

(N̂M (x) ∩ S) ∪ {0}
)

, noticing that

co
(

(N̂M (x) ∩ S) ∪ {0}
)
∩ S = N̂M (x) ∩ S,

we deduce that vi ∈ N̂M (x) ∩ S. Then w =
∑n+1
i=1 λ

ivi ∈ co(N̂M (x) ∩ S), which
does not contain 0 since M is epi-Lipschitzian; hence w 6= 0. Recalling that p =
limk→∞ λkvk = limk→∞ λkµk

∑n+1
i=1 λ

i
kv
i
k, the sequence (λkµk) converges to ρ =

‖p‖/‖w‖, and p = ρw with w ∈ co(N̂M (x) ∩ S) ⊂ ∂dM (x); hence p ∈ NM (x).
This shows that (Mk) converges normally to M .

Remark 2.9. Proposition 2.1 may no longer be true if M is not epi-Lipschitzian.
Consider the set

M = {(x, y) ∈ R2|y ≤
√
|x|}

and, for every integer k ≥ 1, the set

Mk = {(x, y) ∈ R2|[y ≥ 0 and y ≤
√
|x| − 1/k] or [y < 0 and y ≤ |kx| − 1/k]}.
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Then the sequence (Mk) ∂-converges to M (note that ∂dM (0) = [−1, 1] × {0} =
lim supx′→0,k→∞ ∂dMk

(x′)). But lim supx′→0,k→∞NMk
(x′) = R × R+ and NM (0) =

R× {0}; hence assertion (nc) is not satisfied.
The next proposition shows that the concept of ∂-convergence is too strong (for

a matter of normalization).
Proposition 2.2. The set R2 \ intR2

+, i.e., the complementary of the interior of
R2

+ in R2, cannot be approximated, in the sense of the ∂-convergence, by a sequence
of smooth sets.

Proof of Proposition 2.2. Assume that it is not true, and let (Mk) be a sequence
of smooth subsets of R2 which ∂-converges to M = R2 \ intR2

+. From Proposition 2.1,
since M is clearly epi-Lipschitzian, (Mk) converges normally to M ; this implies that
(R2 \ intMk) converges normally to R2 \ intM = R2

+ (see Proposition 3.1) and we
shall prove later (Lemma 4.1) that this implies

⊥R2
+

(0) ⊂ lim sup
x→0,k→∞

NR2\intMk
(x).

Since v = −(1/
√

2, 1/
√

2) ∈ ⊥R2
+

(0)(= −R2
+), the above inclusion implies that there

is a sequence (xk) converging to 0, a sequence (vk) converging to v, and an increasing
map ϕ : N → N, such that, for all k, xk ∈ bd(R2 \ intMϕ(k)) = bdMϕ(k) and
vk ∈ NR2\intMϕ(k)

(xk) = −NMϕ(k)
(xk) (since the set Mϕ(k) is smooth). For k large

enough, vk 6= 0; since the set Mϕ(k) is smooth, −vk/‖vk‖ is the unique element in
NMϕ(k)

(xk) ∩ S and hence belongs to ∂dMϕ(k)
(xk). Then the sequence (−vk/‖vk‖)

converges to −v, which, from assertion (∂c), belongs to ∂dM (0). Hence,

−v = (1/
√

2, 1/
√

2) ∈ ∂dM (0) = co{(1, 0), (0, 1), (0, 0)},

which is a contradiction.

2.4.2. Involving the limiting normal cone. We now compare the normal
convergence with the following concept of N̂ -convergence, in which one replaces
Clarke’s normal cone NM with the limiting normal cone N̂M (see Mordukhovich [14])
defined previously. More precisely, we say that a sequence (Mk) of closed subsets of
Rn N̂ -converges to a closed subset M ⊂ Rn if it satisfies assertion (sc) together with

(n̂c) lim sup G(N̂Mk
) ⊂ G(N̂M ).

The next proposition shows that the N̂ -convergence and the ∂-convergence are in
fact equivalent.

Proposition 2.3. Let (Mk) be a sequence of closed subsets of Rn and let M be
a closed subset of Rn. Then (Mk) N̂ -converges to M if and only if (Mk) ∂-converges
to the set M .

Proof of Proposition 2.3 (N̂ -convergence ⇒ ∂-convergence). Let

(x, v) ∈ lim sup G(∂dMk
).

Then there is a sequence (xk) converging to x, a sequence (vk) converging to v,
and an increasing map ϕ : N→ N, such that xk ∈Mϕ(k) and vk ∈ ∂dMϕ(k)

(xk) for all
k. Since from (1)

∂dMϕ(k)
(xk) = co

(
(N̂Mϕ(k)

(xk) ∩ S) ∪ {0}
)
,

from Carathéodory’s theorem, there are n+ 1 elements (vik, λ
i
k) (i∈{1, . . . , n+ 1}) in
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Rn×R+ and an element µk ∈ [0, 1] such that vik ∈ N̂Mϕ(k)
(xk)∩S,

∑n+1
i=1 λ

i
k = 1, and

vk = µk

m+1∑
i=1

λikv
i
k.

Without any loss of generality, we may assume that (v1
k, . . . , v

n+1
k , (λ1

k, . . . , λ
n+1
k ),

µk) converges to some element (v1, . . . , vn+1, (λ1, . . . ,λn+1), µ) ∈ Sn+1 × Σ × [0, 1],
where Σ is the unit simplex of Rn+1. From assertion (n̂c), we deduce that vi ∈
N̂M (x) ∩ S for all i ∈ {1, . . . , n + 1}. Then v ∈ co((N̂M (x) ∩ S) ∪ {0}) = ∂dM (x)
from (1). This shows that (Mk) ∂-converges to M .

Proof of Proposition 2.3 (∂-convergence⇒ N̂ -convergence). Let (x, p) ∈ lim sup G
(N̂Mk

). Then there is a sequence (xk) converging to x, a sequence (pk) converging to

p, and an increasing map ϕ : N → N, such that xk ∈ Mϕ(k) and pk ∈ N̂Mϕ(k)
(xk) for

all k. If p = 0, then clearly p ∈ N̂M (x). Assume now that p 6= 0. Then for k large
enough, pk 6= 0, and pk/‖pk‖ converges to p/‖p‖. Since pk/‖pk‖ ∈ N̂Mϕ(k)

(xk) ∩ S ⊂
∂dMϕ(k)

(xk) (from (1)), and since (Mk) ∂-converges to M , we deduce that p/‖p‖ ∈
∂dM (x). Since

∂dM (x) ∩ S = co
(

(N̂M (x) ∩ S) ∪ {0}
)
∩ S = N̂M (x) ∩ S,

we deduce that p/‖p‖ ∈ N̂M (x) ∩ S, hence that p ∈ N̂M (x). This shows that the
sequence (Mk) N̂ -converges to M .

Remark 2.10. The proof of the equivalence between the ∂-convergence and the
N̂ -convergence relies heavily on the following equality:

∂dM (x) = co
(

(N̂M (x) ∩ S) ∪ {0}
)
.

The difference between the ∂-convergence and the normal convergence might be ex-
plained by the fact that the inclusion

∂dM (x) ⊂ co
(

(NM (x) ∩ S) ∪ {0}
)

may be strict, even in the epi-Lipschitzian case. Consider M = R2 \ intR2
+.

3. Proof of the approximation result. The first idea to prove Theorem 2.1
is to smooth the distance function dM by using a classical convolution argument.
Indeed, by doing so one directly gets the existence of a normal smooth approximation
of M . However, the lipeomorphism properties are more difficult to obtain and our
proof will consist of using a more refined argument of convolution (in fact, by using
the representation theorem in [6]).

The proof of Theorem 2.1 has three steps. In the first step, we show that (Mk) is
an internal (resp., external) smooth approximation of M which satisfies (lip), (lipc),
and (L) if and only if (Rn \ intMk) is an external (resp., internal) smooth approxi-
mation of Rn \ intM which satisfies (lip), (lipc), and (L). In view of this equivalence
property, it is sufficient to only show in the following the existence of smooth in-
ternal approximations of epi-Lipschitzian sets. In the second step, we improve the
representation theorem of Cornet and Czarnecki [6] when the epi-Lipschitzian set is
additionally assumed to have a compact boundary. In the third step, the previous
representation result allows us to get the approximating sequence. These three steps
are proved successively in the following three sections.
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3.1. Complementarity property of internal and external approxima-
tions.

Proposition 3.1. Let M and Mk (k ∈ N) be closed epi-Lipschitzian subsets of
Rn. Then the two following assertions are equivalent:

(i) (Mk) is a (resp., internal, resp., external, resp., smooth, resp., satisfying (lip),
resp., (lipc), resp., (L)) normal approximation of M ;

(ii) (Rn \ intMk) is a (resp., external, resp., internal, resp., smooth, resp., satis-
fying (lipc), resp., (lip), resp., (L)) normal approximation of Rn \ intM .

Remark 3.1. Proposition 3.1 is no longer true if we do not assume that M is epi-
Lipschitzian. Consider M = {0} in R and Mk = [−1/k, 1/k] for k ≥ 1. Then (Mk)
is a smooth external normal approximation of M and (R \ intMk) is not a normal
approximation of R \ intM . Consider also the set M = {(x, y) ∈ R2|y ≥ √|x|}
and the set Mk = {(x, y) ∈ R2|[y ≥ 0 and y ≥ √|x| − 1/k] or [y < 0 and y ≥
(k3/4)x2 − (1/4k)]} for k ≥ 1. Then (Mk) is a smooth internal approximation of M
but (Rn \ intMk) is not a normal approximation of Rn \ intM . Indeed, NRn\intM (0) =
R × {0}; hence the set {0} × R+, which is contained in lim supG(NRn\intMk

), is not
contained in G(NRn\intM ).

Before proving Proposition 3.1, we prove a claim.
Claim 3.1. Let (Mk) be a sequence of closed subsets of Rn converging normally

to a closed subset M ⊂ Rn. Then

(int) intM = ∪p∈Nint(∩k≥pintMk);
(scc) Rn \ intM = lim sup(Rn \ intMk) = lim inf (Rn \ intMk).

Proof of Claim 3.1. We first prove assertion (int).4 Since

∪p∈N ∩k≥pMk ⊂ lim inf Mk = M,

the inclusion ∪p∈Nint(∩k≥pintMk) ⊂ intM is immediate. Let us consider

x ∈ intM \ ∪p∈Nint(∩k≥pintMk) = intM ∩ [∩p∈Ncl(Rn \ ∩k≥pintMk)].

Then there is a sequence (xk) in Rn converging to x such that, for all k ∈ N, xk /∈
∩l≥kintMl. Without any loss of generality, we may assume that there is an increasing
map ϕ : N → N such that, for all k, xk /∈ intMϕ(k). Since x ∈ intM ⊂ lim inf Mk,
there is a sequence (yk) in Rn converging to x such that for all k ∈ N, yk ∈Mk. Since
yϕ(k) ∈Mϕ(k), there is zk ∈ bdMϕ(k)∩ [xk, yϕ(k)] and there is vk ∈ NMϕ(k)

(zk)∩S (see
Clarke [4]). The sequence (zk) converges to x, and we may assume without any loss of
generality that vk converges to some v ∈ S. Hence (x, v) ∈ lim supG(NMk

) ⊂ G(NM ),
which implies that v ∈ NM (x). The fact thatNM (x) 6= {0} contradicts that x ∈ intM .

Let us now prove assertion (scc). Since M = lim supMk = ∩p∈Ncl(∪k≥pMk), we
get that

Rn \M = ∪p∈Nint(∩k≥pRn \Mk) ⊂ ∪p∈N ∩k≥p Rn \ intMk ⊂ lim inf(Rn \ intMk),

hence that Rn \ intM ⊂ lim inf(Rn \ intMk) ⊂ lim sup(Rn \ intMk). From assertion
(int), we get that Rn\ intM = ∩p∈Ncl(∪k≥pRn \ intMk) = lim sup(Rn\ intMk).

Proof of Proposition 3.1. Note that, without any loss of generality, we only need
to prove the implication [(i)⇒ (ii)]. The implication [(ii)⇒ (i)] can then be deduced

4In fact, we prove it in a more general setting later in this paper with a longer proof (Lemma 4.3).
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from [(i) ⇒ (ii)], applying the result to the set Rn \ intM , since Rn \ intM is epi-
Lipschitzian, since Rn \ int(Rn \ intM) = intM = M5 and Rn \ int(Rn \ intMk) =
intMk = Mk for all k.

In view of Claim 3.1, the sequence (Rn \ intMk) and the set Rn \ intM clearly
satisfy assertion (sc) of Definition 2.1. Let us prove that they satisfy assertion (nc).
Let (x, p) ∈ lim supG(NRn\intMk

). Without any loss of generality, we may assume that
p 6= 0, hence that x ∈ lim sup bd(Rn\intMk) = lim sup bdMk, since bd(Rn\intMk) =
(Rn \ intMk) \ int(Rn \ intMk) = intMk \ intMk = bdMk for all k (since Mk is epi-
Lipschitzian). This implies that x ∈ M ∩ (Rn \ intM) = bdM = bd(Rn \ intM).
Then, since Mk is epi-Lipschitzian, NRn\intMk

(x′) = −NMk
(x′) for all x′ ∈ bdMk,

hence (x,−p) ∈ lim supG(NMk
), hence (x,−p) ∈ G(NM ), which implies that (x, p) ∈

G(NRn\intM ), since NRn\intM (x) = −NM (x). We proved that (Rn \ intMk) is an
approximation of Rn \ intM . If (Mk) is a smooth (resp., internal, resp., external,
resp., satisfying (lip), resp., (lipc), resp., (L)) approximation of M , then (Rn \ intMk)
is clearly a smooth (resp., external, resp., internal, resp., satisfying (lip), resp., (lipc),
resp., (L)) approximation of Rn \ intM .

3.2. A representation theorem. We first state a representation theorem of
M when bdM is compact.

Theorem 3.1. Let M be a closed epi-Lipschitzian subset of Rn with compact
boundary bdM . Then there is a function fM : Rn → R which is a quasi-smooth
inequality representation of M in the following sense:

(i) fM is locally Lipschitzian on Rn and C∞ on Rn \ bdM ;

(ii) M = {x ∈ Rn|fM (x) ≤ 0};
(iii) bdM = {x ∈ Rn|fM (x) = 0};6
(iv) 0 /∈ ∂fM (x) if fM (x) = 0;

(v) NM (x) ∩ −NRn\intM (x) = ∪λ≥0λ∂fM (x) for all x ∈ bdM .

Furthermore, one can assume that for some ε > 0:

(vi) f−1
M ([−ε, ε]) is compact;

(vii) ∀x ∈ f−1
M ([−ε, ε]), co∂fM (B(x, ε)) ∩B(0, ε) = ∅.

Proof of Theorem 3.1. The existence of a function f satisfying assertions (i)–(v)
is exactly Theorem 2.1 of Cornet and Czarnecki [6] (in which the closed set M is not
assumed to have a compact boundary).

Let f be a quasi-smooth representation of M on Rn (i.e., satisfying assertions
(i)–(v)). Let α : Rn → [0, 1] be a C∞ function such that α(x) = 0 if x ∈ B(bdM, 1/2)
and α(x) = 1 if x /∈ B(bdM, 1). We define the function fM : Rn → R for all x ∈ Rn
by

fM (x) = (1− α(x))f(x) + α(x)sgnf(x) if f(x) 6= 0,
fM (x) = 0 if f(x) = 0,

denoting sgn t = t/|t| if t ∈ R \ {0}.
Proof of (i)–(iii). The function fM clearly satisfies assertions (i), (ii), and (iii) of

Theorem 3.1.
Proof of (iv) and (v). Let x ∈ bdM . Since α = 0 on a neighborhood of x, one

gets that ∂fM (x) = ∂f(x); hence assertions (iv) and (v) of Theorem 3.1 are satisfied.

5This is a classical result on epi-Lipschitzian sets (see, for example, Cornet and Czarnecki [6]).
6This assertion is a consequence of assertions (ii) and (iv).
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Proof of (vi). Since f−1
M ((−1, 1)) ⊂ B(bdM, 1), then cl(f−1

M ((−1, 1))) is compact.
Proof of (vii). It is a consequence of the following lemma (taking m = n, K =

bdM = f−1
M ({0}), and Φ = ∂fM ) and of the fact that f−1

M ([−ε, ε]) ⊂ B(bdM, r) for
some ε ∈ (0, 1] (since B(bdM, r) is an open set containing the intersection of compact
sets ∩ε∈(0,1]f

−1
M ([−ε, ε])).

Lemma 3.1. Let K be a compact subset of Rn and let Φ be a u.s.c. correspondence
from Rn to Rm, with nonempty compact convex values, such that 0 6∈ Φ(x) for every
x ∈ K. Then there exists r > 0 such that

coΦ(B(x, r)) ∩B(0, r) = ∅, for all x ∈ B(K, r).

Proof of Lemma 3.1 (by contraposition). Suppose that there exists a sequence
(xk) in Rn such that, for all k, xk ∈ B(K, 1/k) and

coΦ(B(xk, 1/k)) ∩B(0, 1/k) = ∅.

From Carathéodory’s theorem, there exist n+1 elements (xki , y
k
i , λ

k
i ) (i = 1, . . . , n+1)

in Rn × Rm × R+ such that xki ∈ B(xk, 1/k), yki ∈ Φ(xki ),
∑m+1
i=1 λki = 1, and∥∥∥∥∥

m+1∑
i=1

λki y
k
i

∥∥∥∥∥ ≤ 1/k.

Without loss of generality, we assume that the sequence (xk, λk1 , . . . , λ
k
m+1, y

k
1 , . . . , y

k
m+1)

converges to some element (x∗, λ∗1, . . . , λ
k∗
m+1, y

∗
1 , . . . , y

∗
m+1) ∈ K×Σ×Rm(m+1), since

the sequence belongs to the compact set B(K, 1)×Σ×Φ(B(K, 1))m+1, where Σ is the
unit simplex of Rm+1 and the set Φ(B(K, 1)) is clearly bounded (since Φ(B(K, 1))
is the image of the compact set B(K, 1) by the u.s.c. correspondence Φ). However,
for all i ∈ {1, . . . ,m + 1}, the sequence (xki ) also converges to x∗ (since from above
‖xki − xk‖ ≤ 1/k).

Taking the limit when k → ∞, we get 0 =
∑m+1
i=1 λ∗i y

∗
i and y∗i ∈ Φ(x∗) for all

i ∈ {1, . . . ,m+ 1}, since the correspondence Φ is u.s.c. Consequently, 0 ∈ Φ(x∗) since
Φ(x∗) is convex. Since x∗ ∈ K, this contradicts the assumption 0 /∈ Φ(x∗).

Remark 3.2. When bdM is not compact, assertion (vi) is clearly false for any
quasi-smooth inequality representation of M . The following example shows that as-
sertion (vii) may not be true if bdM is not assumed to be compact. Consider the set
M = {(x, y) ∈ R2|(x ≤ 0) or (x > 0 and y ∈ [−1/x, 1/x])}.

3.3. Proof of Theorem 2.1. In view of Proposition 3.1, we only need to show
the existence of smooth internal approximations of epi-Lipschitzian sets. Let fM be a
quasi-smooth representation of M satisfying the conclusions of Theorem 3.1 for some
ε > 0; we let

Mk = {x ∈ Rn|fM (x) ≤ −ε/k}

for every integer k ≥ 1. We shall prove that (Mk) is a smooth internal approximation
of M satisfying the conclusions of Theorem 2.1.

It is clearly an increasing sequence, and the set-convergence assertion (sc) is im-
mediate. The sets Mk are clearly smooth, since fM is C∞ on {x ∈ Rn|fM (x) 6= 0}
and since ∇fM (x) 6= 0 when x ∈ bdMk (in that case, fM (x) = −ε/k, fM (x) ∈ [−ε, ε]
and 0 /∈ ∂fM (x) = {∇fM (x)} from Theorem 3.1, assertion (vii)).
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Proof of the normal convergence assertion (nc). Let (x, v) ∈ lim supG(NMk
).

Then there exist two sequences (xk) and (vk) in Rn and an increasing function ϕ :
N→ N, such that (xk) converges to x, (vk) converges to v, and, for all k, xk ∈Mϕ(k)

and vk ∈ NMϕ(k)
(xk). Then, for all k, there is λk ≥ 0 such that vk = λk∇fM (xk).

Since fM is Lipschitzian on a neighborhood of x, the sequence (∇fM (xk)) is bounded.
Without any loss of generality, we may assume that it converges to some u ∈ Rn. Since
the correspondence ∂fM is u.s.c., u ∈ ∂fM (x), hence u 6= 0 since 0 /∈ ∂fM (x). This
implies that the sequence (λk) converges to λ = ‖v‖/‖u‖ and v = λu with λ ≥ 0 and
u ∈ ∂fM (x). Hence v ∈ NM (x).

Proof of the lipeomorphism assertions (lip) and (lipc). Let us now prove that the
sets M and Mk are lipeomorphic for all k. In view of Bonnisseau–Cornet [2, Theorem
2.5],7 assertion (lip) is a clear consequence of the following facts:

Mk = {x ∈ Rn|fM (x) ≤ −ε/k} for every k,
M = {x ∈ Rn|fM (x) ≤ 0},
f−1
M ([−ε/k, 0]) is compact,

0 /∈ ∂fM (x) when fM (x) ∈ [−ε/k, 0].

The proof that the sets Rn \ intMk and Rn \ intM are lipeomorphic is a consequence
of the same result, since Rn \ intMk = {x ∈ Rn|fM (x) ≥ −ε/k} and Rn \ intM =
{x ∈ Rn|fM (x) ≤ 0}.

Proof of (L). In view of assertion (sc) of Definition 2.1, since the sequence (Mk)
is increasing, and since bdM is compact, there clearly is an integer k0 such that
bdMk ⊂ B(bdM, ε) for all k ≥ k0. Let us consider k ≥ k0, and let L be the Lipschitz
constant of fM on B(bdM, ε). We first prove that

ε[(1/k)− 1/(k + 1)] ≤ Lmin{‖x− y‖, x ∈ bdMk, y ∈ bdMk+1}.

Indeed, if x ∈ bdMk and y ∈ bdMk+1, then fM (x) = −ε/k and fM (y) = −ε/(k+ 1).
Then ε[(1/k) − 1/(k + 1)] = |fM (x) − fM (y)| ≤ L‖x − y‖. We now end the proof of
Theorem 2.1 by proving that

δ(bdMk,bdMk+1) ≤ [(1/k)− 1/(k + 1)].

We first consider x ∈ bdMk. Since fM satisfies Theorem 3.1, assertion (vii), we
can separate the compact convex sets co∂fM (B(x, ε)) and B(0, ε). Hence there is
p ∈ S(0, 1) such that (p|y) > ε for all y ∈ co∂fM (B(x, ε)). Then, considering the map
t 7→ fM (x+ tp), from the mean-value theorem (see Clarke [4]) one easily proves that
fM (x + tp) − fM (x) ≥ εt for all t ∈ [0, ε]. Then fM (x + εp) ≥ −ε/k + ε2 > 0 (if k
is large enough), hence there is t ∈ [0, ε] such that fM (x + tp) = −ε/(k + 1). Hence
εt ≤ fM (x + tp) − fM (x) = ε[(1/k) − 1/(k + 1)]. This implies that d(x,bdMk+1) ≤
‖tp‖ ≤ [(1/k)− 1/(k + 1)]. One proves that d(x,bdMk) ≤ [(1/k)− 1/(k + 1)] for all
x ∈ bdMk+1 in the same way. Hence δ(bdMk,bdMk+1) ≤ [(1/k)− 1/(k+ 1)].

Remark 3.3. From the above proof, we note that assertion (L) is satisfied by
the sequence Mk = {x ∈ Rn|fM (x) ≤ εk}, where fM : Rn → R is a quasi-smooth
representation of M and (εk) is a strictly decreasing sequence of positive real numbers
converging to zero. However, there may exist normal converging sequences which
cannot be represented as above. Consider the example in Remark 2.5.

7Bonnisseau and Cornet [2] prove a homeomorphism result, but only a slight change in their
proof gives a lipeomorphism result.
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4. Proof of the lipeomorphism result. In view of Proposition 3.1, the proof
of Theorem 2.3 has three steps. We first show that the sets M and Mk are epi-
Lipschitzian for k large enough. In the second step, we show the existence of a
Lipschitzian transverse field between M and Mk, in a sense that will be explained
later. In the third step of the proof we show that, if there is a such transverse field
between two sets M and N , then M and N are (epi-Lipschitzian and) lipeomorphic.
These three steps are proved successively in the following three sections.

4.1. The sets M and Mk are epi-Lipschitzian.
Proposition 4.1. Let (Mk) be a sequence of closed subsets of Rn such that

bdMk ⊂ K for all k, for some fixed compact subset K ⊂ Rn, and such that

(∗∗) co lim supx′→x,k→∞NMk
(x′) is pointed for all x ∈ lim supMk.

Then the set M = lim supMk and the set Mk, for k large enough, are epi-Lipschitzian.
Proof of Proposition 4.1. We first prove that Mk is epi-Lipschitzian for k large

enough. Assume that it is not true. Then there is a sequence (xk) in Rn, a sequence
(pk) in S, and an increasing map ϕ : N→ N, such that, for all k ∈ N, xk ∈Mϕ(k), pk ∈
NMϕ(k)

(xk), and −pk ∈ NMϕ(k)
(xk). Then xk ∈ bdMϕ(k) ⊂ K; hence we may assume

without any loss of generality that the sequence xk converges to some x ∈ K and
that the sequence pk converges to some p ∈ S. Then x ∈ M (since M = lim supMk)
and p and −p belong to lim supx′→x,k→∞NMk

(x′), which contradicts the fact that
co lim supx′→x,k→∞NMk

(x′) is pointed for every x ∈M .
We now prove that M is epi-Lipschitzian. Let x ∈ M . Then, since the set

co lim supx′→x,k→∞NMk
(x′) is pointed, it is sufficient to prove that NM (x) ⊂ co

lim supx′→x,k→∞NMk
(x′) for all x ∈M , which we do in the next lemma, which gen-

eralizes Lemma 6.2 from Benoist [1] (see also Kruger and Mordukhovich [11, Theorem
P.3] and Ioffe [10, Theorem 3]).

Lemma 4.1. Let (Mk) be a sequence of closed subsets of Rn, and let M =
lim supMk. Then, for all x ∈M

(i) ⊥M (x) ⊂ lim supx′→x,k→∞NMk
(x′);8

(ii) NM (x) ⊂ cl (co lim supx′→x,k→∞NMk
(x′));

(iii) if we additionally assume that the set co lim supx′→x,k→∞NMk
(x′) is

pointed, then we can suppress cl in the above assertion, i.e., formally

NM (x) ⊂ co lim sup
x′→x,k→∞

NMk
(x′).

Proof of Lemma 4.1. Proof of (i). Let x ∈ M and p ∈ ⊥M (x) \ {0}. One easily
notices from the definition of ⊥M (x) that, for µ > 0 small enough,

B(x+ µp, µ‖p‖) ∩M = {x}.(2)

We define the function ψ : Rn → R by ψ(x) = (1/2)‖x − (x + µp)‖2. Then, for all
integer k there is a solution xk ∈ Rn of the following minimization problem:

(Pk)

{
minimize ψ(x),
x ∈Mk.

Then, from (2), x + µp /∈ M . Hence, since M = lim supMk, x + µp /∈ Mk for k

8One can easily replace assertion (i) with ⊥M (x) ⊂ lim supx′→x,k→∞⊥Mk (x′) or, equivalently,
G(⊥M ) ⊂ lim supG(⊥Mk ). However, without the convexification of the right-hand side, assertion
(iii) does not hold in general.
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large enough; hence xk ∈ bdMk. Then xk satisfies the following first-order necessary
condition associated with (Pk) (see Clarke [4]):

−xk + x+ µp = −∇ψ(xk) ∈ NMk
(xk).(3)

Let us show that the sequence (xk) admits a bounded subsequence. Since x ∈ M =
lim supMk, there is a sequence (xk) converging to x and an increasing map ϕ : N→ N,
such that xk ∈Mϕ(k) for all k. Then, for every k, xk satisfies the constraint of (Pϕ(k));
hence

ψ(xϕ(k)) = (1/2)‖xϕ(k) − x− µp‖2 ≤ ψ(xk) = (1/2)‖xk − x− µp‖2.(4)

Because the sequence (xk) is convergent, hence bounded, this implies that (xϕ(k)) is
bounded. Without any loss of generality, we may assume that the sequence (xϕ(k))
converges to some x ∈ Rn. Since xϕ(k) ∈ Mϕ(k) for all k ∈ N, we get that x ∈ M .
Since the sequence (xk) converges to x, ψ(xk) converges to (1/2)µ2‖p‖2, hence (4)
implies that ψ(x) ≤ (1/2)µ2‖p‖2 and hence that x ∈ B(x+ µp, µ‖p‖). In view of (2),
since additionally x ∈M , we get that x = x. Letting pϕ(k) = (1/µ)(−xϕ(k) +x+µp),
we proved that p = limk→∞ pϕ(k) with pϕ(k) ∈ NMϕ(k)

(xϕ(k)).
Proof of (ii) and (iii). Since A = lim supx′→x,k→∞NMk

(x′) is a cone, since the
correspondence x 7→ lim supx′→x,k→∞NMk

(x′) is closed at x, we get that NM (x) ⊂
cl(coA), which proves (ii). If we additionally assume that coA is pointed, then
cl(coA) = coA, since A is closed (recalling that coA is closed, when A is a closed
cone such that coA is pointed).

4.2. A transverse field between M and Mk.
Proposition 4.2. Let M and (Mk) satisfy the hypothesis of Theorem 2.3. Then,

for k large enough, there exists a Lipschitzian transverse field between the two sets M
and N = Mk in the following sense:

(T)


There is bounded Lipschitzian map F : Rn → Rn, such that

(a) M \ intN and N \ intM are compact;
(b) ∀x ∈ bdM (resp., bdN), F (x) ∈ intTM (x), (resp., F (x) ∈ intTN (x));
(c) for all x in an open neighborhood U of M \ intN ∪N \ intM ,

∃(t, t′) ∈ R2, ϕ(t, x) ∈ bdM,ϕ(t′, x) ∈ bdN .9

Remark 4.1. From [5], the assertion ∀x ∈ bdM , F (x) ∈ intTM (x) is equivalent
to the weaker one, ∀x ∈ bdM , F (x) ∈ intTM (x), where TM (x) is Bouligand’s tangent
cone to M at x.

Note that from Proposition 4.1 the sets M and Mk are epi-Lipschitzian for k large
enough. Before proving Proposition 4.2, we prove some preliminary lemmas.

4.2.1. Preliminary lemmas. The first lemma gives an extended Gauss corre-
spondence, an essential step to the construction of the transverse field.

Lemma 4.2. There is r > 0 and a correspondence G from Rn to Rn which is
u.s.c., with nonempty compact convex values and such that

(i) GM (x) = NM (x) ∩ S ⊂ G(x) for all x ∈ bdM ;
(ii) GMk

(x) = NMk
(x) ∩ S ⊂ G(x) for all x ∈ bdMk, for k large enough;

9Where ϕ is the flow of the following differential equation:

(E) ẋ(t) = F (x(t)), x(0) = x,

i.e., ϕ : R× Rn → Rn is the unique C1 map such that t 7→ ϕ(t, x) is the (unique) maximal solution
of (E) (and is defined on R since F is bounded).
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(iii) 0 /∈ G(x) for all x ∈ B(lim sup bdMk, r),
recalling that S is the unit sphere of Rn.

Proof of Lemma 4.2. We let

G∞(x) = co
(

co
(

lim sup
x′→x,k→∞

NMk
(x′)

)
∩ S
)

for all x ∈ lim sup bdMk.

Claim 4.1. The correspondence G∞, from lim sup bdMk to Rn, is u.s.c. with
nonempty compact convex values and 0 /∈ G∞(x) for every x ∈ lim sup bdMk.

Proof of Claim 4.1. The correspondence x 7→ lim supx′→x,k→∞NMk
(x′) has a

closed graph, hence the correspondence x 7→ lim supx′→x,k→∞NMk
(x′) ∩ S is u.s.c.,

with compact values. We now show that it has nonempty values. Let x∈ lim sup bd
Mk. Then there is a sequence (xk) in Rn converging to x and an increasing map
ϕ : N → N such that xk ∈ bdMϕ(k) for all k. Then there is a sequence (pk) in
S such that pk ∈ NMϕ(k)

(xk) for all k (see Clarke [4]). Let p be a cluster point of
the sequence (pk). Then p ∈ lim supx′→x,k→∞NMk

(x′) ∩ S ⊂ G∞(x). We proved
that the correspondence G∞ is u.s.c., with nonempty compact convex values. Finally
0 /∈ G∞(x), for all x ∈ lim sup bdMk ⊂ M , since co lim supx′→x,k→∞NMk

(x′) is
pointed.

In view of the extension theorem of Cellina [3],10 we let Ĝ∞ be an extension of
G∞ on Rn, which is u.s.c., with nonempty compact convex values. For r > 0 we
define the correspondence Gr from Rn to Rn by

Gr(x) = coB
(
Ĝ∞(B(x, r)), r

)
.

It has clearly nonempty convex values. Also, the correspondence Gr has compact
values (since it is the sum of a compact set and of the convex hull of the image of
a compact set by a u.s.c. correspondence). The correspondence Gr is clearly u.s.c.
(recalling that, if Φ is a u.s.c. correspondence with convex values from Rn to Rn and
if r > 0, then the correspondence coΦ, and the correspondences Φ1 and Φ2, defined
by Φ1(x) = Φ(B(x, r)) and Φ2(x) = B(Φ(x), r), respectively, are also u.s.c.).

Proof of (i). Since M = lim supMk and since co lim supx′→x,k→∞NMk
(x′) is

pointed, then NM (x) ⊂ co lim supx′→x,k→∞NMk
(x′) for all x ∈ bdM (Lemma 4.1).

Since M = lim supMk, then, from Lemma 4.1, bdM ⊂ lim sup bdMk (this can also
be proved more directly). Then assertion (i) is a direct consequence of the definition
of Gr.

Proof of (ii). We now prove that, for k large enough, NMk
(x) ∩ S ⊂ Gr(x) for

all x ∈ bdMk. Suppose that it is not true, then we may assume without any loss
of generality that there are two sequences (xk) and (pk) in Rn such that, for all k,
xk ∈ bdMk, pk ∈ NMk

(x) ∩ S, and pk /∈ Gr(xk). Since the sequence (xk, pk) belongs
to the compact set K × S, without any loss of generality, we may assume that it
converges to an element (x, p) ∈ K × S. Then x ∈ M (since M = lim supMk) and
p ∈ lim supx′→x,k→∞NMk

(x′). For k large enough, xk ∈ B(x, r) and pk ∈ B(p, r),

hence pk ∈ Ĝ∞(B(xk, r)) +B(0, r) ⊂ Gr(xk), which is a contradiction.
Proof of (iii). Since lim sup bdMk ⊂ K, it is compact. The end of the proof

consists of choosing r > 0 as in Lemma 3.1 (taking m = n, considering the compact

10Let Φ be a u.s.c. correspondence, with nonempty compact convex values defined on a closed
set X ⊂ Rn, with values in Rm. Then there is a u.s.c. correspondence Φ̂, with nonempty compact
convex values, defined on Rn with values in Rm, such that Φ̂|X = Φ and such that Φ̂(Rn) ⊂ coΦ(X).
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set lim sup bdMk and the correspondence G∞), recalling that 0 /∈ G∞(x) if x ∈
lim sup bdMk (Claim 4.1).

The second lemma is a consequence of Lemma 4.2 and eliminates the situation
where M = B(0, 1) and Mk = M \B(0, 1/k) for k ≥ 1 (see Remark 2.3).

Lemma 4.3.

(int) intM = ∪p∈Nint(∩k≥pintMk).

Proof of Lemma 4.3. We recall that the inclusion ∪p∈Nint(∩k≥pintMk) ⊂ intM is
an immediate consequence of the equality lim inf Mk = M . We now prove the converse
inclusion. Let x ∈ intM . There is ε > 0 such that B(x, ε) ⊂M , and from Lemma 3.1,
such that 0 /∈ coG(B(x, ε)). Assume that x /∈ ∪p∈Nint(∩k≥pintMk). Then there is a
sequence (xk) converging to x and a subsequence (Mϕ(k)) such that, for all k, xk ∈
bdMϕ(k) (see the proof of Claim 3.1). Hence x ∈ lim sup bdMϕ(k) ⊂ lim sup bdMk.
From a classical separation argument, there is p ∈ S and a real number a > 0 such
that (p|y) > a for all y ∈ coG(B(x, ε)). We may assume without any loss of generality
that a = ε. Then, since coG(B(x, ε)) is bounded (it is the convex hull of the image
of a compact set by a u.s.c. correspondence), there is ε′ > 0 such that (p′|y) > 0 for
all p′ ∈ B(p, ε′) and for all y ∈ coG(B(x, ε)). Without any loss of generality, we may
assume that ε′ = ε. Then −p′ ∈ intTMk

(x′) for all x′ ∈ B(x, ε) ∩ bdMk and for all
p′ ∈ B(p, ε′), if k is large enough since, from Lemma 4.2, NMk

(x′) ∩ S ⊂ G(x′).
Then the following claim implies that, for k large enough, xk + tp′ /∈ Mϕ(k) for

all p′ ∈ B(p, ε/2) and all t ∈ (0, ε/2), hence that B(x + (ε/3)p, (ε2/6)) ∩Mϕ(k) = ∅,
hence that x + (ε/3)p /∈ lim supMϕ(k), contradicting the fact that M = lim sup
Mϕ(k).

11

Claim 4.2. Let M be a closed epi-Lipschitzian subset of Rn, let x /∈ intM , ε > 0,
and p ∈ S such that −p ∈ intTM (x′) for all x′ ∈ B(x, ε) ∩M . Then x + tp /∈ M for
t ∈ (0, ε).

Proof of Claim 4.2. Assume that x+ tp ∈M for some t ∈ [0, ε). Since x /∈ intM ,
we may assume without any loss of generality that x + tp ∈ bdM . Then x + tp ∈
B(x, ε), hence −p ∈ intTM (x+ tp). We recall that from Rockafellar [16]

intTM (x+ tp) = { v ∈ Rn|∃α > 0, y + λw ∈M
for all (y, w, λ) ∈ (B(x+ tp, α) ∩M)×B(w,α)× [0, α)}.

Let α > 0 be chosen as above. Then (x+ tp)− (α/2)p ∈M . Hence (x+ tp)− (α/2)p+
(α/2)p′ ∈M for all p′ ∈ B(p, α); hence x+tp ∈ intM , which is a contradiction.

4.2.2. Proof of Proposition 4.2. We now prove that, for k large enough,
there is a Lipschitzian transverse field between the sets M and Mk. We recall that
bdM ⊂ lim sup bdMk ⊂ K, hence that it is compact. We let U = B(bdM, ε) for a
given real number ε > 0.

Proof of (a). Since B(M, ε) = M ∪ B(bdM, ε) and since B(Rn \ intM, ε) =
(Rn \ intM) ∪ B(bdM, ε), the following claim clearly implies that Mk \ intM ⊂
B(bdM, ε) = U and that M \ intMk ⊂ U , hence that Mk \ intM and M \ intMk are
compact, since B(bdM, ε) is clearly compact.

11Recalling that the equality M = lim supMk = lim inf Mk implies that M = lim supMϕ(k) =
lim inf Mϕ(k).
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Claim 4.3. Let ε be a positive real number. Then, for k large enough,12

Mk ⊂ B(M, ε);
Rn \ intMk ⊂ B(Rn \ intM, ε).

Proof of Claim 4.3. Assume that the inclusion Mk ⊂ B(M, ε) does not hold for
k large enough. Then, without loss of generality, we assume that there is a sequence
(xk) in Rn such that, for all k, xk ∈Mk and d(xk,M) ≥ ε. If {x|d(x,M) = ε} ∈Mk:
S(M, ε)∩Mk 6= ∅, we let yk ∈ S(M, ε)∩Mk. If S(M, ε)∩Mk = ∅, there is yk ∈ bdMk

such that d(yk,M) > ε. Indeed, let x ∈ S(M, ε) such that ‖xk−x‖ = d(xk, B(M, ε)).
Then x /∈Mk, xk ∈Mk and hence there is yk ∈ (x, xk]∩bdMk, and d(yk, B(M, ε)) >
0; hence d(yk,M) > ε. Then the sequence (yk) is in the compact set S(M, ε) ∪ K
(since S(M, ε) ⊂ S(bdM, ε), which is compact, and since bdMk ⊂ K). We may
assume without any loss of generality that it converges to some x ∈ S(M, ε)∪K. Then
d(x,M) ≥ ε, but, since yk ∈ Mk for all k, and since M = lim supMk, we get that
x ∈M , which is a contradiction. To get the second inclusion, apply the first result to
the sets Rn\intM and Rn\intMk, noticing that assertion (int) (see Lemma 4.3) implies
that Rn \ intM = lim sup(Rn \ intMk), that bd(Rn \ intM) = intM \ intM ⊂ bdM ,
and that bd(Rn \ intMk) = intMk \ intMk ⊂ bdMk ⊂ K.

Proof of (b). We let F : Rn → Rn be a map satisfying the conclusions of the
following lemma, which is a slightly different version of Lemma 3.1 of Bonnisseau–
Cornet [2] (its proof is left to the reader). Then, in view of Lemma 4.2, if we choose
ε < r′, assertion (b) follows.

Lemma 4.4. There is r′ > 0 and a bounded locally Lipschitzian map F : Rn →
Rn, such that

∀ x ∈ B(bdM, r′), ∀ y ∈ G(x), (F (x)|y) > r′.

Proof of (c). We let f : Rn → R be a quasi-smooth representation of M satisfying
the conclusions of Theorem 3.1, i.e., such that f−1([−ε0, ε0]) is compact for some
ε0 > 0. Then from Lemma 4.4, since ∂f(x) ⊂ NM (x) for all x ∈ bdM , since the
correspondence ∂f is u.s.c., with nonempty convex compact values, and since bdM
is compact, there is r′′ > 0 such that

(F (x)|y) > r′′ ∀ x ∈ bdM and ∀ y ∈ ∂f(x).

Then assertion (c) holds, if we choose ε > 0 given by the following claim.
Claim 4.4. Let f be a quasi-smooth representation of an epi-Lipschitzian subset

M ⊂ Rn such that f−1([−r, r]) is compact for some r > 0, and such that (F (x)|y) > r
for all x ∈ bdM and for all y ∈ ∂f(x). Then there are two real numbers ε > 0 and
α > 0 such that

(i) B(bdM, ε) ⊂ f−1([−α, α]) ⊂ B(bdM, r);

(ii)
(
∂f(ϕ(t, x))|(∂ϕ/∂t)(t, x)

) ⊂ [r,+∞) ∀ x ∈ B(bdM, r) and ∀ t ∈ R such
that |f(ϕ(t, x))| ≤ α;

(iii) the function f ◦ ϕ(., x) is strictly increasing on {t ∈ R| |f(ϕ(t, x))| <
α} ∀ x ∈ B(bdM, r);

(iv) there are t and t′ in R such that f(ϕ(t, x)) ≤ −α and f(ϕ(t′, x)) ≥ α ∀
x ∈ f−1([−α, α]),

12Note that these inclusions imply that δ(M,Mk) ≤ ε and that δ(bdM, bdMk) ≤ ε, defining
δ(X,Y ) = max{supx∈X d(x, Y ), supy∈Y d(y,X)} if X and Y are two subsets of Rn (not necessarily
nonempty compact), hence that δ(M,Mk) → 0 and that δ(bdM, bdMk) → 0. Conversely, the
assumption that δ(M,Mk) ∈ R and converges to 0 implies that M = lim inf Mk = lim supMk.
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recalling that ϕ : R × Rn → Rn is the flow of the differential equation (E) ẋ(t) =
F (x(t)), x(0) = x, where ϕ(., x) is defined on R.

Proof of Claim 4.4. Since the correspondence ∂f is u.s.c. with compact convex
values and since the map F is continuous, the correspondence H defined by H(x) =
(F (x)|∂f(x)) is u.s.c., with compact convex values. Then, from Lemma 3.1, there is
β > 0 such that B(bdM,β) ⊂ U and such that

(F (x)|y) > r for all x ∈ B(bdM,β) and for all y ∈ ∂f(x).

Then there is α > 0 such that f−1([−α, α]) ⊂ B(bdM,β) (since B(bdM,β) is an open
set containing the intersection of compact sets ∩α∈(0,ε0]f

−1([−α, α)). Without any
loss of generality, we may assume that f−1([−α, α]) ⊂ B(bdM, r). Since f−1((−α, α))
is an open set containing the intersection of compact sets ∩ε>0B(bdM, ε), there is
ε > 0 such that B(bdM, ε) ⊂ f−1([−α, α]), which proves (i). Let x ∈ B(bdM, r). We
define the function hx : R→ R by hx(t) = f(ϕ(t, x)). Then, from Clarke [4],

∂hx(t) ⊂
(
∂f(ϕ(t, x))|(∂ϕ/∂t)(t, x)

)
,

i.e., ∂hx(t) ⊂
(
∂f(ϕ(t, x))|F (ϕ(t, x))

)
, which is minorized by r if |f(ϕ(t, x))| < α;

this proves (ii). Hence from the mean-value theorem, the function f ◦ ϕ(., x) = hx is
strictly increasing on {t ∈ R| |f(ϕ(t, x))| < α}, which proves (iii). If we additionally
assume that x ∈ f−1([−α, α]), then (see, for example, Hirsch and Smale [9]; the fact
can also be proved directly) ϕ(t, x) /∈ f−1([−α, α]) when t is large enough; hence,
from (ii), f(ϕ(t, x)) ≥ α when t → +∞. In the same way, f(ϕ(t, x)) ≤ −α when
t→ −∞.

4.3. The sets M and Mk are lipeomorphic. In view of Propositions 4.1
and 4.2, the proof of Theorem 2.3 is finished if we prove the next proposition.

Proposition 4.3. Let M and N be two closed subsets of Rn admitting a Lips-
chitzian transverse field in the sense of (T). Then M and N are epi-Lipschitzian and
lipeomorphic.

Remark 4.2. One could reduce Proposition 4.3 to the smooth case. Indeed, since
bdM and bdN are compact, there are two smooth normal approximations (Mk) and
(Nk) of M and N , respectively. Then, for k large enough, there is a Lipschitzian
transverse field between the two sets Mk and Nk in the sense of (T). But the proof
would be identical. Proposition 4.3 can be proved directly, without using the notion
of normal approximation, as we do in the following.

Proof of Proposition 4.3. The set M is clearly epi-Lipschitzian, since the transver-
sality condition (T) implies that, for every x ∈ bdM , intTM (x) 6= ∅, hence that NM (x)
is pointed. Similarly, the set N is also epi-Lipschitzian. Let fM (resp., fN ) be an
inequality representation of M (resp., N) satisfying the conclusions of Theorem 3.1,
i.e., such that f−1

M ([−ε0, ε0]) (resp., f−1
N ([−ε0, ε0])) is compact for some ε0 > 0. The

following lemma is a different version of Lemma 3.2 of Bonnisseau–Cornet [2] that we
prove for the sake of completeness.

Lemma 4.5. There is a real number β > 0 and two Lipschitzian functions τ and
θ, defined from U × [−β, β] to Rn, such that

(i)
{
x ∈ Rn|min{fM (x), fN (x)} ≤ β,max{fM (x), fN (x)} ≥ −β

}
⊂ U

and such that, for all (x, δ, t) ∈ U × [−β, β]× R, then
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(ii) fM (ϕ(x, t)) = δ ⇔ t = τ(x, δ);
(iii) fN (ϕ(x, t)) = δ ⇔ t = θ(x, δ).

Proof of Lemma 4.5. Note that, without any loss of generality, we only need to
prove assertions (i) and (ii). Since the set{

x ∈ Rn|min{fM (x), fN (x)} ≤ 0,max{fM (x), fN (x)} ≥ 0
}

is equal to the set [M \ intN ]∪ [N \ intM ], which is included in the set U , we get the
inclusion

∩β∈(0,ε0]

{
x ∈ Rn|min{fM (x), fN (x)} ≤ β,max{fM (x), fN (x)} ≥ −β

}
⊂ U.

This implies assertion (i) for some β > 0 (since we have an intersection of compact
sets included in U). Then from the assumption (T), (b), there is r > 0 such that
(F (x)|y) > r for all x ∈ bdM and for all y ∈ ∂fM (x). We may assume that β is
small enough and we thus satisfy the conclusions of Claim 4.4, given the function
fM . Then f−1

M ([−β, β]) ⊂ U , and the function fM ◦ ϕ(., x) is strictly increasing on
{t ∈ R| |fM (ϕ(t, x))| < β} for every x ∈ Rn. Let us now consider x ∈ U . From the
assumption (T), (c), there is t ∈ R such that ϕ(x, t) ∈ bdM , i.e., fM (ϕ(x, t)) = 0. Let
(δ, t) ∈ [−β, β]×R. Then there is one and only one t′ ∈ R such that fM (ϕ(t′, x)) = δ.
We let t′ = τ(x, δ). Let us now prove that the function τ is Lipschitzian. We let

Ω = {(x, t, δ) ∈ Ω× R| |fM (ϕ(t, x))| < β},
and we define H : Ω → R by H(x, t, δ) = fM (ϕ(t, x)) − δ. The function H is clearly
Lipschitzian. The fact that τ is Lipschitzian around some (x, δ) is a direct consequence
of the implicit function theorem [4, p. 255], if we prove that t∗ 6= 0, for every element
(x∗, t∗, δ∗) ∈ ∂H(x, t, δ), where t ∈ R satisfies H(x, t, δ) = 0. In other words, if
πt : Rn ×R×R→ R is the projection defined by πt(x, t, δ) = t, if 0 /∈ πt[∂H(x, t, δ)].
From Clarke [4, Proposition 2.6.2], we get that

πt[∂H(x, t, δ)] ⊂
(
∂fM (ϕ(t, x))|F (ϕ(t, x))

)
,

which is minorized by β if we chose β small enough (Claim 4.4).
We then get the following property on the functions τ and θ.
Claim 4.5. For all (x, δ, t) ∈ U × [−β, β]× R

(i) fM (ϕ(x, t)) ≥ δ ⇔ t ≥ τ(x, δ);
(ii) fN (ϕ(x, t)) ≥ δ ⇔ t ≥ θ(x, δ);

If y ∈ U is such that ϕ(x, t) = y for some t, then τ(x, δ) = τ(y, δ) + t and θ(x, δ) =
θ(y, δ) + t for all δ.

Proof of Claim 4.5. The proof comes from Lemma 4.5 and from the Cauchy–
Lipschitz theorem for ϕ, since fM ◦ϕ(x, .) is strictly increasing on {t ∈ R| |fM (ϕ(t, x))|
< β}.

We are now able to build the lipeomorphism between M and N . Let us define
the map h : M → N by

h(x) = x if x ∈ int(M−β ∩N−β),

h(x) = ϕ
(
x, ix(τx − θx)/(τx − ix)

)
if x ∈M \ int(M−β ∩N−β),
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where we let M−β = {x ∈ Rn|fM (x) ≤ −β}, N−β = {x ∈ Rn|fN (x) ≤ −β}, τx =
τ(x, 0), θx = θ(x, 0), and ix = inf{τ(x,−β), θ(x,−β)}. Let x ∈M \ int(M−β ∩N−β);
then fM (x) ≤ 0 and max{fM (x), fN (x)} ≥ −β; hence x ∈ U from Lemma 4.5.
Hence the map h is well defined. The map h has its values in N . Indeed, let x ∈
M \ int(M−β ∩N−β). Then, recalling that x = ϕ(x, 0),

fM [ϕ(x, 0)] = fM (x) ≥ −β = fM [ϕ(x, τ(x,−β))],
or fN [ϕ(x, 0)] = fN (x) ≥ −β = fN [ϕ(x, θ(x,−β))];

hence, from Claim 4.5, and 0 ≥ τ(x,−β) or 0 ≥ θ(x,−β), which implies that ix ≤
0. The same claim implies that ix < τx (since fM [ϕ(x, τ(x,−β))] < fM [ϕ(x, τx)]),
ix < θx (since fN [ϕ(x, θ(x,−β))] < fN [ϕ(x, θx)]), and τx ≥ 0 (since fM [ϕ(x, 0)] =
fM (x) ≤ 0 = fM [ϕ(x, τx)]). Then we get that ix(τx−θx)/(τx− ix) ≤ θx, which proves
that fN (h(x)) ≤ 0, i.e., h(x) ∈ N .

Claim 4.6. The map h is locally Lipschitzian.
Proof of Claim 4.6. The map h is clearly Lipschitzian on int(M−β ∩ N−β).

From Lemma 4.5, the map x 7→ inf{τ(x,−β), θ(x,−β)} is Lipschitzian and τ(x, 0)−
inf{τ(x,−β), θ(x,−β)} 6= 0 for all x ∈M\(M−β∩N−β). Then clearly h is Lipschitzian
on M \int(M−β∩N−β). If x ∈ bd(M−β∩N−β), then fM (x) = −β or fN (x) = −β; be-
sides, fM (x) ≤ −β and fN (x) ≤ −β. This implies that τ(x,−β) = 0 or θ(x,−β) = 0,
and that τ(x,−β) ≥ 0 and θ(x,−β) ≥ 0. Hence inf{τ(x,−β), θ(x,−β)} = 0 and
h(x) = x. This proves that h is Lipschitzian on M−β ∩N−β . Hence h is Lipschitzian
on M .

Claim 4.7. The map h is one to one, and h−1 is Lipschitzian.
Proof of Claim 4.7. Let us define the map k : N →M by

k(x) = x if x ∈ int(M−β ∩N−β);

k(x) = ϕ
(
x, ix(θx − τx)/(θx − ix)

)
if x ∈ N \ int(M−β ∩N−β).

We let the reader check that k has its values in M and that it is Lipschitzian. Let us
now prove that h◦k = idN . Let us consider x ∈M . We let y = k(x); then iy = ix− t,
τy = τx−t, and θy = θx−t, where t = ix(θx−τx)/(θx−ix). Hence iy(τy−θy)/(τy−iy) =
ix(τx− θx)/(θx− ix), and hence h(y) = ϕ(y, iy(τy − θy)/(τy − iy)) = x. The fact that
k ◦ h = idM goes in the same way.

Acknowledgment. We wish to thank an anonymous referee for suggesting that
we consider the link between normal convergence and the one considered in section
2.4.2.
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Abstract. A class of interior-point trust-region algorithms for infinite-dimensional nonlinear
optimization subject to pointwise bounds in Lp-Banach spaces, 2 ≤ p ≤ ∞, is formulated and
analyzed. The problem formulation is motivated by optimal control problems with Lp-controls
and pointwise control constraints. The interior-point trust-region algorithms are generalizations of
those recently introduced by Coleman and Li [SIAM J. Optim., 6 (1996), pp. 418–445] for finite-
dimensional problems. Many of the generalizations derived in this paper are also important in the
finite-dimensional context. All first- and second-order global convergence results known for trust-
region methods in the finite-dimensional setting are extended to the infinite-dimensional framework
of this paper.
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1. Introduction. This paper is concerned with the development and analysis
of a class of interior-point trust-region algorithms for the solution of the following
infinite-dimensional nonlinear programming problem:

minimize f(u)

subject to u ∈ B def
= {u ∈ Lp(Ω) : a(x) ≤ u(x) ≤ b(x), x ∈ Ω} .

(P)

Here Ω ⊂ Rn is a domain with positive and finite Lebesgue measure 0 < µ(Ω) < ∞,
and the objective function f : D −→ R is continuous on an open neighborhood
D ⊂ Lp(Ω) of B. All pointwise statements on measurable functions are meant to
hold µ-almost everywhere. The lower and upper bound functions a, b ∈ L∞(Ω),
are assumed to have a distance of at least ν > 0 from each other. More precisely,
b(x)− a(x) ≥ ν on Ω.

Problems of type (P) arise, for instance, when the black-box approach is applied
to optimal control problems with bound-constrained Lp-control. A typical example is
the boundary control of a heat equation with a Stefan–Boltzmann boundary condition
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given by

minimize f(u)
def
=

1

2
‖y(u)(T, .)− yd‖22 +

α

2
‖u‖22

subject to 0 ≤ u(t) ≤ 1, t ∈ [0, T ],

where α ≥ 0 is a given parameter and y = y(u) is the solution of

yt(t, x) = yxx(t, x), (t, x) ∈ (0, T )× (0, 1)

y(0, x) = 0, x ∈ (0, 1)

yx(t, 0) = 0, yx(t, 1) = −y(t, 1)4 + u(t), t ∈ (0, T ).

(1.1)

Another example is an optimal control problem of Bolza type given by

minimize f(u)
def
= P (y(u)(1)) +

∫ 1

0

h0(x, y(u)(x), u(x)) dx

subject to u ∈ B,

where y = y(u) is the solution of

dy

dx
(x) = h(x, y(x), u(x)), y(0) = y0.(1.2)

These control problems and similar ones are studied, e.g., by Burger and Pogu [3],
Kelley and Sachs [14], Sachs [18], and Tian and Dunn [21]. We will return to these
two specific examples in section 8.

The algorithms in this paper are extensions of the interior-point trust-region al-
gorithms for bound constrained problems in RN introduced by Coleman and Li [6].
Algorithmic enhancements of these methods have been proposed and analyzed in
the finite-dimensional context in Branch, Coleman, and Li [2], Coleman and Li [5],
and Dennis and Vicente [11]. Dennis, Heinkenschloss, and Vicente [10] and Heinken-
schloss and Vicente [13] extend these methods to solve a class of finite-dimensional
constrained optimization problems with bound constraints on parts of the variables.
See also Vicente [24]. The interior-point trust-region methods in [6] are based on the
reformulation of the Karush–Kuhn–Tucker (KKT) necessary optimality conditions as
a system of nonlinear equations using a diagonal matrix D. This affine-scaling ma-
trix is computed using the sign of the gradient components and the distance of the
variables to the bounds (see section 2). The nonlinear system is then solved by an

affine-scaling interior-point method in which the trust region is scaled by D−
1
2 . These

methods enjoy strong theoretical convergence properties as well as a good numerical
behavior. The latter is documented in [2], [6], [10], [11], where these algorithms
have been applied to various standard finite-dimensional test problems and to some
discretized optimal control problems.

The present work is motivated by the application of interior-point trust-region
algorithms to optimal control problems with bounds on the controls. Even though
the numerical solution of these problems requires a discretization and allows the ap-
plication of the previously mentioned algorithms to the resulting finite-dimensional
problems, it is known that the infinite-dimensional setting dominates the convergence
behavior if the discretization becomes sufficiently small. If the algorithm can be
applied to the infinite-dimensional problem and convergence can be proven in the
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infinite-dimensional setting, asymptotically the same convergence behavior can be
expected if the algorithm is applied to the finite-dimensional discretized problems.
Otherwise, the convergence behavior might—and usually does—deteriorate fast as
the discretization is refined.

In the present context, the formulation of the interior-point trust-region algo-
rithms for the solution of the infinite-dimensional problem (P) requires a careful state-
ment of the problem and of the requirements on the function f . This will be done
in section 4. The infinite-dimensional problem setting in this paper is similar to the
ones in [12], [14], [15], [21]. The general structure of the interior-point trust-region
algorithms presented here is closely related to the finite-dimensional algorithms in
[6]. However, the statement and analysis of the algorithm in the infinite-dimensional
context is more delicate and has motivated generalizations and extensions which are
also relevant in the finite-dimensional context. The analysis performed in this paper
allows for a greater variety of choices for the affine-scaling matrix and the scaling of
the trust region than those presented previously in [6], [11]. Our convergence analysis
is more comprehensive than the ones in [5], [6], [11], [24]. In particular, we adapt
techniques proposed in Shultz, Schnabel, and Byrd [19] to prove that under mild
assumptions every accumulation point satisfies the second-order necessary optimal-
ity conditions. Moreover, the convergence results proven in this paper extend all the
finite-dimensional ones stated in [17], [19], [20] to our infinite-dimensional context with
bound constraints. In the follow-up paper [23] we present a local convergence analy-
sis of a superlinearly convergent affine-scaling interior-point Newton method which is
based on (5.3), and we prove under appropriate assumptions that in a neighborhood
of the solution the generated trial steps are accepted by our trust-region algorithms.
There a projection onto the set B is used in the computation of trial steps.

Trust-region methods for infinite-dimensional problems like (P) have also been
investigated by Kelley and Sachs [15] and Toint [22]. In both papers the constraints
are handled by projections. The paper [22] considers trust-region algorithms for min-
imization on closed convex bounded sets in Hilbert space. They are extensions of
the finite-dimensional algorithms by Conn, Gould, and Toint [7]. It is proven that
the projected gradient converges to zero. A comprehensive finite-dimensional analy-
sis of trust-region methods closely related to those introduced by Toint can be found
in Burke, Moré, and Toraldo [4]. In contrast to the results in [22], our convergence
analysis is also applicable to objective functions that are merely differentiable on a
Banach space Lp(Ω), p ∈ (2,∞], which reduces the differentiability requirements sub-
stantially compared to the L2-Hilbert space framework. Furthermore, for the problem
class under consideration our convergence results are more comprehensive than the
ones in [22]. The infinite-dimensional setting used in [15] fits into the framework of
this paper but is more restrictive. The formulation of their algorithm depends on
the presence of a penalty term α

∫
Ω
u2(x)dx in the objective function f , and they

assume that Ω ⊂ R is an interval. Their algorithm also includes a postsmoothing
step, which is performed after the trust-region step is computed. The presence of the
postsmoothing step ensures that existing local convergence results can be applied.
Such postsmoothing is not needed in the global analysis of this paper.

This paper is organized as follows. In the next section we review the basics of
the finite-dimensional interior-point trust-region algorithms in [6]. This is used in sec-
tion 3 to motivate the infinite-dimensional setting applied in this paper. This section
also contains some basic technical results. In section 4 we formulate the necessary
optimality conditions in the framework needed for the interior-point trust-region al-
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gorithms, which are introduced in section 5. The main convergence results are given
in section 6, which concerns the global convergence to points satisfying the first-order
necessary optimality conditions, and in section 7, which concerns the global con-
vergence to points satisfying the second-order necessary optimality conditions. These
convergence results extend all the known convergence results for trust-region methods
in finite dimensions to the infinite-dimensional setting of this paper. Some optimal
control examples from the literature to which our analysis applies are discussed in
section 8. The local convergence analysis of these algorithms is given in the follow-up
paper [23], which also contains numerical examples illustrating the theoretical findings
of this paper.

2. Review of the finite-dimensional algorithm. We briefly review the main
ingredients of the affine-scaling interior-point trust-region method introduced in [6].
We refer to that paper for more details. The algorithm solves finite-dimensional
problems of the form

minimize f(u)

subject to u ∈ BN def
=
{
u ∈ RN : a ≤ u ≤ b} ,(PN)

where f : RN −→ R is a twice continuously differentiable function and a < b are
given vectors in RN . (One can allow components of a and b to be −∞ or ∞, respec-
tively. This is excluded here to simplify the presentation.) Inequalities are understood
componentwise.

The necessary optimality conditions for (PN) are given by

∇f(ū)− µ̄a + µ̄b = 0,

a ≤ ū ≤ b,
(ū− a)T µ̄a + (b− ū)T µ̄b = 0,

µ̄a ≥ 0, µ̄b ≥ 0.

With the diagonal matrix defined by(
D(u)

)
ii

def
=

{
(b− u)i if (∇f(u))i < 0,
(u− a)i if (∇f(u))i ≥ 0

(2.1)

for i = 1, . . . , N , the necessary optimality conditions can be rewritten as

D(ū)r∇f(ū) = 0,

a ≤ ū ≤ b,(2.2)

where the power r > 0 is applied to the diagonal elements. This form of the necessary
optimality conditions—we choose r = 1—can now be solved using Newton’s method.
The ith component of the function D(u) is differentiable except at points where
(∇f(u))i = 0. However, this lack of smoothness is benign since D(u) is multiplied by
∇f(u). One can use

D(u)∇2f(u) + E(u)(2.3)

as the approximate derivative of D(u)∇f(u), where E(u) = D′(u)diag(∇f(u)) and
D′(u) is the diagonal matrix

(
D′(u)

)
ii

def
=

 −1 if (∇f(u))i < 0,
1 if (∇f(u))i > 0,
0 otherwise.
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Here D′(u)diag(v), v ∈ RN , plays the role of the generally nonexistent derivative of
D(u)v with respect to u, but the prime is not meant to indicate differentiation.

After symmetrization, one obtains

M̂(u) = D(u)1/2∇2f(u)D(u)1/2 + E(u).(2.4)

One can show that the standard second-order necessary optimality conditions are
equivalent to (2.2) and the positive semidefiniteness of M̂(ū). The standard second-
order sufficient optimality conditions are equivalent to (2.2) and the positive definite-
ness of M̂(ū).

A point satisfying the necessary optimality conditions (2.2) is now computed using
the iteration uk+1 = uk + sk, where for a given uk with a < uk < b, the trial step

sk = D
1/2
k ŝk satisfies a < uk + sk < b, and ŝk is an approximate solution of

min ψ̂k(ŝ) subject to ‖ŝ‖2 ≤ ∆k , uk +D
1/2
k ŝ ∈ BN ,(2.5)

with ψ̂k(ŝ)
def
= ĝTk ŝ + 1

2 ŝ
T M̂kŝ, ĝk

def
= D

1/2
k ∇fk. The trust-region radius ∆k is updated

from iteration to iteration in the usual fashion. In (2.5) the Hessian ∇2f(uk) might
be replaced by a symmetric approximation Bk. If the approximate solution ŝk of (2.5)
satisfies a fraction of Cauchy decrease condition

ψ̂k(ŝk) < βmin
{
ψ̂k(ŝ) : ŝ = −tĝk, t ≥ 0, ‖ŝ‖2 ≤ ∆k, uk +D

1/2
k ŝ ∈ BN

}
,

‖ŝk‖2 ≤ β0∆k,
(2.6)

then under appropriate, standard conditions one can show the basic trust-region con-
vergence result

lim inf
k→∞

‖D(uk)1/2∇f(uk)‖ = 0.(2.7)

Stronger convergence results can be proven if the assumptions on the function f and
on the step computation ŝk are strengthened appropriately. See [6], [5], [11].

Coleman and Li [6] show that close to nondegenerate KKT points one obtains
trial steps ŝk which meet these requirements if one first computes an approximate
solution of (2.5) ignoring the bound constraints and then satisfies the interior-point
condition a < uk + sk < b by a step-size rule. A careful analysis of the proofs in [6]
reveals that the same holds true for nearly arbitrary trust-region scalings. It becomes
apparent that the crucial role of the affine scaling does not consist of the scaling of
the trust-region but rather in leading to the additional term Ek in the Hessian M̂k of
ψ̂k. Near nondegenerate KKT points this positive semidefinite diagonal matrix shapes
the level sets of ψ̂k in such a way that all bad directions ŝ which allow only for small
step-sizes to the boundary of the box cannot minimize ψ̂k on any reasonable trust
region. The trust-region scaling in (2.5) and (2.6) tends to equilibrate the distance

of the origin to the bounding box constraints {ŝ : uk + D
1/2
k ŝ ∈ BN}. However, for

this feature the equivalence of 2- and ∞-norm is indispensable and thus it does not
carry over to our infinite-dimensional framework. In fact, in the infinite-dimensional
setting the affine-scaled trust-region {‖ŝ‖p ≤ ∆k} no longer enjoys the property of
reflecting the distance to the bounding box constraints. Therefore, we will allow for
a very general class of trust-region scalings in our analysis. See also [11]. Since,
as mentioned above, the term Ek in the Hessian M̂k plays the crucial role in this
affine-scaling interior-point method, all convergence results in [6] remain valid.

In the following section we state the assumptions that allow us to generalize the
affine-scaling interior-point algorithm to the infinite-dimensional problems (P).
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3. Infinite-dimensional problem setting.

3.1. Notation. We set

U
def
= Lp(Ω), 2 ≤ p ≤ ∞, V

def
= L∞(Ω).

In this notation, our optimization problem (P) is written as

minimize f(u)

subject to u ∈ B def
= {u ∈ U : a(x) ≤ u(x) ≤ b(x), x ∈ Ω} .

(P)

We use the following notations. L(X,Y ) is the space of linear bounded operators
from a Banach space X into a Banach space Y . By ‖ · ‖q we denote the norm of the
Lebesgue space Lq(Ω), 1 ≤ q ≤ ∞, and we write (·, ·)2 for the inner product of the
Hilbert space H

def
= L2(Ω). For (v, w) ∈ (Lq(Ω), Lq(Ω)∗), with Lq(Ω)∗ denoting the

dual space of Lq(Ω), we use the canonical dual pairing 〈v, w〉 def
=
∫

Ω
v(x)w(x) dx, for

which, if q < ∞, the dual space Lq(Ω)∗ is given by Lq
′
(Ω), 1/q + 1/q′ = 1. (In the

case q = 1 this means q′ = ∞.) Especially, if q = 2, we have L2(Ω)∗ = L2(Ω) and
〈·, ·〉 coincides with (·, ·)2.

Finally, we set U ′ def
= Lp

′
(Ω), 1/p + 1/p′ = 1, which is the same as U∗, if p < ∞.

Moreover, it is easily seen that w 7−→ 〈·, w〉 defines a linear norm-preserving injection
from L1(Ω) into L∞(Ω)∗. Therefore, we may always interpret U ′ as subspace of U∗.
Lemma 3.2 guarantees that Lq2(Ω) ⊂ Lq1(Ω) for 1 ≤ q1 ≤ q2 ≤ ∞. As a consequence
we get the following chain of continuous imbeddings:

V ↪→ U ↪→ H = H∗ ↪→ U ′ ↪→ U∗ ↪→ V ∗.

Throughout this paper we will work with differentiability in the Fréchet sense.
We write g(u)

def
= ∇f(u) ∈ U∗ for the gradient and ∇2f(u) ∈ L(U,U∗) for the second

derivative of f at u ∈ B if they exist. The ‖ · ‖∞-interior of B is denoted by B◦:

B◦ def
=
⋃
δ>0

Bδ , Bδ def
= {u ∈ U : a(x) + δ ≤ u(x) ≤ b(x)− δ, x ∈ Ω} .

We often write fk, gk, . . . for f(uk), g(uk), . . . .
Finally, we recall that all pointwise statements on measurable functions are meant

to hold µ-almost everywhere. Similarly, we call two sets equal if they differ at most
by a set of measure zero.

3.2. Basic problem setting. The finite-dimensional convergence analysis heav-
ily relies on the equivalency of norms in RN . This analysis is used, for example, to
obtain pointwise (‖ · ‖∞) estimates from ‖ · ‖2 estimates. In the infinite-dimensional
context the formulation of the algorithm and the proof of its convergence is more
delicate. The following assumptions on the function f are needed to state the algo-
rithm and to prove its basic global convergence property, which corresponds to (2.7).
Additional assumptions are needed to derive refined convergence results and will be
stated later.

The basic assumptions are as follows:
(A1) f : D −→ R is differentiable on D with g mapping B ⊂ U continuously

into U ′.
(A2) The gradient g satisfies g(B) ⊂ V .
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(A3) There exists c1 > 0 such that ‖g(u)‖∞ ≤ c1 for all u ∈ B.
The formulation of second-order necessary optimality conditions requires the following
assumption, which is also the basis for our second-order convergence results.

(A4) f is twice continuously differentiable on D. If p = ∞, then ∇2f(u) ∈
L(U,U ′) for all u ∈ B, and if (hk) ⊂ V converges to zero in all spaces Lq(Ω),
1 ≤ q <∞, then ∇2f(u)hk tends to zero in U ′.

For p ∈ [2,∞) the assumptions (A1) and (A4) simply say that f is continuously
Fréchet differentiable or that f is twice continuously Fréchet differentiable, respec-
tively. If p = ∞, then the requirements that g(u),∇2f(u)h ∈ U ′ = L1(Ω) 6= U∗ for
u ∈ B, h ∈ V is a further condition. It allows us to use estimates like 〈v, g(u)〉 ≤
‖g(u)‖p′‖v‖p for p ∈ [2,∞) and p = ∞. Moreover, since on L1(Ω) the L1- and

(L∞)∗-norms coincide, assumption (A4) implies that ∇2f : B ⊂ U −→ L(U,U ′) is
continuous also for p = ∞. Finally, (A1) ensures that the gradient g(u) is always
at least an L1-function which will be essential for many reasons, e.g., to allow the
definition of a function space analogue for the scaling matrix D.

Remark 3.1. From (A1), (A3), the boundedness of B, and the mean value theorem
it follows that f is bounded on B.

The above conditions limit the optimal control problems that fit into this frame-
work. However, a large and important class of optimal control problems with Lp-
controls satisfies these conditions. In section 8 we will discuss the validity of these
assumptions for the control problems stated in the introduction.

3.3. Norm estimates. In this section we collect several useful norm estimates
for Lq-spaces. The first lemma states that ‖ · ‖q1 is majorizable by a multiple of ‖ · ‖q2
if q2 ≥ q1.

Lemma 3.2. For all 1 ≤ q1 ≤ q2 ≤ ∞ and v ∈ Lq2(Ω) we have

‖v‖q1 ≤ mq1,q2‖v‖q2
with mq1,q2 = µ(Ω)

1
q1
− 1
q2 . Here 1/∞ is to be interpreted as zero.

Proof. See, e.g., [1, Thm. 2.8].
As a consequence of Hölder’s inequality we obtain the following result, which

allows us to apply the principle of boundedness in the high norm and convergence in
the low norm.

Lemma 3.3 (interpolation inequality). Given 1 ≤ q1 ≤ q2 ≤ ∞ and 0 ≤ θ ≤ 1,
let 1 ≤ q ≤ ∞ satisfy 1/q = θ/q1 + (1− θ)/q2. Then for all v ∈ Lq2(Ω) the following
is true:

‖v‖q ≤ ‖v‖θq1‖v‖
1−θ
q2

.(3.1)

Proof. In the nontrivial cases 0 < θ < 1 and q < ∞ observe that [q1/(θq)]
−1 +

[q2/((1− θ)q)]−1 = 1 and apply Hölder’s inequality:

‖v‖qq =
∥∥|v|θq|v|(1−θ)q∥∥

1
≤ ∥∥|v|θq∥∥ q1

θq

∥∥|v|(1−θ)q∥∥ q2
(1−θ)q

= ‖v‖(θq)q1
‖v‖(1−θ)qq2

.

The next lemma will be used in the proof of Lemma 7.1.
Lemma 3.4. For v ∈ Lq(Ω), 1 ≤ q <∞ and all δ > 0 holds

µ ({x ∈ Ω : |v(x)| ≥ δ}) ≤ δ−q‖v‖qq.
Proof.

‖v‖qq = ‖|v|q‖1 ≥ ‖χ{|v|≥δ}|v|q‖1 ≥ µ({|v| ≥ δ})δq.
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4. Necessary optimality conditions and affine scaling. The problem un-
der consideration belongs to the class of cone constrained optimization problems in
Banach space for which optimality conditions are available [16]. However, we believe
that for our particular problem an elementary derivation of the necessary optimality
conditions for problem (P) not only is simpler but also is more transparent than the
application of the general theory. This derivation also helps us to motivate the choice
of the affine scaling which is used to reformulate the optimality condition and which
is the basis for the interior-point method.

4.1. First-order necessary conditions. The first-order necessary optimality
conditions in Theorem 4.1 are completely analogous to those for finite-dimensional
problems with simple bounds ([6], Sect. 2). We have only to replace coordinate-
wise statements with pointwise statements and to ensure that the gradient g(ū) is a
measurable function.

Theorem 4.1 (first-order necessary optimality conditions). Let ū be a local
minimizer of problem (P) and assume that f is differentiable at ū with g(ū) ∈ U ′.
Then

(O1) ū ∈ B,

(O2) g(ū)(x)

= 0 for x ∈ Ω with a(x) < ū(x) < b(x),
≥ 0 for x ∈ Ω with ū(x) = a(x),
≤ 0 for x ∈ Ω with ū(x) = b(x)

are satisfied.
The first-order optimality conditions for infinite-dimensional problems are typi-

cally not stated in this form. The conditions (O1), (O2) can be deduced from other
first order conditions such as those in [16]. For completeness, we provide an elemen-
tary proof of Theorem 4.1.

Proof. Condition (O1) is trivially satisfied. To verify (O2), define

A− = {x ∈ Ω : ū(x) = a(x), g(ū)(x) < 0} , Ak− = {x ∈ A− : g(ū)(x) ≤ −1/k} ,

and assume that A− has positive measure µ(A−) > ε > 0. Since µ is continuous from
below and Ak− ↑ A−, there exists l > 0 with µ(Al−) ≥ ε. This yields a contradiction
because ū+ τs ∈ B, s = χA−(b− a), for 0 ≤ τ ≤ 1, and

d

dτ
f(ū+ τs)|τ=0 = 〈s, g(ū)〉 ≤ −εν

l
< 0.

Hence, we must have µ(A−) = 0. In the same way we can show that µ(A+) = 0 for
A+ = {x ∈ Ω : ū(x) = b(x), g(ū)(x) > 0}. Finally, we look at

I = {x ∈ Ω : a(x) < ū(x) < b(x), g(ū)(x) 6= 0} .

Assume that µ(I) > ε > 0. Since Ik ↑ I with

Ik = {x ∈ Ω : a(x) + 1/k ≤ ū(x) ≤ b(x)− 1/k, |g(ū)(x)| ≥ 1/k} ,

we can find l > 0 with µ(I l) ≥ ε and obtain for

s = −χIl
g(ū)

|g(ū)|
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that ū+ τs ∈ B, 0 ≤ τ ≤ 1/l, and

d

dτ
f(ū+ τs)|τ=0 = 〈s, g(ū)〉 ≤ −ε

l
< 0,

a contradiction to the local optimality of ū. Hence µ(I) = µ(A−) = µ(A+) = 0, which
means that (O2) holds.

4.2. Affine scaling. Let assumption (A1) hold. Our algorithm will be based on
the following equivalent affine-scaling formulation of (O2):

dr(ū)g(ū) = 0,(4.1)

where r > 0 is arbitrary and d(u) ∈ V , u ∈ B, is a scaling function which is assumed
to satisfy

d(u)(x)

= 0 if u(x) = a(x) and g(u)(x) ≥ 0,
= 0 if u(x) = b(x) and g(u)(x) ≤ 0,
> 0 else,

(4.2)

for all x ∈ Ω. The equivalence of (O2) and (4.1) will be stated and proved in Lemma
4.2. Before we do this, we give two examples of proper choices for d. The first choice
d = dI is motivated by the scaling matrices used in [6] (see (2.1)). Except for points
x with g(u)(x) = 0 it equals those used in [6] and [11]:

dI(u)(x)
def
=


u(x)− a(x) if g(u)(x) > 0 or

g(u)(x) = 0 and u(x)− a(x) ≤ b(x)− u(x),
b(x)− u(x) if g(u)(x) < 0 or

g(u)(x) = 0 and b(x)− u(x) < u(x)− a(x).

(4.3)

This slight modification in comparison to (2.1) lets dI satisfy (4.2). This will enable
us to prove second-order global convergence without a nondegeneracy assumption,
which is needed by Coleman and Li [6].

While the global analysis could be carried out entirely with this choice, the dis-
continuous response of d(u)(x) to sign changes of g(u)(x) raises difficulties for the
design of superlinearly convergent algorithms in infinite dimensions. These can be
circumvented by the choice d = dII, where

dII(u)(x)
def
=



min{|g(u)(x)|, c(x)} if −g(u)(x) > u(x)− a(x)
and u(x)− a(x) ≤ b(x)− u(x),

min{|g(u)(x)|, c(x)} if g(u)(x) > b(x)− u(x)
and b(x)− u(x) ≤ u(x)− a(x),

min{u(x)− a(x),
b(x)− u(x), c(x)} else.

(4.4)

Here c : x ∈ Ω 7−→ min{ζ(b(x)− a(x)), κ} with ζ ∈ (0, 1/2] and κ ≥ 1.
It is easily seen that d = dI and d = dII both satisfy (4.2).
Lemma 4.2. Let (A1) hold and ū ∈ B. Then (O2) is equivalent to (4.1) for all

r > 0 and all d satisfying (4.2).
Proof. Since dr, r > 0, also satisfies (4.2), we may restrict ourselves to the case

r = 1. First assume that (O2) holds. For all x ∈ Ω with g(ū)(x) = 0 we also have
d(ū)(x)g(ū)(x) = 0. If g(ū)(x) > 0, then by (O2) ū(x) = a(x) and if g(ū)(x) < 0
then ū(x) = b(x). In both cases d(ū)(x) = 0 and hence d(ū)(x)g(ū)(x) = 0. On the
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other hand, let d(ū)g(ū) = 0 hold. For all x ∈ Ω with a(x) < ū(x) < b(x) we have
d(ū)(x) > 0 which implies g(ū)(x) = 0. For all x ∈ Ω with ū(x) = a(x) we obtain
g(ū)(x) ≥ 0 since g(ū)(x) < 0 would yield the contradiction d(ū)(x) > 0. Analogously,
we see that g(ū)(x) ≤ 0 for all x ∈ Ω with ū(x) = b(x). Therefore, (O2) holds.

4.3. Second-order conditions. If assumption (A4) holds, we can derive second-
order conditions which are satisfied at all local solutions of (P). These are also anal-
ogous to the well-known conditions for finite-dimensional problems.

Theorem 4.3 (second-order necessary optimality conditions). Let (A4) be satis-
fied and let g(ū) ∈ U ′ hold at the local minimizer ū of problem (P). Then (O1), (O2),
and

(O3) 〈s,∇2f(ū)s〉 ≥ 0 for all s ∈ T (B, ū)

are satisfied, where

T (B, ū)
def
= {s ∈ V : s(x) = 0 for all x ∈ Ω with ū(x) ∈ {a(x), b(x)}}

denotes the tangent space of the active constraints.

As in the case of Theorem 4.1, these second-order necessary optimality conditions
are related to the general conditions in, e.g., [16]. However, they are tailored to our
problem and are slightly different. For completeness, we provide an elementary proof.

Proof. Let the assumptions hold. As shown in Theorem 4.1, (O1) and (O2)
are satisfied. In particular, we have that sg(ū) = 0 for all s ∈ T (B, ū). Now
assume the existence of s ∈ T (B, ū) and ε > 0 with 〈s,∇2f(ū)s〉 < −ε. Let
I = {x ∈ Ω : a(x) < ū(x) < b(x)},

Ik = {x ∈ Ω : a(x) + 1/k ≤ ū(x) ≤ b(x)− 1/k},(4.5)

and define restrictions sk = χIks ∈ V . Since Ik ↑ I and s = χIs, we get ‖sk − s‖qq ≤
µ(I \Ik)‖s‖q∞. Hence, the restrictions sk converge to s in all spaces Lq(Ω), 1 ≤ q <∞.
Therefore, ∇2f(ū)(s − sk) tends to zero in U ′ by (A4) and, using the symmetry of
∇2f(ū),

〈sk,∇2f(ū)sk〉 = 〈s,∇2f(ū)s〉 − 〈s+ sk,∇2f(ū)(s− sk)〉
< 2 ‖∇2f(ū)(s− sk)‖p′‖s‖p − ε
≤ −ε/2

for all sufficiently large k. Let l > 0 be such that 〈sl,∇2f(ū)sl〉 ≤ −ε/2. The
observations that sl ∈ T (B, ū) and ū + τsl ∈ B for 0 ≤ τ ≤ 1/(l‖s‖∞) now yield the
desired contradiction:

d

dτ
f(ū+ τsl)|τ=0 = 〈s, g(ū)〉 = 0,

d2

dτ2
f(ū+ τsl)|τ=0 = 〈sl,∇2f(ū)sl〉 ≤ −ε/2 < 0.

This readily shows that (O3) holds.
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5. The algorithm.

5.1. A Newton-like iteration. The key idea of the method to be developed
consists in solving the equation d(u)g(u) = 0 by means of a Newton-like method
augmented by a trust-region globalization. The bound constraints on u are enforced
by, e.g., a scaling of the Newton-like step. In particular, all iterates will be strictly
feasible with respect to the bounds uk ∈ B◦.

In general it is not possible to find a function d satisfying (4.2) that depends
smoothly on u. For an efficient method, however, we need a suitable substitute for
the derivative of dg. Formal application of the product rule suggests choosing an
approximate derivative of the form

D(u)∇2f(u) +Du(u)g(u), u ∈ B◦,
with Du(u)w ∈ L(U,U ′), w ∈ U ′, replacing the generally nonexistent derivative of
u ∈ B 7−→ d(u)w ∈ U ′ at u. Here and in the sequel the linear operator Dr(u), r ≥ 0,
denotes the pointwise multiplication operator associated with dr(u), i.e.,

Dr(u) : v 7−→ d(u)rv.

Since dr(u) ∈ V , Dr(u) maps Lq(Ω), 1 ≤ q ≤ ∞, continuously into itself. Moreover,
if the assumption (D2) below is satisfied and u ∈ B◦, then Dr(u) defines an automor-
phism of Lq(Ω), 1 ≤ q ≤ ∞, with inverse D−r(u). In fact, for all u ∈ B◦ there exists
0 < δ ≤ δd such that u ∈ Bδ, and thus d(u)(x) ≥ εd(δ) on Ω by (D2). If we look at
the special case d = dI, the choice Du(u)w = d′I(u)w with

d′I(u)(x)
def
=


1 if g(u)(x) > 0 or

g(u)(x) = 0 and u(x)− a(x) ≤ b(x)− u(x)
−1 if g(u)(x) < 0 or

g(u)(x) = 0 and b(x)− u(x) < u(x)− a(x)

(5.1)

for u ∈ B, x ∈ Ω seems to be the most natural. A suitable choice for d′II is

d′II(u)(x) = χ{d′II(u)<c}(x)d′I(u)(x).(5.2)

For the general case this suggests the choice

D(u)∇2f(u) + E(u),

where

E(u) : v 7−→ e(u)v

is a multiplication operator characterized by e(u) ∈ V , which approximatesDu(u)g(u).
Properties of E will be specified below.

We are now able to formulate the following Newton-like iteration for the solution
of d(u)g(u) = 0.

Given uk ∈ B◦, compute the new iterate uk+1 := uk + sk ∈ B◦, where sk ∈ U
solves

(DkBk + Ek)sk = −dkgk(5.3)

and Bk denotes a symmetric approximation of (or replacement for) ∇2f(uk), i.e.,
〈v,Bkw〉 = 〈w,Bkv〉 for all v, w ∈ U .
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We assume that Bk satisfies the following condition:
(A5) The norms ‖Bk‖U,U ′ are uniformly bounded by a constant c2 > 0.
In the following, we will not restrict our investigations to special choices of d

and e. Rather, we will develop an algorithm that is globally convergent for all affine
scalings d and corresponding e satisfying the assumptions (D1)–(D5):

(D1) The scaling d satisfies (4.2) for all u ∈ B.
(D2) There exists δd > 0 such that for all δ ∈ (0, δd] there is εd = εd(δ) > 0 such

that d(u)(x) ≥ εd for all u ∈ B and all x ∈ Ω with a(x)+δ ≤ u(x) ≤ b(x)−δ.
(D3) The scaling satisfies d(u)(x) ≤ dI(u)(x) for all u ∈ B, x ∈ Ω and dI given by

(4.3). In particular, d(u)(x) ≤ cd for some cd > 0.
(D4) For all u ∈ B the function e(u) satisfies 0 ≤ e(u)(x) ≤ ce for all x ∈ Ω and

g(u)(x) = 0 implies e(u)(x) = 0.
(D5) The function e(u) is given by e(u) = d′(u)g(u), where d′(u) satisfies |d′(u)(x)|

≤ cd′ for all u ∈ B and x ∈ Ω.
We have seen that assumption (D1) is essential for the reformulation of the first-

order necessary optimality conditions and that (D2) ensures the continuous invert-
ibility of the scaling operator D(u) for u ∈ B◦. Furthermore, assumption (D2) will be
used in the second-order convergence analysis. The assumption (D4), together with
(A5), is needed to ensure uniform boundedness of the Hessian approximations M̂k to
be defined in the next section. The assumption (D5) is needed to prove second-order
convergence results.

Obviously, (D1)–(D3) hold for either d = dI and d = dII. The assumption (D4) is
satisfied for e(u) = d′I(u)g(u), where d′I(u) is given by (5.1), provided that ‖g(u)‖∞ is
uniformly bounded on B, i.e., provided that (A3) holds.

5.2. New coordinates and symmetrization. Since neither the global well-
definedness nor the global convergence of the Newton-like iteration (5.3) can be en-
sured, we intend to safeguard and globalize it by means of a closely related trust-region
method. To this end we have to transform (5.3) into an equivalent quadratic program-
ming problem. While the iterates are required to stay strictly feasible with respect
to the bound constraints, we want to use an affine-scaling interior-point approach to
reduce the effect of the interfering bound constraints in the quadratic subproblem as
far as possible. The affine scaling can be expressed by a change of coordinates s ; ŝ
and has to be performed in such a way that we get enough distance from the boundary
of the box B to be able to impose a useful fraction of Cauchy decrease condition on
the trial step. An appropriate change of coordinates s ; ŝ is given by ŝ

def
= d−rk s. Here

r ≥ 1

2

is arbitrary but fixed throughout the iteration. Performing this transformation and
applying Dr−1

k , the multiplication operator associated with dr−1
k , from the left to (5.3)

leads to the equivalent equation

M̂kŝk = −ĝk,(5.4)

with ĝ(u)
def
= dr(u)g(u), M̂k

def
= B̂k + Ĉk, where B̂k

def
= Dr

kBkD
r
k and Ĉk

def
= EkD

2r−1
k .

Remark 5.1. Assumptions (D3), (D4), and (A5) imply that ‖M̂k‖U,U ′ are uni-
formly bounded by a constant c3 > 0.

Since M̂k is symmetric, ŝk is a solution of (5.4) if and only if it is a stationary
point of the quadratic function

ψ̂k(ŝ)
def
= 〈ŝ, ĝk〉 +

1

2
〈ŝ, M̂kŝ〉.
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We will return to this issue later.

5.3. Second-order necessary conditions revisited. If Bk = ∇2f(uk), then
the operator

M̂(u)
def
= D(u)r∇2f(u)D(u)r + E(u)D(u)2r−1(5.5)

also plays an important role in the second-order necessary optimality conditions. In
fact, we will show that if conditions (O1), (O2) hold at ū, then (O3) can be equivalently
replaced by

(O3′) 〈s, M̂(ū)s〉 ≥ 0 for all s ∈ T (B, ū)

or even

(O3′′) 〈s, M̂(ū)s〉 ≥ 0 for all s ∈ V .

The proof requires the following two lemmas.

Lemma 5.2. Let f be differentiable at ū with g(ū) ∈ U ′, (D1) be satisfied, and
suppose that (O1), (O2) hold at ū. Then

I∗ def
= {x ∈ Ω : d(ū)(x) > 0} = {x ∈ Ω : a(x) < ū(x) < b(x)} def

= I.(5.6)

Proof. The inclusion I ⊂ I∗ is obvious from (4.2) and (O2). Now let x ∈ I∗

be given. Then g(ū)(x) = 0 by (O2) and Lemma 4.2. From (4.2) we conclude
ū(x) /∈ {a(x), b(x)}, i.e., x ∈ I.

Lemma 5.3. Let f be twice continuously differentiable at ū with g(ū) ∈ U ′ and
∇2f(ū) ∈ L(U,U ′). Assume that (D1) and (D4) are satisfied and (O1), (O2) hold at
ū. Then the statements (O3′) and (O3′′) are equivalent.

Proof. Obviously (O3′′) implies (O3′). To show the opposite direction, assume
that (O3′) holds. Set A = Ω\I, where I is the set defined in (5.6). For arbitrary s ∈ V
we perform the splitting s = sI + sA, sI = χIs ∈ T (B, ū), sA = χAs. Lemma 5.2
implies that dr(ū)sA = 0. Moreover, since sI and sA have disjoint support, integrals
〈·, ·〉 involving both sI and sA are zero. With these observations we obtain

〈s, M̂(ū)s〉 = 〈sI , M̂(ū)sI〉 + 2〈sA, e(ū)d2r−1(ū)sI〉
+ 2〈dr(ū)sA,∇2f(ū)dr(ū)sI〉 + 〈dr(ū)sA,∇2f(ū)dr(ū)sA〉
+ 〈sA, e(ū)d2r−1(ū)sA〉

= 〈sI , M̂(ū)sI〉 + 〈sA, e(ū)d2r−1(ū)sA〉 ≥ 〈sI , M̂(ū)sI〉 ≥ 0.

(5.7)

This completes the proof.

Theorem 5.4. Let (D1), (D2), and (D4) be satisfied. Then in Theorem 4.3
condition (O3) can be equivalently replaced by (O3′) or (O3′′).

Proof. Since the conditions of Theorem 4.3 and Lemma 5.3 guarantee that (O3′)
and (O3′′) are equivalent, we only need to show that (O3) can be replaced by (O3′).

Let (O1), (O2) be satisfied and let s ∈ T (B, ū) be arbitrary. Condition (O2)
implies sg(ū) = 0. Hence {s 6= 0} ⊂ {g(ū) = 0} and, by (D4), {s 6= 0} ⊂ {e(ū) = 0}.
This shows that

E(ū)s = 0 for all s ∈ T (B, ū).(5.8)
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To show that (O3) implies (O3′), let s ∈ T (B, ū) be arbitrary. Since d(ū) ≥ 0,
h = dr(ū)s ∈ T (B, ū). With (5.8) this yields

〈s, M̂(ū)s〉 = 〈h,∇2f(ū)h〉 + 〈s,E(ū)D2r−1(ū)s〉
= 〈h,∇2f(ū)h〉 + 〈E(ū)s,D2r−1(ū)s〉 = 〈h,∇2f(ū)h〉 ≥ 0.

To prove the opposite direction, assume that there exist s ∈ T (B, ū) and ε > 0
with 〈s,∇2f(ū)s〉 < −ε. As carried out in the proof of Theorem 4.3, we can find l > 0
such that sl = χIls ∈ T (B, ū), Il, as defined in (4.5), satisfies 〈sl,∇2f(ū)sl〉 ≤ −ε/2.
Since d(ū) is bounded away from zero on Il by assumption (D2), we obtain that
h = χIld

−r(ū)s is an element of T (B, ū). With (5.8) applied to h this yields

〈h, M̂(ū)h〉 = 〈h,D(ū)r∇2f(ū)D(ū)rh〉 + 〈h,E(ū)D(ū)2r−1h〉
= 〈sl,∇2f(ū)sl〉 ≤ −ε/2,

a contradiction to (O3′).
The previous results show that ψ̂k(ŝ) is convex and admits a global minimum at

ŝ = 0 if Bk = ∇2f(uk) and uk = ū is a local solution of (P).

5.4. Trust-region globalization. The results on the second-order conditions
in the previous section indicate that the Newton-like iteration (5.4) can be used locally

under appropriate conditions on Bk. To globalize the iteration, we minimize ψ̂k(ŝ)
over the intersection of the ball ‖ŵkŝ‖p ≤ ∆k and the box B which leads to the
following trust-region subproblem: Compute an approximate solution ŝk with uk +
drkŝk ∈ B◦ of

min ψ̂k(ŝ) subject to ‖ŵkŝ‖p ≤ ∆k , uk + drkŝ ∈ B.(5.9)

Here ŵk ∈ V is a positive scaling function for the trust-region. We make the following
assumption on wk = d−rk ŵk:

(W) There exist cw > 0 and cw′ > 0 such that ‖drkwk‖∞ ≤ cw and ‖w−1
k ‖∞ ≤ cw′

for all k.
Examples for wk are wk = d−rk , which yields a ball in the ŝ-variables, and wk = 1,
which leads to a ball in the s-variables. Both choices satisfy (W) if (D3) holds. See
also [11].

As noted in section 2, the crucial contributions of the affine scaling are the term
E(u)D(u)2r−1 in the Hessian M̂(u) and the scaling ĝ of the gradient. The trust
region serves as a tool for globalization. Therefore, general trust-region scalings can
be admitted as long as they satisfy (W).

We will work with the original variables in terms of which the above problem
reads as follows: Compute sk with uk + sk ∈ B◦ as an approximate solution of

minψk(s) subject to ‖wks‖p ≤ ∆k , uk + s ∈ B,(5.10)

with ψk(s) = 〈s, gk〉 + 1
2 〈s,Mks〉, Mk = Bk + Ck, Ck = EkD

−1
k , and wk = d−rk ŵk.

The functions d−rk and d−1
k are well defined only if uk ∈ B◦. Therefore, the condition

uk + drkŝk ∈ B◦ on the trial iterate is essential. However, it is important to remark
that the bound constraints do not need to be strictly enforced when computing ŝk.
For example, in the finite-dimensional algorithms in [6], [11], an approximate solution
of

min ψ̂k(ŝ) subject to ‖ŵkŝ‖p ≤ ∆k
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is computed and then scaled by τk > 0 so that uk + τkd
r
kŝk ∈ B◦. Similar techniques

also apply in the infinite-dimensional framework. Practical choices for the infinite-
dimensional algorithm will be discussed in [23].

5.5. Cauchy decrease for the trial steps. An algorithm which is based on
the iterative approximate solution of subproblem (5.10) can be expected to converge
to a local solution of (P) only if the trial steps sk produce a sufficiently large decrease
of ψk. A well-established way to impose such a condition is the requirement that
the decrease provided by sk should be at least a fraction of the Cauchy decrease.
Here the Cauchy decrease denotes the maximum possible decrease along the steepest
descent direction of ψk at s = 0 with respect to an appropriate norm (or, equivalently,
appropriate coordinates) inside the feasible region of the subproblem. We will see in
Lemma 6.1 that the new coordinates ŝ = d−rk s indeed provide enough distance to the
boundary of B to allow the implementation of a useful Cauchy decrease strategy.

Unless as in the Hilbert space case, p = 2, the steepest descent direction of ψ̂k at
ŝ = 0 is not given by the negative gradient −ĝk but rather by any ŝd 6= 0 satisfying
〈ŝd, ĝk〉 = ‖ŝd‖p‖ĝk‖p′ . On the other hand, if ĝk ∈ H, then −∇ψ̂k(0) = −ĝk is the

‖ · ‖2-steepest descent direction of ψ̂k at ŝ = 0. This is a strong argument for choosing
this direction as basis for the Cauchy decrease condition. Of course, this approach is
useful only if we ensure that uk−τdrkĝk ∈ B◦ for all τ > 0 sufficiently small which can
be done by imposing condition (A2) on g, which is not very restrictive. Assuming this,
we may take −drkĝk = −d2r

k gk as the Cauchy decrease direction of ψk and therefore
define the following fraction of Cauchy decrease condition: There exist β, β0 > 0 (fixed
for all k) such that sk is an approximate solution of (5.10) in the sense

‖wksk‖p ≤ β0∆k , uk + sk ∈ B◦ , and ψk(sk) < βψk(sck),(5.11a)

where sck is a solution of the one-dimensional problem

minψk(s) subject to s = −td2r
k gk , t ≥ 0 , uk + s ∈ B , ‖wks‖p ≤ ∆k.(5.11b)

It is worth mentioning that, as in the finite-dimensional case, an approximate solution
ŝk of (5.10) satisfying (5.11a) can be easily obtained by applying any descent method
which starts minimization at s = 0 along the Cauchy decrease direction −d2r

k gk.

5.6. Formulation of the algorithm. For the update of the trust-region radius
∆k and the acceptance of the step we use a very common strategy. It is based on the
demand that the actual decrease

aredk(sk)
def
= fk − f(uk + sk)(5.12)

should be a sufficiently large fraction of the predicted decrease

predk(sk)
def
= − 〈sk, gk〉 − 1

2
〈sk, Bksk〉 = −ψk(sk) +

1

2
〈sk, Cksk〉(5.13)

promised by the quadratic model. Since the model error is at most O(‖sk‖2p), the
decrease ratio

ρk
def
=

aredk(sk)

predk(sk)
(5.14)

will tend to 1 for sk → 0. This suggests the following strategy for the update of the
trust-region radius.

Algorithm 5.5 (update of the trust-region radius ∆k).
Let 0 < η1 < η2 < η3 < 1, and 0 < γ1 < 1 < γ2 < γ3.
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1. If ρk ≤ η1, then choose ∆k+1 ∈ (0, γ1∆k].
2. If ρk ∈ (η1, η2), then choose ∆k+1 ∈ [γ1∆k,∆k].
3. If ρk ∈ [η2, η3), then choose ∆k+1 ∈ [∆k, γ2∆k].
4. If ρk ≥ η3, then choose ∆k+1 ∈ [γ2∆k, γ3∆k].

Remark 5.6. The forms of predicted and actual decrease follow the choices used
in [11], [24] (and [10] for the constrained case). In [6] the decreases and the ratio are
computed as follows:

pred1
k(sk)

def
= −ψk(sk),

ared1
k(sk)

def
= aredk(sk)− 1

2 〈sk, Cksk〉,

ρ1
k

def
=

ared1
k(sk)

pred1
k(sk)

.

(5.15)

We restrict the presentation to the choice (5.12), (5.13). However, we already note
that all convergence results presented in this paper remain valid if ρk is replaced
by ρ1

k . This will be discussed in more detail in Remarks 6.7 and 7.4 following the
convergence results.

The algorithm iteratively computes a trial step sk satisfying the fraction of Cauchy
decrease condition. Depending on the decrease ratio ρk the trial step is accepted or
rejected, and the trust-region radius is adjusted.

Algorithm 5.7 (trust-region interior-point algorithm).

Let η1 > 0 as in Algorithm 5.5.

1. Choose u0 ∈ B◦ and ∆0 > 0.
2. For k = 0, 1, . . .

2.1. Compute the gradient gk = g(uk).
2.2. Compute the scaling dk = d(uk).
2.3. Compute the trust-region scaling wk = w(uk).
2.4. Compute the Hessian approximation Bk.
2.5. Compute sk satisfying (5.11).
2.6. If ‖sk‖ = 0 then stop with result uk.
2.7. Compute ρk as defined in (5.14).
2.8. If ρk > η1 then set uk+1 = uk + sk, else set uk+1 = uk.
2.9. Compute ∆k+1 using Algorithm 5.5.

In the first-order version of Algorithm 5.7 one can stop after step 2.2 if ‖ĝk‖ = 0.
The stopping criteria as applied above will be important in the second-order version
of the algorithm, which will be introduced in section 7.

6. Convergence to first-order optimal points. The convergence of the algo-
rithm is mainly achieved by two ingredients: a lower bound for the predicted decrease
for trial steps satisfying the fraction of Cauchy decrease condition, and the relation
aredk(sk) > η1predk(sk), which is always satisfied for successful steps sk. The lower
bound on the predicted decrease is established in the following lemma.

Lemma 6.1. Let the assumptions (A1), (A2), (D1)–(D4), and (W) hold. Then
there exists c4 > 0 such that for all uk ∈ B◦ with ĝk 6= 0 and all sk satisfying (5.11)
the following holds:

predk(sk)≥−ψk(sk) ≥ 1

2
β‖ĝk‖22 min

{
∆k

cw‖ĝk‖p
,

‖ĝk‖22
‖M̂k‖U,U ′‖ĝk‖2p

,
c1−2r
d

‖gk‖∞

}
,(6.1)
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≥ c4‖ĝk‖2p′ min

{
∆k

cw‖ĝk‖p
,

‖ĝk‖2p′
‖M̂k‖U,U ′‖ĝk‖2p

,
c1−2r
d

‖gk‖∞

}
.(6.2)

If in addition the assumptions (A3) and (A5) hold, then there exists c′4 > 0 such that
for all uk ∈ B◦ with ĝk 6= 0 and all sk satisfying (5.11) the following holds:

predk(sk) ≥ −ψk(sk) ≥ c′4‖ĝk‖2p′ min
{

∆k, ‖ĝk‖2p′ , c1−2r
d

}
.(6.3)

Proof. Since Ck is obviously positive by (D4), we have

predk(sk) = −ψk(sk) +
1

2
〈sk, Cksk〉 ≥ −ψk(sk).

From (5.11) we obtain that

ψk(sk) ≤ β min
[0,τ+]

φ(τ),(6.4)

where φ(τ) = ψk(−τd2r
k gk) and τ+ = min{τB, τ∆}, with

τB = max
{
τ : b(x)− uk(x) + τd2r

k (x)gk(x) ≥ 0 and

uk(x)− a(x)− τd2r
k (x)gk(x) ≥ 0 for all x ∈ Ω

}
and

τ∆ =
∆k

‖wkd2r
k gk‖p

.

We will derive an upper bound for min[0,τ+] φ(τ).
First, we bound τ∆ and τB from below. Using (W), we obtain the bound

τ∆ =
∆k

‖wkd2r
k gk‖p

=
∆k

‖ŵkĝk‖p
≥ ∆k

cw‖ĝk‖p
,

and using the positivity of dk, the definition (4.3) of dI, (D3), and r ≥ 1/2, we obtain
the following bound for τB:

τB = min

{
inf

{gk(x)<0}
b(x)− uk(x)

−d2r
k (x)gk(x)

, inf
{gk(x)>0}

uk(x)− a(x)

d2r
k (x)gk(x)

}
= inf
{gk(x) 6=0}

dI(uk)(x)

d2r
k (x)|gk(x)|

≥ inf
{gk(x) 6=0}

d1−2r
k (x)

|gk(x)| ≥ inf
{gk(x) 6=0}

c1−2r
d

|gk(x)| ≥
c1−2r
d

‖gk‖∞
.

We have φ(τ) = −κ1τ +
1

2
κ2τ

2 with

κ1 = 〈d2r
k gk, gk〉 = ‖ĝk‖22, κ2 = 〈d2r

k gk,Mkd
2r
k gk〉 = 〈ĝk, M̂kĝk〉

and observe that |κ2| ≤ ‖M̂k‖U,U ′‖ĝk‖2p. Let τ∗ be a minimizer for φ on [0, τ+].

If τ∗ < τ+, then κ2 > 0, τ∗ = κ1/κ2, and

φ(τ∗) = −1

2

κ2
1

κ2
≤ −1

2

‖ĝk‖42
‖M̂k‖U,U ′‖ĝk‖2p

.(6.5)
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If τ∗ = τ∆ and κ2 > 0, then κ1/κ2 ≥ τ∆ and

φ(τ∗) = −κ1τ∆ +
κ2

2
τ2

∆ ≤ −
κ1

2
τ∆ ≤ −1

2

‖ĝk‖22
cw‖ĝk‖p

∆k.(6.6)

If τ∗ = τ∆ and κ2 ≤ 0, then even

φ(τ∗) ≤ −κ1τ∆ < −1

2

‖ĝk‖22
cw‖ĝk‖p

∆k.(6.7)

For τ∗ = τB analogous arguments show that

φ(τ∗) ≤ −κ1

2
τB ≤ −1

2
c1−2r
d

‖ĝk‖22
‖gk‖∞

.(6.8)

The first inequality (6.1) now follows from the estimates (6.5)–(6.8) and (6.4). The
second inequality (6.2) follows from (6.1) and the application

‖ĝk‖p′ ≤ mp′,2‖ĝk‖2
of Lemma 3.2. Note that p ≥ 2 and 1/p+ 1/p′ = 1 yield p′ ≤ 2.

The inequality (6.3) follows from (6.2) by applying the following observations.
Assumptions (A3) and (D3) yield ‖ĝk‖p = ‖drkgk‖p ≤ crdµ(Ω)1/p‖gk‖∞ ≤ crdc1µ(Ω)1/p.

Assumptions (D3), (D4), and (A5) imply that ‖M̂k‖U,U ′ are uniformly bounded by a
constant c3 > 0 (see Remark 5.1).

Let the assumptions of Lemma 6.1 hold. If the kth iteration of Algorithm 5.7 is
successful, i.e., ρk > η1 (or equivalently uk+1 6= uk), then (6.3) guarantees that with
c5 = η1c

′
4 > 0 the following estimate for the actual decrease holds:

fk − fk+1 > c5‖ĝk‖2p′ min
{

∆k, ‖ĝk‖2p′ , c1−2r
d

}
.(6.9)

The next statement is trivial.
Lemma 6.2. Let (∆k) and (ρk) be generated by Algorithm 5.7. If ρk ≥ η2 for

sufficiently large k then (∆k) is bounded away from zero.
Now we can prove a first global convergence result.
Theorem 6.3. Let assumptions (A1)–(A3), (A5), (D1)–(D4), and (W) hold. Let

the sequence (uk) be generated by Algorithm 5.7. Then

lim inf
k→∞

‖drkgk‖p′ = 0.

Even more,

lim inf
k→∞

‖drkgk‖q = 0 for all 1 ≤ q <∞.

Proof. Assume that there are K > 0 and ε > 0 with ‖ĝk‖p′ ≥ ε for all k ≥ K.

First we will show that this implies
∑∞
k=0 ∆k < ∞. If there is only a finite number

of successful steps then ∆k+1 ≤ γ1∆k for large k and we are done. Otherwise, if the
sequence (ki) of successful steps does not terminate, we conclude from fk ↓ and the
boundedness of f (see Remark 3.1) that

∑∞
k=0(fk − fk+1) <∞.
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For all k = ki we may use (6.9) and obtain, since ‖ĝki‖p′ ≥ ε for ki ≥ K, that
∆ki tends to zero and, moreover, obeys the inequality

∆ki <
1

c5ε2
(fki − fki+1)

for all ki sufficiently large. This shows
∑∞
i=0 ∆ki < ∞. Since for all successful steps

k ∈ {ki} we have ∆k+1 ≤ γ2∆k and for all others ∆k+1 ≤ γ1∆k, we conclude

∞∑
k=0

∆k ≤
∞∑
i=0

∆ki

(
1 +

γ2

1− γ1

)
<∞.(6.10)

In a second step we will show that |ρk − 1| → 0. Due to

‖uk+1 − uk‖p ≤ ‖sk‖p ≤ β0‖w−1
k ‖∞∆k ≤ β0cw′∆k(6.11)

and (6.10), (uk) is a Cauchy sequence in U . Furthermore,

2

∣∣∣∣ψk(sk)− 〈sk, gk〉 − 1

2
〈sk, Cksk〉

∣∣∣∣ = |〈sk, Bksk〉| ≤ ‖Bk‖U,U ′‖sk‖2p
≤ c2β

2
0c

2
w′∆

2
k.

The mean value theorem yields f(uk + sk) − fk = 〈sk, ḡk〉 for some τk ∈ [0, 1] and
ḡk = g(uk + τksk), and hence

|predk(sk)||ρk − 1| =

∣∣∣∣f(uk + sk)− fk +
1

2
〈sk, Cksk〉 − ψk(sk)

∣∣∣∣
≤
∣∣∣∣〈sk, gk〉 +

1

2
〈sk, Cksk〉 − ψk(sk)

∣∣∣∣ + |〈sk, ḡk − gk〉|

≤
(c2

2
β2

0c
2
w′∆k + β0cw′‖ḡk − gk‖p′

)
∆k.

Since (uk) converges in the closed set B, g is continuous, and (∆k) as well as (‖sk‖p)
(see (6.11)) tend to zero, the first factor in the last expression converges to zero, too.
Equation (6.3) guarantees that |predk(sk)|/∆k is uniformly bounded away from zero
for k ≥ K, since by assumption ‖ĝk‖p′ ≥ ε. This shows |ρk−1| → 0. But now Lemma
6.2 yields a contradiction to ∆k → 0. Therefore, the assumption is wrong and the
first part of the assertion holds.

The second part follows from Lemma 3.2 for 1 ≤ q ≤ p′ and from (A3) and the
interpolation inequality (3.1) for p′ < q <∞.

Now we will show that if ĝ is uniformly continuous, the limits inferior in Theorem
6.3 can be replaced by limits.

We introduce the following assumption:
(A6) The scaled gradient ĝ = drg : B ⊂ U −→ U ′ is uniformly continuous.
Condition (A6) is not as easy to verify for most choices of d. With Lemma 6.4,

however, we provide a very helpful tool to check the validity of (A6). Moreover, we
show in Lemma 6.5 that the following, more convenient, condition implies (A6).

(A6′) The gradient g : B ⊂ U −→ U ′ is uniformly continuous and d = dI or
d = dII.

The proofs of both lemmas can be found in the appendix. As a by-product of
our investigations we get the valuable result that ĝ inherits the continuity of g if we
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choose d = dI or d = dII. We will derive the results concerning continuity and uniform
continuity of ĝ simultaneously. Additional requirements for the uniform continuity
are written in parentheses.

Lemma 6.4. Let (A1)–(A3), (D3) hold and g : B ⊂ U −→ U ′ be (uniformly)
continuous. Assume that ‖χ{g(u)g(ũ)>0}(d(u)− d(ũ))‖

p′ tends to zero (uniformly in

u ∈ B ⊂ U) for ũ → u in B ⊂ U . Then ĝ = drg : B ⊂ U −→ U ′ is (uniformly)
continuous.

Proof. See appendix.
The previous lemma is now applicable to the choices d = dI and d = dII, as

follows.
Lemma 6.5. Let (A1)–(A3) hold and d = dI or d = dII. Then ĝ = drg : B ⊂

U −→ U ′ is continuous. If, in addition, g is uniformly continuous, then the same is
true for ĝ.

Proof. See appendix.
Now we state the promised variant of Theorem 6.3.
Theorem 6.6. Let assumptions (A1)–(A3), (A5), (D1)–(D4), (W), and (A6) or

(A6′) hold. Then the sequence (uk) generated by Algorithm 5.7 satisfies

lim
k→∞

‖drkgk‖p′ = 0.(6.12)

Even more,

lim
k→∞

‖drkgk‖q = 0 for all 1 ≤ q <∞.(6.13)

Proof. Since, due to Lemma 6.5, ĝ = drg is uniformly continuous, it suffices to
show that under the assumption ‖ĝk‖p′ ≥ ε1 > 0 for an infinite number of iterations
k there exists a sequence of index pairs (mi, li) with ‖ĝmi − ĝli‖p′ ≥ δ > 0 but
‖umi − uli‖p → 0, which is a contradiction to the uniform continuity of ĝ.

Let us assume that (6.12) does not hold. Then there is ε1 > 0 and a sequence
(mi) with ‖ĝmi‖p′ ≥ ε1. Theorem 6.3 yields a sequence (ki) with ‖ĝki‖p′ → 0. For
arbitrary 0 < ε2 < ε1 we can thus find a sequence (li) such that

‖ĝk‖p′ ≥ ε2, mi ≤ k < li, ‖ĝli‖p′ < ε2.

Since ĝli 6= ĝli−1, iteration li − 1 is successful and one has for all successful iterations
k, mi ≤ k < li, by Lemma 6.1 and (6.9)

fk − fk+1 > c5ε
2
2 min

{
∆k, ε

2
2, c

1−2r
d

}
.(6.14)

The left-hand side converges to zero, because (fk) is nonincreasing and bounded from
below, i.e., it is a Cauchy sequence. We conclude that ∆k tends to zero for successful
steps mi ≤ k < li and with (6.11) we get that

fk − fk+1 ≥ c5ε2
2∆k ≥ c5ε

2
2

β0cw′
‖uk+1 − uk‖p def

= c6‖uk+1 − uk‖p,

which is clearly true also for unsuccessful iterations. Summing and using the triangle
inequality yields

fmi − fli ≥ c6‖umi − uli‖p.
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Since (fk) is a Cauchy sequence, the left-hand side converges to zero for i → ∞.
Hence, ‖umi − uli‖p −→ 0 but

‖ĝmi − ĝli‖p′ ≥ ‖ĝmi‖p′ − ‖ĝli‖p′ ≥ ε1 − ε2 > 0.

This is a contradiction to the uniform continuity of ĝ. The second assertion follows
as in the proof of Theorem 6.3.

Remark 6.7. The convergence results in Theorems 6.3 and 6.6 remain valid if the
definitions (5.12), (5.13) of predicted reduction predk and actual reduction aredk are
replaced by (5.15), the choices in [6].

To see that this is true, note that the crucial estimate (6.2) remains valid for
pred1

k(sk). Under (D4), 〈sk, Cksk〉 ≥ 0 and, consequently,

ared1
k(sk) ≤ aredk(sk).

Hence, (6.9) remains valid for successful iterations if ρk is replaced by ρ1
k. Finally,

since

pred1
k(sk)(ρ1

k − 1) = predk(sk)(ρk − 1),

the proof of Theorem 6.3 remains valid if predk and ρk are replaced by pred1
k and

ρ1
k, respectively. Since the proof of Theorem 6.6 only depends on Theorem 6.3 and

on (6.9) but not explicitly on predk and aredk, its proof remains valid without any
changes.

7. Convergence to second-order optimal points. The first-order conver-
gence results in the previous section could be shown under rather weak conditions on
the trust-region step sk and for arbitrary symmetric and bounded Hessian approxi-
mations. If stronger assumptions are imposed on Bk and on sk, then it can be shown
that every accumulation point of (uk) satisfies the second-order necessary optimality
conditions. This will be done in this section. We need the following assumption on
the Hessian approximation:

(A7) For all accumulation points ū ∈ U of (uk) and all ε > 0 there is δ = δ(ū, ε)
> 0 such that ‖uk − ū‖p ≤ δ implies ‖Bk −∇2f(ū)‖U,U ′ ≤ ε.

Obviously (A7) is satisfied if Bk = ∇2f(uk) and if (A4) holds. However, (A7) also
applies in other important situations. For example, (A7) applies if f is a least squares
functional, f(ū) = 0, and Bk is the Gauss–Newton approximation of the Hessian.

The fraction of Cauchy decrease condition does not take into account any proper-
ties of the quadratic part of ψk. Apparently, this condition is too weak to guarantee
the positivity of M̂(ū) at accumulation points of (uk). The decrease condition has
to be strengthened in such a way that for ū satisfying (O1) and (O2) but not (O3′′)
there are α, ε, c > 0 such that ψk(sk) ≤ −cmin{∆2

k, α
2} for all iterates uk with

‖uk − ū‖p ≤ ε. For the finite-dimensional problem one can establish such an inequal-
ity near nondegenerate points ū by using techniques similar to those of Coleman and
Li [6] if the sk satisfy a finite-dimensional fraction of optimal decrease condition of
the form

‖wksk‖2 ≤ β0∆k , uk + sk ∈ B◦ , and ψk(sk) < βψok,(7.1a)

where ψok = ψk(τks
o
k), τk = max {τ ≥ 0 : uk + τsok ∈ B}, and sok solves

minψk(s) subject to ‖wks‖2 ≤ ∆k.(7.1b)
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This approach is not directly transferable to our setting because the example

min −
∫ 1

0

ts2(t) dt subject to ‖s‖2 ≤ ∆(7.2)

shows that even in a Hilbert space sok may not exist. Moreover, the proofs in [6] use
extensively a convenient characterization of sok derived from the KKT conditions [20]
and the equivalence of 2-norm and∞-norm in RN . Since, as shown by (7.2), in Banach
space the quadratic subproblem may not have a solution, this is not applicable in our
framework. Our convergence proof requires that the trial steps yield a fraction of the
Cauchy decrease and, moreover, a fraction of the decrease achievable along directions
of negative curvature of ψk at s = 0. For convenience and simplicity of notation,
however, we favor a more intuitive but stronger condition which is formulated in the
flavor of (7.1). Our fraction of optimal decrease condition is given by the following.
There exist β, β0 > 0 (fixed for all k) such that

‖wksk‖p ≤ β0∆k , uk + sk ∈ B◦ , and ψk(sk) < βψok,(7.3a)

where

ψok
def
= inf ψk(s) subject to uk + s ∈ B , ‖wks‖p ≤ ∆k.(7.3b)

There are two important differences between (7.1) and (7.3). Both arise in the defi-
nition of ψok. First, the min in (7.1b) is replaced by an inf in (7.3b) for the reasons
explained above. Second, in the computation of ψok in (7.3b), the bound constraints
are explicitly enforced. In the finite-dimensional context (7.1b) this is not necessary,
since Ek tends to equilibrate the distance to the bounds along the optimal decrease
direction sok. As a consequence, the bound constraints can be enforced by simple
scaling of the solution sok of (7.1b) by τk. This equilibration property, however, makes
use of the equivalence of the 2-norm and the ∞-norm in finite dimensions. Recall the
discussion at the end of section 2.

To obtain global convergence results toward points satisfying second-order nec-
essary optimality conditions, the fraction of optimal decrease condition has to be
incorporated into Algorithm 5.7. Step 2.5 of Algorithm 5.7 has to be replaced by

2.5.′ Compute sk satisfying (7.3).
When we refer to Algorithm 5.7 in this section we assume that step 2.5 is replaced
by step 2.5′.

In the next lemma we show that in a neighborhood of an accumulation point ū
of (uk) at which (O1), (O2) but not (O3′′) hold, one can find a direction of negative
curvature hn of ψk such that uk ± hn ∈ B.

Lemma 7.1. Let assumptions (A1), (A2), (A4), (A5), (A7), (D1)–(D5) hold
and let the sequence (uk) be generated by Algorithm 5.7. Assume that ū ∈ B is an
accumulation point of (uk) with ĝ(ū) = 0 and that there are h̄ ∈ V , h̄ 6= 0, and λ > 0
with

〈h̄, M̂(ū)h̄〉 ≤ −λ‖h̄‖2p.(7.4)

Then there exist ε, α, λ̂ > 0 such that for all uk with ‖uk − ū‖p ≤ ε one can find
h ∈ V , ‖h‖p = 1, with uk + ταdrkh ∈ B for all τ ∈ [−1, 1] and

〈h, M̂kh〉 ≤ −λ̂‖h‖2p.(7.5)
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Proof. Since ū ∈ B and ĝ(ū) = 0, (O1) and (O2) are satisfied due to Lemma 4.2.
Lemma 5.2 yields I

def
= {x ∈ Ω : a(x) < ū(x) < b(x)} = {x ∈ Ω : d(ū)(x) > 0} def

= I∗.
Define Iδ = {x ∈ Ω : a(x) + δ ≤ ū(x) ≤ b(x)− δ} for arbitrary 0 < δ < 4δd with
δd as in (D2). We write vA = χAv for measurable functions v and measurable sets
A ⊂ Ω.

We first show that (7.4) implies the existence of h̃ ∈ V with ‖h̃‖p = 1, {h̃ 6= 0} ⊂
Iδ, and

〈h̃, M̂(ū)h̃〉 ≤ −λ
2
.(7.6)

In the first step toward (7.6) we use the techniques of the proof of Lemma 5.3. More
precisely, applying the inequalities (5.7) with s replaced by h̄ we obtain that

0 > −λ‖h̄‖2p ≥ 〈h̄, M̂(ū)h̄〉 ≥ 〈h̄I , M̂(ū)h̄I〉.
Hence, h̄I ∈ V \ {0} and

〈h̄I , M̂(ū)h̄I〉 ≤ −λ‖h̄‖2p ≤ −λ‖h̄I‖
2

p < 0,(7.7)

i.e., (7.4) holds for h̄I instead of h̄. Furthermore, the symmetry of M̂(ū) and the
identity h̄I = h̄Iδ + h̄I\Iδ imply

〈h̄Iδ , M̂(ū)h̄Iδ〉 = 〈h̄I , M̂(ū)h̄I〉 − 〈h̄Iδ + h̄I , M̂(ū)h̄I\Iδ〉
≤ −λ‖h̄I‖2p + ‖M̂(ū)h̄I\Iδ‖p′(‖h̄I‖p + ‖h̄Iδ‖p)
≤ −λ‖h̄I‖2p + 2‖M̂(ū)h̄I\Iδ‖p′‖h̄I‖p.

By the definition of M̂(ū) and the fact that g(ū) and thus, by (D4), e(ū) vanishes on
I, with (D3) we get

‖M̂(ū)h̄I\Iδ‖p′ = ‖(Dr(ū)∇2f(ū)Dr(ū) + E(ū)D2r−1(ū))h̄I\Iδ‖p′
= ‖Dr(ū)∇2f(ū)Dr(ū)h̄I\Iδ‖p′ ≤ crd‖∇2f(ū)Dr(ū)h̄I\Iδ‖p′ .

Since the measure of I\Iδ can be made arbitrarily small by reducing δ > 0 we conclude
that h̄I\Iδ and Dr(ū)h̄I\Iδ tend to zero for δ → 0 in all spaces Lq(Ω), 1 ≤ q < ∞.
Hence, using (A4), we find δ > 0 with

2‖M̂(ū)h̄I\Iδ‖p′ ≤
λ

2
‖h̄I‖p.

Obviously, {h̃ 6= 0} ⊂ Iδ. Thus, (7.6) holds with h̃ = h̄Iδ/‖h̄Iδ‖p.
Next, we use h̃ to construct h such that the assertions of the lemma are valid.
For ε > 0 and uk with ‖uk − ū‖p ≤ ε, define h ∈ V by

h(x) =

 h̃(x)
dr(ū)(x)

drk(x)
if min {uk(x)− a(x), b(x)− uk(x)} > δ

4
,

0 otherwise.

We have Ih
def
= {h 6= 0} ⊂ Iδ and conclude from assumptions (D2) and (D3) that

εd(δ/4) ≤ dk(x) ≤ cd on Ih and εd(δ/4) ≤ d(ū)(x) ≤ cd on Iδ, which implies that

‖h‖p ≤ γ , ‖h‖∞ ≤ γ‖h̃‖∞ , ‖h‖p ≥
1

γ
‖h̃Ih‖p with γ =

crd
εrd(δ/4)

.(7.8)
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From ū(x)− a(x), b(x)− ū(x) ≥ δ on Iδ follows

Iδ \ Ih ⊂ {x ∈ Ω : |uk(x)− ū(x)| ≥ 3δ/4} .
If p =∞, we achieve h̃Iδ\Ih = 0 for ε < 3δ/4. Otherwise, due to Lemma 3.4, we can

make ‖h̃Iδ\Ih‖p ≤ µ(Iδ \ Ih)1/p‖h̃‖∞ arbitrarily small by making ε > 0 small. Hence,

in all cases we can reduce ε such that

‖h‖p ≥
1

γ
‖h̃Ih‖p ≥

1

γ

(
‖h̃‖p − ‖h̃Iδ\Ih‖p

)
≥ 1

2γ
.(7.9)

By first using the definition of h, Ih = {h 6= 0}, then the fact that g(ū)(x) = 0 on
Iδ ⊃ Ih, the definitions of Bk, M̂(ū), and Hölder’s inequality, and finally (D3), (D5),
we get

〈h, M̂kh〉 = 〈h, d′kgkd2r−1
k h〉 + 〈drkh,Bkdrkh〉

= 〈d′kd2r−1
k , χIh(gkh

2)〉 + 〈dr(ū)h̃Ih , Bkd
r(ū)h̃Ih〉

= 〈d′kd2r−1
k , χIh(gkh

2)〉 + 〈dr(ū)h̃Ih , Bkd
r(ū)h̃Ih〉 + 〈h̃Ih , d′(ū)g(ū)d2r−1(ū)h̃Ih〉

≤ ‖d′k‖∞‖dk‖2r−1
∞ ‖χIhgk‖p′‖h‖p‖h‖∞ + 〈h̃Ih , M̂(ū)h̃Ih〉

+ ‖d(ū)‖2r∞‖Bk −∇2f(ū)‖U,U ′‖h̃Ih‖
2

p

≤ cd′c
2r−1
d ‖χIhgk‖p′‖h‖∞‖h‖p + 〈h̃Ih , M̂(ū)h̃Ih〉 + c2rd ‖Bk −∇2f(ū)‖U,U ′‖h̃Ih‖

2

p.

From h̃ = h̃Iδ = h̃Ih + h̃Iδ\Ih we obtain

〈h̃Ih , M̂(ū)h̃Ih〉 = 〈h̃, M̂(ū)h̃〉 − 〈h̃+ h̃Ih , M̂(ū)h̃Iδ\Ih〉.

Using this equality, the fact that g(ū)(x) = 0 on Iδ ⊃ Ih, and ‖h̃Ih‖p ≤ ‖h̃‖p in the

previous estimate for 〈h, M̂kh〉 gives

〈h, M̂kh〉 ≤ cd′c
2r−1
d ‖gk − g(ū)‖p′‖h‖∞‖h‖p + 〈h̃, M̂(ū)h̃〉

− 〈h̃+ h̃Ih , M̂(ū)h̃Iδ\Ih〉 + c2rd ‖Bk −∇2f(ū)‖U,U ′‖h̃Ih‖
2

p

≤ cd′c
2r−1
d ‖gk − g(ū)‖p′‖h‖∞‖h‖p + 〈h̃, M̂(ū)h̃〉

+ 2‖h̃‖p‖M̂(ū)‖U,U ′‖h̃Iδ\Ih‖p + c2rd ‖Bk −∇2f(ū)‖U,U ′‖h̃Ih‖
2

p.

Using (7.6), (7.8), (7.9), and ‖h̃‖p = 1 we arrive at the estimate

〈h, M̂kh〉 ≤
(
2cd′c

2r−1
d γ2‖h̃‖∞‖gk − g(ū)‖p′ −

λ

2γ2
+ 8γ2‖M̂(ū)‖U,U ′‖h̃Iδ\Ih‖p

+ c2rd γ
2‖Bk −∇2f(ū)‖U,U ′

)‖h‖2p.
We have already shown that ‖h̃Iδ\Ih‖p can be made arbitrarily small by making

ε > 0 small. By continuity the same is true for ‖gk − g(ū)‖p′ and by (A7) for

‖Bk −∇2f(ū)‖U,U ′ (since ‖uk − ū‖p ≤ ε). Hence, there exist ε > 0 and λ̂ > 0
such that for all uk with ‖uk − ū‖p ≤ ε we can carry out the above construction to
obtain h ∈ V \ {0} with

〈h, M̂kh〉 ≤ −λ̂‖h‖2p.
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Since h 6= 0, ‖h‖∞ ≤ γ‖h̃‖∞, and ‖h‖p ≥ 1
2γ , where γ depends only on δ, we get

‖h‖∞
‖h‖p

≤ 2γ2‖h̃‖∞ def
= C.

In addition, we have by construction Ih ⊂ {x ∈ Ω : a(x) + δ/4 ≤ uk(x) ≤ b(x)− δ/4}
and consequently

uk + τ
δ

4Ccrd
drk

h

‖h‖p
∈ B for all τ ∈ [−1, 1].

Setting α = δ/4Ccrd and renorming h to unity completes the proof.
Now we establish the required decrease estimate.
Lemma 7.2. Let assumptions (A1), (D3), (D4), (W) hold and sk satisfy (7.3).

If for uk there exist λ̂, α > 0, hk ∈ V , ‖hk‖p = 1, with uk + ταdrkhk ∈ B for all
τ ∈ [−1, 1] and

〈hk, M̂khk〉 ≤ −λ̂‖hk‖2p,

then

predk(sk) ≥ −ψk(sk) ≥ βλ̂

2
min

{
∆2
k

c2w
, α2

}
.(7.10)

Proof. The first inequality is obvious. Now let λ̂, α > 0 be given. For all uk which
admit hk ∈ V , ‖hk‖p = 1, with uk ± αdrkhk ∈ B and 〈hk, M̂khk〉 ≤ −λ̂‖hk‖2p, set

ŝnk = ±min {∆k/cw, α}hk and snk = drkŝ
n
k ,

and choose the sign such that 〈ŝnk , ĝk〉 ≤ 0. Then ‖wksnk‖p ≤ ∆k by assumption (W)
and uk + snk ∈ B. Hence snk is admissible for (7.3b) and can be used to get an upper
bound for ψk(sk). The fraction of optimal decrease condition (7.3) gives

ψk(sk) ≤ βψk(snk ) = βψ̂k(ŝnk ) = β〈ŝnk , ĝk〉 +
β

2
〈ŝnk , M̂kŝ

n
k 〉 ≤

β

2
〈ŝnk , M̂kŝ

n
k 〉

≤ −βλ̂
2
‖ŝnk‖2p = −βλ̂

2
min

{
∆2
k

c2w
, α2

}
.

For a large class of trust-region algorithms for unconstrained finite-dimensional
problems Shultz, Schnabel, and Byrd [19] proposed a very elegant way to prove that
all accumulation points of the iterates satisfy the second-order necessary optimal-
ity conditions. The key idea is to increase the trust-region radius after exceedingly
successful steps (case 4 in Algorithm 5.5). The following convergence theorem is an
analogue to [19, Thm. 3.2].

Theorem 7.3. Let assumptions (A1)–(A7), (D1)–(D5), and (W) hold. More-
over, let the sequence (uk) be generated by the Algorithm 5.7 and let all sk satisfy
(7.3). Then every accumulation point ū ∈ U of (uk) satisfies the second-order neces-
sary conditions (O1)–(O3).

Proof. Let ū ∈ U be an accumulation point of uk. Then ū ∈ B and, since
ĝ : B ⊂ U −→ U is continuous, ĝ(ū) = 0 by Theorem 6.6. Using Lemma 4.2, this
implies (O1) and (O2).
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Now assume that (O3) does not hold at ū. Then due to Theorem 5.4 there are

h̄ ∈ V , h̄ 6= 0, and λ > 0 with 〈h̄, M̂(ū)h̄〉 ≤ −λ‖h̄‖2p. Lemmas 7.1 and 7.2 yield

α, c7, ε > 0 with predk(sk) ≥ c7 min{∆2
k, α

2} for all uk satisfying ‖uk − ū‖p ≤ ε. By
choosing 0 < ∆ ≤ α we achieve that for all k with ∆k ≤ ∆ and ‖uk − ū‖p ≤ ε

predk(sk) ≥ c7∆2
k.

Using this estimate, (A4), (A7), and ‖sk‖p ≤ β0cw′∆k (see (6.11)) we find—possibly
after reducing ε and ∆—with appropriate τk ∈ [0, 1]

predk(sk) |ρk − 1| =

∣∣∣∣f(uk + sk)− fk +
1

2
〈sk, Cksk〉 − ψk(sk)

∣∣∣∣
=

1

2

∣∣〈sk, (∇2f(uk + τksk)−Bk)sk〉
∣∣

≤ 1

2

(
‖∇2f(uk + τksk)−∇2f(ū)‖U,U ′ + ‖∇2f(ū)−Bk‖U,U ′

)
‖sk‖2p

≤ (1− η3)c7∆2
k ≤ (1− η3)predk(sk).

This shows ρk ≥ η3 for all k with ∆k ≤ ∆ and ‖uk − ū‖p ≤ ε and hence ∆k+1 ∈
[γ2∆k, γ3∆k].

For all K > 0 there is l > K with ‖ul − ū‖p ≤ ε/2 and ρl > η1. In fact, since
ū is an accumulation point of (uk), we can find l′ > K with ‖ul′ − ū‖p ≤ ε/2. Now

ρk ≤ η1 for all k ≥ l′ cannot occur, because then ∆k ≤ γk−l
′

1 ∆l′ eventually satisfies
∆k ≤ ∆ and consequently ρk ≥ η3 > η1. Hence, there is l ≥ l′ > K with ul = ul′ and
ρl > η1.

Since ∆k+1 ≥ γ2∆k for all k with ‖uk − ū‖p ≤ ε and ∆k ≤ ∆, it is easily seen
that

1. ∆l > ∆, or
2. ∆l ≤ ∆ and there is m > l such that ‖uk − ū‖p ≤ ε and ∆k ≤ ∆ for l ≤ k < m,

and
2.1. ∆m > ∆, or
2.2. ∆m ≤ ∆ and ‖um − ū‖p > ε.

In case 1 we get

fl − fl+1 > η1c7 min{∆2
l , α

2} ≥ η1c7∆2.

For case 2.1 we have ∆ ≥ ∆m−1 ≥ ∆m/γ3 > ∆/γ3, and ρm−1 ≥ η3; hence

fm−1 − fm ≥ η3c7∆2
m−1 ≥ η3c7

∆2

γ2
3

.

In case 2.2 we get ∆k+1 ≥ γ2∆k, k = l, . . . ,m− 1. This implies ∆k ≤ γk−m+1
2 ∆m−1

and

ε

2
≤ ‖um − ū‖p − ‖ul − ū‖p ≤ ‖um − ul‖p =

∥∥∥∥∥
m−1∑
k=l

sk

∥∥∥∥∥
p

≤
m−1∑
k=l

‖sk‖p ≤ β0cw′
m−1∑
k=l

∆k ≤ β0cw′∆m−1

m−1∑
k=l

γk−m+1
2 ≤ β0cw′∆m−1

γ2

γ2 − 1
.



GLOBAL CONVERGENCE OF TRUST-REGION INTERIOR-POINT METHODS 757

This yields

fm−1 − fm ≥ η3c7∆2
m−1 ≥ η3c7

(
ε(γ2 − 1)

2β0cw′γ2

)2

.

Therefore, for infinitely many steps k we get a decrease fk−fk+1 of at least a constant
value which yields fk → −∞. This contradicts the boundedness of f on B, which
follows from (A1)–(A3) (see Remark 3.1). Thus, (O3) must hold at ū.

Remark 7.4. As for the first-order convergence results, the second-order conver-
gence result in Theorem 7.3 remains valid if the definitions (5.12), (5.13) of predicted
reduction predk and actual reduction aredk are replaced by (5.15), the choices in [6].
Since (7.10) remains valid for pred1

k, in the proof of Theorem 7.3 predk can be replaced
by pred1

k.

8. Examples. In this section we examine the examples presented in the intro-
duction and show how the general class of algorithms presented in this paper can be
applied in those cases. We give justifications for the assumptions (A1)–(A3) which
are needed to guarantee the first-order convergence result Theorem 6.3. The other
assumptions, which mostly address the second derivatives, can be justified in similar
ways with proper adjustment of the assumptions on the problem data in the two
problems. Since the mere statement of the second-order derivatives is rather lengthy,
this has been omitted.

8.1. A parabolic boundary control problem of Stefan–Boltzmann type.
If a metal rod is heated by radiation on its right side x = 1 with temperature u(t),
t ∈ [0, T ], the temperature distribution y(t, x), (t, x) ∈ [0, T ] × [0, 1], satisfies in
good approximation the heat equation with the Stefan–Boltzmann boundary condi-
tion (1.1). The control u ∈ B def

= {u ∈ L∞(0, T ) : 0 ≤ u ≤ 1} shall be determined in
such a way that the temperature y(T, x) at time T follows a given temperature profile
yd ∈ C([0, T ]). To this end we want to solve the problem

minimize f(u)
def
=

1

2
‖y(u)(T, .)− yd‖22 +

α

2
‖u‖22

subject to u ∈ B,
(8.1)

where y = y(u) is the solution of (1.1) and α ≥ 0 is a regularization parameter. For
the case α = 0 this problem was considered in [18]. This optimization problem with
α > 0 is also considered in [14] and [15]. By defining mild solutions to (1.1) via a
weakly singular integral equation of Volterra type it can be shown with the same
techniques as in [18] that for p > 2 the mapping u ∈ D ⊂ Lp([0, T ]) 7−→ y(u) ∈
C([0, T ] × [0, 1]) is completely continuous and continuously Fréchet differentiable on
an open neighborhood D of B. Consequently, the objective function f(u) of (8.1)
is continuously Fréchet differentiable on D ⊂ Lp([0, T ]). Hence, assumption (A1) is
shown for U = Lp([0, T ]), p > 2. Since the 2-norm is weakly lower semicontinuous on
Lp([0, T ]), existence of an optimal solution to (8.1) can be proven as in [18], where
only the case α = 0 is considered. It remains to check (A2) and (A3). As shown
in [18] the gradient representation g(u) of f(u) with respect to the L2 dual pairing,
〈h,∇f(u)〉 = (h, g(u))2, is given by

g(u) = z(u, ., 1) + αu,(8.2)
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where z = z(u) ∈ C([0, T ]× [0, 1]) is the mild solution of the adjoint equation

zt(t, x) = −zxx(t, x), (t, x) ∈ (0, T )× (0, 1)

z(T, x) = y(T, x)− yd(x), x ∈ (0, 1)

zx(t, 0) = 0, zx(t, 1) = −4y(t, 1)3z(t, 1), t ∈ (0, T ).

(8.3)

In (8.3) y = y(u) is the solution of (1.1). Using again the Volterra integral formulation
of (8.3), it can be shown that z(u) is uniformly bounded in C([0, T ]× [0, 1]) for u ∈ B,
since this holds for y(u). Hence, ‖g(u)‖∞ ≤ ‖z(u)‖∞ + α‖u‖∞ ≤ c1 for all u ∈ B.
This shows that (A2) and (A3) also are satisfied.

For this example, the computation of the gradient gk = g(uk) in step 2.1 of
Algorithm 5.7 requires the solution y = y(uk) of the heat equation (1.1) and the
solution z = z(uk) of the adjoint equation (8.3). In steps 2.2 and 2.3 we can use
dk = dII(uk) defined by (4.4), with ζ = κ = 0.075, r = 1, and wk = 1, the parameter
values corresponding to those in the numerical example of [23]. As we have noted,
these choices satisfy (D1)–(D4) and (W). The function d′(u) defining e(u) can be
chosen to be d′(u) = d′II(u) defined by (5.2). This choice satisfies (D5). For this
example, c(x) = 0.075 min {1− 0, 1} = 0.075 and thus

dII(u)(t) =


min{|z(u, t, 1) + αu(t)|, 0.075} if −(z(u, t, 1) + αu(t)) > u(t)

and u(t) ≤ 1− u(t),
min{|z(u, t, 1) + αu(t)|, 0.075} if z(u, t, 1) + αu(t) > 1− u(t)

and 1− u(t) ≤ u(t),
min{u(t), 1− u(t), 0.075} else.

In the simplest case one could find a step sk in step 2.5 of the algorithm by one-
dimensional minimization of ψk(−td2

kgk). The second-order term 〈d2
kgk, Bkd

2
kgk〉

could be obtained by using a finite difference approximation of ∇2f(uk)d2
kgk.

8.2. A control problem of Bolza type. We consider the control problem of
Bolza type

minimize f(u)
def
= P (y(u)(1)) +

∫ 1

0

h0(x, y(u)(x), u(x)) dx

subject to u ∈ B,
(8.4)

where y = y(u) is the solution of (1.2). Our presentation is based on Tian and Dunn
[21]. We work in L2([0, 1]), i.e., Ω = [0, 1], p = p′ = 2, and U = H = U ′ = L2([0, 1]).
Let the function P : Rm −→ R be twice continuously differentiable. The function h0

and the right-hand side h = (h1, . . . , hm)T of the state equation (1.2) are given by

hi : [0, 1]× Rm × R −→ R , hi(x, y, u) = h0
i (x, y) + h1

i (x, y)u+ h2
i (x, y)u2.

Hereby, the functions hki : [0, 1] × Rm −→ R as well as their first and second partial
y-derivatives are assumed to be continuous and the derivatives ∇yhki , 1 ≤ i ≤ m are
assumed to be bounded on [0, 1]× Rm.

For this problem one can prove the following assertions ([21] and the references
therein):

(a) For every u ∈ L2([0, 1]) there exists a unique absolutely continuous solu-
tion y(u) to (1.2) on [0, 1]. Moreover, the mapping u ∈ B ⊂ L2([0, 1])
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7−→ y(u) ∈ C0([0, 1])m is continuous. In addition, y(B) is a bounded set
in C0([0, 1])m.

(b) The objective function f is continuously Fréchet differentiable. The gradient
g(u) ∈ L2([0, 1]) of f is given by

g(u)(x) =
∂h0

∂u
(x, y, u) + z(x)T

∂h

∂u
(x, y, u),(8.5)

where y = y(u) is the solution of (1.2) and z = z(u) : [0, 1] −→ Rm solves the adjoint
equation

dz

dx
(x) = −∇yh0(x, y(x), u(x))−∇yh(x, y(x), u(x))z(x),

z(1) = ∇P (y(1)),

with y = y(u). Here we have used the notation ∇yh = (∇yh1, . . . ,∇yhm). As for
the state one can show that the adjoint state z(u) is uniquely defined and absolutely
continuous and that the mapping u ∈ L2([0, 1]) 7−→ z(u) ∈ C0([0, 1])m is continuous.
Furthermore, z(B) is a bounded set in C0([0, 1])m.

We can now verify our assumptions. The validity of (A1) with D = L2([0, 1]) is
stated in (b). From the form of the functions hi, the properties of state and adjoint
state, and the gradient representation (8.5) we see that the gradient is obtained by
adding and multiplying L∞-functions which are uniformly bounded for u ∈ B ⊂
L∞([0, 1]). This shows that assumptions (A2) and (A3) hold true. It is also possible
to prove that the gradient g is uniformly continuous, i.e., (A6′) holds.

One can show that f is even twice continuously Fréchet differentiable with a
Hessian representation of the form

〈v,∇2f(u)w〉 =

∫ 1

0

v(x)S(u)(x)w(x) dx+

∫ 1

0

∫ 1

0

v(x)K(u)(x, ξ)w(ξ) dξ dx,

where S(u) ∈ L∞([0, 1]) and K(u) ∈ L2([0, 1]× [0, 1]) are certain functions depending
on the problem data. The lengthy expressions for S and K are omitted here. We
refer to [21, pp. 535, 536].

A particular version of Algorithm 5.7 for this example can now be obtained as
before. One uses a modification of the conjugate gradient algorithm similar to [10] to
compute sk in step 2.5. This will be discussed in detail in [23].

Similar results can be obtained for the more general case

hi(x, y, u) =
∑

0≤k≤p
hki (x, y)uk, p ≥ 2,

if U = Lp([0, 1]) is used instead of L2([0, 1]), which underlines the practical importance
of our Lp-framework.

9. Conclusions and future work. We have introduced and analyzed a globally
convergent class of interior-point trust-region algorithms for infinite-dimensional non-
linear optimization subject to pointwise bounds in function space. The methods are
generalizations of those presented by Coleman and Li [6] for finite-dimensional prob-
lems. We have extended all first- and second-order global convergence results that
are available for the finite-dimensional setting to our infinite-dimensional Lp-Banach
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space framework. The analysis was carried out in a unified way for 2 ≤ p ≤ ∞. The
lack of the equivalence of norms required the development of new proof techniques.
This is also a valuable contribution to the finite-dimensional theory because our re-
sults are derived completely without using norm equivalences and hence are almost
independent of the problem dimension. In this sense our convergence theory can be
considered to be mesh independent. Moreover, we have carried out our analysis for
a very general class of affine-scaling operators and almost arbitrary scaling of the
trust-region. This is also new from the finite-dimensional viewpoint.

The work on the trust-region algorithm presented in this paper is continued in
[23], where a local convergence analysis is developed. To establish local convergence
the general choice of scalings wk allowed in our global convergence analysis will be
important. That paper also contains numerical results for optimal control problems
governed by a nonlinear parabolic PDE which proves the efficiency of our algorithms.
Another important development of [23] is the incorporation of a projection onto the
box into the computation of approximate solutions of the trust-region subproblems.

The results of this paper and [23] represent a first important step toward a rig-
orous justification for why trust-region interior-point and trust-region interior-point
SQP methods perform so well on discretized control problems. See [10], [13], [23]
for applications. The extension of our theory to methods with additional equality
constraints is in progress.

10. Appendix. In this section we present proofs of Lemmas 6.4 and 6.5. These
proofs require the following three technical results.

Lemma 10.1. For 0 < r ≤ 1, 1 ≤ q ≤ ∞, v1, v2 ∈ Lq(Ω), v1, v2 ≥ 0, the following
holds:

‖vr1 − vr2‖q ≤ mq,q/r‖v1 − v2‖rq.(10.1)

Proof. For r = 1 the assertion is trivial. For α, β ≥ 0, 0 < r < 1, we use the
estimate

|αr − βr| ≤ |α− β|r.(10.2)

This estimate can be seen as follows. Due to symmetry we may assume that α ≥ β ≥ 0.
The function h(α) = |α− β|r − |αr − βr| satisfies h(β) = 0,

h′(α) = r
(
(α− β)r−1 − αr−1

) ≥ 0 (α > β)

and, thus, h(α) ≥ 0 for all α ≥ β.
In the case q =∞ the assertion follows immediately from (10.2). For 1 ≤ q <∞

we use Lemma 3.2 to get

‖vr1 − vr2‖q ≤ mq,q/r‖vr1 − vr2‖q/r = mq,q/r

(∫
Ω

|v1(x)r − v2(x)r|q/r dx
)r/q

≤ mq,q/r

(∫
Ω

|v1(x)− v2(x)|q dx
)r/q

= mq,q/r‖v1 − v2‖rq.

This completes the proof.
Lemma 10.2. For r ≥ 1, 1 ≤ q ≤ ∞, v1, v2 ∈ V , v1, v2 ≥ 0, the following

inequality holds:

‖vr1 − vr2‖q ≤ rmax {‖v1‖∞, ‖v2‖∞}r−1 ‖v1 − v2‖q.(10.3)
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Proof. In the case r = 1 there is nothing to show. First we prove that for all
r > 1, α, β ∈ [0, γ], γ > 0, we have h(α)

def
= rγr−1|α − β| − |αr − βr| ≥ 0. In fact, we

may assume α ≥ β and compute h(β) = 0,

h′(α) = r(γr−1 − αr−1) ≥ 0 (β ≤ α ≤ γ).

Therefore,

|vr1(x)− vr2(x)| ≤ rmax {‖v1‖∞, ‖v2‖∞}r−1 |v1(x)− v2(x)| for all x ∈ Ω

which immediately implies (10.3).
Lemma 10.3. Let α1, . . . , αn, and β1, . . . , βn be arbitrary real numbers. Then

|min{α1, . . . , αn} −min{β1, . . . , βn}| ≤ max{|α1 − β1|, . . . , |αn − βn|}
Proof. Without restriction, let βk = min{β1, . . . , βn} ≤ min{α1, . . . , αn}. Then

the assertion follows from

|min{α1, . . . , αn} −min{β1, . . . , βn}| = min{α1, . . . , αn} − βk ≤ αk − βk.
10.1. Proof of Lemma 6.4. We write ‖ · ‖q,A for ‖χA · ‖q, A ⊂ Ω measurable.

For arbitrary u, ũ ∈ B set N = {x ∈ Ω : g(u)(x)g(ũ)(x) > 0}. The triangle inequality
gives the estimate

‖ĝ(u)− ĝ(ũ)‖p′ = ‖dr(u)g(u)− dr(ũ)g(ũ)‖p′
≤ ‖d(u)‖r∞‖g(u)− g(ũ)‖p′ + ‖(dr(u)− dr(ũ))g(ũ)‖p′
≤ ‖d(u)‖r∞‖g(u)− g(ũ)‖p′ + ‖dr(u)− dr(ũ)‖∞‖g(ũ)‖p′,Ω\N

+ ‖g(ũ)‖∞‖dr(u)− dr(ũ)‖p′,N .

We use the fact that |g(u)− g(ũ)| ≥ |g(ũ)| on Ω \N and obtain

‖ĝ(u)− ĝ(ũ)‖p′ ≤ (‖d(u)‖r∞ + ‖dr(u)− dr(ũ)‖∞)‖g(u)− g(ũ)‖p′
+ ‖g(ũ)‖∞‖dr(u)− dr(ũ)‖p′,N
≤ 3crd‖g(u)− g(ũ)‖p′ + c1‖dr(u)− dr(ũ)‖p′,N .

Now the (uniform) continuity of ĝ follows from Lemma 10.1, Lemma 10.2, the (uni-
form) continuity of g, and the assumption ‖χN (d(u)− d(ũ))‖p′ −→ 0 (uniformly in
u) on the scaling.

10.2. Proof of Lemma 6.5. We restrict ourselves to the more complicated case
d = dII. The result follows from Lemma 6.4 if we verify that

‖χ{g(u)g(ũ)>0}(d(u)− d(ũ))‖
p′ −→ 0 as ũ −→ u (uniformly in u).

Let u, ũ ∈ B be arbitrary. Using symmetries, it is easily seen that we are done
if we are able to establish appropriate upper bounds for |d(u)(x) − d(ũ)(x)| for the
three cases that g(u)(x) > 0, g(ũ)(x) > 0, and

(a) dII(u)(x) and dII(ũ)(x) are both determined by the second case in (4.4),
(b) dII(u)(x) and dII(ũ)(x) are both determined by the else case in (4.4),
(c) dII(u)(x) is determined by the second and dII(ũ)(x) by the else case in (4.4).
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Set ρ(x) = |dII(u)(x)− dII(ũ)(x)|. We will use Lemma 10.3 several times.
Case (a):

ρ(x) = |min {g(u)(x), c(x)} −min {g(ũ)(x), c(x)} | ≤ |g(u)(x)− g(ũ)(x)|.
Case (b):

ρ(x) = |min {u(x)− a(x), b(x)− u(x), c(x)}
−min {ũ(x)− a(x), b(x)− ũ(x), c(x)} |

≤ |u(x)− ũ(x)|.

Case (c): From b(x)−u(x) ≤ u(x)−a(x) follows u(x)−a(x) ≥ c(x) and therefore

dII(u)(x) = min {u(x)− a(x), g(u)(x), c(x)}
≥ min {u(x)− a(x), b(x)− u(x), c(x)} .

If g(ũ)(x) > b(x)− ũ(x) then b(x)− ũ(x) > ũ(x)− a(x) and hence

dII(ũ)(x) = min {ũ(x)− a(x), g(ũ)(x), c(x)} .
Therefore, we obtain

ρ(x) ≤ max {|u(x)− ũ(x)|, |g(u)(x)− g(ũ)(x)|} .
Otherwise, if g(ũ)(x) ≤ b(x)− ũ(x), we have in the case dII(u)(x) ≥ dII(ũ)(x) that

ρ(x) ≤ min {u(x)− a(x), g(u)(x), c(x)} −min {ũ(x)− a(x), g(ũ)(x), c(x)}
≤ max {|u(x)− ũ(x)|, |g(u)(x)− g(ũ)(x)|} ,

and for dII(u)(x) < dII(ũ)(x) we get

ρ(x) ≤ min {ũ(x)− a(x), b(x)− ũ(x), c(x)}
−min {u(x)− a(x), b(x)− u(x), c(x)}

≤ |u(x)− ũ(x)|.

Taking all cases together, this shows that

‖χ{g(u)g(ũ)>0}ρ‖p′ ≤ ‖u− ũ‖p′ + ‖g(u)− g(ũ)‖p′
≤ mp′,p‖u− ũ‖p + ‖g(u)− g(ũ)‖p′ .

Now, the application of Lemma 6.4 shows that ĝ inherits the (uniform) continuity
of g.
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Abstract. We propose a new projection algorithm for solving the variational inequality prob-
lem, where the underlying function is continuous and satisfies a certain generalized monotonicity
assumption (e.g., it can be pseudomonotone). The method is simple and admits a nice geometric
interpretation. It consists of two steps. First, we construct an appropriate hyperplane which strictly
separates the current iterate from the solutions of the problem. This procedure requires a single
projection onto the feasible set and employs an Armijo-type linesearch along a feasible direction.
Then the next iterate is obtained as the projection of the current iterate onto the intersection of
the feasible set with the halfspace containing the solution set. Thus, in contrast with most other
projection-type methods, only two projection operations per iteration are needed. The method is
shown to be globally convergent to a solution of the variational inequality problem under minimal
assumptions. Preliminary computational experience is also reported.
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1. Introduction. We consider the classical variational inequality problem [1, 3,
7] VI(F,C), which is to find a point x∗ such that

x∗ ∈ C, 〈F (x∗), x− x∗〉 ≥ 0 for all x ∈ C,(1.1)

where C is a closed convex subset of <n, 〈·, ·〉 denotes the usual inner product in <n,
and F : <n → <n is a continuous function. Let S be the solution set of VI(F,C),
which we assume to be nonempty. Let x∗ be any element of the solution set S. We
further assume that

〈F (x), x− x∗〉 ≥ 0 for all x ∈ C.(1.2)

It is clear that (1.2) is satisfied if F (·) is monotone; i.e.,

〈F (x)− F (y), x− y〉 ≥ 0 for all x, y ∈ <n.
More generally, (1.2) also holds if F (·) is pseudomonotone (as defined in [11]); i.e., for
all x, y ∈ <n

〈F (y), x− y〉 ≥ 0 =⇒ 〈F (x), x− y〉 ≥ 0.

Moreover, it is not difficult to construct examples where (1.2) is satisfied but F (·) is
not monotone or pseudomonotone everywhere. Typically, condition (1.2) holds under
some kind of generalized monotonicity assumptions on F (·), some of which are not
difficult to check (see [26, 25]).
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In the case when F (·) is strongly monotone and/or the feasible set C has some
special structure (e.g., C is the nonnegative orthant or, more generally, a box), there
exist many efficient methods that can be used to solve those special cases of VI(F,C)
(see [4, 5, 14, 18, 19, 20, 22, 23, 34, 36, 2, 16, 29, 15, 28, 27, 31]). In some of those meth-
ods, F (·) is further assumed to be differentiable, or Lipschitz continuous, or affine.
Sometimes it is also assumed that the method starts close enough to the solution set
(i.e., only local convergence is guaranteed). In the general case when F (·) and C do
not possess any special structure, relatively few methods are applicable. In that case,
projection-type algorithms are of particular relevance (we refer the reader to [32] for
a more detailed discussion). The oldest algorithm of this class is the extragradient
method proposed in [13] and later refined and extended in [10, 12, 17, 33, 9]. Some
new projection-type algorithms that appear to be more efficient than the extragradient
method were recently introduced in [32] (see also references therein).

In this paper, we are mainly concerned with the general case when the projection
operator

PC [x] := arg min
y∈C
‖y − x‖

is computationally expensive (i.e., one has to solve an optimization problem to find
a projection). Furthermore, we make no assumptions on the problem other than
continuity of F (·) and condition (1.2). In this setting, one of the important tasks
in devising efficient algorithms is to minimize the number of projection operations
performed at each iteration. We note that in the case when F (·) is not Lipschitz
continuous or the Lipschitz constant is not known, the extragradient method, as
described in [12, 17, 10, 33], requires a linesearch procedure to compute the stepsize,
with a new projection needed for each trial point. The same holds for the modified
projection-type method in [32]. Clearly, this can be very computationally expensive.
A novel idea to get around this inefficiency was proposed in [9] for the extragradient
method. Here we will use this idea to devise a new projection algorithm that has even
better properties, both theoretically and in our computational experience.

The algorithm proposed here allows a nice geometric interpretation, which is given
in Figure 1.1 for its simplest version. Suppose we have xi, a current approximation
to the solution of VI(F,C). First, we compute the point PC [xi − F (xi)]. Next, we
search the line segment between xi and PC [xi − F (xi)] for a point zi such that the
hyperplane ∂Hi := {x ∈ <n | 〈F (zi), x − zi〉 = 0} strictly separates xi from any
solution x∗ of the problem. A computationally inexpensive Armijo-type procedure
is used to find such zi. Once the hyperplane is constructed, the next iterate xi+1

is computed by projecting xi onto the intersection of the feasible set C with the
halfspace Hi := {x ∈ <n | 〈F (zi), x − zi〉 ≤ 0}, which contains the solution set S. It
can be seen that xi+1 thus computed is closer to any solution x∗ ∈ S than xi. At
each iteration, our algorithm uses one projection onto the set C (to construct the
separating hyperplane Hi), and one projection onto the intersection C ∩ Hi, which
gives the next iterate.

Before proceeding, we emphasize the differences between the method of [9] and
our Algorithms 2.1 and 2.2. First, the second projection step in our method is onto
the intersection C ∩ Hi. In [9], xi is projected first onto the separating hyperplane
∂Hi (this point is denoted by x̄i in Figure 1.1) and then onto C (in Figure 1.1,
the resulting point is denoted by PC [x̄i]). It can be verified that our iterate xi+1 is
closer to the solution set S than the iterate computed by the method of [9]. We also
avoid the extra work of computing the point x̄i. (Even though it can be carried out
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Fig. 1.1. The new projection method.

explicitly, this is still some extra work.) Furthermore, the search direction in our
method is not the same as in [9] for the following reasons. The search directions we
use here are PC [xi − µiF (xi)] − xi, where the stepsizes µi are chosen so that they
are of the same order as the stepsizes ηi generating separating hyperplanes Hi (see
Algorithm 2.2). The important point is that we allow both of them to go to zero if
needed (but at the same rate). Coordination of the two stepsizes proves to be very
significant in our computational experience (see section 3). We point out that [9]
does not permit the stepsizes to go to zero in the first projection step even if the
stepsizes generating the hyperplanes go to zero, and the proof there does not handle
this case. The above-mentioned modifications seem to make a drastic difference in the
numerical performance when our algorithm is compared to that of [9]. Our preliminary
computational experience with the new algorithm is quite encouraging and is reported
in section 3. However, we emphasize that comprehensive numerical study is not the
primary focus of this paper.

Finally, our convergence results are stated under the assumption (1.2), which is
considerably weaker than monotonicity of F (·) used in [9].

2. The algorithm and its convergence. We first note that solutions of VI(F,C)
coincide with zeros of the following projected residual function:

r(x) := x− PC [x− F (x)];

i.e., x ∈ S if and only if r(x) = 0.

We now formally state our algorithm described in section 1.

Algorithm 2.1. Choose x0 ∈ C and two parameters γ ∈ (0, 1) and σ ∈ (0, 1).

Having xi, compute r(xi). If r(xi) = 0, stop. Otherwise, compute

zi = xi − ηir(xi),

where ηi = γki , with ki being the smallest nonnegative integer k satisfying

〈F (xi − γkr(xi)) , r(xi)〉 ≥ σ‖r(xi)‖2.(2.1)



768 M. V. SOLODOV AND B. F. SVAITER

Compute

xi+1 = PC∩Hi [x
i],

where

Hi = {x ∈ <n | 〈F (zi), x− zi〉 ≤ 0}.
The following well-known properties of the projection operator will be used below.
Lemma 2.1. (see [35]). Let B be any nonempty closed convex set in <n. For any

x, y ∈ <n and any z ∈ B the following properties hold.
1. 〈x− PB [x], z − PB [x]〉 ≤ 0.
2. ‖PB [x]− PB [y]‖2 ≤ ‖x− y‖2 − ‖PB [x]− x+ y − PB [y]‖2.

We start with a preliminary result. For now, we assume that the linesearch proce-
dure in Algorithm 2.1 is well defined. This fact will be formally established in Theorem
2.1.

Lemma 2.2. Suppose that the linesearch procedure (2.1) of Algorithm 2.1 is well
defined. Then it holds that

xi+1 = PC∩Hi [x̄
i],

where

x̄i = PHi [x
i].

Proof. Assuming that the point zi is well defined, by (2.1) we have that

〈F (zi), xi − zi〉 > 0.

It immediately follows that xi 6∈ Hi. Also, by (1.2), 〈F (zi), x∗−zi〉 ≤ 0 for any x∗ ∈ S
because zi = (1 − ηi)xi + ηiPC [xi − F (xi)] ∈ C by the convexity of C. Therefore,
x∗ ∈ Hi. Since also x∗ ∈ C, it follows that C ∩Hi 6= ∅. Because C ∩Hi is a closed
convex set that is nonempty, xi+1 = PC∩Hi [x

i] is well defined.
It can be further verified that

x̄i = PHi [x
i] = xi − 〈F (zi), xi − zi〉

‖F (zi)‖2 F (zi)

= xi − ηi〈F (zi), r(xi)〉
‖F (zi)‖2 F (zi).

Take any y ∈ C ∩ Hi. Since xi ∈ C but xi 6∈ Hi, there exist β ∈ [0, 1] such that
x̃ = βxi + (1− β)y ∈ C ∩ ∂Hi, where ∂Hi := {x ∈ <n | 〈F (zi), x− zi〉 = 0}. We have

‖y − x̄i‖2 ≥ (1− β)‖y − x̄i‖2
= ‖x̃− βxi − (1− β)x̄i‖2
= ‖x̃− x̄i‖2 + β2‖xi − x̄i‖2 − 2β〈x̃− x̄i, xi − x̄i〉
≥ ‖x̃− x̄i‖2,(2.2)

where the last inequality follows from Lemma 2.1 applied with B = Hi, x = xi, and
z = x̃ ∈ Hi. Furthermore, we have

‖x̃− x̄i‖2 = ‖x̃− xi‖2 − ‖xi − x̄i‖2
≥ ‖xi+1 − xi‖2 − ‖xi − x̄i‖2
= ‖xi+1 − x̄i‖2,(2.3)
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where the first equality is by x̄i = P∂Hi [x
i], x̃ ∈ ∂Hi, and Pythagoras’s theorem; the

inequality is by the fact that x̃ ∈ C ∩Hi and xi+1 = PC∩Hi [x
i]; and the last equality

is again by Pythagoras’s theorem. Combining (2.2) and (2.3), we obtain

‖y − x̄i‖ ≥ ‖xi+1 − x̄i‖ for all y ∈ C ∩Hi.

Hence, xi+1 = PC∩Hi [x̄
i].

We next prove our main convergence result.
Theorem 2.1. Let F (·) be continuous. Suppose the solution set S of VI(F,C)

is nonempty and condition (1.2) is satisfied.
Then any sequence {xi} generated by Algorithm 2.1 converges to a solution of

VI(F,C).
Proof. We first show that the linesearch procedure in Algorithm 2.1 is well defined.

If r(xi) = 0, then the method terminates at a solution of the problem. Therefore,
from now on, we assume that ‖r(xi)‖ > 0. Also note that xi ∈ C for all i. Suppose
that, for some i, (2.1) is not satisfied for any integer k, i.e., that

〈F (xi − γkr(xi)) , r(xi)〉 < σ‖r(xi)‖2 for all k.(2.4)

Applying Lemma 2.1 with B = C, x = xi − F (xi), z = xi ∈ C, we obtain

0 ≥ 〈xi − F (xi)− PC [xi − F (xi)], xi − PC [xi − F (xi)]〉
= ‖r(xi)‖2 − 〈F (xi), r(xi)〉.

Hence,

〈F (xi), r(xi)〉 ≥ ‖r(xi)‖2.(2.5)

Since xi − γkr(xi)→ xi as k →∞, and F (·) is continuous, passing onto the limit as
k →∞ in (2.4), we obtain

〈F (xi), r(xi)〉 ≤ σ‖r(xi)‖2.
But the latter relation contradicts (2.5) because σ < 1 and ‖r(xi)‖ > 0. Hence (2.1)
is satisfied for some integer ki.

Thus the linesearch step is well defined, and by Lemma 2.2 we know that the rest
of the method is as well. In particular, xi+1 = PC∩Hi [x̄

i], where x̄i = PHi [x
i]. By

Lemma 2.1 applied with B = C ∩Hi, x = x̄i, and z = x∗ ∈ S ⊂ C ∩Hi, we obtain

0 ≥ 〈x̄i − xi+1, x∗ − xi+1〉
= ‖xi+1 − x̄i‖2 + 〈x̄i − xi+1, x∗ − x̄i〉.

Hence,

〈x∗ − x̄i, xi+1 − x̄i〉 ≥ ‖xi+1 − x̄i‖2.
Therefore,

‖xi+1 − x∗‖2 = ‖x̄i − x∗‖2 + ‖xi+1 − x̄i‖2 + 2〈x̄i − x∗, xi+1 − x̄i〉
≤ ‖x̄i − x∗‖2 − ‖xi+1 − x̄i‖2
= ‖xi − x∗‖2 − ‖xi+1 − x̄i‖2
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+

(
ηi〈F (zi), r(xi)〉
‖F (zi)‖

)2

− 2ηi〈F (zi), r(xi)〉
‖F (zi)‖2 〈F (zi), xi − x∗〉

= ‖xi − x∗‖2 − ‖xi+1 − x̄i‖2 −
(
ηi〈F (zi), r(xi)〉
‖F (zi)‖

)2

−2ηi〈F (zi), r(xi)〉
‖F (zi)‖2 〈F (zi), zi − x∗〉

≤ ‖xi − x∗‖2 − ‖xi+1 − x̄i‖2 −
(

ηiσ

‖F (zi)‖
)2

‖r(xi)‖4,(2.6)

where the last inequality follows from (2.1) and (1.2).
Now (2.6) implies that the sequence {‖xi − x∗‖} is nonincreasing. Therefore, it

converges. We further deduce that the sequence {xi} is bounded, and so is {zi}. Thus
there exists a constant M > 0 such that ‖F (zi)‖ ≤M for all i. Hence, from (2.6),

‖xi+1 − x∗‖2 ≤ ‖xi − x∗‖2 − ‖xi+1 − x̄i‖2 − (σ/M)2η2
i ‖r(xi)‖4.(2.7)

From convergence of {‖xi − x∗‖}, it follows from (2.7) that

lim
i→∞

ηi‖r(xi)‖ = 0.(2.8)

We consider the two possible cases. Suppose first that lim supi→∞ ηi > 0. For (2.8)
to hold it must then be the case that lim infi→∞ ‖r(xi)‖ = 0. Since r(·) is contin-
uous and {xi} is bounded, there exists x̂, an accumulation point of {xi}, such that
r(x̂) = 0. It follows that x̂ ∈ S and we can take x∗ = x̂ in the preceding arguments
and, in particular, in (2.7). Thus the sequence {‖xi − x̂‖} converges. Since x̂ is an
accumulation point of {xi}, it easily follows that {‖xi − x̂‖} converges to zero, i.e.,
that {xi} converges to x̂ ∈ S.

Suppose now that limi→∞ ηi = 0. By the choice of ηi we know that (2.1) was not
satisfied for ki − 1 (at least for i large enough, so that ηi < 1); i.e.,

〈F (xi − γ−1ηir(x
i)
)
, r(xi)〉 < σ‖r(xi)‖2 for all i ≥ i0.(2.9)

Let x̂ be any accumulation point of {xi} and {xij} be the corresponding subsequence
converging to x̂. Passing onto the limit in (2.9) along this subsequence, and using
(2.5), we obtain

σ‖r(x̂)‖2 ≥ 〈F (x̂), r(x̂)〉 ≥ ‖r(x̂)‖2,

implying that r(x̂) = 0, i.e., that x̂ ∈ S. Setting x∗ = x̂ in (2.7) and repeating the
previous arguments, we conclude that the whole sequence {xi} converges to x̂ ∈ S.
This completes the proof.

We next propose a modification of Algorithm 2.1 that is motivated by our com-
putational experience and appears to be more practical. For µ > 0, define

r(x, µ) := x− PC [x− µF (x)].

With this definition, we have r(x, 1) = r(x).
The idea is to use, for the first projection step at the current iteration, the stepsize

that is not too different from the stepsize computed at the previous iteration (a similar
technique was also used in [32, Algorithm 3.2]). Note that Algorithm 2.2 has a certain
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coordination between the stepsizes µi in the first projection step and ηi in the step
computing the separating hyperplane. For example, both of them can go to zero if
needed. This is in contrast with the method of [9], where the stepsize in the first
projection step can never go to zero, even when ηi does. We found this coordination
mechanism important in our computational results, reported in section 3. Note also
that both stepsizes can increase from one iteration to the next.

Algorithm 2.2. Choose x0 ∈ C, η−1 > 0, and three parameters γ ∈ (0, 1),
σ ∈ (0, 1), and θ > 1.

Having xi, compute r(xi, µi), where µi := min{θηi−1, 1}. If r(xi, µi) = 0, stop.
Otherwise, compute

zi = xi − ηir(xi, µi),
where ηi = γkiµi with ki being the smallest nonnegative integer k satisfying

〈F (xi − γkµir(xi, µi)) , r(xi, µi)〉 ≥ σ

µi
‖r(xi, µi)‖2.

Compute

xi+1 = PC∩Hi [x
i],

where

Hi = {x ∈ <n | 〈F (zi), x− zi〉 ≤ 0}.

Theorem 2.2. Let F (·) be continuous. Suppose that the solution set S of VI(F,C)
is nonempty and (1.2) is satisfied.

Then any sequence {xi} generated by Algorithm 2.2 converges to a solution of
VI(F,C).

Proof. The proof of convergence uses the same ideas as the proof for Algorithm
2.1, so we supply only a sketch.

As with (2.5), it can be established that

〈F (xi), r(xi, µi)〉 ≥ 1

µi
‖r(xi, µi)‖2.

In particular, it follows that the linesearch procedure is well defined.
The proof then follows the pattern of the proof of Theorem 2.1, with (2.7) replaced

by

‖xi+1 − x∗‖2 ≤ ‖xi − x∗‖2 − ‖xi+1 − x̄i‖2 − (σηi/M)2µ−2
i ‖r(xi, µi)‖4.

We next use the fact (see [6, Lemma 1]) that

‖r(xi, µi)‖ ≥ min{1, µi}‖r(xi)‖.
It follows that

‖xi+1 − x∗‖2 ≤ ‖xi − x∗‖2 − ‖xi+1 − x̄i‖2 − (σηi/M)2µ2
i ‖r(xi)‖4.

Taking into account that ηi = γkiµi ≤ µi, we further obtain

‖xi+1 − x∗‖2 ≤ ‖xi − x∗‖2 − ‖xi+1 − x̄i‖2 − (σ/M)2η4
i ‖r(xi)‖4,

and the rest of the convergence proof is identical to that of Theorem 2.1.
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3. Computational experience. To give some insight into the behavior of the
new projection algorithm (Algorithm 2.2), we implemented it in Matlab to solve lin-
early constrained variational inequality problems (using the quadratic-program solver
qp.m from the Matlab optimization toolbox to perform the projection). For a bench-
mark, we compared the performance of this implementation with analogous imple-
mentations of two versions of the extragradient method (as described in [17] and [33])
and with the modified projection algorithm as given in [32, Algorithm 3.2]. We also
implemented the algorithm of [9] and tested it on the same problems as the other four
methods. We do not report here the full results for the method of [9], mainly because
they were rather poor. In particular, like the extragradient method, the method of [9]
failed on the first two problems, and was by far the worst among all the methods on
the remaining test problems. Thus we found it to be not useful for a benchmark com-
parison (unfortunately, no computational experience was reported in [9]). By contrast,
our algorithm seems to perform better than the alternatives in most cases.

The choice of linearly constrained variational inequalities for our experiments is
not incidental. It is clear that the new method should be especially effective when
feasible sets are “no simpler” than general polyhedra (so that an optimization problem
has to be solved to find a projection). In that case, adding one more linear constraint
to perform a projection onto C∩Hi does not increase the cost compared to projecting
onto the feasible set C. Actually, if the constraints are nonlinear, projecting onto C∩Hi

can sometimes turn easier than onto C. On the other hand, when C has some special
structure (for example, C is a box), adding a linear constraint would require solving
an optimization problem, while projecting onto C can be carried out explicitly. In
that case, the extragradient methods may be more attractive than our new method.
However, in the case when C is a box (or the nonnegative orthant), there are many
other efficient methods available (as discussed in section 1), so we will not focus on
this case.

Though our experience is limited in scope, it suggests that the new projection
method is a valuable alternative to the extragradient [17, 33] and modified projection
[32] methods. We describe the test details below.

All Matlab codes were run on the Sun UltraSPARCstation 1 under Matlab
version 5.0.0.4064. Our test problems are the same as those used in [32] to test the
modified projection method in the nonlinear case. The first test problem, used first
by Mathiesen [21], and later in [24, 36], has

F (x1, x2, x3) =

 .9(5x2 + 3x3)/x1

.1(5x2 + 3x3)/x2 − 5
−3

 ,
C =

{
(x1, x2, x3) ∈ <3

+ | x1 + x2 + x3 = 1, x1 − x2 − x3 ≤ 0
}
.

For the other test problems, the feasible set is the simplex

C = {x ∈ <n+ | x1 + · · ·+ xn = n},
and F (·) and n are specified as follows. For the third to fifth problems, F (·) is the
function from, respectively, the Kojima–Shindo Nonlinear Complementarity Problem
(NCP) (with n = 4) and the Nash–Cournot NCP (with n = 5 and n = 10) [24, pp.
321–322]. For the sixth problem, n = 20 and F (·) is affine, i.e.,

F (x) = Mx+ q,
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with the matrix M randomly generated as suggested in [8]:

M = AA> +B +D,

where every entry of the n× n matrix A and of the n× n skew-symmetric matrix B
is uniformly generated from (−5, 5), and every diagonal entry of the n × n diagonal
B is uniformly generated from (0, 0.3) (so M is positive definite), with every entry of
q uniformly generated from (−500, 0). For the last problem, we took the F from the
sixth problem and added to its ith component the linear-quadratic term max{0, xi}2
for i = 1, . . . , bn/2c.

In the implementation of our Algorithm 2.2, we choose σ = .3, η−1 = 1, γ = .5,
and θ = 4. Implementations of the modified projection method and the extragradient
method of [17] are the same as those reported in [32]. In particular, the parameters
for both algorithms were tuned to optimize the performance. In the implementation
of the other version of the extragradient method [33, Algorithm C], we set parameters
as follows: η = .1, α = .3, and γ = 1.7. On the Mathiesen problem, we used the
same x0 as in [36]; on the other problems, we used x0 = (1, . . . , 1). (The F (·) from
the Mathiesen problem and from the Nash–Cournot NCP are defined on the positive
orthant only.) The test results are summarized in Tables 3.1 and 3.2. In most cases,
Algorithm 2.2 requires fewer iterations, function evaluations, and projections, and
takes less CPU time than the other methods considered. Also note that our method
solves problems, such as the Kojima–Shindo problem, even when F (·) is not monotone.
We caution, however, that this study is very preliminary.

To investigate the effect of different starting points, we tested the methods on the
problem Nash5, using as starting points the mesh points of the uniform triangulation
of the simplex x ∈ <5 | x ≥ 0,

5∑
j=1

xj = 5

 .

The triangulation is obtained by cutting the simplex by equally spaced hyperplanes
parallel to the faces of the simplex, with four cuts per face (the first cut is the face of
the simplex, and the last is the opposing vertex). We have chosen the problem Nash5
because its function is defined on the positive orthant only, so that the boundary effect
can also be studied. The modified projection method of [32] had trouble when starting
at points with many zero components (such as, e.g., the point (5, 0, 0, 0, 0)). This is
not very surprising, since the modified projection is actually an infeasible method;
i.e., the iterates generated need not belong to the feasible set. Therefore, in principle,
we may need to evaluate F at points outside of the nonnegative orthant, which gives
trouble for problems like Nash5.However, the modified projection algorithm managed
to solve the problem in most cases, with the average of 95 iterations (note that this
is quite a bit more than the 74 iterations reported in Table 3.1 as needed for the
starting point x0 = (1, 1, 1, 1, 1)). In general, the more positive components x0 has,
the fewer iterations the modified projection method needs to solve the problem. The
extragradient method of Marcotte [17] managed to solve the problem for all starting
points, with the average of 62 iterations (which is again considerably higher than
the 43 iterations needed when starting at the unit vector). Finally, Algorithm 2.2
managed to solve the problem from all the starting points, except from a few points
for which the second and fourth components are both zero. On average, 32 iterations
were required for convergence, which is fewer than for the modified projection or the
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-
Table 3.1

Results for Algorithm 2.2 and the modified projection method on linearly constrained variational
inequality problems.

Algorithm 2.21 Modified Projection [32] 2

Name n iter.(nf/np)3 CPU iter.(nf/np)3 CPU

Mathiesen 3 14(53/28) 0.5 30(68/38) 0.9
14(55/28) 0.5 25(56/31) 0.7

KojimaSh 4 7(16/14) 0.3 38(84/46) 0.7
Nash5 5 24(100/48) 1.5 74(155/81) 1.9
Nash10 10 34(140/68) 3 93(192/99) 2.7
HPHard 20 379(1520/758) 196 692(1391/699) 128
qHPHard 20 317(1272/634) 154 562(1131/569) 98
1Algorithm 2.2 with σ = .3, η−1 = 1, γ = .5, and θ = 4.
2Modified projection method as described in [32, Algorithm 3.2] and parameters set as

reported in that reference (P = I, α−1 = 1, θ = 1.5, ρ = .1, and β = .3).
3For all methods, the termination criterion is ‖r(x)‖ ≤ 10−4. (nf denotes the total

number of times F (·) is evaluated and np denotes the total number of times a projection

is performed.) CPU denotes time (in seconds) obtained using the intrinsic Matlab function

etime and with the codes run on a Sun UltraSPARCstation 1; does not include time to read

problem data. On the Mathiesen problem, we ran each method twice with x0 = (.1, .8, .1)

and x0 = (.4, .3, .3) respectively; on the other problems, we used x0 = (1, ..., 1).

Table 3.2
Results for the two versions of extragradient method on linearly constrained variational inequal-

ity problems.

Extragradient [17]4 Extragradient [33]5

Name n iter.(nf/np)3 CPU iter.(nf/np)3 CPU

Mathiesen 3 — — — —
— — — —

KojimaSh 4 16(36/36) 0.5 78(157/79) 2.5
Nash5 5 43(89/89) 1.8 92(184/93) 2.8
Nash10 10 84(172/172) 3.4 103(191/172) 5.5
HPHard 20 532(1067/1067) 163 1003(2607/1607) 562
qHPHard 20 461(926/925) 162 892(2536/1536) 503
4The extragradient method as described in [17], with β = .7 and initial α = 1. Dash—

indicates that the method did not converge.
5The extragradient method as described in [33, Algorithm C], with η = .1, α = .3, γ = 1.7.

Dash—indicates that the method did not converge.

extragradient methods. However, the extragradient method appeared to be somewhat
more robust for this problem.

4. Concluding remarks. A new projection algorithm for solving variational
inequality problems was proposed. Under minimal assumptions of continuity of the
underlying function and generalized monotonicity (for example, pseudomonotonicity),
it was established that the iterates converge to a solution of the problem. The new
method has some clear theoretical advantages over most of existing projection meth-
ods for general variational inequality problems with no special structure. Preliminary
computational experience is also encouraging.

Some of the projection ideas presented here also proved to be useful in devising
truly globally convergent (i.e., the whole sequence of iterates is globally convergent to
a solution without any regularity assumptions) and locally superlinearly convergent
inexact Newton methods for solving systems of monotone equations [30] and monotone
NCPs [31].
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Abstract. We study the continuous dependence on the input of trajectories of control-affine
systems belonging to the class C0(m) of all systems Σ of the form

Σ : ẋ = f0(x) +

m∑
i=1

ui(t)fi(x),

where f0, . . . , fm are continuous vector fields on some open subset of Rn and the control functions
belong to L1([0, T ],Rm). We give a simple necessary and sufficient condition for a control sequence
{uj}∞j=1 to “T 0-converge” to a control u∞, i.e., to be such that, for every system Σ in C0(m), the

trajectories generated by the uj converge as j → ∞ to the trajectories generated by u∞. We also
characterize T k-convergence (the concept of control convergence that arises when we use, instead of
C0(m), the class Ck(m) of systems Σ where the fi are of class Ck) for k ≥ 1 in the scalar input
case, and we explain how the analogous characterization for the multi-input case fails to be true,
unless one restricts oneself to the class Ckcomm(m) of systems for which the vector fields f1, . . . , fm
commute. As a preliminary, we define a “topology of trajectory convergence” (or “T-convergence”)
on the set of all time-varying vector fields Ω×I 3 (x, t) 7→ f(x, t) ∈ Rn, where Ω is an open subset of
Rn and I is an interval, and we study some of its properties. This enables us to make the definition
of T k-convergence precise for sequences and, more generally, for nets, by saying that a net {uα}α∈A
in L1([0, T ],Rm) T k-converges to a limit u∞ if for every system Σ in Ck(m) the time-varying vector
fields (x, t) 7→ f0(x) +

∑m

i=1
uαi (t)fi(x) T k-converge to (x, t) 7→ f0(x) +

∑m

i=1
u∞i (t)fi(x).

Key words. control-affine systems, continuous dependence
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1. Introduction. In the control theory literature, the property of continuous
dependence of the trajectories with respect to the control has received wide attention
(cf. [1], [2], [3], [5], [7], [9], [12], [19], [20]) because of its fundamental role in proofs
of closedness of reachable sets, existence of optimal controls, and continuity or lower
semicontinuity of value functions. It is clear that continuous dependence always holds
for trivial reasons if the space of input functions is given a sufficiently strong topol-
ogy, but continuous dependence results are useful only when the topology involved is
reasonably weak. (For example, many existence theorems for optimal controls depend
on the fact that the space of inputs is compact, or has many compact subsets.) Thus
it is of interest to determine concepts of convergence of inputs that lead to continuous
dependence of trajectories and are as weak as possible.

In this paper we characterize the weakest possible concept of convergence of a
sequence of input functions such that the trajectories depend continuously on the
input for all control-affine systems of the form

ẋ = f0(x) +
m∑
i=1

uifi(x) , x ∈ Ω ,(1.1)
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with a right-hand side continuous with respect to the state variable x, and we prove
some results on the corresponding problem for more restricted classes of systems.
These questions are in fact special cases of the following more general situation: we
are given

(a) a set U of input functions t 7→ u(t) defined on an interval I,
(b) a class C of control systems Σ of the form ẋ = g(x, u), all of which admit the

members of U as inputs.

We then seek to characterize the weakest topology T on U with the property that, if
U is equipped with T , then

(CD) the trajectories of Σ depend continuously on the input u ∈ U for all systems
Σ in C.

Let us write T (U , C) to denote this topology, and assume temporarily that the defi-
nition of T (U , C) has been justified, by

(J1) assigning a mathematically precise meaning to (CD), and
(J2) proving the existence of a weakest topology on U for which (CD) holds.

Then the problems to be studied here are those of characterizing the topology T (U , C)
in two cases, namely, (i) when C is the class C0(m) of all systems of the form (1.1),
with f0, . . . , fm continuous vector fields on some open subset Ω of some Euclidean
space Rn and (ii) when C is an interesting subclass of C0(m), such as the set C1(m)
of all systems (1.1) with C1 vector fields. The input space U will be L1([0, T ],Rm),
the set of all Lebesgue-integrable functions t 7→ u(t) = (u1(t), . . . , um(t)) on some
fixed interval [0, T ]. Convergence with respect to T (L1([0, T ],Rm), C0(m)) will be
called “T 0-convergence.” For case (i), we will provide a complete and rather simple
characterization of sequential T 0-convergence by showing that a sequence {uj} T 0-

converges to a limit u∞ iff the indefinite integrals t 7→ ∫ t
0
uj(s)ds converge uniformly

on [0, T ] to t 7→ ∫ t
0
u∞(s)ds and in addition supj ‖uj ||L1 < ∞. (Naturally, in order

to provide a complete characterization of the topology T (L1([0, T ],Rm), C0(m)), we
should not limit our analysis to sequences and should seek instead to characterize
T 0-convergence of nets. This, however, appears to be a much more difficult question,
as explained below, on which we will only be able to present some partial results.)
For case (ii), we provide an even simpler characterization of T (L1([0, T ],R1), C1(1))-
convergence of general nets {uα}α∈A to a limit u∞, by showing that it is equivalent

to uniform convergence on [0, T ] of the indefinite integrals t 7→ ∫ t
0
uα(s)ds to the

limit t 7→ ∫ t
0
u∞(s)ds. This result is, however, valid only for the single-input case.

To explain why, we analyze the m-input situation and prove, in sections 5 and 6,
two results (Theorems 5.2 and 6.1), according to which (a) a characterization similar
to that for m = 1 is true for general m on the class C1

comm(m) of systems (1.1)
with C1 vector fields such that all the Lie brackets [fj , fk] for j, k ∈ {1, . . . ,m}
vanish, and (b) the result becomes false for any class C that contains at least one
system in C1(m)\C1

comm(m). This shows that Lie brackets are intimately related to
input convergence and ought to play a decisive role in any effort to achieve a better
understanding of T (L1([0, T ],Rm), C1(m))-convergence for m > 1.

So far, we have assumed that steps (J1) and (J2) have been carried out. We
explain how this is done in section 2, where we define, on the set TV V F (Ω, I) of
all time-varying vector fields f : Ω × I 7→ Rn (where Ω is an open subset of Rn
and I is a subinterval of R), a topology T T (Ω, I)—called the topology of trajectory
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convergence, or T-convergence—and argue that this topology captures the concept of
“continuous dependence with respect to f of the solutions of the ordinary differential
equation ẋ = f(x, t).” This topology takes into account the possibility of explosions
and nonuniqueness of solutions—a fact of paramount importance for us, since, typi-
cally, the time-varying vector fields that arise from the systems (1.1) are continuous
only with respect to x—and we will show in section 2 that it has all the right proper-
ties, at least when restricted to the set TV V FCar,LIB(Ω, I) of those f ’s that satisfy
the Carathéodory condition (i.e., are such that f is measurable in t for each x and
continuous in x for each t) and are “locally integrably bounded,” i.e., that satisfy, for
every compact subset K of Ω, an integral bound

||f(x, t)|| ≤ ϕK(t) for (x, t) ∈ K × I,
with a locally integrable function ϕK : I 7→ R. Moreover, the topology induced by
TT (Ω, I) on the subset TV V FCar,LIB(Ω, I) of TV V F (Ω, I) is the weakest topology
on TV V FCar,LIB(Ω, I) that gives rise to joint continuous dependence of the solutions
on f and the initial condition.

Having defined TT (Ω, I), it is clear how to interpret (CD) and how to define
T (U , C): if Σ ∈ C is of the form ẋ = gΣ(x, u), x ∈ ΩΣ, then each input t 7→ u(t)
belonging to U gives rise to a time-varying vector field fΣ(u) ∈ TV V F (ΩΣ, I), defined
by

fΣ(u)
def
= the map (x, t) 7→ gΣ(x, u(t)) .(1.2)

Then fΣ is the input-to-vector-field map associated with Σ. If T is a topology on
U , then the statement that “the trajectories of Σ depend continuously on the input
with respect to T ” can be translated as “fΣ is continuous as a map from U , equipped
with T , to TV V F (ΩΣ, I), equipped with TT (ΩΣ, I).” Then the formal definition of
T (U , C) is simply the following:

T (U , C) is the weakest topology on U that renders all the input-to-
vector-field maps fΣ : U 7→ TV V F (ΩΣ, I) continuous for all Σ ∈ C,
when each TV V F (ΩΣ, I) is given the topology TT (ΩΣ, I) of trajectory
convergence.

To analyze in more detail the special case when U = L1([0, T ],Rm) and C is the
class C0(m), let us agree to use fΣ

i to denote the vector fields fi corresponding to
a given system Σ ∈ C0(m) of the form (1.1), and let us go on using ΩΣ to denote

the state space of Σ. Write UmT def
= L1([0, T ],Rm). As before, use “T 0-convergence”

for “convergence with respect to T (UmT , C0(m)).” Then our problem is to determine
necessary and sufficient conditions for a sequence {uj}∞j=1 of functions belonging to

the input space UmT to T 0-converge to an input u∞ ∈ UmT , i.e., for the following
property to hold:

(TC) For every possible choice of the system Σ ∈ C0(m), the time-varying vector
fields fΣ(uj) T-converge to fΣ(u∞).

As will be explained in section 2, one may substitute for (TC) either one of the
following conditions, both of which turn out in fact to be equivalent to (TC):

(TC′) For every possible choice of the system Σ ∈ C0(m), if (i) ξj are maximal tra-
jectories of (1.1) corresponding to the uj and satisfying the initial conditions
ξj(0) = x̄j ∈ ΩΣ, (ii) x̄j → x̄ ∈ ΩΣ, and (iii) for the limiting initial value
problem
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ẋ = fΣ(u∞)(x, t)
def
= fΣ

0 (x) +
m∑
i=1

u∞i (t)fΣ
i (x) , x(0) = x̄,(1.3)

there is uniqueness of solutions as well as global existence on [0, T ], then the
ξj are defined on [0, T ] for j large enough and converge uniformly on [0, T ]
to the unique maximal solution ξ∞ of (1.3).

(TC′′) For every possible choice of the system Σ ∈ C0(m), if (i) x̄ ∈ ΩΣ, (ii) ξj are
maximal trajectories of (1.1) corresponding to the uj and satisfying ξj(0) = x̄,
and (iii) the initial value problem (1.3) has uniqueness of solutions as well as
global existence on [0, T ], then the ξj are defined on [0, T ] for j large enough
and converge uniformly on [0, T ] to the unique maximal solution ξ∞ of (1.3).

Notice that (TC′) asserts “joint continuous dependence on the input and the initial
condition,” whereas (TC′′) makes the weaker assertion of “continuous dependence on
the input for each fixed initial condition,” so the implication (TC′)⇒(TC′′) is trivial,
but the converse (TC′′)⇒(TC′) is not at all obvious. (Example A.3 in the appendix
shows that for a general sequence {f j} of time-varying vector fields it need not be true
that convergence for each fixed initial condition of the trajectories of f j to those of an
f ∈ TV V F (Ω, I) implies convergence of trajectories for convergent initial conditions.)

Our characterization of sequential T 0-convergence will be formulated in terms
of a type of convergence somewhat weaker than other concepts of weak convergence
previously considered in the literature. Precisely, let us say that a net {uα}α∈A ⊆ UmT
based on a directed set (A,�A) converges in the integral sense (or, for short, I-
converges) to a u∞ ∈ UmT , if the following holds:

(IC) The indefinite integrals Uα(t) =
∫ t

0
uα(s)ds converge uniformly with respect

to t ∈ [0, T ] to U∞(t) =
∫ t

0
u∞(s)ds.

Also, let us say that {uα}α∈A satisfies the uniform boundedness condition if the fol-
lowing is true:

(UB) There exist a constant C > 0 and an α0 ∈ A such that ‖uα‖L1 ≤ C whenever
α0 �A α.

Our main result (Theorem 4.1 below) then says that a sequence {uj}∞j=1 in UmT T 0-

converges to a function u∞ ∈ UmT iff {uj}∞j=1 satisfies (UB) and I-converges to u∞.
An alternative formulation is in terms of uniform weak convergence. We say that a
net {uα}α∈A UW-converges to a limit u∞ if the following holds:

(UWC) For every continuous function ϕ : [0, T ] 7→ R, if we define Rm-valued functions

Uαϕ by Uαϕ (t) =
∫ t

0
uα(s)ϕ(s)ds for α ∈ A ∪ {∞}, then the Uαϕ converge to

U∞ϕ uniformly on [0, T ].

For sequences, it is easily seen (cf. section 4) that the conjunction (IC) ∧ (UB) is equiv-
alent to (UWC), so Theorem 4.1 says in fact that a sequence {uj}∞j=1 T 0-converges
to a limit u∞ iff it UW-converges to u∞.

For more general nets, the condition (IC) ∧ (UB) still implies T 0-convergence,
which in turn implies UW-convergence, but the reverse implications no longer hold.
(This is shown in the appendix by means of two examples.) Thus, although Theorem
4.1 provides a complete characterization of sequential T 0-convergence in UmT , it does
not give a full characterization of the topology itself. To get such a characterization,
one would have to understand T 0-convergence of nets, and we have not yet been
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able to find a satisfactory characterization of T 0-convergence of nets, comparable in
simplicity to our results for sequences.

For sequences, the condition (IC) ∧ (UB) or, equivalently, (UWC) is strictly
weaker than weak convergence in L1([0, T ],Rm), as explained in section 7. In addition,
the characterization of sequential T 0-convergence in UmT depends crucially on the fact
that we are working with the collection of all systems in C0(m). We could equally
well have defined a concept of T k-convergence for any integer k ≥ 0 by just taking
C to be the class Ck(m) of all systems of the form (1.1) with vector fields fi of
class Ck. But then it is no longer obvious that condition (UB) is still necessary
for sequential T k-convergence for k ≥ 1. (The proof that (UB) is necessary for
sequential T 0-convergence in UmT depends on using the uniform boundedness theorem
and requires that we admit systems with an arbitrary continuous right-hand side. On
the other hand, the necessity of (IC) depends only on the fact that the systems ẋ = ui,
i = 1, . . . ,m, are in our class, so (IC) is still necessary for trajectory convergence for
practically any reasonable class of systems.) In fact, we show in section 5 that a
sequence {uj}∞j=1 ⊆ U1

T may T k-converge to a u∞ ∈ U1
T even if (UB) fails.

To our knowledge, the problem of characterizing sequential T k-convergence in
UmT for k ≥ 1 is still open for m > 1 and appears to be quite difficult. The case
m = 1 is special, as explained in section 5, where we give a complete characterization
(in Theorem 5.1) of the topology T (U1

T , C
1(1)) by showing that a net {uα}α∈A ⊆ U1

T

T (U1
T , C

1(1))-converges to a limit u∞ iff the uα I-converge to u∞. The profound
reason why this characterization is possible for m = 1 but not for m > 1 is provided
by Theorems 5.2 and 6.1: Theorem 5.2 shows that the condition of Theorem 5.1 is
necessary and sufficient, for general m, for T (UmT , C)-convergence of the uα to u∞ if
we take C = C1

comm(m), the class of systems (1.1) where the fi are of class C1 and
f1, . . . , fm commute (i.e., the Lie brackets [fi, fj ] vanish for 1 ≤ i, j ≤ m), whereas
Theorem 6.1 shows that for any class C such that C1

comm(m) ⊆ C ⊆ C1(m) and
C 6= C1

comm(m), the condition no longer suffices for T (UmT , C)-convergence, because
there exists a sequence {uj}∞j=1 such that

(1)
∫ t

0
uj(s)ds→ 0 uniformly;

(2) for every Σ ∈ C there is a time-varying vector field hΣ ∈ TV V F (ΩΣ, [0, T ])
such that the {fΣ(uj)} T-converge to hΣ;

(3) it is not true that hΣ = fΣ(0) for all Σ ∈ C.
(What really happens is that the sequence {uj} T (UmT , C)-converges to a “generalized
input” that is no longer an ordinary input. A more detailed discussion of these issues
is provided in section 6.)

The paper is organized as follows. In section 2 we present the definition and basic
properties of the topology of T-convergence. We then give, in section 3, our precise
definition of T 0-convergence. The main theorem (Theorem 4.1) of the paper is stated
and proved in section 4. In section 5 we discuss how the situation changes when T k-
convergence for k ≥ 1 is considered instead of T 0-convergence. In section 6 we briefly
discuss some of the phenomena that can cause a sequence {fΣ(uj)} to T-converge to
something other than its limit fΣ(u∞), in particular the occurrence of Lie bracket
terms. Section 7 discusses how our continuous dependence conditions relate to those
of Buttazzo–Conti, Kurzweil–Vorel, and Neustadt and shows that our T 0-convergence
conditions for sequences in L1([0, T ],Rm) are weaker than weak convergence in L1.
Finally, we include an appendix that presents three examples, showing (i) that UW-
convergence of nets does not imply T 0-convergence, (ii) that T 0-convergence of nets
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does not imply the uniform boundedness condition (UB), and (iii) that, for general
time-varying vector fields, “continuous dependence of trajectories for every fixed initial
condition” does not imply “joint continuous dependence of trajectories on the vector
field and the initial condition.”

2. The topology of trajectory convergence. We begin by giving a precise
meaning to the “T-convergence” condition that appears in (TC).

In what follows, the word “interval” means “connected, nonempty subset of R.”
An interval is nontrivial if it is not reduced to a single point.

If Ω is a metric space, we use dΩ to denote the corresponding distance function.
A curve in Ω is a continuous map ξ from an interval I ⊆ R to Ω. If I is compact,
then ξ will be called an arc in Ω. We use ARC(Ω) to denote the set of all arcs in Ω.
For every −∞ < a ≤ b <∞, we let C0([a, b],Ω) denote the set of all arcs in Ω whose
domain is [a, b]. Then

ARC(Ω) =
⋃

−∞<a≤b<∞
C0([a, b],Ω) .(2.1)

For each ξ ∈ ARC(Ω), we let a(ξ), b(ξ) be the unique a, b such that ξ belongs to
C0([a, b],Ω). If ξ ∈ ARC(Ω), let ξ̃ be the continuous curve ξ̃ : R 7→ Ω obtained by
extending ξ to the whole real line by just letting ξ̃ be constant on ] −∞, a(ξ)] and
on [b(ξ),+∞[ . We topologize ARC(Ω) by means of the metric dARC : ARC(Ω) ×
ARC(Ω) 7→ R given by

dARC(ξ, η) = |a(ξ)− a(η)|+ |b(ξ)− b(η)|+ sup{dΩ(ξ̃(t), η̃(t)) : t ∈ R} .

Then a sequence {ξj} of arcs, possibly defined on different time intervals [aj , bj ],
converges to an arc ξ : [a, b] 7→ Ω if (i) aj → a, (ii) bj → b, and (iii) ξj → ξ uniformly,
i.e., ξj(tj)→ ξ(t) whenever tj ∈ [aj , bj ], tj → t.

If ξ : J 7→ Ω is a curve, the graph of ξ is the set G(ξ) = {(ξ(t), t) : t ∈ J}.
If ξi : [ai, bi] 7→ Ω for i = 1, 2 are arcs in Ω, then the concatenation ξ1#ξ2 is

defined iff b1 = a2 and ξ1(b1) = ξ2(a2), and is the arc whose graph is G(ξ1) ∪G(ξ2).
Concatenation is an associative partially defined binary operation on ARC(Ω).

A subset A ⊆ ARC(Ω) is bounded if there is a compact subset K of Ω × R such
that G(ξ) ⊆ K for all ξ ∈ A. We call A equicontinuous if for every ε > 0 there exists
δ > 0 such that dΩ(ξ(t), ξ(s)) < ε whenever ξ ∈ A, t, s ∈ [a(ξ), b(ξ)], and |t− s| ≤ δ.
It is then clear that a subset A of ARC(Ω) is relatively compact iff A is bounded and
equicontinuous.

An arc system in Ω with time domain I is a subset A of ARC(Ω) such that

(AS.1) G(ξ) ⊆ Ω× I for every ξ ∈ A,
(AS.2) A contains every arc in Ω whose domain is of the form {t} for t ∈ I,
(AS.3) A is closed under concatenations (that is, if ξ1, ξ2 are in A and ξ1#ξ2

is defined, then ξ1#ξ2 ∈ A),
(AS.4) A is closed under restrictions (that is, if ξ ∈ A and a(ξ) ≤ α ≤ β ≤ b(ξ),

then the restriction ξd[α, β] of ξ to [α, β] is in A).

We use AS(Ω, I) to denote the set of all arc systems in Ω with time domain I. If
A ∈ AS(Ω, I) and K ⊆ Ω× I, we write

A(K)
def
= {ξ ∈ A : G(ξ) ⊆ K} .(2.2)
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If A ∈ AS(Ω, I), then it follows easily that if (i) the arcs ξ1, . . . , ξm belong to A,
(ii) [a(ξ1), b(ξ1)] ∪ · · · ∪ [a(ξm), b(ξm)] is an interval, (iii) ξidIi ∩ Ij = ξjdIi ∩ Ij for all
i, j ∈ {1, . . . ,m}, where we write I` = [a(ξ`), b(ξ`)] for ` ∈ {1, . . . ,m}, and (iv) we let
ξ1 ∨ · · · ∨ ξm be the arc whose graph is G(ξ1) ∪ · · · ∪G(ξm), then ξ1 ∨ · · · ∨ ξm is also
in A.

If A ∈ AS(Ω, I), we define A# to be the set of all curves ξ : J 7→ Ω such that J is
a subinterval of I and ξdL ∈ A for every compact subinterval L of J . The members
of A# will be called A-curves. An A-curve ξ ∈ A# is maximal if there does not exist
η ∈ A# such that G(ξ) is a proper subset of G(η). We use A#

max to denote the set
of all maximal elements of A#. A trivial application of Zorn’s lemma shows that if
A ∈ AS(Ω, I), then every ξ ∈ A# can be extended to an η ∈ A#

max. This implies, in
particular, that through every point of Ω× I there passes the graph of a ξ ∈ A#

max.

If A ∈ AS(Ω, I), we say that A has the compactness property if for every compact
subset K ⊆ Ω× I the set A(K) is compact in ARC(Ω). We say that A has the local
existence property if for every (x, t) ∈ Ω × I there exists ξ ∈ A such that t belongs
to the interior of [a(ξ), b(ξ)] relative to I and ξ(t) = x. We use AScomp,le(Ω, I) to
denote the set of all A ∈ AS(Ω, I) that have the compactness property and the local
existence property.

Proposition 2.1. Let Ω be a locally compact metric space, and let I ⊆ R be an
interval. Assume that A ∈ AScomp,le(Ω, I). Let ξ : J 7→ Ω be a curve in A#. Then
ξ ∈ A#

max iff (i) J is relatively open in I and (ii) for every compact subset K of Ω× I
the set {t ∈ J : (ξ(t), t) ∈ K} is compact.

Proof. Let t+ = supJ , t− = inf J .

Suppose first that (i) and (ii) hold, but ξ is not maximal. Let η ∈ A# be an
extension of ξ to a strictly larger interval J ′. Pick s ∈ J ′\J . Then either s ≥ t+
or s ≤ t−. Assume that s ≥ t+. (The other case is similar.) Then t+ ∈ I, because
t+ ≤ s ∈ I and t+ ≥ t for some t ∈ J ⊆ I. Therefore t+ /∈ J , because J is
relatively open in I by (i). Pick t ∈ J . Let K0 be the set {η(τ) : t ≤ τ ≤ t+}. Let
K = K0 × [t, t+]. Then K is compact, so the set L = {τ ∈ J : (ξ(τ), τ) ∈ K} is
compact by (ii). But this is a contradiction, because [t, t+[⊆ L but t+ /∈ L.

Now assume that ξ is maximal. Suppose that J is not relatively open in I. Then
either t+ ∈ J and t+ < sup I or t− ∈ J and t− > inf I. Assume that t+ ∈ J and
t+ < sup I, the other case being similar. By the local existence property, there is an
η ∈ A for which η(t+) = ξ(t+) and whose domain Q contains t in its interior relative
to I. By the restriction property, we may assume that the domain of η is of the form
[t+, t+ + ε] for some ε > 0. But then G(ξ) ∪ G(η) is the graph of an arc in A#,
contradicting the maximality of ξ. So J is relatively open in I, as stated.

Let K ⊆ Ω × I be compact, and assume that L = {t ∈ J : (ξ(t), t) ∈ K} is
not compact. Then in particular L 6= ∅. Let π : Ω × I 7→ I be the projection map
(x, t) 7→ t. Let b = supL, a = inf L. Then a ∈ I and b ∈ I, because L ⊆ π(K) ⊆ I,
and π(K) is compact. Also, a < b, since if a = b, then L would be equal to {a},
which is compact. Since L ⊆ [a, b] and L is not compact, there exists a sequence {tj}
in L that converges to a limit t̄ /∈ L. On the other hand, the open interval ]a, b[ is
contained in J . If a < t̄ < b, it would follow that ξ(tj)→ ξ(t̄), so (ξ(t̄), t̄) would be in
K, and t̄ would belong to L. Therefore either t̄ = a or t̄ = b. Assume t̄ = b, the case
when t̄ = a being similar. Since (ξ(tj), tj) ∈ K, which is compact, we may assume,
after passing to a subsequence, that x̄ = limj→∞ ξ(tj) exists. Clearly, (x̄, t̄) ∈ K.
Let K ′0, be a compact neighborhood of x̄ in Ω, and let J ′0 be a compact subinterval
of I such that t̄ belongs to the interior of J ′0 relative to I. Let K ′ = K ′0 × J ′0. Let
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ε > 0 be such that x ∈ Ω, t ∈ I, ||x − x̄|| ≤ ε, |t̄ − t| ≤ ε implies (x, t) ∈ K ′. Using
the compactness property for A, we can infer that A(K ′) is equicontinuous, so there
exists a δ > 0 such that η ∈ A, G(η) ⊆ K ′ implies ||η(t) − η(s)|| ≤ ε

3 whenever
|t− s| ≤ δ. Pick j so large that b− tj < δ and ||ξ(tj)− x̄|| < ε

3 . Then ξ([tj , b[) ⊆ K ′0.
(Otherwise, let τ = inf{t ∈ [tj , b[: ξ(t) /∈ K ′0}. Then tj < τ < b, ξ(τ) ∈ K ′0, and
ξd[tj , τ ] ∈ A(K ′). Since τ − tj < δ, we have ||ξ(τ)− ξ(tj)|| < ε

3 , so ||ξ(τ)− x̄|| < 2ε
3 ,

and then ξ(τ) is an interior point of K ′0. But then ξ(t) ∈ K ′0 for t > τ , t − τ small
enough, contradicting the definition of τ .) Using equicontinuity again, for the set of
arcs {ξd[tj , t] : tj ≤ t < b} ⊆ A(K ′), we see that the limit of ξ(t) as t ↑ b must
exist. Therefore limt↑b ξ(t) = x̄. Then the arcs ξd[tj , t] converge to η as t ↑ b, where
η : [tj , b] 7→ Ω is such that ηd[tj , b[= ξd[tj , b[ and η(b) = x̄. By the compactness
property, η ∈ A. Therefore, if we extend ξ to J ∪ {b} by letting ξ(b) = x̄, we see that
the extension belongs to A#. Since ξ is maximal, we conclude that b ∈ J and ξ(b) = x̄.
Since (x̄, b) = limj→∞(ξ(tj), tj), we see that (x̄, b) ∈ K, so b ∈ L, contradicting the
fact that b = t̄ /∈ L.

If X is a set, we use 2X to denote the set of all subsets of X. If X is a topological
space, we can topologize 2X as follows. For each open subset U of X, let

V (U) = {S ∈ 2X : S ⊆ U} .(2.3)

We then let TUSC(X) denote the set of all subsets S of 2X such that S = ∪αV (Uα)
for some family {Uα} of open subsets of X. Then TUSC(X) is a topology on 2X . We
will call it the USC topology on 2X , because of its relation to upper-semicontinuity of
set-valued maps. (If Y is a topological space, a set-valued map F : Y 7→ 2X is upper
semicontinuous iff it is continuous as a map from Y to (2X , TUSC(X)).) The name
upper semifinite topology has also been used in the literature; cf., e.g., [17].

If Ω is a metric space and I is an interval, then for every subset K of Ω × I we
have a set-valued map TΩ,I,K : AS(Ω, I) 7→ 2ARC(Ω) given by TΩ,I,K(A) = A(K). As
K ranges over all the compact subsets of Ω× I, we have a collection of maps TΩ,I,K

from AS(Ω, I) to 2ARC(Ω). Therefore there exists a weakest topology on AS(Ω, I)
that renders all the maps TΩ,I,K continuous, where 2ARC(Ω) is equipped with the
USC topology. This topology will be called the topology of trajectory convergence
(or simply T-convergence) and will be denoted by TT (Ω, I). If {Aα}α∈A is a net
in AS(Ω, I) and A ∈ AS(Ω, I), we say that {Aα}α∈A T-converges to A (and write

Aα−−−−→T A) if the Aα converge to A in TT (Ω, I).
Let Ω be a metric space, let ξ : I 7→ Ω be a curve, and assume that {ξα}α∈A is a

net of curves in Ω, with Dom(ξα) = Iα. We say that the ξα converge to ξ on compact
sets if for every compact subset J ⊆ I, there exists an α∗(J) such that (i) J ⊆ Iα for
α �A α∗(J) and (ii) the ξαdJ converge uniformly to ξdJ .

We say that a net {Aα}α∈A in AS(Ω, I) converges to A ∈ AS(Ω, I) in the maximal
curve convergence sense if, whenever {(xα, tα)}α∈A is a net of points in Ω × I that
converges to a limit (x̄, t̄) ∈ Ω × I, and {ξα}α∈A is a net such that for each α ∈ A
ξα ∈ (Aα)#

max and ξα(tα) = xα, it follows that there exist a ξ∞ ∈ A#
max, with domain

I∞ ⊆ I, such that ξ∞(t̄) = x̄, and a subnet {ξµ(β)}β∈B of {ξα}α∈A that converges to
ξ∞ on compact sets.

Proposition 2.2. Let Ω be a locally compact metric space, and let I ⊆ R be an
interval. Suppose that {Aα}α∈A is a net in AScomp,le(Ω, I), and A ∈ AScomp,le(Ω, I).
Then the following conditions are equivalent:

(I) the Aα T-converge to A;
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(II) every subnet of {Aα}α∈A converges to A in the maximal curve convergence
sense.

Proof. The implication (II)⇒(I) is trivial. Indeed, suppose (II) holds, and let
K be a compact subset of Ω × I. Since A(K) is compact, a fundamental system of
neighborhoods of A(K) in 2ARC(Ω) is given by the sets

Vε = {ξ ∈ ARC(Ω) : dARC(ξ,A(K)) < ε}

for ε > 0. So it suffices to fix ε and prove that Aα(K) ⊆ Vε for sufficiently large α. If
this was not so, there would exist a subnet {Aµ(β)}β∈B of {Aα}α∈A such that there are

ξβ ∈ Aµ(β)(K) for which dARC(ξβ ,A(K)) ≥ ε. Extend each ξβ to a ξ̃β ∈ (Aµ(β))#
max.

Pick tβ ∈ Dom(ξβ) in an arbitrary fashion, and let xβ = ξβ(tβ). Then (xβ , tβ) ∈ K,
so by passing to a subnet if necessary we may assume that (xβ , tβ) converges to a
limit (x̄, t̄). Using (II) we may assume, after passing to a subnet, that there exists a
ξ̃ ∈ A#

max such that ξ̃(t̄) = x̄ and ξ̃β → ξ̃ on compact sets. After passing once again
to a subnet, we may assume that a(ξβ) and b(ξβ) have limits a, b, both belonging to
I. Let J = Dom(ξ̃). We will prove that a ∈ J and b ∈ J . Since both proofs are
similar, we will show only that b ∈ J . Suppose that b /∈ J . Let c = supJ , so c ≤ b.
Since b ∈ I, and J is relatively open in I, we have c /∈ J . This implies in particular
that c > t̄, since t̄ ∈ J . Pick c′ ∈ [t̄, c[ . Then [t̄, c′] ⊆ J , so [t̄, c′] ⊆ Dom(ξ̃β) for
large β, and ξ̃βd[t̄, c′] → ξ̃d[t̄, c′] uniformly. Since b(ξβ) → b > c′, we have b(ξβ) > c′

for large β. Since a(ξβ) ≤ tβ → t̄ < c′, we have a(ξβ) < c′ for large β. Therefore
c′ ∈ Dom(ξβ) for large β, so ξ̃(c′) = lim ξβ(c′). Therefore (ξ̃(c′), c′) ∈ K. Since this
is true for c′ < c but arbitrarily close to c, and the set L = {t ∈ J : (ξ̃(t), t) ∈ K} is
compact by Proposition 2.1, we conclude that c ∈ L, so in particular c ∈ J , which is
a contradiction.

Thus a and b belong to J . Therefore [a, b] ⊆ Dom(ξ̃β) for large β, and ξ̃βd[a, b]
converges to ξ̃d[a, b]. Since a(ξβ)→ a, and b(ξβ)→ b, given any s ∈ [a, b] we can find
sβ ∈ Dom(ξβ) such that aβ ≤ sβ ≤ bβ and sβ → s. Therefore ξβ(sβ) → ξ̃(s). So
(ξ̃(s), s) ∈ K. This shows that the restriction ξ of ξ̃ to [a, b] is in A(K). Therefore
dARC(ξβ , ξ) ≥ ε. On the other hand, ξβ → ξ in ARC(Ω), so dARC(ξβ , ξ) → 0. This
contradiction proves that (II)⇒(I), as stated.

We now prove that (I)⇒(II). Assume that the net {Aα}α∈A T-converges to A.
We want to show that every subnet of {Aα}α∈A converges to A in the maximal curve
convergence sense. Since every subnet of {Aα}α∈A T-converges to A, because the
notion of T-convergence arises from a topology, it suffices to show that {Aα}α∈A
converges to A in the maximal curve convergence sense.

Let {ξα}α∈A be a net such that ξα ∈ (Aα)#
max, and let Iα be the domain of

ξα. Let tα ∈ Iα be such that tα → t̄ ∈ I, and xα
def
= ξα(tα) → x̄ ∈ Ω. Pick a

compact neighborhood K0 of x̄ in Ω and a compact interval J0 which is a relative
neighborhood of t̄ in I. By passing to a subnet of {ξα}, we may assume that xα ∈ K0

and tα ∈ J0 for all α. Let Q be the set of all products Q = K × J , where K is a
compact subset of Ω such that K0 ⊆ K, and J is a compact subinterval of I such
that J0 ⊆ J . For each Q = K × J ∈ Q, let Lα(Q) = {t ∈ Iα : (ξα(t), t) ∈ Q}. Then
Lα(Q) is compact. Let Sα(Q) be the connected component of Lα(Q) that contains
tα. Then Sα(Q) is a compact subinterval of I. Let ξα,Q be the restriction of ξα

to Sα(Q). Then ξα,Q ∈ Aα(Q). Since A(Q) is compact, we can pick ζα,Q ∈ A(Q)

such that dARC(ξα,Q, ζα,Q) = dARC(ξα,Q,A(Q)). Since Aα−−−−→T A, the distance
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dARC(ξα,Q,A(Q)) goes to 0. So dARC(ξα,Q, ζα,Q)→ 0. Let

U =
∏
Q∈Q

A(Q) .(2.4)

Then U is a product of compact topological spaces. By Tikhonov’s theorem, U is
compact with respect to the product topology. Let Zα = {ζα,Q}Q∈Q. Then each
Zα is a member of U . Therefore there is a subnet {Zµ(β)}β∈B of {Zα}α∈A that
converges to a limit Z = {ζQ}Q∈Q ∈ U . Then ζµ(β),Q → ζQ for every Q ∈ Q. Since
dARC(ξµ(β),Q, ζµ(β),Q)→ 0, we have shown that ξµ(β),Q → ζQ for each Q.

If Q,Q′ ∈ Q and Q ⊆ Q′, then it is easy to see that Lα(Q) ⊆ Lα(Q′) for all α ∈ A.
Therefore Sα(Q) ⊆ Sα(Q′), and thenG(ξα,Q) ⊆ G(ξα,Q

′
). In particular, G(ξµ(β),Q) ⊆

G(ξµ(β),Q′) for all β and then, taking limits, it follows that G(ζQ) ⊆ G(ζQ
′
). Since for

any two members Q, Q′ of Q there is a Q′′ ∈ Q such that Q∪Q′ ⊆ Q′′, it follows that
the arcs ζQ match, in the sense that the union of the graphs G(ζQ) is the graph of a
map ζ. If S(Q) = Dom(ζQ), then t̄ ∈ S(Q), because tµ(β) ∈ Dom(ξµ(β),Q) for each β,
and tµ(β) → t̄. Then S = ∪Q∈QS(Q) is an interval, and it is clear that S = Dom(ζ).
Obviously, ζ(t̄) = x̄. We now have to show that ζ ∈ A#

max and ξµ(β) → ζ on compact
sets.

Write

Sα(Q) = [aα(Q), bα(Q)] , S(Q) = [a(Q), b(Q)] ,(2.5)

so a(Q) = limβ a
µ(β)(Q) and b(Q) = limβ b

µ(β)(Q).
Next, we make the following observation:

(*) Given any α ∈ A and any Q = K × J ∈ Q, the point ξα(bα(Q)) belongs to
K\Int(K) unless bα(Q) = sup I.

Indeed, if bα(Q) < sup I and ξα(bα(Q)) ∈ Int(K), then ξα(t) would be defined for
t = bα(Q) + h if h > 0 is small enough, because the domain of ξα is relatively open
in I. By continuity, (ξα(t), t) would be in Q for t = bα(Q) + h, h > 0, h small,
contradicting the definition of bα(Q). Thus (*) holds, as stated.

Let σ = supS. We distinguish three cases, namely,

(i) σ /∈ I,
(ii) σ ∈ I\S,
(iii) σ ∈ S.

In cases (i) and (ii), if b ∈ S, then b < σ, so b < b(Q) for some Q ∈ Q, since
σ = sup{b(Q) : Q ∈ Q}. Therefore b < bµ(β)(Q) for large enough β. In case (iii), we
must have σ = b(Q̄) for a Q̄ ∈ Q. Let Q′ = K ′ × J ′ be such that ζ(σ) ∈ IntΩ(K ′)
and pick a Q = K × J ∈ Q such that Q̄ ∪Q′ ⊆ Q. Then b(Q) = σ, and ζQ(b(Q)) =
ζ(b(Q)) ∈ Int(K). Thus ξµ(β),Q ∈ Int(K) for large β. Therefore (*) implies that
bµ(β)(Q) = σ for large β.

Summarizing the above, we have shown the following:

(**) If b ∈ S, then there is a Q ∈ Q such that b ≤ bµ(β)(Q) for all sufficiently large
β.

Naturally, a similar reasoning shows that if a ∈ S, then there is a Q such that
aµ(β)(Q) ≤ a for all sufficiently large β. Therefore, if S′ = [a, b] is any compact subin-
terval of S, there exists aQ such that [a, b] ⊆ Sµ(β)(Q) for all large enough β. It follows
that the restriction ζd[a, b] is the arc ζQd[a, b]. Since ζQ ∈ A, we see that ζd[a, b] ∈ A.
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This is true for every S′. So we have shown that ζ ∈ A#. Moreover, it also follows
that, for any S′, there is a Q such that the inclusion S′ ⊆ Sµ(β)(Q) ⊆ Dom(ξµ(β))
holds for large enough β. This shows that ξµ(β) → ζ on compact sets.

To conclude, we have to show that ζ ∈ A#
max. Assume that this is not true, and

let ζ̃ : S̃ 7→ Ω be a curve, defined on a subinterval S̃ of I such that S ⊆ S̃ but S 6= S̃,
for which ζ̃dS = ζ. Pick s ∈ S̃\S. Then either s ≥ supS or s ≤ inf S. We assume
that s ≥ supS, the other case being similar. As before, we write σ = supS. Then
σ ∈ I, because σ ≤ s ∈ I and σ ≥ t for some t ∈ S. Pick a Q1 = K1 × J1 ∈ Q
such that ζ̃(σ) ∈ Int(K1). Pick a σ′ ∈ S such that σ′ ≤ σ and ζ(t) ∈ Int(K1)
whenever σ′ ≤ t and t ∈ S. Using (**), pick a Q2 = K2×J2 such that σ′ ≤ bµ(β)(Q2)
for all sufficiently large β. Pick Q = K × J ∈ Q such that Q1 ∪ Q2 ⊆ Q. Then
ξµ(β)(bµ(β)(Q)) → ζ(b(Q)) ∈ Int(K). Thus ξµ(β)(bµ(β)(Q)) belongs to Int(K) for
large β, and then it follows from (*) that bµ(β)(Q) = sup I for large β. But then
b(Q) = sup I, and this implies that σ = b(Q) = sup I, and σ ∈ S. Since s ∈ I, and
s ≥ σ, we must have s = σ, contradicting the fact that s /∈ S.

Remark 2.1. If the space Ω is σ-compact (i.e., a countable union of compact
subsets), then instead of considering the product U defined in (2.4), we can use the
product U ′ =

∏∞
j=1A(Qj), where {Qj} is a sequence of compact subsets of Ω × I

whose relative interiors cover Ω× I. Then U ′ is metrizable. Therefore the statement
and proof of Proposition 2.2 can be repeated using sequences instead of nets, and
subsequences instead of subnets.

We now specialize to the arc systems defined by vector fields. Let Ω be an open
subset of Rn, and let I be a subinterval of R. A time-varying vector field on Ω with
time domain I is a map f : Ω × I 7→ Rn. We use TV V F (Ω, I) to denote the set
of all such maps. An f ∈ TV V F (Ω, I) satisfies the Carathéodory condition if it is
continuous in x for each fixed t ∈ I and Lebesgue measurable in t for each fixed
x ∈ Ω. We call f locally integrably bounded (LIB) if f is bounded in norm by a
locally integrable function of t, as long as x stays in a compact subset of Ω. We
use TV V FCar,LIB(Ω, I) to denote the set of all f ∈ TV V F (Ω, I) that satisfy the
Carathéodory condition, and are LIB.

If f ∈ TV V F (Ω, I), a trajectory (or integral curve) of f is an absolutely continuous
function ξ : J 7→ Ω defined on some nonempty subinterval J ⊆ I such that ξ̇(t) =
f(ξ(t), t) for almost all t ∈ J . A maximal trajectory of f is a trajectory ξ : J 7→ Ω
that cannot be extended to a trajectory of f defined on a strictly larger interval. We
write Traj(f) to denote the set of all trajectories of f , and Trajc(f) to denote the set
of all ξ ∈ Traj(f) that are arcs, i.e., such that Dom(ξ) is a compact interval. Also,
we write Traj(f)max to denote the set of all maximal trajectories of f . Then it is
clear that Trajc(f) is an arc system, and Trajc(f)# is precisely Traj(f). Therefore
Traj(f)max is exactly the set Trajc(f)#

max.

Thus f 7→ Trajc(f) is a map from TV V F (Ω, I) to AS(Ω, I). Using this map, we
can pull back the topology of trajectory convergence on AS(Ω, I) and define a topology
of trajectory convergence, or T -convergence, on TV V F (Ω, I). We can also pull back
properties of arc systems and apply them to vector fields. (For example, we will say
that f has the local existence property if the arc system Trajc(f) does.) We call f tra-
jectory compact if Trajc(f) has the compactness property. We use TV V Fcomp,le(Ω, I)
to denote the set of those f ∈ TV V F (Ω, I) that are trajectory compact and have the
local existence property. We say that f has the uniqueness property if for every initial
condition (x̄, t̄) in Ω × I the maximal trajectory of f whose graph contains (x̄, t̄) is
unique.
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The Carathéodory existence theorem (cf. [6]) implies that every vector field f ∈
TV V FCar,LIB(Ω, I) has the local existence property. Moreover, a simple application
of the Ascoli–Arzelà theorem and the Lebesgue dominated convergence theorem shows
that every time-varying vector field f ∈ TV V FCar,LIB(Ω, I) is trajectory compact.
Thus

TV V FCar,LIB(Ω, I) ⊆ TV V Fcomp,le(Ω, I) .(2.6)

If S is a subset of Ω × I, we write Trajc(f, S) to denote the set of all arcs ξ ∈
Trajc(f) such that G(ξ) ⊆ S. We then have the following propositions.

Proposition 2.3. Let f be in TV V F (Ω, I) and {fα}α∈A be a net in TV V F (Ω, I).
Then {fα}α∈A T -converges to f iff for every compact subset K of Ω × I and every
open subset V of ARC(Ω) containing Trajc(f,K) there exists an α∗(V ) ∈ A such that
Trajc(f

α,K) ⊆ V whenever α∗(V ) � α.
Proposition 2.4. If f ∈ TV V Fcomp,le(Ω, I), then a net {fα}α∈A in TV V F (Ω, I)

T -converges to f iff

lim
α

sup{dARC(ξ,Trajc(f,K)) : ξ ∈ Trajc(f
α,K)} = 0(2.7)

for every compact subset K of Ω× I.
Proposition 2.5. Let f = {fα}α∈A be a net in TV V Fcomp,le(Ω, I), and suppose

that f ∈ TV V Fcomp,le(Ω, I). Then f T -converges to f iff, whenever {fµ(β)}β∈B is
a subnet of f , (xβ , tβ) ∈ Ω × I converge to (x̄, t̄) ∈ Ω × I, and ξξξ = {ξβ}β∈B is a
family such that each ξβ is a maximal trajectory of fµ(β) for which ξµ(β)(tβ) = xβ, it
follows that there exist a maximal trajectory ξ of f such that ξ(t̄) = x̄ and a subnet
{ξν(γ)}γ∈C of ξξξ that converges to ξ on compact sets.

Proposition 2.6. If f ∈ TV V Fcomp,le(Ω, I), then a sequence f = {f j}∞j=1 of
members of TV V Fcomp,le(Ω, I) T -converges to f iff, whenever J is an infinite set of
positive integers, (xj , tj) ∈ Ω× I converge to (x̄, t̄) ∈ Ω× I as j →∞ via values in J ,
and ξξξ = {ξj}j∈J is a family such that each ξj is a maximal trajectory of f j for which
ξj(tj) = xj, it follows that there exist a maximal trajectory ξ of f such that ξ(t̄) = x̄
and an infinite subset J ′ of J such that {ξj}j∈J′ converges to ξ on compact sets.

Proposition 2.7. Suppose that f ∈ TV V Fcomp,le(Ω, I) and that a net f =
{fα}α∈A of members of TV V Fcomp,le(Ω, I) T -converges to f ; assume that (xα, tα) ∈
Ω × I converge to (x̄, t̄) ∈ Ω × I, ξξξ = {ξα}α∈A is a family such that each ξα is a
maximal trajectory of fα for which ξα(tα) = xα, and the maximal trajectory ξ of f
for which ξ(t̄) = x̄ is unique; then the net ξξξ converges to ξ on compact sets.

Proposition 2.8. Suppose that f ∈ TV V Fcomp,le(Ω, I) has the uniqueness prop-
erty, and let f = {fα}α∈A be a net of members of TV V Fcomp,le(Ω, I); then f T -
converges to f iff, whenever (xα, tα) ∈ Ω× I converge to (x̄, t̄) ∈ Ω× I, ξξξ = {ξα}α∈A
is a family such that each ξα is a maximal trajectory of fα for which ξα(tα) = xα, and
ξ is the maximal trajectory of f for which ξ(t̄) = x̄, it follows that the net ξξξ converges
to ξ on compact sets.

All these properties are very easy to prove. Proposition 2.3 is just a restate-
ment of the definition of T-convergence. Then Proposition 2.4 immediately follows
from Proposition 2.3 by observing that if Trajc(f,K) is compact, then the sets
{ξ ∈ ARC(Ω) : dARC(ξ,Trajc(f,K)) < ε} form a fundamental system of neigh-
borhoods of Trajc(f). Proposition 2.5 follows from Proposition 2.2, and Proposition
2.6 follows from Remark 2.1. Finally, Propositions 2.7 and 2.8 follow trivially from
Proposition 2.5.
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3. T 0-convergence for control-affine systems. We are now ready to give
the precise definition of the topology of T 0-convergence on L1([0, T ],Rm).

Let m be a positive integer. A C0(m) system is an (m+ 2)-tuple

Σ = (Ω, f0, . . . , fm) ,(3.1)

where Ω is a nonempty open subset of Rn for some integer n ≥ 1, and f0, . . . , fm
are continuous vector fields on Ω. The expressions fΣ

i , ΩΣ will be used to denote the
vector fields fi and the set Ω corresponding to a given system Σ ∈ C0(m).

If T > 0, and u ∈ L1([0, T ],Rm), then for each Σ = (ΩΣ, fΣ
0 , . . . , f

Σ
m), we can

consider the ordinary differential equation

ẋ(t) = fΣ
0 (x(t)) +

m∑
k=1

uk(t)fΣ
k (x(t)) .(3.2)

The right-hand side of (3.2) is a time-varying vector field on ΩΣ with time domain
[0, T ], which clearly belongs to TV V FCar,LIB(ΩΣ, [0, T ]). Thus we can associate with
Σ the map

ΓΣ : L1([0, T ],Rm) 7→ TV V FCar,LIB(ΩΣ, [0, T ])(3.3)

defined by

ΓΣ(u)(x, t) = fΣ(u)(x, t)
def
= fΣ

0 (x) + u1(t)fΣ
1 (x) + · · ·+ um(t)fΣ

m(x) .(3.4)

For each Σ ∈ C0(m) and T > 0, the set TV V FCar,LIB(ΩΣ, [0, T ]) is a topological
space with the topology of trajectory convergence. Therefore, for any subclass C of
C0(m) we can consider the topology T (C) on L1([0, T ],Rm) induced by the family of
mappings {ΓΣ : Σ ∈ C}, i.e., the weakest topology on L1([0, T ],Rm) that makes all
the maps ΓΣ continuous, for all Σ ∈ C. In particular, the topology of T 0-convergence
on L1([0, T ],Rm) is, by definition, the T (C0(m))-topology. We say that a net {uα}α∈A
T 0-converges to a u∞ in L1([0, T ],Rm) if it converges to u∞ in this topology. Equiv-
alently, a net {uα}α∈A T 0-converges to a limit u∞ iff

(TCN) for every possible choice of the system Σ ∈ C0(m), the time-varying vector
(x, t) 7→ fΣ(uα)(x, t) T-converge to (x, t) 7→ fΣ(u∞)(x, t).

(This is exactly the version for nets of condition (TC) of the introduction.)
If (TCN) holds, then Proposition 2.7 implies that in particular the following

conditions hold as well:

(TCN′) For every possible choice of Σ ∈ C0(m), if ξα are maximal trajectories of (1.1)
determined by the uα, xα = ξα(0), and xα → x̄ ∈ ΩΣ, then the ξα are defined
on [0, T ] for α large enough and converge uniformly on [0, T ] to the maximal
trajectory ξ∞ for u∞, provided that for the limiting initial value problem
ẋ = fΣ

0 (x) +
∑m
i=1 u

∞
i (t)fΣ

i (x), x(0) = x̄, there is uniqueness of solutions as
well as global existence on [0, T ].

(TCN′′) For every possible choice of the system Σ ∈ C0(m) and the initial condition
x(0) = x̄ ∈ ΩΣ, if ξα are maximal trajectories of (1.1) determined by the
uα and x̄, then the ξα are defined on [0, T ] for α large enough and converge
uniformly on [0, T ] to the maximal trajectory ξ∞ for u∞, provided that for
the limiting initial value problem ẋ = fΣ

0 (x) +
∑m
i=1 u

∞
i (t)fΣ

i (x), x(0) = x̄,
there is uniqueness of solutions as well as global existence on [0, T ].
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4. A characterization of sequential T 0-convergence.
Theorem 4.1. Let u = {uj}∞j=1 be a sequence of controls in L1([0, T ],Rm), and

let u∞ ∈ L1([0, T ],Rm). Then the following conditions are equivalent:

(i) u satisfies condition (UB) and I-converges to u∞,
(ii) u T 0-converges to u∞,
(iii) (TCN′) holds,
(iv) (TCN′′) holds,
(v) u UW-converges to u∞.

If u = {uα}α∈A is a net in L1([0, T ],Rm), and u∞ belongs to L1([0, T ],Rm), then
(i)=⇒(ii)=⇒(iii)=⇒(iv)=⇒(v), but in general (v)6=⇒(iv) and (ii)6=⇒(i).

Remark 4.1. At present, we do not know if the implications (iv)=⇒(iii)=⇒(ii)
hold for general nets, i.e., whether (ii), (iii), and (iv) of Theorem 4.1 are equivalent
for nets.

Theorem 4.2. Let u = {uα}α∈A be a net of inputs belonging to L1([0, T ],Rm),
and let u∞ ∈ L1([0, T ],Rm) be such that (i) of Theorem 4.1 holds. Let Ω be open in
Rn, and let hα : Ω× [0, T ] 7→ Rn be time-varying vector fields given by

hα(x, t) = θ̇α(t) + f0(x) +
m∑
i=1

uαi (t)fi(x) ,

where the fi : Ω 7→ Rn are continuous, the θα : [0, T ] 7→ Rn are absolutely continuous,
and θα → 0 uniformly. Then the net {hα}α∈A T-converges to the vector field h∞

given by h∞(x, t) = f0(x) +
∑m
i=1 u

∞
i (t)fi(x).

Proof of Theorems 4.1 and 4.2. We first prove that (i) implies (v). We have to
show that (UB) ∧ (IC) implies (UWC). Pick a function ϕ∈C0([0, T ],R) and a δ>0,

and find a piecewise constant function ψ=
∑N
k=1 ψkχJk (where the Jk are subintervals

of [0, T ] and χJ denotes the indicator function of J) such that |ϕ(t)−ψ(t)|<δ for all
t ∈ [0, T ]. If (UB) holds, then there exists α∗ and a C > 0 such that ‖uαi ‖L1 ≤ C

for all i = 1, . . . ,m, and α �A α∗ including α = ∞. But then | ∫ t
0
uαi (s)ϕ(s)ds −∫ t

0
uαi (s)ψ(s)ds| ≤ Cδ for all i, t, and α �A α∗. In view of (IC),

∫ t
0
uαi (s)ψ(s)ds →∫ t

0
u∞i (s)ψ(s)ds uniformly with respect to t. So | ∫ t

0
uαi (s)ψ(s)ds−∫ t

0
u∞i (s)ψ(s)ds| ≤ δ

for all t, if α is large enough. But then | ∫ t
0
uαi (s)ϕ(s)ds−∫ t

0
u∞i (s)ϕ(s)ds| ≤ (2C+1)δ

for all t if α is sufficiently large. Since δ is arbitrary, (UWC) follows.
Next, we prove Theorem 4.2, which contains as a particular case the implication

(i)=⇒(ii) of Theorem 4.1. Let u = {uα}α∈A, and let Ω, f0, . . . , fm, and the θα be as
in the statement of Theorem 4.2. Let Σ = (Ω, f0, . . . , fm) be a C0(m) system. We
have to show that the hα T-converge to h∞. Let K be a compact subset of Ω× [0, T ].
We will show that the sets Trajc(h

α,K) converge to Trajc(h
∞,K). For this we first

prove the following:

(CTR) If {ξα}α∈A is a net in ARC(Ω) such that ξα ∈ Trajc(h
α,K), then {ξα}α∈A

has a subnet {ξν(β)}β∈B that converges to an η ∈ Trajc(h
∞,K).

Clearly, if we show that {ξα}α∈A has a subnet that converges in ARC(Ω), then
(CTR) would follow. Indeed, let {ξν(β)}β∈B be a subnet of {ξα}α∈A that converges
in ARC(Ω). Let η be the limit. Let Iα = Dom(ξα) and I = Dom(η). If I just
contains one point, then η is in Trajc(h

∞,K) by definition. Otherwise, for β large
enough, Iν(β) ∩ I 6= ∅. Write Iα = [aα, bα], and let I = [a, b]. Then aν(β) → a and
ξν(β)(aν(β))→ η(a).
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Let

σα(t) = ξα(aα) + θα(t)− θα(aα) .(4.1)

We then have, for all t ∈ Iν(β) ∩ I,

ξν(β)(t) = σν(β)(t) +

∫ t

aν(β)

f0

(
ξν(β)(s)

)
ds+

m∑
k=1

∫ t

aν(β)

u
ν(β)
k (s)fk (η(s)) ds

+

m∑
k=1

∫ t

aν(β)

u
ν(β)
k (s)

{
fk

(
ξν(β)(s)

)
− fk (η(s))

}
ds .(4.2)

Then (4.2) implies (since fk
(
ξν(β)(s)

) − fk (η(s)) → 0 uniformly, the L1 norms of

the uα are bounded by a fixed constant for large α, (UWC) holds, and θν(β)(t) −
θν(β)(aβ)→ 0 uniformly) that, for t ∈ I,

η(t) = η(a) +

∫ t

a

f0 (η(s)) ds+
m∑
k=1

∫ t

a

u∞k (s)fk (η(s)) ds .

Thus η is a trajectory of h∞. Clearly the graph G(η) of η is contained in K. Therefore
η ∈ Trajc(h

∞,K) and then (CTR) follows.
We now show that the net {ξα}α∈A has a subnet that converges in ARC(Ω).

Again let Iα = [aα, bα] = Dom(ξα). Then for t ∈ Iα, we have

ξα(t) = θα(t)− θα(aα) + ξα(aα) +

∫ t

aα
f0

(
ξα(s)

)
ds+

m∑
k=1

∫ t

aα
uαk (s)fk

(
ξα(s)

)
ds

= θα(t)− θα(aα) + ξα(aα) +

∫ t

aα
f0

(
ξα(s)

)
ds+

m∑
k=1

∫ t

aα
u∞k (s)fk

(
ξα(s)

)
ds

+

m∑
k=1

∫ t

aα

(
uαk (s)− u∞k (s)

)
fk

(
ξα(s)

)
ds .

Let

ζα(t) = ξα(aα) +

∫ t

aα
f0

(
ξα(s)

)
ds+

m∑
k=1

∫ t

aα
u∞k (s)fk

(
ξα(s)

)
ds .

It is obvious that the set {ζα : α ∈ A} is equicontinuous and uniformly bounded. The
θα(t)−θα(aα) converge to 0 uniformly by our assumption. Thus in order to show that
{ξα}α∈A has a convergent subnet, we need only show that for each k ∈ {1, . . . ,m},
the integrals

∫ t
aα

(uαk (s)− u∞k (s)) fk (ξα(s)) ds converge to 0 uniformly with respect
to t.

Fix an integer k ∈ {1, . . . ,m}. Write ûαk = uαk − u∞k . Then (UB) implies that
there exist an α∗ ∈ A and a constant C > 0 such that ‖ûα‖L1 ≤ C for α �A α∗. Let

ξ̂α(t) = ξα(t)− θα(t) .(4.3)

Then ξ̂α(t)− ξα(t) goes to 0 uniformly, so fk
(
ξ̂α(t)

)− fk (ξα(t)) goes to 0 uniformly
for each k. Since the L1 norms of the functions ûαk are bounded, we can conclude that
the integrals ∫ t

aα

(
uαk (s)− u∞k (s)

)(
fk

(
ξ̂α(s)

)
− fk

(
ξα(s)

))
ds
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converge to 0 uniformly with respect to t. So it suffices to show that∫ t

aα

(
uαk (s)− u∞k (s)

)
fk

(
ξ̂α(s)

)
ds→ 0 uniformly .(4.4)

Let K be a compact subset of Ω such that K ⊆ K × [0, T ]. For any given ε > 0, let
gk : Ω 7→ Rn be vector fields of class C∞ with compact support such that

sup
x∈K
‖fk(x)− gk(x)‖ < ε

C
.(4.5)

Then ∫ t

aα
ûαk (s)fk

(
ξ̂α(s)

)
ds =

∫ t

aα
ûαk (s)gk

(
ξ̂α(s)

)
ds

+

∫ t

aα
ûαk (s)

(
fk

(
ξ̂α(s)

)
− gk

(
ξ̂α(s)

))
ds .(4.6)

The sup norm of the second term on the right-hand side of (4.6) is less than ε. Via
integration by parts, we can rewrite the first term as

Ûαk (t) · gk
(
ξ̂α(t)

)
−
∫ t

aα
Ûαk (s)

d

ds

(
gk(ξ̂α(s))

)
ds ,(4.7)

where

Ûαk (t) =

∫ t

aα
ûαk (s) ds .(4.8)

Since Ûαk (t) → 0 uniformly, the gk are uniformly bounded, and the functions t 7→
d
dt

(
gk(ξ̂α(t))

)
are uniformly bounded in L1 for large α, because

d

dt

(
gk(ξ̂α(t))

)
=
∂gk
∂x

(ξ̂α(t))

(
f0(ξα(t)) +

m∑
`=1

uα` (t)f`(ξ
α(t))

)
,(4.9)

we can conclude that the integrals
∫ t
aα
ûαk (s)gk

(
ξ̂α(s)

)
ds go to zero uniformly. This

implies that

lim sup
α

∥∥∥∫ t

aα
ûαk (s)fk

(
ξ̂α(s)

)
ds
∥∥∥ ≤ ε .(4.10)

Since ε is arbitrary, we have shown that
∫ t
aα
ûαk (s)fk

(
ξ̂α(s)

)
ds → 0 uniformly. As

explained before, this shows that {ξα}α∈A has a convergent subnet in ARC(Ω).

The above argument clearly applies to any subnet of {hα}. Thus we have actually
proved the following:

(CTR1) For every compact subset K of Ω × I, if we are given a subnet {hν(β)}β∈B
of {hα}α∈A and a family {ξβ}β∈B ⊆ ARC(Ω) with the property that ξβ ∈
Trajc(h

ν(β),K), then the net {ξβ}β∈B has a subnet {ξµ(γ)}γ∈C that converges
to an η ∈ Trajc(h

∞,K).
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It follows easily from (CTR1) that the hα T-converge to h∞. Indeed, (CTR1) clearly
implies that

sup{dARC(ξ,Trajc(h
∞,K)) : ξ ∈ Trajc(h

α,K)} → 0

for every K, and then the T-convergence of hα to h∞ follows from Proposition 2.4.
This completes the proof of Theorem 4.2. In particular, we have established that (i)
of Theorem 4.1 implies (ii).

We now continue with the proof of Theorem 4.1. The implication (ii)=⇒(iii)
follows from Proposition 2.7, and (iii) implies (iv) trivially. We now prove that (iv)
implies (v). To see this, let ϕ : [0, T ] 7→ R be continuous. Consider the C0(m)
system Σ = (Rm+1, f0, . . . , fm) where—using (x0, x1, . . . , xm) to denote the standard
coordinates in Rm+1 and (e0, e1, . . . , em) to denote the canonical basis—f0(x) ≡ e0,
fi(x) ≡ ϕ(x0)ei for i = 1, . . . ,m. Then the differential equation associated with Σ and
uα is ẋ0 = 1, ẋi = ϕ(x0)uαi for i = 1, . . . ,m. Take the initial condition x̄ = (0, . . . , 0).
Then the components ξαi of the solution, for i = 1, . . . ,m, are precisely the components
of the vector Uαϕ . Thus (UWC) holds.

Next we prove that (v) implies (i) for sequences. Let {uj}∞j=1 be a sequence

in L1([0, T ],Rm), and let u∞ ∈ L1([0, T ],Rm). Assume that (UWC) holds for {uj}
and u∞. Then, in particular, the integrals 〈uji , ϕ〉 =

∫ T
0
uji (t)ϕ(t)dt converge to

〈u∞i , ϕ〉 =
∫ T

0
u∞i (t)ϕ(t)dt for each i and for each continuous function ϕ : [0, T ] 7→ R.

So the uji weak∗-converge to u∞i as linear functionals on the Banach space C0([0, T ],R)
of continuous real-valued functions on [0, T ]. It is well known that, if ψ belongs to

L1([0, T ],R), then the norm of the linear functional C0([0, T ],R) 3 ρ 7→ ∫ T
0
ρ(t)ψ(t)dt

is precisely the L1 norm of ψ. Therefore the L1 norms of the uji are bounded by a
fixed constant, by the uniform boundedness theorem. Thus (UB) holds. Moreover,
taking ϕ ≡ 1 we conclude that the uj I-converge to u∞.

The proof that in general (v) 6=⇒ (iv) and (ii)6=⇒ (i) is given in the appendix,
where we exhibit an example of a net that satisfies (v) but not (iv) and one of a net
that satisfies (ii) but not (i).

5. Other classes of systems. The equivalence for sequences of the five condi-
tions of Theorem 4.1 depends very strongly on the fact that the class of systems under
consideration is C0(m). One could equally well have considered T(C)-convergence in
L1([0, T ],Rm) with respect to other classes C of systems. For example, we could have
taken C to be the class Ck(m) of all the Σ ∈ C0(m) such that fΣ

0 , . . . , f
Σ
m are of class

Ck on ΩΣ, for an arbitrary integer k > 0. Let us call the T(Ck(m))-convergence in
L1([0, T ],Rm) simply T k-convergence.

It is then natural to ask whether explicit characterizations of T k-convergence of
sequences exist. The necessary and sufficient conditions for T 0-convergence are of
course sufficient to ensure T k-convergence, but they are no longer necessary. For
example, if a sequence {uj} T k-converges to u∞ in L1([0, T ],Rm) for some k ≥ 1,
then we can no longer apply the uniform boundedness theorem to conclude that the
L1 norms of the uj are bounded. The following theorem, which characterizes T k-
convergence of nets in L1([0, T ],R) for k ≥ 1, implies in particular that it is indeed
possible for a sequence {uj}∞j=1 ⊆ L1([0, T ],R) to T 1-converge to a u∞ ∈ L1([0, T ],R)

even if the ‖uj‖L1 are not bounded.
Theorem 5.1. Let T > 0, and let k > 0 be an integer. A net {uα}α∈A in

L1([0, T ],R) T k-converges to a u∞ ∈ L1([0, T ],R) if and only if {uα} I-converges to

u∞, i.e., iff the integrals
∫ t

0
uα(s)ds converge to

∫ t
0
u∞(s)ds uniformly on [0, T ].
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Before proving Theorem 5.1, it is natural to ask whether a similar characterization
might be valid for m > 1. The answer is negative, as will be shown by an example
in the next section. The reason for this is by now well understood. The obstructions
for the validity of Theorem 5.1 when m > 1 are the Lie brackets of the vector fields
fi for i > 0. Precisely, call a system Σ ∈ C1(m) commutative if the Lie brackets
[fΣ
i , f

Σ
j ] vanish identically for all i, j ∈ {1, . . . ,m}. (We do not require that the

brackets involving f0 vanish. Therefore for m = 1 every system is commutative.) For
k ≥ 1, let Ckcomm(m) be the class of all commutative systems in Ck(m). A net u
in L1([0, T ],Rm) T kcomm-converges to u ∈ L1([0, T ],Rm) if it converges to u in the
topology T (Ckcomm(m)), i.e., if the time-varying vector fields fΣ(uα) T-converge to
fΣ(u) for all Σ ∈ Ckcomm(m).

Theorem 5.2. Let T > 0, and let m be a positive integer. For any integer k ≥ 1,
a net {uα}α∈A in L1([0, T ],Rm) T kcomm-converges to a u∞ ∈ L1([0, T ],Rm) iff {uα}
I-converges to u∞, i.e., iff the integrals

∫ t
0
uα(s)ds converge to

∫ t
0
u∞(s)ds uniformly

on [0, T ].
Since for m = 1 every Ck system is commutative, Theorem 5.1 is a particular

case of Theorem 5.2.
Proof of Theorem 5.2. First of all, we observe that T kcomm-convergence obviously

implies I-convergence. To show the converse, we assume that u = {uα}α∈A I-converges
to u∞ and seek to prove that the net {fΣ(uα)}α∈A T-converges to fΣ(u∞) for every
C1
comm(m) system Σ. We consider first the special case of systems

Σ : ẋ = f0(x) +
m∑
i=1

uibi = f0(x) + u ·B , x ∈ Ω ,(5.1)

where f0 is continuous (but not necessarily of class C1) and the vector fields f1, . . . , fm
are constant. Let Uαi (t) =

∫ t
a
uαi (s) ds for α ∈ A ∪ {∞}, so Uα → U∞ uniformly on

[0, T ]. Let ξα : [aα, bα] 7→ Ω be trajectories of Σ for the uα, such that G(ξα) ⊆ K
for some compact subset K of Ω× [0, T ]. We want to find a subnet of {ξα}α∈A that
converges to a ξ∞ ∈ Trajc(f

Σ(u∞),K). By passing to a subnet, we may assume that
aα, bα have limits a, b, and xα = ξα(aα) converges to a limit x̄. Then (x̄, a) ∈ K.
Since

ξα(t) = xα +

∫ t

aα
f0(ξα(s)) ds+ (Uα(t)− Uα(aα)) ·B ,(5.2)

and the Uα converge uniformly to U∞, it is clear that {ξα} is equicontinuous. Thus
by passing to a subnet we may assume that ξα converges uniformly to a limit ξ∞.
Then a trivial argument allows us to pass to the limit in (5.2) and conclude that ξ∞ is
a trajectory for U∞. The above argument clearly applies to any subnet of {ξα}α∈A.
Then Proposition 2.4 implies that the fΣ(uα) T-converge to fΣ(u∞) in this special
case.

We now consider the case when Σ is such that the vector fields fΣ
1 , . . . , f

Σ
m are

linearly independent at each point. In this case, each point x ∈ ΩΣ has an open
neighborhood Ux such that there is a C1 diffeomorphism Φx from Ux to some other
open subset Vx of Rn that transforms the fΣ

i , for i = 1, . . . ,m, to constant vector
fields gi,x. Let g0,x be the vector field on Vx that corresponds to fΣ

0 dUx under Φx,
that is, g0,x(y) = DΦx(z).fΣ

0 (z), where z = Φ−1
x (y). (Notice that g0,x is continuous

but not necessarily of class C1.) Let Σx be the restriction of Σ to Ux and Σ̃x be
the system (Vx, g0,x, g1,x, . . . , gm,x). Then Σ̃x is a C0(m) system. Since the vector
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fields g1,x, . . . , gm,x are constant, we know that f Σ̃x(uα)−−−−→T
f Σ̃x(u∞). Since T-

convergence is preserved by C1 diffeomorphisms, we conclude that fΣx(uα)−−−−→T
fΣx

(u∞). This says that our desired conclusion holds locally, in the sense that every
x ∈ Ω has a neighborhood Ux such that the conclusion holds for the restriction of
Σ to Ux. From this, we have to infer that the conclusion also holds globally. It
suffices to show that, if (a) {ξα}α∈A is a net of maximal trajectories of the fΣ(uα),
(b) {(xα, tα)}α∈A is a net of points in Ω × [0, T ] such that ξα(tα) = xα for each α,
and (c) (xα, tα) → (x∞, t∞) ∈ Ω × [0, T ], then {ξα}α∈A converges on compact sets
to the maximal trajectory ξ∞ of fΣ(u∞) such that ξ(t∞) = x∞ (using the fact that
Σ is a C1 system and therefore has uniqueness of trajectories). For α ∈ A ∪ {∞},
let Iα = Dom(ξα), so Iα is relatively open in [0, T ] and tα ∈ Iα. Call a compact
subinterval J of I∞ “good” if there exists an α∗(J) ∈ A such that J ⊆ Iα whenever
α �A α∗(J), and the net {ξα}α∈A;α�Aα∗(J) converges to ξ∞ uniformly on J . We have
to prove that every compact subinterval of I∞ is good. It clearly suffices to consider
intervals J of the form [a, t∞] or [t∞, b]. The proof is similar in both cases, so we will
only consider the second case and assume that J = [t∞, b] for some b ∈ [0, T ]. Pick an
integer N > 0 such that 1

N is a Lebesgue number of the covering {(ξ∞)−1(Ux) : x ∈ Ω}
of J . Let bk = t∞ + k

N (b − t∞) for k = 0, 1, . . . , N , so b0 = t∞ and bN = b. Let
Jk = [b0, bk], so J = JN . Let Lk = [bk−1, bk] for k = 1, . . . , N . Pick xk ∈ Ω such
that ξ∞(Lk) ⊆ Uxk . Write Ωk = Uxk , Σk = Σxk . We prove by induction on k
that Jk is good. First, we show that J1 is good. Fix an ε > 0. For α ∈ A ∪ {∞},
let ηα be the maximal trajectory of fΣ1(uα) that goes through xα at time tα. Since

fΣ1(uα)−−−−→T
fΣ1(u∞), Σ1 has uniqueness of trajectories, and J1 ⊆ Dom(η∞), there

exists an α∗ such that J1 ⊆ Dom(ηα) and ‖ηα(t) − η∞(t)‖ < ε on J1 whenever
α �A α∗. On the other hand, ηα is a trajectory of fΣ(uα), so ηα = ξαdDom(ηα).
Therefore J1 ⊆ Dom(ξα) and ‖ξα(t) − ξ∞(t)‖ < ε for all t ∈ J1 whenever α �A α∗.
This establishes that J1 is good. Now suppose that 0 < k ≤ N and Jk−1 is good.
Pick α∗1 such that Jk−1 ⊆ Iα whenever α �A α∗1 and {ξα}α∈A;α�Aα∗1 converges to ξ∞

uniformly on Jk−1. Then {ξα(bk−1)}α∈A;α�Aα∗1 converges to ξ∞(bk−1). Thus there
exists α∗2 ∈ A such that α∗2 �A α∗1 and ξα(bk−1) ∈ Ωk for α �A α∗2. For α �A α∗2,
or α = ∞, let ηα be the maximal trajectory of fΣk(uα) that goes through ξα(bk−1)
at time bk−1. Since ξ∞dLk is a trajectory of fΣk(u∞), we have Lk ⊆ Dom(η∞).

Since fΣk(uα)−−−−→T
fΣk(u), Σk has uniqueness of trajectories, and Lk ⊆ Dom(η∞),

there exists an α∗ such that α∗ �A α∗2, Lk ⊆ Dom(ηα) whenever α �A α∗, and
ηα → η∞ uniformly on Lk. On the other hand, ηα is a trajectory of fΣ(uα) and
ηα(bk−1) = ξα(bk−1), so ηα = ξαdDom(ηα). Therefore Lk ⊆ Dom(ξα) whenever
α �A α∗, and ξα → ξ∞ uniformly on Lk. Since α∗ �A α∗1, we have in fact shown that
Jk ⊆ Dom(ξα) whenever α �A α∗, and ξα → ξ∞ uniformly on Jk. So Jk is good.
This completes the inductive proof that all the Jk are good, and in particular J = JN

is good. So ξα → ξ∞ on compact sets. Therefore fΣ(uα)−−−−→T
fΣ(u∞).

We now remove the restriction that fΣ
1 , . . . , f

Σ
m be linearly independent at each

point. Let Σ = (Ω, f0, f1, . . . , fm) be an arbitrary system in C1
comm(m). Let Ω̂ =

Ω× Rm, and let Σ̂ be the system on Ω̂ given by

ẋ = f0(x) + u1f1(x) + · · ·+ umfm(x) , ẏ1 = u1, . . . , ẏm = um .(5.3)

Then Σ̂ ∈ C1
comm(m), and it is clear that(

f Σ̂(uα)−−−−→T
f Σ̂(u∞)

)
⇒
(
fΣ(uα)−−−−→T

fΣ(u∞)
)
.(5.4)
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Moreover, the vector fields f Σ̂
1 , . . . , f

Σ̂
m are linearly dependent at each point. Thus we

conclude that f Σ̂(uα)−−−−→T
f Σ̂(u∞), and therefore fΣ(uα)−−−−→T

fΣ(u∞).

6. Beyond I-convergence: The role of Lie brackets. Theorem 5.2 char-
acterizes the topology of T 1

comm-convergence on the input space L1([0, T ],Rm) by
showing that T 1

comm-convergence is exactly equivalent to I-convergence. It is nat-
ural to ask whether I-convergence actually implies T-convergence for at least some
noncommutative systems. The answer to this question turns out to be negative.

Theorem 6.1. Let C be any subclass of C1(m) that contains at least one non-
commutative system. Then there exists a sequence {uj}∞j=1 in L1([0, T ],Rm) such

that (i) {uj} I-converges to a limit u∞ ∈ L1([0, T ],Rm), (ii) for every Σ ∈ C the
time-varying vector fields fΣ(uj) T-converge to a limit hΣ, but (iii) it is not true that
hΣ = fΣ(u∞) for all Σ ∈ C.

This result—which will follow from Proposition 6.2—says that noncommutativity
is the fundamental obstruction for I-convergence of the inputs to imply convergence
of trajectories. The best way to understand why this is so is to think of the space
L1([0, T ],Rm) of ordinary inputs as embedded in a larger space GI(m) of gener-
alized m-dimensional inputs, whose elements have components not only for the m
input channels corresponding to the vector fields f1, . . . , fm but also in “Lie bracket
channels” such as [f1, f2]. An “ordinary input” u ∈ L1([0, T ],Rm) gives rise, for
each system Σ, to a time-varying vector field fΣ(u). Thus an ordinary input can
be thought of as a “functional” that to every system Σ in a given class C assigns a
time-varying vector field. It is then natural to extend the class of ordinary inputs
by allowing more general functionals. By analogy with other constructions of spaces
of “generalized functions” (e.g., Schwartz distributions), we should also require that
such a functional be approximable by ordinary inputs. So we first define, for a class
C ⊆ C0(m) and an interval [a, b], the space PGI(C, a, b) of all maps v that assign to
every Σ = (Ω, f0, . . . , fm) ∈ C a time-varying vector field vΣ ∈ TV V F (Ω, [a, b]), and
call the elements of PGI(C, a, b) “pseudogeneralized inputs.” Then PGI(C, a, b) is
just the product Π(Ω,f0,...,fm)∈CTV V F (Ω, [a, b]), and we can topologize it by means of
the product topology. An ordinary input u ∈ L1([a, b],Rm) can then be regarded as a
member of PGI(C, a, b) by associating to it the map—also labeled u—Σ 7→ fΣ(u). A
“generalized input” on [a, b] for the class C is then a member of PGI(C, a, b) which is a
limit of ordinary inputs. We use GI(C, a, b) to denote the set of all generalized inputs,
so by construction GI(C, a, b) is a topological space in which the space L1([a, b],Rm)
is densely embedded.

Particular examples of members of PGI(C, a, b) can be constructed by means of
formal Lie bracket expressions such as

X0 + v1(t)X1 + v2(t)X2 + v3(t)[X1, X2] + v4(t)[X2, [X1, X2]] .

Here the indeterminates Xi should be thought of as “slots” where, for each particular
system Σ with vector fields f0, . . . , fm, the fi are to be plugged in, thus giving rise to a
time-varying vector field. Precisely, we can define a formal pseudogeneralized input on
[a, b] to be an integrable function with values in the free Lie algebra L(m+1) in m+1
indeterminates X0, . . . , Xm. (The field of scalars is of course R.) Use FPGI(m, a, b)
to denote the set of all such objects. Then a v ∈ FPGI(m, a, b) gives rise to a true
pseudogeneralized input—also labeled v—for any class C ⊆ C0(m) of control-affine
systems that has enough differentiability for all the Lie brackets occurring in the formal
expression to make sense. For example, to an ordinary input u = (u1, . . . , um) we
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associate the L(m+1)-valued function t 7→ X0 +u1(t)X1 + · · ·+um(t)Xm, and in this
case it is possible to plug in f0, . . . , fm for X0, . . . , Xm for every system C ∈ C0(m).
On the other hand, if m ≥ 2, then an expression v such as X0 + v1(t)X1 + v2(t)X2 +
v3(t)[X1, X2] will give rise to a member of PGI(C, a, b) only if C consists of systems
(Ω, f0, . . . , fm) for which the Lie bracket [f1, f2] is well defined. This will be the case,
in particular, if C ⊆ C1(m).

Thus, for example, the formal pseudogeneralized input w = X0 + 1
2 [X1, X2] gives

rise to a pseudogeneralized input w ∈ PGI(C1(2), a, b). With this terminology, the fol-
lowing result exhibits an example of a sequence {uj} ⊆ L1([0, T ],R2) that I-converges
to zero but converges in PGI(C1(2), 0, T ) to w. This shows that w ∈ GI(C1(2), a, b),
i.e., that w is a true generalized input. It is now clear why, when we look only at
classes C of systems for which [f1, f2] = 0, as we did in Theorem 5.2, the sequence {uj}
T (C)-converges to 0, whereas, as soon as C contains one system for which [f1, f2] 6= 0,
the T (C)-limit of {uj} is no longer 0. The reason is that the “true” limit is w, and
w contains “Lie bracket components” that are seen only when w is tested against a
noncommutative system.

Proposition 6.2. Let T > 0. For j = 1, 2, . . ., let uj ∈ L1([0, T ],R2) be the
input given by

uj(t) = (j
1
2 cos jt, j

1
2 sin jt) .(6.1)

Let Σ = (Ω, f0, f1, f2) be a system of class C1. Let

f j(x, t) = fΣ(uj)(x, t) = f0(x) + j
1
2 cos jt f1(x) + j

1
2 sin jt f2(x)(6.2)

and

f∞(x, t) = f0(x) +
1

2
[f1, f2](x)(6.3)

for (x, t) ∈ Ω× [0, T ]. Then the f j T-converge to f∞ in TV V FLIB(Ω, [0, T ]).
Proof. Suppose K is a compact subset of the product Ω× [0, T ]. We have to show

that Trajc(f
j ,K) converges to Trajc(f

∞,K). Let {ξj} ⊆ ARC(Ω) be a sequence
of functions such that ξj ∈ Trajc(f

j ,K) for each j. We will first show that there
exists a subsequence of {ξj} that converges to a ξ ∈ Trajc(f

∞,K) in ARC(Ω). Let
Ij = [aj , bj ] = Dom(ξj). On Ij we have

ξ̇j(t) = f0(ξj(t)) + j
1
2 cos jt f1(ξj(t)) + j

1
2 sin jt f2(ξj(t)) .(6.4)

But j
1
2 cos jt f1(ξj(t)) is equal to

θ̇j1(t)− j− 1
2 sin jt g1(ξj(t))− 1

2
sin 2jt g2(ξj(t))− sin2 jt g3(ξj(t)) ,

where g1 = Df1 · f0, g2 = Df1 · f1, g3 = Df1 · f2, Df1 denotes the Jacobian matrix
of f1, and θj1 = j−

1
2 sin jt f1(ξj(t)). Similarly, j

1
2 sin jt f2(ξj(t)) is equal to

θ̇j2(t) + j−
1
2 cos jt g4(ξj(t)) + cos2 jt g5(ξj(t)) +

1

2
sin 2jt g6(ξj(t)) ,

where g4 = Df2 · f0, g5 = Df2 · f1, g6 = Df2 · f2, and θj2 = −j− 1
2 cos jt f2(ξj(t)).

Thus, if we let

hj(x, t) = f0(x) + θ̇j1(t) + θ̇j2(t)

−j− 1
2 sin jt g1(x)− 1

2
sin 2jt g2(x)− sin2 jt g3(x)

+j−
1
2 cos jt g4(x) + cos2 jt g5(x) +

1

2
sin 2jt g6(x) ,
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then ξj ∈ Trajc(h
j ,K).

Theorem 4.2 then implies that the sequence of time-varying vector fields hj T-
converges to the vector field h∞ given by

h∞(x, t) = f0(x) +
1

2
(g5(x)− g3(x)) = f0(x) +

1

2
[f1, f2](x) .

(We apply the theorem to the control system ẋ = f0(x) +
∑6
i=1 vigi(x), and the

controls vj given by

vj(t) =
(
− j− 1

2 sin jt,−1

2
sin 2jt,− sin2 jt, j−

1
2 cos jt, cos2 jt,

1

2
sin 2jt

)
.

It is clear that the controls vj T 0-converge to (0, 0,− 1
2 , 0,

1
2 ). Since θj → 0 uniformly,

Theorem 4.2 applies.)
It is clear that h∞ = f∞. So {ξj} has a subsequence that converges to a ξ∞ ∈

Trajc(f
∞,K).

The above arguments clearly apply to any subsequence of {uj}. Then from Propo-
sition 2.4 we conclude that the f j T-converge to f∞.

Proof of Theorem 6.1. Let Σ ∈ C have vector fields f0, f1, . . . , fm such that
[fi, f`] 6= 0 for some i, ` ∈ {1, . . . ,m}. Define inputs uj by letting ujk(t) = 0 if

k /∈ {i, `}, uji (t) = j
1
2 cos jt, uj`(t) = j

1
2 sin jt. By Proposition 6.2, the time-varying

vector fields fΣ(uj) T-converge to f0 + 1
2 [fi, f`].

To understand the relationship between ordinary and generalized inputs, it is
useful to keep in mind the following simple analogy. Integrable functions on, say,
the interval [0, 1], are members of the more general class of Borel measures on [0, 1],
modulo an obvious identification. A measure µ has a decomposition µ = µac + µsing
into an absolutely continuous part and a singular part. (We include in µsing all
the atoms of µ.) If µ is absolutely continuous, i.e., if dµ = f dx, where f ∈ L1,
then of course µ has no singular part. A sequence {µj} of absolutely continuous
measures will converge to an absolutely continuous measure µ provided that the µj

weak∗-converge to µ and the functions f j = dµj

dx are “kept under control,” e.g., if
the sequence {f j} is equi-integrable. If, on the other hand, the µj weak∗-converge
to µ but {f j} is not equi-integrable, then the limit µ can have a singular part even
though the µj do not. Similarly, the general picture for ordinary differential equations
ẋ = f0(x) +

∑
i ui(t)fi(x) is that each right-hand side is in fact a member of a larger

class of “generalized” objects, which contain Lie bracket terms as well as “ordinary”
terms. An “ordinary” right-hand side has no Lie bracket terms, but a sequence {f j}
of ordinary right-hand sides can converge to a “generalized” one, which contains Lie
bracket terms in addition to the averaged limit, unless {f j} is “kept under control,”
e.g., by means of the boundedness conditions of our Theorem 4.1.

There is a more general theory that shows in a systematic way how iterated Lie
brackets can occur as limits of the right-hand sides of highly oscillatory differential
equations, such as the ones considered in Proposition 6.2. The results described in
Theorem 4.1 can be thought of as the zeroth level of this more general theory, in which
Lie bracket terms do not occur in the limit. High-level results, in which the structure
of general limits involving Lie bracket terms is analyzed in detail, are described in
[13], [14], [15], [16], [22], [23], and [24]. (Some special cases of these limiting processes
have also been studied by Kurzweil and Jarnik in [10] and [11].)

7. Comparison with other conditions. We recall that a sequence {uj}∞j=1

of functions in L1([0, T ],Rm) converges weakly to a limit u∞ ∈ L1([0, T ],Rm) if
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limj→∞
∫ T

0
ϕ(t)uj(t)dt =

∫ T
0
ϕ(t)u∞(t)dt for all functions ϕ ∈ L∞([0, T ],R). It is

well known (cf. Theorem 3.1 on page 53 of [5]) that {uj}∞j=1 converges weakly to u∞

iff (i) the integrals U j(t) =
∫ t

0
uj(s)ds converge to U∞(t) =

∫ t
0
u∞(s)ds for each t,

and (ii) the sequence {uj} is equi-integrable in the sense that for every ε > 0 there
is a δ > 0 such that

∫
E
‖uj(t)‖dt ≤ ε for every j and every measurable subset E of

[0, T ] whose measure is ≤ δ.
It is clear that equi-integrability implies that the sequence {U j} is equicontinu-

ous. So (i) and (ii) actually imply (IC). Moreover, the equi-integrability condition
also implies (UB). Thus one particular consequence of our main result is that weak
convergence implies T 0-convergence. On the other hand, the following example shows
that a sequence can satisfy the conditions of Theorem 4.1 without being weakly con-
vergent, so our necessary and sufficient condition for sequences is strictly weaker than
weak convergence.

Example 7.1. Let m = 1, uj(t) = j
1
2 cos jt for 0 ≤ t ≤ j−

1
2 , and uj(t) = 0 for

j−
1
2 < t ≤ T . Then {uj}∞j=1 satisfies (IC) and (UB), with u∞ ≡ 0. It follows from

Theorem 4.1 that {uj}∞j=1 T 0-converges to u∞.

On the other hand, it is not hard to see that the sequence {uj}∞j=1 is not weakly

convergent in L1[0, T ]. Indeed, the integrals
∫ j−1/2

0
|uj(t)|dt converge to 2

π as j →∞,
and then {uj} is not equi-integrable.

The preceding example also makes it possible to show that our convergence con-
dition is weaker than those of Buttazzo–Conti, Kurzweil–Vorel, and Neustadt; cf. [4],
[9], [19]. Indeed, the Kurzweil–Vorel conditions amount to saying that∫ t

0

uj(s)ds→
∫ t

0

u∞(s)ds and sup
j
|uj | ∈ L1[0, T ] .

(Our example violates the latter condition because if we let v(t) = supj |uj(t)|, then

v(t) ≥ j1/2| cos jt| on the interval [0, j−1/2]. Thus∫ j−
1
2

0

v(t)dt ≥ j1/2

∫ j−1/2

0

| cos jt|dt.

Since the latter integral goes to 2
π as j → ∞, we see that

∫ j−1/2

0
v(t)dt is bounded

away from zero as j → ∞. Therefore v is not integrable.) The Neustadt theorem

requires that
∫ t

0
uj(s)ds → ∫ t

0
u∞(s)ds and supj

∫ τ
t
|uj(s)|ds τ→t+−→ 0 uniformly in t.

Our example violates this if t = 0. The Buttazzo–Conti theorem, when specialized
to control-affine systems (1.1), requires that the vector fields f0, . . . , fm be Lipschitz,
although they assume only that the uj and u∞ satisfy (IC) and (UB).

Appendix A. We give three examples. The first two pertain, respectively, to
the assertions made in Theorem 4.1 that in general (v) 6=⇒(iv) and (ii)6=⇒ (i). The
third one illustrates the difference, for general vector fields, between “continuous
dependence of the trajectories for every fixed initial condition,” and “joint continuous
dependence of the trajectories on the right-hand side and the initial condition.”

As shown in Theorem 4.1, uniform weak convergence is necessary for a net
{uα}α∈A to T 0-converge to u∞ in L1([0, T ],Rm) and is also sufficient if {uα}α∈A
is a sequence. The following example shows that (UWC) is no longer sufficient in
general for a net {uα} to T 0-converge to u∞, and therefore proves that condition (v)
of Theorem 4.1 does not in general imply (iv).
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Example A.1. Let T = 2π. For every integer n ≥ 1, every choice ϕ1, . . . , ϕn of n
real-valued continuous functions on [0, T ], and every ε > 0, set

V (ϕ1, . . . , ϕn, ε) =

{
ψ∈L1([0, T ],R) : sup

0≤t≤T

∣∣∣∫ t

0

ϕi(s)ψ(s)ds
∣∣∣<ε, i = 1, . . . , n

}
.

Let V be the set of all sets V (ϕ1, . . . , ϕn, ε), for all possible integers n ≥ 1, all n-tuples
(ϕ1, . . . , ϕn) of continuous functions on [0, T ], and all positive numbers ε. We define
a directed set (I,�I) by letting

I = {(V,N) : V ∈ V, N is an integer > 0} ,

with the partial ordering �I such that

(V1, N1) �I (V2, N2)⇐⇒ (V2 ⊆ V1 and N2 ≥ N1) .

Let m = 2. We define a net {uα}α∈I in L1([0, T ],R2) as follows. For each index
α = (V,N) ∈ I, we let uα1 (t) = N cos(jαt), u

α
2 (t) = N sin(jαt), where jα is the

smallest integer j > 0 such that the functions N cos(jt), N sin(jt) belong to V . (It
follows from the Riemann-Lebesgue lemma that, for each fixed V and N , the functions
N cos(jt) and N sin(jt) belong to V when j is large enough. Thus jα exists.) Now it is
easy to see that the net {uα}α∈I thus defined satisfies (UWC) with u∞ = (0, 0). (To
see this, let ε > 0, and let ϕ be a continuous function on [0, T ]. Let α0 = (V (ϕ, ε), 1).
Then, if α = (V,N) �I α0, it follows that V ⊂ V0(ϕ, ε). By definition, (uα1 , u

α
2 ) ∈

V ⊂ V0(ϕ, ε), which implies sup0≤t≤T |
∫ t

0
ϕ(s)uαk (s)ds| < ε, k = 1, 2.)

We will now show that the above net does not T 0-converge to the limit u∞=(0, 0)

in L1([0, T ],R2). Let Σ=(R2, f0, f1, f2) with f0 = (0, 0), f1 = (1, 0), f3 = (0, x
1
5 ).

It is clear that this system is in C0(2). Consider, for each input u ∈ L1([0, T ],R2),

the system of differential equations ẋ1 = u1, ẋ2 = x
1/5
1 u2. This system has the

global existence and uniqueness property for every initial condition and every u ∈
L1([0, T ],R2). Fix the initial condition x(0) = (0, 0). We prove that {uα} does
not T 0-converge to u∞ by showing that the trajectories xα of the above differential
equations that correspond to the uα do not converge to x∞ ≡ (0, 0)T . First, we prove
a lemma.

Lemma A.1. Fix a V = (ϕ1, . . . , ϕn, ε) ∈ V. Then there exists an NV > 0 such
that if N > NV and α = (V,N), then jα ≤ N5.

Proof. Let A = maxk=1,...,n{‖ϕk‖}, where ‖ · ‖ denotes the sup norm on [0, T ].

Let NV = 4Aπ
ε (nATε + n)

1
2 . We show that jα ≤ N5 if α = (V,N), N > NV . Suppose

there is an N > NV such that jα > N5. Then by the definition of the jα, for every
1 ≤ j ≤ N5, we have

sup
0≤t≤T,k=1,...,n

max

(∣∣∣∣∫ t

0

cos(js)ϕk(s)ds

∣∣∣∣ , ∣∣∣∣∫ t

0

sin(js)ϕk(s)ds

∣∣∣∣
)
≥ ε

N
.(A.1)

Let K = [ 2ANT
ε ] + 1, where [·] denotes the integer part function (i.e., [r] is the

largest integer ν such that ν ≤ r). Divide the interval [0, T ] into K equal parts. Let
t` = T`

K , ` = 0, . . . ,K, be the partition points, and define ϕk,`(t) = ϕk(t)χ[0,t`], where
χ[0,t`] is the indicator function of [0, t`]. For any two functions ϕ,ψ in L2[0, T ], let

us use 〈ϕ,ψ〉 =
∫ T

0
ϕ(s)ψ(s)ds to denote the inner product of ϕ,ψ. Then { cos jt√

π
:
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j = 1, 2, . . .} ∪ { sin jt√
π

: j = 1, 2, . . .} is an orthonormal set in L2[0, T ]. From Bessel’s

inequality we know that

K∑
`=1

n∑
k=1

N5∑
j=1

{∣∣∣∣〈cos(jt)√
π

, ϕk,`

〉∣∣∣∣2 +

∣∣∣∣〈 sin(jt)√
π

, ϕk,`

〉∣∣∣∣2}

≤
K∑
`=1

n∑
k=1

‖ϕk,`‖2L2[0,T ] ≤
K∑
`=1

n∑
k=1

‖ϕk‖2L2[0,T ] ≤ 2πnKA2 .(A.2)

On the other hand, it follows from (A.1) that for each j ∈ {1, . . . , N5} there exist a
number k(j) ∈ {1, . . . , n} and a t(j) ∈ [0, T ] such that at least one of the numbers∣∣∣ ∫ t(j)

0

cos(js)ϕk(j)(s)ds
∣∣∣ , ∣∣∣ ∫ t(j)

0

sin(js)ϕk(j)(s)ds
∣∣∣

is ≥ ε
N . Then t(j) ∈ [t`−1, t`] for some ` = `(j). It is clear that the integrals of

cos(js)ϕk(j)(s)ds and sin(js)ϕk(j)(s)ds from t(j) to t`(j) are bounded by AT
K . Since

K > 2ANT
ε , we have AT

K < ε
2N . Thus at least one of the numbers∣∣∣ ∫ t`(j)

0

cos(js)ϕk(j)(s)ds
∣∣∣ , ∣∣∣ ∫ t`(j)

0

sin(js)ϕk(j)(s)ds
∣∣∣

is ≥ ε
2N . Therefore∣∣∣∣〈cos(jt)√

π
, ϕk(j),`(j)

〉∣∣∣∣2+

∣∣∣∣〈 sin(jt)√
π

, ϕk(j),`(j)

〉∣∣∣∣2 ≥ ε2

4πN2
.

Thus we have

K∑
`=1

n∑
k=1

N5∑
j=1

{∣∣∣∣〈cos(jt)√
π

, ϕk,`

〉∣∣∣∣2 +

∣∣∣∣〈 sin(jt)√
π

, ϕk,`

〉∣∣∣∣2} ≥ N5 ε2

4πN2
=
ε2N3

4π
.(A.3)

If we compare this with (A.2), we see that

N3 ≤ 8π2nKA2

ε2
.

Since K < 2ANT
ε + 2, and N ≥ 1, we easily get the inequality

N2 ≤ 16π2A2

ε2

(
nAT

ε
+ n

)
,

so that N ≤ NV . This contradiction completes our proof.
Using the lemma, it is easy to see that the xα do not converge to x∞. Indeed, for

any α = (V,N) ∈ I, the solution xα is given by

xα1 (t) =
N

jα
sin(jαt) , xα2 (t) =

N
6
5

j
1
5
α

∫ t

0

(sin jαs)
6
5 ds .(A.4)

Take ε0 = 1. If the net {xα} converged to x∞, then there would exist an α0 =
(V,N0) ∈ I such that ‖xα(t)‖ ≤ 1 for all α �I α0 and all t ∈ [0, T ]. Let α = (V,N)
with N > max{N0, NV }. Then α �I α0 and

xα2 (T ) =
N

6
5

j
1
5
α

∫ T

0

sin
6
5 jαs ds .
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Clearly,
∫ T

0
sin

6
5 jαs ds is bounded away from 0. Since jα ≤ N5, we con-

clude that xα2 (T )→∞ as N →∞. This contradiction proves that {xα} does not
converge.

Our second example shows that a net {uα}α∈A in L1([0, T ],Rm) may T 0-converge
to a u ∈ L1([0, T ],Rm) while failing to satisfy (UB). This will prove the assertion that
in general (ii)6=⇒(i) in Theorem 4.1.

Example A.2. Take m = 1, T = 1. Let F1 be the collection of all pairs (Σ,K),
where Σ is an element of C0(1) and K is a compact subset of ΩΣ × [0, 1]. Let F2 be
the set of all finite subsets of F1. Let F = F2 × N, where N is the set of positive
integers. Define a partial ordering �F on F by letting (F1, n1) �F (F2, n2) if F1 ⊆ F2

and n1 ≤ n2. Then (F ,�F ) is a directed set. We define a net {u(F,n)}(F,n)∈F in

L1([0, 1],R) as follows. For each n, k ∈ N, let ukn(t) = n sin kt. Then from Theorem
4.1 we know that, for each fixed n, the sequence {ukn}∞k=1 T 0-converges to u = 0 in
L1([0, 1],R). Therefore, for each (Σ,K) ∈ F1, the set Trajc(f

Σ(ukn),K) converges, as

k →∞, to Trajc(f
Σ(u),K) in 2ARC(ΩΣ) under the topology TUSC(ARC(ΩΣ)). Let

kΣ,K,n be an integer such that Trajc(f
Σ(ukn),K) ⊆ U 1

n
(fΣ(u),K) if k ≥ kΣ,K,n, where

Uε(f,K) is the ε-neighborhood of Trajc(f,K), i.e.,

Uε(f,K) = {ξ ∈ ARC(Ω) : dARC(ξ, ζ) < ε for some ζ ∈ Trajc(f,K)} .

For any F ∈ F , we let kF,n = max {kΣ,K,n : (Σ,K) ∈ F }, and then define u(F,n)(t) =

u
kF,n
n (t). Clearly {u(F,n)}(F,n)∈F does not satisfy (UB). However, it is easy to show

that {u(F,n)}(F,n)∈F T 0-converges to u in L1([0, 1],R). To see this, let Σ ∈ C0(1)
be a system and K be a compact subset of ΩΣ × [0, 1]. We need to show that
Trajc(f

Σ(u(F,n)),K) converges to Trajc(f
Σ(u),K). For any given ε > 0, let n(ε) be

an integer such that 1
n(ε) < ε. Let F0 = {(Σ,K)}. Then if (F0, n(ε)) �F (F, n), by

definition, n ≥ n(ε) and (Σ,K) ∈ F . Therefore,

Trajc(f
Σ(u(F,n)),K) ⊆ U 1

n
(fΣ(u),K) ⊆ Uε(fΣ(u),K) .

Our third example shows that, for general vector fields, the fact that for every
fixed initial condition x(t̄) = x̄ the trajectory of f j converges to the trajectory of f
does not imply that f j T-converges to f .

Example A.3. Let ϕ : R → R be a smooth function such that ϕ(s) = 0 if
s ≤ 0 or s ≥ 2, and ϕ(s) > 0 if 0 < s < 2. Define f j : R2 × R → R2 by letting
f j(x, y, t) = (0, jϕ(jx)), and let f(x, y, t) ≡ 0. Then f and the f j are time-varying
vector fields on R2. Given any initial condition (x̄, ȳ, t̄), the solution ξj,x̄,ȳ,t̄ : R→ R2

of the initial value problem ξ̇(t) = f j(ξ(t), t), ξ(t̄) = (x̄, ȳ), is given by ξj,x̄,ȳ,t̄(t) =
(x̄, ȳ+j(t−t̄)ϕ(jx̄)). For each x̄, the number ϕ(jx̄) is equal to zero for sufficiently large
j. So for each initial condition (x̄, ȳ, t̄) the curve t → ξj,x̄,ȳ,t̄(t) converges uniformly,
as j →∞, to the constant curve ξ∞,x̄,ȳ,t̄ ≡ (x̄, ȳ), and ξ∞,x̄,ȳ,t̄ is precisely the solution

of the limiting initial value problem ξ̇ = f(ξ, t), ξ(t̄) = (x̄, ȳ). On the other hand,
if we consider a j-dependent initial condition (x̄j , ȳj , t̄j) given by x̄j = 1

j , ȳj = 0,

t̄j = 0, and let tj = 1
j , then ξj,x̄j ,ȳj ,t̄j (t

j) = ( 1
j , ϕ(1)), which does not converge to

ξ∞,0,0,0(0), even though (x̄j , ȳj , t̄j)→ (0, 0, 0) and tj → 0. Thus the curves ξj,x̄j ,ȳj ,t̄j
do not converge uniformly to ξ∞,0,0,0(0) on the compact interval [0, 1]. (Alternatively,
we could have taken t̄j = − 1

j , and then ξj,x̄j ,ȳj ,t̄j (0) = (1
j , ϕ(1)), so ξj,x̄j ,ȳj ,t̄j does not

even converge pointwise to ξ∞,0,0,0.)
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Abstract. We consider dynamic, two-player, zero-sum games where the “minimizing” player
seeks to drive an underlying finite-state dynamic system to a special terminal state along a least
expected cost path. The “maximizer” seeks to interfere with the minimizer’s progress so as to max-
imize the expected total cost. We consider, for the first time, undiscounted finite-state problems,
with compact action spaces, and transition costs that are not strictly positive. We admit that there
are policies for the minimizer which permit the maximizer to prolong the game indefinitely. Under
assumptions which generalize deterministic shortest path problems, we establish (i) the existence
of a real-valued equilibrium cost vector achievable with stationary policies for the opposing players
and (ii) the convergence of value iteration and policy iteration to the unique solution of Bellman’s
equation.

Key words. game theory, stochastic games, optimization, dynamic programming, stochastic
shortest paths

AMS subject classifications. 90D15, 93E05, 49L20

PII. S0363012996299557

1. Introduction. This paper develops basic theory relating to stochastic short-
est path games. These are two-player, zero-sum games where the minimizing player
seeks to drive an underlying finite-state dynamic system to a special terminal state
along a least expected cost path. The maximizer seeks to interfere with the mini-
mizer’s progress so as to maximize the expected total cost. In actual play, the players
implement actions simultaneously at each stage with full knowledge of the state of
the system but without knowledge of each other’s current decision.

Games of this type have been studied for some time. The field was initiated by
Shapley in his classical paper [7]. In Shapley’s games, two players are successively
faced with matrix games (in mixed strategies) where both the immediate cost and the
transition probabilities to new matrix games are influenced by the stagewise decisions
of the players. In this formulation, the state of the system is the matrix game currently
being played. It is assumed that this set of states is finite and that there is a nonzero
minimal probability that, at any stage, the game will transition to a terminal state,
ending the sequence of rewards and payoffs. This formulation is closely related to
infinite-horizon games with discounted additive cost. The analysis of such games is
straightforward, the main results being (i) the existence and characterization of a
unique real-valued equilibrium cost vector achievable in stationary randomized policies
and (ii) the convergence of value iteration and policy iteration to the equilibrium cost.

Since Shapley’s work, game theorists have actively studied extensions to the
discounted-cost model. In [4], Kushner and Chamberlain consider undiscounted, pur-
suit/evasion, stochastic games where there is a terminal state corresponding to the
evader being “caught.” The state space is assumed to be finite (with n+ 1 elements,
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one of which is the terminal state). Making some regularity assumptions on the tran-
sition probabilities and cost functions, they consider pure strategies over compact
action spaces. In addition, they assume either of the following.

1. The n-stage probability transition matrix [P (µ, ν)]n (from nonterminal states
to nonterminal states) is a “uniform contraction” in the stationary policy pairs
(µ, ν) of the two players. (That is, for some ε > 0, [P (µ, ν)]n has row-sums
less than 1− ε for all stationary policy pairs (µ, ν).)

2. The transition costs (to the pursuer) are uniformly bounded below by δ > 0,
and there exists a stationary policy µ̃ for the pursuer that makes [P (µ̃, ν)]n

a uniform contraction under all stationary policies for the evader.

They show that there exists an equilibrium cost vector for the game which can be
found through value iteration. In [10], van der Wal considers a special case of Kushner
and Chamberlain’s games. Under more restrictive assumptions about the pursuer’s
ability to catch the evader, he gives error bounds for the updates in value iteration.

In [3], Kumar and Shiau give a detailed analysis of stochastic games with very
mild assumptions about the state space and control constraint sets. For the case of
nonnegative additive cost (with no discounting), they establish the existence of an
extended real equilibrium cost vector in non-Markov randomized policies (where for
both players the best mixed action can depend on all of the past states and controls,
as well as the current state). They show that the minimizing player can achieve the
equilibrium using a stationary Markov randomized policy and that, in case the state
space is finite, the maximizing player can play ε-optimally using stationary randomized
policies.

Other researchers have studied so-called nonterminating stochastic games (also
sometimes called “undiscounted” stochastic games), where the costs are not dis-
counted but are averaged instead. Such average-cost games have a rich mathematical
structure which has been extensively covered in the literature [13, 5].

In this paper, we consider undiscounted additive cost games without averaging.
We admit that there are policies for the minimizer which allow the maximizer to pro-
long the game indefinitely at infinite cost to the minimizer. We do not assume non-
negativity of cost, as in [4] and [3]. We make alternative assumptions which guarantee
that, at least under optimal policies, the terminal state is reached with probability
one. Our results imply the results of Shapley [7], as well as those of Kushner and
Chamberlain [4]. Because of our assumptions relating to termination, we are able to
derive stronger conclusions than those made by Kumar and Shiau [3] for the case of
a finite state space. Note that because we do not assume nonnegativity of the costs,
the analysis is much more complicated than the corresponding analysis of Kushner
and Chamberlain [4]. Our formal assumptions generalize (to the case of two players)
those for stochastic shortest path problems [2]. Because of this, we refer to our class
of games as “stochastic shortest path games.” Our games are characterized by either
(i) inevitable termination (under all policies) or (ii) an incentive for the minimizer to
drive the system to termination in a finite expected number of stages. We shall see
that the results of [2] are essential in developing our present theory.

In section 2 we give a precise mathematical formulation for stochastic shortest
path games. In section 3, we relate our general formulation to Shapley’s original
games [7]. We develop our main results in section 4. This is where we show that
stochastic shortest path games have an equilibrium solution which can be character-
ized by the unique solution to Bellman’s equation. We also prove the convergence of
value iteration and policy iteration to the equilibrium cost. In section 5, we give an



806 STEPHEN D. PATEK AND DIMITRI P. BERTSEKAS

example of pursuit and evasion, illustrating our main results. Finally, in the appendix
we collect some well-known results about dynamic games which are crucial to our
development.

2. Mathematical formulation. Let S denote a finite state space with elements
labeled i = 1, . . . , n. For each i ∈ S, define U(i) and V (i) to be the sets of actions
available to the minimizer and maximizer at state i, respectively. These are collectively
referred to as control constraint sets. The probability of transitioning from i ∈ S to
j ∈ S under u ∈ U(i) and v ∈ V (i) is denoted pij(u, v). The expected cost (to the
minimizer) of transitioning from i ∈ S under u ∈ U(i) and v ∈ V (i) is denoted ci(u, v).

We denote the sets of one-stage policies for the minimizing and maximizing players
as M and N , respectively, where

M =

{
µ : S 7→

⋃
i∈S

U(i) | µ(i) ∈ U(i) ∀ i ∈ S
}
,

N =

{
ν : S 7→

⋃
i∈S

V (i) | ν(i) ∈ V (i) ∀ i ∈ S
}
.

The sets of policies for the minimizing and maximizing players are denoted by M̄ and
N̄ , where

πM = {µ0, µ1, . . . } ∈ M̄ ⇐⇒ µk ∈M ∀ k,
πN = {ν0, ν1, . . . } ∈ N̄ ⇐⇒ νk ∈ N ∀ k.

Given µ ∈ M and ν ∈ N , let P (µ, ν) denote the transition probability matrix
that results when µ and ν are in effect. That is,

[P (µ, ν)]ij = pij(µ(i), ν(i)).

Let c(µ, ν) denote the vector whose components are ci(µ(i), ν(i)). That is,

[c(µ, ν)]i = ci(µ(i), ν(i)).

Given two allowable opposing policies, πM = {µ0, µ1, . . . } ∈ M̄ and πN =
{ν0, ν1, . . . } ∈ N̄ , we formally define the resulting cost (to the minimizer) to be

x(πM , πN ) = lim inf
t→∞ htπM ,πN ,(2.1)

where

htπM ,πN
4
=

{
c(µ0, ν0) +

t∑
k=1

[P (µ0, ν0) · · ·P (µk−1, νk−1)]c(µk, νk)

}
.(2.2)

Note that htπM ,πN can be interpreted loosely as the expected t-stage cost vector under
the policies πM and πN .

In establishing our main results, the definitions and assumptions in the following
paragraphs will be helpful. We say that a policy πM = {µ0, µ1, . . . } for the minimizer
is stationary if µk = µ for all k. When this is the case and no confusion can arise, we
use µ to denote the corresponding policy πM , and we refer to πM as the stationary
policy µ. Similar definitions hold for stationary policies of the maximizer.
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The state 1 ∈ S has special importance. We shall refer to it as the terminal
state. This state is assumed to be absorbing and cost free, that is, p11(u, v) = 1
and c1(u, v) = 0 for all u ∈ U(1) and v ∈ V (1). Let πM = {µ0, µ1, . . . } ∈ M̄ and
πN = {ν0, ν1, . . . } ∈ N̄ be an arbitrary pair of policies. We say that the corresponding
Markov chain terminates with probability one if the following limit satisfies:

lim
t→∞[P (µ0, ν0)P (µ1, ν1) · · ·P (µt, νt)]i1 = 1 ∀ i ∈ S.(2.3)

(The limit above exists because the sequence (for each i ∈ S) is monotonically nonde-
creasing and bounded above.) We shall refer to a pair of policies (πM , πN ) as terminat-
ing with probability one if the corresponding Markov chain terminates with probability
one; otherwise, we refer to the pair as prolonging.

A stationary policy µ ∈ M for the minimizer is said to be proper if the pair
(µ, πN ) is terminating with probability one for all πN ∈ N̄ . A stationary policy µ is
improper if it is not proper. If µ is improper, then there is a policy for the maximizer
πµ ∈ N̄ under which there is a positive probability that the game will never end from
some initial state. The designation of proper (or improper) applies only to stationary
policies for the minimizer.

It is convenient to define the set X = {x ∈ Rn | x1 = 0}. This is the space (of cost
vectors) over which our main results hold. We denote by 0 the zero vector in X. Let
1X denote the vector (0, 1, 1, . . . 1)′ ∈ X. It is useful to define the following operators
on X.

Tµν(x) = c(µ, ν) + P (µ, ν)x; µ ∈M,ν ∈ N.(2.4)

Tµ(x) = sup
ν∈N

[c(µ, ν) + P (µ, ν)x] ; µ ∈M,(2.5)

T (x) = inf
µ∈M

sup
ν∈N

[c(µ, ν) + P (µ, ν)x] .(2.6)

T̃ν(x) = inf
µ∈M

[c(µ, ν) + P (µ, ν)x] ; ν ∈ N,(2.7)

T̃ (x) = sup
ν∈N

inf
µ∈M

[c(µ, ν) + P (µ, ν)x] .(2.8)

The suprema and infima in the above are taken componentwise. We use the notation
T tµν(x) to denote the t-fold composition of Tµν applied to x ∈ X. Similar defini-

tions hold for T tµ(x), T t(x), T̃ tν(x), and T̃ t(x). In the appendix, we collect (and prove
for completeness) some well-known results about these “T”-operators: monotonicity
(Lemma A.1) and continuity (Lemma A.3).

The following are our standing assumptions.
Assumption SSP. The following are true:
1. There exists at least one proper policy for the minimizer.
2. If a pair of policies (πM , πN ) is prolonging, then the expected cost to the

minimizer is infinite for at least one initial state. That is, there is a state i
for which limt→∞[htπM ,πN ]i =∞.

Assumption R (regularity). The following are true:
1. The control constraint sets are compact. That is, for each i ∈ S, U(i) and
V (i) are compact subsets of metric spaces. (This implies that M and N are
compact.)

2. The functions pij(u, v) are continuous with respect to (u, v) ∈ U(i) × V (i),
and the functions ci(u, v) are
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(a) lower semicontinuous with respect to u ∈ U(i) (with v ∈ V (i) fixed) and
(b) upper semicontinuous with respect to v ∈ V (i) (with u ∈ U(i) fixed).

(The Weierstrass theorem implies that the supremum and infimum in the
definitions of the operators Tµ and T̃ν are always achieved by elements of N
and M , respectively. That is, for every x ∈ X, there exists ν ∈ N such that
Tµ(x) = Tµν(x) ∈ X. Similarly, for every x ∈ X, there exists µ ∈ M such

that T̃ν(x) = Tµν(x) ∈ X.)
3. For all x ∈ X, the infimum and supremum in the definitions of the operators
T and T̃ are achieved by elements of M and N . That is, for every x ∈ X, there
exists µ ∈M and ν ∈ N such that T (x) = Tµ(x) ∈ X and T̃ (x) = T̃ν(x) ∈ X.

4. For each x ∈ X, we have T (x) = T̃ (x).

Note that part 4 of Assumption R is satisfied under conditions for which a minimax
theorem can be used to interchange “inf” and “sup.” In particular, this part, as well
as the entire Assumption R, is satisfied if

1. the sets U(i) and V (i) are nonempty, convex, and compact subsets of Eu-
clidean spaces,

2. the functions pij(u, v) are bilinear of the form u′Qijv, where Qij is a real
matrix of dimension commensurate with U(i) and V (i),

3. the functions ci(u, v) are
(a) convex and lower semicontinuous as functions of u ∈ U(i) with v fixed

in V (i), and
(b) concave and upper semicontinuous as functions of v ∈ V (i) with u fixed

in U(i).

This follows from the Sion–Kakutani theorem (see [8, p. 232] or [6, p. 397]). We will
show in section 3 that dynamic games with “mixed” strategies over finite underlying
action spaces satisfy this assumption.

To verify that a stationary policy µ ∈ M is proper, we need only check whether
(µ, ν) is terminating with probability one for all stationary policies ν ∈ N for the
maximizer. Furthermore, if µ ∈M is improper, then we can always find a stationary
policy ν ∈ N for the maximizer which is prolonging when paired with µ. This is shown
in the following lemma.

Lemma 2.1. If µ ∈ M is such that (µ, ν) terminates with probability one for all
ν ∈ N , then µ is proper.

Proof. The proof uses the analysis of [2]. Let µ ∈ M be a fixed policy for the
minimizer, and suppose that the pair (µ, ν) is terminating with probability one for
all stationary policies of the maximizer ν ∈ N . With µ fixed, the maximizer is faced
with a stochastic shortest path problem of the type considered in [2]. (The maximizer
has no improper policies (against µ).) Now modify the problem such that the costs of
transitioning from nonterminal states are all set to one but all of the transition prob-
abilities are left unchanged. The assumptions of [2] remain satisfied, so the optimal
expected cost for the maximizer in the new problem is bounded, even over nonsta-
tionary policies. Thus, the maximum expected number of stages to termination under
µ is finite. This is true for both the modified problem and the original version of the
game. This implies that µ is proper.

One of the objectives of this paper is to show that under Assumptions SSP and
R there exist policies π∗M ∈ M̄ and π∗N ∈ N̄ such that

x(πM , π
∗
N ) ≥ x(π∗M , π

∗
N ) ∀ πM ∈ M̄,

x(π∗M , πN ) ≤ x(π∗M , π
∗
N ) ∀ πN ∈ N̄ .
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Such a cost vector x∗
4
= x(π∗M , π

∗
N ) is called the equilibrium cost vector (or value)

of the stochastic shortest path game. The policies π∗M and π∗N form an equilibrium
solution. Since this is a zero-sum game, we know that the equilibrium cost (if it
exists) is unique. Another objective of this paper is to show that the equilibrium cost
vector is characterized as the unique solution to Bellman’s equation, with stationary
equilibrium policies for the opposing players. After these results are established, we
proceed to show that value iteration and policy iteration converge to the unique
solution of Bellman’s equation.

3. Connection to Shapley’s stochastic games. The mathematical formula-
tion of the preceding section includes as a special case the stochastic games of Shapley.
To see this, assume that the number of actions available to either player at any state
is finite. As before, the players implement underlying actions simultaneously at each
stage with full knowledge of the state of the system but without knowledge of each
other’s current decision. However, the players are now allowed to randomize their
decisions in formulating a policy so as to keep their opponents from adapting to a de-
terministic policy. That is, in considering what to do at each state, the players choose
probability distributions over underlying control sets rather than specific underlying
control actions. In other words, the players use randomized or “mixed” policies.

For each i ∈ S, define A(i) and B(i) to be the finite sets of underlying actions to
the minimizer and maximizer, respectively. These are the physical controls the players
may ultimately implement at state i. Let |A(i)| and |B(i)| denote the numbers of
elements in each set of actions. We define the players’ “control constraint sets” for
the game as

U(i) =

u ∈ R|A(i)|
∣∣∣∣∣ ∑

j∈A(i)

uj = 1; uj ≥ 0

 ,(3.1)

V (i) =

v ∈ R|B(i)|
∣∣∣∣∣ ∑

j∈B(i)

vj = 1; vj ≥ 0

 .(3.2)

Thus, U(i) is the set of probability distributions over control actions A(i) available to
the minimizer from state i ∈ S. Similarly, V (i) is the set of probability distributions
over underlying control actions B(i) available to the maximizer from state i ∈ S. Here
the functions pij(u, v) and ci(u, v) are, respectively, of the form

pij(u, v) =
∑
k∈A(i)

∑
l∈B(i)

p
ij

(k, l)ukvl,(3.3)

ci(u, v) =
∑
j∈S

∑
k∈A(i)

∑
l∈B(i)

g
ij

(k, l)p
ij

(k, l)ukvl,(3.4)

where the functions p
ij

and g
ij

denote the transition probabilities and costs of the

underlying two-player Markov decision process. Since the sets U(i) and V (i) are poly-
hedral and the functions ci(u, v) and pij(u, v) are bilinear for all i and j (and contin-
uous) as functions of (u, v) ∈ U(i) × V (i), it is clear that Assumption R is satisfied.
(Parts 3 and 4 are satisfied thanks to the minimax theorem of von Neumann [11].)

4. Main results. We now develop our main results; namely, the existence and
characterization of a unique equilibrium cost vector, the convergence of value itera-
tion, and the convergence of policy iteration. In sections 4.1 and 4.2, we characterize
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optimal solutions for the maximizer and minimizer, respectively, for the case where
the opposing player fixes a policy. After we lay this groundwork, we consider the game
proper in section 4.3.

4.1. The case where the minimizer’s policy is fixed. Consider the policy
πM = {µ0, µ1, . . . } ∈ M̄ . The cost of πM is defined by

x(πM ) = lim inf
t→∞ max

πN∈N̄
htπM ,πN .(4.1)

The appendix shows that, with our assumptions on c and P , the maximum in (4.1)
is attained for every t (see Lemma A.5). The cost of a stationary policy µ for the
minimizer is denoted x(µ) and is computed according to equation (4.1) where πM =
{µ, µ, . . . }.

Given a vector w ∈ Rn whose elements are positive, the corresponding weighted
sup-norm, denoted ‖ · ‖w∞, is defined by

‖x‖w∞ = max
i=1,... ,n

xi/wi ∀ x ∈ Rn.

The next lemma, similar to results derived in [1, 9], follows from the theory of one-
player stochastic shortest paths.

Lemma 4.1. Assume that all stationary policies for the minimizer are proper. The
operator T is a contraction mapping on the set X = {x ∈ Rn | x1 = 0} with respect to
a weighted sup-norm. Moreover, if µ ∈M is proper, then Tµ is a contraction mapping
with respect to a weighted sup-norm.

Proof. We will first show the result about T for the case that all stationary policies
are proper. Our strategy is to identify a vector of weights w and to show that this set
of weights is one for which T is a contraction with respect to ‖ · ‖w∞.

Let us define a new one-player stochastic shortest path problem of the type con-
sidered in [2]. This problem is defined such that the transition probabilities remain
unchanged and the transition costs are all set equal to −1 for all states other than the
terminal state. The important difference is that the maximizer and minimizer “work
together” in the sense that the decision space (for the single player of the new prob-
lem) is over M̄ × N̄ . This is a stochastic shortest path problem where all stationary
policies are proper. Using the results of [2], there is an optimal cost vector x̃ ∈ X
which can be achieved using a stationary policy (µ̃, ν̃) ∈ M̄ × N̄ . Note that, since the
transition costs from all nonterminal states are set to −1 in the new stochastic short-
est path problem, we have x̃i ≤ −1 for all i 6= 1. Moreover, from Bellman’s equation
we have

x̃ = −1X + P (µ̃, ν̃)x̃,

where 1X = (0, 1, 1, . . . , 1)′ ∈ X. Also, for all µ ∈M and ν ∈ N ,

x̃ ≤ −1X + P (µ, ν)x̃.

Thus, for all µ ∈M , ν ∈ N , and i 6= 1,

n∑
j=2

pij(µ(i), ν(i)) · (−x̃j) ≤ −x̃i − 1

≤ −x̃iγ,(4.2)
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where γ = maxi 6=1(x̃i + 1)/x̃i. Since the x̃i ≤ −1 for all i 6= 1, we have that γ ∈ [0, 1).
Now define w = −x̃+ (1, 0, 0, . . . , 0)′. Note that w is a vector in Rn whose elements
are all strictly positive.

Let us now resume consideration of the original stochastic shortest path game.
Let x and x̄ be any two elements of X such that ‖x − x̄‖w∞ = c. Let µ ∈ M be such
that Tµ(x) = T (x), and let ν ∈ N be such that Tµ(x̄) = Tµν(x̄). Then,

T (x̄)− T (x) = T (x̄)− Tµ(x)

≤ Tµ(x̄)− Tµ(x)

= Tµν(x̄)− Tµ(x)

≤ Tµν(x̄)− Tµν(x).

Thus,

[T (x̄)]i − [T (x)]i ≤
n∑
j=2

[P (µ, ν)]ij(x̄j − xj).

Using this, we see that for all i 6= 1

[T (x̄)− T (x)]i
cwi

≤ 1

cwi

n∑
j=2

pij(µ(i), ν(i))(x̄j − xj)

≤ 1

wi

n∑
j=2

pij(µ(i), ν(i))wj

=
1

−x̃i
n∑
j=2

pij(µ(i), ν(i))(−x̃j)

≤ 1

−x̃i (−x̃i)γ = γ,

where the last inequality follows from (4.2). Thus, we get

[T (x̄)]i − [T (x)]i
wi

≤ cγ ∀ i 6= 1.

Since [T (x̄)]1 − [T (x)]1 = 0,

[T (x̄)]i − [T (x)]i
wi

≤ cγ ∀ i.

Using similar arguments, we may show that

[T (x)]i − [T (x̄)]i
wi

≤ cγ ∀ i.

Combining the preceding inequalities, we see that ‖T (x) − T (x̄)‖w∞ ≤ cγ. Since 0 ≤
γ < 1, we have that T is a contraction over X with respect to ‖ · ‖w∞.

Now suppose µ ∈M is proper. By viewing Tµ as the “T”-operator in a new game
where U(i) ≡ {µ(i)}, we have the desired result.
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Lemma 4.2. Given a proper policy µ, the following are true.
1. The cost x(µ) of µ is the unique fixed point of Tµ in X = {x ∈ Rn | x1 = 0}.
2. x(µ) = supπN∈N̄ x(µ, πN ).
3. We have T tµ(x)→ x(µ) for all x ∈ X with linear convergence.

Proof. An induction argument (cf. Lemma A.5) easily shows that

T t+1
µ (0) = max

{ν0,... ,νt}

{
c(µ, ν0) +

t∑
k=1

[P (µ, ν0)P (µ, ν1) · · ·P (µ, νk−1)]c(µ, νk)

}
,

where 0 is the zero vector in X. Thus, using the preceding lemma and the definition
of x(µ), we have

x(µ) = lim
t→∞T

t+1
µ (0) = x̃µ,

where x̃µ is the unique fixed point of the contraction mapping Tµ within X, proving
statement 1.

Consider the following infinite-horizon stochastic shortest path problem for the
maximizer:

sup
πN∈N̄

lim inf
t→∞

{
c(µ, ν0) +

t∑
k=1

[P (µ, ν0) · · ·P (µ, νk−1)]c(µ, νk)

}
.

This problem is covered by the theory developed in [2] since the fact that µ is proper
implies that termination is inevitable under all policies in the maximizer’s problem.
The optimal cost of this problem is supπN∈N̄ x(µ, πN ), and according to the theory
of [2], it is equal to the limit of the successive approximation method applied to this
problem, which is limt→∞ T t+1

µ (0) and is also the unique fixed point of Tµ within X.
This proves statement 2.

Finally, the linear convergence of T t+1
µ (0) follows from the contraction property

of Tµ.
Lemma 4.3. If x ≥ Tµ(x) for some x ∈ X, then µ is proper.
Proof. To reach a contradiction, suppose µ is improper. According to Assumption

SSP and Lemma 2.1, there exists a stationary maximizer’s policy ν̄ ∈ N such that
(µ, ν̄) is prolonging and results in unbounded expected cost from some initial state
when played against µ.

Let x be an element in X such that x ≥ Tµ(x). Then, applying Tµ to x, we have
that

x ≥ Tµ(x) ≥ c(µ, ν̄) + P (µ, ν̄)x,

where the second inequality follows from the definition of Tµ. From the monotonicity
of Tµ, we get

x ≥ Tµ(x) ≥ T 2
µ(x) ≥ Tµ(c(µ, ν̄) + P (µ, ν̄)x)

≥ P (µ, ν̄)P (µ, ν̄)x+ [c(µ, ν̄) + P (µ, ν̄)c(µ, ν̄)],

where the last inequality follows again from the definition of Tµ. Proceeding induc-
tively and using the same steps, we have that for all t

x ≥ T tµ(x) ≥ P (µ, ν̄)t+1x+
t∑

k=0

P (µ, ν̄)kc(µ, ν̄).
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On the other hand, because the policy ν̄ results in infinite expected cost (from

some initial state) when played against µ, some subsequence of
∑t
k=0 [P (µ, ν̄)]

k
c(µ, ν̄)

must have a coordinate that tends to infinity. (The term involving x remains bounded
because it is just x multiplied by the product of stochastic matrices.) This contradicts
the above inequality. Thus, µ must be proper.

4.2. The case where the maximizer’s policy is fixed. By Assumption SSP
there exists a proper policy for the minimizer. Thus, it is impossible that a single
policy for the maximizer prolongs the game for all policies of the minimizer. Let us
define x̃(πN ) to be the cost of the policy πN ∈ N̄ , as follows:

x̃(πN ) = lim inf
t→∞ min

πM∈M̄
htπM ,πN ,(4.3)

where πN = {ν0, ν1, . . . }. The cost of a stationary policy ν for the minimizer is
denoted x̃(ν) and is computed according to equation (4.3), where πN = {ν, ν, . . . }.

Lemma 4.4. For any ν ∈ N , the following are true.
1. The cost x̃(ν) of ν is the unique fixed point of T̃ν in X = {x ∈ Rn | x1 = 0}.
2. x̃(ν) = infπM∈M̄ x(πM , ν).

3. We have T̃ tν(x) → x̃(ν) for all x ∈ X. If for all µ ∈ M the pair (µ, ν)
terminates with probability one, then the convergence is linear.

Proof. This follows directly from the theory of (one-player) stochastic shortest
path problems.

4.3. Main results for the game. We now establish the main results of the
paper: the existence and characterization of a unique equilibrium solution, the con-
vergence of value iteration, and the convergence of policy iteration.

Proposition 4.5. The operator T has a unique fixed point x∗ on X.
Proof. We begin by showing that T has at most one fixed point in X. Suppose

x and x′ are both fixed points of T in X. We can select µ ∈ M and µ′ ∈ M such
that x = T (x) = Tµ(x) and x′ = T (x′) = Tµ′(x

′). By Lemma 4.3, we have that µ
and µ′ are proper. Lemma 4.2 implies that x = x(µ) and x′ = x(µ′). Since µ′ isn’t
necessarily optimal with respect to x in applying the T operator, we have from the
monotonicity of T that x = T t(x) ≤ T tµ′(x) for all t > 0. Thus, by Lemma 4.2, we

have that x ≤ limt→∞ T tµ′(x) = x(µ′) = x′. Similarly, x′ ≤ x, which implies that
x = x′ and that T has at most one fixed point in X.

To establish the existence of a fixed point, fix a proper policy µ ∈ M for the
minimizer. (One exists thanks to Assumption SSP.) By Lemma 4.2, we have that
x(µ) = Tµ(x(µ)). Thus, x(µ) ≥ T (x(µ)). Similarly, by fixing a stationary policy

ν ∈ N for the maximizer, we obtain from Lemma 4.4 that x̃(ν) = T̃ν(x̃(ν)). Thus,
x̃(ν) ≤ T̃ (x̃(ν)) = T (x̃(ν)). We now claim that x̃(ν) ≤ x(µ). To see this, note that,
for every πM ∈ M̄ , πN ∈ N̄ , and t > 0,

htπM ,πN ≤ max
π̃N∈N̄

htπM ,π̃N

and

htπM ,πN ≥ min
π̃M∈M̄

htπ̃M ,πN ,

where we have used the notation defined in (2.2). Thus, for any πN ∈ N̄ and for any
πM ∈ M̄ ,

min
π̃M∈M̄

htπ̃M ,πN ≤ max
π̃N∈N̄

htπM ,π̃N .
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By taking the limit inferior of both sides with respect to t, we see that x̃(πN ) ≤ x(πM )
for all πN ∈ N̄ and πM ∈ M̄ . In particular, x̃(ν) ≤ x(µ).

Using the monotonicity of T we have that

x̃(ν) ≤ T (x̃(ν)) ≤ T (x(µ)) ≤ x(µ).

Again from the monotonicity of T , we obtain for all t > 1 that

x̃(ν) ≤ T t−1(x̃(ν)) ≤ T t(x̃(ν)) ≤ x(µ).

Thus, the sequence {T t(x̃(ν))} converges to a vector x∞ ∈ X. From the continuity of
T , we have that x∞ = T (x∞). Thus, T has a fixed point in X.

Proposition 4.6. The unique fixed point x∗ = T (x∗) is the equilibrium cost of
the stochastic shortest path game. There exist stationary policies µ∗ ∈M and ν∗ ∈ N
which achieve the equilibrium. Moreover, if x ∈ X, µ ∈ M , and ν ∈ N are such that
x = T (x) = Tµ(x) = T̃ν(x), then

1. x = x(µ, ν),
2. x(πM , ν) ≥ x(µ, ν) ∀ πM ∈ M̄,
3. x(µ, πN ) ≤ x(µ, ν) ∀ πN ∈ N̄ .

Proof. That there exists a unique fixed point x∗ = T (x∗) follows from the pre-
ceding proposition. Let µ∗ ∈ M be such that x∗ = T (x∗) = Tµ∗(x

∗), and let ν∗ ∈ N
be such that x∗ = T (x∗) = T̃ (x∗) = T̃ν∗(x

∗). (Such policies exist thanks to As-
sumption R.) By Lemma 4.3, we have that µ∗ is proper. Thus, by Lemma 4.2, we
have that x∗ = x(µ∗) = supπN∈N̄ x(µ∗, πN ). Similarly, by Lemma 4.4, we have that
x∗ = x̃(ν∗) = infπM∈M̄ x(πM , ν

∗). Combining these results we obtain

inf
πM∈M̄

sup
πN∈N̄

x(πM , πN ) ≤ x∗ ≤ sup
πN∈N̄

inf
πM∈M̄

x(πM , πN ).

Since in general we have

inf
πM∈M̄

sup
πN∈N̄

x(πM , πN ) ≥ sup
πN∈N̄

inf
πM∈M̄

x(πM , πN )

(a statement of the minimax inequality), we obtain the following desired result:

inf
πM∈M̄

sup
πN∈N̄

x(πM , πN ) = x∗ = sup
πN∈N̄

inf
πM∈M̄

x(πM , πN ).

Lemma 4.1 implies that, when all stationary policies for the minimizer are proper,
the iteration xt+1 = T (xt) converges linearly to the equilibrium cost x∗ for all 0 ∈ X.
This follows from the contraction mapping principle. In the following proposition, we
extend this result to the case where not all stationary policies for the minimizer are
proper.

Proposition 4.7. For every x ∈ X, there holds

lim
t→∞T

t(x) = x∗,(4.4)

where x∗ is the unique equilibrium cost vector.

Proof. The uniqueness and existence of a fixed point for T was established in
Proposition 4.5. Let x∗ be the unique fixed point, and let µ∗ ∈ M (proper) be such
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that T (x∗) = Tµ∗(x
∗). Our objective is to show that T t(x)→ x∗ for all x ∈ X. Let ∆

be the vector with coordinates

∆i =

{
0 if i = 1,
δ if i 6= 1,

(4.5)

where δ is some scalar. Let x∆ be the unique vector in X satisfying Tµ∗(x
∆) =

x∆ −∆. (Such a vector exists because µ∗ is proper, making the operator Tµ∗(·) + ∆
a contraction.) Note that

x∆ = Tµ∗(x
∆) + ∆

= max
ν∈N

[c(µ∗, ν) + P (µ∗, ν)x∆] + ∆

= max
ν∈N

[c(µ∗, ν) + ∆ + P (µ∗, ν)x∆].

Thus, x∆ is the cost of the fixed policy µ∗ with the immediate transition cost c(µ∗, ·)
replaced with c(µ∗, ·) + ∆. We have that

x∆ = Tµ∗(x
∆) + ∆ ≥ Tµ∗(x∆).

Thus, from the monotonicity of Tµ∗ we have that for all t > 0

T tµ∗(x
∆) ≤ x∆.

By taking the limit as t→∞, we see that x(µ∗) ≤ x∆.
Now using the monotonicity of T and the fact that x∗ = x(µ∗), we get

x∗ = T (x∗) ≤ T (x∆) ≤ Tµ∗(x∆) = x∆ −∆ ≤ x∆.

Proceeding inductively, we get

x∗ ≤ T t(x∆) ≤ T t−1(x∆) ≤ x∆.

Hence, {T t(x∆)} is a monotonically decreasing sequence bounded below which con-
verges to some x̃ ∈ X. By continuity of the operator T , we must have that x̃ = T (x̃).
By the uniqueness of the fixed point of T , we have that x̃ = x∗.

We now examine the convergence of the operator T t applied to x∗−∆. Note that

x∗ −∆ = T (x∗)−∆ ≤ T (x∗ −∆) ≤ T (x∗) = x∗,

where the first inequality follows from the fact that P (µ, ν)∆ ≤ ∆ for all µ ∈ M
and ν ∈ N . Once again monotonicity of T prevails, implying that T t(x∗ − ∆) is
monotonically increasing and bounded above. From the continuity of T we have that
limt→∞ T t(x∗ −∆) = x∗.

We saw earlier that x∆ = Tµ∗(x
∆) + ∆ and that x∆ ≥ x∗. Then, from the

monotonicity of Tµ∗ ,

x∆ ≥ Tµ∗(x∗) + ∆ = x∗ + ∆.

Thus, for any x ∈ X, we can find δ > 0 such that x∗ − ∆ ≤ x ≤ x∆. By the
monotonicity of T , we then have

T t(x∗ −∆) ≤ T t(x) ≤ T t(x∆) ∀ t ≥ 1.
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Taking limits, we see that limt→∞ T t(x) = x∗.
Proposition 4.8. Given a proper stationary policy µ0 ∈M , we have that

x(µk)→ x∗,

where x∗ is the unique equilibrium cost vector and {µk} is a sequence of policies
(generated by policy iteration) such that T (x(µk)) = Tµk+1(x(µk)) for all k.

Proof. Choose µ1 ∈ M such that Tµ1(x(µ0)) = T (x(µ0)). (Assumption SSP im-
plies that such an initial proper policy µ0 exists.) We have Tµ1(x(µ0)) = T (x(µ0)) ≤
Tµ0(x(µ0)) = x(µ0). By Lemma 4.3, µ1 is proper. By the monotonicity of Tµ1 and
Lemma 4.2, we have that for all t

x(µ0) ≥ T (x(µ0)) ≥ T t−1
µ1 (x(µ0)) ≥ T tµ1(x(µ0)).

Thus,

x(µ0) ≥ T (x(µ0)) ≥ lim
t→∞T

t
µ1(x(µ0)) = x(µ1).

Applying this argument iteratively, we construct a sequence {µk} of proper policies
such that

x(µk) ≥ T (x(µk)) ≥ x(µk+1) ≥ x∗ ∀ k = 0, 1, . . . .(4.6)

Since {x(µk)} is monotonically decreasing and bounded below by x∗, we have that
the entire sequence converges to some vector x∞. From (4.6) and the continuity of
T , we have that x∞ = T (x∞). Since x∗ is the unique fixed point of T on X, we have
that x(µk)→ x∗.

5. An example of pursuit and evasion. Consider the following two-player
game, played around a table with four corners. One player, the pursuer (who is actually
the minimizer), is attempting to “catch” in minimum time the other player, the evader
(who is the maximizer). The game evolves in stages where, in each stage, both players
implement actions simultaneously. When the players are across from one another,
they each decide (independently) whether to stay where they are, move one corner
clockwise, or move one corner counter-clockwise. When the two players are adjacent to
one another, they each decide (independently) whether to stay where they are, move
toward the other’s current location, or move away from the other’s current location.
The pursuer catches the evader only by arranging to land on the same corner of the
table as the evader. (The possibility exists that, when they are adjacent, they can both
move toward each other’s current location. This does not result in the evader being
caught “in midair.”) The evader is slower than the pursuer in the sense that when
the evader decides to change location, he succeeds in doing so only with probability
p ∈ (0, 1). (With probability 1− p, the evader will wind up not moving at all.) Thus,
the pursuer can ultimately catch the evader, provided he implements an appropriate
policy (such as “always move toward the present location of the evader”). On the
other hand, there exist policies for the pursuer (such as “always stay put”) which
allow the maximizer to prolong the game indefinitely. This results in infinite cost (i.e.,
infinite capture time) to the pursuer.

This game fits into our framework for stochastic shortest path games. As described
above there are three states: evader caught (state 1), players adjacent to one another
(state 2), and players across from one another (state 3). Thus, S = {1, 2, 3}. Once
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the evader is caught the game is over, so state 1 serves as the terminal state, which is
zero cost and absorbing.

In state two, when the players are adjacent, the players may move toward the
other’s location (action 1), stay where they are (action 2), or move away from the
other’s location (action 3). Thus, A(2) = B(2) = {1, 2, 3}. From the description of
the problem given above, it is not hard to see that

p21(u, v) = u1[(v1 + v3)(1− p) + v2] + u2v1p,

p22(u, v) = (u1 + u3)(v1 + v3)p+ u2[(v1 + v3)(1− p) + v2],

p23(u, v) = u2v3p+ u3[(v1 + v3)(1− p) + v2].

The expected transition cost functions c2(u, v) take on the value of one for all u ∈ U(2)
and v ∈ V (2).

In state three (when the players are on opposite corners of the table), the players
may move clockwise toward the other’s current location (action 1), stay where they
are (action 2), or move counter-clockwise toward the other’s location (action 3). Thus,
A(3) = B(3) = {1, 2, 3}. It is not hard to see that

p31(u, v) = u1v3p+ u3v1p,

p32(u, v) = (u1 + u3)[(v1 + v3)(1− p) + v2] + u2(v1 + v3)p,

p33(u, v) = u1v1p+ u2[(v1 + v3)(1− p) + v2] + u3v3p.

The expected transition cost functions c3(u, v) take on the value of one for all u ∈ U(3)
and v ∈ V (3).

We will show that the equilibrium value of this stochastic shortest path game is
given by

x∗ =

(
0,

1

1− p ,
2− p
1− p

)′
and that equilibrium randomized strategies for the two players are given by µ∗ ∈ M
and ν∗ ∈ N such that

µ∗(2) = (1, 0, 0)
′
,

ν∗(2) = (v1, 0, v3)
′
,

µ∗(3) = (u1, 0, u3)
′
,

ν∗(3) = (0, 1, 0)
′
,

where v1, v3, u1, and u3 are nonnegative and v1 + v3 = 1 and u1 + u3 = 1. Thus, any
probability vector v ∈ V (2) such that v2 = 0 forms an equilibrium strategy for the
evader. In other words, as long as the evader chooses not to remain at his current
location (when the two players are adjacent), any mixed decision (at state 2) for the
evader is optimal. The pursuer does not have the same flexibility; his optimal mixed
decision is deterministic: always move toward the evader. On the other hand, any
probability vector u ∈ U(3) such that u2 = 0 forms an equilibrium strategy for the
pursuer. In other words, as long as the pursuer decides to not stay at his current
location (when the two players are across from one another), any mixed decision
for the pursuer (at state 3) is optimal. This time, it is the evader’s strategy which
is inflexible. His optimal action is to stay at his current location. Thus, when both
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players play optimally, the game will always transition from state i = 3 to i = 2 in
one stage. Happily, the equilibrium cost reflects this: x∗3 = 2−p

1−p = 1 + x∗2.
To verify that these are indeed equilibrium policies, we will show that x∗ =

T (x∗) = Tµ∗(x
∗) = T̃ν∗(x

∗). (Notice that the policy µ∗ corresponds to one where the
pursuer always decides to move in the direction of the current location of the evader.
This policy is clearly proper. The desired result follows from Proposition 4.6.)

Let us first consider the case where the two players are adjacent (i.e., state 2).
Let a general cost-to-go vector be given as x = (0, x2, x3)′ ∈ X. (Shortly, we shall
consider the case where x = x∗, as suggested above.) To evaluate the second element
of T (x), we must compute

min
u∈U(2)

max
v∈V (2)

u′G2(x)v,

where the matrix G2(x) is computed as

G2(x) =

 1 + px2 1 1 + px2

1 + (1− p)x2 1 + x2 1 + (1− p)x2 + px3

1 + px2 + (1− p)x3 1 + x3 1 + px2 + (1− p)x3

 .
In other words, the second element of T (x) is evaluated as the value of the matrix
game (in mixed strategies) defined by G2(x). It is well known that the equilibrium
cost and equilibrium strategies for a matrix game are characterized as the optimal
value and solutions to a particular linear program and its dual [12]. In particular,

1

[T (x)]2
=

min e′v̆
subject to G2(x)v̆ ≥ e, v̆ ≥ 0,

v∗

[T (x)]2
∈ arg min e′v̆

subject to G2(x)v̆ ≥ e, v̆ ≥ 0,

where e is the vector of all ones in R3 and v∗ is an equilibrium strategy for the
maximizer in the matrix game. We shall refer to the linear program above as the
“primal” problem. The dual of the primal problem characterizes equilibrium strategies
u∗ for the minimizer of the matrix game, as follows:

u∗

[T (x)]2
∈ arg max e′ŭ

subject to G2(x)′ŭ ≤ e, ŭ ≥ 0.

Now consider G2(x∗) and define

ŭ∗ = µ∗(2)/x∗2 = (1− p) (1, 0, 0)
′
,

v̆∗ = ν∗(2)/x∗2 = (1− p) (v1, 0, v3)
′
.

It is straightforward to verify that v̆∗ is feasible for the primal linear program and
that ŭ∗ is feasible for the dual problem. Moreover, the primal cost corresponding to v̆∗

is exactly 1− p, just as the dual value of ŭ∗ is also exactly 1− p. Thus, we have found
a primal/dual feasible pair for which the primal cost equals the dual value. Then,
according to the duality theorem of linear programming, v̆∗ and ŭ∗ are primal/dual
optimal and the optimal values of the primal and dual problems equal 1 − p, which
is exactly 1

x∗2
. This verifies that x∗2 = [T (x∗)]2 and that µ∗(2) and ν∗(2) form an

equilibrium pair of mixed decisions at state 2 ∈ S.
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Let us now consider the case where the two players are across from one another
(i.e., state 3). To evaluate the third element of T (x) for general x ∈ X, we must
compute

min
u∈U(3)

max
v∈V (3)

u′G3(x)v,

where G3(x) is a matrix computed as

G3(x) =

 1 + (1− p)x2 + px3 1 + x2 1 + (1− p)x2

1 + px2 + (1− p)x3 1 + x3 1 + px2 + (1− p)x3

1 + (1− p)x2 1 + x2 1 + (1− p)x2 + px3

 .
Thus, the third element of T (x) is evaluated as the value of the matrix game defined
by G3(x). As before, the solution to this matrix game can be computed by solving a
primal/dual pair of linear programs, as follows:

min e′v̆
subject to G3(x)v̆ ≥ e, v̆ ≥ 0,

max e′ŭ
subject to G3(x)′ŭ ≤ e, ŭ ≥ 0.

Now consider the primal and dual problems given by G3(x∗). Define

ŭ∗ = µ∗(3)/x∗3 =
1− p
2− p (u1, 0, u3)

′
,

v̆∗ = ν∗(3)/x∗3 =
1− p
2− p (0, 1, 0)

′
.

Again, it is straightforward to verify that v̆ and ŭ form a feasible primal/dual pair
where the primal cost of v̆ equals the dual value of ŭ. Thus, by the duality theorem,
v̆ and ŭ are primal/dual optimal. This time the optimal cost works out to be 1−p

2−p ,

which is exactly 1
x∗3

. This verifies that x∗3 = [T (x∗)]3 and that µ∗(3) and ν∗(3) form

an equilibrium pair of mixed decisions at state 3 ∈ S.

Appendix. Proofs of lemmas. We collect here some useful but well-known
results. We give proofs for completeness. We require Assumption R throughout.

The following lemmas summarize some important properties of the operators Tµν ,

Tµ, T , T̃ν , and T̃ .
Lemma A.1 (monotonicity). Suppose x ∈ Rn and x′ ∈ Rn (or x ∈ X and x′ ∈ X)

are such that x ≤ x′ is componentwise. Then

Tµν(x) ≤ Tµν(x′), µ ∈M,ν ∈ N,(A.1)

Tµ(x) ≤ Tµ(x′), µ ∈M,(A.2)

T (x) ≤ T (x′),(A.3)

T̃ν(x) ≤ T̃ν(x′), ν ∈ N,(A.4)

T̃ (x) ≤ T̃ (x′).(A.5)

Proof. This proof is straightforward using the definitions of various “T”-
operators.
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Lemma A.2 (cost shifting). For all x ∈ Rn, scalars r ∈ R, integers t > 0, and
functions µk ∈M and νk ∈ N for k = 1, . . . , t we have

(Tµ1ν1Tµ2ν2 · · ·Tµtνt)(x+ r · 1) = (Tµ1ν1Tµ2ν2 · · ·Tµtνt)(x) + r · 1,(A.6)

(Tµ1Tµ2 · · ·Tµt)(x+ r · 1) = (Tµ1Tµ2 · · ·Tµt)(x) + r · 1,(A.7)

(TT · · ·T )(x+ r · 1) = (TT · · ·T )(x) + r · 1,(A.8)

where 1 = (1, . . . , 1)′ ∈ Rn. The same relationships hold for Tµ, Tµν , T̃nu, and T̃ .
Proof. This follows by induction and by the definition of Tµν , Tµ, and T .

Lemma A.3 (continuity). The mappings T , Tµ, Tµν , T̃nu, and T̃ are continuous
over Rn.

Proof. Let x and x′ be any two elements of Rn, and let r = ‖x − x′‖∞, where
‖ · ‖∞ denotes the usual sup-norm (l∞-norm) on X. Then we have

x− r · 1 ≤ x′ ≤ x+ r · 1,
where 1 = (1, . . . , 1)′ ∈ X. Lemmas A.1 and A.2 imply that

T (x)− r · 1 ≤ T (x′) ≤ T (x) + r · 1,
Tµ(x)− r · 1 ≤ Tµ(x′) ≤ Tµ(x) + r · 1,
Tµν(x)− r · 1 ≤ Tµν(x′) ≤ Tµ(x) + r · 1.

Therefore,

‖T (x)− T (x′)‖∞ ≤ ‖x− x′‖∞,
‖Tµ(x)− Tµ(x′)‖∞ ≤ ‖x− x′‖∞,
‖Tµν(x)− Tµν(x′)‖∞ ≤ ‖x− x′‖∞.

Thus, T is continuous on Rn. Similar arguments hold for Tµ, Tµν , T̃nu, and T̃ .
The remainder of this appendix examines finite-horizon dynamic games where

at each stage the maximizer has access to the minimizer’s decision. We show that
minimax and maximin versions of these games can be solved in a straightforward
manner through dynamic programming. In doing so, we prove several results relevant
to the main body of this paper.

Lemma A.4. Let M , N , T , Tµ, and T̃ν all be defined as in previous sections.
Then, for any square matrix of nonnegative elements P̄ and any x ∈ X, we have

min
µ∈M

max
ν∈N

P̄ [c(µ, ν) + P (µ, ν)x] = P̄ min
µ∈M

max
ν∈N

[c(µ, ν) + P (µ, ν)x] = P̄ T (x),

max
ν∈N

P̄ [c(µ, ν) + P (µ, ν)x] = P̄ max
ν∈N

[c(µ, ν) + P (µ, ν)x] = P̄ Tµ(x),

min
µ∈M

P̄ [c(µ, ν) + P (µ, ν)x] = P̄ min
µ∈M

[c(µ, ν) + P (µ, ν)x] = P̄ T̃ν(x).

Proof. It is sufficient to show that the first equation holds. The remaining equa-
tions follow as corollaries by redefining the control constraint sets for the minimizing
and maximizing players as Ũ(i) = {µ(i)} and Ṽ (i, u) = {ν(i)}, respectively.

The ith component of P̄ [c(µ, ν) + P (µ, ν)x] can be expressed as

n∑
s=1

p̄isgs(µ(s), ν(s)),
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where p̄is is the (i× s)th component of P̄ and gs(u, v)
4
= cs(u, v) +

∑n
j=1 psj(u, v)xj

for u ∈ U(s) and v ∈ V (s).
Since the min and max are taken componentwise and since the elements of P are

nonnegative, we have that

min
µ∈M

max
ν∈N

n∑
s=1

p̄isgs(µ(s), ν(s)) = min
µ∈M

max
v1∈V (1),... ,vn∈V (n)

n∑
s=1

p̄isgs(µ(s), vs)

= min
µ∈M

n∑
s=1

p̄is max
vs∈V (s)

gs(µ(s), vs).

Similarly, because the elements of P̄ are nonnegative,

min
µ∈M

n∑
s=1

p̄is max
vs∈V (s)

gs(µ(s), vs) = min
u1∈U(1),... ,un∈U(n)

n∑
s=1

p̄is max
vs∈V (s)

gs(u
s, vs)

=

n∑
s=1

p̄is min
us∈U(s)

max
vs∈V (s)

gs(u
s, vs)

=

n∑
s=1

p̄is[T (x)]s.

Since this same expression applies for all i = 1, . . . , n, the desired result holds.
Lemma A.5. Let M , N , T , Tµ, and T̃ν all be defined as in previous sections.

Then, for any x ∈ X, we have

min
πM={µ0,... ,µt}

max
πN={ν0,... ,νt}

[
htπM ,πN + P (µ0, ν0) · · ·P (µt, νt)x

]
= T t+1(x),

max
πN={ν0,... ,νt}

[
htµ,πN + P (µ, ν0) · · ·P (µ, νt)x

]
= T t+1

µ (x),

min
πM={µ0,... ,µt}

[
htπM ,ν + P (µ0, ν) · · ·P (µt, ν)x

]
= T̃ t+1

ν (x),

where µ and the µk are elements of M and ν and the νk are elements of N .
Proof. It is sufficient to show that the first equation holds. The remaining equa-

tions follow as corollaries by redefining the control constraint sets for the minimizing
and maximizing players as Ũ(i) = {µ(i)} and Ṽ (i) = {ν(i)}, respectively.

Notice that

min
πM={µ0,... ,µt}

max
πN={ν0,... ,νt}

[
htπM ,πN + P (µ0, ν0) · · ·P (µt, νt)x

]
= min

πM
max
πN

{
ht−1
π̄M ,π̄N + P̄ (π̄M , π̄N )

[
c(µt, νt) + P (µt, νt)x

]}
= min

πM
max
π̄N

{
ht−1
π̄M ,π̄N + max

νt
P̄ (π̄M , π̄N )

[
c(µt, νt) + P (µt, νt)x

]}
= min

π̄M
min
µt

max
π̄N

{
ht−1
π̄M ,π̄N + max

νt
P̄ (π̄M , π̄N )

[
c(µt, νt) + P (µt, νt)x

]}
≥ min

π̄M
max
π̄N

min
µt

{
ht−1
π̄M ,π̄N + max

νt
P̄ (π̄M , π̄N )

[
c(µt, νt) + P (µt, νt)x

]}
= min

π̄M
max
π̄N

{
ht−1
π̄M ,π̄N + min

µt
max
νt

P̄ (π̄M , π̄N )
[
c(µt, νt) + P (µt, νt)x

]}
,
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where

π̄M
4
= {µ0, . . . , µt−1}, π̄N

4
= {ν0, . . . , νt−1},

and P̄ (π̄M , π̄N )
4
= P (µ0, ν0) · · ·P (µt−1, νt−1). (The inequality follows from the mini-

max inequality.)
We now prove the reverse relationship. First, we claim there exists a policy µ̄ ∈M

such that

min
µt∈M

max
νt∈N

P̄ (π̄M , π̄N )[c(µt, νt) + P (µt, νt)x] = max
νt∈N

P̄ (π̄M , π̄N )[c(µ̄, νt) + P (µ̄, νt)x].

To see this, notice that

min
µt∈M

max
νt∈N

P̄ (π̄M , π̄N ) [c(µt, νt) + P (µt, νt)x]

= P̄ (π̄M , π̄N ) min
µt∈M

max
νt∈N

(c(µt, νt) + P (µt, νt)x)

= P̄ (π̄M , π̄N ) max
νt∈N

(c(µ̄, νt) + P (µ̄, νt)x)

= max
νt∈N

P̄ (π̄M , π̄N ) [c(µ̄, νt) + P (µ̄, νt)x] ,

where the first and last equalities follow from the preceding lemma and µ̄ is the min-
imax solution to minµt∈M maxνt∈N (c(µt, νt) + P (µt, νt)x). This completes the proof
of our claim. Thus,

min
π̄M

min
µt

max
π̄N

{
ht−1
π̄M ,π̄N + max

νt
P̄ (π̄M , π̄N )

[
c(µt, νt) + P (µt, νt)x

]}

= min
π̄M

max
π̄N

{
ht−1
π̄M ,π̄N + min

µt
max
νt

P̄ (π̄M , π̄N )
[
c(µt, νt) + P (µt, νt)x

]}
≤ min

π̄M
max
π̄N

{
ht−1
π̄M ,π̄N + max

νt
P̄ (π̄M , π̄N )

[
c(µ̄, νt) + P (µ̄, νt)x

]}
= min

π̄M
max
π̄N

{
ht−1
π̄M ,π̄N + min

µt
max
νt

P̄ (π̄M , π̄N )
[
c(µt, νt) + P (µt, νt)x

]}
.

Combining the preceding inequalities, we see that

min
πM

max
πN

[
htπM ,πN + P (µ0, ν0) · · ·P (µt, νt)x

]
= min

π̄M
max
π̄N

{
ht−1
π̄M ,π̄N + min

µt
max
νt

P̄ (π̄M , π̄N )
[
c(µt, νt) + P (µt, νt)x

]}
= min

π̄M
max
π̄N

{
ht−1
π̄M ,π̄N + P̄ (π̄M , π̄N ) min

µt
max
νt

[
c(µt, νt) + P (µt, νt)x

]}
= min

π̄M
max
π̄N

[
ht−1
π̄M ,π̄N + P (µ0, ν0) · · ·P (µt−1, νt−1)T (x)

]
,

where the second inequality follows from Lemma A.4.
Mathematical induction, repeating the same argument above, gives the desired

result.
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Lemma A.6. Let M , N , and T̃ all be defined as in previous sections. Then, for
any square matrix with nonnegative elements P̄ and any x ∈ X,

max
ν∈N

min
µ∈M

P̄ [c(µ, ν) + P (µ, ν)x] = P̄ max
ν∈N

min
µ∈M

[c(µ, ν) + P (µ, ν)x] = P̄ T̃ (x).

Proof. The proof of this lemma is exactly analogous to that given for Lemma A.4.
The interchange of the max and min has no bearing on the logical flow of the
argument.

Lemma A.7. Let M , N , and T̃ all be defined as in previous sections. Then, for
any x ∈ X,

max
πn={ν0,... ,νt}

min
πM={µ0,... ,µt}

[
htπM ,πN + P (µ0, ν0) · · ·P (µt, νt)x

]
= T̃ t+1(x),

where the µk are elements of M and the νk are elements of N .
Proof. The proof of this is symmetrical to that given for Lemma A.5.
Using the fact that T (x) = T̃ (x) (under Assumption R), we obtain

min
πM={µ0,... ,µt}

max
πN={ν0,... ,νt}

[
htπM ,πN + P (µ0, ν0) · · ·P (µt, νt)x+

]
= T t+1(x)

= T̃ t+1(x)

= max
πN={ν0,... ,νt}

min
πM={µ0,... ,µt}

[
htπM ,πN + P (µ0, ν0) · · ·P (µt, νt)x

]
.

Thus, for finite-horizon games (with or without a terminal state), an equilibrium cost
exists and can be found via dynamic programming iterations.
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Abstract. Existence and uniqueness results of fully coupled forward-backward stochastic dif-
ferential equations with an arbitrarily large time duration are obtained. Some stochastic Hamilton
systems arising in stochastic optimal control systems and mathematical finance can be treated within
our framework.
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1. Introduction. Let (Ω,F , P ) be a probability space, and let {Bt}t≥0 be a
d-dimensional Brownian motion in this space. We denote the natural filtration of
this Brownian motion by Ft. In this paper, we consider the following fully coupled
forward-backward stochastic differential equation (FBSDE):

xt = a+

∫ t

0

b(s, xs, ys, zs)ds+

∫ t

0

σ(s, xs, ys, zs)dBs,

yt = Φ(xT ) +

∫ T

t

f(s, xs, ys, zs)ds−
∫ T

t

zsdBs, t ∈ [0, T ],

where (x, y, z) takes values in Rn×Rm×Rm×d, and b, and σ, and f are mappings with
appropriate dimensions which are, for each fixed (x, y, z), Ft-progressively measurable.
We assume that they are Lipschitz with respect to (x, y, z); T > 0 is an arbitrarily
prescribed number and the time interval is called the time duration. We look for a
triple of Ft-adapted processes (xs, ys, zs) satisfying this equation.

A special situation of this problem is the well-known forward and backward ordi-
nary differential equations (FBODEs):

ẋ(t) = b(x(t), y(t)),

−ẏ(t) = f(x(t), y(t)),

x(0) = a, y(T ) = Φ(X(T )).

The so-called two-point boundary problem for the second-order ODE is a special
setting of this problem. There exist many examples in FBODE showing that, even if
the uniform Lipschitz condition is imposed for all coefficients b, f , and g, the existence
and/or uniqueness of this ODE (with an arbitrarily large time duration) may fail.

One of the few types of such equations which is well understood is the Hamilto-
nian system motivated by the problems of classical variation method as well as the
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maximum principle in optimal control problems (see Pontryagin et al. [Pon]). For
the linear deterministic case, see Kalman [Ka] for the motivation of control problems
in linear quadratic optimal regulators. Parallel to this deterministic situation, Bis-
mut [Bis] obtained stochastic Hamiltonian systems, a kind of extension of the above
Hamiltonian systems, as well as that of the Pontryagin’s maximum principle (see also
Kushner [Ku], Bensoussan [Ben], Haussmann [Hau], Peng [P1]). The corresponding
linear case was also discussed.

Recently Antonelli gave a counterexample (see [A]) showing that the Lipschitz
condition is not enough for the existence of FBSDE in an arbitrarily large time dura-
tion. It is clear that more assumptions are essentially needed.

An interesting problem is, What is the more suitable setting of the above stochas-
tic Hamiltonian problems for which the solution exists and is unique? Is the back-
ground of optimization problem necessary? Is the constraint m = n necessary?

In this paper we present a probabilistic method to treat a large kind of FBSDE
with an arbitrarily prescribed time duration. Many problems like the above-mentioned
FBODE and FBSDE are special situations of our setting. It is due to a new obser-
vation: for a large kind of FBSDE raised in stochastic control systems, mathematical
finance, and other applied mathematics, the coefficients f , b, and σ are G-monotone,
i.e., there exists a nondegenerate m× n-matrix G such that, for each fixed (ω, t), the
mapping

A(x, y, z)
def
=

−GT fGb
Gσ

 (x, y, z) : Rn+m+m×d −→ Rn+m+m×d

is monotonous in (x, y, z) in the sense of (H2.2) in section 2. In this case, in order
to obtain the a priori estimate for the difference of two solutions (x̂, ŷ, ẑ), the right
method is not to apply Itô’s formula to |x̂t|2 and |ŷt|2, but to 〈Gx̂t,ŷt〉. With this
observation we succeed in obtaining the existence and uniqueness theorem under the
G-monotone assumptions of A and Φ. Stochastic Hamiltonian systems introduced by
Bismut [Bis] (see also Bensoussan [Ben]) can be treated as a special case.

It has been observed by the first author (see [P3]) that, coupled with a forward
SDE, i.e., a classical SDE of Itô’s type, the backward stochastic differential equation
(BSDE) gives a probabilistic interpretation for a large kind of (systems of) second-
order quasi-linear partial differential equations. This naturally generalizes the well-
known Feynman–Kac formula to nonlinear case (see also [PP1], [P2], [PP2], [P4],
[EPQ], [EQ], etc. for further developments in this direction).

Several major progressions have been made in the direction of fully coupled FB-
SDEs (see [P5], [A], [MPY]) and applications to mathematical finance (see [DE],
[DMY]). It now becomes more clear that certain important problems in mathemati-
cal economics and mathematical finance, especially in the optimization problem, are
formulated to be FBSDEs.

To our knowledge, actually there exist two methods in the study of FBSDEs. The
first one is purely probabilistic (see Peng [P5], Antonelli [A]). Their main idea was
to apply Itô’s formula to |x̂|2 and |ŷ|2 and then to construct a contraction mapping,
where (x̂, ŷ) stands for the difference of two solutions (x, y) and (x′, y′).

This method may be regarded as a sort of direct extension of Picard’s iteration (see
[A], [P3]). This was shown to be successful in treating stochastic differential equations
(SDEs) of Itô’s type as well as BSDEs, but the application of these techniques to
FBSDEs is limited: one can only obtain the local existence and uniqueness results;
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i.e., the time duration [0, T ] on which the solutions exist (without explosion) has to
be sufficiently small.

The second method concerns a kind of “four-steps scheme” approach (see Ma,
Protter, and Yong [MPY] and Duffie, Ma, and Yong [DMY]). This method may be
regarded as a sort of combination of the methods of partial differential equation and
probability or stochastic optimal control. With this method those authors have suc-
cessfully obtained the results of existence and uniqueness of FBSDE in an arbitrarily
prescribed time duration, but they need the equation to be nondegenerate in the sense
that the matrix-valued coefficient σ is nondegenerate. On the other hand, as it is well
known, the partial differential equation approach cannot be used to treat the case
where the coefficients themselves are randomly disturbed, which is often the case in
the practical situation, e.g., in financial markets.

The advantages of our method are as follows: (i) the assumptions are very easy
to verify. (ii) Many existing problems of FBSDE in optimal control and Hamiltonian
systems satisfy these assumptions. (iii) We do not need to impose the nondegener-
ate condition on the diffusion term σ; the coefficients are allowed to be randomly
perturbed (e.g., Φ = Φ(ω, x), etc.).

This paper improves the recent result of [HP] in the following points: (i) One of
typical case; i.e., the existence and uniqueness of a Hamiltonian system related to the
cost function satisfying some convex conditions such as the linear quadratic optimal
control problem under classical condition is a simple corollary of our result. In [HP],
a similar result can also be obtained, but the assumption will become unreasonably
strong. (ii) The result in [HP] is limited to the case where x and y in FBSDE take
the same dimension; i.e., m = n in our paper. This paper successfully removes this
heavy restriction. (iii) Even in the case where m = n, our monotone assumptions
are clearly weaker and the corresponding conclusions are stronger. An example is
given in section 3 to show that some stochastic Hamiltonian systems arising from
differential games are also G-monotone. (iv) In section 2, a counterexample is given
showing that, without our monotone conditions, the existence result of FBSDE in an
arbitrarily large time duration does not hold true.

This paper is organized as follows: In the next section we present our main result
about the existence and uniqueness of FBSDE under the monotone conditions. Sev-
eral examples of FBSDE related to stochastic optimal control and differential games
problems are given in section 3. We also obtain the existence and uniqueness of an
FBSDE corresponding linear quadratic optimal control problem in this section.

2. FBSDE: Existence and uniqueness. We consider the following FBSDEs:

dxt = b(t, xt, yt, zt)dt+ σ(t, xt, yt, zt)dBt,

−dyt = f(t, xt, yt, zt)dt− ztdBt,
x0 = a, yT = Φ(xT ),

(2.1)

where

b : Ω× [0, T ]× Rn × Rm × Rm×d −→ Rn,
σ : Ω× [0, T ]× Rn × Rm × Rm×d −→ Rn×d,
f : Ω× [0, T ]× Rn × Rm × Rm×d −→ Rm,
Φ : Ω× Rn −→ Rm.



828 SHIGE PENG AND ZHEN WU

We are given an m× n full-rank matrix G. We use the notations

u =

xy
z

 , A(t, u) =

−GT fGb
Gσ

 (t, u),

where Gσ = (Gσ1 · · ·Gσd) . We use the usual inner product and Euclidean norm in
Rn, Rm, and Rm×d.

Definition 2.1. A triple of process (X,Y, Z): Ω × [0,T ] −→ Rn×Rm×Rm×d is
called an adapted solution of FBSDE (2.1) if (X,Y, Z) ∈M2(0, T ;Rn ×Rm ×Rm×d)
and it satisfies FBSDE (2.1).

We assume that

(H2.1)


(i) A(t, u) is uniformly Lipschitz with respect to u;

(ii) for each u, A(·, u) is in M2(0, T );
(iii) Φ(x) is uniformly Lipschitz with respect to x ∈ Rn;
(iv) for each x, Φ(x) is in L2(Ω,FT ,P).

The following monotone conditions are our main assumptions:

〈A(t, u)−A(t, u), u− u〉 ≤ −β1|Gx̂|2 − β2|GT ŷ|2,
〈Φ(x)− Φ(x), G(x− x)〉 ≥ 0

∀u = (x, y, z), u = (x, y, z), x̂ = x− x, ŷ = y − y, ẑ = z − z,
(H2.2)

where β1 and β2 are given nonnegative constants with β1 + β2 > 0. Moreover we have
β1 > 0 (resp., β2 > 0) when m > n (resp., n > m).

Our first result of this section is the following uniqueness theorem.
Theorem 2.2. We assume (H2.1) and (H2.2). Then FBSDE (2.1) has at most

one adapted solution.
Proof. Let us = (xs, ys, zs) and u′s = (x′s, y

′
s, z
′
s) be two solutions of (2.1). We set

û = (x− x′, y − y′, z − z′) = (x̂, ŷ, ẑ). We use Itô’s formula applied to 〈Gx̂s, ŷs〉:

E〈Φ(xT )− Φ(x′T ), Gx̂T 〉 − E〈ŷt, Gx̂t〉 = E
∫ T

t

〈A(s, us)−A(s, u′s), ûs〉ds

≤ −β1E
∫ T

t

〈Gx̂s, Gx̂s〉ds− β2E
∫ T

t

〈GT ŷs, GT ŷs〉ds.

This with the monotone of Φ and A implies

β1E
∫ T

0

〈Gx̂s, Gx̂s〉ds+ β2E
∫ T

0

〈GT ŷs, GT ŷs〉ds ≤ 0.

We first treat the case where m > n. In this case β1 > 0, then 〈Gx̂s, Gx̂s〉 ≡ 0. We
have x̂s ≡ 0. Thus xs ≡ x′s. In particular, Φ(xT ) ≡ Φ(x′T ). Thus, from the uniqueness
of BSDE, it follows that ys ≡ y′s and zs ≡ z′s.

We now discuss the second case wherem < n. In this case β2 > 0, then 〈GT ŷs, GT ŷs〉
≡ 0. We have ys ≡ y′s. We apply Itô’s formula to |ŷs|2 ≡ 0. It follows that

∫ T
0
|zs −

z′s|2ds = 0. Thus zs ≡ z′s. Finally, from the uniqueness of Itô’s SDE it follows that
xs ≡ x′s. Similarly to the above two cases, the result can be obtained easily in the
case m = n.

We now give an existence result of FBSDE (2.1) for a special case where Φ does
not depend on x, i.e., Φ(x) ≡ ξ.
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Theorem 2.3. We assume yT = ξ, ξ ∈ L2(Ω,FT ,P) and (H2.1), (H2.2). Then
there exists a unique triple us = (xs, ys, zs), s ∈ [0, T ] satisfying equations (2.1).

The uniqueness is an immediate consequence of Theorem 2.2.

The proof of the existence is a combination of the above technique and an
a priori estimate technique introduced in [P3]. We first need the following two lemmas.
Consider the following family of FBSDEs parametrized by α ∈ [0, 1]:

dxαt =
[
(1− α)β2(−GT yαt ) + αb(t, uαt ) + φt

]
dt

+
[
(1− α)β2(−GT zαt ) + ασ(t, uαt ) + ψt

]
dBt,

−dyαt = [(1− α)β1Gx
α
t + αf(t, uαt ) + γt] dt− zαt dBt,

xα0 = a, yαT = ξ,

(2.2)

where φ, ψ, and γ are given processes in M2(0, T ) with values in Rn, Rn×d, and Rm,
resp. Clearly, when α = 1 the existence of the solution of (2.2) implies that of (2.1)
for yT ≡ ξ. The following lemma gives an a priori estimate for the “existence interval”
of (2.2) with respect to α ∈ [0, 1].

Lemma 2.4. We assume (H2.1) and (H2.2). Then there exists a positive constant
δ0 such that if, a priori, for an α0 ∈ [0, 1) there exists a solution (xα0 , yα0 , zα0) of
(2.2), then for each δ ∈ [0, δ0] there exists a solution (xα0+δ, yα0+δ, zα0+δ) of (2.2) for
α = α0 + δ.

Proof. Since for each φ ∈ M2(0, T ;Rn), γ ∈ M2(0, T ;Rm), ψ ∈ M2(0, T ;Rn×d),
α ∈ [0, 1) there exists a (unique) solution of (2.2), thus, for each triple

us = (xs, ys, zs) ∈M2(0, T ;Rn+m+m×d)

there exists a unique triple Us = (Xs, Ys, Zs) ∈ M2(0, T ;Rn+m+m×d) satisfying the
following FBSDE:

dXt =
[
(1− α0)β2(−GTYt) + α0b(t, Ut) + δ(β2G

T yt + b(t, ut)) + φt
]
dt

+
[
(1− α0)β2(−GTZt) + α0σ(t, Ut) + δ(β2G

T zt + σ(t, ut)) + ψt
]
dBt,

−dYt = [(1− α0)β1GXt + α0f(t, Ut) + δ(−β1Gxt + f(t, ut)) + γt] dt− ZtdBt,
X0 = a, YT = ξ.

We are going to prove that the mapping defined by

Iα0+δ(u) = U : M2(0, T ;Rn+m+m×d)→M2(0, T ;Rn+m+m×d)

is a contraction.

Let u′ = (x′, y′, z′) ∈M2(0, T ;Rn+m+m×d), and let U ′ = (X ′, Y ′, Z ′) = Iα0+δ(u
′).

We set

û = (x̂, ŷ, ẑ) = (x− x′, y − y′, z − z′), Û = (X̂, Ŷ , Ẑ) = (X −X ′, Y − Y ′, Z − Z ′).
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Using Itô’s formula applied to 〈GX̂s, Ŷs〉 it yields

0 = E
∫ T

0

〈α0(A(s, Us)−A(s, U ′s)), Ûs〉ds

− (1− α0)E
∫ T

0

(β1〈GX̂s, GX̂s〉+ β2〈GT Ŷs, GT Ŷs〉+ β2〈GT Ẑs, GT Ẑs〉)ds

+ δE
∫ T

0

(β1〈GX̂s, Gx̂s〉+ β2〈GT Ŷs, GT ŷs〉+ β2〈GT Ẑs, GT ẑs〉

+ 〈X̂s,−GT f̄s〉+ 〈GT Ŷs, b̄s〉+ 〈Ẑs, Gσ̄s〉)ds,
where

f̄s = f(s, us)− f(s, u′s), b̄s = b(s, us)− b(s, u′s), σ̄s = σ(s, us)− σ(s, u′s).

From (H2.1) and (H2.2), we can get

E
∫ T

0

(
β1〈GX̂s, GX̂s〉+ β2〈GT Ŷs, GT Ŷs〉

)
ds ≤ δC1E

∫ T

0

(
|ûs|2 + |Ûs|2

)
ds.

On the other hand, since X and X ′ are solutions of SDE of Itô’s type, applying the
usual technique, the estimates for the difference X̂ = X −X ′ are obtained by

sup
0≤s≤T

E|X̂s|2 ≤ C1δE
∫ T

0

|ûs|2ds+ C1E
∫ T

0

(
|Ŷs|2 + |Ẑs|2

)
ds,

E
∫ T

0

|X̂s|2ds ≤ C1TδE
∫ T

0

|ûs|2ds+ C1TE
∫ T

0

(
|Ŷs|2 + |Ẑs|2

)
ds.

Similarly, for the difference of the solutions (Ŷ , Ẑ) = (Y − Y ′, Z − Z ′), we apply
the usual technique to the BSDE:

E
∫ T

0

(
|Ŷs|2 + |Ẑs|2

)
ds ≤ C1δE

∫ T

0

|ûs|2ds+ C1E
∫ T

0

|X̂s|2ds.

Here the constant C1 depends on the Lipschitz constants as well as G, β1, β2, and
T . Using Itô’s formula to |Ŷs|2 to the BSDE once more it yields

|Ŷ0|2 + E
∫ T

0

|Ẑs|2ds

= E
∫ T

0

2Ŷs[α0(f(s, Us)− f(s, U ′s)) + (1− α0)β1GX̂s + δf̄s − δβ1Gx̂s]ds

≤ 1

4
E
∫ T

0

|Ẑs|2 +
1

4L
E
∫ T

0

|X̂s|2ds+ C2E
∫ T

0

|Ŷs|2ds+ C2δE
∫ T

0

|ûs|2ds.

Here L = max(C1T, 1), C2 is a sufficiently large constant which depends on L, G, β1,
and the Lipschitz constants.

Combining the above five estimates, it is clear that, whenever β1 > 0, β2 ≥ 0,
and/or β1 ≥ 0, β2 > 0 hold true, we always have

E
∫ T

0

|Ûs|2ds ≤ CδE
∫ T

0

|ûs|2ds,
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where the constant C depends only on C1, C2, L, and T . We now choose δ0 = 1
2C .

It is clear that, for each fixed δ ∈ [0, δ0], the mapping Iα0+δ is a contraction in the
sense that

E
∫ T

0

|Ûs|2ds ≤ 1

2
E
∫ T

0

|ûs|2ds.

It follows immediately that this mapping has a unique fixed point Uα0+δ =
(Xα0+δ, Y α0+δ, Zα0+δ) which is the solution of (2.2) for α = α0 + δ. The proof is
complete.

It remains to prove that, when α = 0, (2.2), i.e.,

dx0
t =

[−β2G
T y0

t + φt
]
dt+

[−β2G
T z0

t + ψt
]
dBt,

−dy0
t =

[
β1Gx

0
t + γt

]
dt− z0

t dBt,

x0
0 = a, y0

T = ξ,

has a unique solution.
We will treat a more general situation which can also be used in the proof of

Theorem 2.6.
Lemma 2.5. The following equation has a unique solution:

dxt =
[−β2G

T yt + φt
]
dt+

[−β2G
T zt + ψt

]
dBt,

−dyt = [β1Gxt + γt] dt− ztdBt,
x0 = a, yT = λGxT + ξ,

(2.3)

where λ is a nonnegative constant.
Proof. We observe that the matrix G is of full rank. The proof of the existence

for (2.3) will be divided into two cases: n ≤ m and n > m.
For the first case, the matrix GTG is strictly positive. We setx′y′

z′

 =

 x
GT y
GT z

 ,

(
y′′

z′′

)
=

(
(Im −G(GTG)−1GT )y
(Im −G(GTG)−1GT )z

)
.

Multiplying GT on both sides of the BSDE for (y, z) yields

dx′t = [−β2y
′
t + φt] dt+ [−β2z

′
t + ψt] dBt,

−dy′t =
[
β1G

TGx′t +GT γt
]
dt− z′tdBt,

x′0 = a, y′T = λGTGx′T +GT ξ.

(2.4)

Similarly, multiplying (Im−G(GTG)−1GT ) on both sides of the same equation yields

−dy′′t = (Im −G(GTG)−1GT )γtdt− z′′t dBt,
y′′T = (Im −G(GTG)−1GT )ξ.

Obviously the pair (y′′, z′′) is uniquely determined. The uniqueness of (x′, y′, z′) fol-
lows from Theorem 2.2. In order to solve (2.4), we introduce the following n × n-
symmetric matrix-valued ordinary differential equation, known as the matrix-Riccati
equation:

−K̇(t) = −β2K
2 + β1G

TG, t ∈ [0, T ],

K(T ) = λGTG.
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It is well known that this equation has a unique nonnegative solution K(·) ∈ C1([0, T ];
Sn), where Sn stands for the space of all n×n-symmetric matrices. We then consider
the solution (p, q) ∈M2(0, T ;Rn+n×d) of the following linear simple BSDE:

−dpt = [− β2K(t)pt +K(t)φt +GT γt]dt

+ [K(t)ψt − (In + β2K(t))qt]dBt, t ∈ [0, T ],

pT = GT ξ.

We now let x′t be the solution of the SDE

dx′t = [−β2(K(t)x′t + pt) + φt] dt+ [ψt − β2qt] dBt, t ∈ [0, T ],

x′0 = a.

Then it is easy to check that (x′t,y
′
t, z
′
t) = (x′t,K(t)x′t + pt, qt) is the solution of (2.4).

Once (x′, y′, z′) and (y′′, z′′) are resolved, then the triple (x, y, z) is uniquely ob-
tained by xy

z

 =

 x′

G(GTG)−1y′ + y′′

G(GTG)−1z′ + z′′

 .

The proof for the case n > m is analogous to the above opposite case. We observe
that in this case the matrix GGT is of full rank. We set

x′

x′′

y′

z′

 =


Gx

(In −GT (GGT )−1G)x
y
z

 .

x′′ is the unique solution of the following linear forward SDE:

dx′′t = (In −GT (GGT )−1G)φtdt+ (In −GT (GGT )−1G)ψtdBt,

x′′0 = (In −GT (GGT )−1G)a.

The triple (x′, y′, z′) solves the FBSDE

dx′t =
[−β2GG

T y′t +Gφt
]
dt+

[
Gψt − β2GG

T z′t
]
dBt,

−dy′t = [β1x
′
t + γt] dt− z′tdBt,

x′0 = Ga, y′T = λx′T + ξ.

(2.5)

To solve this equation, we introduce the solution K(·) ∈ C([0, T ];Sm) of the m ×m
symmetric matrix-valued Riccati equation

−K̇(t) = β1Im − β2KGG
TK, t ∈ [0, T ],

K(T ) = λIm.

We then consider the unique solution (p, q) ∈ M2(0, T ;Rm+m×d) of the following
linear BSDE:

−dpt =
(−β2K(t)GGT pt +K(t)Gφt + γt

)
dt

+
(
K(t)Gψt − (Im + β2K(t)GGT )qt

)
dBt, t ∈ [0, T ],

pT = ξ.
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We now let x′t be the solution of the SDE

dx′t =
[−β2GG

T (K(t)x′t + pt) +Gφt
]
dt

+
[
Gψt − β2GG

T qt
]
dBt, t ∈ [0, T ],

x′0 = Ga.

It is then easy to see that (x′t, y
′
t, z
′
t) = (x′t,K(t)x′t+pt, qt) is the solution of (2.5). Once

(x′, x′′, y′, z′) are resolved, by the definition, the triple (x, y, z) is uniquely obtained
by xy

z

 =

GT (GGT )−1x′ + x′′

y′

z′

 .

The proof is complete.
We now proceed to give the following.
Proof of the existence of Theorem 2.3. By Lemma 2.5, when λ = 0 in (2.3), (2.2)

for α0 = 0 has a unique solution.
It then follows from Lemma 2.4 that there exists a positive constant δ0 = δ0(C1, C2,

L, T ) such that for each δ ∈ [0, δ0], (2.2) for α = α0 + δ has a unique solution.
Since δ0 depends only on (C1, C2, L, T ), we can repeat this process for N -times with
1 ≤ Nδ0 < 1 + δ0. It then follows that, in particular, (2.2) for α = 1 with φs ≡ 0,
γs ≡ 0, and ψs ≡ 0 has a unique solution. The proof is complete.

Now we can consider the FBSDE (2.1) for yT = Φ(xT ). In fact, the assumption
(H2.1) has to be strengthened to the following (H2.3):

〈A(t, u)−A(t, u), u− u〉 ≤ − β1|Gx̂|2 − β2(|GT ŷ|2 + |GT ẑ|2),

〈Φ(x)− Φ(x), G(x− x)〉 ≥ µ1|Gx̂|2
∀u = (x, y, z), u = (x, y, z), x̂ = x− x, ŷ = y − y, ẑ = z − z,

(H2.3)

where β1, β2, and µ1 are given nonnegative constants with β1 + β2 > 0, µ1 + β2 >
0. Moreover we have β1 > 0, µ1 > 0 (resp., β2 > 0) when m > n (resp., n > m).

We have the following main result of this section.
Theorem 2.6. Let (H2.1) and (H2.3) hold. Then there exists a unique adapted

solution (X,Y, Z) of FBSDE (2.1).
Actually the method to prove the existence is similar to Theorem 2.3. We now

consider the following (2.6) for each α ∈ [0, 1]:

dxαt =
[
(1− α)β2(−GT yαt ) + αb(t, uαt ) + φt

]
dt

+
[
(1− α)β2(−GT zαt ) + ασ(t, uαt ) + ψt

]
dBt,

−dyαt = [(1− α)β1Gx
α
t + αf(t, uαt ) + γt] dt− zαt dBt,

xα0 = a, yαT = αΦ(xαT ) + (1− α)GxαT + ξ,

(2.6)

where φ, ψ, and γ are given processes in M2(0, T ) with values in Rn, Rn×d, and Rm,
resp., ξ ∈ L2(Ω,FT , P ). Clearly the existence of (2.6) for α = 1 implies the existence
of (2.1).

In order to obtain this conclusion, we also need the following lemma.
Lemma 2.7. We assume (H2.1) and (H2.3). Then there exists a positive constant

δ0 such that if, a prior, for a α0 ∈ [0, 1) there exists a triple of solution (Xα0 , Y α0 , Zα0)
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of (2.6), then for each δ ∈ [0, δ0] there exists a solution (Xα0+δ, Y α0+δ,
Zα0+δ) (2.6) for α = α0 + δ.

Proof. Since for each φ ∈ M2(0, T ;Rn), γ ∈ M2(0, T ;Rm), ψ ∈ M2(0, T ;Rn×d),
ξ ∈ L2(Ω,FT , P ), α0 ∈ [0, 1) there exists a (unique) solution of (2.6), thus, for each
xT ∈ L2(Ω,FT , P ) and a triple us = (xs, ys, zs) ∈ M2(0, T ;Rn+m+m×d) there exists
a unique triple Us = (Xs, Ys, Zs) ∈ M2(0, T ;Rn+m+m×d) satisfying the following
FBSDE:

dXt =
[
(1− α0)β2(−GTYt) + α0b(t, Ut) + δ(β2G

T yt + b(t, ut)) + φt
]
dt

+
[
(1− α0)β2(−GTZt) + α0σ(t, Ut) + δ(β2G

T zt + σ(t, ut)) + ψt
]
dBt,

−dYt = [(1− α0)β1GXt + α0f(t, Ut) + δ(−β1Gxt + f(t, ut)) + γt] dt− ZtdBt,
X0 = a, YT = α0Φ(XT ) + (1− α0)GXT + δ(Φ(xT )−GxT ) + ξ.

We now proceed to prove that, if δ is sufficiently small, the mapping defined by

Iα0+δ(u× xT ) = U ×XT :

M2(0, T ;Rn+m+m×d)× L2(Ω,FT , P ;Rn)→M2(0, T ;Rn+m+m×d)× L2(Ω,FT , P ;Rn)

is a contraction.

Let u′ = (x′, y′, z′) ∈M2(0, T ;Rn+m+m×d), and let U ′ ×X ′T = Iα0+δ(u
′ × x′T ).

We set

û = (x̂, ŷ, ẑ) = (x− x′, y − y′, z − z′), Û = (X̂, Ŷ , Ẑ) = (X −X ′, Y − Y ′, Z − Z ′).

Using Itô’s formula applied to 〈GX̂s, Ŷs〉 yields

α0E〈Φ(XT )− Φ(X ′T ), GX̂T 〉+ (1− α0)E〈GX̂T , GX̂T 〉
+ δE〈Φ(xT )− Φ(x′T )−Gx̂T , Gx̂T 〉

= E
∫ T

0

〈α0(A(s, Us)−A(s, U ′s)), Ûs〉ds

− (1− α0)E
∫ T

0

(β1〈GX̂s, GX̂s〉+ β2〈GT Ŷs, GT Ŷs〉+ β2〈GT Ẑs, GT Ẑs〉)ds

+ δE
∫ T

0

(β1〈GX̂s, Gx̂s〉+ β2〈GT Ŷs, GT ŷs〉+ β2〈GT Ẑs, GT ẑs〉

+ 〈X̂s,−GT f̄s〉+ 〈GT Ŷs, b̄s〉+ 〈Ẑs, Gσ̄s〉)ds,

where

f̄s = f(s, us)− f(s, u′s), b̄s = b(s, us)− b(s, u′s), σ̄s = σ(s, us)− σ(s, u′s).

From (H2.1) and (H2.3), we can get

(α0µ1 + (1− α0))E|GX̂T |2 + β1E
∫ T

0

|GX̂s|2ds+ β2E
∫ T

0

(|GT Ŷs|2 + |GT Ẑs|2)ds

≤ δK1E
∫ T

0

(
|ûs|2 + |Ûs|2

)
ds+ δK1E|X̂T |2 + δK1E|x̂T |2.
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Applying the same technique as Lemma 2.4, we have the following estimates:

sup
0≤s≤T

E|X̂s|2 ≤ K1δE
∫ T

0

|ûs|2ds+K1E
∫ T

0

(
|Ŷs|2 + |Ẑs|2

)
ds,

E
∫ T

0

|X̂s|2ds ≤ K1TδE
∫ T

0

|ûs|2ds+K1TE
∫ T

0

(
|Ŷs|2 + |Ẑs|2

)
ds,

E
∫ T

0

(
|Ŷs|2 + |Ẑs|2

)
ds ≤ K1δE

∫ T

0

|ûs|2ds+K1δE|x̂T |2

+K1E
∫ T

0

|X̂s|2ds+K1E|X̂T |2.

Here the constant K1 depends on the Lipschitz constants G, β1, β2, and T . If µ1 > 0,
then α0µ1 + (1− α0) ≥ µ, µ = min(1, µ1) > 0.

Combining the above four estimates, it is clear that, whatever β1 > 0, µ1 > 0,
β2 ≥ 0 or β1 ≥ 0, µ1 ≥ 0, β2 > 0, we always have

E
∫ T

0

|Ûs|2ds+ E|X̂T |2 ≤ Kδ
(
E
∫ T

0

|ûs|2ds+ E|x̂T |2
)
.

Here the constant K depends only on β1, β2, µ, K1, and T . We now choose
δ0 = 1

2K . It is clear that, for each fixed δ ∈ [0, δ0], the mapping Iα0+δ is a contraction
in the sense that

E
∫ T

0

|Ûs|2ds+ E|X̂T |2 ≤ 1

2

(
E
∫ T

0

|ûs|2ds+ E|x̂T |2
)
.

It follows that this mapping has a unique fixed point Uα0+δ = (Xα0+δ, Y α0+δ, Zα0+δ)
which is the solution of (2.6) for α = α0 + δ. The proof is complete.

We now give the proof of Theorem 2.6.
Proof of Theorem 2.6. The uniqueness is obvious from Theorem 2.2.
By Lemma 2.5, when λ = 1, ξ = 0 in (2.3), (2.6) for α0 = 0 has a unique solution.

It then follows from Lemma 2.7 that there exists a positive constant δ0 depending on
Lipschitz constants, β1, β2, µ1, and T such that, for each δ ∈ [0, δ0], (2.6) for α = α0+δ
has a unique solution. We can repeat this process for N -times with 1 ≤ Nδ0 < 1 + δ0.
It then follows that, in particular, FBSDE (2.6) for α = 1 with ξ ≡ 0 has a unique
solution. The proof is complete.

Remark 2.8. If m = n, G = In, as a special case of Theorem 2.6, we improve
the main result in [HP]. Actually, our monotonicity assumptions are clearly weaker
than similar assumptions in [HP]. Moreover, if (2.1) satisfy the following monotone
conditions and (H2.1),

〈A(t, u)−A(t, ū), u− ū〉 ≤ −β2|ŷ|2,
〈Φ(x)− Φ(x̄), x̂〉 ≥ µ1|x̂|2,

where m = n, G = In, β2 > 0, µ1 > 0, we can also obtain the same result as Theorem
2.6. The proof method is similar.

At last, in this section, we consider a simple case where the monotone condition
(H2.3) is not satisfied.
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Example 2.1. In FBSDE (2.1), we set

b = z, σ = y, f = 0, Φ = x.

In a given time interval s ∈ [t, T ], FBSDE takes the form

dxs =zsds+ ysdBs,

−dys =− zsdBs,
xt = x, yT = xT .

It is clear that the monotone assumption of (H2.3) fails. Indeed, though the monotone
for Φ still holds true,

〈Φ(x)− Φ(x), x− x〉 = |x− x|2 ≥ 0,

but for A we have

〈A(t, u)−A(t, u), u− u〉 = 2(y − y)(z − z)
∀u = (x, y, z), u = (x, y, z).

According to the local existence and uniqueness theorem (see Peng [P5] and Antonelli
[A]), if the length of the interval [t, T ] is sufficiently small, then the FBSDE has a
unique solution. As a matter of fact, this solution can be written explicitly by

(xts, y
t
s, z

t
s) = (xts, p(s)x

t
s, p

2(s)xts), s ∈ [t, T ],

with

p(s) =
1√

1− 2(T − s)
and

dxts = p2(s)xtsds+ p(s)xtsdBs, s ∈ [t, T ],

xtt = x.

In particular, ytt = p(t)x, ztt = p2(t)x, but since p(t) ↑ ∞ as t ↓ (T − 1
2 ), (yts, z

t
s) will

explode when t ↓ (T − 1
2 ).

3. Applications of FBSDE to stochastic optimal controls and differen-
tial games.

Example 3.1. 3.1 (stochastic Hamilton system). (stochastic Hamilton system).
Let n = m, and let h(x) : Rn → R. For notational simplification, we assume that
d = 1. We consider the following “generalized Hamiltonian”:

H(x, y, z) : Rn+n+n −→ R.

We assume that H and h are twice continuously differentiable such that the second
derivatives are bounded. We consider the following FBSDE:

dxt = Hy(xt, yt, zt)dt+Hz(xt, yt, zt)dBt,

−dyt = Hx(xt, yt, zt)dt− ztdBt,
x0 = a, yT = hx(xT ),

(3.1)
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where (Hx Hy Hz) (resp., hx) stands for the gradient of H (resp., h). It is clear
that the stochastic Hamiltonian equations are a special case of FBSDE (2.1) with

f = Hx, b = Hy, σ = Hz.

Thus the monotone conditions, i.e., (H2.3), correspond, for this special case, to
the nonnegativity of the matrix hxx and−Hxx −Hxy −Hxz

Hyx Hyy Hyz

Hzx Hzy Hzz

 (x, y, z) ≤ −
β1In 0 0

0 β2In 0
0 0 β2In

 ,

where β1 ≥ 0, β2 > 0.
A classical optimization problem of a stochastic control system is formulated as

follows: the control system is

dxt = g(xt, vt)dt+ µ(xt, vt)dBt,

x0 = a,

where vs, s ∈ [0, T ], is an admissible control process, i.e., an Ft-adapted square-
integrable process taking values in a given subset U of Rk. Here g and µ are given
functions defined on Rn × Rk with values in Rn . The optimal control problem is to
minimize the cost function

J(v(·)) = E

{∫ T

0

L(xt, vt)dt+ h(xT )

}

over the set of admissible controls. One of the two important methods of the resolution
of this optimization problem is the so-called stochastic maximum principle which may
be considered as a natural generalization of the well-known Pontryagin’s maximum
principle to situations with uncertainty. This principle tells us that, under certain
reasonable assumptions imposed on the coefficients g, µ, L, h, if u(·) is an admissible
optimal control, and if the trajectory corresponding to u(·) is x(·), then, necessarily,
there exists a pair of square-integrable adapted processes (y, z) taking values in Rn×
Rn such that the triple of processes (x(·), y(·), z(·)) satisfies the stochastic Hamiltonian
system (3.1), where the Hamiltonian H is defined by

H(x, y, z) = inf
v∈U
{〈y, g(x, v)〉+ 〈z, µ(x, v)〉+ L(x, v)} .

A coproduct of this stochastic maximum principle is that it gives us an example
of the existence of the solution to FBSDE, but one of the inconveniences of such
methods is that checking the conditions of the existence of an optimal control is a
very hard problem. Another inconvenience is that this approach does not provide us
any information about the uniqueness of the solution of (3.1).

Example 3.2. We now consider a more typical situation. We assume that in the
above example g and µ are linear functions

g(x, v) = Ax+Bv, µ(x, v) = Cx+Dv,

where A and C are n × n matrices, B and D are n × k matrices. We also assume
that there is no constraint imposed on the control processes U = Rk. L(x, v), h(x) are
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twice continuously differentiable with respect to (x, v) and x; Lx(x, v) are bounded
by C(1 + |x|+ |v|).

In this case, if we assume that


(i) k × k matrix Lvv(x, v) ≥ βIk, β > 0,

(ii) n× n matrix Lxx(x, v)− Lxv(x, v)L−1
vv Lvx(x, v) is nonnegative,

(iii) n× n matrix hxx(x) is nonnegative,

(H3.1)

and, if u(·) is an admissible optimal control, the trajectory corresponding to u(·) is
x(·), then the Hamiltonian H is defined by

H(x, y, z) = inf
v∈U
{〈y,Ax+Bv〉+ 〈z, Cx+Dv〉+ L(x, v)} .

We have, necessarily,

Lv(xt, ut) +BT yt +DT zt = 0(3.2)

and (x, y, z) satisfy the following FBSDE:

dxt = (Axt +But)dt+ (Cxt +Dut)dBt,

−dyt = (AT yt + CT zt + Lx(xt, ut))dt− ztdBt,
x0 = a, yT = hx(xT ).

(3.3)

If the optimal control process u(·) does not exist, the solution of (3.3) does not exist.
In optimal control theory, we can prove the u(·) exists and is unique. Then there exist
solutions to FBSDE (3.3). This is an indirect method and we cannot know whether
it is unique. Now we study FBSDE (3.3) directly. It is clear that without Assumption
(H2.3), Theorem 2.6 cannot be applied to obtain the existence and uniqueness of (3.3)
. Fortunately, for the special case like the following form, we have a better result.

We consider the following kind of FBSDE:

dxt = b(t, xt, Byt, Czt)dt+ σ(t, xt, Byt, Czt)dBt,

−dyt = f(t, xt, yt, zt)dt− ztdBt,
x0 = a, yT = Φ(xT ).

(3.4)

Here B is a k × n matrix, C a is k × n matrix, (x, y, z) ∈ Rn+n+n, and b, f , σ have
appropriate dimensions. We use the notations

u =

xy
z

 , A(t, u) =

−fb
σ

 (t, u)

and impose the following monotone conditions:

〈A(t, u)−A(t, u), u− u〉 ≤ −ν1|x̂|2 − ν2|Bŷ + Cẑ|2,
〈Φ(x)− Φ(x), (x− x)〉 ≥ 0

∀ û = (u− u) = (x̂, ŷ, ẑ) = (x− x, y − y, z − z).
(H3.2)
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Here ν1 ≥ 0, ν2 > 0. We also assume that



(i) A(t, u) is uniformly Lipschitz with respect to u;

(ii) for each u, A(·, u) is in M2(0, T );

(iii) Φ(x) is uniformly Lipschitz with respect to x ∈ Rn;

(iv) for each x, Φ(x) is in L2(Ω,FT ,P);

(v) ∀x, |l(t, x,By,Cz)− l(t, x,By,Cz)| ≤ K(|Bŷ + Cẑ|),K > 0, l = b, σ.

(H3.3)

Then we have the following result.

Theorem 3.1. Let (H3.2) and (H3.3) hold. Then there exists a unique solution
us = (xs, ys, zs) satisfying FBSDE (3.4).

Proof. We first prove the uniqueness for FBSDE (3.4). Let us = (xs, ys, zs) and
u′s = (x′s, y

′
s, z
′
s) be two solutions of (3.4). We set û = (x−x′, y−y′, z− z′) = (x̂, ŷ, ẑ).

We use Itô’s formula applied to 〈x̂s, ŷs〉:

E〈Φ(xT )− Φ(x′T ), x̂T 〉 − E〈ŷt, x̂t〉 = E
∫ T

t

〈A(s, us)−A(s, u′s), ûs〉ds.

This with the monotonicity of Φ and A implies

ν2E
∫ T

0

|Bŷs + Cẑs|2ds ≤ 0.

Bŷs + Cẑs ≡ 0 . Following (H3.3)(v) and a classical result for the uniqueness of Itô’s
FSDE, we have x̂s ≡ 0. Thus xs ≡ x′s. In particular, Φ(xT ) ≡ Φ(x′T ). Thus from the
uniqueness of BSDE it follows that ys ≡ y′s and zs ≡ z′s.

The method to prove the existence is similar to Theorems 2.3 and 2.6. We consider
the following FBSDE:

dxαt =
[
(1− α)(−BTByαt −BTCzαt ) + αb(t, xαt , By

α
t , Cz

α
t ) + φt

]
dt

+
[
ασ(t, xαt , By

α
t , Cz

α
t ) + (1− α)(−CTCzαt − CTByαt ) + ψt

]
dBt,

−dyαt = [(1− α)xαt + αf(t, xαt , y
α
t , z

α
t ) + γt] dt− zαt dBt,

xα0 = a, yαT = αΦ(xαT ) + ξ,

(3.5)

where φ, ψ, and γ are given processes in M2(0, T ) with values in Rn, ξ ∈ L2(Ω,FT ,
P ;Rn). Clearly the existence of (3.5) for α = 1 implies our conclusion. If α = 0, we
can obtain the existence and uniqueness result using Theorem 2.3 directly. So we only
need to consider

dXt = [(1− α0)(−BTBYt −BTCZt) + α0b(t,Xt, BYt, CZt)]dt

+ [δ(BTByt +BTCzt + b(t, xt, Byt, Czt)) + φt]dt

+
[
α0σ(t,Xt, BYt, CZt) + (1− α0)(−CTCZt − CTBYt)

]
dBt

+
[
δ(σ(t, xt, Byt, Czt) + CTCzt + CTByt) + ψt

]
dBt,

−dYt = [(1− α0)Xt + α0f(t, Ut)− δ(xt − f(t, ut)) + γt] dt− ZtdBt,
X0 = a, YT = α0Φ(XT ) + δΦ(xT ) + ξ
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and prove that the mapping defined by

Iα0+δ(u× xT ) = U ×XT :

M2(0, T ;Rn+n+n×d)× L2(Ω,FT , P ;Rn)→M2(0, T ;Rn+n+n×d)× L2(Ω,FT , P ;Rn)

is a contraction.
For the difference (X̂, Ŷ ) = (X − X ′, Y − Y ′), using a similar technique as in

Lemmas 2.4 and 2.7 to 〈X̂, Ŷ 〉, we have

ν2α0E
∫ T

0

(
|BŶs + CẐs|2

)
ds+ (1− α0)E

∫ T

0

(
|BŶs + CẐs|2

)
ds

≤ δC1E
∫ T

0

|ûs|2ds+ δC1E|x̂T |2 + δC1E
∫ T

0

|Ûs|2ds+ δC1E|X̂T |2,

where Û and û are defined similarly as in Lemma 2.4.
Here C1 depends on the Lipschitz constants of b, σ, f , and Φ, ν2α0+(1−α0) ≥ L1,

L1 = min(1, ν2) > 0, so

E
∫ T

0

(
|BŶs + CẐs|2

)
ds

≤ δC2E
∫ T

0

|ûs|2ds+ δC2E|x̂T |2 + δC2E
∫ T

0

|Ûs|2ds+ δC2E|X̂T |2.

Here C2 = C1

L1
. Applying the usual technique to the X̂t = Xt −X ′t, we obtain

sup
0≤s≤T

E|X̂s|2 ≤ C3δE
∫ T

0

|ûs|2ds+ C3E
∫ T

0

(
|BŶs + CẐs|2

)
ds,

E
∫ T

0

|X̂s|2ds ≤ C3TδE
∫ T

0

|ûs|2ds+ C3TE
∫ T

0

(
|BŶs + CẐs|2

)
ds.

Similarly, for the difference of the solutions (Ŷ , Ẑ) = (Y − Y ′, Z − Z ′), applying
the usual technique to the BSDE, we have

E
∫ T

0

(
|Ŷs|2 + |Ẑs|2

)
ds ≤ C3δE

∫ T

0

|ûs|2ds+ C3E
∫ T

0

|X̂s|2ds+ C3E|X̂T |2.

Here the constant C3 depends on the Lipschitz constants, K, B, C, and T . Com-
bining the above four estimates, it is clear that we always have

E
∫ T

0

|Ûs|2ds+ E|X̂T |2 ≤ Lδ
(
E
∫ T

0

|ûs|2ds+ E|x̂T |2
)
,

where the constant L depends on C1, C2, C3, and T . So we can choose δ0 = 1
2L . Then

for each δ ∈ [0, δ0], the mapping Iα0+δ is a contraction.
The other part is the same as in Theorem 2.3 or 2.6; we omit it.
Now we can consider the FBSDE (3.3) again. Noticing (3.2), we can get

Lvv(xt, ut)uy = −BT , Lvv(xt, ut)uz = −DT , Lvx(xt, ut) + Lvv(xt, ut)ux = 0.
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Combining (H3.1), we can easily verify (3.3), satisfying the assumptions (H3.2) and
(H3.3). Then applying Theorem 3.1 there exists a unique solution.

Example 3.3. We give a more special situation of Example 3.2: a linear Hamilto-
nian system related to a classical linear quadratic optimal control problem.

We also assume that in Example 3.1 g and µ are linear functions:

g(x, v) = Ax+Bv, µ(x, v) = Cx+Dv,

and L is a quadratic function of (x, v); h is a nonnegative quadratic function of x:

L(x, v) =
1

2
〈Rx, x〉+

1

2
〈Nv, v〉, h =

1

2
〈Qx, x〉,

where Q and R are n× n nonnegative symmetric matrices, and N is a k × k positive
matrix. The control domain is U = Rk; in this case the Hamiltonian H has an explicit
form

H(x, y, z) =
1

2
〈Rx, x〉+ 〈y,Ax〉+ 〈z, Cx〉 − 1

2
(yT , zT )

(
BN−1BT BN−1DT

DN−1BT DN−1DT

)(
y

z

)
.

Thus the Hessian of H is−Hxx −Hxy −Hxz

Hyx Hyy Hyz

Hzx Hzy Hzz

 =

−R −AT −CT
A −BN−1BT −BN−1DT

C −DN−1BT −DN−1DT

 .

The corresponding Hamiltonian system is

dxt = (Axt −BN−1BT yt −BN−1DT zt)dt

+ (Cxt −DN−1BT yt −DN−1DT zt)dBt,

−dyt = (AT yt + CT zt +Rxt)dt− ztdBt,
x0 = a, yT = QxT .

(3.6)

It is easy to verify (3.6), satisfying assumptions (H3.2) and (H3.3). Then according
to Theorem 3.1 there exists a unique solution.

The above three examples are connected with stochastic optimal control problems.
Now we give an example of FBSDE under stochastic differential games circumstances.
We can see one of the advantages of introducing the adjustment matrix G is that some
stochastic Hamiltonian systems arising from differential games, which are in general
far more difficult than stochastic optimal control, can also be dealt with using this
method.

Example 3.4. We consider the following differential game:

dxt = g(xt, v
1
t , v

2
t )dt+ µ(xt, v

1
t , v

2
t )dBt,

x0 = a,

with

inf
v1

sup
v2

E

{∫ T

0

L(xt, v
1
t , v

2
t )dt+ h(xT )

}
,

v = (v1, v2) ∈ Rk.
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We only consider a very simple case:

g(x, v) = Ax+Bv, µ(x, v) = Cx+Dv,

Bv = B1v
1 +B2v

2, Dv = D1v
1 +D2v

2,

L =
1

2
(〈Rx, x〉+ 〈Nv, v〉), h =

1

2
〈Qx, x〉.

In this case,

H(x, y, z) = sup
v2

inf
v1

{
1

2
(〈Rx, x〉+ 〈Nv, v〉) + 〈y,Ax+Bv〉+ 〈z, Cx+Dv〉

}
= inf

v1
sup
v2

{
1

2
(〈Rx, x〉+ 〈Nv, v〉) + 〈y,Ax+Bv〉+ 〈z, Cx+Dv〉

}
=

1

2
(〈Rx, x〉 − 〈N−1(BT y +DT z), BT y +DT z〉) + 〈y,Ax〉+ 〈z, Cx〉.

The related stochastic Hamiltonian system is

dxt = Hydt+HzdBt,

−dyt = Hxdt− ztdBt,
x0 = a, yT = QxT ,

or 
dxt = (Axt −BN−1BT yt −BN−1DT zt)dt

+ (Cxt −DN−1BT yt −DN−1DT zt)dBt

−dyt = (AT yt + CT zt +Rxt)dt− ztdBt
x0 = a, yT = QxT .

If we set

N =

[
1 0
0 −1

]
, R =

[
1 0
0 −1

]
, B = I2, D = I2, Q =

[
1 0
0 −1

]
,

then the above equation becomes

dxt = (Axt −N−1yt −N−1zt)dt+ (Cxt −N−1yt −N−1zt)dBt,

−dyt = (AT yt + CT zt +Rxt)dt− ztdBt,
x0 = a, yT = QxT .

Here N and R are indefinite. We cannot deal with this system using a traditional
method. This is the same dimensional FBSDE, but if we set G = I2, we cannot get
the desired result. Now we set

G =

[
1 0
0 −1

]
.

It is easy to check that−GT (Rx+AT y + CT z)
G(Ax−N−1y −N−1z)
G(Cx−N−1y −N−1z)

 ·
xy
z

 = −|x|2 − |y + z|2.
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From Theorem 3.1, this Hamiltonian system has a unique solution.
In the example, even A and C are randomly disturbed, and the Hamiltonian

system cannot be dealt with using differential games or an optimal control method.
We can also adjust matrix G to get the desired result.
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Abstract. In this paper, we consider a boundary control problem for a model of a fluid-structure
hybrid system. This model has been introduced by Micu and Zuazua in connection with the works
of Banks et al. They have given explicit values for the spectral data in [S. Micu and E. Zuazua,
SIAM J. Math. Anal., 29 (1998), pp. 967–1001] and results for the control problem in [S. Micu
and E. Zuazua, SIAM J. Control. Optim., 35 (1997), pp. 1614–1637]. In the latter paper, they use
variable separation and Ingham inequalities to prove an observation estimate that implies, through
the Hilbert uniqueness method, that initial data can be controlled within finite time. This paper
improves these results by using a stronger form of Ingham inequality for low frequencies. Indeed, we
prove that any analytic function is controlled in a finite time whose dependence on the analyticity
can be sharply estimated.

Key words. wave equation, analyticity, boundary control, nongeometric control, reachable set

PII. S0363012997320626

1. Introduction.

1.1. Setting of the problem. Micu and Zuazua have recently introduced in
[MZ1] a PDE system as a model of a fluid-structure elastic interaction. This model
follows from a series of works by Banks et al. [BFSS].

Let us denote by Ω the square [0, 1]2, Γ0 the subset {0} × [0, 1] of its boundary,
and Γ1 = ∂M \ Γ0 the rest of it. The equations of the model are the following:

∆Φ− Φtt = 0 over Ω× (0, T ),
∂Φ
∂n = 0 over Γ1 × (0, T ),
∂Φ
∂n = Wt over Γ0 × (0, T ),
Wtt −Wyy + Φt = β over Γ0 × (0, T ),
Wy(0, t) = Wy(1, t) = 0 over (0, T ),
(Φ, ∂tΦ,W, ∂tW )|t=0 = (Φ0,Φ1,W0,W1),
with (Φ0,Φ1,W0,W1) ∈ L2(Ω)⊕H−1(Ω)⊕ L2(Γ0)⊕H−1(Γ0).

(1)

For this problem, two values remain constant in time:

c1 =

∫
Γ0

(Wt(y) + Φ(0, y)) dy

and

c2 =

∫
Γ0

W (y) dy +

∫
Ω

Φt(x, y) dx dy.

The control problem in time T is to find a function β such that the solution of (1)
reaches an equilibrium at time T , e.g.,

(Φ, ∂tΦ,W, ∂tW )|t=T = (c1, 0, c2, 0).

∗Received by the editors April 30, 1997; accepted for publication (in revised form) April 1, 1998;
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As the problem is linear, we may consider only initial conditions such that c1 =
c2 = 0 and look for a control function β that drives the solution of (1) to

(Φ, ∂tΦ,W, ∂tW )|t=T = (0, 0, 0, 0).

Then, the control function β will drive any initial condition (Φ0,Φ1,W0,W1)+(c1, 0, c2, 0)
to the equilibrium (c1, 0, c2, 0).

As the geometric control hypothesis of [BLR] does not hold, the space FT of
controlled functions should be different from the space L2(Ω) ⊕H−1(Ω) ⊕ L2(Γ0) ⊕
H−1(Γ0). Nevertheless, as the geometry is simple, we can separate the variables in
order to get some results about FT .

In [MZ1] and [MZ2], Micu and Zuazua have used this method. They get an infinite
number of one-dimensional systems, indexed by an integer n. Then they apply the
Hilbert uniqueness method (HUM) in order to get the adjoint problem

∆Ψ−Ψtt = 0 over Ω× (0, T ),
∂Ψ
∂n = 0 over Γ1 × (0, T ),
∂Ψ
∂n = −Vt over Γ0 × (0, T ),
Vtt − Vyy + Ψt = 0 over Γ0 × (0, T ),
Vy(0, t) = Vy(1, t) over (0, T ),

(2)

with initial conditions (Ψ, V ) = ((Ψ,Ψt), (V, Vt))|t=0 in

(
H1

0 ([0, 1])× L2([0, 1])× C× C
)
eiπny.

For n 6= 0, the HUM method, described in [MZ2, sect. 2.4], shows that if there is a
constant C(n, T ) such that for any solution of problem (2)

||(Ψ, V )||2X ≤ C(n, T )

∫ T

−T
|Vtt(0, t)|2 dt,

then for any initial data

(Φ0,Φ1,W0,W1) ∈ (L2([0, 1])×H−1([0, 1])× C× C)eiπny

a control β can be built, such that the solution of the control problem (1) satisfies

(Φ, ∂tΦ,W, ∂tW )|t=T = 0.

This method naturally leads to controls β defined as β := d2

dt2 ρ, with

|ρ|L2(Γ0×(0,T )) ≤ C(n, T )|(Φ0,Φ1,W0,W1)|L2([0,1])×H−1([0,1])×C×C.(3)

This is why we will consider controls β in H−2.
For n = 0, the same result holds, providing c1 = c2 = 0 (see [MZ2, sect. 2.5]).
Now suppose we take an initial condition

(Φ0,Φ1,W0,W1) ∈ L2(Ω)⊕H−1(Ω)⊕ L2(Γ0)⊕H−1(Γ0),

with c1 = c2 = 0 and such that its Fourier series in y

(Φ0,Φ1,W0,W1) =
∑
n

(Φ0,Φ1,W0,W1)ne
iπny
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is such that(
C(n, T )||(Φ0,Φ1,W0,W1)n||H1

0 ([0,1])×L2([0,1])×C×C
)
n
∈ l2(Z).(4)

Then for each value of n, we can build a control βn that drives (Φ0,Φ1,W0,W1)n to
0 in time T . Therefore, if we put β :=

∑
n βn, the control β drives (Φ0,Φ1,W0,W1)

to 0 in time T . Notice that the control β exists and is in H−2(Γ0× (0, T )) because of
(4) and (3). Hence the space H of such initial data is a subset of FT . So any result
about the constants C(n, T ) gives an estimate about the space FT .

In [MZ2], Micu and Zuazua use explicit spectral results and Ingham techniques
to prove that for any real number α > 1, there is a positive constant Kα such that
for any integer n, and any time T > 2,

C(n, T ) ≤ Kαe
Kαn

α

.

In this case, though, Ingham techniques fail to give sharp estimates because fre-
quencies νn,k such that k = o(n) have no finite gap between each other; νn,k+1 −
νn,k → 0 when n goes to infinity.

1.2. Main result. In this paper, we will replace these techniques by biorthog-
onal sequences methods in the bad part of the spectrum. It will allow us to get the
following theorem.

Theorem 1. For any positive δ and ε, there is a time T (ε, δ) smaller than
Cδ
ε1+δ and a positive constant Cε,δ such that for any positive integer n and any time
T > T (ε, δ),

C(n, T ) ≤ Cε,δ eε|n|.

In other terms, this theorem means that any initial data (Φ0,Φ1,W0,W1) such
that (

eα|n|||(Φ0,Φ1,W0,W1)n||H1
0 ([0,1])×L2([0,1])×C×C

)
n
∈ l2(Z)

belongs to FT if

T > T (α, δ).

Thus, the following corollary holds.
Corollary 1.

Cω × Cω × Cω × Cω ⊂
⋃
T

FT .

As Ω has a boundary, Cω functions over Ω must be understood as functions that
have an analytic continuation over a neighborhood of Ω. This corollary states that
any such initial condition can be controlled within finite time. Of course, this time
depends on the condition.

Indeed, it would be enough to take functions that are analytic with respect to y
and whose values are Sobolev functions with respect to x. Such spaces may not be
familiar to the reader. However, one may keep in mind that regularity with respect
to y is the key.
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Proof. Let (Φ0,Φ1,W0,W1)(x, y) be an element of L2(Ω) × H−1(Ω) × L2(Γ) ×
H−1(Γ), with

(Φ0,Φ1,W0,W1)(x, y) =
∑
n

(Φ0,Φ1,W0,W1)n(x)eiπny.

First, notice that we can subtract (c1, 0, c2, 0) from the initial condition in order
to ensure that c1 = c2 = 0.

The Fourier coefficients can be computed by

(Φ0,Φ1,W0,W1)n(x) =

∫ 1

0

(Φ0,Φ1,W0,W1)(x, y)e−iπny dy.(5)

If (Φ0,Φ1,W0,W1) is analytic (analytic with respect to y is enough), then there
is a positive real number ε such that

y 7→ (Φ0,Φ1,W0,W1)(., y + iε),(6)

and

y 7→ (Φ0,Φ1,W0,W1)(., y − iε).(7)

are analytic and hence L2.
Now we can shift the integration contour in (5) to the imaginary direction (because

(Φ0,Φ1,W0,W1) is periodic with respect to y). Thus,

(Φ0,Φ1,W0,W1)n(x) =

∫ 1

0

(Φ0,Φ1,W0,W1)(x, y + iε)e−iπny+nπε dy.

Thus, (Φ0,Φ1,W0,W1)ne
nπε is the nth Fourier coefficient of function (6) that is in

L2. Therefore,

((Φ0,Φ1,W0,W1)ne
nπε)n ∈ l2(Z).

For symmetric reasons

((Φ0,Φ1,W0,W1)ne
−nπε)n ∈ l2(Z).

Thus,

((Φ0,Φ1,W0,W1)ne
|n|πε)n ∈ l2(Z).

Therefore, by Theorem 1, if T > T (πε, 1), (Φ0,Φ1,W0,W1) ∈ FT . Therefore,

(Φ0,Φ1,W0,W1) ∈
⋃
T

FT .

This paper aims at proving Theorem 1. In section 2, we will recall Micu and
Zuazua’s spectral results and give more detail about the eigenvalues of the problem.
Then in section 3 we will state two propositions, dealing with high and low frequencies,
and show how we can prove the theorem out of them. Finally, we will prove those
propositions in sections 4 and 5.
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2. Notations and preliminaries. At first, let us recall a few notations and
results from [MZ1]. X is the energy space H1(Ω)⊕L2(Ω)⊕H1(Γ0)⊕L2(Γ0). Reference
[MZ1] introduces a skew-adjoint operator over X , denoted AC , whose domain is a
subset of H2(Ω)×H1(Ω)×H2(Γ0)×H1(Γ0). It is defined by

AC(Ψ0,Ψ1, V0, V1) = (−Ψ1,−∆Ψ0,−V1,−V0yy + V1 + Ψ1).

It can be diagonalized over an orthogonal basis of eigenvectors

ξν cosnπy =


ξ1
ν cosnπy
ξ2
ν cosnπy
ξ3
ν cosnπy
ξ4
ν cosnπy

 =


1
ν cosh(

√
n2π2 + ν2(x− 1)) cosnπy

− cosh(
√
n2π2 + ν2(x− 1)) cosnπy

−√n2π2+ν2

ν2 sinh(
√
n2π2 + ν2) cosnπy√

n2π2+ν2

ν sinh(
√
n2π2 + ν2) cosnπy

 ,

and the solution of (2) with initial condition ξν cosnπy is such that
Ψ(x, y, t)
Ψt(x, y, t)
V (y, t)
Vt(y, t)

 = ξν(x) cosnπy eνt.

As this basis is not normalized, we will denote Ξν = ||ξν ||X .
The values ν that belong to iR are the eigenvalues of AC . For any integer n they

are the roots of

ν2 + n2π2 = −z2,

with

tan z =
z2 + n2π2

z3
.(8)

For n = 0 only, ν = 0 belongs to the spectrum. Otherwise, (8) has two kinds of
solutions:
• Either z is real, denoted zn,k with k in N∗. This corresponds to eigenvalues νn,k

of modulus greater than nπ. We denote νn,−k = −νn,k.

• Or z = it is imaginary, with tanh t = −t2+n2π2

t3 . We denote it zn,∗. It gives rise
to two eigenvalues denoted νn,∗ and νn,∗∗ = −νn,∗ whose moduli are smaller than nπ.

For any (Ψ, V ) in X ,(
Ψ(x, y)
V (y)

)
=

∑
n∈Z

k∈Z∗∪{∗,∗∗}

an,k
Ξn,k

ξn,k(x, y),

with (an,k)n,k ∈ l2.
We will denote X−1 the space of functions defined by the above formula, with

the condition (
an,k
νn,k

)n,k ∈ l2, and we will denote W the same type of space with the

condition (an,k(1 + |n|))n,k ∈ l2.
If we denote (Ψ, V ) as the solution of problem (2) with the initial conditions

(Ψ,Ψt)|t=0 = Ψ , (V, Vt)|t=0 = V , the well-posedness of the problem implies that

||Ψ||H1(Ω×(0,T )) ≤ C||(Ψ, V )||X
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and

||Ψ||L2(Ω×(0,T )) ≤ C||(Ψ, V )||X−1
.

To end with, we will also write for any (Ψ, V ) in X that

(Ψ, V ) ∈ Xn0 if n 6= n0 ⇒ an,k = 0,

(Ψ, V ) ∈ X (1) if |k| > |n| ⇒ an,k = 0,

(Ψ, V ) ∈ X (2) if
(
|k| ≤ |n| or k ∈ {∗, ∗∗}

)
⇒ an,k = 0.

For any (Ψ, V ) ∈ X , we have the following decomposition:

(Ψ, V ) = (Ψ, V )(1) + (Ψ, V )(2),

with (Ψ, V )(1) ∈ X (1) and (Ψ, V )(2) ∈ X (2).
Moreover, I will be the set of (k, n) such that k ∈ {∗, ∗∗} or |k| ≤ |n|, and we will

agree that ∗∗ = −∗.
Notice that for any integer n, Xn ⊂ W.
The following lemma gives a few results about the numbers νn,k.
Lemma 1. For all integers n and k, the following inequalities hold:

(i)
√
n2π2 + (k − 1)2π2 ≤ |νn,k| ≤

√
n2π2 +

(
k − 1

2

)2

π2,

(ii)

∣∣∣∣√|νn,k|2 − n2π2 −
(
k − 1

2

)
π

∣∣∣∣ ≥ C

1 + n2
,

(iii)

∣∣∣∣√|νn,k|2 − n2π2 − (k − 1)π

∣∣∣∣ ≥ C

k
.

Furthermore, with n going to infinity, we also have

(iv) π − |νn,∗|
n
∼ 1

2
π

1
3n−

2
3 .

Proof. We denote, as in [MZ2], zn,k =
√|νn,k|2 − n2π2. zn,k satisfies

tan zn,k =
z2
n,k + n2π2

z3
n,k

.

(See Figure 2.1.)

Inequality (i) follows from (k−1)π ≤ zn,k ≤ (k− 1
2 )π and |νn,k| =

√
z2
n,k + n2π2.

As we have |zn,k− ((k−1)π+ π
2 )| ≥ |zn,1− π

2 |, (ii) follows from |zn,1− π
2 | ≥ C

1+n2 .
To prove (iii), it is enough to bound |yn,k − (k− 1)π| from below, where yn,k satisfies
y2
n,k

y3
n,k

= C(yn,k − (k − 1)π). The latter equation has an explicit solution that ensures

|yn,k − (k − 1)π| ≤ C
kπ .
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zn, zn, zn,zn,

n2π2z2+
z3

tan z

1 2 3 4

Fig. 2.1. Determination of zn,k.

To end with, if we denote zn,∗ =
√
n2π2 − |νn,∗|2, we have

e2zn,∗ =
z3
n,∗ − z2

n,∗ + π2n2

z3
n,∗ + z2

n,∗ − π2n2
.

Thus,

zn,∗ ∼ (π2n2)
1
3 ⇒ π − |νn,∗|

n
∼ 1

2
π

1
3n−

2
3 (1 + o(1)).

From Lemma 1 and in view of the explicit value of ξn,k, we can see that there is
a constant C such that for any (n, k) we have

Ξn,k ≤ CeCn
2
3 .(9)

3. Proof of Theorem 1. In order to prove this theorem, we will need two
estimates, for high and low frequencies.

Proposition 1 (high frequencies). There exists a constant C and a positive time
T1 such that for any initial condition (Ψ, V ) in W, we have

||(Ψ, V )(2)||2W ≤ C
(
||Ψ||2L2((−2T1,2T1)×Ω) + ||Vtt||2L2((0,T1)×Γ0)

)
.

This proposition looks like the usual estimate given by microlocal analysis when
the geometric control hypothesis of Bardos–Lebeau–Rauch holds (see [Le]). This is
not surprising because the rays that correspond to those frequencies always hit the
controlled boundary within a uniform finite time.

Proposition 2 (low frequencies). For any positive ε and δ, there exists a con-
stant Cε,δ, an integer n1(ε), and a positive time T2(ε, δ) ≤ Cδ

ε1+δ such that for any
integer n greater than n1(ε) and any initial condition (Ψ, V ) in Xn

||(Ψ, V )(1)||2X ≤ Cε,δ e2ε|n|
∫ T2(ε,δ)

−T2(ε,δ)

|Vtt(0, t)|2 dt.
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The difficult part of the problem is concentrated in this part of the spectrum,
where the gap between the frequencies is not bounded from below. This is why
the relevant constants appear in that proposition. Not much is known about those
constants. When ε goes to 0, Cε,δ certainly goes to infinity; if it were bounded, we
could take the limit and prove that any initial data can be controlled, without any
hypothesis. This certainly is not true because of Bardos–Lebeau–Rauch’s theorem.

To the author’s knowledge, no such thing can be said about the constant Cδ when
δ goes to 0.

We also have the following lemma.
Lemma 2. There is a constant C such that for any integer n and any initial

condition (Ψ, V ) in Xn

||(Ψ, V )(2)||2X−1
≤ C

1 + n2
||(Ψ, V )(2)||2X .

Proof of Lemma 2. All frequencies in (Ψ, V )(2) of nonzero amplitude are such
that |k| > |n|.

Now, it follows from Lemma 1 that |k| > |n| ⇒ |νn,k|2 ≥ C(1+n2). Furthermore,

||(Ψ, V )||2X−1
=
∑
k

1

|νn,k|2 |an,k|
2
, ||(Ψ, V )||2X =

∑
k

|an,k|2.

Let us first prove that Propositions 1 and 2 and Lemma 2 imply that Theorem 1
holds.

Proof. Let ε and δ be two positive real numbers. Out of Propositions 1 and 2, we
get two positive times, denoted T1 and T2(ε, δ). Let us define

T (ε, δ) = sup(T1, T2(ε, δ)).

Let n be a positive integer and (Ψ, V ) any initial condition in Xn. Then we have

||(Ψ, V )||2X = ||(Ψ, V )(1)||2X + ||(Ψ, V )(2)||2X ,
≤ ||(Ψ, V )(1)||2X + ||(Ψ, V )(2)||2W .

Hence, by Propositions 1 and 2, for n ≥ n1(ε),

||(Ψ, V )||2X ≤ Cε,δ e2ε|n|
∫ T2(ε,δ)

−T2(ε,δ)

|Vtt(0, t)|2 dt

+ C

[∫ T1

0

|Vtt(0, t)|2 dt + ||Ψ||2L2((−2T1,2T1)×Ω)

]
.

Thus,

||(Ψ, V )||2X ≤ C ′ε,δ e2ε|n|
∫ T (ε,δ)

−T (ε,δ)

|Vtt(0, t)|2 dt+ C ||Ψ||2L2((−2T1,2T1)×Ω).

As the problem is well posed,
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||(Ψ, V )||2X ≤ C ′ε,δ e2ε|n|
∫ T (ε,δ)

−T (ε,δ)

|Vtt(0, t)|2 dt+ C ′ ||(Ψ, V )||2X−1
,

≤ C ′ε,δ e2ε|n|
∫ T (ε,δ)

−T (ε,δ)

|Vtt(0, t)|2 dt+ C ′ ||(Ψ, V )(1)||2X−1
+ C ′ ||(Ψ, V )(2)||2X−1

,

≤ C ′ε,δ e2ε|n|
∫ T (ε,δ)

−T (ε,δ)

|Vtt(0, t)|2 dt+ C ′ ||(Ψ, V )(1)||2X + C ′ ||(Ψ, V )(2)||2X−1
.

Hence by Proposition 2,

||(Ψ, V )||2X ≤ C ′ε,δ e2ε|n|
∫ T (ε,δ)

−T (ε,δ)

|Vtt(0, t)|2 dt + C ′Cε,δ e2ε|n|
∫ T2(ε,δ)

−T2(ε,δ)

|Vtt(0, t)|2 dt

+C ′ ||(Ψ, V )(2)||2X−1
.

Therefore, by Lemma 2,

||(Ψ, V )||2X ≤ C ′′ε,δ e2ε|n|
∫ T (ε,δ)

−T (ε,δ)

|Vtt(0, t)|2 dt+
C

1 + n2
||(Ψ, V )(2)||2X .

Thus,

||(Ψ, V )||2X ≤ C ′′ε,δ e2ε|n|
∫ T (ε,δ)

−T (ε,δ)

|Vtt(0, t)|2 dt+
C

1 + n2
||(Ψ, V )||2X .

For |n| ≥ √2C − 1 , C
1+n2 ≤ 1

2 .

Thus, if n ≥ n2(ε) = sup{n1(ε),
√

2C − 1},

||(Ψ, V )||2X ≤ 2 C ′′ε,δ e
2ε|n|

∫ T (ε,δ)

−T (ε,δ)

|Vtt(0, t)|2 dt.

As we can increase the constant to take care of the first n2(ε) values of n, we have
proved Theorem 1. (Note that it is enough to prove estimates for each Xn because of
the orthogonality of the solutions for different values of n.)

We still have to prove the two propositions. This will be dealt with in the following
two sections.

4. Proof of Proposition 1 (high frequencies). A simple application of In-
gham techniques would allow us to prove a slightly weaker form of this proposition;
specifically, it would prove that

||(Ψ, V )(2)||W ≤ C
(
||Ψ||L2((−2T1,2T1)×Ω) + ||V (2)

tt||L2((0,T1)×Γ0)

)
.

In order to get V instead of V (2) in the right-hand side of the estimate, we will
use microlocal techniques.

The proof is based upon the techniques that are used when the geometric control
hypothesis holds, e.g., when every ray hits the boundary. In our case, we will have to
get rid of uncontrolled rays by cutting off their frequencies. We cannot take a brutal
cutoff because it would not be pseudodifferential. Thus, we will have to introduce
smooth pseudodifferential cutoffs, which we will denote P1 and P2. These will be
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chosen to ensure P1 + P2 = Id, but their images will have a nonzero intersection.
Dealing with this intersection will be the main source of dissemblance between the
proof of this proposition and the classical one (see [Le], for instance).

Let T1 be a positive time that will be fixed later. Let us introduce a few functional
spaces.

Let Z be the set of all (Ψ, V ) in L2((−2T1, 2T1)×Ω)×L2((0, T1)×Γ0) such that
2Ψ = 0 over (−2T1, 2T1)× Ω,
∂Ψ
∂n = 0 over Γ1 × (−2T1, 2T1),
∂Ψ
∂n = −Vt over Γ0 × (−2T1, 2T1),
Vtt − Vyy + Ψt = 0 over Γ0 × (−2T1, 2T1),

and

Vtt belongs to L2((0, T1)× Γ0).

The norm over Z will be defined as

||(Ψ, V )||2Z = ||Ψ||2L2((−2T1,2T1)×Ω) + ||Vtt||2L2((0,T1)×Γ0).

The functions of Z can always be written as

Ψ(x, y, t) =
∑
n∈Z

k∈Z∗∪{∗,∗∗}

an,k
Ξn,k

eνn,kt cosπny ξ1
n,k(x),

V (y, t) =
∑
n∈Z

k∈Z∗∪{∗,∗∗}

an,k
Ξn,k

eνn,kt cosπny ξ3
n,k,

with (
an,k
νn,k

)n,k ∈ l2.

Therefore, we can separate the high frequencies from the low ones. Let us denote

(Ψ, V ) ∈ Z(1) if |k| > |n| ⇒ an,k = 0.

(Note for easier understanding: The functions of Z(1) have the same frequencies as
those of X (1). Nevertheless, X (1) 6= Z(1).)

To end with, for a (Ψ, V ) in W, we shall write (Ψ, V ) ∈ W(3) if(
|k| ≤ n

2
or |k| = ∗

)
⇒ an,k = 0.

If (Ψ, V ) belongs to W ∩X (2), then (Ψ, V ) belongs to W(3).
Let S map any initial condition (Ψ, V ) in X−1 to the solution of problem (2) over

(−2T1, 2T1)× Ω with (Ψ, V ) as initial conditions.
In view of Proposition (2.1) of [MZ2], if we put (Ψ, V )(x, y) =

∑
n(Ψ, V )n(x)einy,

we have ∫ T1

0

|(Vn)tt|2 dt ≤ C(n4 + 1)||(Ψ, V )n||2H1(0,1)×L2(0,1)×R×R.

Therefore,

S(W) ⊂ Z.
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Let us define the mapping ı̃ as follows:

ı̃ :

∣∣∣∣ W(3) ⊕Z(1) → Z
((Ψ, V ), (Φ,W )) 7→ S(Ψ, V ) + (Φ,W ),

ı̃((Ψ, V ) (Φ,W )) = 0⇔ S(Ψ, V ) + (Φ,W ) = 0⇔ S(Ψ, V ) = −(Φ,W ).

Therefore, the only nonzero coefficients an,k are such that |n|2 < |k| ≤ |n|. ı̃ induces

an injective mapping i from G = (W(3) ⊕Z(1))/ ker ı̃ to Z.
Lemma 3. If T1 is big enough, i is onto.
We will prove Lemma 3 later on.
First, let us see how we can end the proof of the proposition out of this lemma

for such a T1.
As i is a one-to-one continuous morphism, its reciprocal mapping is also contin-

uous. Thus, there exists a constant C such that for any couple ((Ψ, V ), (Φ,W )) in
W(3) ⊕Z(1), we have

||[(Ψ, V ), (Φ,W )]||G ≤ C ||̃ı((Ψ, V ), (Φ,W ))||Z .(10)

Here, [(Ψ, V ), (Φ,W )] denotes the class of ((Ψ, V ), (Φ,W )) in G, and the norm on
this quotient space has the usual definition:

||[(Ψ, V ), (Φ,W )]||2G = inf
(w1,w2)∈ker ı̃

||((Ψ, V ), (Φ,W )) + (w1, w2)||2W(3)⊕Z(1) .

Let (Ψ, V ) be any element of W.
We can split it into (Ψ, V ) = (Ψ, V )1+(Ψ, V )3 with (Ψ, V )3 ∈ W(3) and S(Ψ, V )1 =

(Ψ1, V1) ∈ Z(1) (by deciding for each frequency whether |k| ≤ |n|2 ).
Indeed, S(Ψ, V )1 has the same frequencies as (Ψ, V )1 that belongs to W. Thus,

||̃ı((Ψ, V )3, (Ψ1, V1))||2Z = ||S(Ψ, V )3 + S(Ψ, V )1||2Z
= ||Ψ||2L2((−2T1,2T1)×Ω) + ||Vtt||2L2((0,T1)×Γ0).(11)

On the other hand,

||[(Ψ, V )3 , (Ψ1, V1)]||2G = inf
Sw2=−w1

(
||(Ψ, V )3 + w2||2W(3) + ||(Ψ1, V1) + w1||2Z(1)

)
.

The nonzero coefficients in w2 are such that |n|2 < |k| ≤ |n|. They correspond to

elements of the basis that are orthogonal to W ∩X (2). So, as the basis is orthogonal,
for any initial condition (Ψ, V ) in W

||(Ψ, V )(2)||2W = inf
Sw2=−w1

||(Ψ, V )3 + w2||2W(3) ,

≤ inf
Sw2=−w1

(
||(Ψ, V )3 + w2||2W(3) + ||(Ψ1, V1) + w1||2Z(1)

)
.

Therefore, by definition of the norm over G,

||(Ψ, V )(2)||2W ≤ ||[(Ψ, V )3, (Ψ1, V1)]||2G.
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Fig. 4.1. Angles α1 and α2.

Thus, out of (10),

||(Ψ, V )(2)||2W ≤ C ||̃ı((Ψ, V )3, (Ψ1, V1))||2Z .
Then, out of (11),

||(Ψ, V )(2)||2W ≤ C
(
||Ψ||2L2((−2T1,2T1)×Ω) + ||Vtt||2L2((0,T1)×Γ0)

)
.

Proof of Lemma 3. In order to prove that i is surjective, we have to prove that for
any couple (Φ,W ) in Z, we can find an element ((Ψ, V )3, (Φ1,W1)) of W(3) ⊕ Z(1)

such that

ı̃((Ψ, V )3, (Φ1,W1)) = (Φ,W ).

Let (Φ,W ) be an element in Z. It can be written as

Φ(x, y, t) =
∑
n∈Z

k∈Z∗∪{∗,∗∗}

an,k
Ξn,k

eνn,kt cosπny ξ1
n,k(x),

W (y, t) =
∑
n∈Z

k∈Z∗∪{∗,∗∗}

an,k
Ξn,k

eνn,kt cosπny ξ3
n,k.

We shall consider Φ as defined over Rt × Rx × Ry by continuing the functions ξ(x)
by ξ(x) = 0 if x /∈ [0, 1].

Let us denote Ω̃ = (0, 1)×R. Φ is a distribution that satisfies 2Φ = 0 over Ω̃×Rt
and whose restriction outside Ω̃× Rt is zero. Moreover, Φ belongs to S ′(R3).

We shall introduce two symbols. Let γ1 and γ2 be two real numbers such that
1
2 < γ2 < γ1 < 1 and denote αk = 1√

1+γ2
k

, k = 1, 2. See Figure 4.1.

We define the symbol σ1(η, τ) (the degree of which is zero) as follows.
If η2 + τ2 is greater than 1

2 , σ1 is homogeneous of degree 0 and is an even, C∞

function of α = η
τ . It is equal to 1 in the neighborhood of the set | ητ | ≥ α2 and to 0

in the neighborhood of | ητ | ≤ α1. Furthermore, on the other regions, we demand that
σ1(η, τ) remain C∞.
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Let us denote P1 = Op(σ1) as the pseudodifferential operator associated with the
symbol σ1. It is tangential with respect to x and of degree zero. It is operating over
S ′(R3).

If we put σ2 = 1 − σ1 and P2 = Op(σ2), we get another operator with the same
properties, such that P1 + P2 = Id.

Let us define Φ1 = P1Φ and Φ2 = P2Φ. We have Φ1 + Φ2 = Φ.
We may compute the explicit form of Φ2:

Φ̂ =
∑
n,k

an,k
Ξn,k

ξ̂1
n,k(ξ)

δπn + δ−πn
2

(η) δ−iνn,k(τ),

so

σ2(η, τ)Φ̂ =
∑
n,k

an,k
Ξn,k

σ2(πn,−iνn,k) ξ̂1
n,k(ξ)

δπn + δ−πn
2

(η) δ−iνn,k(τ),

then

Φ2 = P2Φ =
∑
n,k

an,k
Ξn.k

σ2(πn,−iνn,k) ξ1
n,k(x) cosnyπ etνn,k .

Like Φ, Φ2 satisfies 2Φ2 = 0 in Ω× Rt.
Furthermore, if we denote

W2 = P2W =
∑
n,k

an,k
Ξn,k

σ2(πn,−iνn,k) ξ3
n,k cosnyπ etνn,k ,

we can notice that (Φ2,W2) still is a solution to problem (2).
The same computation and remark can be done about Φ1 and W1.
Let us study the singularities of W2.
As P2 is of order 0 and Wtt belongs to L2((0, T1) × Γ0), W2tt also belongs to

L2((0, T1) × Γ0). Furthermore, as P2 is tangential with respect to x and σ2 is zero
near | ητ | ≥ α2, we have

WF (W2) ⊂
{
|η
τ
| ≤ α2

}
.(12)

Now, on the part {| ητ | ≤ α2} of the cotangent set, we have τ 6= 0, so as W2tt

belongs to L2((0, T1) × Γ0) we know that if σ ∈ ((0, T1) × Γ0) × {| ητ | ≤ α2}, W2

belongs to H2
σ. Together with the inclusion (12), this means that W2 belongs to

H2((0, T1)× Γ0); thus,

W2yy ∈ L2((0, T1)× Γ0).

This means that

∫ T1

0

∫ 1

0

∣∣∣∣∣∣
∑
n,k

n2an,k
Ξn,k

σ2(πn,−iνn,k)ξ3
n,k cosnyπ etνn,k

∣∣∣∣∣∣
2

dy dt < +∞.

Now, as σ2(πn,−iνn,k) is 0 if |k| = ∗ or |k| ≤ γ2n, the sum ranges only on |k| ≥ γ2|n|;
therefore, through Lemma 1, there is a positive ε such that for any n, k, |νn,k+1| −
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|νn,k| ≥ ε. Thus, according to Ingham’s inequality (see, for instance, [Z, p. 222]), if
we put T1 >

2π
ε ,

∑
n,k

∣∣∣∣∣n2an,kσ2(πn,−iνn,k)ξ3
n,k

Ξn,k

∣∣∣∣∣
2

< +∞.

Now Lemma 1 proves that for |k| ≥ γ2|n|
c ≤ Ξn,k ≤ C

and

c

n
≤ ξ3

n,k ≤
C

n
.

Thus, we get ∑
n,k

|nan,kσ2(πn,−iνn,k)|2 < +∞.

Together with the same computation based upon W2 ∈ L2((0, T1)× Γ0), we get(
(1 + |n|)an,kσ2(πn,−iνn,k)

)
n,k
∈ l2.

Thus, we have proved that (Φ2,W2) corresponds to a couple (Ψ, V )3 of W such
that (Φ2,W2) = S(Ψ, V )3. Moreover, the set of frequencies allowed by σ2 in (Ψ, V )3

shows that (Ψ, V )3 belongs to W(3).
To conclude, as (Φ1,W1) = (Φ,W )−(Φ2,W2) and (Φ2,W2) belongs to S(W) ⊂ Z,

(Φ1,W1) also belongs to Z. As it has the same frequencies as Φ1, we even know that
it belongs to Z(1).

Thus, we have found a couple ((Ψ, V )3, (Φ1,W1)) in W(3) ⊕Z(1) such that

ı̃((Ψ, V )3, (Φ1,W1)) = S(Ψ, V )3 + (Φ1,W1) = (Φ,W ).

Hence, we have proved Lemma 3 and Proposition 1.

5. Proof of Proposition 2 (low frequencies). In low frequencies of the spec-
trum, Ingham techniques fail because the gap νn,k+1− νn,k goes to 0. In order to get
a sharp estimate, we will use biorthogonal sequences.

The idea is to build functions hn,k for which ĥn,k(νn,k0
) = δk0

k , supported by
[−T, T ] and such that their L2 norm is bounded from above.

The usual technique is based upon the functions∏
k

(
1− z2

ν2
n,k

)
.

We will build that kind of function (which we will call functions f) by more explicit
means in section 5.1.

These functions have a problem, though: Their L2 norms behave like eπ|n| and,
therefore, are not bounded. Nevertheless, the zone where this L2 norm is big is
concentrated in the frequency interval [−n, n] that includes only two eigenfrequencies:
νn,∗ and νn,∗∗. Thus, in section 5.2 we will build a sequence of functions gn,k such that
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||ĝn,k||L2 is exponentially small in [−n, n] and bounded from below outside. Then we
will put h = f ∗g in order to compensate the size of f without hindering its properties
at frequencies νn,k.

Indeed, we will prove the following lemma.
Lemma 4. For any odd integer q and any positive real number ε, there exists

a time T2(q, ε) smaller than Cqε
q+1
1−q such that we can find a biorthogonal sequence

(hk0,n
ε,q )(n,k0)∈N∗×(Z∗∪{∗,∗∗}) of L2 functions for which the following properties hold:

(i) hk0,n
ε,q is supported by [−T2(q, ε), T2(q, ε)];

(ii) ||hk0,n
ε,q ||2L2 ≤ C e2ε|n|;

(iii) if k 6= ±k0,
∫
hk0,n
ε,q (t)etνn,k dt = 0;

(iv) if n ≥ n1(ε, q) and (k0, n) ∈ I = {(k, n) | |k| = ∗ or |k| ≤ n},
| ∫ hk0,n

ε,q (t)etνn,±k0 dt | ≥ c
nNq

.
The constants depend only on q and ε. Moreover, the functions h can be chosen as
even or odd. We will denote them he

k0,n
ε,q or ho

k0,n
ε,q .

Let us first prove Proposition 2 from this lemma.
Let n be an integer greater than n1(ε) and (Ψ, V ) an initial condition in Xn. Let

us denote (Ψ, V ) the solution of (2) with these initial data. We will denote K as the
operator that maps (Ψ, V ) in Xn to Vtt(y = 0, .).

If we denote an,k = 〈(Ψ, V ),
ξn,k
Ξn,k
〉, we notice that

V (y, t) =
∑

k∈Z∗∪{∗,∗∗}
an,k

ξ3
n,k

Ξn,k
cosπny eνn,kt.

Thus,

K(Ψ, V )(t) =
∑

k∈Z∗∪{∗,∗∗}
an,k

ξ3
n,k

Ξn,k
ν2
n,ke

νn,kt.

Now for (k0, n) in I and L in N∗, as ĥe is even,∫
he
k0,n
ε,q (t)K

( ∑
|k|=∗
|k|≤L

an,k
ξn,k
Ξn,k

)
(t) dt =

∑
k=∗

1≤k≤L

(an,k+an,−k)
ξ3
n,k

Ξn,k
ν2
n,k

∫
he
k0,n
ε,q (t)eνn,kt dt.

From (iii), if L ≥ k0,∫
he
k0,n
ε,q (t)K

( ∑
|k|=∗
|k|≤L

an,k
ξn,k
Ξn,k

)
(t) dt = (an,k0

+an,−k0
)
ξ3
n,k0

Ξn,k0

ν2
n,k0

∫
he
k0,n
ε,q (t)eνn,k0

t dt.

From (iv), we get that∣∣∣∣∣∣∣∣
∫
he
k0,n
ε,q (t)K

( ∑
|k|=∗
|k|≤L

an,k
ξn,k
Ξn,k

)
(t) dt

∣∣∣∣∣∣∣∣ ≥ |an,k0
+ an,−k0

|
∣∣∣∣∣ ξ3
n,k0

Ξn,k0

∣∣∣∣∣ |νn,k0
|2 c

nNq
.

Now Lemma 1 implies that

|ξ3
n,k0
| = |zn,k0

|
|νn,k0 |

| sin zn,k0 | ≥
Cγ
nN

.
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Thus, ∣∣∣∣∣∣∣∣
∫
he
k0,n
ε,q (t)K

( ∑
|k|=∗
|k|≤L

an,k
ξn,k
Ξn,k

)
(t) dt

∣∣∣∣∣∣∣∣ ≥ |an,k0
+ an,−k0

| C e−Cn
2
3 .

If we take the limit with L→ +∞,∣∣∣∣∫ he
k0,n
ε,q (t)K(Ψ, V )(t) dt

∣∣∣∣ ≥ |an,k0
+ an,−k0

| C e−Cn
2
3 .

We can prove the same way that∣∣∣∣∫ ho
k0,n
ε,q (t)K(Ψ, V )(t) dt

∣∣∣∣ ≥ |an,k0
− an,−k0

| C e−Cn
2
3 .

Thus, by summing conveniently,

|an,k0 | ≤ C eCn
2
3

[∣∣∣∣∫ he
k0,n
ε,q (t)K(Ψ, V )(t) dt

∣∣∣∣+

∣∣∣∣∫ ho
k0,n
ε,q (t)K(Ψ, V )(t) dt

∣∣∣∣] .(13)

For any n greater than n1(ε)

||(Ψ, V )(1)||2X =
∑
|k|=∗
|k|≤|n|

|an,k|2.

From (13)

||(Ψ, V )(1)||2X ≤ C
∑
|k|=∗
|k|≤|n|

eCn
2
3

∣∣∣∣∫ he
k,n
ε,q (t) Vtt(0, t) dt

∣∣∣∣2 + same with ho.

Hence, from (i)

||(Ψ, V )(1)||2X ≤ CeCn
2
3
∑
|k|=∗
|k|≤|n|

∫ ∣∣hk,nε,q (t)
∣∣2 dt ∫ T2(q,ε)

−T2(q,ε)

|Vtt(0, t)|2 dt.

Thus, from (ii)

||(Ψ, V )(1)||2X ≤ C eCn
2
3 e2ε|n|

∫ T2(q,ε)

−T2(q,ε)

|Vtt(0, t)|2 dt.

When q goes to infinity, if q+1
1−q = −1−δ, δ goes to 0. Thus, we have proved Proposition

2.
We still have to prove Lemma 4. We will proceed by two steps.
First, we will introduce a sequence of functions fk0,n that will satisfy conditions

(i), (iii), and (iv) but whose L2 norms will behave like enπ, which is too big for (ii). We
will notice, however, that these norms will be mostly concentrated within [−πn, πn]
on the Fourier side.

Then we will build a sequence of functions g of which we will know, by stationary
phases computations, that their norms on the Fourier side are exponentially small
over [−πn, πn] and reasonably bounded outside.

We will then put h = f ∗ g and prove that h satisfies (i) to (iv) for suitable
parameters.
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5.1. Construction of functions f . Let fn0 (z) = (
√
z2 − n2π2

3
tan
√
z2 − n2π2−

z2) cos
√
z2 − n2π2.

The following properties hold:
(f-i) fn0 ∈ O(C).

(f-iii) From (8), for any k in Z∗ ∪ {∗, ∗∗},
fn0 (±|νn,k|) = (z3

n,k tan zn,k − z2
n,k − n2π2) cos zn,k = 0.

Let us evaluate fn0
′(|νn,k|). We shall write F (z) = z3 tan z − z2 − n2π2 and

G(z) =
√
z2 − n2π2. We have

fn0 (z) = F (G(z)) · cosG(z) and G(|νn,k|) = zn,k.

So

fn0
′(z) = G′(z) · F ′(G(z)) · cosG(z)− F (G(z)) ·G′(z) · sinG(z).

Thus,

|fn0 ′(|νn,k|)| = |G′(|νn,k|) · cos zn,k| |F ′(zn,k)|.(14)

Now

F ′(z) = 3z2 tan z + z3(1 + tan2 z)− 2z

and

tan zn,k =
z2
n,k + n2π2

z3
n,k

.

So for any (n, k) in N∗ × (N∗ ∪ {∗}),

F ′(zn,k) = 2zn,k +
5π2n2

zn,k
+ z3

n,k +
π4n4

z3
n,k

≥ 2zn,k + z3
n,k ≥ 1.

Moreover,

|G′(|νn,k|)| = |νn,k|
zn,k

≥ 1

2
.

At last, from Lemma 1 (ii),

| cos zn,k| ≥ 1

5
|zn,k −

(
|k| − 1

2

)
π| ≥ C

1 + n2
.

Thus, from (14), we get that for any couple (n, k) in N∗ × (Z∗ ∪ {∗, ∗∗}),

|fn0 ′(|νn,k|)| ≥
C

1 + n2
.(15)

Let us put for any k in Z∗ ∪ {∗, ∗∗}

fk,n0 (z) = fn0 (z)
1

z2 − |νn,k|2
(

sin
√
z2 − π2n2

√
z2 − π2n2

)2

.
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(The last term ensures that f remains in L2.)
We have kept properties (f-i) and (f-iii):

(f-i) fk,n0 ∈ O(C). Moreover, fk,n0 ∈ L2(R) and, for any complex number z,

|fk,n0 (z)| ≤ C e3|=m z|.
(f-iii) for any k in (Z∗ ∪ {∗, ∗∗})\{±k0} , fk0,n

0 (±|νn,k|) = 0.
We have one more property; from the upper bound we got for the derivative at

the pole

fk,n0 (±|νn,k|) = fn0
′(±|νn,k|)

( sin zn,k
zn,k

)2 1

∓2|νn,k| .

Thus,

|fk,n0 (±|νn,k|)| ≥ C

(1 + n2)|k|3 | sin zn,k|
2.

Therefore, from Lemma 1 (i) and (iii),

(f-iv) fk,n0 (±|νn,k|) ≥ C
(1+n2)|k|N2

.

Unfortunately, ||fk,n||L2 ≥ C en so (ii) doesn’t hold for functions f . However,
the following estimate holds for any integers k, n and z ∈ [−πn, πn]:

|fk,n(z)| ≤ Ce3n
√
π2−( zn )2

.(16)

5.2. Introduction of functions g. Let q be an odd integer and let us denote
hq(x) the solution of y′ = 1 + yq−1 for which y(0) = 0. This function is defined over
(−xq, xq) for a positive xq. It is odd, strictly increasing and analytic. Moreover, we
have hq(x) = x + αqx

q + o(xq) when x is close to 0, with a positive αq, and when x
goes to xq, hq goes to infinity.

We shall denote by Hq the reciprocal function to hq. It is defined over R, odd,
strictly increasing, and bounded by xq. We have Hq(x) = x − αqxq + o(xq) if x is
close to 0. Let δ be a real number, greater than 1 and close to 1, that will be fixed
later.

Let us introduce functions g as follows:

g+
n
T,q(t) = 1(−T,T )e

in T
δxq

hq(
xq
T t).

Then

ĝ+
n
T,q(τ) =

∫ T

−T
e
in T
δxq

hq(
xq
T t)−iτt dt.

If we put

Ψq(s) =
T

xq
Hq(

δxq
T
s),

we can write

ĝ+
n
T,q(τ) =

∫ +∞

−∞
eins−iτΨq(s) Ψ′q(s) ds.

Let us also denote

θq(s) =
1

xq
Hq(δxqs),
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then

ĝ+
n
T,q(τ) =

∫ +∞

−∞
θ′q
( s
T

)
einT( sT − τn θq( sT )) ds,

= T

∫ +∞

−∞
θ′q(v)einT(v− τn θq(v)) dv.

We will eventually prove the following lemma about functions g+
n
T,δ.

Lemma 5. For T big enough, there exist three positive constants C1
q , C

2
q,T , c

3
q,T,δ

and two integers rq, n(q, δ) such that
(i) for any positive integer n and any real number τ smaller than n

δ ,∣∣∣ĝ+
n
T,q(τ)

∣∣∣ ≤ C2
q,T e−Tn C1

q min{( 1
δ− τn )

q
q−1 ,1};

(ii) for any integer n greater than n(q, δ), if k0 = ∗ or 1 ≤ k0 ≤ n, there is a time
Tn,k0

in [T, T + 1] such that∣∣∣∣ĝ+
n
Tn,k0

,q

( |νn,k0 |
π

)∣∣∣∣ ≥ c3q,T,δ√
n
.

Let us see how this lemma allows us to construct a sequence of functions h for
which the properties of Lemma 4 hold.

5.2.1. Construction of h. First, let us notice that we can prove a lemma that

is similar to Lemma 5 for functions g−nT,q(t) = 1(−T,T )e
−in T

δxq
hq(

xq
T t) by changing t

into −t.
As g−nT,q = g+

n
T,q, we have Tn,k0,+ = Tn,k0,−. Thus, if we put

ge
n
T,q(t) = 1(−T,T ) cos

(
n
T

δxq
hq

(xq
T
t
))

= <e (g+
n
T,q) =

1

2
(g+

n
T,q(t) + g−nT,q(t)),

the following inequalities hold.
If | τn | ≤ 1

δ , ∣∣ĝenT,q(τ)
∣∣ ≤ Cq,T e−Tn Cq(

1
δ−| τn |)

q
q−1

.(17)

And if n ≥ n(q, δ) and (|k0| ≤ n or |k0| = ∗), as C2
q,T e−nTuC

1
q ≤ c3q,T,δ

2
√
n

if n is big

enough, ∣∣∣ĝ±nTn,k0
,q(τ)

∣∣∣ ≤ 1

2

∣∣∣ĝ∓nTn,k0
,q(τ)

∣∣∣ for τ = ∓|νn,k0
|

π
.

As we can increase C to cope with the finite number of (n, k) in I for which n is not

big enough, we get for (n, k0) in I, τ = ± |νn,k0
|

π∣∣∣ĝeTn,k0
,q(τ)

∣∣∣ ≥ cq,T,δ√
n
.(18)

Thus, we have the following lemma for ge.
Lemma 6. For T big enough, there exist three positive constants C1

q , C
2
q,T , c

3
q,T,δ

and two integers rq, n(q, δ) such that
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(i) for any positive integer n and any real number τ in [−nδ , nδ ],

∣∣ĝenT,q(τ)
∣∣ ≤ C2

q,T e−Tn C1
q ( 1
δ−| τn |)

q
q−1

;

(ii) for any integer n greater than n(q, δ), if |k0| = ∗ or 1 ≤ |k0| ≤ n, there is a
time Tn,k0

in [T, T + 1] such that∣∣∣∣ĝenTn,k0
,q

( |νn,k0 |
π

)∣∣∣∣ ≥ c3q,T,δ√
n
.

Of course, we get the same kind of results for

go
n
T,q(t) = 1(−T,T ) sin

(
n
T

δxq
hq

(xq
T
t
))

.

Obviously, ge is even and go is odd.
We shall now define the functions h. Let ε be a positive real number. Pick δε

such that

3π

√
1−

(
1

δε

)2

=
ε

2

and T ε such that

sup
β∈[0, 1

δε
]

(
3π
√

1− β2 − C1
q T

ε

(
1

δε
− β

) q
q−1

)
≤ ε.(19)

Indeed, the derivative of the function under the sup is

−3πβ√
1− β2

+
q

q − 1
T εC1

q

(
1

δε
− β

) 1
q−1

,

so we get the right estimate if we choose T ε such that this derivative is 0 for βε such
that

3π
√

1− β2
ε = ε.

We have δε = 1 + ε2

72π2 + o(ε2), βε = 1− ε2

18π2 + o(ε2) so 1
δε
− βε ∼ ε2

24π2 ; hence,

T ε ∼ Cqε
q+1
1−q .

Let us define positive times T εn,k0
as follows.

For integers k0 such that |k0| ≤ |n| or |k0| = ∗, we take the time T εn,k0
given by

Lemma 6 with T = T ε, and for |k0| > |n|, we put T εn,k0
= Tα.

T εn,k0
∈ [T ε, T ε + 1], so c1qε

q+1
1−q ≤ T εn,k0

≤ c2qε
q+1
1−q .

Let us denote

ĥe
k0,n

ε,q (τ) = fk0,n(τ) · ĝenT ε
n,k0

,q

( τ
π

)
,
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ĥo
k0,n

ε,q (τ) = fk0,n(τ) · ĝonT ε
n,k0

,q

( τ
π

)
.

The subscript means that h is even or odd. We will drop this subscript when it is not
required.

We shall now prove step by step that hk0,n
ε,q satisfies all the properties of Lemma 4.

• Proof of (i): hk0,n
ε,q is a convolution product of f̂k0,n, whose support is located

within [−3π, 3π] and gnT ε
n,k0

,q that is supported by [−T εn,k0
, T εn,k0

]. So we can put

T2(q, ε) = 3π+ c2qε
q+1
1−q so that hk0,n

ε,q is supported by [−T2(q, ε), T2(q, ε)]. The estimate

on T εn,k0
ensures that T2(q, ε) ≤ Cqε

q+1
1−q .

• Proof of (ii): We will use results about the small size of ||g|| that will compensate
||f ||. Outside of [−πn, πn], the L2 norm of f is bounded by a polynomial in n and
|ĝ|L∞ is bounded by 2T2(q, ε), so the problems are located within this interval.

We must estimate
∫ n
−n |ĥk0,n

ε,q (τ)|2 dτ .
Now, by (16) we know that if τ

n belongs to [−π, π], we have

|fk0,n(τ)|2 ≤ C e6n
√
π2−| τn |2 = C e6πn

√
1−| τπn |2 .

Thus, if | τπn | ≥ 1
δε

,

|ĥk0,n
ε,q (τ)|2 ≤ Ceεn.

Moreover, by Lemma 6, if | τπn | is smaller than 1
δε

, we have

|ĝnT ε
n,k0

,q

( τ
π

)
|2 ≤ C e−2T εn,k0

nC1
q ( 1
δε
−| τπn |)

q
q−1

.

Therefore, from (19), we get that if | τπn |,

|ĥk0,n
ε,q (τ)|2 ≤ C e2εn.

Thus,

||ĥk0,n
ε,q ||2L2 ≤ Ce2εn.

• Proof of (iii): This is a simple consequence of property (f-iii) for functions f .
Indeed, for any integer k different from k0, fk0,n(|νn,k|) = 0. Thus, by definition of h

we also have ĥk0,n
ε,q (|νn,k|) = 0, which is exactly the Fourier transcription of (iii).

• Proof of (iv): For any couple (n, k0) in I, from (f-iv) and (18) we get∣∣∣ĥk0,n
ε,q (±|νn,k0

|)
∣∣∣ ≥ C

nN
cq,Tε,δε√

n
≥ Cq,ε
nN ′

.

This again is the Fourier transcription of the needed result.
We shall now prove Lemma 5 to end our demonstration.

5.2.2. Proof of Lemma 5. Let us keep in mind that we have put

ĝ+
n
T,q(τ) = T

∫ ∞
−∞

θ′q(v)einT (v− τn θq(v)) dv.
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Let us put α = nT and β = τ
n . We will estimate

φ(α, β) =

∫
θ′δ(v)eiα

[
v−βθδ(v)

]
dv,

when α goes to infinity.
There will be two kinds of estimates depending upon the value of β as compared

to 1
δ : β < 1

δ and β ≥ 1(> 1
δ ).

If β < 1
δ ,

ν−βθ (ν)δ

ν
.

In this zone, the phase is nonstationary. Thus, we will get an exponential decrease.
Let us shift slightly in the imaginary direction. For any real number v, any β

smaller than 1
δ , and any small ε we get

=m
(
v + iε− βθq(v + iε)

)
= ε− β =m θq(v + iε),

= ε− β =m
(
θq(v + iε)− θq(v)

)
,

= ε− β =m
∫ v+iε

v

θ′q(z) dz,

= ε− β =m
∫ v+iε

v

δdz

1 + δq−1xq−1
q zq−1

,

= ε− βεδ <e
∫ 1

0

du

1 + δq−1xq−1
q (v + iεu)q−1

.

Thus, if β ≤ 0,

=m
(
v + iε− βθq(v + iε)

)
≥ ε if β ≤ 0.

If β is positive,

=m
(
v + iε− βθq(v + iε)

)
≥ ε− βεδ

∣∣∣∣∫ 1

0

du

1 + δq−1xq−1
q (v + iεu)q−1

∣∣∣∣ .
Now for any real number v,∣∣∣∣∫ 1

0

du

1 + δq−1xq−1
q (v + iεu)q−1

∣∣∣∣︸ ︷︷ ︸
I

≤ 1

1− cqεq−1
,
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because either v � ε and then I ≤ c
1+vq−1 ≤ 1 or v ≤Mqε and then

|v + iεu|q−1 ≤ Cqεq−1 ⇒ |1 + δq−1xq−1
q (v + iεu)q−1| ≥ 1− cqεq−1 ⇒ I ≤ 1

1− cqεq−1
.

Thus,

=m
(
v + iε− βθq(v + iε)

)
≥ ε− βδε

1− cqεq−1
,

≥ ε(1− δβ)− c′qβεq,
≥ ε(1

δ
− β)− c′qβεq.

Now

max
ε
ε

(
1

δ
− β

)
− cqβεq = c′q

(
1

δ
− β

) q
q−1

β
1

1−q ,

≥ c′′q
(

1

δ
− β

) q
q−1

.

We can choose a real number ε and a very small cq such that for any real number v =m
(
v + iε− βθq(v + iε)

)
≥ cteq ( 1

δ − β)
q
q−1 if β ∈ (0, 1

δ ],

=m
(
v + iε− βθq(v + iε)

)
≥ cteq if β ≤ 0.

Now we can shift the integration line over v from R to R+ iε. Then

φ(α, β) =

∫
θ′q(v + iε)eiα

[
v+iε−βθq(v+iε)

]
dv.

To conclude, as

θ′q(v + iε) =
δ

1 + (δxq(v + iε))q − 1
,

we get

|θ′q(v + iε)| ≤ Cq
1 + vq−1

.

Hence, for any real number α and any β ≤ 1
δ ,

|φ(α, β)| ≤
∫

Cq
1 + vq−1

e
−α cq min

{
( 1
δ−β)

q
q−1 ,1

}
dv ≤ Cq e

−α cq min

{
( 1
δ−β)

q
q−1 ,1

}
.

Thus, if τ
n ≤ 1

δ ,

∣∣∣ĝ+
n
T,q(τ)

∣∣∣ ≤ Cq T e
−nTcq min

{
( 1
δ− τn )

q
q−1 ,1

}
.(20)

That is the first part of Lemma 5.
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If β ≥ 1 (> 1
δ ),

ν−βθ (ν)δ

ν (β,δ)
0

p
0
(β,δ)

ν
.

Through the stationary phase formula, we get

φ(α, β) =
(
|Hβ,δ| cosαp0(β, δ)

)θ′q(v0(β, δ))√
α

+
N∑
j=1

aj(β, δ)

αj
√
α

+ rβ,δ(α),

with rβ,δ(α) ≤ Cβ
αN+1 and α ≥ Aβ,δ. Hβ,δ is the square root of the Hessian at the

critical points.
Moreover, in this formula, C and A are continuous with respect to β and δ, and

aj(β, δ) depends on the first 2j + 1 derivatives of v 7→ θq(v) at v = v0(β, δ).
Let us compute p0(β, δ):

∂

∂v

(
v − βθq(v)

)
= 0⇔ 1− βδ

1 + δq−1xq−1
q vq−1

= 0,

⇒ 1 + δq−1xq−1
q vq−1

0 (β, δ) = βδ,

⇒ v0(β, δ) =
1

δxq
(δβ − 1)

1
q−1 .

If β takes the values
|νn,k|
nπ for any couple (n, k) such that |k| ≤ n, we have 1 ≤ β ≤ π√2

through point (i) of Lemma 1.

Moreover, if β =
|νn,∗|
nπ , by point (iv) of Lemma 1 β ≥ 1− C√

n
≥ 1

2 (1 + 1
δ ) as soon

as n ≥ n0(δ).

Therefore, for any n greater than n0(δ), if (n, k) belongs to I and β =
|νn,k|
nπ ,

C ≥ v0(β, δ), |p0(β, δ)|, |Hβ,δ| ≥ cδ;
thus,

1 ≥ θ′q(v0(β, δ)) ≥ cq.
Moreover,

aj(β, δ) ≤ Cj,δ.
Let T be a positive real time. As |p0(β, δ)| ≥ cδ, for any n greater than n0(δ) and k0

such that (n, k0) belongs to I, one can pick a time Tn,k0 in [T, T + 1] such that

cos

(
nTn,k0

p0

( |νn,k0 |
nπ

, δ

))
≥ c′δ.
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Thus, for T > Tu, n ≥ n(q, δ), α = Tn, (k0, n) ∈ I, and β =
|νn,k0

|
nπ ,∣∣∣∣∣∣θ

′
q(v0(β, δ))√

α
+

N∑
j=1

aj(β, δ)

αj
√
α

∣∣∣∣∣∣ ≥ |θ
′
q(v0(β, δ))|

2
√
α

,

|rβ,δ(α)| ≤ c′δ
|Hβ,δ| θ′q(v0(β, δ))

4
√
α

.

In the same conditions, there is a time Tn,k0 in [T, T + 1] such that∣∣∣∣φ(nTn,k0
,
|νn,k0

|
nπ

)∣∣∣∣ ≥ c′δ|H| θ′q(v0(
νn,k0

nπ , δ))

4
√
n
√
Tn,k0

≥ C√
n
.

We have proved that for any time T greater than Tu, for any n bigger than n(q, δ)
and k0 such that |k0| = ∗ or |k0| ≤ n, there is a time Tn,k0

in [T, T + 1] such that∣∣∣∣ĝ+
n
Tn,k0

,q

( |νn,k0
|

π

)∣∣∣∣ ≥ CT,q,δ√
n
.(21)

This proves the second part of Lemma 5 and ends the proof of Proposition 2.
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Abstract. Here we study an inverse problem for a quasilinear hyperbolic equation. We start by
proving the existence of solutions to the problem which is posed as the minimization of a suitable cost
function. Then we use a Lagrangian formulation in order to formally compute the gradient of the cost
function introducing an adjoint equation. Despite the fact that the Lagrangian formulation is formal
and that the cost function is not necessarily differentiable, a viscous perturbation and a numerical
approximation of the problem allow us to justify this computation. When the adjoint problem for
the quasi-linear equation admits a smooth solution, then the perturbed adjoint states can be proved
to converge to that very solution. The sequences of gradients for both perturbed problems are also
proved to converge to the same element of the subdifferential of the cost function. We evidence these
results for a large class of numerical schemes and particular cost functions which can be applied to
the identification of isotherms for conservation laws modeling distillation or chromatography. They
are illustrated by numerical examples.

Key words. inverse problem, scalar conservation laws, adjoint state, gradient method
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1. Introduction. In this paper, we are interested in the following inverse prob-
lem: Consider the scalar hyperbolic conservation law

∂tw + ∂xf(w) = 0, x ∈ R, t > 0,(1.1)

together with the Cauchy data

w(x, 0) = w0(x) ∈ BV (R) ∩ L∞(R).(1.2)

It is well known that there exists one and only one entropy solution in L∞(R+, BV (R))
∩ L∞(R × (−∞,+∞)) of (1.1)–(1.2) (see [6], [18]), and we emphasize the fact that
the unique entropy solution to (1.1) depends continuously (in a sense which we shall
describe precisely) on the smooth function f by denoting it wf . The question we
address is whether, given an observation wobs at time T > 0, one can identify the
nonlinearity f such as wf at time T is as close as possible to wobs.

It is quite natural to formulate this problem more or less like an optimal control
problem: For any function v : R→ R we define a cost function J(v), and we look for
an f solving

min
f
J(wf (., T )),(1.3)

thus giving a precise meaning to the phrase “as close as possible.” Therefore we are led
to the constrained optimization problem of minimizing J(w(., T )) under the constraint
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for w to satisfy the partial differential equation (1.1)–(1.2). This problem can be
viewed as well as an unconstrained minimization problem: If we set J̃(f) = J(wf ),

then problem (1.3) boils down to minimizing J̃ on a suitable set of functions.
In theory, this inverse problem is in general ill-posed in uniqueness when there

are discontinuities in the solution. For instance, a well-known undesirable case ap-
pears when we try to identify f over a shock wave with a propagation speed equal
to σ: there are infinitely many functions f giving the same entropic solution wf of
(1.1)–(1.2) equal to the shock wave (see [4] for more details). Yet, as far as applica-
tions are concerned some interesting practical problems can be found: It is possible
to resolve the identification of f (or “a part of f”) via a gradient technique in order
to compute numerically the minimum of J̃ . This was achieved in a preceding paper
[9] in which we considered the identification problem arising from a model of diphasic
propagation in chromatography. Therefore we dealt with a system of conservation
laws, and we obtained successful numerical results because the function f was given
a precise analytic form, so the minimization occurred on Rn, and we chose adequate
criteria for the cost function linked to the physical parameter of the problem.

The classical gradient technique used in order to obtain the gradient of J̃ consists
of writing a Lagrangian formulation for the constrained problem and introducing the
adjoint state. This has to be done at two levels.

First we consider a formal level; that is, we take a solution of the continuous
equation (1.1) and perform the computations. We obtain a backward linear hyper-
bolic equation for the adjoint state. The trouble is that this equation is ill-posed
as soon as the solution of (1.1) is not smooth—which is of course the case in most
of the applications. This is related to the fact that the inverse problem is ill-posed
in uniqueness when there are discontinuities in the solution. Thus, in general, the
computation of the gradient of J̃ remains formal. Furthermore, it is easy to find some
counterexamples where the gradient does not exist.

On the other hand, we can perform the same computations at a discrete level,
that is, when both (1.1) and the cost function J are discretized. This introduces a
“discrete adjoint state” which we call the adjoint scheme, and we obtain the gradi-
ent for the discretization of J̃ , which is well defined. Thus we are able to perform
numerical computations, using standard conjugate gradient techniques, and the nu-
merical evidence is that the method seems to converge (see [9, section 5] and [11] for
application on real data).

The aim of this paper is to interpret and justify the convergence of the method
in the scalar case and in a particular case, namely, when the solution of the adjoint
state is Lipschitz continuous. We shall consider two modified problems: First we
add a viscous term to (1.1), then we turn to the discretized problem. In both cases,
we prove that the perturbed adjoint states converge to the solution of the original
problem. That enables us to pass to the limit in the approximation of the gradient,
and we prove that both approximations tend to the same limit. This limit is not
necessarily the gradient of the cost function because the gradient does not exist a
priori. In fact, we also prove by means of convexity hypotheses that it is an element of
the subdifferential of J̃ . This result gives an interpretation of the formal computation
of the gradient for continuous cost functions including some cases when the gradient
does not exist.

Therefore the paper is organized as follows. First we precisely state the problem,
in particular concerning the cost function we consider, which is not the standard least
square function. Then we consider the identification problem for a parabolic regular-
ization of the conservation equation and, in particular, we prove the differentiability
of the cost function. We also prove the convergence of the sequence of the perturbed
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gradients to an element of the subdifferential of J̃ . Finally we prove that we can ob-
tain the same element of the subdifferential via a discretized problem and for a large
class of numerical schemes, and we illustrate these results by a numerical application
on experimental data.

2. The identification problem.

2.1. The cost function. A classical example of cost function J arises in the
well-known output least square method (see [4] for instance):

J0(w) =
1

2

∫
x∈R
|w(x, T )− wobs(x)|2dx.(2.1)

For practical reasons, in [9] the following modified cost function Jρ was used:

Jρ(w) = J0(w) +
ρ

2
|µ1

(
w(·, T )

)− µ1(wobs)|2,(2.2)

where ρ is a constant parameter to be adjusted, and where µ1(X) is the first moment
of the function X : R→ R:

µ1(X) =

∫
R
xX(x)dx.(2.3)

Roughly speaking, the advantage of Jρ over J0 is that it is more sensitive to the
localization of the observed signal on the x-axis, whereas J0 essentially takes care of
the shape of the signal over its localization.

Notice that we shall always consider initial data with compact support so that,
by the finite velocity of propagation, the solution at any time t > 0 will also have
a compact support. Thus all the integrals in the definitions of J0 and of Jρ have a
meaning as soon as w is in L∞(R).

For practical reasons, what follows is essentially focused on the study of criteria
(2.1) or (2.2)–(2.3).

2.2. Existence and Lipschitz continuous dependence. We can assure the
existence of at least one solution f of our identification problem (1.3) when we search
it in a compact of the Lipschitz continuous functions. In fact, this is a consequence of
the following theorem, the proof of which is contained in a paper by Lucier (see [13]).

Theorem 2.1. The application f 7→ wf is Lipschitz continuous from the space
of Lipschitz functions to L1, that is,

‖wf (., t)− wg(., t)‖L1 ≤ t‖f − g‖Lip‖w0‖BV ,(2.4)

where ‖ · ‖BV is the usual norm of BV (R).
Corollary 2.2. The function J̃ : f 7→ Jρ(wf ) is Lipschitz continuous from

Lip(R) to R+.
Proof. Concerning the function J0, the estimate follows immediately from the

L∞ estimate which holds uniformly in g:

∀t > 0, ‖wg(., t)‖L∞ ≤ ‖w0‖L∞ .(2.5)

Indeed we have

|J0(g)− J0(f)| ≤ 1

2

∫
R
|(wg − wf )(x, T )| |(wg + wf )(x, T )− 2wobs(x)| dx

≤ max(‖w0‖L∞ , ‖wobs‖L∞) ‖wg(, .T )− wf (., T )‖L1
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by Hölder’s inequality. The result follows by (2.4). Now for the momentum criterion,
if we assume all the supports included in [−L,L] for some L large enough, we get,
again using (2.5):

|J1(g)− J1(f)| ≤ 1

2
|µ1(wg(., T ))− µ1(wf (., T ))| |µ1(wg + wf (., T ))− 2µ1(wobs)|

≤ L3 max(‖w0‖L∞ , ‖wobs‖L∞) ‖wg(., T )− wf (., T )‖L1 .

By considering a minimizing sequence for Jρ, we easily deduce form Corollary 2.2 the
following existence result.

Corollary 2.3. If f ∈ F is a compact set of the Lipschitz continuous functions,
then there exists at least one solution of the identification problem (1.3), with the cost
function defined by (2.1) or (2.2)–(2.3).

Remarks. The compactness of the set F is a necessary hypothesis, but it is not
a restrictive condition for many practical identification problems: the function f can
have a precise analytic form so that the minimization occurs on a bounded subset of
Rn (for instance, see [9]). Another way to obtain Lipschitz compactness is to seek f ,
for instance, in W 2,∞(R).

We cannot ensure the uniqueness of the solution in Corollary 2.3 for the reasons
given in the introduction. Obviously, we can try to modify the cost functions to
obtain a strictly convex functional and, for instance, search the flux f with minimal
W 2,∞(R) norm. Yet in general, this is an arbitrary mathematical condition. Thus we
prefer to deal with the cost functions defined by (2.1), (2.2), and (2.3), which have a
realistic physical sense and to leave the uniqueness problem as an open problem.

2.3. Remarks on differentiability. Since we are concerned with the problem
of minimizing J̃(f) = Jρ(wf ) with respect to f , differentiability is of course of crucial

importance: optimality conditions, gradient algorithms rely on it. For the function J̃ ,
the problem is open in general, and we are going to point out precisely the difficulties.
These will come of course from the operator f 7→ wf , since the functions J0 and J1 are
smooth convex functions. Let us first consider this operator in the nice case where all
the involved functions are smooth. Indeed, if w0 ∈ C1(R) and f ∈ C1(R), then there
exists T > 0 such that wf ∈ C1(R × [0, T ]). Let us use the notations of the calculus
of variations, denoting by δw the variation of wf corresponding to some variation δf
of f . Then δw has to solve{

∂tδw + ∂x[f ′(wf )δw] + ∂x[δf(wf )] = 0,

δw(., 0) = 0.
(2.6)

Under the above assumptions, we are faced with a standard linear conservation equa-
tion with smooth coefficients. Actually, by applying the inverse functions theorem
to

F : C1(R)× Lip(R) → C0(R)× C0(R),
(w, f) 7→ (∂tw + ∂xf(w), w(., 0)− wobs),

we can prove that f 7→ wf is differentiable in a strong sense from Lip(R) to C1(R).

Thus J̃ is also differentiable, with

J̃ ′(f)δf =

∫
R
(wf (x, T )− wobs(x))δw(x, T ) dt

+ ρ (µ1(wf (., T ))− µ1(wobs))µ1(δw(., T )).
(2.7)
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This, by the way, justifies in this case the integrations by parts we perform in the
next section.

We would like to point out now that if wf happens to be discontinuous, then
the resolution of (2.6) is much more difficult. Indeed it becomes a conservation law
with discontinuous coefficient (f ′(wf )) and a measure-valued source term (∂xδf(wf )).
The solution therefore has to be sought in the class of measures on R, generalizing the
results obtained by Bouchut and James [2], [3] in the absence of a source term. Until
now, this has been possible only if f is convex. In this context, it is reasonable to
hope for some very weak differentiability results, the involved topology being the usual
weak convergence of measures. The general case of a nonconvex f is still completely
open.

However, even the differentiability of f 7→ wf does not settle the problem for J̃(f).
Indeed since δw is a measure, (2.7) is meaningful if wf (., T ) − wobs ∈ L1(δw(., T )),
which is a priori not obvious. In the same way, µ1(δw(., T )) has to be defined. We
refer to the next section for an explicit example and further comments.

For all these reasons, we leave the problem of a rigorous differentiation of J̃ (and
possibly the choice of theoretically more convenient cost functions) to a future work.
In the following, we focus on the study of two approximated problems where all the
involved quantities are well defined. We prove, when it is possible, the convergence of
these problems to the original one. We begin by a formal computation of the gradient
of J̃ , as it was done in [9]. The basic tool for that is to consider the constrained
minimization problem and its Lagrangian formulation.

2.4. Lagrangian formulation and the adjoint problem. In [9] and [17], we
formally obtain the gradient through the following Lagrangian formulation for the
constrained minimization problem:

L (w, p; f)
def
= J(w)− E (w, p; f) ,(2.8)

where E (w, p; f) is a weak form of (1.1), defined by

E (w, p; f) = −
∫ T

0

∫ L

0

(w∂tp+ f(w)∂zp) +

∫
t=T

wp−
∫
t=0

w0p.(2.9)

We are interested in canceling (∂L)/(∂w). For that purpose, we take p solution to
the following backward adjoint problem:{

∂tp+ f ′(wf )∂xp = 0, x ∈ R, t ≤ T,
p(x, T ) = pT (x),

(2.10)

where f ′(wf ) represents the derivative of f with respect to w evaluated on the solution
wf of (1.1). The function pT depends on J , w, and wobs. More precisely, we have∫

R
pT δw = DwJ(wf )δw ∀δw ∈ D(R),(2.11)

where DwJδw represents the derivative of J in the direction δw. The problem (2.10)
is called the adjoint problem associated with the direct problem (1.1).

Thus we can compute the gradient of J̃ by the formula

DJ̃(f)δf =

∫ T

0

∫ +∞

−∞
∂xp δf(wf )dxdt,(2.12)

where p is solution of (2.10), in a sense which has to be made precise (see Remark
below).
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Remark. Formula (2.12) is a formal result, since the derivative of function J̃ does
not necessarily exist, as a rule. For instance, consider the entropic solution of the
Riemann problem

wk(x, t) =

{
1 if x ≥ kt,
0 otherwise

for the Burgers equation—f(w) = kw2—and suppose wobs(x) = wk0
(x, T ) for some

given k0. Then we have that the cost function given by the criterion of the norm L2

(2.1) is equal to

J̃0(k) = J0(wk) = T |k − k0|,(2.13)

which is not differentiable in k0. Moreover, the backward equation defining p is ill-
posed as soon as discontinuities occur in the solution of the direct problem. Actually
the solution is not uniquely defined by the characteristics.

If we assume that we are in the neighborhood of a minimum, the function J̃ is
locally convex, so the subdifferential ∂J̃ is a nonempty set. We may hope that DJ̃(f)
defined by (2.12) is an element of ∂J̃ when the adjoint equation is ill-posed. We are
not going to answer this question here. We will restrict ourselves to the particular
case where there exists a smooth solution to the adjoint equation. In this case we shall
study whether (2.12) is well defined and whether it is an element of the subdifferential.
First, we give an existence result for Lipschitz solutions to the adjoint problem (2.10),
then, we give conditions for the uniqueness.

Definition 2.4. The function a(x, t) verifies the one-side-Lipschitz-continuous
condition (OSLC) when there exists a function m ∈ L1(0, T ) such as

L+ (a(x, t))
def
= ess sup

x6=y

(
a(x, t)− a(y, t)

x− y
)+

≤ m(t).(2.14)

In other words, (OSLC) means that the function a(·, t) must be Lipschitz continuous
for all t, when a(·, t) is increasing, and it allows decreasing jumps a(x−, t) > a(x+, t).
This condition has been used by several authors, e.g., Oleinik [14], Conway [5], Hoff [8],
and Tadmor [19], to prove the existence of at least one Lipschitz continuous solution
to the adjoint problem (2.10), when pT ∈ W 1,∞(R). A refined version of Oleinik’s
entropy condition (Hoff [8]) states that f ′(w) verifies (OSLC) when w accepts only
entropic shocks as discontinuties and when f is convex. We need this result to make
sense out of solving p by the characteristics method. So far, we do not know a general
existence result for any f . The problem with this result is that its solution is ill-
posed in uniqueness. For instance, if we assume that f ′(wf )(x, t) = −sign(x), and
‖pT ‖W 1,∞(R) > 0, then it is easy to verify that

p(x, t) =

{
pT (x− sign(x)(T − t)) when t+ |x| ≥ T,
ϕ(t+ |x|) otherwise

are Lipschitz continuous solutions of adjoint problem (2.10), for any ϕ(t) Lipschitz
continuous function such that ϕ(T ) = pT (0).

We recall briefly here the definition of the so-called “reversible solutions” intro-
duced in [2], [3], for which uniqueness holds. First, we define the set E of “exceptional
solutions” as the space of all the Lipschitz continuous solutions of (2.10) with pT = 0.
Next, we introduce the open set called “support of exceptional solutions”:

V def
= {(t, x) ∈]0, T [×R | ∃pe ∈ E , pe(t, x) 6= 0}.(2.15)

The following result is obtained in [3].
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Theorem 2.5. Let p be a Lipschitz continuous solution of (2.10). Then, the
following properties are equivalent:

(i) p is locally constant in V;
(ii) there exist p1 and p2 in Liploc([0, T ]×R), verifying ∂tpi + f ′(w)∂xpi = 0 and

∂xpi ≥ 0, such that p = p1 − p2.
Furthermore, for all pT ∈W 1,∞(R) there exists one and only one Lipschitz contin-

uous solution p of (2.10) verifying one of these properties and the following estimate:

‖p(·, t)‖W 1,∞(R) ≤ ‖pT ‖W 1,∞(R) · exp

{∫ T

t

m(τ)dτ

}
∀t ≤ T.(2.16)

This function p is called the reversible solution of (2.10).
Remarks. According to property (i) of Theorem 2.5, we can choose a constant for

p in each fan-wise set defined by all the characteristic straight lines which converge
to a discontinuity of w. This constant is equal to the value of pT (x), where (x, T )
is a point in the discontinuity of w. Property (ii) is a monotonicity property of the
reversible solution.

Choosing the reversible solution in counterexample (2.13) is equivalent to choosing
the characteristic element of the subdifferential of J̃0(k0) equal to zero. This is not
an arbitrary choice. At the limit, we will see that we obtain an element of the
subdifferential of J̃ characterized by the reversible solution, when we consider viscosity
approximation and some classical numerical schemes.

When we consider the cost function (2.1) or (2.3), the hypothesis pT ∈W 1,∞(R)
is equivalent to (w(·, T ) − wobs) ∈ W 1,∞(R). In practice, this is a very restrictive
hypothesis in the sense that it means a regular solution w, or at least a solution in
which the shocks at t = T are canceled with the shocks of the observation wobs.
When w is regular (without shocks), it is clear that we do not need the notion of
reversible solution: In this case we have seen that the cost function is differentiable.
The resolution of (2.10) when pT /∈W 1,∞(R) remains an open problem.

3. Artificial viscosity. We introduce the classical viscous regularization of
(1.1):  ∂tw

ε + ∂xf(wε) = ε∂2
xxw

ε, x ∈ R, t > 0,

wε(x, 0) = w0(x).
(3.1)

It is well known that (3.1) admits a unique smooth solution which approaches the
entropy solution of (1.1) in the following sense (see, e.g., Smoller [18]).

Theorem 3.1. We suppose that w0 ∈ BV (R). Then,
(i) Problem (3.1) has a solution wε(·, t) ∈ BV (R) for all t > 0. This solution is

C1 on R× (0,∞). Furthermore, for all t > 0,

‖wε‖L∞(R) ≤ constant, TV (wε(·, t)) ≤ TV (w0).

(ii) The only accumulation point in L∞(R × (0,+∞))-weakly∗, and L1
loc(R ×

(0,+∞))-strong, of the sequence wε is the entropic solution w of (1.1).
Now we shall limit ourselves to the (restrictive) case where the final data for the

adjoint state are in W 1,∞(R) and consider the following minimization problem:

min
f
J̃ε(wεf ), where J̃ε(wεf ) = Jρ(w

ε
f ),(3.2)
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wεf is the solution of the parabolic problem (3.1), and the cost function Jρ is defined
by (2.2).

We are going to proceed in three steps. First we compute the exact derivative
of the function J̃ε. Then we shall prove that the adjoint equation is well-posed,
which will give a characterization of the derivative. Finally, we are going to prove the
convergence of the adjoint state and of the derivative of the viscous problem to the
corresponding quantities for the hyperbolic problem, when ε tends to 0.

3.1. Derivative of the viscous cost function. We want to determine the
Gateaux derivative of J̃ε. We shall prove that the directional derivative

DJ̃ε(f)δf = lim
h→0

δhJ̃
ε(f) = lim

h→0

J̃ε(f + hδf)− J̃ε(f)

h
(3.3)

exists for all Lipschitz continuous function δf (δf is called a Lipschitz direction). We
then have the following propostion.

Proposition 3.2. Let wεf be the solution of the viscous problem (3.1). We

suppose that the flux f = f(wε) is of class C1 and Lipschitz continuous with respect
to wε with a Lipschitz constant CLip. Then the limit (3.3) exists for all Lipschitz
direction δf (which we can suppose with the same Lipschitz constant CLip). It is
characterized by

DJ̃ε(f)δf = DwJρ(w
ε
f )wε1,(3.4)

where wε1 is the solution in L2(0, T, L2(R)) ∩C1(R× (0,+∞)) of the following linear
parabolic problem:{

∂t(w
ε
1) + ∂x

(
f ′(wεf )wε1 + δf(wεf )

)
= ε∂2

xxw
ε
1,

wε1(x, 0) = 0.
(3.5)

Proof. Recall that Jρ = J0 + ρJ1. Then we can write
DwJ0(wεf )wε1 =

∫
R

(
wεf (x, T )− wobs(x)

)
wε1(x, T )dx,

DwJ1(wεf )wε1 =
(
µ1

(
wεf (·, T )

)− µ1(wobs)
)
µ1

(
wε1(·, T )

)
,

(3.6)

and we remark that
δhJ0(wεf ) =

∫
R

(
wεf + wεfh

2
(x, T )− wobs(x)

)
δhw

ε(x, T )dx,

δhJ1(wεf ) =

(
µ1(wεf (·, T )) + µ1(wεfh(·, T ))

2
− µ1(wobs)

)
µ1(δhw

ε(·, T )),

(3.7)

where fh = f + hδf and δhw
ε = wεfh − wεf/h.

We first prove the convergence of the derivative of the L2-criterion:

δhJ̃0(wεf )→ DwJ0(wεf )wε1, when h→ 0.(3.8)

We have that wεf and wεfh are solutions of the parabolic problem (3.1) with the

respective nonlinear flux f and fh. Thus, if we take the difference between the
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equation in wεf and the equation in wεfh , we deduce that δhw
ε is the solution of

∂tδhw
ε + ∂x

(
fh(wεfh)− fh(wεf )

h
+ δf(wεf )

)
= ε∂2

xxδhw
ε.(3.9)

We multiply this equation by δhw
ε and we integrate by parts. Using classical estimate

arguments and the Gronwall lemma, we prove

‖δhwε(·, t)‖H1 ≤ C(ε) ∀t ∈ (0, T ),(3.10)

where C(ε) is a constant which does not depend on h. Thus, up to a subsequence,
there exists wε1(·, t), such that

δhw
ε(·, T ) ⇀ wε1(·, T ) in H1(R)-weak, when h→ 0.

We can easily verify that wεfh(·, T ) → wεf (·, T ) in L2(R)-strong when h → 0. Hence

we deduce (3.8).
Next we prove the convergence of the derivative of the first moment criterion:

δhJ̃1(wεf )→ DwJ1(wεf )wε1, when h→ 0.(3.11)

We deduce from the compact support of w0, and from the maximum principle applied
to (3.1), (3.5), and (3.9), that the functions |wεf (·, T )|, |wεfh(·, T )|, |δhwε(·, T )|, and

|wε1(·, T )| are bounded by a function g(x) = C exp(−r|x|), where C, r are constants
which depend only on T and ‖w0‖L∞ , and thus are independent of h. We obtain that

|µ1(δhw
ε(·, T ))− µ1(wε1(·, T ))|

≤
∫ R

−R
|x (δhw

ε − wε1) (x, T )|dx +

∫
|x|>R

|xg(x)|dx.

Using the convergence L2-weak of δhw
ε(·, T ) we have that the first term of the right-

hand side converges to 0. The second term uniformly converges to 0 in h, when
R → ∞. This implies the convergence µ1(δhw

ε(·, T )) → µ1(wε1(·, T )), when h → 0.
In the same way, and using the convergences L2-strong of wεfh(·, T ), we have that

µ1(wεfh(·, T ))→ µ1(wεf (·, T )), when h→ 0. From these convergences of the moments,

we deduce the result (3.11).
Finally, we prove that wε1 is the solution of (3.5). Using (3.10) and the compact

injection H1
loc(R) ↪→ L2

loc(R), we have the following strong convergence:

δhw
ε(·, t)→ wε1(·, t) in L2

loc(R)-strong, when h→ 0.(3.12)

We multiply (3.9) by a test function ϕ ∈ C1
0 ([0,+∞)×R) and we integrate by parts.

Hence, by passing to the limit in (3.9), we obtain that wε1 is a weak solution of (3.5).
Therefore, by the existence and uniqueness of the solution of the linear parabolic
problem (3.5), we have that function wε1 is the strong solution in L2(0, T, L2(R)) ∩
C∞(R× (0,+∞)) of this equation.

3.2. Viscous adjoint problem. We showed that the Gateaux derivative of
J̃ε(f) is well defined for cost function Jρ defined by (2.2). Now we shall use the
Lagrangian formulation in order to give a characterization of this derivative. First we
define the weak form associated with (3.1) by

Eε (wε, pε, f)
def
= −

∫ T

0

∫ +∞

−∞
(wε∂tp

ε + f(wε)∂xp
ε − ε∂xwε∂xpε)

+

∫
t=T

wεpε −
∫
t=0

wεpε
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and the Lagrangian by Lε (wε, pε, f) = J (wε) − Eε (wε, pε, f), where pε is a regular
function in (x, t). We take pε equal to the solution of the following backward parabolic
equation (called viscous adjoint problem):{

∂tp
ε + f ′(wε)∂xpε = −ε∂2

xxp
ε, x ∈ R, t < T,

pε(x, T ) = pT (x),
(3.13)

where the final condition pT is defined by (2.11). In this case, the derivative of the
Lagrangian with respect to wε is equal to zero, and the Gateaux-derivative of the cost
function is characterized by

DJ̃ε(f)δf =

∫ T

0

∫ +∞

−∞
∂xpεδf(wεf ).(3.14)

Equation (3.13) is a parabolic linear equation, and it is known that it admits only
one solution in L2(0, T, L2(R)) ∩ C1(R× (0,∞)) which depends on wε.

On the other hand, if β ≥ f ′′ ≥ α > 0, we can prove the following (OSLC)
estimate (see [19]) by a maximum principle argument applied to (3.1):

L+ (f ′(wε(x, t))) ≤ βL+
(
w0
)

1 + αtL+ (w0)
= m(t) ∈ L1(0, T ).(3.15)

From this result, we shall deduce BV and W 1,∞ estimates on the adjoint state.
Theorem 3.3. We consider the solution pε(x, t) of linear parabolic problem

(3.13), with pT ∈ W 1,∞(R) ∩ BV (R). We suppose β ≥ f ′′ ≥ α > 0, with α, β
constants independent of w. Then (x, t) 7→ f ′(wf (x, t)) verifies the (OSLC), and

‖pε(·, t)‖L∞(R) ≤ ‖pT ‖L∞(R),(3.16)

‖∂xpε(·, t)‖L1(R) ≤ ‖pT ‖BV (R),(3.17)

‖∂xpε(·, t)‖L∞ ≤ ‖pT ‖W 1,∞ · exp

{∫ T

t

m(T − τ)dτ

}
(3.18)

for all t ≤ T , where m ∈ L1(0, T ) is the function defined in (3.15).
Proof. Estimates (3.16) and (3.17) are classical results of the theory of nonlinear

hyperbolic equations, and the proofs can be found in [12] and [6]. The proof of the
estimate (3.18) is very similar to the arguments used by Tadmor [19]. Let us recall
them briefly.

We consider p and pε solutions to the problems (2.10) and (3.13), respectively.
Let qε(x, t) = pε(−x, T − t) and ψε(x, t) = ∂xq

ε(x, t). We differentiate (3.13), and we
notice that the function ψε verifies

∂tψε + f ′(wε(−x, T − t))∂xψε
= − (∂xf

′(wε(−x, T − t)))ψε + ε∂2
xxψε.(3.19)

Let λ ≥ 2 be an even integer. We multiply (3.19) by λψλ−1
ε and we integrate by

parts. We obtain

d

dt
‖ψε(·, t)‖λLλ =− (λ− 1)

∫
x∈R

{
∂x
∂f

∂w
(wε(−x, T − t))

}
ψλε dx

− ελ(λ− 1)

∫
x∈R

(∂xψε)
2
ψλ−2
ε dx.(3.20)
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Using the (OSLC) inequality (3.15) and the Gronwall lemma in (3.20), we deduce
∀t ≤ T

‖ψε(·, t)‖Lλ ≤ ‖ψε(·, 0)‖Lλ · exp

{
−λ− 1

λ

∫ T

t

m(T − τ)dτ,

}
.(3.21)

We pass to the limit when λ tends to +∞ in (3.21). By the definition of ψε, we deduce
(3.18).

3.3. Convergence of the method. Now we prove that the artificial viscosity
method converges in the sense that the sequences wε and pε converge, respectively,
to the entropy solution of (1.1)—which is logical—and to the reversible solution of

the adjoint equation. Moreover, the sequence of the derivatives of J̃ε also converges
toward an element of the subdifferential of J̃ . Using these BV and W 1,∞ estimates
we have the following convergence result concerning the adjoint state.

Theorem 3.4. We consider the solution pε(x, t) of the linear parabolic problem
(3.13). We suppose that the flux f satisfies β ≥ f ′′ ≥ α > 0 and pT is a function of
W 1,∞(R) ∩ BV (R). Then

pε → p uniformly in Ω̄,(3.22)

where Ω = ω × (0, T ), ω is a compact of R, and p is the reversible solution of (2.10)
given by Theorem 2.5.

Proof. The functions pε and ∂xp
ε are bounded in L∞ (by (3.16) and (3.18)). We

can extract a subsequence, still denoted by pε, and we have

pε(·, t) ⇀ p(·, t) in W 1,∞(R)-weak ∗ .(3.23)

By the Rellich–Kondrachov theorem (see Adams [1]) we deduce the strong conver-
gence in C0,α(ω̄) for all 0 < α < 1, and ω compact set of R, and using a classical
diagonalization argument (see, for instance, [6]), we obtain the uniform convergence
in Ω̄.

Now, in order to prove that p is a Lipschitz continuous solution of (2.10), we
multiply the backward parabolic equation (3.13) by a test function ϕ ∈ C∞0 (R ×
(0,+∞)), and we integrate by parts. We have

0 = −
∫ ∞

0

∫
R
{pε∂tϕ− f ′(wε)∂xpεϕ− ε∂xpε∂xϕ} dxdt

−
∫
R
pT (x)ϕ(x, 0)dx.(3.24)

On the other hand, multiplying (3.13) by p(·, t), integrating by parts, and using
Gronwall’s lemma, we deduce that

ε
1
2 ‖∂xpε‖L2(R×(0,T )) ≤ C,(3.25)

where C is a constant independent of ε. That implies

ε∂2
xxp

ε → 0 in L2(0, T,H−1(R)-strong.(3.26)

Now, we know by Theorem 3.1 that wε → w in L1
loc(R × (0,+∞))-strong, and by

Lebesgue’s dominated convergence theorem we have f ′(wε) → f ′(w), in L1
loc(R ×

(0,+∞))-strong. Using the convergence W 1,∞-weak∗ of pε (3.23), we deduce

f ′(wε)∂xpε ⇀ f ′(w)∂xp in D′(R× (0,+∞)).(3.27)
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Using convergence results (3.26), (3.27), and the uniform convergence of pε, we let
ε→ 0 in (3.24). We obtain

0 = −
∫ ∞

0

∫
R
{p∂tϕ− f ′(w)∂xpϕ} dxdt−

∫
R
pT (x)ϕ(x, 0)dx.

Thus the limit of pε is a solution of the backward transport equation (2.10) in the
sense of distributions. In keeping with the W 1,∞-weak∗ convergence (3.23), we obtain
that the limit p verifies p(·, t) ∈W 1,∞(R) ∀t ≤ T . On the other hand, by letting ε→ 0
in (3.18), we obtain inequality (2.16).

In order to prove the convergence of the whole sequence pε, we will prove that
the limit of any converging subsequence is the unique reversible solution, which we
denote pr. For that, we suppose that pε → p, and using the definition (2.15) of the
support of exceptional solutions, at first we have

p = pr almost everywhere (a.e.) (x, t) ∈ R× (0, T ) \ V.(3.28)

We set ψε(x, t) = ∂xp
ε(−x, T − t) and ψr(x, t) = ∂xpr(−x, T − t). Then, we substract

(2.10) from (3.13) and we differentiate with respect to x. We obtain

∂t(ψε − ψr) = −∂x (aε(ψε − ψr))− ∂x ((aε − a)ψr) + ε∂xxψε,

where aε = f ′(wε(−x, T−t)) and a = f ′(w(−x, T−t)). We multiply this last equation
by 2(ψε − ψr), and we integrate by parts. Using the (OSLC) inequality (3.15), we
deduce

d

dt

{
‖ψε(·, t)− ψr(·, t)‖2L2(R)

}
+ ε‖∂xψε(·, t)‖2L2(R)

≤ m(T − t)‖ψε(·, t)− ψr(·, t)‖2L2(R)

−
∫ +∞

−∞
(aε − a)(ψε − ψr)∂xψrdx(3.29)

−
∫ +∞

−∞
(∂xaε − ∂xa)(ψε − ψr)ψrdx

−ε
∫ +∞

−∞
∂2
xxψ

εψrdx.

From (3.23), (3.22), (3.26), and (3.27), we have that the second and fourth terms on
the right-hand side converge to 0 when ε→ 0. On the other hand, from property (i)
of Theorem 2.5 we have that ψr = 0 in Vt = {x | (−x, T − t) ∈ V}, and using the
equality (3.28), we deduce∫ +∞

−∞
(∂xaε − ∂xa)(ψε − ψr)ψrdx =

∫
x∈R\Vt

(∂xaε − ∂xa)(ψε − ψr)ψrdx → 0,

when ε → 0. Then, the third term on the right-hand side converges to 0. We can
pass to the limit in (3.29) and using Gronwall’s lemma, we obtain limε→0 ψε = ψr
and consequently p = pr.

Remark. Another way to prove this last result is to make use of the character-
ization (ii) of Theorem 2.5. Indeed, standard arguments allow us to prove that if
∂xp

T ≥ 0, then ∂xp
ε ≥ 0. Now, for any final data p we rewrite pT = pT1 − pT2 , with

∂xp
T
1 = (∂xp

T )+ and ∂xp
T
2 = (∂xp

T )−. We denote by pεi the solution of (3.13) with
final data pTi . Therefore we have pε = pε1 − pε2, with ∂xp

ε
i ≥ 0. We know that pε → p,
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pεi → pi with ∂xpi ≥ 0, and pi is solution of (2.10). Thus p is reversible. A similar
monotonicity argument will be used for numerical schemes.

Now we turn to the convergence of the derivative. A fundamental consequence of
the convergence of the solution of the adjoint problem with artificial viscosity is the
convergence of DJ̃ε when ε→ 0. More precisely, we have the following theorem.

Theorem 3.5. Let J̃ε : f 7→ J(wεf ) be the cost function (3.2) defined for all
Lipschitz continuous functions f , with wεf the solution of the parabolic problem (3.13),

and assume that w0 has compact support. We suppose that the flux f satisfies β ≥
f ′′ ≥ α > 0 and pT satisfies a function of W 1,∞(R) ∩ BV (R). Then we have, if wf
is the entropy solution of (1.1) and pf the reversible solution of (2.10),

DJ̃ε(f)δf →
∫ T

0

∫ +∞

−∞
∂xpfδf(wf )dxdt, when ε→ 0(3.30)

for all Lipschitz direction δf .
Proof. From Theorem 3.4 and the continuity of δf , we obtain the result{

δf(wεf ) → δf(wf ) in L1
loc(R× (0,+∞))-strong,

‖δf(wεf )‖L∞(R×(0,+∞)) ≤ C
(3.31)

for some constant C independent of ε. Let θ ∈ C∞0 (R × (0,+∞)). In keeping with
the convergence W 1,∞-weak of pε (3.23), and using (3.31), we obtain∫ T

0

∫ +∞

−∞
θ∂xp

ε
fδf(wεf )dxdt→

∫ T

0

∫ +∞

−∞
θ∂xpfδf(wf )dxdt.(3.32)

By hypothesis, w0 has a compact support. It is known that for finite propagation
velocity, the function [∂xpf ]δf(wf ) stays in a compact support, for T < ∞ (see
Kružkov [12]). We have∣∣∣∣∣ DJ̃ε(f)δf −

∫ T

0

∫ +∞

−∞
∂xpδf(wf )

∣∣∣∣∣
≤
∫ T

0

∫ R

−R
|∂xpεfδf(wεf )− ∂xpfδf(wf )|

+

∫ T

0

∫
|x|>R

|∂xpεfδf(wεf )|(3.33)

for R large enough. Hence, by (3.32), the first term of the right-hand side in (3.33)
converges to 0 when ε→ 0 for all R large enough.

Let us prove the convergence of the second term. We deduce from the compact
support of w0 and from the maximum principle applied to the linear parabolic equa-
tion (3.13) that |pε(x, t)| ≤ C exp(−r|x|), where C, r are constants which depend only
on T and ‖w0‖L∞ and thus are independent of ε. We deduce that the second term
of the right-hand side of (3.33) uniformly converges to 0 in ε, when R → ∞. This
concludes the proof of (3.30).

If the derivative of J̃(f) exists, then DJ̃(f) is characterized by (2.12), and we

deduce from Theorem 3.5 that DJ̃ε(f)δf → DJ̃(f)δf , when ε → 0. The trouble is

that we have no result concerning the differentiability of J̃ . Nevertheless, since we
are interested in the behavior of J̃ near a minimum, we can assume that J̃ is convex
in a neighborhood of this point. Therefore, we can define its subdifferential ∂J̃(f).
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Corollary 3.6. Assume that J̃ is a minimum at f and that J̃ and J̃ε are
convex in a neighborhood of f for all ε. Then, under the hypotheses of Theorem 3.5,
DJ̃ε(f)δf converges to an element of the subdifferential ∂J̃(f) of J̃(f), when ε→ 0,
that is,

∂J̃(f) 3
∫ T

0

∫ +∞

−∞
∂xpfδf(wf )dxdt.

Proof. From the definition of convexity we have

DJ̃ε(f)f − J̃ε(f) ≥ DJ̃ε(f)ν − J̃ε(ν)

for all Lipschitz continuous function ν. We apply Theorem 3.5, and we pass to the
limit when ε→ 0. We obtain∫ T

0

∫ +∞

−∞
[∂xpf ] [(f − ν)(wf )] dxdt ≥ J̃(f)− J̃(ν).

That is a characterization of the subgradient for convex functions (see Rockafellar

[15]). Thus, the limit of sequence DJ̃ε(f)δf is an element of the set ∂J(f).

4. Numerical approximation. Now we shall give similar convergence results
for discretization of the identification problem, and we will remark that at the limit,
both approximations (artificial viscosity and discretization) reach the same element
of the subdifferential ∂J(f) characterized by the reversible solution of the adjoint
problem. We shall prove these results for a large class of numerical schemes which
contains the schemes used to resolve the identification problem in [9].

First we discretize the cost function (denoted J∆) and the direct problem (1.1).
Next we compute a discrete Lagrangian, which will lead to a discrete adjoint state,
and finally to a discrete gradient of J∆. This method of computing the exact gradient
of the discretized problem seems to have better properties (concerning stability, for
instance) than discretizing the exact adjoint state. Moreover, notice that we have no
natural way to discretize it since the adjoint equation is ill-posed.

4.1. Discretization and convergence for the direct problem. Let ∆z (re-
spectively, ∆t) be a positive space (respectively, time) step. These parameters will
tend to 0, the ratio λ = ∆t/∆z remaining constant. For n = 0, . . . , N , j = 0, . . . , J ,
the sequence wnj is an approximation of solution w at the point (zj = j∆z, tn = n∆t).

In the same way, we discretize w0(z), wobs(z), by w0
j , w

obs
j , respectively. We consider

a conservative (2K + 1)-points scheme for the hyperbolic equation (1.1)

wn+1
j = wnj − λ

{
gnj+ 1

2
(f)− gnj− 1

2
(f)
}
,(4.1)

where gn
j+ 1

2

(f) = gf (wnj−K+1, . . . , w
n
j+K), gf being the numerical flux of the scheme,

consistent with f : gf (w, . . . , w) = f(w). Then the discretized identification problem
becomes the following minimization problem:

min
f
J
(
w∆
f

)
,(4.2)

where w∆
f is the piecewise constant function defined by the sequence

{
wnj (f) ; j =

0, . . . , J − 1, n = 0, . . . , N − 1
} ∈ RM , which was built out of (4.1).

To obtain the exact gradient of the discretized cost function, we follow along
exactly the same lines as in the formal computation and viscous regularization, that
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is, we build up a discrete Lagrangian L∆ using a “discrete weak form” of the direct
scheme (4.1), then we differentiate with respect to wnj , and we choose the sequence pnj
in order to cancel ∂L∆/∂w

n
j for all j and n. This defines the adjoint scheme. Finally,

for the discrete gradient, the computations give

DJ̃∆(f)δf = −∆t
∑
n,j

(
pn+1
j − pn+1

j+1

)
Dgnj+ 1

2
(f)δf,(4.3)

where p∆ is the solution of the adjoint scheme
pnj = pn+1

j − λ
K−1∑
k=−K

∂

∂wnj
gnj+k+ 1

2
(pn+1
j+k − pn+1

j+k+1),

pNj =
∂J
(
w∆
)

∂wNj
.

(4.4)

The complete computations are rather tedious, and we refer to [9] or [17] for greater
detail and for some examples as well.

First we show a convergence result of our discretized cost function, which allows
us to say that the continuous identification problem can be approximated by the
discretized identification problem. We consider a suitable set of functions F , which
we suppose are bounded and closed for the Lipschitz continuous norm ‖ ‖Lip. Next
we suppose that the numerical flux g introduced in (4.1) is Lipschitz continuous with
respect to w−k, . . . , wk and independent of f ∈ F , i.e., that there exists a constant
CLip independent of f , such that

sup
w,v≥0

{ |gf (w)− gf (v)|
|w − v|

}
≤ CLip ∀f ∈ F .(4.5)

We also suppose that the scheme (4.1) satisfies

|wnj (f)| ≤ C∞ ∀ j, n, and for any f ∈ F ,(4.6)

where C∞ is a constant independent of f . Condition (4.6) is verified for the Lax–
Friedrichs, Godunov [7], and Van Leer [20] schemes, when the following CFL-condition
is satisfied:

λ sup
w ≥ 0

f ∈ F

|f ′(w)| < 1.(4.7)

This leads us to our convergence result.
Proposition 4.1. Let w∆

f∆
be built out of the conservative scheme (4.1) which we

suppose consistent with (1.1), and verifying hypotheses (4.5) and (4.6), f∆ being the
solution of (4.2). If the initial condition w0

∆ is bounded in L∞(R)∩BV (R), then w∆
f∆

is bounded in L∞(R×(0,+∞)) and in L∞(0, T, BV (R)) for all T > 0. Furthermore,
if f∆k

→ f̄ ∈ F , for the Lipschitz continuous norm ‖ ‖Lip, then

w∆k

f∆k
→ wf̄ in L∞(0, T, L1(0, L))-strong,(4.8)

w∆k

f∆k
⇀ wf̄ in L∞(Ω)-weak ∗ .(4.9)
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Remarks. We can prove this proposition thanks to the continuity result of Lucier
[13] and by copying the proof of a convergence result for schemes approximating scalar
conservation laws in [6]. We omit the detail of this proof.

For instance, we consider the identification problem arising from the chromato-
graphic model (see [9]), and we take a bounded subset of parameters K ∈ RN . Then
we deduce the CFL-condition (4.7), and we have at least one accumulation point of
the sequence {f∆}∆x,∆t.

We suppose that wobs and w0 have a compact support, so that for 0 < t < T , the
support of the solution wf to (1.1), with f ∈ F , is in a compact set Ω = (0, L)×(0, T ).
Proposition 4.1 and a convergence result of [9] imply the following.

Corollary 4.2. Let w∆
f∆

be the solution of a conservative and TVD scheme

(4.1), consistent with (1.1). Then any accumulation point f̄ ∈ F of the sequence
{f∆}∆x,∆t, for the Lipschitz continuous norm is a solution of

J(wf ) = min
g∈F

J(wg),

where wf is the entropy solution of (1.1), with f ∈ F .

4.2. Monotone and TVD adjoint schemes. Here we study some properties
of monotonicity and BV estimates for adjoint schemes associated with the schemes in
conservative form (4.1). We notice that adjoint schemes cannot be put in conservative
form, which is not surprising, since the adjoint equation is not conservative. However,
we shall prove that a family of TVD difference schemes, including the Godunov and
the Van Leer schemes, is associated with TVD adjoint schemes.

First we define the function δxp∆ by

δxp∆(x, t) =
p∆(x, t)− p∆(x+ ∆x, t)

∆x
,

where δxp∆ is the piecewise constant function with value ∆pn
j+ 1

2

/∆x in the rectangle

Πn
j =

((
j − 1

2

)
∆x,

(
j +

1

2

)
∆x

)
× (n∆t, (n+ 1)∆t).

On the other hand, we define the differences ∆pn
j+ 1

2

= pnj −pnj+1 for all j ∈ Z, n ≤ N .

Using the linearity of the scheme (4.4), we deduce the following scheme for ∆pn
j+ 1

2

:

∆pnj+ 1
2

=
K∑

k=−K
Akj+k∆pn+1

j+k+ 1
2

,(4.10)

where the coefficients Akj are defined by

Akj = − λ
(

∂

∂wnj−k
− ∂

∂wnj−k+1

)
gnj+ 1

2
for k 6∈ {−K, 0,K},

A−Kj = − λ ∂

∂wnj+K
gnj+ 1

2
, AKj = λ

∂

∂wnj−K+1

gnj+ 1
2
,

A0
j = 1− λ

(
∂

∂wnj
− ∂

∂wnj+1

)
gnj+ 1

2
.

(4.11)

Notice that by construction the coefficients Akj satisfy

K∑
k=−K

Akj = 1 ∀j ∈ Z.(4.12)
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Now we wish the adjoint scheme to have the same property of monotonicity preser-
vation as the continuous equation. Thus, in view of (4.10), it is natural to impose

Akj ≥ 0 for −K ≤ k ≤ K, j ∈ Z.(4.13)

This is somehow the discrete version to the (OSLC) condition (3.15) used for the
convergence of the viscous perturbation.

Example. In the model of chromatography, the Godunov scheme is very simple.
(It is just an upwind scheme.) The adjoint scheme is given by (see [9])

pnj = pn+1
j − λf ′(wnj )

(
pn+1
j − pn+1

j+1

)
.(4.14)

In this case, the coefficients Akj are

A−1
j = λf ′(wnj ), A0

j = 1− λf ′(wnj ), A1
j = 0.

The CFL-condition (4.7) implies that these coefficients are positive.
Similarly, the adjoint scheme associated with the Van Leer difference scheme

verifies the hypothesis Akj ≥ 0 when we have CFL-condition (4.7), and it is a monotone
and TVD scheme, whereas we can see that the adjoint scheme associated with the
Lax–Friedrichs difference scheme does not verify this hypothesis of positivity and that
it is an unstable scheme in BV (R).

We have the following a priori estimates.
Proposition 4.3. We consider a linear scheme in form (4.4), with its coefficients

defined by (4.11) and verifying the monotonicity property (4.13). Then we have for
all 0 < s, t < T the following estimates:

TV (p∆(., t)) ≤ TV (p∆(., T )),(4.15)

‖p∆(., t)‖L1(R) ≤ ‖p∆(., T )‖L1(R) + CT TV (p∆(., T )),(4.16)

‖δxp∆(·, t)‖L∞(R) ≤ ‖δxp∆(·, T )‖L∞(R),(4.17)

‖p∆(., t)− p∆(., s)‖Lp(ω) ≤ C |t− s|+ ∆t

|∆t| p−1
p

‖δxp∆(·, T )‖L∞(R),(4.18)

where ω is a compact set in R, 1 ≤ p ≤ +∞, and C > 0 is a constant independent of
the discretization.

Remark. Estimates (4.15) and (4.16) are classical results of the theory of approx-
imation of nonlinear conservation laws. They rely upon monotonicity properties of
the schemes and are in particular independent of the conservative form. The estimate
(4.18) is a technical result allowing us to use a diagonalization argument in order to
pass to the limit, when ∆t,∆z → 0.

Notice that the result of estimate (4.17) bears some resemblance to that of the
W 1,∞ estimate proved in Theorem 3.3.

Proof of Proposition 4.3. Let R ≥ K. Summing up (4.10) from j = −R to
j = R, and using the positivity of Akj and property (4.12), and passing to the limit
R→ +∞, we obtain the estimate (4.15). On the other hand, using this BV estimate,
the L1 estimate (4.16) is obtained by an analysis that is similar to the one made by
Godlewski and Raviart [6, Chap. III] for the different schemes in conservative form.
Now, using the condition Akj+k ≥ 0, the estimate (4.17) results from the monotonicity
of

(H∆(∆p))j =
K∑

k=−K
Akj+k∆pn+1

j+k+ 1
2

.
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In order to obtain the next estimate (4.18), we write the scheme (4.4) in the form

pnj − pn+1
j = − λ

K−1∑
k=−K

∂

∂wnj
gnj+k+ 1

2
∆pn+1

j+k+ 1
2

,

and by the Lipschitz condition of g, we have

|pnj − pn+1
j | ≤ λC sup

j∈Z
|∆pn+1

j+ 1
2

|,

with a constant C independent of the discretization. That implies

‖p∆(·, n∆t)− p∆(·, (n+ 1)∆t)‖Lp(ω) ≤ λ
p−1
p C|ω| 1p |∆t| 1p sup

j∈Z
|∆pn+1

j+ 1
2

|.

Let m > n. Applying successively this same result for n, n + 1, . . . ,m − 1, and
using the triangular inequality of the norm ‖ · ‖Lp , we obtain

‖p∆(·, n∆t)− p∆(·,m∆t)‖Lp(ω) ≤ C|∆t|
1
p (n−m) sup

j∈Z
|∆pNj+ 1

2
|.(4.19)

Let s, t such that n∆t ≤ s ≤ (n + 1)∆t, m∆t ≤ t ≤ (m + 1)∆t. We notice that
(m− n)∆t ≤ |t− s|+ ∆t. Inequality (4.19) gives the desired result (4.18).

4.3. Convergence for adjoint schemes and derivatives. Now we shall pro-
vide evidence that the sequence of discrete gradients converges to the same element of
the subdifferential of the cost function given by the limit of the viscous perturbation.
First we have the following convergence result for the solution of the adjoint scheme.

Theorem 4.4. We consider the linear difference scheme in the form (4.4), where
the coefficients are defined in (4.11) and verify the monotonicity property (4.13). We
suppose pT ∈W 1,∞(R) ∩BV (R) and the (OSLC) (3.15). Then,

p∆ → p in L∞(0, T, Lqloc(R))-strong, 1 ≤ q < +∞,
where p is the reversible solution of (2.10).

Proof. In accordance with the estimate (4.17) and in keeping with the hypothesis
pT ∈W 1,∞(R), we have

sup
x
|δxp∆(x, t)| ≤ C.(4.20)

Applying the theorem of Riesz–Fréchet–Kolmogorov (see Adams [1]) in the last in-
equality, we deduce that we can take a subsequence ∆kx,∆kt → 0 which we still
denote with ∆x,∆t, such as

p∆(·, t) → p(·, t) in Lqloc(R))-strong ∀t ∈ (0, T )

for all 1 ≤ q < +∞. Using the estimate (4.18) and a classical diagonalization argu-
ment (see [6]), we deduce the convergence in L∞(0, T, Lqloc(R)).

In order to prove that the limit p is a Lipschitz continuous solution of (2.10), we
proceed by similar arguments to the proof of Theorem 3.4. Next we notice that the
scheme in the form (4.4) preserves monotonicity as soon as Akj ≥ 0 (which is satisfied,
for instance, by the adjoints of Godunov and Van Leer schemes). Finally, we use the
same arguments of the first remark following the proof of Theorem 3.4. That is,{

p∆ → p in L∞(0, T, Lqloc(R)),

p∆ = p1
∆ − p2

∆, with (pnj )i ≤ (pnj+1)i, and pi∆ solution of the scheme (4.4)

implies that p is reversible.
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It is easy to verify that J̃∆ : f 7→ J(w∆
f ) has a continuous derivative if the

numerical flux g is of class C1 with respect to (wnj−K+1, . . . , w
n
j+K). As a consequence

of Theorem 4.4, we have the following.
Corollary 4.5. Let J̃∆ : f 7→ J(w∆

f ) be a discretized cost function defined for all

Lipschitz continuous function f , with w∆
f solution of the scheme in the conservation

form (4.1). We suppose that the coefficients Akj in (4.11) satisfy Akj ≥ 0 for −K ≤
k ≤ K, j ∈ Z, and that w0 has a compact support. Furthermore, we suppose that
pT ∈ W 1,∞(R) ∩ BV (R). Let wf be the entropy solution of (1.1) and pf be the
reversible solution of (2.10). Then we have

DJ̃∆(f)δf →
∫ T

0

∫ +∞

−∞
∂xpfδf(wf )dxdt, when ∆x,∆t→ 0(4.21)

for all Lipschitz direction δf .
Remark. We note that Theorem 3.5 and Corollary 4.5 make it clear that a viscous

perturbation or a numerical approximation of the gradient give the same result at the
limit.

We clarify this result by another corollary, as follows.
Corollary 4.6. Assume that J̃ is a minimum at f and that J̃ and J̃∆ are convex

for all (∆x,∆t) in a neighborhood of f . Then, under the hypotheses of Theorem 4.5,

DJ̃∆(f)δf converges to the same element of the subdifferential ∂J(f) of J(f) which
we have obtained by a viscous perturbation in Corollary 3.6, when ∆x,∆t→ 0.

5. Numerical results. In this section we illustrate our results by a numerical
application on real experimental data. We consider the propagation of a single, pure
compound in a column, which leads under several physical assumptions to a scalar
conservation law of the form (1.1). More precisely, the experimental data are concen-
tration profiles obtained from the adsorption of gaseous n-hexane on graphite carbon
with helium vector gas. We refer to Rouchon et al. [16] for the complete description
of the experiment, the discussion of the model, and the original results. A remarkable
feature of this experiment is that we have an experimentally identified flux with which
to compare.

The observation here is a profile of concentration versus time, at a fixed L > 0,
where L is the length of the column. This is not quite the context of the previous
analysis, but since in this kind of model the flux satisfies f ′(w) > 0, only a slight
modification is needed. The direct problem is discretized through a Godunov scheme,
and we compute the exact gradient of the discrete functional as indicated in section
4.1 (see also [9] for details). At this discrete level, all the quantities are well defined,
so we are able to apply a gradient-based minimization algorithm. Thus we are left
with the problem of nonuniqueness for f which was mentioned before. To handle
this, we specify an analytic form for f , based on physical arguments, which we do not
detail here. We refer the interested reader to [10] and the references therein for more
complete information. If c denotes the concentration of the compound, then a family
of fluxes depending on a finite number of parameters is given by

f(c) = N
KcP ′(Kc)
qP (Kc)

, P (w) =

q∑
i=0

αi exp(−βEi)wi,(5.1)

where q ≥ 1 is an integer and αi and β are given constants involving temperature
and other fixed parameters of the experiment. The relevant parameters to identify
here are the so-called Langmuir coefficient K, N , and Ei, 2 ≤ i ≤ q (E0 = E1 = 0 by
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Table 5.1
Initial and identified coefficients (1).

Parameters Initial guess (Langmuir) Identification result
K 1596. 1178.
E2 0. -806.
E3 0. -213.
E4 0. -16.
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Fig. 5.1. Comparison between experimental and identified profiles.

construction). The model obtained with q = 1 or equivalently with Ei = 0 ∀i is the
classical Langmuir model.

These parameters do not have the same influence on the concentration profiles.
Roughly speaking, K and N act essentially on the position of the profile, while Ei
modifies its shape. The minimization algorithm has therefore to be carefully modified
to handle this problem (see [9]). In the first application, we chose as an initial guess
the Langmuir model, with a given value of K, and we fixed the value of N = 2.19 10−2.

The coefficients of the initial guess and the identification result are given in Table
5.1, and the comparison between the experimental flux, the initial guess, and the
identified flux is shown in Figure 5.2. Finally, Figure 5.1 shows the experimental and
identified concentration profiles.

These figures deserve a few remarks. The comparison between the profiles in
Figure 5.1 proves that our identification is quite successful. Concerning the fluxes
themselves, we notice in Figure 5.2 the good agreement with the experiment on the
whole domain of measurement, even though the domain of identification is 0 ≤ c ≤
0.004 g./mol.
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Fig. 5.2. Comparison between experimental and identified isotherm.

Table 5.2
Initial and identified coefficients (2).

Parameters Initial guess Identification result

N 2.19 10−2 1.42 10−2

K 1596. 2068.
E2 214. 214.
E3 -1252. -1252.
E4 1251. 1251.

In order to illustrate the nonuniqueness, we tried another identification. Starting
from an initial guess which has a convenient shape, we tried to identify only the
coefficients N and K, leaving the ratio K/N constant. The results are shown in
Table 5.2. The resulting profile is identical to the one in Figure 5.1.

Figure 5.3 shows the preceding identification (labeled 1) and this one (labeled 2).
We notice that, indeed, we obtain different functions but in the domain of identifica-
tion, they are virtually indistinguishable.

We would like to emphasize that the choice of a physically relevant model for
the flux is of great importance to obtain a good agreement with experiment. But
even in this case the problem of uniqueness is not solved, and the correct choice of
the flux therefore has to rely on physical arguments: The parameters here have a
precise meaning, which has not been explored in these experiments. We refer to [11]
for similar results on a binary mixture or, in terms of partial differential equations,
on a system of two equations.
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Fig. 5.3. Comparison between two identified isotherms.
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Abstract. The identification of discontinuous parameters in elliptic systems is formulated as
a constrained minimization problem combining the output least squares and the equation error
method. The minimization problem is then proved to be equivalent to the saddle-point problem of
an augmented Lagrangian. The finite element method is used to discretize the saddle-point problem,
and the convergence of the discretization is also proved. Finally, an Uzawa algorithm is suggested
for solving the discrete saddle-point problem and is shown to be globally convergent.

Key words. parameter identification, elliptic system, augmented Lagrangian, finite element
method
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1. Introduction. The main purpose of this paper is to propose a numerical
approach and conduct convergence analyses on each approximation process in the
identification of the unknown coefficient q in the elliptic problem

−∇ · (q∇u) = f in Ω; u = 0 on Γ.

The identifying process is carried out so that the solution u matches its observation
data z optimally in a certain sense. Here Ω can be any bounded domain in Rd,
d = 1, 2, or 3, with piecewise smooth boundary Γ and f ∈ H−1(Ω) as given. The
problem may describe the flow of a fluid (e.g., groundwater) through some medium
with permeability q(x), or the heat transfer in a material with conductivity q(x); we
refer to the books by Bank and Kunisch [1] and Engl, Hanke, and Neubauer [7]. Prac-
tically, it is often easier to measure the solution u at various points in the medium
than to measure the parameter q(x) itself [11]. Then the measured data of u (often the
interpolated function of the data) are utilized to estimate the parameter q(x) through
the above boundary value problem. We study a hybrid method proposed in [13, 14]
that combines the output least squares and the equation error formulation within the
mathematical framework given by the augmented Lagrangian technique. The aug-
mented Lagrangian methods have been widely used earlier in nonlinear constrained
optimization problems and nonlinear boundary value problems to relax some compli-
cated constraints or difficult couplings among some nonlinear and nonsmooth terms
or to enhance convexities of the objective functions (cf. [10, 2]). Ito and Kunisch
[13, 14] applied the augmented Lagrangian method for parameter identifying prob-
lems, incorporated with a regularization term of the H2 seminorm of the parameters
to be estimated. Their methods appear to be very efficient and successful in recov-
ering the smooth parameters. The major novelty of this paper is to generalize the
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aforementioned method so that we can identify even nonsmooth parameters. To this
aim, we propose to search for the coefficients in the space of functions with bounded
variation (BV), namely, in the space

BV (Ω) =
{
q ∈ L1(Ω); ‖q‖BV (Ω) <∞

}
.

Here ‖q‖BV (Ω) = ‖q‖L1(Ω) +
∫

Ω
|Dq| with the notation

∫
Ω
|Dq| defined by∫

Ω

|Dq| = sup
{∫

Ω

q div g dx; g ∈ (C1
0 (Ω)

)d
and |g(x)| ≤ 1 in Ω

}
,

which allows us to identify the discontinuous parameters in elliptic systems.
Because of the involvement of the BV (Ω) norm in the cost function and because

there is not as much regularity as in [13, 14], we cannot apply the techniques of Ito
and Kunisch to show the existence of the saddle-points of the augmented Lagrangian
and the convergence of the discrete saddle-points to the continuous ones. Instead, our
crucial tool for the convergence analyses will be an appropriate application of the
Hahn–Banach convex separating theorem. This enables us to have a clear and simple
convergence theory without making any a priori assumptions on cost functional or
constraint functionals. We note that quite a different approach was used in [12] for
the identification of discontinuous parameters.

We now formulate the aforementioned parameter identifying problem as the fol-
lowing constrained minimization problem:

minimize J(q, v) =
1

2

∫
Ω

q|∇v −∇z|2dx+ β

∫
Ω

|Dq|(1.1)

subject to (q, v) ∈ K × V and(1.2)

e(q, v) = (−∆)−1(∇ · (q∇v) + f) = 0,(1.3)

where V = H1
0 (Ω) and K is a subset of the function space BV (Ω) of BVs defined by

K = {q ∈ BV (Ω); α1 ≤ q(x) ≤ α2 almost everywhere (a.e.) in Ω} .
Here α1 and α2 are two positive constants and β > 0 is a regularization parame-
ter. −∆ is the Laplace operator from H1

0 (Ω) to its dual space H−1(Ω), so e(q, v) is
understood as an operator from K × V into V defined by

(∇e(q, v),∇φ) = (q∇v,∇φ)− (f, φ) ∀ (q, v) ∈ K × V, φ ∈ V,(1.4)

where (·, ·) denotes the duality pairing between H−1(Ω) and H1
0 (Ω), which is the

extension of the inner product in L2(Ω). It is useful to remark that e(q, v) is convex
with respect to each variable.

The problem (1.1)–(1.3) will be solved by the augmented Lagrangian method.
Thus we introduce the augmented Lagrangian functional Lr : K × V × V → R by

Lr(q, v;µ) = J(q, v) + (∇µ,∇e(q, v)) +
r

2
‖∇e(q, v)‖2L2(Ω),(1.5)

where r ≥ 0 is some given constant. The first main result of the paper states that the
minimization problem (1.1)–(1.3) is equivalent to the saddle-point problem associated
with the Lagrangian functional Lr in (1.5). To solve the saddle-point problem, we
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propose a finite element discretization of the problem and show that the saddle-
points of the discrete problem converge to those of the continuous problem. Finally,
we propose an Uzawa algorithm to solve the discrete saddle-point problem and prove
the global convergence of the algorithm. We note that recently Chan and Tai have
performed many numerical experiments on a local convergent Uzawa algorithm and
its combination with domain decomposition and multigrid methods [4, 16].

Throughout the paper, the constant C is a generic constant that might be different
at each occurrence but is independent of the mesh parameter h and of the various
functions involved.

2. The continuous saddle-point problem. We start this section with the
existence of the solutions to the minimization problem (1.1)–(1.3) and then prove that
the minimization problem is equivalent to the saddle-point problem of the augmented
Lagrangian Lr defined in (1.5).

Lemma 2.1. There exists at least one solution to the minimization problem (1.1)–
(1.3).

Proof. Let

A =
{

(q, v) ∈ K × V ; e(q, v) = 0
}

be the admissible set of the minimization problem (1.1)–(1.3). It is clear that A 6= ∅
and J(q, v) ≥ 0 on A. Thus there exists a minimizing sequence (qn, vn) ∈ A such that

lim
n→∞J(qn, vn) = inf

(q,v)∈A
J(q, v).(2.1)

Hence J(qn, vn) ≤ C for each n > 0, which implies by definition of J and K that

‖vn‖H1(Ω) + ‖qn‖BV (Ω) ≤ C.
Therefore, by possibly extracting a subsequence, there exists a pair (q∗, v∗) ∈ BV (Ω)×
V satisfying

vn ⇀ v∗ in H1
0 (Ω), qn → q∗ in L1(Ω).(2.2)

Since qn ∈ K, we also have q∗ ∈ K. To show that e(q∗, v∗) = 0, we first note that
e(qn, vn) = 0 as (qn, vn) ∈ A; therefore,

(qn∇vn,∇φ) = (f, φ) ∀φ ∈ V.(2.3)

However,

(2.4) ∣∣∣(qn∇vn,∇φ)− (q∗∇v∗,∇φ)
∣∣∣

≤
∣∣∣((qn − q∗)∇vn,∇φ)

∣∣∣+
∣∣∣(q∗∇(vn − v∗),∇φ)

∣∣∣
≤
{∫

Ω

|qn − q∗| |∇φ|2dx
}1/2{∫

Ω

|qn − q∗| |∇vn|2dx
}1/2

+
∣∣∣(q∗∇(vn − v∗),∇φ)

∣∣∣
≤ C

{∫
Ω

|qn − q∗| |∇φ|2dx
}1/2

+
∣∣∣(q∗∇(vn − v∗),∇φ)

∣∣∣,
where we have used the fact that α1 ≤ qn, q ≤ α2 and ‖vn‖H1(Ω) ≤ C. Now letting
n→∞ in (2.4), we obtain

(qn∇vn,∇φ)→ (q∗∇v∗,∇φ) ∀φ ∈ V
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by means of the Lebesgue dominant convergence theorem and the weak convergence
in (2.2). Thus we see that e(q∗, v∗) = 0 by (2.3) and the definition of e(·, ·). Now
using (2.2), we have (cf. [9])∫

Ω

|Dq∗| ≤ lim inf
n→∞

∫
Ω

|Dqn|.

On the other hand, by e(qn, vn) = 0, we have

(qn∇(vn − z), ∇φ) = (f, φ)− (qn∇z, ∇φ) ∀φ ∈ V.

Taking φ = vn − z gives∫
Ω

qn|∇(vn − z)|2dx = (f, vn − z)− (qn∇z, ∇(vn − z)).

Similarly, using e(q∗, v∗) = 0, we get∫
Ω

q∗|∇(v∗ − z)|2dx = (f, v∗ − z)− (q∗∇z, ∇(v∗ − z)).

Then using the last two relations, (2.2), and the Lebesgue dominant convergence
theorem, we can immediately derive∫

Ω

q∗|∇(v∗ − z)|2dx = lim
n→∞

∫
Ω

qn|∇(vn − z)|2dx,(2.5)

which with (2.1) yields

J(q∗, v∗) ≤ lim inf
n→∞

1

2

∫
Ω

qn|∇vn −∇z|2dx+ lim inf
n→∞

∫
Ω

|Dqn|
≤ lim inf

n→∞ J(qn, vn) = inf
(q,v)∈A

J(q, v).

This completes the proof of Lemma 2.1 as (q∗, v∗) ∈ A.
The following theorem is the main result of this section.
Theorem 2.2. (q∗, v∗) ∈ K×V is a solution of the minimization problem (1.1)–

(1.3) if and only if there exists a λ∗ ∈ V such that (q∗, v∗, λ∗) ∈ K × V × V is a
saddle-point of the augmented Lagrangian Lr : K × V × V → R, namely,

Lr(q∗, v∗;µ) ≤ Lr(q∗, v∗;λ∗) ≤ Lr(q, v;λ∗) ∀ (q, v, µ) ∈ K × V × V.(2.6)

The key step in proving Theorem 2.2 is an appropriate application of the Hahn–
Banach convex set separating theorem. To do so, we introduce two subsets in R×V :

S =
{

(J(q, v)− J(q∗, v∗) + s, e(q, v)) ∈ R× V ; (q, v) ∈ K × V, s ≥ 0
}
,(2.7)

T =
{

(−t, 0) ∈ R× V ; t > 0
}
,(2.8)

where (q∗, v∗) ∈ K × V is some minimal point of the problem (1.1)–(1.3). The
following three lemmas provide the properties of two subsets required by the Hahn–
Banach theorem.

Lemma 2.3. S and T are two convex subsets in R× V .
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Proof. It is obvious that T is a convex subset in R × V . To see that S is also a
convex subset, we let

Pi = (J(qi, vi)− J(q∗, v∗) + si, e(qi, vi)), i = 1, 2,

be two points in S, where (qi, vi) ∈ K × V and si ≥ 0. We let 0 < α < 1, and we
have to show that

Pα = αP1 + (1− α)P2 ≡ (pα, wα)

with

pα = αJ(q1, v1) + (1− α)J(q2, v2)− J(q∗, v∗) + αs1 + (1− α)s2,

wα = αe(q1, v1) + (1− α)e(q2, v2)

is also a point in S. Let us now define qα ∈ K as

qα = αq1 + (1− α)q2

and vα ∈ V as the solution of the variational problem

(qα∇vα,∇φ) = (αq1∇v1 + (1− α)q2∇v2, ∇φ) ∀φ ∈ V.(2.9)

Clearly, (qα, vα) ∈ K×V is well defined. By (2.9) and the definition of e(·, ·), we have

(∇e(qα, vα), ∇φ) = (qα∇vα,∇φ)− (f, φ)

= (αq1∇v1 + (1− α)q2∇v2, ∇φ)− (f, φ)

= α{(q1∇v1, ∇φ)− (f, φ)}+ (1− α){(q2∇v2, ∇φ)− (f, φ)}
= (α∇e(q1, v1) + (1− α)∇e(q2, v2), ∇φ) ∀φ ∈ V,

which implies that

e(qα, vα) = αe(q1, v1) + (1− α)e(q2, v2).(2.10)

On the other hand, by the convexity of the BV-seminorm we have∫
Ω

|Dqα| ≤ α
∫

Ω

|Dq1|+ (1− α)

∫
Ω

|Dq2|,(2.11)

and we know from (2.9) that

(qα∇(vα − z), ∇z) = (αq1∇(v1 − z) + (1− α)q2∇(v2 − z), ∇φ).

Then letting φ = vα − z and using Schwarz’s inequality give∫
Ω

qα|∇(vα − z)|2dx

≤
∫

Ω

q−1
α |αq1∇(v1 − z) + (1− α)q2∇(v2 − z)|2dx

≤
∫

Ω

qα

∣∣∣∣αq1

qα
∇(v1 − z) +

(1− α)q2

qα
∇(v2 − z)

∣∣∣∣2 dx
≤
∫

Ω

qα

{
αq1

qα
|∇(v1 − z)|2 +

(1− α)q2

qα
|∇(v2 − z)|2

}
dx

= α

∫
Ω

q1|∇(v1 − z)|2dx+ (1− α)

∫
Ω

q2|∇(q2 − z)|2dx,
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where we have used the fact that (αq1 + (1 − α)q2)/qα = 1 and the convexity of the
function | · |2. Now combining this bound with (2.11) we obtain

J(qα, vα) ≤ αJ(q1, v1) + (1− α)J(q2, v2),(2.12)

and so (2.10) and (2.12) imply that

Pα = (J(qα, vα)− J(q∗, v∗) + sα, e(qα, vα) ) ∈ S
since (qα, vα) ∈ K × V and

sα = αs1 + (1− α)s2 + αJ(q1, v1) + (1− α)J(q2, v2)− J(qα, vα) ≥ 0.

This completes the proof of Lemma 2.3.
Lemma 2.4. We have S ∩ T = ∅.
Proof. Assume that (a,w) ∈ S ∩ T ; then there exists (q, v) ∈ K × V and s ≥ 0

such that

a = J(q, v)− J(q∗, v∗) + s, w = e(q, v).

But (a,w) ∈ T implies that a < 0 and w = e(q, v) = 0. Thus

J(q, v) + s < J(q∗, v∗),

which contradicts the assumption that (q∗, v∗) is a minimal point of the problem
(1.1)–(1.3).

Lemma 2.5. The subset S has at least one interior point.
Proof. It is easy to see that for any s0 > 0, (s0, 0) = (J(q∗, v∗) − J(q∗, v∗) +

s0, e(q
∗, v∗)) is a point in S. We will show that (s0, 0) ∈ R × V is also an interior

point of S. For any ε ∈ (0, 1), let (s, w) belong to the ε-neighborhood of (s0, 0) in
R× V , that is,

|s− s0|+ ‖w‖H1(Ω) ≤ ε.(2.13)

Let q = q∗ and v ∈ V be the solution to the equation

(q∇v, ∇φ) = (f, φ) + (∇w, ∇φ) ∀φ ∈ V.(2.14)

Then we have e(q, v) = w. Let

s′ = s+ J(q∗, v∗)− J(q, v)

= s+
1

2

∫
Ω

q∗|∇(v∗ − z)|2dx− 1

2

∫
Ω

q∗|∇(v − z)|2dx

= s− 1

2

∫
Ω

q∗∇(v − v∗) · ∇(v + v∗ − 2z)dx.(2.15)

From (2.14) and e(q∗, v∗) = 0, we derive that ‖∇v∗‖L2(Ω) ≤ ‖f‖H−1(Ω)/α1 and

(q∗∇(v − v∗), ∇φ) = (∇w, ∇φ) ∀φ ∈ V,
which yields ‖∇(v−v∗)‖L2(Ω) ≤ ε/α1 by (2.13). Also, (2.14) implies that ‖∇v‖L2(Ω) ≤
(‖f‖H−1(Ω) + ε)/α1, thus we deduce from (2.15) that

s′ ≥ s0 − ε− 1

2
α2‖∇(v − v∗)‖L2(Ω) ‖∇(v + v∗ − 2z)‖L2(Ω)

≥ s0 − ε− α2

2α2
1

ε {ε+ 2‖f‖H−1(Ω) + 2α1‖∇z‖L2(Ω)}.
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Now if ε is sufficiently small, then s′ ≥ 0. Therefore

(s, w) = (J(q, v)− J(q∗, v∗) + s′, e(q, v) ) ∈ K × V
for any (s, w) in the ε-neighborhood of (s0, 0). This completes the proof.

Now we are ready to prove Theorem 2.2.
Proof of Theorem 2.2. First, assume that (q∗, v∗, λ∗) ∈ K × V × V is a saddle-

point of Lr. Then the first inequality in (2.6) immediately gives e(q∗, v∗) = 0, and the
fact that (q∗, v∗) is a minimal point of the problem (1.1)–(1.3) follows readily from
the second inequality in (2.6).

Next we prove the remaining part of the theorem. Let (q∗, v∗) be a minimal point
of the problem (1.1)–(1.3), so we have

J(q∗, v∗) ≤ J(q, v) ∀ (q, v) ∈ K × V satisfying e(q, v) = 0.(2.16)

By Lemmas 2.3–2.5, we can apply the Hahn–Banach theorem (see, e.g., [3, 4, 5, 6])
to separate the two convex subsets S and T defined in (2.7) and (2.8). Thus there
exists a pair (α0, λ0) ∈ R× V , but (α0, λ0) 6= (0, 0) ∈ R× V such that

α0(J(q, v)− J(q∗, v∗) + s) + (∇λ0, ∇e(q, v)) ≥ α0(−t)
for any (q, v) ∈ K × V , s ≥ 0, and t > 0. Taking (q, v) = (q∗, v∗), s = t = 1, we get
α0 ≥ 0, while taking s = 0 and letting t→ 0+, we obtain

α0(J(q, v)− J(q∗, v∗)) + (∇λ0, ∇e(q, v)) ≥ 0 ∀ (q, v) ∈ K × V.(2.17)

We now claim that α0 > 0. Otherwise, if α0 = 0 we have from (2.17) that

(∇λ0, ∇e(q, v)) = (q∇v, ∇λ0)− (f, λ0) ≥ 0 ∀ (q, v) ∈ K × V,(2.18)

which implies that λ0 = 0. In fact, taking q = q∗ ∈ K and v ∈ V to be the solution
of the equation

(q∗∇v, ∇φ) = (f − λ0, φ) ∀φ ∈ V,(2.19)

we know from (2.18), (2.19) that −‖λ0‖2L2(Ω) ≥ 0. Thus we have (α0, λ0) = (0, 0),

which is a contradiction. Therefore α0 > 0. Then taking λ∗ = λ0/α0 and dividing
both sides of (2.17) by α0, we get

J(q∗, v∗) ≤ J(q, v) + (∇λ∗, ∇e(q, v)) ∀ (q, v) ∈ K × V,
which, combined with (2.16) indicates that (q∗, v∗, λ∗) ∈ K ×V ×V is a saddle-point
of the augmented Lagrangian Lr. So we have proved Theorem 2.2.

3. The discrete saddle-point problem. Theorem 2.2 tells us that the min-
imization problem (1.1)–(1.3) is equivalent to finding the saddle-points of the func-
tional Lr defined in (1.5). In this section, we will consider how to discretize the
augmented Lagrangian Lr and derive a discrete saddle-point problem.

Let Ω be a polyhedral domain in Rd, d = 1, 2, or 3, and {T h}h>0 be a family
of regular triangulations (cf. Ciarlet [5]) of the domain Ω, with simplicial elements.
Denote by Vh the standard piecewise linear finite element space over the triangulation
T h and

◦
V h= Vh ∩H1

0 (Ω), Kh = K ∩ Vh.
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We now introduce a discrete version of the operator e(q, v) : K × V → V defined in

(1.4): for any (qh, vh) ∈ Kh×
◦
V h, eh(qh, vh) ∈ ◦V h is the solution of the system

(∇eh(qh, vh), ∇φ) = (qh∇vh, ∇φ)− (f, φ) ∀φ ∈ ◦V h .(3.1)

It is clear that the operator eh : Kh×
◦
V h→

◦
V h is well defined. Moreover, the following

estimate holds:

‖∇eh(qh, vh)‖L2(Ω) ≤ {α2‖∇vh‖L2(Ω) + C‖f‖H−1(Ω)} ∀ (qh, vh) ∈ Kh × Vh,(3.2)

where the constant C comes from the Poincaré inequality.
Now for any given r ≥ 0, we define the discrete augmented Lagrangian Lr:

Kh×
◦
V h ×

◦
V h→ R as follows:

Lr(qh, vh;µh) = Jh(qh, vh) + (∇µh, ∇eh(qh, vh)) +
r

2
‖∇eh(qh, vh)‖2L2(Ω)(3.3)

with

Jh(qh, vh) =
1

2

∫
Ω

qh|∇(vh − z)|2dx+ β

∫
Ω

√
|∇qh|2 + δ(h) dx,

where δ(h) above is any given positive function satisfying limh→0 δ(h) = δ(0) = 0.
With the above preparations, we can state the following theorem.
Theorem 3.1. For any r ≥ 0, there exists at least one saddle-point for the

discrete augmented Lagrangian Lr : Kh×
◦
V h ×

◦
V h→ R. Moreover, each saddle-point

(q∗h, v
∗
h, λ
∗
h) of L0 is a saddle-point of Lr for any r > 0.

Proof. It is obvious that each saddle-point of L0 is a saddle-point of Lr for any

r > 0. Then it suffices to show that L0 : Kh×
◦
V h ×

◦
V h→ R has a saddle-point,

which we can argue in exactly the same way as in the proof for the continuous saddle-
point problem of the last section by showing first the existence of the solutions to the
discrete minimization problem

min
(qh,vh)∈Ah

Jh(qh, vh)(3.4)

with

Ah = {(qh, vh) ∈ Kh×
◦
V h; eh(qh, vh) = 0},

and then the existence of the Lagrangian multiplier λ∗h ∈
◦
V h satisfying

Jh(q∗h, v
∗
h) ≤ Jh(qh, vh) + (∇λ∗h, ∇eh(qh, vh)) ∀ (qh, vh) ∈ Kh×

◦
V h

for some minimal point (q∗h, v
∗
h) of the problem (3.4). We omit the details.

The following theorem is the main result of this section.
Theorem 3.2. Each subsequence of the saddle-points {(q∗h, v∗h;λ∗h)}h>0 of the

discrete augmented Lagrangian Lr : Kh×
◦
V h ×

◦
V h→ R defined in (3.3) has a subse-

quence that converges to some saddle-point (q∗, v∗;λ∗) of the augmented Lagrangian
Lr : K × V × V → R defined in (1.5) strongly in L1(Ω)× L2(Ω)× L2(Ω).

The proof of Theorem 3.2 depends on the following three lemmas.



900 ZHIMING CHEN AND JUN ZOU

Lemma 3.3. Let g ∈ BV (Ω). Then for any ε > 0, there exists a function gε ∈
C∞(Ω̄) such that∫

Ω

|g − gε|dx < ε,
∣∣∣ ∫

Ω

|∇gε|dx−
∫

Ω

|Dg|
∣∣∣ < ε.

Proof. By the approximation property of functions with BVs (cf. p. 172 of [8]),
there exists g̃ε ∈ C∞(Ω) ∩W 1,1(Ω) satisfying∫

Ω

|g − g̃ε|dx < ε/2,
∣∣∣ ∫

Ω

|∇g̃ε|dx−
∫

Ω

|Dg|
∣∣∣ < ε/2.

Then the lemma follows from the density of C∞(Ω̄) in W 1,1(Ω) as ∂Ω is Lipschitz
continuous (cf. page 127 of [8]).

In what follows we will make use of the standard nodal value interpolant Ih :

C(Ω̄)→ Vh and the projection operator Rh : V → ◦
V h defined by

(∇Rhv, ∇φ) = (∇v, ∇φ) ∀ v ∈ V, φ ∈ ◦V h .(3.5)

It is well known (cf. [5]) that for any p > d = dim(Ω),

lim
h→0
‖v − Ihv‖W 1,p(Ω) = 0 ∀ v ∈W 1,p(Ω),(3.6)

lim
h→0
‖v −Rhv‖H1

0 (Ω) = 0 ∀ v ∈ V.(3.7)

Lemma 3.4. Assume that (q, v) ∈ K × V and (qh, vh) ∈ Kh×
◦
V h. Then limh→0

qh = q in L1(Ω) and limh→0 vh = v in H1
0 (Ω) imply limh→0 eh(qh, vh) = e(q, v) in

H1
0 (Ω).

Proof. By the definitions of e(·, ·) and eh(·, ·) we have

(∇{eh(qh, vh)− e(q, v)}, ∇φ) = ((qh − q)∇v, ∇φ) + (qh∇(vh − v),∇φ) ∀φ ∈ ◦V h .

By taking φ = eh(qh, vh)−Rhe(q, v) ∈ ◦V h above and using (3.5) we obtain

‖∇{eh(qh, vh)−Rhe(q, v)}‖2L2(Ω) ≤ 2

∫
Ω

|qh − q|2 |∇v|2dx+ 2

∫
Ω

q2
h|∇(vh − v)|2dx

≤ 2

∫
Ω

|qh − q|2 |∇v|2dx+ 2(α2)2

∫
Ω

|∇(vh − v)|2dx.

Then the Lebesgue dominant convergence theorem and the fact that limh→0 vh = v
in H1

0 (Ω) show that

lim
h→0
‖∇{eh(qh, vh)−Rhe(q, v)}‖L2(Ω) = 0.

Lemma 3.4 now follows from (3.7).

Lemma 3.5. Assume that (q, v) ∈ K×V and (qh, vh) ∈ Kh×
◦
V h. Then limh→0 qh =

q in L1(Ω) and limh→0 vh = v weakly in H1
0 (Ω) imply that limh→0 eh(qh, vh) = e(q, v)

weakly in H1
0 (Ω).
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Proof. For any φ ∈ V , let φh = Rhφ. By the definition of Rh and eh(·, ·) we have

(∇eh(qh, vh), ∇φ)

= (∇eh(qh, vh), ∇φh)

= (q∇vh, ∇φh) + ((qh − q)∇vh, ∇φh)− (f, φh)

= (q∇vh, ∇φh) + ((qh − q)∇vh, ∇φ)− (f, φh)

+((qh − q)∇vh, ∇(φh − φ)).(3.8)

Then using the assumed convergence on vh, we know that {‖∇vh‖L2(Ω)} is bounded;
combining this with the Lebesgue dominant convergence theorem we derive∣∣∣((qh − q)∇vh, ∇φ)

∣∣∣ ≤ ‖∇vh‖L2(Ω)

{∫
Ω

|qh − q|2|∇φ|2dx
}1/2

→ 0 as h→ 0.

Similarly, we can show that all other terms in (3.8) converge; we then take the limit
in (3.8) and use the definition of e(·, ·) to yield

lim
h→0

(∇eh(qh, vh), ∇φ) = (q∇v, ∇φ)− (f, φ) = (∇e(q, v), ∇φ) ∀φ ∈ V.

Thus we have proved Lemma 3.5.
Now we are ready to prove Theorem 3.2.

Proof of Theorem 3.2. Let (q∗h, v
∗
h, λ
∗
h) ∈ Kh×

◦
V h ×

◦
V h be the saddle-point of

Lr, that is,

Lr(q
∗
h, v
∗
h;µh) ≤ Lr(q∗h, v∗h;λ∗h) ≤ Lr(qh, vh;λ∗h) ∀ (qh, vh, µh) ∈ Kh×

◦
V h ×

◦
V h .

The first inequality implies immediately that eh(q∗h, v
∗
h) = 0, and the second inequality

gives us

Jh(q∗h, v
∗
h) ≤ Jh(qh, vh) + (∇λ∗h, ∇eh(qh, vh)) +

r

2
‖∇eh(qh, vh)‖2L2(Ω)(3.9)

∀ (qh, vh) ∈ Kh×
◦
V h .

By letting qh = α1, a constant, and vh ∈
◦
V h be the unique solution of the equation

(∇vh, ∇φ) =

(
1

α1
f, φ

)
∀φ ∈ ◦V h

and hence eh(qh, vh) = 0, we deduce from (3.9) that ‖q∗h‖BV (Ω) +‖v∗h‖H1(Ω) ≤ C. But
taking qh = q∗h in (3.9) and using (3.2) and the definition of eh(·, ·) we get for any

vh ∈
◦
V h that

1

2

∫
Ω

q∗h|∇(v∗h − z)|2dx

≤ 1

2

∫
Ω

q∗h |∇(vh − z)|2dx+ (q∗h∇vh,∇λ∗h)− (f, λ∗h) +
r

2
‖∇eh(q∗h, vh)‖2L2(Ω)

≤ (q∗h∇vh,∇λ∗h) + η‖∇λ∗h‖2L2(Ω) +
C

η
‖f‖2H−1(Ω) + C{‖∇vh‖2L2(Ω) + ‖∇z‖2L2(Ω)}

for any η > 0. Now we take vh = −ελ∗h for some constant ε > 0 and η = 1
2α1ε and

we derive

1

2
α1ε‖∇λ∗h‖2L2(Ω) ≤ C

{
ε2‖∇λ∗h‖2L2(Ω) +

1

ε
‖f‖2H−1(Ω) + ‖∇z‖2L2(Ω)

}
.
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Then choosing ε = α1/(4C) above gives ‖∇λ∗h‖L2(Ω) ≤ C. Hence each subsequence
of {(q∗h, v∗h, λ∗h)}h>0 has a subsequence, still denoted by {(q∗h, v∗h, λ∗h)}, satisfying

(3.10)

q∗h → q∗ in L1(Ω), v∗h → v∗ weakly in H1
0 (Ω), λ∗h → λ∗ weakly in H1

0 (Ω)

or

q∗h → q∗ in L1(Ω), v∗h → v∗ in L2(Ω), λ∗h → λ∗ in L2(Ω)

for some (q∗, v∗, λ∗) ∈ K × V × V . By Lemma 3.5 we have eh(q∗h, v
∗
h) → e(q∗, v∗)

weakly inH1
0 (Ω). Thus eh(q∗h, v

∗
h) = 0 also implies that e(q∗, v∗) = 0, and the following

holds:

Lr(q∗, v∗;µ) ≤ Lr(q∗, v∗;λ∗) ∀µ ∈ V.(3.11)

On the other hand, for any (q, v) ∈ K × V and any ε > 0, by Lemma 3.3 we can find
a function qε ∈ C∞(Ω̄) satisfying∫

Ω

|qε − q|dx < ε,
∣∣∣ ∫

Ω

|∇qε|dx−
∫

Ω

|Dq|
∣∣∣ < ε.(3.12)

Now we define

q̃ε =

 α1 if qε < α1,
qε if α1 ≤ qε ≤ α2,
α2 if qε > α2.

(3.13)

Then q̃ε ∈ K ∩W 1,∞(Ω) since

∇q̃ε =

{ ∇qε on Aε = {x ∈ Ω : α1 ≤ qε ≤ α2},
0 on Ω \Aε.(3.14)

Now we take (qh, vh) = (Ihq̃ε, Rhv) ∈ Kh×
◦
V h in (3.9) and get

(3.15)

Jh(q∗h, v
∗
h) ≤ Jh(Ihq̃ε, Rhv) + (∇λ∗h,∇eh(Ihq̃ε, Rhv)) +

r

2
‖∇eh(Ihq̃ε, Rhv)‖2L2(Ω).

Then by the lower semicontinuity of the BV-norm (cf. [9]) we derive

lim inf
h→0

Jh(q∗h, v
∗
h)

≥ lim inf
h→0

{1

2

∫
Ω

q∗h|∇(v∗h − z)|2dx+ β

∫
Ω

|Dq∗h|
}

≥ lim inf
h→0

1

2

∫
Ω

q∗h|∇(v∗h − z)|2dx+ lim inf
h→0

β

∫
Ω

|Dq∗h|

≥ 1

2

∫
Ω

q∗ |∇(v∗ − z)|2dx+ β

∫
Ω

|Dq∗| = J(q∗, v∗),(3.16)

where we have used the following result:

lim
h→0

1

2

∫
Ω

q∗h|∇(v∗h − z)|2dx =
1

2

∫
Ω

q∗ |∇(v∗ − z)|2dx,
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which can be proved in exactly the same way as for (2.5).
Now by (3.6) and (3.7) we know that

lim
h→0

Ihq̃ε = q̃ε in W 1,1(Ω), lim
h→0

Rhv = v in H1
0 (Ω);

combining this with Lemma 3.4 gives

lim
h→0

eh(Ihq̃ε, Rhv) = e(q̃ε, v) in H1
0 Ω).

Then letting h→ 0 in (3.15) and using (3.16) we obtain

J(q∗, v∗) ≤ J(q̃ε, v) + (∇λ∗,∇e(q̃ε, v)) +
r

2
‖∇e(q̃ε, v)‖2L2(Ω).(3.17)

Since q ∈ K, we have from (3.12) and (3.13) that

‖q̃ε − q‖L1(Ω) ≤ ‖qε − q‖L1(Ω) < ε.

Thus limε→0 q̃ε = q in L1(Ω), which implies that limε→0 e(q̃ε, v) = e(q, v) in H1
0 (Ω).

Hence as ε→ 0, we derive

(3.18)

(∇λ∗,∇e(q̃ε, v)) +
r

2
‖∇e(q̃ε, v)‖2L2(Ω) → (∇λ∗,∇e(q, v)) +

r

2
‖∇e(q, v)‖2L2(Ω).

But by (3.14) and (3.12) we obtain∫
Ω

|∇q̃ε|dx =

∫
Aε

|∇qε|dx ≤
∫

Ω

|∇qε|dx ≤
∫

Ω

|Dq|+ ε;

therefore

lim inf
ε→0

J(q̃ε, v) ≤ 1

2

∫
Ω

q|∇(v − z)|2dx+ β

∫
Ω

|Dq| = J(q, v).(3.19)

By substituting (3.18), (3.19) into (3.17) and passing to the limit ε→ 0 we finally get

Lr(q∗, v∗;λ∗) = J(q∗, v∗) ≤ Lr(q, v;λ∗) ∀ (q, v) ∈ K × V.

This, together with (3.11), indicates that (q∗, v∗;λ∗) is a saddle-point of Lr.
4. An Uzawa algorithm. In this section, we study an algorithm of the Uzawa

type to find the saddle-points of the discrete augmented Lagrangian Lr : Kh×
◦
V h

× ◦
V h→ R defined in (3.3). We consider the following algorithm.

Uzawa Algorithm 1. We are given λ0 ∈ ◦V h. Then for n ≥ 0, with λn known,

determine the pair {pn, un} ∈ Kh×
◦
V h such that

Lr(p
n, un;λn) ≤ Lr(q, v;λn) ∀ (q, v) ∈ Kh×

◦
V h;(4.1)

then compute λn+1 by

λn+1 = λn + ρneh(pn, un).(4.2)
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Theorem 4.1. Assume that 0 < β0 ≤ ρn ≤ β1 < r for any n = 1, 2, . . . . Then
any subsequence of {pn, un;λn} computed in the Uzawa algorithm (4.1), (4.2) has a
subsequence (still denoted by) {pn, un;λn} such that

pn → p in L1(Ω), un → u in L2(Ω), λn → λ in L2(Ω),

and Jh(pn, un) → Jh(p, u) as n → ∞. Furthermore, {p, u;λ} ∈ Kh×
◦
V h ×

◦
V h is a

saddle-point of Lr : Kh×
◦
V h ×

◦
V h→ R.

Proof. First, by Theorem 3.1 there exists a saddle-point (q∗h, v
∗
h;λ∗h) of L0 :

Kh×
◦
V h ×

◦
V h, namely,

L0(q∗h, v
∗
h;µh) ≤ L0(q∗h, v

∗
h;λ∗) ≤ L0(qh, vh;λ∗) ∀ (qh, vh, µh) ∈ Kh×

◦
V h ×

◦
V h .

The first inequality immediately gives eh(q∗h, v
∗
h) = 0, and the second implies that

Jh(q∗h, v
∗
h) ≤ Jh(qh, vh) + (∇λ∗h, ∇eh(qh, vh)), ∀ (qh, vh) ∈ Kh×

◦
V h .(4.3)

Then taking (q, v) = (q∗h, v
∗
h) in (4.1) and using (4.3) we obtain

Jh(pn, un) + (∇λn, ∇eh(pn, un)) +
r

2
‖∇eh(pn, un)‖2L2(Ω)

≤ Lr(q∗h, v∗h;λn) = Jh(q∗h, v
∗
h)

≤ Jh(pn, un) + (∇λ∗h, ∇eh(pn, un)).

Hence

(∇(λn − λ∗h), ∇eh(pn, un)) +
r

2
‖∇eh(pn, un)‖2L2(Ω) ≤ 0.(4.4)

Now let λ̄n = λn − λ∗h; then we have

λ̄n+1 = λ̄n + ρneh(pn, un)

and thus

(∇λ̄n, ∇eh(pn, un)) =
1

ρn
(∇λ̄h, ∇(λ̄n+1 − λ̄n))

=
1

2ρn

{
‖∇λ̄n+1‖2L2(Ω) − ‖∇λ̄n‖2L2(Ω) − ‖∇(λ̄n+1 − λ̄n)‖2L2(Ω)

}
=

1

2ρn

{
‖∇λ̄n+1‖2L2(Ω) − ‖∇λ̄n‖2L2(Ω) − ρ2

n‖∇eh(pn, un)‖2L2(Ω)

}
.

Substituting this into (4.4), we get

1

2ρn

{
‖∇λ̄n+1‖2L2(Ω) − ‖∇λ̄n‖2L2(Ω)

}
+

1

2
(r − ρn)‖∇eh(pn, un)‖2L2(Ω) ≤ 0.

Thus if 0 < ρn < r, the sequence {‖∇λ̄n‖2L2(Ω)} is monotonically decreasing and

‖∇eh(pn, un)‖L2(Ω) → 0 as n→∞. Now letting (q, v) = (q∗h, v
∗
h) in (4.1) we derive

Jh(pn, un) ≤ Jh(q∗h, v
∗
h)− (∇λn, ∇eh(pn, un)) ≤ C

with constant C independent of n. Therefore

‖pn‖BV (Ω) + ‖∇un‖L2(Ω) ≤ C,
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which implies that each subsequence of {pn, un, λn} has a subsequence (still denoted
by) {pn, un, λn} such that

(pn, un, λn)→ (p, u, λ) in L1(Ω)× L2(Ω)× L2(Ω) as n→∞
for some (p, u, λ) ∈ Kh×

◦
V h ×

◦
V h. Note that in a finite-dimensional space all the

convergences are equivalent. Thus eh(p, u) = 0 by means of

‖∇eh(pn, un)‖L2(Ω) → 0 and eh(pn, un)→ eh(p, u) as n→∞.
Now letting n→∞ in (4.1) we easily obtain

Lr(p, u;λ) ≤ Lr(q, v;λ) ∀ (q, v) ∈ Kh×
◦
V h .

Therefore (p, u, λ) ∈ Kh×
◦
V h ×

◦
V h is a saddle-point of Lr.

Remark. To reduce the size of the minimization problem in (4.1), one may further
divide the problem into two minimization subproblems with each seeking only one of
the first two variables of the discrete augmented Lagrangian Lr(·, ·; ·). See Uzawa
Algorithm 2 in the next section and [10, 3] for more algorithms of the same kind.

5. Numerical experiments. We now show some numerical experiments on the
proposed method for parameter identification. We first describe how to implement the
optimization step in (4.1). In order to solve the system (4.1) for the pair {pn, un}, we
use the following alternative iteration.

Uzawa Algorithm 2. We are given λ0 ∈ ◦V h and q0 ∈ Kh. Set n = 1.
1. Set k = 1 and qn,0 = qn−1.
2. Compute un,k by solving

Lr(q
n,k−1, un,k;λn−1) = min

vh∈V 0
h

Lr(q
n,k−1, vh;λn−1),(5.1)

and then compute qn,k by solving

Lr(q
n,k, un,k;λn−1) = min

ph∈Vh
Lr(ph, u

n,k;λn−1).(5.2)

Compute qn,k = max{α1,min{qn,k, α2}}.
If ‖qn,k − qn,k−1‖ ≤ tolerance, set un = un,k and qn = qn,k, GOTO 3;

Otherwise set k = k + 1, GOTO 2.
3. Compute λn by

λn = λn−1 +
3

4
r e

h
(pn, un).(5.3)

Set n = n+ 1, GOTO 1.

We use the Armijo algorithm (cf. Keung and Zou [15]) to solve problem (5.2). As
the problem corresponds to a nonlinear algebraic system of equations, one may also
use some other more efficient iterative methods. Problem (5.1), combining with the
equation for e

h
(qn,k−1, un,k), corresponds to two linear algebraic systems of equations

(both are positive definite), which are solved here by the conjugate gradient method.
We apply Uzawa Algorithm 2 to identify the discontinuous coefficients in the

following test problem:

− d

dx

(
q(x)

d

dx
u(x)

)
= f(x), x ∈ (0, 1) with u(0) = u(1) = 0.(5.4)



906 ZHIMING CHEN AND JUN ZOU

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

Fig. 5.1. q0
h = 5.0, β = 10−3, error = 0.032, iter = 5.

Most parameters used in the algorithm are given below each figure. The error shown
is the relative L2-norm error between the exact parameter q(x) to be identified and
the computed parameter qh. The regularization and smoothing parameters β and δ(h)
(see (3.3) ) are chosen to be 10−3 and 0.01. The augmented Lagrangian coefficient r
is taken to be 1, and the finite element mesh size h to be 1/80. The lower and upper
bounds α1 and α2 in the constrained set K are taken to be 0.5 and 20.0, respectively.

Example 1. We take the following discontinuous coefficient:

q(x) =

 2− x, x ∈ [0, 0.3],
1− x+ 4x2, x ∈ (0.3, 0.7),
3, x ∈ [0.7, 1],

and compare it with the numerically identified solution qh obtained by using Uzawa
Algorithm 2. The exact observation data z is taken as z(x) = u(q)(x) = sin(πx), and
the function f(x) is then computed by (5.4) using u(x) and q(x). Figure 5.1 shows
the exact solution q(x) (the dotted line) and the numerically identified solution qh(x)
(the solid line). The initial guesses λ0 and q0

h are taken to be the constants 0 and
5.0, respectively. q0

h = 5.0 is not a good initial guess at all, but the numerical method
converges very stably and fast; Figure 5.1 gives the result of the 5th iteration (n = 5).

We now add some random noise to the gradient of the true solution u. (Recall that
we used the energy-norm in the output least squares formulation. If the L2-norm is
used, one should consider the noised observation data z of the true solution u directly,
instead of the gradient.) Namely, we replace the gradient ∇z in the cost functional
Lr with the noised data

∇zδ(x) = ∇z(x) + δ rand (x),

where rand (x) is a uniformly distributed random function in [−1, 1] and δ is the noise
level parameter. The numerical result of the 5th iteration is shown in Figure 5.2 with
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Fig. 5.2. q0
h = 5.0, β = 10−3, noise level δ = 1%, error = 0.033, iter = 5.
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Fig. 5.3. q0
h = 5.0, β = 10−3, noise level δ = 10%, error = 0.038, iter = 5.
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Fig. 5.4. q0
h = 5.0, β = 10−3, error = 0.043, iter = 5.
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Fig. 5.5. q0
h = 5.0, β = 10−3, noise level δ = 1%, error = 0.045, iter = 5.

the noise level parameter δ = 1 %. We do not see much difference compared with the
noise-free case (Figure 5.1). When the noise increases to 10%, the numerical identified
solution is still very satisfactory; see Figure 5.3. This indicates that the numerical
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Fig. 5.6. q0
h = 5.0, β = 10−3, noise level δ = 10%, error = 0.051, iter = 5.

method is not very sensitive to the noise.
Example 2. We take the discontinuous coefficient:

q(x) =

 1, x ∈ [0, 0.3],
2.6− 2x, x ∈ (0.3, 0.7),
−9x2/2 + 21x/2− 3, x ∈ [0.7, 1],

and compare it again with the numerical solution qh recovered by Uzawa Algorithm
2. Figure 5.4 shows the exact solution q(x) (the dotted line) and the numerically
identified solution qh(x) (the solid line), where we have taken the initial guesses λ0 = 0
and q0

h = 5.0. We see again that the numerical method converges very stably and
fast. Figure 5.4 is the result of the 5th iteration (n = 5).

Again, we add some random noise to the gradient of the true solution u; namely,
we assume that the available data are the following noised data:

∇zδ(x) = ∇z(x) + δ rand (x).

Figure 5.5 gives the numerical result of the 5th iteration with the noise level parameter
δ = 1 %. We can see that noise of this level has very little effect on the accuracy and
stability of the numerical method. When the noise increases to 10%, the numerical
identified solution is still very satisfactory; see Figure 5.6.

Our numerical experiences show that the numerical method proposed in the paper
converges very fast (5 iterations for the considered examples) and globally, which is
consistent with our theory. In fact one can take much worse initial guesses than
the preceding ones (q0

h = 5.0). More importantly, the method seems to be not very
sensitive to the noise.
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Abstract. With the help of topological necessary conditions for continuous stabilization it is
shown that, in general, in order to stabilize continuous- and discrete-time systems one has to use
time-dependent or discontinuous feedback controls. On the other hand, the criterion of stabilization
in the class of piecewise-constant feedbacks is established. In the context of this paper a piecewise-
constant feedback is associated with a piecewise-constant function of the form u = u(x), where
x ∈ Rnx . The piecewise-constant feedback synthesis outlined here has several attractive features.
First, it can be effectively applied to design feedback stabilizers subjected to control constraints.
Second, the designed feedback laws do not cause sliding mode or chattering behavior in the closed
loop system; i.e., on a finite interval of time the control in the closed loop system may have only a
finite number of jump discontinuities.

Key words. nonlinear system, degree of functions, feedback stabilization, discrete-time system

AMS subject classifications. 93D15, 93D20, 93C10, 93C55
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1. Introduction. Stabilization of dynamical systems is one of the basic prob-
lems in systems theory. In [9], [10], and [11] it is shown that many nonlinear systems
are not stabilizable by any continuous feedback of the form u = u(x). For the purpose
of illustration we give a geometrical interpretation of the results presented in [9], [10],
and [11]. In particular, one can see from these geometrical illustrations that on a
compact, simply connected manifold a nonlinear system cannot be globally stabilized
at any of its equilibria by a continuous feedback of the form u = u(x). We use this
fact as a motivation for our work on the main contribution of this paper, the criterion
of stabilization by means of piecewise-constant feedbacks that do not cause sliding
mode or chattering behavior. In other words, on a finite interval of time the control
in the closed loop system may have only a finite number of jump discontinuities.

This paper deals with a dynamical nonlinear system having either the form

ẋ = f(x, u)(1)

or

xk+1 = f(xk, uk),(2)

where x ∈ Rn (Rn denotes n-dimensional Euclidean space) and u ∈ U ⊂ Rm.
Let prx denote the projection of Rn

x × Rn
u onto Rn

x , i.e., prx(x, u) = x. It will be
shown that (1) (or (2)) is stabilizable at an equilibrium

(x∗, u∗) ∈ f−1(0) = {(x, u) ∈ Rn ×U : f(x, u) = 0} for system (1),

or

(x∗, u∗) ∈ (prx − f)−1(0) = {(x, u) ∈ Rn ×U : f(x, u) = x} for system (2),
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over a compact set K ⊂ Rn if and only if one can steer the system from any initial
point x ∈ K into x∗ with the help of piecewise-constant control inputs and system
(1) (or (2)) satisfies the following condition (of some sort of stability) at (x∗, u∗) ∈
f−1(0): For any neighborhood W of x∗ (open connected set containing x∗) there
exists another neighborhood V of x∗, such that one can move the system (1) (or (2))
from any point in V into x∗ without leaving the neighborhood W. Although we prove
all our results for systems defined on Rn, their reformulation for systems on a smooth
manifold is straightforward and seems not to bring anything new except some changes
in phraseology.

The use of continuous stationary feedbacks of the form u = u(x) does not allow
solution of the problem of stabilization for many nonlinear systems. This fact was
understood by many system researchers (see, e.g., [1], [2], [7]). Thus, to stabilize
a nonlinear system in many practical and theoretical situations one needs to design
time-dependent or discontinuous feedbacks instead of continuous feedbacks of the form
u = u(x). The use of time-dependent continuous feedback laws was considered, for
instance, in [4], [12], [13], [14] and discontinuous feedback controls have been discussed
in, e.g., [9], [10].

The idea of using discontinuous instead of continuous stabilizers is not new and
was broadly discussed in the framework of variable structure systems (see, e.g., [5]).
The mathematical foundation of variable structure systems was developed in [15].

Necessary conditions of smooth stabilization underline the fact that the use of
nonstationary and discontinuous feedback stabilizers is unavoidable in many applica-
tions of control theory. The commonly accepted starting point for the discussion on
necessary conditions of smooth stabilization is the classical result of [2].

Theorem 1 (see Brockett [2]). If the system ẋ = f(x, u) is continuously stabi-
lizable at (x∗, u∗), then:

(bi) all the modes of its linearization ẋ = Ax + Bu with positive real parts are
controllable;

(bii) there exists some neighborhood Q of x∗ ∈ R such that for each y ∈ Q one can
find a control

uy(t) : [0,∞)→ Rm,

which steers the system from y at t = 0 to x∗ at t =∞;
(biii) the mapping f(x, u) : Rn

x × Rm
u → Rn maps every neighborhood of (x∗, u∗)

onto a neighborhood of zero.
Theorem 1 was one of the first necessary conditions for smooth stabilizability

of nonlinear systems. It played an outstanding role in the development of nonlinear
control theory. For example, Theorem 1 was successfully used to establish that many
drift-free nonholonomic nonlinear control systems cannot be continuously stabilized.
Nevertheless, necessary condition (biii) suffers deficiency of being generic, i.e., (biii)
is almost always satisfied. The result obtained in [3] strengthens (biii), but neverthe-
less (biii) remains generic and therefore fulfilled for almost every smooth nonlinear
system (1).

In [10], [11] the first nongeneric topological necessary conditions have been ob-
tained. Here we give geometrical illustration of these conditions and generalize them
to the class of discrete-time systems having form (2). These necessary conditions im-
ply that on a smooth compact manifold neither any continuous nor any discrete-time
system is globally stabilized by a continuous feedback of the form u = u(x). We also
prove the criterion of stabilization in the class of piecewise-constant feedbacks and
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discuss synthesis procedures for this class of feedback control laws. The motivation
for studying piecewise-constant feedbacks is threefold. First, a piecewise-constant
feedback is meant to be implemented on digital processors and does not require quan-
tification of input-output signals. Second, the control theory ideology and, in partic-
ular, piecewise-constant feedback stabilization may serve as a framework for software
development projects in which a software package is treated as a feedback control.
Third, as one can see from the results of this paper, any system that is stabilized by
a continuous feedback u = u(t, x) can be stabilized by a piecewise-constant feedback.

We hope that we have convinced our reader that, in some situations where sta-
bilization of a nonlinear system is concerned, a piecewise-constant feedback could be
preferable to a continuous one.

The structure of the paper is as follows. The first section is introductory. The
second section presents geometrical interpretation of the necessary conditions obtained
in [11] and generalizes them to the class of discrete-time systems of the form (2). The
third section contains the criterion of stabilization in the class of piecewise-constant
feedbacks. The fourth section presents conclusions.

2. Topological necessary conditions of continuous stabilization. This
section presents topological necessary conditions for continuous stabilization. It also
contains geometrical interpretations of the results obtained in [11], as well as new
formulation and proof of these results for discrete-time systems.

2.1. Continuous-time systems. Consider the system

ẋ = f(x, u),

where x ∈ Rn, u ∈ Rm. f(x, u) is a complete C∞ vector field on Rn for every u ∈ Rm

fixed.
The set

f−1(0) = {(x, u) ∈ Rn+m; f(x, u) = 0}

is called the equilibrium set of the control system.
A system is said to be continuously stabilizable at (x∗, u∗) ∈ f−1(0) over a set

K ⊂ Rn if there exists a continuous function u = u(x), such that u(x∗) = u∗ and x∗

is an asymptotically stable equilibrium of the closed loop system

ẋ = f(x, u(x))

and the domain of x∗-attraction contains K, i.e.,

lim
t→+∞ e

tfx = x∗ ∀ x ∈ K ⊂ Rn,

where etf is the flow generated by the vector field f(x, u(x)). We say that x∗ is
stable if for any neighborhood W of x∗ (open connected set containing x∗) there is a
neighborhood V of x∗, such that

∀ t ≥ 0 etfV ⊂W,

where etfV = {etfx; x ∈ V }.
A system which is continuously stabilizable at (x∗, u∗) ∈ f−1(0) over Rn is said

to be continuously stabilizable in the large.
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2.1.1. Basics of function degree. For the sake of completeness and reader
convenience, we briefly recall some facts about the degree of continuous functions.
Additional details can be found in [6], [8]. We use the following notation:

(i) M is a compact, n-dimensional, oriented C∞ manifold. Its interior is denoted
by Int(M), its boundary by ∂M.

(ii) x = (x1, . . . , xn) ∈ Rn; |x |2 = 〈x, x〉, where

〈x, y〉 =

n∑
i=1

xiyi ∀ x, y ∈ Rn.

x is also used for local coordinates on M with a fixed orientation. If local
coordinates are given, then ∂

∂xf(x) is the Jacobian matrix and det( ∂
∂xf(x))

is the Jacobian determinant of f at x.
(iii) f ∈ C1(M) if f : M → Rn and f has continuous first-order partial derivatives

in M. f ∈ C(M) if f is a continuous function from M into Rn.
(iv) Given a real positive number r and y ∈ Rn, Br(y) is the closed ball center y,

radius r:

Br(y) = {x ∈ Rn; | x − y |≤ r }.
(v) An immersion i : M → Rn

x ×Rm
u which maps M homeomorphically into its

image i(M) ⊂ Rn
x×Rm

u with topology induced by Rn
x×Rm

u is called a natural
embedding. ix : M → Rn

x, iu : M → Rm
u are used for Px ◦ i and Pu ◦ i,

respectively, where Px, Pu are the projections: Px(x, u) = x, Pu(x, u) = u.
Definition 1. Suppose φ ∈ C1(M), p 6∈ φ(∂M) and p is not a critical value of

φ on M , i.e.,

det

(
∂

∂x
φ(x)

)
6= 0 ∀ x ∈ φ−1(p) = {x ∈M ; φ(x) = p}.

Define the degree of φ at p relative to M to be d(φ,M, p), where

d(φ,M, p) =
∑

x∈φ−1(p)

sign

[
det

(
∂

∂x
φ(x)

)]
.

If φ ∈ C(M), then the degree of φ can be defined as the degree of a sufficiently
good C1 approximation of φ (for details, see [6], [8]).

Definition 2. Suppose that φ ∈ C(M) and p 6∈ φ(∂M). Define d(φ,M, p) to be
d(ψ,M, p), where ψ is any function in C1(M) satisfying

| φ(x)− ψ(x) |< ρ(p, φ(∂M)) ∀ x ∈M,

where ρ(x, φ(∂M)) = infy∈φ(∂M) | x− y | and p is not a critical value of ψ on M.
Recall that if X and Y are topological spaces, two continuous functions f and g

are said to be homotopic (f ∼ g) if there is a continuous function (homotopy)

H : [0, 1]×X → Y

such that

H(0, x) = f(x), H(1, x) = g(x) (x ∈ X).

We will need the following properties of degree.
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Theorem 2.
(1) If H(t, x) ≡ ht(x) is a homotopy and p 6∈ ht(∂M) for 0 ≤ t ≤ 1, then

d(ht,M, p) is independent of t ∈ [0, 1].
(2) If a continuous feedback u = u(x) stabilizes the system ẋ = f(x, u) at p ∈

Int(Br(0)) ⊂ Rn, then

d(f(·, u(·)), Br(0), 0) = (−1)n.

(3) Suppose φ ∈ C(M). If d(φ,M, p) is defined and nonzero, then there is q ∈M
such that φ(q) = p.

(4) If a continuous feedback u = u(x) stabilizes the system xk+1 = f(xk, u) at
p ∈ Int(Br(0)) ⊂ Rn, then

d(Idn − f(·, u(·)), Br(0), 0) = 1,

where Idn is the identity n× n matrix.
For a proof, see [6], [8].
Lemma 1. Let f : Rn

x×Rm
u → Rn be a smooth function, and let ω be a bounded

connected component of f−1(0) such that

rank

(
∂

∂x
f(x, u),

∂

∂u
f(x, u)

)
= n ∀ (x, u) ∈ ω.

If u = v(x) : Rn
x → Rm

u is a continuous function such that

f−1(0) ∩ {(x, u) ∈ Rn
x × Rm

u ; u = v(x)} = ω ∩ {(x, u) ∈ Rn
x × Rm

u ;u = v(x)},
then

d((f, Pu − v ◦ Px), BR(0), 0) = 0,

where R > 0 such that ω ⊂ Int(BR(0)) and Px, Pu are the projections: Px(x, u) =
x, Pu(x, u) = u.

This lemma is proved in [10], [11].

2.1.2. Geometrical illustrations of necessary conditions. We start with
the following necessary condition of continuous stabilization.

Theorem 3. If f : Rn
x×Rm

u → Rn is a smooth function and f−1(0) is bounded,
then the system ẋ = f(x, u) is not continuously stabilizable in the large at any point
(x∗, u∗) ∈ f−1( 0).

For a proof of this theorem see [10], [11].
For geometrical illustrations consider a nonlinear single-input system of the form

ẋ = f(x, u),

where (x, u) ∈ R2
x × Ru.

If f−1(0) is bounded, then Theorem 3 asserts that the system cannot be continu-
ously stabilizable. The reason is that the graph of any continuous feedback u = u(x)
stabilizing the system has at least two points of intersection with the equilibrium set
f−1(0). Figure 1 depicts a geometrical illustration of this fact.

Example 1. Consider the system

ẋ1 = sin(x2
1 + x2

2),

ẋ2 = u.



916 SERGEY NIKITIN

u=u(x)

f
-1

(0)

u

x

x

2

1

Fig. 1. If f−1(0) is a closed curve, then the graph of a continuous feedback u = u(x) intersects
f−1(0) more than once.

The equilibrium set for this system is defined by

{(x1, x2, u) : u = 0, x2
1 + x2

2 = π · n, where n = 0, 1, 2, . . .}.
The system is locally continuously stabilizable at any point of its equilibrium set
with x2 6= 0 (see [10] for further details). But it is not continuously stabilizable at
(x∗1, x

∗
2, 0) (with (x∗1)2 + (x∗2)2 = π · n) over any compact set containing the entire

circle (x∗1)2 + (x∗2)2 = π ·n. It happens because on a compact set containing the circle
the graph of any continuous feedback locally stabilizing the system at (x∗1, x

∗
2) has at

least two points of intersection with this circle (Figure 2).
As illustrated by Example 1, system (1) is not continuously stabilizable at any

point of a connected bounded component of its equilibrium set. This leads us to the
following theorem.

Theorem 4. Let f : Rn
x × Rm

u → Rn be a smooth function, and let ω be a
connected component of f−1(0) such that

rank

(
∂

∂x
f(x, u),

∂

∂u
f(x, u)

)
= n ∀ (x, u) ∈ ω.

If the system ẋ = f(x, u) is smoothly stabilizable in the large at a point (x∗, u∗) ∈ ω,
then ω is unbounded.

The proof of this theorem is given in [10], [11].
Theorems 3 and 4 give us the topological necessary conditions that are stable

under perturbations which are small in fine Whitney topology. Moreover, these con-
ditions remain valid for a system on a compact smooth simply connected manifold,
and since on the compact manifold the equilibrium set f−1(0) is evidently bounded,
we conclude that the system cannot be continuously stabilizable over this manifold.
Thus a smooth generic system is never globally continuously stabilizable on a compact
simply connected manifold.

Theorems 3 and 4 may give an impression that the topological barrier for con-
tinuous stabilization is provided only by the fact that either the equilibrium set or
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u

x

x

2

1

u=u(x)

Fig. 2. Over a compact set containing the circle (x∗1)2 + (x∗2)2 = π · n a graph of a continuous
feedback stabilizing the system at (x∗1, x

∗
2) has at least two points of intersection with the circle.

one of its connected components is bounded. However, stabilization also depends
upon the way in which one connected component of the equilibrium set loops around
another. Let us consider a single-input nonlinear system. We introduce the normal
parameterization of f−1(0) as follows.

Definition 3. Let ζ ⊂ Rn
x × Ru be a segment of a connected component of

f−1(0), and let

rank

(
∂

∂x
f(x, u),

∂

∂u
f(x, u)

)
= n ∀ (x, u) ∈ ζ.

Then a parameterization

ζ = {(xζ(τ), uζ(τ)) ∈ Rn
x ×Ru; τ ∈ R}

of the segment will be called normal if

det

(
dxζ(τ)
dτ

duζ(τ)
dτ

∂
∂xf(xζ(τ), uζ(τ)) ∂

∂uf(xζ(τ), uζ(τ))

)
> 0 ∀τ ∈ R.

We can formulate the following necessary condition of smooth stabilization in the
large.

Theorem 5. Let ẋ = f(x, u) be a smooth single-input system such that

rank

(
∂

∂x
f(x, u),

∂

∂u
f(x, u)

)
= n ∀ (x, u) ∈ ζ,

where ζ ⊂ f−1(0) is a segment with the normal parameterization

ζ = {(xζ(τ), uζ(τ)) ∈ Rn
x ×Ru; τ ∈ R}.
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Then the system is not continuously stabilizable in the large at a point (x∗, u∗) ∈ ζ
whenever there is a connected component ω̃ ⊂ f−1(0)\ ζ such that one can find points
(x̃, ũ), (x̂, û) ∈ ω̃ such that

xζ(τ1) = x̂, τ1 < τ∗,

xζ(τ2) = x̃, τ2 > τ∗,

and

uζ(τ1) ≥ û,

uζ(τ2) ≤ ũ,
(3)

where τ∗ ∈ R and xζ(τ
∗) = x∗, uζ(τ

∗) = u∗.
The proof of this theorem is given in [10], [11].
If the system ẋ = f(x, u) is continuously stabilizable at (x∗, u∗), then without

loss of generality [8] we can assume that f(x, u(x)) is differentiable at x∗ and

sign

(
det

(
∂

∂x
f(x, u(x))

)
|x=x∗

)
= (−1)n,

where (x∗, u∗) ∈ f−1(0) and u∗ = u(x∗).
Let ζ ⊂ f−1(0) be a segment with the normal parameterization

ζ = {(xζ(τ), uζ(τ)) ∈ Rn
x × Ru; τ ∈ R}

and τ∗ ∈ R, xζ(τ
∗) = x∗, uζ(τ

∗) = u∗.
Then it follows from the definition of natural parameterization that there exists

a positive real number α such that

d

dτ
(uζ(τ)− u(xζ(τ)))|τ=τ∗ =

(
du

dτ
− ∂u

∂x

dx

dτ

)
|τ=τ∗

= α · det

( −∂u∂x 1
∂
∂xf(x, u) ∂

∂uf(x,u)

)
|x=x∗, u=u∗

= α · det

(
0 1

∂
∂x (f(x, u(x))) ∂

∂uf(x,u)

)
|x=x∗, u=u∗

= α · (−1)n+2 · det

(
∂

∂x
(f(x, u(x)))

)
|x=x∗ > 0,

since

sign

(
det

(
∂

∂x
(f(x, u(x)))

)
|x=x∗

)
= (−1)n.

Thus

uζ(τ) ≤ u(xζ(τ)) for τ ≤ τ∗
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x

x

u

2

1

u=u(x)

ζ

ω∼

Fig. 3. If f−1(0) has two connected components knotted as shown, then the graph of a continu-
ous feedback u = u(x) intersects f−1(0) more than once. Arrows show the normal parameterization
of ζ.

and

uζ(τ) ≥ u(xζ(τ)) for τ ≥ τ∗.
Taking these inequalities into account and using the fact that ω̃ is a connected com-
ponent of the equilibrium set we conclude that under the conditions of Theorem 5
the graph of the feedback u = u(x) has at least two points of intersection with the
equilibrium set f−1(0). One of these points of intersection is (x∗, u∗) and another is
on the connected component ω̃ defined in Theorem 5. A geometrical illustration of
this fact is Figure 3.

Example 2. Consider the system

ẋ1 = (x1 − cos(u)) · u,
ẋ2 = (x2 − sin(u)).

The equilibrium set of this system is defined by

(x1 − cos(u)) · u = 0,

x2 − sin(u) = 0.

It is easy to show that the system is locally stabilizable at the origin by a linear feed-
back law. On the other hand, our topological considerations, in particular Theorem
5, show that this system is not continuously stabilizable over any set containing the
unit disk centered at the origin (Figure 4).

The discussion presented in this subsection shows that many systems are not
continuously stabilizable. Hence it is reasonable and even sometimes necessary to
design piecewise-constant stabilizers.

2.2. Discrete-time systems. This subsection shows that many discrete-time
systems are not continuously stabilizable. Consider a discrete-time system of the form

xk+1 = f(xk, u),(4)
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x

x

u

1

2

u=u(x)

Fig. 4. Due to the topological structure of the equilibrium set the continuous stabilization at
the origin over a set containing the unit disk x2

1 + x2
2 ≤ 1 is impossible.

where u ∈ Rm, k ∈ N = {0, 1, 2, . . .}, and for any k ∈ N, xk ∈ Rn.
Let prx denote the projection of Rn

x × Rm
u onto Rn

x , that is, prx(x, u) = x.
(prx − f)−1(0) denotes the equilibrium set of system (4),

(prx − f)−1(0) = {(x, u) ∈ Rn
x ×Rm

u ; x = f(x, u)}.

System (4) is said to be continuously stabilizable at (x∗, u∗) ∈ (prx−f)−1(0) over
a set K ⊂ Rn if there exists a continuous function u = u(x), such that u(x∗) = u∗

and x∗ is an asymptotically stable singular point of the closed loop system

xk+1 = f(xk, u(xk)),(5)

and the domain of x∗-attraction contains K, i.e.,

lim
k→+∞

ekfx = x∗ ∀ x ∈ K ⊂ Rn,

where ekfx is the solution of the closed loop system (5) with the initial condition
x0 = x. We say that x∗ is stable if for any neighborhood W of x∗ (open connected
set containing x∗) there is a neighborhood V of x∗, such that

∀ k ∈ N ekfV ⊂W,

where ekfV = {ekfx; x ∈ V }.
A system that is continuously stabilizable at (x∗, u∗) ∈ (prx− f)−1(0) over Rn is

said to be continuously stabilizable in the large.
The analogue of Theorem 3 for discrete-time systems is as follows.
Theorem 6. If f : Rn

x × Rm
u → Rn is a smooth function and (prx − f)−1(0) is

bounded, then the system xk+1 = f(xk, u) is not continuously stabilizable in the large
at any point (x∗, u∗) ∈ (prx − f)−1(0).
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Proof. If (prx − f)−1(0) is bounded, then there is a positive real number r, such
that

(prx − f)−1(0) ⊂ Int(Br(0)).

Hence

f(x, u) 6= x ∀u ∈ Rm
u , | x |= r,

and properties (1), (3) (Theorem 2) imply

d(Px(·)− f(·, u(·)), Px(Br(0)), 0) = d(Px(·)− f(x, ū), Px(Br(0)), 0) = 0,

where | ū |= r and u = u(x) is a continuous function, while

d(x− f(x, u(x)), Px(Br(0)), 0) = 1

whenever u = u(x) is a continuous feedback stabilizing the system in the large. Thus
the system cannot be continuously stabilized in the large at any point (x∗, u∗) ∈
(prx − f)−1(0); hence the theorem is proved.

The analogue of Theorem 4 for discrete-time systems is as follows.
Theorem 7. Let f : Rn

x × Rm
u → Rn be a smooth function, and let ω be a

connected component of (prx − f)−1(0) such that

rank

(
Idn − ∂

∂x
f(x, u),

∂

∂u
f(x, u)

)
= n ∀ (x, u) ∈ ω,

where Idn is the identity matrix with n columns and n rows.
If the system xk+1 = f(xk, u) is continuously stabilizable in the large at (x∗, u∗) ∈

ω, then ω is unbounded.
Proof. If u = v(x) is a continuous feedback stabilizing in the large the system

xk+1 = f(xk, u) at a point (x∗, u∗) ∈ ω and ω is bounded, then there is Br(0) such
that

ω ⊂ Int(Br(0))

and

d(Px(·)− f(·, v(·)), Px(Br(0)), 0) = 1.

Note that

(prx−f)−1(0)∩{(x, u) ∈ Rn
x×Rm

u ; u = v(x)} = ω∩{(x, u) ∈ Rn
x×Rm

u ; u = v(x)}

and

| d(Px(·)− f(·, v(·)), Px(Br(0)), 0) |=| d((Px − f, Pu − v ◦ Px), Br(0), 0) | .

Making use of Lemma 1, we obtain the contradiction that proves the theorem.
Theorems 6 and 7 have the same geometrical sense as Theorems 3 and 4 (Figure

1).
In order to formulate the analog of Theorem 5 for discrete-time systems we need

to change the definition of natural parameterization.
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Definition 4. Let ζ be a segment of a connected component of (prx − f)−1(0),
and let

rank

(
Idn − ∂

∂x
f(x, u),

∂

∂u
f(x, u)

)
= n ∀ (x, u) ∈ ζ.

Then a parameterization

ζ = {(xζ(τ), uζ(τ)) ∈ Rn
x × Ru ; τ ∈ R}

of the segment will be called normal if

det

(
dxζ(τ)
dτ

duζ(τ)
dτ

∂
∂xf(xζ(τ), uζ(τ))− Idn

∂
∂uf(xζ(τ), uζ(τ))

)
> 0 ∀τ ∈ R.

The analogue of Theorem 5 for discrete-time systems is as follows.
Theorem 8. Let f(x, u) be such that

rank

(
Idn − ∂

∂x
f(x, u),

∂

∂u
f(x, u)

)
= n ∀ (x, u) ∈ ζ,

where ζ ⊂ (prx − f)−1(0) is a segment with a normal parameterization

ζ = {(xζ(τ), uζ(τ)) ∈ Rn
x × Ru; τ ∈ R}.

Then the system xk+1 = f(xk, u) is not smoothly stabilizable in the large at a point
(x∗, u∗) ∈ ζ whenever there is a connected component ω̃ ⊂ (prx−f)−1(0)\ζ such that
one can find points (x̃2, ũ2), (x̃1, ũ1) ∈ ω̃ such that

xζ(τ1) = x̃1, τ1 < τ∗,

xζ(τ2) = x̃2, τ2 > τ∗,

and

uζ(τ1) ≥ ũ1,

uζ(τ2) ≤ ũ2,
(6)

where τ∗ ∈ R and xζ(τ
∗) = x∗, uζ(τ

∗) = u∗.
The proof and geometrical illustration for this theorem coincide with that of

Theorem 5 (Figure 3).
After a few technical modifications all topological necessary conditions of contin-

uous stabilization also remain valid for discrete-time systems. Thus many discrete-
time systems are not continuously stabilizable, and therefore we need to consider
either piecewise-continuous or nonstationary stabilizing feedbacks. This fact serves
as one of the main motivations for establishing the result presented in the next sec-
tion. Moreover, the approach outlined in the next section can be effectively applied
to design feedbacks subjected to state and control constraints.
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3. Piecewise-constant stabilization criterion. The goal of this section is
to give the criterion of piecewise-constant stabilization. The proof of this criterion
is constructive and can be used for feedback synthesis. Moreover, it is based on the
general topology and therefore is valid for both discrete- and continuous-time systems.
For the sake of brevity, only the criterion for continuous-time systems is presented.

Consider the system

ẋ = f(x, u),(7)

where x ∈ Rn, u ∈ U ⊂ Rm, U is a subset in Rm. f(x, u) is a complete C∞ vector
field on Rn for every u ∈ U ⊂ Rm fixed.

PC(U) is the set of all piecewise-constant mappings form Rn into U ⊂ Rm. A
function u = u(x) is called piecewise-constant on some set Q if there exists a covering
Q ⊆ ⋃i Vi such that

(i) Vi ∩ Vj = ∅ when i 6= j;
(ii) Int Vi 6= ∅ ∀i;
(iii) the closure Int Vi of the interior Int Vi coincides with Vi;
(iv) the restriction u|Vi of u to Vi is a constant from U.
Let u(x) ∈ PC(U). Then we define the solution for the initial value problem

ẋ = f(x, u(x)), x(0) = x0(8)

as follows.
Definition 5. A function of time xu(t, x0) (t > 0, t ∈ R) is called a solution

for the initial value problem (8) if the following conditions hold:
(i) xu(t, x0) is a continuous function of time,
(ii) ∀ T > 0 the derivative d

dtxu(t, x0) exists, and
(iii)

d

dt
xu(t, x0) = f(xu(t, x0), u(xu(t, x0)))

either ∀t ∈ [0, T ] or ∀t ∈ [0, T ] excluding a finite number of points.
Having fixed the feedback u = u(x) such that u(x) ∈ PC(U) and the solution for

(7) exists for all x0 ∈ Rn we obtain the flow etf generated by the closed loop system

ẋ = f(x, u(x))

evolving over Rn. etfx0 denotes the point into which the flow etf steers x0 and
etf (V ) = {etfx0;x0 ∈ V }. V is called an invariant set of the system if and only if
etfV ⊆ V ∀t ≥ 0.

Definition 6. A system ẋ = f(x, u) is said to be piecewise-constantly stabilizable
at (x∗, u∗) ∈ f−1(0) over a domain K ⊆ Rn, if there exists a piecewise-constant
feedback u = u(x) from PC(U), such that u(x∗) = u∗, x∗ is an asymptotically stable
equilibrium of (8) and K ⊆ D(x∗), where D(x∗) is the domain of x∗-attraction, i.e.,
for every x0 ∈ D(x∗) the solution etfx0 of the closed loop system exists ∀t ≥ 0 and
limt→∞ etfx0 = x∗.

If K = Rn, then ẋ = f(x, u) is called (completely) piecewise-constantly stabiliz-
able at (x∗, u∗) ∈ f−1(0) (over Rn or in the large). If there exists a neighborhood
O(x∗) and ẋ = f(x, u) is piecewise-constantly stabilizable in (x∗, u∗) ∈ f−1(0) over
O(x∗), then ẋ = f(x, u) is said to be locally piecewise-constantly stabilizable at
(x∗, u∗).
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A control u : [0, T ]→ U is said to be piecewise constant if there exist time points
0 = t0 < t1 < t2 < · · · < tN = T and u1, . . . , uN ∈ U , such that u(t) = ui for
ti−1 ≤ t < ti (i < N) and u(t) = uN for tN−1 ≤ t ≤ tN .

Definition 7. We say that a point p can be piecewise-constantly steered into a
point q, if there exist 0 < T < ∞ and a piecewise-constant control u : [0, T ] → U ,
such that the solution xu(t, p) of the initial value problem

ẋ = f(x, u(t)),

x(0) = p

exists on the time interval [0, T ], is unique, and xu(T, p) = q. If for every point
p ∈ K ⊂ Rn there exists q ∈ V ⊂ Rn, such that p is piecewise-constantly steered into
q, then the set V is called piecewise-constantly accessible from the set K.

The piecewise-constant accessibility has a very important property formulated in
the following lemma.

Lemma 2. Let K be a compact subset in Rn. Let V ⊂ Rn be an open subset.
Then if V is piecewise-constantly accessible from K there exist a natural number N,
real number T > 0, and

{u1, . . . , uN} ∈ UN = U × · · · × U︸ ︷︷ ︸
N

such that for each point p ∈ K there exist a point q ∈ V and t1 ≥ 0, . . . , tN ≥ 0,∑N
i=1 ti ≤ T , such that

e−t1f(∗,u1) ◦ e−t2f(∗,u2) ◦ · · · ◦ e−tNf(∗,uN )q = p,

where f(∗, ui) denotes the vector field f(x, ui) (i = 1, 2, . . . , N).
Proof. The set

V (n, u, T ) =

{
e−t1f(∗,u1) ◦ e−t2f(∗,u2) ◦ · · · ◦ e−tnf(∗,un)z :

ti ≥ 0 (i = 1, 2, . . . , n)
n∑
i=1

ti ≤ T, z ∈ V
}

is open ∀n = 1, 2, . . . , T > 0, u ∈ Un. The piecewise-constant accessibility of V
from K implies

K ⊂
∞⋃
n=1

⋃
u∈Un
T>0

V (n, u, T ).

Thus it follows from the compactness of K that there exists a natural number µ such
that

K ⊂
µ⋃
i=1

V (ni, ui, Ti),

where ui = (ui1, ui2, . . . , uini) (i = 1, 2, . . . , µ). Therefore we can take N =
∑µ
i=1 ni,
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{u1, . . . , uN}
= {u11, u12, . . . , u1n1

, u21, u22, . . . , u2n2
, . . . , uµnµ}

and T =
∑µ
i=1 Ti.

To formulate the main result of this paper we need the following analogue of the
Liapunov asymptotic stability.

Definition 8. An equilibrium (x∗, u∗) ∈ f−1(0) of ẋ = f(x, u) is said to be
Liapunov asymptotically stable if there exists ∆ > 0 such that for any 0 ≤ ε ≤ ∆
one can find δ > 0 such that x∗ is piecewise-constantly accessible from Bδ(x

∗) without
leaving Bε(x

∗); i.e., for any p ∈ Bδ(x∗) there exist 0 < T ≤ ∞ (T can be ∞) and a
piecewise-constant control u : [0, T )→ U , such that the solution xu(t, p) of the initial
value problem

ẋ = f(x, u(t)),

x(0) = p

exists on [0, T ), xu(t, p) ∈ Bε(x∗) for any t ∈ [0, T ), and

lim
t→T

xu(t, p) = x∗.

Theorem 9. A system ẋ = f(x, u) is piecewise-constantly stabilizable at its
equilibrium (x∗, u∗) ∈ f−1(0) over a compact set K if and only if (x∗, u∗) is Liapunov
asymptotically stable and x∗ is piecewise-constantly accessible from K.

Proof.
Necessity. If u(x) ∈ PC(U) stabilizes ẋ = f(x, u) at (x∗, u∗) ∈ f−1(0) over

K, then (x∗, u∗) is evidently Liapunov asymptotically stable and x∗ is piecewise-
constantly accessible from K.

Sufficiency. Since (x∗, u∗) ∈ f−1(0) is Liapunov asymptotically stable, then there
exists a sequence of positive real numbers {εn}∞n=0 such that

ε0 > ε1 > · · · > εn > εn+1 > · · · ,
lim
n→∞ εn = 0

and for any n = 1, 2, 3, . . . , Bεn+1(x∗) is accessible from Bεn(x∗) without leaving
Bεn−1(x∗).

Roughly speaking, the main idea of the proof is to design piecewise-constant
feedbacks u0(x), u1(x), u2(x), . . . which steer the systems in accordance with the
arrows marked in Figure 5.

The point x∗ is piecewise-constantly accessible from K and therefore, for any
n = 0, 1, 2, . . . , Bεn(x∗) is piecewise-constantly accessible from K. Lemma 2 with V
being the interior Int(Bε2(x∗)) of the ball Bε2(x∗) gives us the existence of a natural
number N, real number T > 0, and

{u1, . . . , uN} ∈ UN = U × · · · × U︸ ︷︷ ︸
N

such that for each point p ∈ K there exist a point q ∈ Bε2(x∗) and

t1 ≥ 0, . . . , tN ≥ 0,
N∑
i=1

ti ≤ T
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B (x* )

B ( )x*

x*

ε

ε

B
ε

(x*)

n

n+1

n+2

Fig. 5. The closed loop system is supposed to move with respect to the sets K, {Bεn (x∗)}∞n=0
in accordance with the arrows.

such that

e−t1f(∗,u1) ◦ e−t2f(∗,u2) ◦ · · · ◦ e−tNf(∗,uN )q = p,

where f(∗, ui) denotes the vector field f(x, ui) (i = 1, 2, . . . , N).
Consider the family of open sets generated by

V (t1, t2, . . . , tN ) = e−t1f(∗,u1) ◦ e−t2f(∗,u2) ◦ · · · ◦ e−tNf(∗,uN )Int(Bε2(x∗)),

where t1 ≥ 0, . . . , tN ≥ 0,
∑N
i=1 ti ≤ T.

Due to Lemma 2

K ⊂
⋃

t1≥0,...,tN≥0,

N∑
i=1

ti≤T

V (t1, t2, . . . , tN ).

But K is a compact set, and hence one can choose a finite number of N -tuples
{(t1j , t2j , . . . , tNj)}νj=1 such that

K ⊂
ν⋃
j=1

V (t1j , t2j , . . . , tNj).(9)

The feedback u0(x) ∈ PC(U) which steers any point of K \Bε2(x∗) into the interior
of the set Bε1(x∗) \Bε2(x∗) can be designed in the following way:

u0(x) = uN for x ∈
⋃

0<τ≤tN1

V (0, . . . , τ) \Bε2(x∗),

u0(x) = uN−1 for x ∈
⋃

0<τ≤tN−1 1

V (0, . . . , τ, tN1)\
 ⋃

0<τ≤tN1

V (0, . . . , τ) ∪Bε2(x∗)
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and so on until

u0(x) = u1 for x ∈
⋃

0<τ≤t11

V (τ, t21, . . . , tN1) \
 ⋃

0<τ≤t21

V (0, τ, . . . , tN1)

⋃( ⋃
0<τ≤t31

V (0, 0, τ, . . . , tN1)

)
∪ · · · ∪

( ⋃
0<τ≤tN1

V (0, . . . , τ)

)
∪Bε2(x∗)

 .

Thus u0(x) is defined on the set

Ξ1 =

[( ⋃
0<τ≤t11

V (τ, t21, . . . , tN1)

)
∪
( ⋃

0<τ≤t21

V (0, τ, . . . , tN1)

)

∪ · · · ∪
( ⋃

0<τ≤tN1

V (0, . . . , τ)

)]
\Bε2(x∗).

If K \ Bε2(x∗) ⊆ Ξ1, then the construction of u0(x) is completed. Otherwise, there
exists 1 ≤ i ≤ ν for which

V (t1i, t2i, . . . , tNi) \Bε2(x∗) 6⊂ Ξ1.

We put

u0(x) = uN for x ∈
⋃

0<τ≤tNi
V (0, . . . , τ, ) \ (Ξ1 ∪Bε2(x∗)),

u0(x) = uN−1 for x ∈
⋃

0<τ≤tN−1i

V (0, 0, . . . , τ, tNi) \
Ξ1 ∪

( ⋃
0<τ≤tNi

V (0, . . . , τ, )

)

∪Bε2(x∗)


...

u0(x) = u1 for x ∈
⋃

0<τ≤t1i
V (τ, t2i, . . . , tNi) \

Ξ1 ∪
( ⋃

0<τ≤tNi
V (0, . . . , τ, )

)

∪ · · · ∪
( ⋃

0<τ≤t2i
V (0, τ, . . . , tNi)

)
∪Bε2(x∗)

 .

Thus we have defined u0(x) on the set

Ξ2 =

[( ⋃
0<τ≤t1i

V (τ, . . . , tNi)

)
∪
( ⋃

0<τ≤t2i
V (0, τ, . . . , tNi)

)
∪ · · · ∪ Ξ1

]
\Bε2(x∗).

If K \Bε2(x∗) ⊆ Ξ2, then u0(x) ∈ PC(U) is constructed. Otherwise there exists j
such that j 6= 1, j 6= i, and V (t1j , . . . , tNj)\Bε2(x∗) 6⊂ Ξ2. We can define the feedback
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u0(x) on the set

Ξ3 =

[( ⋃
0<τ≤t1j

V (τ, . . . , tNj)

)
∪
( ⋃

0<τ≤t2j
V (0, τ, . . . , tNj)

)
∪ · · · ∪ Ξ2

]
\Bε2(x∗)

in the same way as it has been done on the set Ξ2.
The existence of a natural number µ such that K \Bε2(x∗) ⊆ Ξµ follows from (9).

Thus the construction of u0(x) is completed after a finite number of steps. Let Λ0

be the domain where u0(x) is defined. By construction, if a trajectory of the system
closed by u0(x) starts at a point of Λ0, then it will reach the set Bε1(x∗)\Int(Bε2(x∗))
in a finite time.

The set Bε1(x∗) \ Int(Bε2(x∗)) is compact, and therefore we can employ the
method used to construct u0(x) for designing u1(x) ∈ PC(U) which steers any point
from Bε1(x∗) \ Int(Bε2x

∗)) into Int(Bε2(x∗)) \Bε3(x∗). We denote by Λ1 the domain
where u1(x) is defined. Since (x∗, u∗) is Liapunov asymptotically stable, one can con-
struct u1(x) ∈ PC(U) so that Λ1 ⊂ Bε0(x∗). Moreover, if a trajectory of the system
closed by u1(x) starts at a point of Λ1, then it will reach the set Bε2(x∗)\Int(Bε3(x∗))
in finite time.

We proceed in this way and obtain for each n = 1, 2, 3, . . . the feedback un(x) ∈
PC(U) defined on Λn ⊂ Bεn−1(x∗) and Bεn(x∗) \ Int(Bεn+1(x∗)) ⊂ Λn. The feedback
un(x) steers the system from any state in Λn into Int(Bεn+1

(x∗)) \Bεn+2
(x∗).

Hence the function u(x) ∈ PC(U) which stabilizes ẋ = f(x, u) at x∗ over the
compact set K can be defined as

lim
n→∞wn(x) = u(x),

where wn(x) is given by

wn(x) = un(x) for x ∈ Λn,

wn(x) = un−1(x) for x ∈ Λn−1 \ Λn,

...

wn(x) = u0(x) for x ∈ Λ0 \
n⋃
j=1

Λj ,

wn(x) = u∗ for x /∈
n⋃
j=0

Λj .

The proof is completed.
Definitions 6, 7, and 8 and Lemma 2 admit natural formulations for discrete-time

systems. Moreover, the main ideas in the proof of Theorem 9 are topological and,
after minor technical adjustments, they lead us to the following analogue of Theorem
9 for discrete-time systems.

Theorem 10. A system xk+1 = f(xk, u) is piecewise-constantly stabilizable at
its equilibrium (x∗, u∗) ∈ (prx − f)−1(0) over a compact set K if and only if (x∗, u∗)
is Liapunov asymptotically stable and x∗ is piecewise-constantly accessible from K.

The proof of Theorem 9 remains valid for much more general objects than discrete-
time systems. The method of the proof outlines a general framework which leads to
the synthesis of control systems defined over a finite algebra, in particular Boolean
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algebra. Such systems very often are called algorithms and arise in numerous soft-
ware engineering problems. To demonstrate the use of this framework in software
engineering the author developed a simple game called Corners. (The Java version of
Corners is posted at http://lagrange.la.asu.edu/docs/Corners.) The analysis of algo-
rithms from the point of view of a control theorist is beyond the scope of this paper.
Here we present only some examples of the synthesis of piecewise constant stabilizers.

Although in the next example the construction of the piecewise-constant feedback
seems completely ad hoc, it contains an effective recipe which, if combined with
topological methods developed in [10], leads us to an effective stabilizer synthesis
procedure for two-dimensional affine nonlinear systems.

Example 3. Consider the linear system

ẋ1 = x2,

ẋ2 = u,
(10)

where (x1, x2) ∈ R2 and u ∈ R. System (10) is continuously stabilizable at the origin
by a linear feedback. Hence by Theorem 9 it is stabilizable by a piecewise-constant
feedback as well. We look for a piecewise-constant feedback stabilizer having the
following form:

u(x) = −k1 · θ(x1)− k2 · θ(x2) for x 6= 0(11)

and

u(0) = 0,

where θ(τ) is the function defined as

θ(τ) =

{ −1 : τ < 0,
1 : τ ≥ 0.

(12)

If the real numbers k1, k2 satisfy the inequality

k1 > k2 > 0,

then the feedback (11) globally stabilizes the system (10) at the origin. Indeed, one
can show that the function

V (x1, x2) = k1· | x1 | +x2
2

2

is monotonically decreasing along the trajectories of the system (10) closed by the
feedback (11).

Example 3 combined with the topological methods from [10] allows us to construct
a piecewise-constant stabilizer for any controllable affine nonlinear system

ẋ1 = f1(x1, x2) + b1(x1, x2) · u,
ẋ2 = f2(x1, x2) + b2(x1, x2) · u

satisfying the following conditions:
(i) f1(x1, x2), f2(x1, x2), b1(x1, x2), b2(x1, x2) are continuously differentiable func-

tions.
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(ii) (
b1(x1, x2) · ∂

∂x1
ϕ(x) + b2(x1, x2) · ∂

∂x2
ϕ(x)

)
|x∈ϕ−1(0) 6= 0,

where

ϕ(x) = f1(x1, x2)b2(x1, x2)− f2(x1, x2)b1(x1, x2)

and

ϕ−1(0) = {x ∈ R2 : ϕ(x) = 0}.

Example 4. In this example the system

ẋ1 = x2,

ẋ2 = a(x) + b(x) · u(13)

is globally stabilized at the origin by means of a piecewise-constant feedback. We
assume that ∀x ∈ R2 the functions a(x) and b(x) satisfy the following inequalities:

| a(x) |≤ a+,

0 < b− ≤ b(x) ≤ b+.

It is known [10] that system (13) can be stabilized by a time-dependent continuous
feedback. Hence by Theorem 9 there exists a piecewise-constant stabilizer for (13).
Choose positive real numbers α, β so that

α · b− > β · b+ > 0

and

α · b− > 2 · a+ + (2 · b+ + a+) · β.

Then the piecewise-constant feedback

u(x) =

{
−k1θ(x1)− k2θ(x2) : x 6= 0,

−a(0)
b(0) : x = 0,

with θ(τ) being defined in (12) and

k1 =
α+ β

2
, k2 =

α− β
2

,

globally stabilizes the system at the origin.
Indeed, the function

V (x) =
α · b− − a+ · β

2
| x1 | +x2

2

2

is monotonically decreasing along the trajectories of the closed loop system, and
therefore the origin is globally asymptotically stable.
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Using the topological methods based on so-called stable covering (see [10]) one
can construct piecewise-constant stabilizers for a generic nonlinear affine system with
an equilibrium set having several connected components.

The next example illustrates the use of Theorem 9 in the stabilizability analysis
of a nonholonomic system.

Example 5. Consider the system

ẋ1 = u,

ẋ2 = v,(14)

ẋ3 = x1v − x2u.

It is stated in [2] that system (14) is not continuously stabilizable at the origin. Our
goal is to analyze its piecewise-constant stabilizability.

Let us show that the origin is Liapunov asymptotically stable. Indeed, for any
point P = (x1, x2, x3) ∈ R3 the piecewise-constant control

(u(t), v(t)) = (−x1,−x2) for t ∈ [0, 1],

(u(t), v(t)) =

(√
|x3|
2
, 0

)
for t ∈ [1, 2],

(u(t), v(t)) =

(
0,−sign(x3) ·

√
|x3|
2

)
for t ∈ [2, 3],

(u(t), v(t)) =

(
−
√
|x3|
2
, 0

)
for t ∈ [3, 4],

(u(t), v(t)) =

(
0, sign(x3) ·

√
|x3|
2

)
for t ∈ [4, 5]

steers system (14) from the point P into the origin. First, this control moves the
system from P into (0, 0, x3) along the straight line. Then (x1(t), x2(t)) traces the
boundary of the square with the side of length

√|x3|/2 and moves system (14) from
(0, 0, x3) into the origin.

Thus the origin is Liapunov asymptotically stable for system (14) and all condi-
tions of Theorem 9 are satisfied. Hence system (14) is piecewise-constantly stabilizable
at the origin over any compact set from R3.

The next example illustrates the use of Theorem 10.
Example 6. Consider a discrete-time system of the form

x1(k + 1) = 1
2 (1 + sin(x2

1(k) + u2(k)))x1(k),

x2(k + 1) = 2 · x2(k)− u(k).
(15)

Let us analyze stabilizability of system (15) at the origin. By Theorem 8 system (15)
is not continuously stabilizable at the origin. On the other hand, for any x1 one can
find ū such that sin(x2

1 + ū2) = −1. Then on the next step u = 2x2 will steer system
(15) to the origin. Thus all conditions of Theorem 10 are satisfied and system (15) is
piecewise-constantly stabilizable at the origin over any compact set from R2.

4. Conclusion. This paper presents geometrical illustrations of the topological
necessary conditions of continuous stabilization obtained in [10], [11]. It follows from
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these conditions that many systems are not stabilizable by continuous stationary
feedbacks. Since in the majority of control applications one needs to implement a
control system with the help of digital processors, it is natural to design piecewise-
constant stabilizing feedbacks. We have proved the criterion of stabilization in the
class of piecewise-constant feedbacks and discussed their synthesis for affine nonlinear
two-dimensional systems.

It follows from Theorem 9 that any system that is stabilizable by a continuous
feedback u = u(t, x) also can be stabilized by a piecewise-constant feedback of the
form u = u(x). Moreover, the proof of Theorem 9 leads to the synthesis procedure for
stabilizing feedbacks subjected to state and control constraints.

The approach proposed in this paper can be applied to deal with a wide variety
of control objects that are much more general than those described by differential or
discrete-time equations. For example, one can use this approach for software develop-
ment projects. In fact, we already have tested the methodology provided by the proof
of Theorem 9 and have developed a simple computer game. To use this methodology
for computer algorithm synthesis one needs to choose some natural topology and then
follow the proof of Theorem 9. In a computer game or a program where one needs to
minimize some cost function this topology naturally is introduced by this cost func-
tion. In general the choice of an appropriate topology raises a number of difficult
questions that can serve as topics for further research.
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Abstract. Local output feedback stabilization with smooth nonlinear controllers is studied for
parameterized nonlinear systems for which the linearized system possesses either a simple zero eigen-
value or a pair of imaginary eigenvalues and the bifurcated solution is unstable at the critical value
of the parameter. It is assumed that the unstable mode corresponding to the critical eigenvalue of
the linearized system is not linearly controllable. Results are established for bifurcation stabilization
using output feedback where the critical mode can be either linearly observable or linearly unobserv-
able. The stabilizability conditions are characterized in explicit forms that can be used to synthesize
stabilizing controllers. The results obtained in this paper are applied to rotating stall control for
axial flow compressors as an application example.

Key words. nonlinear systems, bifurcations, projection method, bifurcation stabilization, linear
controllability/observability

AMS subject classifications. 93C10, 93C15, 93C60
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1. Introduction. Stabilization of nonlinear control systems with smooth state
feedback control has been studied by a number of people [4, 2, 3, 9, 19]. An interesting
situation for nonlinear stabilization is the case when the linearized system has uncon-
trollable modes on the imaginary axis with the rest of the modes stable. This is the
so-called critical case for which linearization theory is inadequate. It becomes more
intricate if the underlying nonlinear system involves a real-valued parameter. At crit-
ical values of the parameter, the linearized system has unstable modes corresponding
to eigenvalues on the imaginary axis and additional equilibrium solutions will be born.
The bifurcated solutions may or may not be stable. The instability of the bifurcated
solution may cause a “hysteresis loop” in bifurcation diagrams for both subcriti-
cal pitchfork bifurcations and Hopf bifurcations [11] and induce undesirable physical
phenomena. This is manifested by rotating stall in axial flow compressors [1, 17, 18],
which has received great attention for the past several years [5, 6, 7, 15, 16, 20]. Thus
bifurcation stabilization is an important topic in nonlinear control.

Abed and Fu studied bifurcation stabilization using smooth local state feedback
control [2, 3]. For a Hopf bifurcation, stabilization conditions were obtained for both
the case where the critical modes of the linearized system are controllable and un-
controllable. For a stationary bifurcation, stabilization conditions were derived for
the case where the critical mode of the linearized system is controllable. The uncon-
trollable case was investigated in [13], where normal forms of the nonlinear system
are used. In this paper we study bifurcation stabilization via local output feedback
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control laws that are smooth. Throughout the paper it is assumed that the critical
mode of the linearized system is uncontrollable. Moreover only output measurement
is available for feedback. It should be clear that measurement of all state variables
is unrealistic in practice, especially when the underlying nonlinear system has a high
order. Often some of state variables are more expensive or more difficult to measure
than others. Hence the bifurcation stabilization problem studied in this paper has
more engineering significance.

Two stabilization issues will be investigated. The first one is concerned with bi-
furcation stabilization where the critical mode of the linearized system is unobservable
through linearized output measurement. Stabilizability conditions are established for
both stationary bifurcations and Hopf bifurcations. Roughly speaking, it is shown
that nonlinear controllers do not offer any advantage over the linear ones for bifur-
cation stabilization. Stabilizing controllers, if they exist, can be taken as linear ones.
The second one is concerned with bifurcation stabilization where the critical mode of
the linearized system is observable through linearized output measurement that in-
cludes state feedback as a special case. Stabilizability conditions are also obtained in
this case. It is shown that linear controllers are adequate for stabilization of transcrit-
ical bifurcations and quadratic controllers are adequate for stabilization of pitchfork
and Hopf bifurcations, respectively. It should be pointed out that the stabilization
conditions obtained in this paper are characterized in an explicit form that provides
synthesis procedures for design of stabilizing controllers, if they exist. Rotating stall
control for axial flow compressors will be used as an application example to demon-
strate the use of the stabilization results established in this paper.

The notation in this paper is standard. The collections of real and complex num-
bers are denoted by R and C, respectively. If c ∈ C, its complex conjugate is denoted
by c̄. The collection of real and complex vectors with size n are denoted by Rn and
Cn, respectively. A matrix M of size p×m can be viewed as a linear map from Cm

to Cp, and its transpose is denoted by MT . For m = p = n, M is said to be stable if
all its eigenvalues are in the open left half-plane. Notions such as linear controllability
and linear observability can be found in [12].

2. Local bifurcation stability and projection method. This section consid-
ers the stability issue for a bifurcated system using the projection method developed
in [11]. The system under consideration is the following nth-order parametrized non-
linear system:

ẋ = f(γ, x), f(γ, xe) = 0 ∀ γ ∈ (−δ, δ),(1)

where x ∈ Rn, γ is a real-valued parameter, and δ > 0 is a sufficiently small real
number. Without loss of generality, we can assume xe = 0, i.e., f(γ, 0) = 0 in a small
neighborhood of γ = 0, which is called the zero solution. The linearized system at the
zero solution is given by

ẋ0 = L(γ)x0, L(γ) =
df(γ, x)

dx

∣∣∣∣
x=xe=0

.(2)

If L(0) has one or more eigenvalues on the imaginary axis, then additional nonzero
equilibrium solutions or bifurcated solutions will be born at γ = 0. It is assumed
that f(·, ·) is sufficiently smooth such that the bifurcated solution xe 6= 0, satisfying
f(γ, xe) = 0, is a smooth function of γ.
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Definition 2.1. The nonlinear system in (1) is said to have local bifurcation
stability if the bifurcated solution is locally asymptotically stable for sufficiently small
γ.

Two different types of bifurcations will be considered in this paper, and the de-
termination of their local stability will be discussed in the following two subsections.

2.1. Local stability for stationary bifurcations. For stationary bifurcations,
it is assumed that L(γ) possesses a simple eigenvalue λ(γ), depending smoothly on γ,
satisfying

λ(0) = 0, λ′(0) =
dλ

dγ
(0) 6= 0,(3)

while all other eigenvalues are stable in a neighborhood of γ = 0. It implies that
the zero solution changes its stability as γ crosses 0. For instance, λ′(0) < 0 implies
that the zero solution is locally stable for γ > 0 and becomes unstable for γ < 0.
Furthermore additional equilibria xe 6= 0 born at γ = 0 are smooth functions of γ
by the smoothness of f(·, ·). Such bifurcated solutions are independent of time t and
called stationary bifurcation. Thus γ = 0 is the critical value of the parameter and
λ(γ) is called the critical eigenvalue. The nonlinear system (1) at γ = 0 is referred
to as the critical system. The bifurcated solution of the nonlinear system born at
γ = 0 may or may not be locally stable. For simplicity, only double points [11] will be
considered in this paper. A useful tool to determine local stability of the bifurcated
solution and of the critical system is the projection method developed in [11] and
advocated in [2, 11].

Let ` and r denote the left row and right column eigenvectors of L(0), correspond-
ing to the critical eigenvalue λ(0) = 0. Then `r = 1 by suitable normalization. Denote
ε = `xe, where xe 6= 0 satisfying f(γ, xe) = 0 is also an equilibrium solution of (1),
or bifurcated solution in a small neighborhood of γ = 0. Then by [11] there exists a
series expansion [

xe(ε)
γ(ε)

]
=
∞∑
k=1

[
xek
γk

]
εk.

Since f(γ, x) is sufficiently smooth, there exists a Taylor expansion near the origin of
Rn of the form

ẋ = f(γ, x) = L(γ)x+Q(γ)[x, x] + C(γ)[x, x, x] + · · · ,(4)

where L(γ)x, Q(γ)[x, x], and C(γ)[x, x, x] are vector-valued linear, quadratic, and
cubic terms of f(γ, x), respectively, having symmetric form in each of their entries,
and can each be expanded into

L(γ)x = L0x+ γL1x+ γ2L2x+ · · · , Q(γ)[x, x] = Q0[x, x] + γQ1(x, x) + · · · ,
and C(γ)[x, x, x] = C0[x, x, x] + γC1[x, x, x] + · · ·, where L0, L1, and L2 are n × n
constant matrices.

Let λ̃(γ) be the critical eigenvalue of the linearized system matrix at the new
(bifurcated) equilibrium close to the origin. Then λ̃(0) = λ(0) = 0 at γ = 0. There
exists a series expansion [11]

λ̃(ε) =

∞∑
i=1

λ̃iε
i = λ̃1ε+ λ̃2ε

2 + · · · .
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The computation of the first two coefficients of λ̃ can proceed as follows [11, 2]:
• Step 1: Calculate λ′(0) = `L1r, where λ is a function of γ.
• Step 2: Set xe1 = r and calculate γ1 = −`Q0[r, r]/λ′(0).
• Step 3: Compute xe2 from equations `xe2 = 0 and L0xe2 = −Q0[r, r], and γ2

from

γ2 = − 1

λ′(0)

(
γ1`L1xe2 + γ2

1`L2r + 2`Q0[r, xe2] + γ1`Q1[r, r] + `C0[r, r, r]
)
.

• Step 4: Set λ̃1 = −γ1λ
′(0) and λ̃2 = −2γ2λ

′(0).
Local stability of a stationary bifurcation is given by the following lemma [3].
Lemma 2.2. Suppose that all eigenvalues of L0 are stable except one critical

eigenvalue. For the case γ1 6= 0, the branch of the bifurcated equilibrium solution is
locally stable for γ sufficiently close to 0 if `Q0[r, r]ε < 0 and unstable if `Q0[r, r]ε > 0.
For the case γ1 = 0, the bifurcated solution is locally stable for γ sufficiently close to
0 if λ̃2 < 0, and unstable if λ̃2 > 0, where

λ̃2 = 2` (2Q0[r, xe2] + C0[r, r, r]) , xe2 = −(`T `+ LT0 L0)−1LT0 Q0[r, r].

It should be clear that the local bifurcation for the case γ1 6= 0 is transcritical
[21]. Thus the branch of the bifurcated solution at ε > 0 has the opposite stability
property as the one at ε < 0. We are interested in the stabilization of the transcritical
bifurcation for the branch of ε > 0, with no loss of generality. On the other hand, the
local bifurcation for the case γ1 = 0 and γ2 6= 0 is pitchfork [21], where both branches
of the bifurcated solution share the same stability property.

2.2. Local stability for Hopf bifurcations. For a Hopf bifurcation, it is
assumed that L(γ) possesses a pair of complex eigenvalues λ(γ), λ̄(γ), dependent
smoothly on γ, while all other eigenvalues are stable in a neighborhood of γ = 0. De-
note λ(γ) = α(γ) + jβ(γ) with α(γ), β(γ) real, and j =

√−1 imaginary. It is assumed
that

α(0) = 0, β(0) = ωc 6= 0, α′(0) =
dα

dγ
(0) 6= 0.(5)

Thus λ(γ) is a critical eigenvalue and so is its conjugate. It implies that the zero
solution changes its stability as γ crosses 0. For instance α′(0) > 0 implies that the
zero solution is locally stable for γ > 0 and becomes unstable for γ > 0. Furthermore
the Hopf bifurcation theorem asserts the existence of a one-parameter family {pε},
where 0 < ε ≤ ε0, of nonconstant periodic solutions of (1) emerging from the zero
solution at γ = 0. This is a nonstationary bifurcation. The positive real number ε
is a measure of the amplitude of the periodic solution and ε0 is sufficiently small.
The periodic solutions pε(t) have period near 2π/ωc and occur for parameter values
γ given by a smooth function γ(ε). Exactly one of the characteristic exponents of pε
is near zero and is given by

λ̃(ε) = λ̃2ε
2 + λ̃4ε

4 + · · · =
∞∑
i=1

λ̃2iε
2i.(6)

Local stability of a Hopf bifurcation is hinged to the first nonzero coefficient of λ̃(ε),
denoted by λ̃2N , N ≥ 1. Generically N = 1.

Let the Taylor series of f(γ, x) be of the form in (4) where L0 = L(0). An
algorithm to compute λ̃2 is quoted from [2]. See also [10].
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• Step 1: Compute left row eigenvector ` and right column eigenvector r of L0

corresponding to the critical eigenvalue of λ(0) = jωc, normalized by setting
`r = 1.
• Step 2: Solve column vectors µ and ν from the equations

−L0µ =
1

2
Q0[r, r̄], (2jωcI − L0)ν =

1

2
Q0[r, r], j =

√−1.

• Step 3: The coefficient λ̃2 is given by

λ̃2 = 2Re

{
2`Q0[r, µ] + `Q0[r̄, ν] +

3

4
`C0[r, r, r̄]

}
.

Local stability of a Hopf bifurcation is given by the following lemma [3].
Lemma 2.3. Suppose all eigenvalues of L0 are stable in a neighborhood of γ = 0

except the critical pair of complex eigenvalues. Then the Hopf bifurcation is stable if
λ̃2 < 0 and unstable if λ̃2 > 0.

3. Output feedback stabilization for stationary bifurcations. We address
the feedback stabilization problem for stationary bifurcations. The nonlinear control
system under consideration has the form

ẋ = f(γ, x) + g(x, u), y = h(x), x ∈ Rn,(7)

where f(γ, x) is the same as in (4), and g(·, ·) and h(·) are also smooth functions
satisfying

g(x, 0) = 0 ∀x, h(0) = 0.(8)

It is assumed that u ∈ R, and y ∈ Rp with p ≥ 1. Thus the nonlinear system (7) has
only one control input, but may have more than one output measurement. Its Taylor
series expansion is given by

ẋ = L0x+ γL1x+ γ2L2x+B1u+ uL̃1x+Q0[x, x] +B2u
2 + uL̃12[x, x](9)

+ γQ1[x, x] + u2L̃2x+ u2Q̃1[x, x] + C0[x, x, x] +B3u
3 + · · · ,

where L̃1x and Q̃1[x, x] are the linear and quadratic terms for the linear control
component of g(x, u), L̃2x is the linear term for the quadratic control component and
L̃12[x, x] is the quadratic term for the linear control component of g(x, u), and B1,
B2, and B3 are the coefficient vectors of u, u2, and u3, respectively. It is assumed
that L0 has only one zero eigenvalue with the rest of the eigenvalues stable, and
that the bifurcated solution born at γ = 0 is not locally stable. The assumption on
stability of the nonzero eigenvalues of L0 has no loss of generality. If some of the
nonzero eigenvalues of L0 are unstable, then any linear control method, such as pole
placement [12], can be employed to stabilize those unstable modes corresponding to
nonzero eigenvalues. It is the unstable mode corresponding to the critical eigenvalue
λ(0) = 0 that renders linear control methods inadequate because of bifurcations.

We seek a smooth local output feedback control law of the form

u = K(y) = KLy +KQ[y, y] +KC [y, y, y] + · · · ,(10)

that stabilizes the bifurcated system (i.e., the closed-loop system admits bifurcation
stability; see Definition 2.1), where KQ[·, ·] and KC [·, ·, ·] are the quadratic and cubic
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terms of K(y), respectively, satisfying KQ[0, 0] = KC [0, 0, 0] = 0. The output has a
Taylor series expansion

y = h(x) = H1x+H2[x, x] +H3[x, x, x] + · · · ,(11)

where H1x,H2[x, x], and H3[x, x, x] are the linear, quadratic, and cubic terms of
h(x), respectively, satisfying H2[0, 0] = H3[0, 0, 0] = 0. Without loss of generality, it
is assumed that linear, quadratic, and cubic terms of the feedback control law in (10)
are of the form

KLy = K1h(x), KQ[y, y] = K2H̃2[x, x] +K2H̃3[x, x, x] + · · · ,(12)

KC [y, y, y] = K3
˜̃H3[x, x, x] + · · · ,

withK1, K2, andK3 some constant matrices, and H̃2[0, 0] = H̃3[0, 0, 0] = ˜̃H3[0, 0, 0] =
0 ∈ Rp. Substituting the control law into (9), we get the closed-loop system equation
in series form:

ẋ = L∗0x+ γL∗1x+Q∗0[x, x] + γ2L∗2x+ γQ∗1[x, x] + C∗0 [x, x, x] + · · · ,(13)

where the linear, quadratic, and cubic terms are given by

L∗0 = L0 +B1K1H1, L∗1 = L1, L∗2 = L2, Q∗1[x, x] = Q1[x, x],

Q∗0[x, x] = Q0[x, x] +B1

(
K1H2[x, x] +K2H̃2[x, x]

)
+K1H1xL̃1x+B2(K1H1x)2,

C∗0 [x, x, x] = C0[x, x, x] +
(
K1H2[x, x] +K2H̃2[x, x]

)
L̃1x

+ 2B2K1H1x
(
K1H2[x, x] +K2H̃2[x, x]

)
+ (K1H1x)2L̃2x+B1

(
K1H3[x, x, x] +K2H̃3[x, x, x] +K3

˜̃H3[x, x, x]
)

+ K1H1xL̃12[x, x] +K1H1xQ̃1[x, x] +B3(K1H1x)3.

Abed and Fu studied the same problem in [3] for the case of state feedback where
the critical mode of the linearized system at γ = 0 is controllable. We will consider
the case of output feedback where the critical mode of L0 is linearly uncontrollable. It
should be clear that, in practice, measurement of all state variables is unrealistic. Often
only part of the state variables or a nonlinear function of part of the state variables
is measurable. Under this circumstance, the critical mode of the linearized system
may or may not be observable based on linearized output measurements. Hence the
problem considered in this paper has more engineering significance than that of [3].
Because y ∈ Rp with p ≥ 1, our results are also applicable to state feedback by taking
H1 = I and H2 = H3 = · · · = 0, which yields y = x. We will establish stabilizability
conditions for bifurcated systems where the bifurcated solution is unstable near γ = 0
in the following two subsections.

3.1. Unobservable critical mode. Consider first when the critical mode of
the linearized system corresponding to the zero eigenvalue at γ = 0 is not observable
through the linearized output measurement H1x. Note that by assumption the eigen-
value λ(0) = 0 is invariant under feedback control because of both uncontrollability
and unobservability of the critical mode. Thus L∗0 also possesses the critical zero
eigenvalue as L0. Denote `∗ and r∗ as the left row and right column eigenvectors for
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L∗0 corresponding to the critical eigenvalue. Then it is easy to see that `∗ = ` and
r∗ = r again due to the uncontrollability and unobservability of the critical eigenvalue.
This can be seen from the Popov, Belevitch, and Hautus (PBH) test [12]. Denote λ̃∗

as the critical eigenvalue of the linearized feedback system at the bifurcated solution.
It is a function of ε = `∗xe = `xe in the form of

λ̃∗(ε) = λ̃∗1ε+ λ̃∗2ε
2 + · · · .(14)

Clearly the local feedback controller in (10) does not change the zero solution. Denote
L∗(γ) as the linearized system matrix for the closed-loop system at the zero solution.
Its critical eigenvalue is denoted by λ∗(γ). Since L∗1 = L1,

dλ∗

dγ
(0) = λ′(0) =

dλ

dγ
(0) 6= 0

is also invariant under feedback control. It follows that the bifurcated solution xe ≡
0 of the closed-loop system changes its stability and bifurcates at γ = 0 as well.
The problem is whether or not the bifurcated solution can be stabilized with output
feedback control. The next result is negative for the transcritical bifurcation.

Theorem 3.1. Consider the nonlinear control system (9) with output feedback
control law (10). Suppose that the critical mode of L0 is not linearly observable. Then
for the case λ̃1 > 0, there does not exist a feedback control law u = K(y) that stabilizes
the branch of the bifurcated solution at ε > 0, and λ̃∗1 = λ̃1 is invariant under output
feedback control in (10).

Proof. Note that with the smooth feedback controller in (10), the closed-loop
system is in the form of (13). The uncontrollability and unobservability of the critical
mode for the linearized system at γ = 0 imply that both `B1 = 0 and H1r = 0 by
the PBH test [12]. Hence applying Lemma 2.2 to the nonlinear system in (13) gives
the first coefficient of the critical eigenvalue for the branch of the bifurcated solution
at ε > 0:

λ̃∗1 = `Q∗0[r, r] = `Q0[r, r] + `B1

(
K1H2[r, r] +K2H̃2[r, r]

)
+ `K1H1rL̃1r + `B2(K1H1r)

2 = `Q0[r, r] = λ̃1.

It follows that the sign of λ̃∗1 is the same as that of λ̃1, which means we cannot alter
the sign by feedback controller in (10).

Although the stability property of a transcritical bifurcation with an unobserv-
able critical mode cannot be altered by output feedback, the situation for pitchfork
bifurcation is quite different. We have the following result.

Theorem 3.2. Consider the nonlinear control system (9) with output feedback
control law (10) under the same hypothesis as in Theorem 3.1. For simplicity, assume
in addition that H̃2[r, r] = 0. Then for the case λ̃1 = 0, there exists a smooth feedback
control law u = K(y) as in (10) that ensures λ̃∗2 < 0, i.e., stabilizes the bifurcated
solutions, if and only if there exists a linear feedback control law u = K1y that stabilizes
the bifurcated solution. Moreover there exists a nonsingular matrix T ∈ Rn×n such
that

TL0T
−1 =

[
L00 0
0 0

]
, TB1 =

[
B11

0

]
,

[
H1

`

]
T−1 =

[
H11 0

0 1

]
,(15)

where L00 ∈ R(n−1)×(n−1), B11 ∈ R(n−1)×1, and H11 ∈ Rp×(n−1). Denote In−1 as
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the identity matrix of size (n− 1)× (n− 1), and

ρ = 4`Q0[r, (`T `+ LT0 L0)−1LT0 B1]− 2`L̃1r, β =
[
In−1 0

]
TQ0[r, r].(16)

Then the existence of the stabilizing feedback control law is equivalent to that

λ̃∗2 = λ̃2 +K1

(
H11L

−1
00 (B11λ̃2 + ρβ)− ρH2[r, r]

)
< 0(17)

and that L00 +B11K1H11 is stable for some K1 6= 0.
Proof. Let xe2 and x∗e2 be the unique solutions for

`xe2 = 0, L0xe2 = −Q0[r, r], `x∗e2 = 0,(18)

(L0 +B1K1H1)x∗e2 = −Q0[r, r]−B1K1H2[r, r].

By the proof of Theorem 3.1, and the condition `B1 = 0, H1r = 0,

4`Q∗0[r, x∗e2] = 2`
(

2Q0[r, x∗e2] +K1H1x
∗
e2L̃1r

)
,

2`C∗0 [r, r, r] = 2`
(
C0[r, r, r] +K1H2[r, r]L̃1r +K2H̃2[r, r]L̃1r

)
.

The formula governing the vector x∗e2 as in (18) can be readily verified by noting that
Q∗0[r, r] = Q0[r, r] +B1K1H2[r, r] due to H̃2[r, r] = 0, and H1r = 0. Applying Lemma
2.2 again yields

λ̃∗2 = 2`
(
2Q0[r, x∗e2] +K1H1x

∗
e2L̃1r

)
+ 2`

(
C0[r, r, r] +K1H2[r, r]L̃1r +K2H̃2[r, r]L̃1r

)
= λ̃2 + 4` (Q0[r, x∗e2]−Q0[r, xe2]) + 2`

(
K1H1x

∗
e2 +K1H2[r, r] +K2H̃2[r, r]

)
L̃1r

= λ̃2 − 4`Q0[r, xe2 − x∗e2] + 2(`L̃1r)K1 (H1x
∗
e2 +H2[r, r]) .

It follows that the bifurcated solution is stabilized if and only if there exists K1 6= 0
such that λ̃∗2 < 0 holds and the nonzero eigenvalues of L0 + B1K1H1 lie in the
open left half-plane. It remains to be shown that stabilizability of the bifurcated
solution is equivalent to the existence of K1 6= 0 such that (17) holds, plus stability
of L00 +B11K1H11. From (18), the equations

`(xe2 − x∗e2) = 0, L0(xe2 − x∗e2) = B1K1 (H1x
∗
e2 +H2[r, r])

are obtained. Thus the solutions xe2 and x∗e2 solved from (18) satisfy

xe2 − x∗e2 = (`T `+ LT0 L0)−1LT0 B1K1 (H1x
∗
e2 +H2[r, r]) .

The expression for λ̃∗2 can now be written as

λ̃∗2 = λ̃2 − 4`Q0[r, B̄1K1(H1x
∗
e2 +H2[r, r])] + 2(`L̃1r)K1 (H1x

∗
e2 +H2[r, r])(19)

= λ̃2 − ρK1 (H1x
∗
e2 +H2[r, r]) , B̄1 = (`T `+ LT0 L0)−1LT0 B1,

where ρ is the same as in (16). Since the critical mode of the linearized system is
uncontrollable and unobservable, there exists a nonsingular matrix T ∈ Rn×n, such
that (15) is true by Kalman decomposition. Denoting L∗0 = L0 + B1K1H1, the last
two equations of (18) yield

TL∗0x
∗
e2 =

[
L00 +B11K1H11 0

0 0

]
Tx∗e2 = −T (Q0[r, r] +B1K1H2[r, r])

= −TQ0[r, r]−
[
B11

0

]
K1H2[r, r], `x∗e2 =

[
0 · · · 0 1

]
Tx∗e2 = 0,
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which implies that the last element of the column vector Tx∗e2 is zero. Denote

α =
[
In−1 0

]
Tx∗e2, β =

[
In−1 0

]
TQ0[r, r],

where In−1 is an identity matrix of size (n− 1)× (n− 1). Then x∗e2 is determined by
α and T as

α = − (L00 +B11K1H11)
−1

(β +B11K1H2[r, r]) , x∗e2 = T−1

[
α
0

]
.(20)

Applying (15) and (20) to the expression in (19) gives

λ̃∗2 = λ̃2 − ρK1

(
[H1T

−1][Tx∗e2] +H2[r, r]
)

= λ̃2 − ρK1 (H11α+H2[r, r])(21)

= λ̃2 + ρK1

(
H11 (L00 +B11K1H11)

−1
(β +B11K1H2[r, r])−H2[r, r]

)
= λ̃2 + ρK1H11 (L00 +B11K1H11)

−1
β

−ρ
(

1−K1H11 (L00 +B11K1H11)
−1
B11

)
K1H2[r, r].

Denote λ̄2 = λ̃2 + ρK1H11 (L00 +B11K1H11)
−1
β. Using the identity det(I +AB) =

det(I +BA) whenever the products AB and BA are compatible square matrices and
det(A−1) = 1/det(A), the following sequence of equalities is true:

λ̄2

λ̃2

= det

(
I +

ρ

λ̃2

(L00 +B11K1H11)
−1
βK1H11

)
=

1

det(L00 +B11K1H11)
det

(
L00 +B11K1H11 +

ρ

λ̃2

βK1H11

)
=

det(L00)

det(L00 +B11K1H11)
det

(
I +

(
B11 +

ρ

λ̃2

β

)
K1H11L

−1
00

)
=

det(L00)

det(L00 +B11K1H11)

(
1 +K1H11L

−1
00

(
B11 +

ρ

λ̃2

β

))
.

Similarly there holds

1−K1H11 (L00 +B11K1H11)
−1
B11 = det

(
I − (L00 +B11K1H11)−1B11K1H11

)
=

det(L00)

det(L00 +B11K1H11)
.

Thus the expression of λ̃∗2 in (21) can now be written as

λ̃∗2 =
det(L00)

det(L00 +B11K1H11)

(
λ̃2 +K1

(
H11L

−1
00 (B11λ̃2 + ρβ)− ρH2[r, r]

))
.

Hence stabilization of a pitchfork bifurcation is equivalent to the existence of K1 6= 0
such that L00 +B11K1H11 is stable, and

λ̃2 +K1

(
H11L

−1
00 (B11λ̃2 + ρβ)− ρH2[r, r]

)
< 0,

because stability of L00 and L00 + B11K1H11 ensures that det(L00) and det(L00 +
B11K1H11) have the same sign. This concludes the proof.



BIFURCATION STABILIZATION 943

Theorem 3.2 is surprising as it indicates that even though the critical mode of
the linearized system is neither controllable nor observable, there exists an output
feedback control law that stabilizes a pitchfork bifurcation under some mild condi-
tions. This is in contrast to linear control theory. Moreover the nonlinear feedback
control law does not offer any advantage over the linear ones as far as stabilization
of stationary bifurcation is concerned. This is due to the fact that linear feedback
control, though it has no influence on the stability of the linear term, changes the
quadratic terms of the state-space equation that in turn determine the stability of the
pitchfork bifurcation. It is worth pointing out that condition (17) in Theorem 3.2 is
characterized in explicit form. It greatly simplifies the synthesis part for bifurcation
stabilization. Indeed, all K1 6= 0 satisfying (17) can be easily parameterized and then
substituted into L∗00 = L00 + B11K1H11 to determine the right K1 that ensures sta-
bility of L∗00. To be specific for p = 1, K1 satisfying (17) is a semi-infinite interval of
the real line. Thus the stabilizing value of K1 can be easily determined through root
locus of

1 +K1H11(sI − L00)−1B11 = 0,(22)

where K1 changes in the semi-infinite interval determined by inequality (17). If p > 1,
then all stabilizing K1’s lie on one side of a hyper-plane in Rp that does not pass
through the origin, as K1 = 0 is not stabilizing. In this case one needs to search for
the right K1 on the given side of the hyperplane in Rp to ensure the stability of L∗00 =
L00 +B11K1H11, for which the parameterized root locus method can be used for (22).
The assumption H̃2[r, r] = 0 in Theorem 3.2 is not very restrictive if the critical mode
of the linearized system is not observable through linearized output measurement.
For instance, it holds for the case where the output measurement consists of linear
combination of state variables. In the case H̃2[r, r] 6= 0, the quadratic gain K2 plays
a role as well for stabilization of pitchfork bifurcation that will be illuminated further
in the next subsection.

3.2. Observable critical mode. This subsection is concerned with the case
where the critical mode is linearly observable based on output measurement. Consider
first the transcritical bifurcation. Without loss of generality, the branch of ε > 0 is
assumed to be unstable for γ > 0. This is equivalent to λ̃1 > 0. Our goal is to seek
a controller of the form (10) that stabilizes the bifurcated solution for ε > 0 without
changing the stability property of the zero solution. This problem is very different
from past work [3] but has its significance in engineering application (see section 5).
It is noted that by assumption the eigenvalue λ(0) = 0 is invariant under feedback
control. Thus L∗0 also possesses the critical zero eigenvalue as L0 does. Denote `∗ and
r∗ as the left row and right column eigenvectors for L∗0 corresponding to the critical
eigenvalue. Then `∗ = ` due to the uncontrollability of the critical eigenvalue. Denote
λ̃∗ as the critical eigenvalue of L∗0 under feedback. It has the same form of the series
expansion as in (14). However, r∗ 6= r in general due toH1r 6= 0 by the observability of
the critical mode. The next result concerns stabilization of transcritical bifurcations.

Theorem 3.3. Consider the nonlinear control system (9) with output feedback
control law (10). Suppose that the critical mode of the linearized system corresponding
to the zero eigenvalue at γ = 0 is observable. Then for the case λ̃1 > 0, i.e., `Q0[r, r] >
0, there exists a nonlinear feedback control law u = K(y) that stabilizes the given
branch of the bifurcated solution at ε > 0 if and only if there exists a linear feedback
control law that stabilizes the given branch of the bifurcated solution at ε > 0. Moreover
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there exists a nonsingular matrix T ∈ Rn×n such that

TL0T
−1 =

[
L00 0
0 0

]
, TB1 =

[
B11

0

]
,

[
H1

`

]
T−1 =

[
H11 H12

0 1

]
,(23)

where L00, B11, and H11 have the same sizes as in Theorem 3.2, respectively. Let `i
be the ith element of `, and rTQ0kr be the kth element of Q0[r, r] with Q0k = QT0k for
k = 1, 2, . . . , n. Partition

(T−1)T

(
n∑
k=1

`kQ0k

)
T−1 =

[
Q̃00 Q̃01

Q̃10 Q̃11

]
, Q̃10 = Q̃T01, Q̃00 ∈ R(n−1)×(n−1).

Then Q̃11 = λ̃1 > 0. The existence of a stabilizing feedback control law, subject to the
same stability property for the zero solution, is equivalent to the existence of K1 6= 0
such that

(i)
(
1 +K1H11L

−1
00 B11

) (
λ̃1(1 +K1H11L

−1
00 B11) + aK1H12

)
+ b(K1H12)2 < 0,

(ii) λ′(0)
(
λ′(0) +K1(H11λ

′(0)−H12d)L−1
00 B11

)
> 0, and

(iii) L∗00 = L00 +B11K1H11 is stable,

where a = d̃0 − 2Q̃10L
−1
00 B11, b = `B2 + ((L−1

00 B11)T Q̃00 − d̃)L−1
00 B11,

[
d̃ d̃0

]
= `L̃1T

−1with d̃0 scalar, dT =
[
In−1 0

]
(`L1T

−1)T , and λ(γ) is the critical eigen-
value in (3).

Proof. From the proofs of Theorem 3.1 and of Lemma 2.2, the first nonzero coef-
ficient of the critical eigenvalue for the feedback system has the expression

λ̃∗1 = `Q0[r∗, r∗] + `B1

(
K1H2[r∗, r∗] +K2H̃2[r∗, r∗]

)
(24)

+ `K1H1r
∗L̃1r

∗ + `B2(K1H1r
∗)2

= `Q0[r∗, r∗] + (`L̃1r
∗)(K1H1r

∗) + `B2(K1H1r
∗)2,

due to `B1 = 0 by the uncontrollability of the critical mode and the condition of
the theorem. Because only the linear gain K1 is present in the expression of λ̃∗1, the
existence of a stabilizing control law is equivalent to the existence of a linear stabilizing
control law. It remains to be shown that conditions (i)–(iii) are equivalent to the
existence of the stabilizing feedback control law with the same stability property for
the zero solution retained. By Kalman decomposition a nonsingular matrix T exists
such that (23) holds where the lower triangular Schur form of TL0T

−1 is used. The
hypothesis on L0 implies that det(L00) 6= 0, and thus 0 = `L0 = (`T−1)(TL0T

−1)
yields the form of `T−1 as in (23). Since

`r∗ = (`T−1)(Tr∗) = 1, L∗0r
∗ = (L0+B1K1H1)r∗ = T (L0+B1K1H1)T−1(Tr∗) = 0,

the right eigenvector of L∗0 corresponding to the zero eigenvalue is found to be

r∗ = T−1

[
η
1

]
,(25)

η = −(In−1 + L−1
00 B11K1H11)−1L−1

00 B11K1H12 = − L−1
00 B11K1H12

1 +K1H11L
−1
00 B11

.
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By noticing that

K1H11η = − (K1H11L
−1
00 B11)K1H12

1 +K1H11L
−1
00 B11

= −K1H12 +
K1H12

1 +K1H11L
−1
00 B11

,

the expression for K1H1r
∗ can be simplified as

K1H1r
∗ = K1(H1T

−1)(Tr∗) = K1

[
H11 H12

] [ η
1

]
(26)

= K1H11η +K1H12 =
K1H12

1 +K1H11L
−1
00 B11

.

It is claimed that the condition (ii) is equivalent to the invariance of the stability
property for the zero solution, provided that L∗00 = L00 +B11K1H11 is stable. Indeed,
denote λ∗ as the critical eigenvalue of the linearized system under feedback control
law u = K(y). Then

dλ∗

dγ
(0) = `L1r

∗ = (`L1T
−1)(Tr∗) =

[
d λ′(0)

] [ η
1

]
= dη + λ′(0), d = `L1T

−1

[
In−1

0

]
,

by the fact that if K1 = 0, then η = 0, and thus λ∗(γ) reduces to λ(γ). Substituting
the expression of η as in (25) yields that

`L1r
∗ = − dL−1

00 B11K1H12

1 +K1H11L
−1
00 B11

+ λ′(0) =
λ′(0) +K1(H11λ

′(0)−H12d)L−1
00 B11

1 +K1H11L
−1
00 B11

.

It follows that (ii) is equivalent to `L1r
∗ that has the same sign as λ′(0) due to

the stability assumption for L∗00 and L00, that is in turn equivalent to that the zero
solution for the feedback system changes its stability also at γ = 0, and shares the
same stability property as that of an uncontrolled system. Thus the stability property
of the zero solution is retained.

Similarly,

`L̃1r
∗ =

d̃0 +K1(H11d̃0 −H12d̃)L−1
00 B11

1 +K1H11L
−1
00 B11

,
[
d̃ d̃0

]
= `L̃1T

−1,

with d̃0 scalar. Combining with the expression in (26), there holds

`L̃1r
∗K1H1r

∗ =

(
d̃0 +K1(H11d̃0 −H12d̃)L−1

00 B11

(1 +K1H11L
−1
00 B11)2

)
K1H12.(27)

For the term `Q0[r∗, r∗], there holds

`Q0[r∗, r∗] = (Tr∗)T (T−1)TQ`T
−1(Tr∗) =

[
ηT 1

] [ Q̃00 Q̃01

Q̃10 Q̃11

] [
η
1

]
for some real symmetric matrix Q`. To show that Q̃11 = λ̃1, setting K1 = 0, thus
a = 0, leads to

λ̃1 = `Q0[r, r] = (Tr)T (T−1)TQ`T
−1(Tr) = Q11,
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because the last element of Tr is one, by (`T−1)Tr = 1. Therefore,

`Q0[r∗, r∗] = λ̃1 −
(

2Q̃10L
−1
00 B11

1 +K1H11L
−1
00 B11

)
K1H12(28)

+

(
(L−1

00 B11)T Q̃00(L−1
00 B11)(

1 +K1H11L
−1
00 B11

)2
)

(K1H12)2.

Combining (26)–(28) with rearrangement yields the expression

λ̃∗1
(
1 +K1H11L

−1
00 B11

)2
= λ̃1

(
1 +K1H11L

−1
00 B11

)2
+ a

(
1 +K1H11L

−1
00 B11

)
K1H12 + b(K1H12)2,

which can be simplified to (i). The necessity of conditions (i)–(iii) is now clear. In
brief, (iii) implies that L∗00 = L00 +B11K1H11 is stable. Hence(

1 +K1H11L
−1
00 B11

)2
> 0.

Condition (i) then implies that λ̃∗1 < 0 ensures stability of the given branch of the
bifurcated solution, while condition (ii) guarantees the invariance of the stability
property of the zero solution under feedback.

It is noticed that if b = 0, then (i) of Theorem 3.6 can be further simplified to

λ̃1(1 +K1H11L
−1
00 B11) + aK1H12 < 0,

by the fact that condition (iii) and stability of L00 imply that

1 +K1H11L
−1
00 B11 =

det(L00 +B11K1H11)

det(L00)
> 0.

Theorem 3.3 indicates that stabilization of a transcritical bifurcation is possible by
using just a linear control law. More importantly the conditions (i)–(iii) also provide
explicit formulas for synthesis of a stabilizing linear gain K1. Indeed, for the case of
p = 1, K1 is scalar. The set of K1 satisfying each of (i)–(iii) can be easily computed
that are either finite intervals or semi-infinite intervals. In particular, the set of K1

satisfying (iii) can be obtained through root locus. For the case p > 1, conditions (i)–
(iii) offer more freedom for the synthesis of stabilizing linear gain K1. On the other
hand, the synthesis becomes more complex because there is more than one element
for K1.

Remark 3.4. Suppose that the linearized system has been transformed into the
form of (23). Then the last entry of the state vector is the critical state variable.
Measurement of this critical state variable corresponds to H12 6= 0. Theorem 3.6
indicates that the feedback of the critical state variable is crucial. This is due to the
fact that if H12 = 0, the sign of λ̃∗1 remains the same as that of λ̃1, and thus the given
branch of the bifurcated solution at ε > 0 is not stabilizable that is exactly the result of
Theorem 3.1. However, this fact does not imply that the measurement of noncritical
state variables, which corresponds to H11 6= 0, is unnecessary. By condition (i) of
Theorem 3.3, the measurement of noncritical state variables becomes necessary if a =
b = 0. If a 6= 0 and/or b < 0, however, the measurement of noncritical state variables
are redundant and thus unnecessary for the purpose of bifurcation stabilization.
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Theorem 3.3 has implications for state feedback control:

u = K(x) = K1x+KQ[x, x] +KC [x, x, x] + · · · ,
with K1 the linear state feedback gain and KQ[·, ·] and KC [·, ·, ·] the quadratic and
cubic terms, respectively. The next result is a direct consequence of Theorem 3.3.

Corollary 3.5. Suppose that all the hypotheses in Theorem 3.3 hold. Then
there exists a nonlinear state feedback control law u = K(x) that stabilizes the given
branch of the bifurcated solution if and only if there exists a linear state feedback
control law that stabilizes the given branch of the bifurcated solution. Moreover, with
the same notation as in Theorem 3.3, the existence of stabilizing state feedback control
law (subject to the same stability property for the zero solution) is equivalent to the
existence of a K1 =

[
K11 K12

]
T 6= 0 such that

(i)
(
1 +K11L

−1
00 B11

) (
λ̃1(1 +K11L

−1
00 B11) + aK12

)
+ bK2

12 < 0,

(ii) λ′(0)
(
λ′(0) + (K11λ

′(0)−K12d)L−1
00 B11

)
> 0, and

(iii) L∗00 = L00 +B11K11 is stable.

Proof. The theorem can be easily proven by setting K1H11 → K11, K1H12 →
K12, and noting that

K1 =
[
K11 K12

]
T

with T the similarity transform, in the proof of Theorem 3.3.
For a pitchfork bifurcation, i.e., λ̃1 = 0, the situation is again different. We adopt

an approach as in [3] by setting the linear term of the controller to zero. In fact,
by the proof of Theorems 3.1 and 3.3, the nonzero gain K1 will result in λ̃∗1 6= 0,
thereby changing the pitchfork bifurcation into a transcritical bifurcation for which
only one branch of the bifurcated solution can be stable. Hence this is not a desirable
situation other than some exceptional situations. It is noted that with K1 = 0, the
eigenvectors of L∗0 corresponding to the critical eigenvalue at γ = 0 satisfy `∗ = `
and r∗ = r. Hence both row and column eigenvectors of the critical eigenvalue are
invariant under feedback control. Since L∗1 = L1, there holds `∗L∗1r

∗ = `L1r = λ′(0).
Thus the zero solution of the feedback system changes its stability at γ = 0 as well.
The stabilizability of the bifurcated solution is given by the following result.

Theorem 3.6. Consider the nonlinear control system (9) with output feedback
control law (10) under the same hypothesis as in Theorem 3.3. Then for the case λ̃1 =
0, there exists a feedback control law u = K(y) subject to K1 = 0, that ensures λ̃∗1 = 0
and λ̃∗2 < 0, i.e., changes the pitchfork bifurcation from subcritical into supercritical,
if and only if

ρ = 4`Q0[r, (`T `+ LT0 L0)−1LT0 B1]− 2`L̃1r 6= 0 and H̃2[r, r] 6= 0.

Note that the expression of ρ is the same as in (16).
Proof. By the proof of Theorem 3.2 and `B1 = 0, there holds

λ̃∗2 = 2`
(

2Q0[r, x∗e2] + C0[r, r, r] +K2H̃2[r, r]L̃1r

+ K1H1r(Q̃1[r, r] +K1H1rL̃2r +B3(K1H1r)
2)
)

+ 2`K1

(
(H2[r, r] +H1x

∗
e2)L̃1r +H1rL̃1x

∗
e2

)
+ 4`B2K1H1r

(
K1(H1x

∗
e2 +H2[r, r]) +K2H̃2[r, r]

)
.
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Setting K1 = 0 yields λ̃∗1 = 0. Since Q∗0[r, r] = Q0[r, r] + B1K2H̃2[r, r], x∗e2 can be
solved from

L0x
∗
e2 = −Q0[r, r]−B1K2H̃2[r, r], `x∗e2 = 0.

Combined with `xe2 = 0 and L0xe2 = −Q0[r, r] yields

x∗e2 − xe2 = −(`T `+ LT0 L0)−1LT0 B1K2H̃2[r, r].

Substituting the above into the expression of λ̃∗2 gives

λ̃∗2 = λ̃2 + 4`Q0[r, x∗e2 − xe2] + 2`L̃1rK2H̃2[r, r]

= λ̃2 − 4`Q0[r, (`T `+ LT0 L0)−1LT0 B1]K2H̃2[r, r] + 2`L̃1rK2H̃2[r, r]

= λ̃2 −
(

4`Q0[r, (`T `+ LT0 L0)−1LT0 B1]− 2`L̃1r
)
K2H̃2[r, r]

= λ̃2 − ρK2H̃2[r, r].

Since ρ 6= 0 and H̃2[r, r] 6= 0, there exists K2 6= 0 such that λ̃∗2 < 0. Conversely,
stability of the bifurcated solution implies that

λ̃∗2 = λ̃2 − ρK2H̃2[r, r] < 0,

which then implies that ρ 6= 0 and H̃2[r, r] 6= 0 by the hypothesis that λ̃2 > 0.
It is noted that terms of order higher than two do not affect stability. Thus the

stabilizing controllers can be taken as quadratic. Moreover if the output measure-
ments consist of linear combinations of state variables, then the observability condi-
tion implies that H̃2[r, r] 6= 0. In this case, stabilizability for pitchfork bifurcation
is equivalent to ρ 6= 0. For bifurcation stabilization using state feedback in the case
of a pitchfork bifurcation, the stabilizability condition is again equivalent to ρ 6= 0,
because state feedback is a special case of output feedback satisfying observability.

4. Output feedback stabilization for Hopf bifurcation. It is assumed that
the linearized system matrix L(γ) as in (2) has a pair of complex (critical) eigenvalues
λ(γ) = α(γ)± jβ(γ) such that α(0) = 0 and α′(0) 6= 0, while all other eigenvalues are
stable. As explained in the previous section, this assumption has no loss of generality.
The problem to be investigated in this section is the stabilization of Hopf bifurcations
with output feedback control if the Hopf bifurcation born at γ = 0 for the nonlinear
system in (1) is unstable. We consider first the case when the pair of critical modes
corresponding to the pair of complex eigenvalues λ(γ) are neither controllable nor
observable. According to the PBH test [12], both left and right eigenvectors corre-
sponding to the pair of critical eigenvalues satisfy

`B1 = ¯̀B1 = H1r = H1r̄ = 0.

It follows that when the feedback controller (10) is employed, L∗0 = L0 + B1K1H1

retains the pair of critical eigenvalues ±jωc at γ = 0. Denote `∗ and r∗ as the left and
right eigenvectors of L∗0 corresponding to the pair of critical eigenvalues, respectively.
Then there holds `∗ = ` and r∗ = r, and thus a Hopf bifurcation is again born at
γ = 0 for which the zero solution changes its stability as γ crosses zero [11]. The next
result gives the condition on stabilizability of a Hopf bifurcation.

Theorem 4.1. Consider the nonlinear control system (9) with output feedback
control law (10). Suppose that λ̃2 > 0 with λ̃(ε) as in (6) and the critical modes of L0
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are neither controllable nor observable in the sense that `B1 = 0 and H1r = 0. For
simplicity, assume in addition that H̃2[r, r] = H2[r, r] = 0. Let Q∗0[x, x] and C∗0 be as
in the proof of Theorem 3.1. Let µ and ν be as in section 2.2, and define µ∗ and ν∗ by

−L∗0µ∗ =
1

2
Q∗0[r, r̄], (2jωcI − L∗0) ν∗ =

1

2
Q∗0[r, r],

where L∗0 = L0 + B1K1H1. Then there exists a feedback control law u = K(y) that
stabilizes the Hopf bifurcation if and only if there exists a linear feedback control law
u = K1y that stabilizes the Hopf bifurcation. Moreover the existence of a stabilizing
feedback control law is equivalent to

λ̃∗2 = λ̃2 + Re

{
K1H1L

−1
0 Q0[r, r̄]θ

1 +K1H1L
−1
0 B1

+
K1H1(L0 − 2jωcI)−1Q0[r, r]φ

1 +K1H1(L0 − 2jωcI)−1B1

}
< 0,(29)

and the noncritical eigenvalues of L∗0 lie on open left half-plane for some K1 6= 0,
where

θ=−
(
`L̃1r−2`Q0[r, L−1

0 B1]
)
, φ=

1

2

(
`L̃1r̄−2`Q0[r̄, (−2jωcI + L0)−1B1]

)
.(30)

Proof. Denote λ̃∗(ε) as the function in (6) for the controlled system, and λ̃∗2 as
the first coefficient of λ̃∗(ε). From the proof of Theorem 3.1,

Q∗0[r, r] = Q0[r, r], `Q∗0[r, r] = `Q0[r, r], `C∗0 [r, r, r̄] = `C0[r, r, r̄],

by using `B1 = ¯̀B1 = 0, H1r = H1r̄ = 0, and H̃2[r, r] = H2[r, r] = 0. Thus there hold

−2(L0 +B1K1H1)µ∗ = Q0[r, r̄], −2L0µ = Q0[r, r̄],

−2(−2jωcI + L0 +B1K1H1)ν∗ = Q0[r, r], −2(−2jωcI + L0)ν∗ = Q0[r, r].

The above equalities imply that

µ∗ − µ = −L−1
0 B1K1H1µ

∗, ν∗ − ν = −(−2jωcI + L0)−1B1K1ν
∗.

Although Q∗0[r, r] = Q0[r, r], Q∗0[r, x] 6= Q0[r, x] for x 6= r due to the feedback term.
In fact,

2`Q∗0[r, µ∗] = 2`Q0[r, µ∗] + `K1H1µ
∗L̃1r, 2`Q∗0[r̄, ν∗] = 2`Q0[r̄, ν∗] + `K1H1ν

∗L̃1r̄.

The coefficient λ̃∗2 can now be computed as

λ̃∗2 = Re {2`(2Q0[r, µ∗] +Q0[r̄, ν∗]) + 3C0[r, r, r̄]/4}+K1H1Re
{

2µ∗`L̃1r + ν∗`L̃1r̄
}

= λ̃2 + Re {2`(2Q0[r, µ∗ − µ] +Q0[r̄, ν∗ − ν])}+K1H1Re
{

2µ∗`L̃1r + ν∗`L̃1r̄
}

= λ̃2 +K1H1Re
{

2µ∗
(
`L̃1r − 2`Q0[r, L−1

0 B1]
)

+ ν∗
(
`L̃1r̄ − 2`Q0[r̄, (−2jωcI + L0)−1B1]

)}
.

By µ∗ = −0.5(L0+B1K1H1)−1Q0[r, r̄], and ν∗ = −0.5(L0+B1K1H1−2jωcI)−1Q0[r, r],

λ̃∗2 = λ̃2+K1H1Re
{

(L0 +B1K1H1)−1Q0[r, r̄]θ + (L0 +B1K1H1 − 2jωcI)−1Q0[r, r]φ
}
,
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where θ and φ are as in (30). For any square nonsingular matrices M and M +NF ,

F (M +NF )−1G = F (I +M−1NF )−1M−1G =
FM−1G

1 + FM−1N
,(31)

whenever FM−1N is a scalar. The expression for λ̃∗2 as in (29) can now be verified.
Hence stabilization of the Hopf bifurcation with the nonlinear controllers in (10) is
equivalent to the existence of K1 6= 0 such that λ̃∗2 < 0, and the rest of the eigenvalues
of L∗0 remain in the open left half plane.

The result in Theorem 4.1 is similar to the stabilizability of a pitchfork bifurcation
in Theorem 3.2 where nonlinear controllers do not offer any advantage over linear
ones in terms of bifurcation stabilization. Hence if the pair of critical modes of the
linearized system is uncontrollable and unobservable, linear controllers are adequate
for bifurcation stabilization. Moreover a necessary condition for stabilizability of a
Hopf bifurcation as in Theorem 4.1 is that

‖H1L
−1
0 Q0[r, r̄]θ‖+ ‖H1(L0 − 2jωcI)−1Q0[r, r]φ‖ 6= 0,

where ‖ · ‖ denotes the Euclidean norm in Rp. If the above holds, all K1 such that
λ̃∗2 < 0 can be easily parameterized, especially for scalar K1 that are a collection of
a limited number of finite intervals, or semi-infinite intervals, while stability of the
noncritical eigenvalues of L0 can be tested using root locus of (22) as argued in the
previous section.

In the rest of the section, we study the case when the stabilizability condition in
Theorem 4.1 is not satisfied. Clearly additional sensors must be deployed such that
H1r 6= 0 is valid in order for a Hopf bifurcation to be stabilizable. Although linear
controllers can be investigated, it is much easier to consider the class of nonlinear
controllers in (10) with K1 = 0 as discussed in [2]. The next result generalizes the
result in [2] to output feedback stabilization.

Theorem 4.2. Consider the nonlinear control system (9) with output feedback
control law in (10) subject to K1 = 0. Suppose that λ̃2 > 0 with λ̃(ε) as (6), µ, ν as in
section 2.2, and the critical mode of L0 is observable through linearized output mea-
surement y = H1x. Then there exists a feedback control law u = K(y) that stabilizes
the Hopf bifurcation if and only if

Re
{
H̃2[r, r̄]`

(
2Q0[r, L−1

0 B1]− L̃1r
)

(32)

+H̃2[r, r]`
(
Q0[r̄, (2jωcI − L0)−1B1]− 0.5L̃1r̄

)}
6= 0.

If the above condition holds, stabilizing controllers can be taken as quadratic.
Proof. With K1 = 0, both critical eigenvalues and left/right eigenvectors are

invariant under feedback. Moreover

L∗0 = L0, Q∗0[x, z] = Q0[x, z] +B1K2H̃2[x, z], `Q∗0[x, z] = `Q0[x, z]

3`C∗0 [r, r, r̄] = 3`C0[r, r, r̄] + `K2

(
H̃2[r, r]L̃1r̄ + 2H̃2[r, r̄]L̃1r

)
by `B1 = 0. It follows that

µ∗ = −0.5L−1
0

(
Q0[r, r̄] +B1K2H̃2[r, r̄]

)
= µ+ ∆µ, ∆µ = −0.5L−1

0 B1K2H̃2[r, r̄],

ν∗ = ν + ∆ν, ∆ν = −0.5(2jωcI − L0)−1B1K2H̃2[r, r̄].
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By the property of the quadratic term,

Q0[r, µ+ ∆µ] = Q0[r, µ] +Q0[r,∆µ] = Q0[r, µ]− 0.5K2H̃2[r, r̄]Q0[r, L−1
0 B1],

Q0[r̄, ν + ∆ν] = Q0[r̄, ν] +Q0[r̄,∆ν] = Q0[r̄, ν]− 0.5K2H̃2[r, r̄]Q0[r̄, (2jωcI − L0)−1B1].

After lengthy calculations, we finally obtain

λ̃∗2 = λ̃2 −K2Re
{
H̃2[r, r̄]`

(
2Q0[r, L−1

0 B1]− L̃1r
)

+ H̃2[r, r]`
(
Q0[r̄, (2jωcI − L0)−1B1]− 0.5L̃1r̄

)}
.

Because λ̃2 > 0, the Hopf bifurcation of the uncontrolled system is unstable. Hence
stabilization requires λ̃∗2 < 0 to hold, which implies the condition in (32). Conversely,
if (32) holds, then there exists K2 such that λ̃∗2 < 0, which ensures the stability of
the Hopf bifurcation for the feedback system. Since only the quadratic term of the
nonlinear controller is involved in determination of λ̃∗2, the stabilizing controller can
be taken as quadratic.

It is worth pointing out that condition (32) in Theorem 4.2 reduces to that of [2]
if H̃2[r, r] = H̃2[r, r̄] is a nonzero real number, which was derived for state feedback
control laws.

5. Applications to rotating stall control. Rotating stall is a flow instability
in axial flow compressors of gas turbines, induced by bifurcations. It cannot only lead
to large penalties in performance, but also cause catastrophe. Hence there is a growing
interest in suppression of rotating stall using feedback control in order to extend
the stable operating range, and to improve turbine-based aeroengines for axial flow
compressors. A number of control laws are proposed in [8, 14, 16, 20] using rotating
stall control, and are shown to be effective based on the low-order Moore–Greitzer
model [18]. In this section established results on stationary bifurcations in section 3
will be applied to the Moore–Greitzer model and are shown to yield identical results
as in [8, 14, 16, 20], thereby validating our results on bifurcation stabilization. Clearly
our results are more general and apply to broader bifurcation instability problems
other than rotating stall.

The post-stall model developed by Moore and Greitzer is of the form

Ψ̇ =
1

β2

(
Φ− (γ + u)

√
Ψ + 1

)
,(33)

Φ̇ = −Ψ + ψc(Φ) + 6c3ΦR, ψc(Φ) = c0 + c1Φ + c3Φ3,(34)

Ṙ = σR(1− Φ2 −R),(35)

where Φ is the average flow rate, Ψ the pressure rise, R the amplitude square of the
disturbance flow (R = A2), and u the actuating signal implemented with throttle,
which are all nondimensionalized. An obvious equilibrium (Ψe,Φe, Re) for u = 0
satisfies

Re = 0, Ψe = ψc(Φe), Ψe =
1

γ
(1 + Φe)

2.(36)

It can be easily shown that there exists γc > 0 such that the above equilibrium is
stable for γ > γc but unstable for γ < γc [17]. Denote

x =

 x1

x2

x3

 =

 Ψ−Ψe

Φ− Φe
R

 , g(x) =

 −1
0
0

 √Ψ

β2
,



952 G. GU, X. CHEN, A. G. SPARKS, AND S. S. BANDA

with Ψ = x1 + Ψe. Then

ẋ = f(δγ, x) + g(x)u, δγ = γ − γc.(37)

Thus the equilibrium in (36) is the local zero solution for u = 0, and both Ψe and Φe
are functions of γ. Moreover the linearized system at the origin possesses exactly one
zero eigenvalue at γ = γc, which implies that γc is the critical value. The equilibrium
in (36) at the critical value of γ is determined as (see [16, 14, 20]):

Rc = 0, Φc = 1, Ψc = Ψc(Φc) = c0 + c1 + c3,

γc =
2√
Ψc

, c0 = 8/3, c1 = 1.5, c3 = −0.5.

Clearly the nonlinear system (37) can be expanded in the same form as (9) with

L0 =

 −γcβ
−2

2
√

Ψc
β−2 0

−1 0 6c3
0 0 0

 , B1 =

 −1
0
0

 √Ψc

β2
,(38)

Q0[x, x] =


γc

8β2Ψ
3
2
c

x2
1

3c3Φcx
2
2 + 6c3x2x3

−σx2
3 − 2σΦcx2x3

 ,
L̃1 =

 − 1
2β2
√

Ψc
0 0

0 0 0
0 0 0

 , C0[x, x, x] =

 −
γc

16β2Ψ
5
2
c

x3
1

c3x
3
2

−σx2
2x3

 , r =

 6c3
3c3γc√

Ψc
1

 ,(39)

and ` =
[

0 0 1
]
. Thus the critical mode of the linearized system is uncontrollable.

By the assumption in [16, 14, 20], σ > 0 and β > 0. For the uncontrolled system,

λ̃1 = `Q0[r, r] = −σ
(

1 +
6c3γc√

Ψc

)
= −σ

(
1 +

12c3
Ψc

)
> 0, λ′(0) = −2σ

√
Ψc < 0.

Therefore it is a transcritical bifurcation and the bifurcated solution for Re > 0 is
unstable. Corollary 3.5 is now applied to compute a linear state feedback gain K1 that
stabilizes the bifurcated solution at Re > 0. Recall that R is the amplitude squared
of the disturbance flow. Thus Re < 0 has no physical meaning. Let T be the required
similarity transformation as in (23). Then

K1 =
[
kΨ kΦ kR

]
=
[
K11 K12

]
T, K11 =

[
k1 k2

]
, K12 = k3.(40)

Straightforward computation gives

T =

 1 0 −6c3
0 1 − 3c3γc√

Ψc
0 0 1

 , L00 =

[
−γcβ−2

2
√

Ψc
β−2

−1 c2 + 3c3Φ2
c

]
, B11 =

[
−
√

Ψc
β2

0

]
,

which yields a = −2
√

Ψcσ, b = 0, and d = d̃ = 0. Thus (i)–(iii) of Corollary 3.5 are
equivalent to

(i) −σ(1− k2

√
Ψc)

[(
1 +

12c3
Ψc

)
(1− k2

√
Ψc) + 2

√
Ψck3

]
< 0,(41)

(ii) λ′(0)
(
1 +K11L

−1
00 B11

)
= λ′(0)(1− k2

√
Ψc) < 0(42)

(iii) k1 > −Ψ−3/2
c , k2 < Ψ−1/2

c .(43)
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Note that (iii) implies that (ii) is true, and (i) is reduced to

(1− 6/Ψc) (1−k2

√
Ψc)+2

√
Ψck3 > 0, k1 = kΨ, k2 = kΦ, k3 = −3kΨ− 3

Ψc
kΦ+kR,

where c3 = −1/2 is used. After simplification, the stabilizing state feedback gain
satisfies

6−Ψc

Ψ
3/2
c

< −6kΨ − kΦ + 2kR, kΦ < Ψ−1/2
c , kΨ > −Ψ−3/2

c ,(44)

which are exactly the same as in [14]. Taking kR = kΦ = 0 with c0 = 8/3, c1 = 1.5,
and c3 = −0.5 yields

− 3

11

√
3

11
= −Ψ−3/2

c < kΨ <
1

6
√

Ψc

−Ψ−3/2
c = − 7

66

√
3

11
,

which is the same condition obtained in [8]. Taking kΨ = kΦ = 0 yields

kR > 3Ψ−3/2
c − 1

2
√

Ψc

= 0.1175,

which implies that kR = 0.5 as in [16, 20] is a stabilizing gain too.
It should be pointed out that the results of [16, 20] can also be obtained from

Theorem 3.6 directly. A more interesting case is that condition (44) can be obtained
using Theorem 3.2 as well. Indeed, set R = A2 with A the amplitude of disturbance
flow. Then (35) can be written as

Ȧ = 0.5σA(1− Φ2 −A2).(45)

Together with (33) and (34), the Moore–Greitzer model has new coordinates (Ψ,Φ, A)
and rotating stall corresponds to a subcritical pitchfork bifurcation that is unstable
due to λ̃1 = 0 and λ̃2 = −σ(Ψc − 6)/Ψc > 0 [16, 20]. Let x1 = Ψ−Ψe, x2 = Φ− Φe,
and x3 = A, and let the output measurement be given by

y = H1x+H2[x, x] =

 1 0 0
0 1 0
0 0 0

 x1

x2

x3

+

 0
0
x2

3

 .
Then it is easy to see that the critical mode of the linearized system at γ = γc is
neither controllable nor observable in light of

L0 =

 −γcβ
−2

2
√

Ψc
β−2 0

−1 0 0
0 0 0

 , B1 =

 −1
0
0

 √Ψc

β2
,

H1 =

 1 0 0
0 1 0
0 0 0

 , `T = r =

 0
0
1

 ,
which are of the same form as in (15) with T = I. By Theorem 3.2, linear controllers
suffice for stabilization which have the form

u = K1y = K1(H1x+H2[x, x]) = kΨx1 + kΦx2 + kA2x2
3.(46)
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Fig. 1. Bifurcation diagrams without feedback control.

Direct computation gives

ρ = 2
√

Ψc, β =

[
0
−2

]
, H11L

−1
00

(
B11λ̃2 + ρβ

)
=

[
6σ
√

Ψc

σ
√

Ψc

]
.

Hence the stabilizing conditions in Theorem 3.2 are equivalent to

−Ψc − 6

Ψ
3/2
c

+ 6kΨ + kΦ − 2kA2 < 0, kΦ < Ψ−1/2
c , kΨ > −Ψ−3/2

c ,

which are exactly the same as in (44) as kR = kA2 by R = A2.
Numerical simulations. The compressor model with the following parameters

[8, 16, 18, 20]:

λ = 1.75, H = 0.18, W = 0.25, B = 2, a = 1/3.5,

c0 = 8/3, c1 = 1.5, c3 = −0.5, lc = 8, lF =∞,
is used to illustrate the application of our results on bifurcation stabilization. Figure
1 shows four simulation plots for the uncontrolled compression system where (a) is
the bifurcation diagram of Ae vs. γ with a solid line for stability and a dotted line for
instability. It shows a subcritical pitchfork bifurcation associated with the hysteresis
loop in rotating stall. The bifurcation diagrams in Figure 1(b)–(d) are obtained from
Figure 1(a) using the relations satisfied for steady equilibrium solutions. The hysteresis
loop in Figure 1(a) clearly has adverse effects when using the throttle as control
actuator. This is seen from the fact that the operating points (Ψe,Φe, Ae) are not
single-valued functions of γ.

We now apply control law (46) by choosing KΦ = 0 and KA2 = 0. Then a sta-

bilizing KΨ must lie in the interval of (− 3
11

√
3
11 , − 7

66

√
3
11 ). Using a linear feedback

control law with KΨ = −0.0885, the bifurcation plots are shown in Figure 2. This
control law changes the pitchfork bifurcation in Figure 1(a) from subcritical to super-
critical as shown in Figure 2(a). The bifurcation diagrams in Figure 2(b)–(d) show
that the adverse effects of the hysteresis loop are eliminated, and (Ψe,Φe, Ae) are all
single-valued functions of γ. The details can be found in [8].
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Fig. 2. Bifurcation diagrams with feedback control.

6. Conclusion. This paper investigated bifurcation stabilization using smooth
local output feedback controllers for parameterized nonlinear systems where the crit-
ical mode of the linearized system is uncontrollable. Stabilizability conditions were
established for both the case where the critical mode is linearly unobservable and
the case where it is observable through output measurement. The latter case includes
state feedback as a special case. It was shown that nonlinear controllers do not offer
any advantage over the linear ones for bifurcation stabilization if the critical mode
of the linearized system is unobservable. For the case that the critical mode of the
linearized system is observable, it was shown that linear controllers are adequate for
stabilization of transcritical bifurcation, and quadratic controllers are adequate for
stabilization of pitchfork and Hopf bifurcations, respectively. Stabilization conditions
for nonlinear bifurcations with single critical parameters were characterized in explicit
form which can be used to synthesize stabilizing controllers, if they exist. The appli-
cability of the bifurcation stabilization results was demonstrated for rotating stall
control of axial flow compressors.
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Abstract. This paper develops a methodology for recursive construction of optimal and near-
optimal controllers for strict-feedback stochastic nonlinear systems under a risk-sensitive cost function
criterion. The design procedure follows the integrator backstepping methodology, and the controllers
obtained guarantee any desired achievable level of long-term average cost for a given risk-sensitivity
parameter θ. Furthermore, they lead to closed-loop system trajectories that are bounded in proba-
bility, and in some cases asymptotically stable in the large. These results also generalize to nonlinear
systems with strongly stabilizable zero dynamics. A numerical example included in the paper illus-
trates the analytical results.

Key words. stochastic differential equation, stochastic stability, risk-sensitive control, integra-
tor backstepping, zero dynamics

AMS subject classifications. 93E15, 93E20, 90D25, 93C10, 90A46

PII. S0363012996307059

1. Introduction. The topic of designing globally stabilizing controllers for non-
linear systems has been an intense area of research in recent years. A class of nonlinear
systems that have attracted particular interest consists of those that can be trans-
formed into linear time-invariant systems under a state diffeomorphism and state
feedback—to so-called feedback linearizable nonlinear systems [10]. For this class of
nonlinear systems, a general and flexible control design strategy was introduced in
the early 1990s [15], which is now known as integrator backstepping. This methodol-
ogy provides a general recursive constructive tool to design controllers for nonlinear
systems that are given in the strict-feedback form and for systems that are feedback
equivalent to such systems. Since the early 1990s, several additional results have
been obtained for strict-feedback nonlinear systems using the integrator backstepping
method; some selective references in this area are [18], [26], and [12]. This method-
ology has also been used to design controllers for a class of nonholonomic nonlinear
systems [14]. The recent book [19] contains an up-to-date coverage of this topic, with
an extensive list of references.

The integrator backstepping methodology provides a considerable amount of flex-
ibility in the design process. This is reflected in terms of the choice of the stabilizing
control laws and the additive Lyapunov functions that can be prescribed at each step
of the recursive construction. One of the interesting issues that arise in the applica-
tion of backstepping methodology is the identification of appropriate choices of these
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design flexibilities at each step of the recursion, so that an improved control design
is achieved at the end of the recursive construction. One approach to this problem
is the inverse optimal control design [6], [7]. In [7], for example, it has been shown
that given a controlled Lyapunov function for a nonlinear system, one can construct
a controller that is optimal for one out of a certain class of desirable cost functions.

Another approach for reducing the choices of integrator backstepping design is to
design the controller to guarantee a prespecified level of performance with respect to
a given cost criterion. In a recent paper [23], we have introduced such an approach
and used the backstepping design tool for guaranteed disturbance attenuation in the
framework of the worst-case design methodology. This has involved obtaining con-
trollers that achieve a zero value for a particular parametrized nonlinear differential
game.

It has been known for some time that differential game problems are closely
related to risk-sensitive stochastic control problems with exponentiated cost [11], [13],
[25], [28], [29]. In particular, it has been shown that a general nonlinear/nonquadratic
risk-sensitive stochastic control problem for continuous diffusions has an equivalent
representation as a stochastic differential game [1]. If the noise intensity vanishes,
then a particular (large deviation) limit of the stochastic differential game (and also
that of the risk-sensitive stochastic control problem) yields a deterministic differential
game. All these connections have motivated, in recent years, accelerated research on
the topic of risk-sensitive stochastic control.

Because of the connections alluded to above between deterministic worst-case
designs and risk-sensitive stochastic control designs for nonlinear systems, the question
arises as to whether the counterpart of the results of [23] can be obtained under a risk-
sensitive control formulation, using an integrator backstepping methodology. Such
a study would of course also require the development of a “backstepping” tool for
stochastic systems. This is precisely the problem addressed in this paper.

To this end, we introduce a class of strict-feedback stochastic nonlinear systems,
along with an exponential cost function to be optimized, which is parametrized by
a risk-sensitivity parameter θ. For this system, we seek to design a controller that
would guarantee any desired achievable level of long-term average cost. It turns
out that the construction of a controller for the risk-sensitive cost function is quite
different from that of the nonlinear H∞ problem presented in [23], the reason being
that the equivalence between the deterministic dynamic game and the exponential cost
problem holds only as the intensity of the system noise diminishes to zero. We present
here an explicit recursive construction for the nonlinear control laws that guarantee
any prespecified level of long-term average cost and lead to boundedness in probability
of the closed-loop system trajectory. Three special cases are discussed in detail. One
case is that in which the vector fields for the disturbance vanish at the origin of the
system; in this case, the control design can actually guarantee a zero long-term average
cost, and the closed-loop system becomes asymptotically stable in the large. Another
special case we discuss in the paper pertains to the limit when the risk-sensitivity
parameter converges to zero—the case of the risk-neutral performance index. The
third special case discussed is that in which the system noise level diminishes to zero,
for which we show that the control design procedure converges (in some sense) to the
H∞ control design procedure of [23], uniformly on compact subsets of the entire state
space. These results admit immediate extensions to a class of nonlinear systems with
strongly stabilizable zero dynamics (section 6). The theoretical findings are further
illustrated in section 7 on a second-order nonlinear system.

The paper is organized as follows. In section 2, we present a precise formulation
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for the problem of guaranteed cost control design and provide some general theorems
regarding the uncontrolled version of the exponential cost problem. We discuss the
recursive construction procedure for a guaranteed cost controller design in sections 3
and 4; the former discusses a single typical backstepping process for nonlinear sys-
tems, which serves as a building block for the more general derivation given in the
latter. Extensive discussions of various limits and specializations of the results are
included in section 5. In section 6, we extend the result to a class of more general non-
linear systems involving nontrivial zero dynamics. A numerical example is presented
in section 7. The paper presents some conclusions and remarks on future research
directions in section 8. An appendix includes proofs of two results that are utilized
in the main body of the paper.

2. Problem formulation. We consider the following noise-prone strict-feedback
nonlinear system, given by the Itô stochastic differential equation (SDE):1

dx1 = (x2 + f1(x1)) dt+ h′1(x1) dw,(2.1a)

...
...

dxn−1 = (xn + fn−1(x1, . . . , xn−1)) dt+ h′n−1(x1, . . . , xn−1) dw,(2.1b)

dxn = (fn(x1, . . . , xn) + b(x1, . . . , xn)u) dt+ h′n(x1, . . . , xn) dw,(2.1c)

y = x1 .(2.1d)

Here, x := (x1, . . . , xn)′ is the n-dimensional state vector, with a fixed initial value
x(0); u is the scalar control input; w is the q-dimensional vector-valued standard
Wiener process; and y is the scalar output. In compact form, the SDE (2.1) can be
expressed as

dx = (f(x) +G(x)u) dt+H(x) dw.(2.2)

Note that, in addition to the strict-feedback form introduced in [15] in a deterministic
setting, the above system incorporates additive stochastic disturbance inputs, where
the nonlinear function multiplying the disturbance terms are also in triangular form.
The underlying probability space is taken to be the triplet (Ω,F ,P ), where Ω is the
sample space, F is a filtration, and P is the probability measure.

For the nonlinear system (2.1), we make the following basic assumption as a
starting point of our study.

Assumption A1. The nonlinear functions fi and hi are C∞ in all their arguments
(or simply are smooth), i = 1, . . . , n. The nonlinear functions b and 1/b are C2 in all
their arguments. The functions fi, i = 1, . . . , n, vanish at x = 0: fi(x1, . . . , xi)|x=0 =
0, i = 1, . . . , n.

The first part of Assumption A1 is a standard smoothness assumption for this
class of nonlinear systems; the condition imposed on fi at x = 0 is to ensure that the
origin is an equilibrium point of the deterministic (unperturbed) part of the system.

The control input u depends on the current value of the state and hence is gen-
erated by

u(t) = µ(x(t)),(2.3)

1In a deterministic form, systems having the structure (2.1) arise in several applications (see
[19]), one of which is robotic manipulators [27]. Here, we have taken the disturbance input to be a
Wiener process instead of a deterministic unknown function. We should also note that stochastic
systems in the state-space form (2.2) with general dynamics can be brought to the strict-feedback
form (2.1) via a diffeomorphic transformation as shown in [22]. This therefore justifies the study of
stochastic systems in the form of (2.1).
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where the mapping µ : Rn → R is locally Lipschitz. We denote the class of all such
controllers by M.

The objective of the controller design is to maintain a finite (and in fact arbitrarily
small, positive) long-term average value for the following risk-sensitive cost function:

Jθ(µ) = lim sup
tf→∞

2

θtf
ln

{
E

{
exp

[
θ

2

(∫ tf

0

y2(t) dt

)]}}
,(2.4)

where θ is the risk-sensitivity parameter. When θ is positive, the cost functional
weights heavily the large deviations of y (from a base zero) through the exponential
operator, which leads to a risk-averse control design. The larger θ is, the more conser-
vative is the controller. On the other hand, if θ is negative, the optimization will lead
to a risk-seeking controller design. If we take θ → 0, then the cost function converges
to a standard integral cost, with the underlying stochastic control problem also known
as a risk-neutral problem. In this paper, we will study only the case in which θ is
positive. The risk-seeking case (i. e. , with θ < 0) can be studied analogously but will
not be covered here.

An important point to note here is that in the performance function (2.4) there is
no weighting on the control input, and hence control can be chosen arbitrarily large
without incurring any cost. This, coupled with the strict-feedback structure, allows
an arbitrarily small positive long-term average value to be guaranteed for the closed-
loop system, for any given risk-sensitivity parameter θ—a result that will actually be
established in this paper. The smaller the long-term average cost is, the larger the
control effort will generally be. Similarly, the larger the value of θ is, the higher will
be the induced weighting on large excursions of the output y, which implies a better
systems response if the long-term average cost is maintained at a constant value, but
at the expense of a larger control effort. Motivated by these considerations, we embed
the original problem of minimizing (2.4) in a larger class of “cost-level satisfaction”
problems, where the objective is to find a controller that leads to satisfaction of a
given bound on the risk-sensitive cost. This is captured in the following definition.

Definition 2.1. Given a risk-sensitivity parameter θ, a controller µ is said to
achieve a guaranteed risk-sensitive cost Rc ≥ 0, if the following inequality holds:

Jθ(µ) = lim sup
tf→∞

2

θtf
ln

{
E

{
exp

[
θ

2

(∫ tf

0

(y2(t) + l(x(t))) dt

)]}}
≤ Rc,(2.5)

where the function l(x(t)) is nonnegative and is chosen by the designer.
Our objective, succinctly stated, is given θ > 0 and any Rc > 0 (Rc = 0 un-

der the additional assumption H(0) = 0), to construct a controller that achieves a
risk-sensitive cost of Rc. To achieve this, our approach to the problem is recursive con-
struction of the value function using the integrator backstepping procedure. To this
end, we first present a result that deals with the issues of existence, uniqueness, sta-
bility, and performance of a control free risk-sensitive problem. Such a risk-sensitive
problem will correspond to the closed-loop system of (2.1) under a particular smooth
control design.

We note at this point that the nonlinear continuous-time risk-sensitive stochastic
control problem has been treated before by many authors, including the work in [5],
[3], [1], [4], and [25]. The most recent paper in this area is [20], in which the general
risk-sensitive control problem has been treated in both finite- and infinite-horizon
cases under some global Lipschitz conditions. Yet the results presented in all these
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references are not completely suitable for the class of problems under consideration in
this paper, since we are considering here the infinite-horizon case with arbitrary (glob-
ally non-Lipschitzian) nonlinearities. In contradistinction with the early references,
though, we are interested here in designing a suboptimal control strategy rather than
an optimal one, which avoids the measure transformation that is commonly used for
this type of a problem.

Let us now consider the SDE

dx = f(x) dt+H(x) dw(2.6)

along with a risk-sensitive cost function:

Jθ = lim sup
tf→∞

2

θtf
ln

{
E

{
exp

[
θ

2

∫ tf

0

q(x(t)) dt

]}}
.(2.7)

Let us introduce the value function, W (tf−t;x), associated with the finite-horizon
version of this problem (on interval [t, tf ]):

W (tf − t;x) =
2

θ
ln

{
E

{
exp

[
θ

2

∫ tf

t

q(x(s)) ds

]}}
(2.8)

for a system with initial time-state pair (t, x). The Hamilton–Jacobi–Bellman (HJB)
equation satisfied by W is [1]

∂W

∂t
+
∂W

∂x
f(x) +

θ

4

∂W

∂x
H(x)H ′(x)

(
∂W

∂x

)′
+

1

2
Tr

(
∂2W

∂x2
H(x)H ′(x)

)
(2.9)

+ q(x) = 0.

Generally (and in particular if H(x)H ′(x) > δI ∀x ∈ Rn, for some δ > 0), the value
function W (tf − t;x) becomes unbounded as the terminal time tf goes to infinity.
The rate at which it goes to infinity corresponds to the long-term average cost for the
infinite-horizon problem. Also in view of the results of [20], it is therefore reasonable
to assume the following structure for W :

W (tf − t;x) = V (x) + (tf − t)Rc,
where Rc is a desired long-term average cost.

In terms of this constant, V (x) satisfies the following HJB equation:

∂V

∂x
f(x) +

θ

4

∂V

∂x
H(x)H ′(x)

(
∂V

∂x

)′
+

1

2
Tr

(
∂2V

∂x2
H(x)H ′(x)

)
+ q(x) = Rc.(2.10)

Since we are interested in finding a controller that guarantees the desired long-
term average cost Rc, we can relax the equality in (2.10) to an inequality, and thus
search for a V (x) that satisfies the following HJB inequality:

∂V

∂x
f(x) +

θ

4

∂V

∂x
H(x)H ′(x)

(
∂V

∂x

)′
+

1

2
Tr

(
∂2V

∂x2
H(x)H ′(x)

)
+ q(x)(2.11)

= ∆(x) ≤ Rc,
where Rc is the desired long-term average risk-sensitive cost that uniformly bounds
the function ∆(x). We will prove that the existence of a C2 solution to the above
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HJB inequality yields the desired existence, uniqueness, stability, and performance
requirements for the original risk-sensitive control problem defined by (2.6) and (2.7).

First, we recall the stochastic process notions of bounded in probability and asymp-
totic stability in the large, as introduced in Chapter 1, Section 4 and Chapter 5,
Section 4 of the classical book [17]. These notions will be useful in our development.

Definition 2.2. A stochastic process {x(t), t ≥ 0} is said to be bounded in
probability if

lim
c→∞ sup

0≤t<∞
P {|x(t)| > c} = 0.(2.12)

Definition 2.3. Consider the SDE (2.6), with H(0) = 0. The solution x(t) ≡ 0
of such an SDE is said to be asymptotically stable in the large if for any ε > 0,

lim
|x0|→0

P {sup
t≥0
|x(t)| ≥ ε} = 0(2.13)

and for any initial condition x0,

P { lim
t→∞x(t) = 0} = 1.(2.14)

Definition 2.4. A scalar function V : Rn → R is positive definite if V (0) = 0
and V (x) > 0 ∀x ∈ Rn \ {0}. V is radially unbounded if V (x)→∞ as |x| → ∞.

We are now in a position to state (and prove) the following theorem.
Theorem 2.5. Consider the SDE (2.6) with the risk-sensitive cost function (2.7).

Let θ > 0 and Rc ≥ 0 be fixed. Assume that the vector field f(x) and the matrix-
valued function H(x) are C1 in their arguments, and the function q(x) is nonnegative
definite and is C2 in its argument. Further assume that there exists a positive definite
and radially unbounded C2 value function V (x) satisfying the HJB inequality (2.11).
Then the following statements are true.

1. There exists an almost surely (a.s.) P unique solution to the SDE (2.6) on
[0,∞).

2. The cost (2.7) is upper bounded by Rc.
3. If, in addition, V (x) and q(x) satisfy the linear bound relationship2

V (x) ≤ c1q(x) + c2 ∀x ∈ Rn(2.15)

for some positive constants c1, c2, then the solution x(t) to the SDE (2.6) is bounded
in probability.

4. If Rc = 0, H(0) = 0, and the function q(x) is positive definite, then the SDE
(2.6) is asymptotically stable in the large.

Proof. Consider the function W̃ (x) := V (x) +Rc. By the HJB inequality (2.11),
we have

∂W̃

∂x
f(x) +

1

2
Tr

(
∂2W̃

∂x2
H(x)H(x)′

)
= −θ

4

∂V

∂x
H(x)H(x)′

(
∂V

∂x

)′
− q(x) + ∆(x)

≤ ∆(x) ≤ Rc ≤ W̃ (x)

for any x ∈ Rn. Since the function V (x) is radially unbounded, W̃ is also radially
unbounded. Then, by Theorem 4.1 of Chapter 3 of [17], we conclude that there exists

2In section 4, we will provide an explicit construction for a function V that satisfies this bound.
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a solution to the SDE (2.6) on the infinite interval [0,∞), and that the solution is
a.s. P unique. This completes the proof of the first statement.

For the second statement, we apply Itô’s rule to the stochastic process V (x(t))
generated by composing V (·) with the stochastic process x(t), t ≥ 0:

dV (x(t)) =

(
∂V

∂x
f(x) +

1

2
Tr

(
∂2V

∂x2
H(x)H ′(x)

))
dt+

∂V

∂x
H(x) dw

=
∂V

∂x
H(x) dw −

(
θ

4

∂V

∂x
H(x)H ′(x)

(
∂V

∂x

)′
+ q(x)−∆(x)

)
dt,

where in the second line we have made use of (2.11).
Integrating both sides of this equation, we arrive at∫ tf

0

q(x) dt =

∫ tf

0

(
∂V

∂x
H(x) dw −

(
θ

4

∂V

∂x
H(x)H ′(x)

(
∂V

∂x

)′
−∆(x)

)
dt

)
+V (x(0))− V (x(tf ))

≤ V (x(0)) +

∫ tf

0

(
∂V

∂x
H(x) dw − θ

4

∂V

∂x
H(x)H ′(x)

(
∂V

∂x

)′
dt

)
+Rctf ,

where in the second line we have used the bound ∆(x) ≤ Rc and replaced V (x(tf ))
by its lower bound 0. Using this expression in the cost function Jθ, we have

Jθ ≤ lim sup
tf→∞

2

θtf
ln

E
exp

∫ tf

0

θ
2

∂V

∂x
H(x) dw − θ2

8

∣∣∣∣∣H ′(x)

(
∂V

∂x

)′∣∣∣∣∣
2

dt




+Rc.

The stochastic process

ζ(t) := exp

[∫ t

0

(
θ

2

∂V

∂x
H(x) dw − θ2

8

∂V

∂x
H(x)H ′(x)

(
∂V

∂x

)′
dt

)]
(2.16)

is almost surely positive and is a supermartingale (see the appendix). Hence,

E(ζ(tf )) ≤ 1 ∀tf > 0.

Using this bound in the inequality for Jθ yields the desired bound

Jθ ≤ Rc.

This establishes the second statement of the theorem.
The third statement follows from Theorem 2 of Chapter 3, Section 13 of [8], which

says that, for any δ > 0,

sup
0≤t<∞

P {V (x(t)) > δ} ≤ 1

δ

(
V (x(0)) +

c2 +Rc
c1

)
because of the HJB inequality (2.11).
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Since V is a positive definite and radially unbounded function, there exists a
continuous strictly increasing scalar function α : [0,∞) → [0,∞) with the property
lims→∞ α(s) =∞ such that (see Lemma 3.5 in [16])

V (x) ≥ α(|x|).
Consequently,

sup
0≤t<∞

P {|x(t)| > δ} = sup
0≤t<∞

P {α(|x|) > α(δ)} ≤ sup
0≤t<∞

P {V (x(t)) > α(δ)}

≤ 1

α(δ)

(
V (x(0)) +

c2 +Rc
c1

)
.

The third statement follows by taking the limit δ →∞.
When Rc = 0, the last statement is a direct consequence of Theorem 4.4 of

Chapter 5 of [17].
This completes the proof of the theorem.
In the development to follow, we will make extensive use of an equivalent form of

the HJB equation (2.11), which is made precise by the following proposition.
Proposition 2.6. A C2 function V (x) satisfies the HJB equation (2.11) if and

only if the following algebraic relationship holds:

∂V

∂x
f(x) dt+

∂V

∂x
H(x) dw +

1

2
Tr

(
∂2V

∂x2
H(x)H ′(x)

)
dt(2.17)

= σ(x) dw −
(
θ

4
σ(x)σ′(x) + q(x)−∆(x)

)
dt,

where σ(x) = ∂V
∂xH(x) for all x ∈ Rn.

Proof. Sufficiency. By the hypothesis of the proposition, we have

∂V

∂x
f(x) dt+

∂V

∂x
H(x) dw +

1

2
Tr

(
∂2V

∂x2
H(x)H ′(x)

)
dt(2.18)

= σ(x) dw −
(
θ

4
σ(x)σ′(x) + q(x)−∆(x)

)
dt.

Taking expectations on both sides of the equation, we get

∂V

∂x
f(x) dt+

1

2
Tr

(
∂2V

∂x2
H(x)H ′(x)

)
dt = −

(
θ

4
σ(x)σ′(x) + q(x)−∆(x)

)
dt.

Therefore, by dividing both sides by dt, we have

∂V

∂x
f(x) +

θ

4
σ(x)σ′(x) + q(x) +

1

2
Tr

(
∂2V

∂x2
H(x)H ′(x)

)
= ∆(x).

Since this holds for any initial condition x ∈ Rn, the function V (x) satisfies the HJB
equation (2.11). Substituting this into (2.18), we have

∂V

∂x
H(x) dw = σ(x) dw.

By Lemma A.2 in the appendix, we have

∂V

∂x
H(x) = σ(x).
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Then, it holds for all x ∈ Rn. Substitution of this equality into (2.18) leads to the
HJB equation (2.11).

This completes the proof of the sufficiency part of the proposition.
Necessity. Since the HJB equation (2.11) is satisfied by the C2 function V (x),(

∂V

∂x
f(x) +

1

2
Tr

(
∂2V

∂x2
H(x)H ′(x)

))
dt+

∂V

∂x
H(x) dw

=
∂V

∂x
H(x) dw −

(
θ

4
σ(x)σ′(x) + q(x)−∆(x)

)
dt.

This completes the proof of the necessity part of the proposition.
Remark 2.1. We note that in Proposition 2.6, the left-hand side of (2.6) equals

the Itô differential of the stochastic process V (x(t)) with x(t) generated by the SDE

dx = f(x) dt+H(x) dw, x(0) = x,(2.19)

whenever it exists. As a consequence of the property that the function V (x) satisfies
the HJB equation (2.11), the Itô differential of V (x(t)) exists under additional growth
conditions delineated in Theorem 2.5. These growth conditions will automatically be
satisfied by the recursive construction procedure to be described later. For notational
simplicity, we henceforth identify dV (x(t)) with(

∂V

∂x
f(x) +

1

2
Tr

(
∂2V

∂x2
H(x)H ′(x)

))
dt+

∂V

∂x
H(x) dw

for a candidate C2 value function V (x) without verifying the existence of the Itô dif-
ferential. The validity of this correspondence, which is equivalent to the existence of
the Itô differential of V (x(t)), will be justified by a later application of Theorem 2.5.

We now turn, in the next two sections, to the development of a recursive con-
struction procedure for a risk-sensitive controller with a desired guaranteed cost. In
the next section, we first study a typical step in the recursive design, which provides
a technical tool in the construction of a cost bounding controller for the full-order
system.

3. Recursive design. In this section, we present a systematic recursive de-
sign methodology for constructing a guaranteed cost controller for the risk-sensitive
stochastic control problem.

Consider the following two-level problem:

dη = (f1(η) + g1(η)ξ) dt+H1(η) dw,(3.1a)

dξ = (f2(η, ξ) + v) dt+H2(η, ξ) dw,(3.1b)

where η is of dimension n1 > 0, and ξ is a scalar. The exogenous disturbance process
w is as defined in section 2. The scalar v is the control variable for this two-level
system. All nonlinear functions involved are assumed to be smooth.

Suppose that the control design for the η system has been completed with ξ as
the control input, and the first component of η as the output y. Further assume that
this design has resulted in a smooth positive definite and radially unbounded value
function V1(η) and a smooth control law α1(η) (for ξ) when the running cost in (2.4)
has an additional additive nonnegative term q1(η). Let a guaranteed time-average
cost level be R1 ≥ 0, which can be picked as zero if H1(0) = 0, and positive (but
arbitrarily close to zero) otherwise. Further suppose that the following four induction
hypotheses hold.
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1. The equilibrium condition α1(0) = 0.
2. If ξ = α1(η), the value function V1 for this system satisfies the HJB inequality

∂V1

∂η
(f1(η) + g1(η)α1(η)) +

θ

4

∂V1

∂η
H1(η)H ′1(η)

(
∂V1

∂η

)′
+ y2 + q1(η)(3.2)

+
1

2
Tr

(
∂2V1

∂η2
H1(η)H ′1(η)

)
=: ∆1(η) ≤ R1

3. The weighting function q1(η) is smooth and positive definite, and there exist
constants c1 > 0, c2 > 0, c3 > 0, and c4 > 0, such that

q1(η) ≥ c1η′η ∀|η| ≤ c2(3.3)

and

V1(η) ≤ c3 q1(η) + c4 ∀η ∈ Rn1 .(3.4)

4. When H1(0) = 0, the value function V1 and control law α1 can be chosen in
such a way to make the long-term average cost zero (i.e., R1 = 0).

These hypotheses lead to the conclusion that the η system admits a guaranteed
risk-sensitive cost R1 with risk-sensitivity parameter θ, i.e.,

lim sup
tf→∞

2

θtf
ln

{
E

{
exp

[
θ

2

(∫ tf

0

(y2(t) + q1(η(t))) dt

)]}}
≤ R1

and is stochastically bounded, if we can set ξ = α1(η). When H1(0) = 0, the guaran-
teed cost R1 is identically zero. In this case, the closed-loop system is asymptotically
stable in the large.

Among the conditions above, we stress the importance of the quadratic growth
condition on the function q1 of the induction hypothesis 3. This growth condition is
crucial for the function q1 to bound the quadratic variation term that results from
the ξ subsystem when R2 is identically zero. This point will be elucidated shortly.

In the design of the control law α1 and the value function V1, we have taken ξ
as a control input. In reality, ξ is the state of an SDE driven by the control input
v. Hence, to complete the design process, we next consider the control design for the
entire (η, ξ) system, based on the knowledge of the control design for the η subsystem
just completed. Our objective for the design of the (η, ξ) system is to achieve the
time-average cost bound

lim sup
tf→∞

2

θtf
ln

{
E

{
exp

[
θ

2

(∫ tf

0

(y2 + (1− λ)q1(η) + q2(η, ξ)) dt

)]}}
≤ R1 +R2

and ensure stochastic boundedness of the closed-loop system, where the constant
λ ∈ (0, 1) is a design constant. In the above, q2 is another arbitrary nonnegative
functional chosen by the control designer, and R2 is a nonnegative constant, reflecting
the design specification. Note further that q1(η) has been rescaled by a factor of 1−λ.
When H1(0) = 0 and H2(0, 0) = 0, we take R2 to be zero, which reflects our desire to
guarantee an asymptotically stable (in the sense of Definition 2.3) closed-loop system
for this special case. Otherwise, R2 is taken to be positive.

To obtain a controller for the composite system, we consider the state transfor-
mation

z := ξ − α1(η),(3.5)
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where z represents the deviation of the random process ξ from its desired trajectory
α1(η).

Let us now introduce a convention that is adopted for the rest of this section.
Any function symbol marked with an overbar will denote a function defined in terms
of the transformed state variables (η′, z)′, such as ā denoting the equivalent form of
function a (of (η′, ξ)′) in terms of transformed state variables, (η′, z)′.

In terms of this transformed state variable, we can rewrite the SDE (3.1) as
follows:

dη = (f1 + g1α1 + g1z) dt+H1 dw

dz =

(
f2 + v − ∂α1

∂η
(f1 + g1α1 + g1z)− 1

2
Tr

(
∂2α1

∂η2
H1H

′
1

))
dt

+

(
H2 − ∂α1

∂η
H1

)
dw.

We introduce the following terms:

ā2(η, z) := f2 − ∂α1

∂η
(f1 + g1α1 + g1z)− 1

2
Tr

(
∂2α1

∂η2
H1H

′
1

)
,

d̄2(η, z) := H2 − ∂α1

∂η
H1.

We note here that the function ā2 includes the quadratic variation of α1 and does not
vanish at η = 0, in general. Since d̄2 is a smooth (nonlinear) function of (η, z), we
can rewrite it as follows, where d̄22 is also smooth:

d̄2(η, z) =: d̄21(η) + zd̄22(η, z).

Using the preceding notation, we have

dz = (ā2 + v) dt+ (d̄21 + zd̄22) dw.

Consider the following smooth function V2(η, ξ) as a candidate value function for
the (η, ξ) system:

V̄2(η, z) := V1(η) + Ξ(η)z2,(3.6)

where Ξ is some positive smooth function yet to be determined. In forming the value
function V2, we have added to the previous value function V1 the term Ξz2, instead
of a simple z2. This is motivated by the fact that the quadratic variation term of
the difference V2 − V1 does not in general vanish at z = 0. To guarantee the desired
long-term average performance, we have to introduce the Ξ function into the design,
as will be clear shortly.

Using Itô’s rule, the random process V̄2(η(t), z(t)) satisfies the following SDE: 3

dV̄2(η(t), z(t)) = dV1(η(t)) +

 z2

(
∂Ξ

∂η

)′
2zΞ

′ [ (f1 + g1α1 + g1z) dt+H1 dw
(ā2 + v) dt+ (d̄21 + zd̄22) dw

]

+
1

2
Tr


 z2 ∂

2Ξ

∂η2
2z

(
∂Ξ

∂η

)′
2z
∂Ξ

∂η
2Ξ

[ H1

d̄21 + zd̄22

] [
H1

d̄21 + zd̄22

]′ dt

3All these differentials exist, as the explicit construction of V1, V̄2, . . . will reveal.
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Since the differential for V1(η(t)) is

dV1(η(t)) = −
(
θ

4

∂V1

∂η
H1H

′
1

(
∂V1

∂η

)′
+ y2 + q1 − ∂V1

∂η
g1z −∆1

)
dt

+
∂V1

∂η
H1 dw,

we further have

dV̄2(η(t), z(t)) = −y2 dt− q1 dt+ σ̄2 dw − θ

4

∂V1

∂η
H1H

′
1

∂V1

∂η

′
dt+

∂V1

∂η
g1z dt(3.7)

+∆1 dt+

 z2

(
∂Ξ

∂η

)′
2zΞ

′ [ f1 + g1α1 + g1z
ā2 + v

]
dt

+
1

2
Tr


 z2 ∂

2Ξ

∂η2
2z

(
∂Ξ

∂η

)′
2z
∂Ξ

∂η
2Ξ

[ H1H
′
1 H1d̄

′
2

d̄2H
′
1 (d̄21 + zd̄22)(d̄21 + zd̄22)′

] dt,

where

σ̄2(η, z) :=

[
∂V̄2

∂η

∂V̄2

∂z

] [
H1

d̄2

]
≡ ∂V1

∂η
H1 +

 z2

(
∂Ξ

∂η

)′
2zΞ

′ [ H1

d̄2

]
.

We seek a control law α2 such that V̄2 satisfies the following HJB inequality:
∂V2

∂η
∂V2

∂ξ


′ [

f1(η) + g1(η)ξ
f2(η, ξ) + α2(η, ξ)

]
+ y2 + (1− λ)q1(η) + q2(η, ξ)(3.8)

+
θ

4


∂V2

∂η
∂V2

∂ξ


′ [

H1(η)
H2(η, ξ)

] [
H1(η)
H2(η, ξ)

]′ 
∂V2

∂η
∂V2

∂ξ



+
1

2
Tr




∂2V2

∂η2

∂2V2

∂η∂ξ
∂2V2

∂η∂ξ

∂2V2

∂ξ2

[ H1(η)
H2(η, ξ)

] [
H1(η)
H2(η, ξ)

]′ ≤ R1 +R2

for some nonnegative function q2, by making use of the equivalence given in Proposi-
tion 2.6. To this end, we add and subtract θ

4 σ̄2(η, z)σ̄′2(η, z) dt and β̄(η, z)z2 dt to the
right-hand side of (3.7). This yields

dV̄2(η(t), z(t)) = −y2 dt− q1 dt− β̄z2 dt+ σ̄2 dw − θ

4
σ̄2σ̄

′
2 dt+ ∆1 dt

+β̄z2 dt+
θ

4
σ̄2σ̄

′
2 dt+

∂V1

∂η
g1z dt− θ

4

∂V1

∂η
H1H

′
1

∂V1

∂η

′
dt

+

 z2

(
∂Ξ

∂η

)′
2zΞ

′ [ f1 + g1α1 + g1z
ā2 + v

]
dt
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+
1

2
Tr


 z2 ∂

2Ξ

∂η2
2z

(
∂Ξ

∂η

)′
2z
∂Ξ

∂η
2Ξ

[ H1H
′
1 H1d̄

′
2

d̄2H
′
1 (d̄21 + zd̄22)(d̄21 + zd̄22)′

] dt,

where the function β̄(η, z) is to be determined shortly.
By multiplying out various terms above, we arrive at

dV̄2(η(t), z(t)) = −y2 dt− q1 dt+ σ̄2 dw − θ

4
σ̄2σ̄

′
2 dt+ ∆1 dt− β̄z2 dt

+β̄z2 dt+
θ

4

 z2

(
∂Ξ

∂η

)′
2zΞ

′ [ H1

d̄2

]
H ′1

(
∂V1

∂η

)′
dt

+
θ

4

∂V1

∂η
H1

[
H1

d̄2

]′  z2

(
∂Ξ

∂η

)′
2zΞ

 dt+
∂V1

∂η
g1z dt

+
θ

4

 z2

(
∂Ξ

∂η

)′
2zΞ

′ [ H ′1
d̄2

] [
H ′1
d̄2

]′  z2

(
∂Ξ

∂η

)′
2zΞ

 dt
+

 z2

(
∂Ξ

∂η

)′
2zΞ

′ [ f1 + g1α1 + g1z
ā2 + v

]
dt+

1

2
Tr

(
z2 ∂

2Ξ

∂η2
H ′1H1

)

+
1

2
Tr

(
4z

(
∂Ξ

∂η

)′
d̄2H1 + 2Ξ(zd̄21d̄

′
22 + zd̄22d̄

′
21 + z2d̄22d̄

′
22)

)
dt

+Ξd̄21d̄
′
21 dt.

In the above SDE, we can select the control to cancel out all terms except those on
the first and last lines. The control law that accomplishes this is the following:

ᾱ2b(η, z) = − 1

2Ξ

β̄z +
θ

4

 z

(
∂Ξ

∂η

)′
2Ξ

′ [ H1

d̄2

]
H ′1

(
∂V1

∂η

)′
(3.9)

+
θ

4

∂V1

∂η
H1

[
H1

d̄2

]′  z

(
∂Ξ

∂η

)′
2Ξ

+
∂V1

∂η
g1

+
θ

4

 z

(
∂Ξ

∂η

)′
2Ξ

′ [ H1

d̄2

] [
H1

d̄2

]′  z2

(
∂Ξ

∂η

)′
2zΞ


+

 z

(
∂Ξ

∂η

)′
2Ξ

′ [ f1 + g1α1 + g1z
ā2

]

+
1

2
Tr

(
z
∂2Ξ

∂η2
H1H

′
1 + 4

(
∂Ξ

∂η

)′
d̄2H

′
1 + 2Ξ(d̄21d̄

′
22 + d̄22d̄

′
21 + zd̄22d̄

′
22)

) .
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Even though this controller leads to a guaranteed risk-sensitive cost design, in
general it fails to preserve the equilibrium at (η, ξ) = (0, 0), except for the case when
H1(0) = 0 and H2(0, 0) = 0. To preserve the equilibrium at the origin, we remove the
bias term from (3.9) to arrive at the modified controller

v = ᾱ2(η, z) := ᾱ2b(η, z)− Ξ(0)

Ξ(η)
ᾱ2b(0, 0),(3.10)

which, by its construction, preserves the equilibrium at (η, ξ) = (0, 0).
Using this control law, the differential of V̄2 becomes

dV̄2(η(t), z(t)) = −y2 dt− q1 dt+ σ̄2 dw − θ

4
σ̄2σ̄

′
2 dt+ ∆1 dt− β̄z2 dt

+Ξd̄21d̄
′
21 dt+ 2zΞ(0)ᾱ2b(0, 0) dt,

where the last term is due to the removal of the constant bias in the controller.
To establish the desired HJB inequality (3.8), we will first pick the function Ξ and

then β in the following steps. The function d̄21(η) is further decomposed into constant
and η-dependent parts:

d̄21c := d̄21(0),

d̄21v(η) := d̄21(η)− d̄21c.

We choose Ξ such that for any positive R2 and ∀η ∈ Rn1 ,

Ξ(η)d̄21(η)d̄′21(η) ≤ R2

2
+ λq1(η),(3.11)

and furthermore,

Ξ(η)d̄21v(η)d̄′21v(η) ≤ λq1(η).(3.12)

One possible choice of the function Ξ can be made in the following two steps. For the
first step, we will select a function Ξ1 such that the inequality (3.12) is satisfied with
Ξ1 instead of Ξ. Since d̄21v(η) is a smooth function that vanishes at η = 0, it can be
written as

d̄21v(η) = η′D̄21v(η),

where D̄21v is a smooth matrix-valued function of appropriate dimension. Let λM =
λmax(D̄21v(0)D̄′21v(0)), where λmax(M) denotes the maximum eigenvalue of a sym-
metric matrix M . Note that the following function is smooth:

χ1(η) =
λq1(η)

1 + d̄21v(η)d̄′21v(η)
.

Then, by the smoothness of D̄21v, there exists a constant c5 ∈ (0, c2] such that

λc1η
′η

(0.5 + λM )η′η
− χ1(η) ≥ λc1

1 + λM
∀ 0 < |η| ≤ c5

and

d̄21v(η)d̄′21v(η) = η′D̄21v(η)D̄′21v(η)η ≤ (0.5 + λM )η′η ∀ |η| ≤ c5.
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We define the following function:

χ2(η) =

 exp

(
η′η

η′η − c25

)
, |η| < c5,

0, |η| ≥ c5,
which is clearly smooth. Then, Ξ1 can be chosen as

Ξ1(η), =
λc1

1 + λM
χ2(η) + χ1(η).(3.13)

Ξ1 is smooth and

Ξ1(η)d̄21v(η)d̄′21v(η) ≤
(

λc1
1 + λM

+ χ1(η)

)
d̄21v(η)d̄′21v(η)

≤ λc1η′η d̄21v(η)d̄′21v(η)

(0.5 + λM )η′η
≤ λq1(η) ∀0 < |η| < c5

and

Ξ1(η)d̄21v(η)d̄′21v(η) ≤ χ1(η)d̄21v(η)d̄′21v(η) ≤ λq1(η) ∀|η| ≥ c5.
Furthermore, Ξ1(η) > 0, ∀η ∈ Rn1 . Therefore, we have

Ξ1(η)d̄21v(η)d̄′21v(η) ≤ λq1(η) ∀η ∈ Rn1 .

For the second step, we will select the function Ξ based on Ξ1 derived above. Let
C > 0 be a constant such that

C

(
d̄21cd̄

′
21c +

√
d̄21cd̄′21c

)
≤ R2

2
.

Given the above choice of the function Ξ1, we can then select the function Ξ as

Ξ(η) =
CΞ1(η)√

Ξ2
1(η) + C2

(
1 +

√
d̄21cd̄′21c

)2
.(3.14)

It is clear that Ξ is smooth, and it satisfies the inequalities (3.11) and (3.12) since

Ξ(η) <
Ξ1(η)

1 +
√
d̄21cd̄′21c

, Ξ(η) < C, Ξ(η) > 0 ∀η ∈ Rn1 ,

d̄21(η)d̄′21(η) = d̄21cd̄
′
21c + 2d̄21cd̄

′
21v(η) + d̄21v(η)d̄′21v(η)

≤ d̄21cd̄
′
21c +

d̄21cd̄
′
21c√

d̄21cd̄′21c

+ d̄21v(η)d̄′21v(η)
√
d̄21cd̄′21c + d̄21v(η)d̄′21v(η),

Ξ(η)d̄21(η)d̄′21(η) ≤ Ξ(η)

(
d̄21cd̄

′
21c +

√
d̄21cd̄′21c

)
+Ξ(η)d̄21v(η)d̄′21v(η),

(
1 +

√
d̄21cd̄′21c

)
<
R2

2
+ λq1(η) ∀η ∈ Rn1 .

After fixing the choice of the function Ξ, we next choose the positive function β
to be

β̄(η, z) =
2Ξ2(0)ᾱ2

2b(0, 0)

R2
+ β̄a(η, z),(3.15)

β̄a(η, z) ≥ c6Ξ(η) + c7,(3.16)
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where c6 > 0 and c7 > 0 are positive constants. Then, we have

2zΞ(0)ᾱ2b(0, 0) ≤ R2

2
+ β̄(η, z)z2 − β̄a(η, z)z2.(3.17)

As a result of these steps,

dV̄2(η(t), z(t)) = −y2 dt− q1 dt+ σ̄2 dw − θ

4
σ̄2σ̄

′
2 dt+ ∆1 dt− β̄z2 dt

+Ξd̄21d̄
′
21 dt+ 2Ξ(0)ᾱ2b(0, 0)z dt

=: −y2 dt− (1− λ)q1 dt− q2 dt+ σ̄2 dw − θ

4
σ̄2σ̄

′
2 dt+ ∆1 dt+R2 dt,

where q2 is defined by

q̄2(η, z) := λq1(η) + β̄(η, z)z2 +R2 − Ξ(η)d̄21(η)d̄′21(η)− 2Ξ(0)ᾱ2b(0, 0)z

≥ β̄a(η, z)z2.

By Proposition 2.6, we conclude that the function V2 satisfies the HJB inequality
(3.8).

Remark 3.1. Consider the special case H1(0) = 0 and H2(0, 0) = 0. In this case,
d̄21c = 0. Therefore, any choice of the function Ξ that satisfies the inequality (3.12)
satisfies the inequality (3.11) with R2 = 0. Fix such a choice of Ξ. In this special case,
we observe that ᾱ2b(0, 0) = 0. This implies that the choice for the function β̄

β̄(η, z) = β̄a(η, z)(3.18)

leads to satisfaction of the inequality (3.17) with R2 = 0. Hence, in this special case,
the above choices of functions Ξ and β̄ lead to a controller design with R2 = 0.0

We next check the satisfaction of the control law α2 and value function V2 with
respect to the four induction hypotheses made at the beginning of this section.

1. The control law (3.10) is smooth and meets the equilibrium condition α2(0, 0) =
0 by construction.

2. The function V2 is smooth and satisfies the HJB inequality (3.8).
3. The inequality

(1− λ)q1(η) + q2(η, ξ) ≥ (1− λ)c1η
′η + c7z

2 ≥ c′1
∣∣∣∣[ η

ξ

]∣∣∣∣2 ∀
∣∣∣∣[ η

ξ

]∣∣∣∣ ≤ c′2(3.19)

holds for some constants c′1 > 0 and c′2 > 0, and the left-hand side is a smooth
function. We also have the following inequality:

V̄2(η, z) ≤ c3q1(η) + c4 + β̄a(η, z)z2 ≤ c′3((1− λ)q1(η) + q2(η, z)) + c4,(3.20)

which holds ∀(η, z) ∈ Rn1+1, for some c′3 > 0, because of (3.16).
4. In the special case of H1(0) = 0 and H2(0, 0) = 0, by the induction hypothe-

sis, there exist a control law α1 and a corresponding value function V1 to guarantee a
desired long-term average cost R1 = 0 for the η dynamics. By Remark 3.1, we have
found the design to yield R2 = 0. Hence the pair α2 and V2 are smooth and guarantee
a zero long-term average cost (i.e., R1 +R2 = 0) for the two-level problem (3.1). Fur-
thermore, the guaranteed incremental cost function for the two-level problem (3.1) is
the smooth function (1− λ)q1 + q2.
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Hence, the control law α2 and value function V2 meet all four induction hypothe-
ses.

This completes the guaranteed cost design for this two-level problem. We sum-
marize these findings in the following lemma.

Lemma 3.1. Consider the SDE equation (3.1), and assume the following.
(i) Given an arbitrary R1 > 0, there exists a smooth positive definite and radi-

ally unbounded value function V1(η) and a smooth fictitious control law α1(η) (for ξ),
such that V1 satisfies the HJB inequality (3.2), as well as the bounds (3.3) and (3.4)
with a smooth incremental cost function q1(η), and α1(0) = 0.

(ii) When H1(0) = 0, the guaranteed long-term average cost level R1 can be
chosen to be 0.

Then, the following statements hold.
1. There exist a smooth value function V2(η, ξ) and a smooth control law α2(η, ξ)

as given by (3.6) and (3.10), respectively, where the former satisfies the HJB inequality
(3.8) with the additional positive constant R2.

2. The weighting function (1−λ)q1(η) + q2(η, ξ) satisfies the bounds (3.19) and
(3.20), and is smooth.

3. The control law v = α2(η, ξ) has the property α2(0, 0) = 0, and under it the
closed-loop system trajectory is bounded in probability.

4. If H1(0) = 0 and H2(0, 0) = 0, the constant R1 + R2 can be chosen as zero,
which further implies that the closed-loop system is asymptotically stable in the large.

4. Controller design for the full-order system. By using the backstepping
Lemma 3.1 that we have just derived, we can design a feedback controller that leads
to a guaranteed risk-sensitive cost Rc, for an arbitrary positive Rc and risk-sensitivity
parameter θ. The design follows n steps of integrator backstepping. As suggested by
Lemma 3.1, at each step of the backstepping one has to accommodate some positive
quadratic variation intrinsic to that particular step. Accordingly, we first split the
desired risk-sensitive cost Rc into n pieces, each of which is positive. When h1(0) =
· · · = hn(0, . . . , 0) = 0, the control design can actually guarantee a zero long-term
average, i.e., Rc = 0. Let

Rc = R1 + · · ·+Rn,

where Ri > 0, i = 1, . . . , n. The controller design follows n steps of integrator
backstepping, as elucidated below:

Step 1: Here, we are dealing with a scalar system:

dx1 = (f1(x1) + x2) dt+ h′1(x1) dw.

The controller to be designed is to guarantee a risk-sensitive cost R1.
For this purpose, we select the value function V1 as

V1(x1) =
1

1 + 2h′1ch1c/R1
x2

1 =: Ξ1x
2
1,

where h1c is the constant part of the function h1:

h1(x1) = h1c + h1v(x1)x1.

Then, using Itô’s rule for V1(x1(t)), we obtain the following relationship:

dV1(x1(t)) = 2Ξ1x1(f1(x1) + x2) dt+ 2Ξ1x1h
′
1(x1) dw + Tr(Ξ1h

′
1(x1)h1(x1)) dt.
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Choose the virtual control input to cancel out all the terms that involve a multiplier
of x1:

α1b(x1) = − 1

2Ξ1
x1 − 1

2Ξ1
βx1 − f1(x1)− θΞ1

2
h′1(x1)h1(x1)x1

−1

2
h′1v(x1)h1v(x1)x1 − h′1ch1v(x1),

where β is a constant to be chosen later.
To preserve the equilibrium at the origin, we define the control law as follows:

x2 = α1b(x1)− α1b(0) =: α1(x1),(4.1)

This choice of the virtual control input leads to

dV1(x1(t)) = 2Ξ1x1h
′
1 dw − (x2

1 + βx2
1 + θΞ2

1h
′
1h1x

2
1 + Ξ1h

′
1ch1c + 2Ξ1α1b(0)x1) dt.

Choose

β =
4Ξ2

1α
2
1b(0)

R1
+ c2,

where c2 > 0. Then, V1 satisfies the HJB inequality (2.11) for the x1 subsystem under
α1 with guaranteed cost R1:

∂V1

∂x1
(f1 + α1) +

θ

4

∂V1

∂x1
h′1h1

(
∂V1

∂x1

)′
+ x2

1 +
1

2
βx2

1 +
1

2
Tr

(
∂2V1

∂x2
1

h1h
′
1

)
≤ R1.

It is easy to check to see that all four induction hypotheses are satisfied. This
completes the first step of the integrator backstepping.

For Steps 2, 3, etc., we can repeatedly apply the backstepping lemma, Lemma
3.1. At a typical step i, we can design the risk-sensitive controller with the increase
in the long-term average cost bounded by Ri. We then continue this process until the
second to last step n− 1, where we design the virtual control input

xn = αn−1(x1, . . . , xn−1).

At Step n, we let v = bu, and use the construction of Lemma 3.1 to lead to a smooth
control law:

v = αn(x1, . . . , xn).

Under the working assumption, A1, we finally obtain

u =
1

b(x1, . . . , xn)
αn(x1, . . . , xn).(4.2)

This completes the construction of a risk-sensitive controller, guaranteeing any
desired level of positive long-term average cost. This construction is now made precise
in the following theorem.

Theorem 4.1. Consider the strict-feedback stochastic nonlinear system described
by the SDE (2.1), satisfying Assumption A1. For any risk-sensitivity parameter θ > 0
and any desired long-term average cost level Rc > 0, there exists a smooth nonlinear
feedback control (4.2) that achieves the level Rc. Such a controller can be constructed
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using the integrator backstepping procedure and by a repeated application of Lemma
3.1. The resulting closed-loop system trajectory is bounded in probability.

If the functions hi, i = 1, . . . , n, vanish at x = 0, then the controller (4.2) achieves
a zero long-term average cost for the SDE (2.1). In this case, the closed-loop system
is asymptotically stable in the large, in addition to being bounded in probability.

Proof. The result is an immediate application of Theorem 2.5, in view of the
backstepping construction outlined above. Since the existence (and construction) of
function V satisfying the HJB inequality is implied by the construction presented
before the statement of the theorem, the boundedness in probability follows immedi-
ately.

When hi vanishes at x = 0, the construction implies that the constant Rc can
be chosen to be zero, by Remark 3.1. Since the weighting function is chosen to be
positive definite, by Theorem 2.5 the system is asymptotically stable in the large, in
addition to being bounded in probability.

5. Two special cases. In this section, we discuss some implications of the re-
sults presented above as the design parameters approach specific limits. In particular,
we are interested in two types of limiting processes. The first is known as the risk-
neutral limit, with θ ↓ 0. The other process is known as the large deviation limit,
where the noise intensity decreases to zero.

5.1. Risk-neutral case. If θ ↓ 0, the limiting problem is the one with a risk-
neutral cost function:

J0(µ) = lim sup
tf→∞

1

tf
E

{∫ tf

0

(y2(t) + l(x(t))) dt

}
≤ Rc,(5.1)

where Rc is again the desired long-term average cost bound.
The control design procedure presented in the previous two sections equally ap-

plies here, leading to a controller

u = µ(x)

and a value function V (x) such that

∂V

∂x
fu(x) +

1

2
Tr

(
∂2V

∂x2
H(x)H ′(x)

)
+ y2 + l(x) = ∆(x) ≤ Rc,(5.2)

where

fu(x) =


f1(x1) + x2

...
fn−1(x1, . . . , xn−1) + xn

fn(x1, . . . , xn) + b(x1, . . . , xn)µ(x)

 H(x) =

 h′1(x1)
...

h′n(x1, . . . , xn)

 .
This inequality immediately implies that the long-term average cost for the risk-
neutral cost function (5.1) is bounded by Rc.

Therefore, we have the following corollary to Theorem 4.1.
Corollary 5.1. Consider the strict-feedback stochastic nonlinear system (2.1)

satisfying Assumption A1, along with the risk-neutral cost function (5.1). For any
desired long-term average cost level Rc > 0, there exists a corresponding smooth non-
linear feedback control that guarantees it. Such a controller can be constructed using
the integrator backstepping procedure presented in the previous two sections with the
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risk-sensitivity parameter set at θ = 0.The resulting closed-loop system trajectories
are bounded in probability.

If the functions hi, i = 1, . . . , n, vanish at x = 0, then the controller µ can be
chosen to guarantee Rc = 0. In this case, the closed-loop system is asymptotically
stable in the large, in addition to being bounded in probability.

5.2. Large deviation limit. Another limiting scenario is that in which the noise
intensity in the system dynamics asymptotically vanishes at the rate of ε, for some
small positive parameter ε, while the cost function heavily penalizes any deviation of
the output from zero at the rate of 1/ε. Letting θ = 1

γ2ε2 , for some positive design

parameter γ (whose role and significance will become clear shortly), we now have the
following problem formulation:

dx1 = (x2 + f1(x1)) dt+ εh̃′1(x1) dw,(5.3a)

...
...

dxn−1 = (xn + fn−1(x1, . . . , xn−1)) dt+ εh̃′n−1(x1, . . . , xn−1) dw,(5.3b)

dxn = (fn(x1, . . . , xn) + b(x1, . . . , xn)u) dt+ εh̃′n(x1, . . . , xn) dw,(5.3c)

y = x1,(5.3d)

Jθ(µ) = lim sup
tf→∞

2

θtf
ln

{
E

{
exp

[
θ

2

(∫ tf

0

(y2 + l(x(t))) dt

)]}}
≤ Rc.(5.4)

It is a well-known fact in the risk-sensitive optimal control literature (see [1] or
[25]) that the large deviation limit, as ε→ 0, of the optimal risk-sensitive controller for
this problem leads exactly to the H∞ central controller with disturbance attenuation
parameter γ, provided that the solution to either one exists. For the problem at hand,
the corresponding H∞ control problem involves the state dynamics

ẋ1 = x2 + f1(x1) + h̃′1(x1)w,(5.5a)

...
...

ẋn−1 = xn + fn−1(x1, . . . , xn−1) + h̃′n−1(x1, . . . , xn−1)w,(5.5b)

ẋn = fn(x1, . . . , xn) + b(x1, . . . , xn)u+ h̃′n(x1, . . . , xn)w,(5.5c)

y = x1(5.5d)

and the following worst-case (game) cost function:

Jγ(µ, ν) =

∫ ∞
0

(y2(t) + l(x(t))− γ2|w(t)|2) dt,(5.6)

where w is generated by some opponent through w(t) = ν(t, x(t)).
This is precisely the problem that was addressed in [23]. The interesting question

to ask here is whether the backstepping construction of risk-sensitive controllers for
(5.3), (5.4), also converges to the backstepping construction for the H∞ controller for
(5.5), (5.6) presented in [23]. Since both the design procedures presented here and
the ones in [23] are suboptimal schemes, the convergence cannot be guaranteed by
the well-established large deviation limit for risk-sensitive optimal control problems.

It turns out that the answer to this question is still yes. We examine again the
single-stage backstepping design presented in section 3. The difference between the
recursive construction presented in [23] and that of this paper is as follows. First of
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all, the choice of Ξ is solely determined by the inequalities (3.11) and (3.12). For any
fixed compact set K, Ξ can be chosen to be constant, say 1/2, on this compact set
for sufficiently small ε > 0, such that, ∀η ∈ K,

Tr
(
Ξ(η)d̄21(η)d̄′21(η)

) ≤ 1

ε2

(
R2

2
+ λq1(η)

)
and

Tr
(
Ξ(η)d̄21v(η)d̄′21v(η)

) ≤ λc3η
′η

ε2
.

This compact set expands to the entire state space as ε ↓ 0. On this compact set, the
added value function in this case is exactly the same as that for the H∞ problem.
Consider the controller (3.9); all the terms on the first three lines are exactly the
same as in the controller of the H∞ problem. The function ā2 is within O(ε2) of its
counterpart in the H∞ problem. The terms on the last line are of O(ε2). Therefore,
on this compact set, the risk-sensitive design provides a O(ε2) approximation to the
H∞ solution.

Hence, we can state the following remark to capture our observation.
Remark 5.1. Consider the strict-feedback stochastic nonlinear system (5.3) sat-

isfying Assumption A1 with the risk-sensitive cost function (5.4). For any desired
long-term average cost level Rc > 0, there exists a corresponding nonlinear feedback
control that guarantees it. Such a controller approximates the backstepping controller
for the nonlinear H∞ control problem [23] up to O(ε2) on any given compact set
K ⊂ Rn.

6. An extension. We identify and present here an immediate (natural) exten-
sion of the results presented heretofore to a more general class of nonlinear systems,
with nontrivial zero dynamics. Consider the class of nonlinear systems described by
the following SDE:

dφ = f0(φ, x1) dt+H0(φ, x1) dw,(6.1a)

dx1 = (b1(φ, x1)x2 + f1(φ, x1)) dt+ h′1(φ, x1) dw,(6.1b)

...
...

dxn−1 = (bn−1(φ, x1, . . . , xn−1)xn + fn−1(φ, x1, . . . , xn−1)) dt(6.1c)

+h′n−1(φ, x1, . . . , xn−1) dw,

dxn = (fn(φ, x1, . . . , xn) + b(φ, x1, . . . , xn)u) dt+ h′n(φ, x1, . . . , xn) dw,(6.1d)

y = p(φ, x1)(6.1e)

where φ is an n0-dimensional state vector, which can be viewed as the state of the zero
dynamics of the system (see Chapter 9 of [10]). We note that these φ dynamics are
affected only by x1 and not by the remaining components of the state x. Furthermore,
the virtual control input variables x2,. . . , xn are premultiplied by nonlinear functions
b1, . . ., bn−1. For this class of nonlinear stochastic systems, we introduce the following
two assumptions in addition to A1.

Assumption A2. The nonlinear functions f0, H0, bi, and 1/bi are C∞ in all their
arguments, i = 1, . . . , n− 1. The output function p is smooth.

Assumption A3. Given a risk-sensitivity parameter θ0 > 0, there exists a smooth
virtual control law α0(φ), with α0(0) = 0, and a positive definite and radially un-
bounded smooth value function V0(φ), such that the following PDE is satisfied for
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some positive definite function q0(φ):

∂V0

∂φ
f0(φ, α0(φ)) +

θ0

4

∂V0

∂φ
H0(φ, α0(φ))H ′0(φ, α0(φ))

(
∂V0

∂φ

)′
(6.2)

+
1

2
Tr

(
∂2V0

∂φ2
H0(φ, α0(φ))H ′0(φ, α0(φ))

)
+ p2(φ, α0(φ)) + q0(φ) = ∆0(φ) ≤ R0.

Furthermore, q0(φ) is smooth and satisfies the assumptions of induction for the back-
stepping procedure, and the following growth conditions:

q0(φ) ≥ c1φ′φ ∀|φ| ≤ c2(6.3)

and

V0(φ) ≤ c3 q0(φ) + c4 ∀φ ∈ Rn0(6.4)

for some constants c1 > 0, c2 > 0, c3 > 0, and c4 > 0.
We should note that A2 is quite a standard assumption for this class of nonlinear

system, ensuring that the state variables x1, . . . , xn are completely controllable; A3,
on the other hand, is a strong stabilizability condition on the φ dynamics, ensuring
that there is a virtual control law for x1 that guarantees a long-term average value of
R0 for the risk-sensitive cost function

lim sup
tf→∞

2

θ0tf
ln

{
E

{
exp

[
θ0

2

(∫ tf

0

y2(t) dt

)]}}
for a given value of θ0. This is stated as an assumption, because for a given θ0 > 0
there may not exist a control law (for x1) to return an arbitrarily small value for the
risk-sensitive cost function above. This is partly due to the appearance of both φ and
x1 as arguments of p.

Under these assumptions, it is possible to construct recursively a nonlinear feed-
back controller that achieves any given long-term average cost level Rc > R0 for a
given risk-sensitivity parameter θ ≤ θ0. We note that, as stated earlier, we may no
longer be able to achieve an arbitrarily small long-term average cost for arbitrarily
large values of the risk-sensitivity parameter. This performance limitation is solely
due to the presence of the zero dynamics of the system.

This now brings us to the following theorem.
Theorem 6.1. Consider the class of stochastic nonlinear systems described by

SDE (6.1), satisfying Assumptions A1, A2, and A3. For any risk-sensitivity param-
eter θ ≤ θ0 and any desired long-term average cost level Rc > R0, there exists a
nonlinear feedback control law µ, designed using the integrator backstepping procedure
that achieves the level Rc.The resulting closed-loop system trajectory is bounded in
probability.

If R0 = 0 is a feasible choice, and the nonlinear functions H0, hi, i = 1, . . . , n,
all vanish at the origin of the system, then the nonlinear controller constructed with
R0 = 0 achieves a zero long-term average cost for the SDE (6.1). In this case, the
closed-loop system is asymptotically stable in the large, in addition to being bounded
in probability.

Proof. We need only establish the result when n = 1. For the case when n > 1,
the result follows directly from the recursive design procedure described in section 3.
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Consider the following SDE:

dφ = f0(φ, x1) dt+H0(φ, x1) dw

dx1 = (b1(φ, x1)u+ f1(φ, x1)) dt+ h′1(φ, x1) dw(6.5)

y = p(φ, x1) .

We will introduce the variable

v = b1(φ, x1)u

and design a control for v, which, in turn, yields a control law for u, under the working
Assumption A2.

By Assumption A3, the function V0 satisfies the following HJB inequality for any
θ ≤ θ0:

∂V0

∂φ
f0(φ, α0(φ)) +

θ

4

∂V0

∂φ
H0(φ, α0(φ))H0(φ, α0(φ))′

(
∂V0

∂φ

)′
(6.6)

+
1

2
Tr

(
∂2V0

∂φ2
H0(φ, α0(φ))H0(φ, α0(φ))′

)
+ p2(φ, α0(φ)) + q0(φ) = ∆0(φ) ≤ R0.

Given this, we introduce the transformed state variable

z = x1 − α0(φ).

Then, by Itô’s rule of differentiation, we have

dz = (ā1 + v) dt+ d̄1 dw,

where

ā1(φ, z) = f̄1(φ, z)− ∂α0

∂φ
f̄0(φ, z)− 1

2
Tr

(
∂2α0

∂φ2
H̄0(φ, z)H̄ ′0(φ, z)

)
,

d̄1(φ, z) = h̄′1(φ, z)− ∂α0

∂φ
H̄0(φ, z).

Introduce a smooth function V̄1 as a candidate value function

V̄1(φ, z) = V0(φ) + Ξ(φ)z2,(6.7)

where Ξ is a positive smooth function yet to be determined. We again set up the
proper conditions to prove that V̄1 satisfies the desired HJB inequality by using the
equivalent form of Proposition 2.6.

Define the smooth functions f̄01, H̄01, d̄11, and d̄12 as follows:

f0(φ, x1) = f0(φ, α0(φ)) + f̄01(φ, z)z, H0(φ, x1) = H0(φ, α0(φ)) + H̄01(φ, z)z,

d̄11(φ) = d̄1(φ, 0), d̄1(φ, z) = d̄1(φ, 0) + d̄12(φ, z)z.

The Itô differential of V̄1(φ(t), z(t)) is given by

dV̄1(φ(t), z(t)) =

(
∂V0

∂φ
f0(φ, α0(φ)) +

1

2
Tr

(
∂2V0

∂φ2
H0(φ, α0(φ))H ′0(φ, α0(φ))

))
dt

+z(m̄(φ, z) + 2Ξ(φ)v) dt+ σ̄(φ, z) dw + Tr(Ξ(φ)d̄11(φ)d̄′11(φ)) dt,
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where

m̄(φ, z) =
∂V0

∂φ
f̄01 +

1

2
Tr

(
∂2V0

∂φ2
(2H0H̄

′
01 + zH̄01H̄

′
01)

)
+ z

∂Ξ

∂φ
f̄0 + 2Ξā1

+
1

2
Tr

(
z
∂2Ξ

∂φ2
H̄0H̄

′
0 + 4

∂Ξ

∂φ
H̄0d̄

′
1 + 4Ξd̄11d̄

′
12 + 2Ξd̄12d̄

′
12z

)
,

σ̄(φ, z) =
∂V0

∂φ
H0 + zσ̄11,

σ̄11(φ, z) =
∂V0

∂φ
H̄01 + z

∂Ξ

∂φ
H̄0 + 2Ξd̄1.

Using the HJB inequality (6.6), we arrive at the following stochastic differential
inequality:

dV̄1(φ(t), z(t)) =

(
−p2 − q0 + ∆0 − θ

4
σ̄σ̄′
)
dt+ σ̄ dw

+z

(
m̄+

θ

4

(
2
∂V0

∂φ
H0σ̄

′
11 + zσ̄11σ̄

′
11

)
+ 2Ξv

)
dt+ Tr(Ξd̄11d̄

′
11) dt.

We next define a smooth nonlinear function p̄1 by

p(φ, x1) = p(φ, α0(φ)) + p̄1(φ, z)z ,

and introduce the control law

v = ᾱ1(φ, z) = ᾱ1b(φ, z)− Ξ(0)

Ξ(φ)
ᾱ1b(0, 0),(6.8)

where

ᾱ1b(φ, z) =
1

2Ξ

(
−2pp̄1 − p̄2

1z − β̄z − m̄−
θ

4

(
2
∂V0

∂φ
H0σ̄

′
11 + zσ̄11σ̄

′
11

))
and β̄(φ, z) is a positive nonlinear function to be determined shortly.

Under this control law, the Itô differential of V̄1(φ(t), z(t)) satisfies

dV̄1(φ(t), z(t)) =

(
−y2 − q0 − β̄z2 + ∆0 − θ

4
σ̄σ̄′
)
dt+ σ̄ dw + 2zΞ(0)ᾱ1b(0, 0) dt

+Tr(Ξd̄11d̄
′
11) dt.

Now, following a selection process similar to that of section 3 for the functions Ξ
and β̄, we can show that

dV̄1(φ(t), z(t)) ≤
(
−y2 − q1 +R1 − θ

4
σ̄σ̄′
)
dt+ σ̄ dw

for any R1 > R0, and the nonlinear weighting function q1 is smooth and satisfies the
induction assumptions of section 3. This then completes the construction for this first
step of the backstepping procedure.

When n > 1, we can repeatedly apply Lemma 3.1 to construct the nonlinear
cost-bounding controller for the overall system.

This completes the proof of the theorem.
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7. An example. In this section, we illustrate the design procedure presented
in the main body of the paper by a second-order example and compare the resulting
control design with that of [23] and the risk neutral case as θ ↓ 0. The second-order
system is taken as[

dx1

dx2

]
=

[
x2

1 + x2

0

]
dt+

[
0
1

]
u dt+

[
0 1
1 x1

]
dw,(7.1a)

y = x1,(7.1b)

where u is the control input and w is a two-dimensional standard Wiener process. For
this SDE, we will consider two types of cost functions, namely, the risk-sensitive cost
function and the risk-neutral cost function. We will take the risk-sensitivity parameter
θ = 1 and a desired guaranteed long-term average cost of Rc = 4. This corresponds
to the following choice of design criterion for the risk-sensitive case:

Jrs(µ) = lim sup
tf→∞

2

tf
ln

{
E

{
exp

[
1

2

(∫ tf

0

(y2(t) + l(x(t))) dt

)]}}
≤ 4(7.2)

and the following one for the risk-neutral case:

Jrn(µ) = lim sup
tf→∞

1

tf
E

{∫ tf

0

(y2(t) + l(x(t))) dt

}
≤ 4.(7.3)

The corresponding nonlinear H∞-control problem of [23] (see also (5.5) and (5.6)
in subsection 5.2), on the other hand, is described by the following second-order
dynamics: [

ẋ1

ẋ2

]
=

[
x2

1 + x2

0

]
+

[
0
1

]
u+

[
0 1
1 x1

]
w,(7.4a)

y = x1,(7.4b)

where w is to be chosen by some opponent to disrupt the control objective. The
associated (game-theoretic) cost function is

Jrb(µ, ν) =

∫ ∞
0

(y2(t) + l(x(t))− w′(t)w(t)) dt.(7.5)

Here we have picked ε = 1 and γ = 1—a choice that is consistent with the specific
choice θ = 1 for the risk-sensitivity parameter, because of the relationship θ = 1

ε2γ2 .
Carrying out the risk-sensitive backstepping design procedure, we arrive at the

following value function and control law:

Vrs(x) = 0.5x2
1 + 0.0391251

(
x2 + 2.25x1 + x2

1

)2
,(7.6a)

µrs(x) = −4.93429x2 − 19.9442x1 − 7.02849x2
1 − 2.26409x1x2 − 2.66023x3

1(7.6b)

−0.176063x2
1x2 − 0.176063x4

1.

An important observation to make here is that the constant multiplying the second
term in the value function Vrs above is much smaller than that of the first term. This
constant is determined by the bounds (3.11) and (3.12) for the recursive design.

Now, for the risk-neutral case, the counterparts of (7.6a) and (7.6b) are, respec-
tively,

Vrn(x) = 0.5x2
1 + 0.0406138

(
x2 + 2x1 + x2

1

)2
,(7.7a)

µrn(x) = −4.47237x2 − 17.2558x1 − 4.47237x2
1 − 2x1x2 − 2x3

1.(7.7b)
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We observe that the assignment of the constant multipliers in the value function
above is quite similar to that in the risk-sensitive case. The control law, however, is
somewhat different; it does not include the high-order nonlinear terms that are part
of the risk-sensitive design. This result corroborates the earlier statement that the
risk neutral control design does not put weight on the higher (than second) order
moments in the system output. Apart from the missing high-order nonlinear terms,
the control design for this risk-neutral case is quite similar to that of the risk-sensitive
case.

Finally, we design a control law for the worst-case disturbance attenuation prob-
lem (7.4a), (7.4b) and (7.5). In this case the value function and the control law are
given as follows:

Vrb(x) = 0.5x2
1 + 0.5

(
x2 + 1.75x1 + x2

1

)2
,(7.8a)

µrb(x) = −3.26563x2 − 4.52734x1 − 9.35938x2
1 − 2.25x2

1x2 − 4.62500x1x2(7.8b)

−8.56250x3
1 − 2.25x4

1.

We observe that both the value function and the controller are quite different from
their counterparts in the risk-sensitive and risk-neutral cases. Here, the gains of the
linear control terms are relatively small compared with those of their stochastic coun-
terparts, yet the gains on high-order nonlinear terms are significantly larger than those
of the stochastic controllers.

The mesh plots of the value functions and the control laws for the three designs are
depicted in Figures 7.1–7.3. Comparing these figures, we observe that both stochastic
designs lead to smaller value functions than the worst-case design. The stochastic
control laws are much softer than the worst-case control laws. In particular, in the
region of the state space x1 < 0, the stochastic control laws are much softer than the
worst-case (nonlinear H∞) control law.

We simulated the closed-loop system under these three controllers subject to two
different types of disturbance inputs. The simulations were carried out using the
Matlab Simulink software package. We chose the disturbance inputs to be sampled
Gaussian white noise inputs with a sample rate of 10 Hz. Each of the noise channels
had power 1. The simulation results are plotted in Figures 7.4–7.6. We observe from
these figures that the stochastic control designs lead to smaller system outputs than
the worst-case controller. A simple calculation yields that the L2 norm of the output
for the risk-sensitive control design is the smallest among the three, which is 5.0058.
Second best is the risk-neutral controller, whose output norm is 6.0840. The worst-
case controller yields a norm of 7.0492 for its output. Regarding the control effort, we
observe that the stochastic controllers use more control effort when the system states
are small in norm.Yet the worst-case controller leads to larger peak control actions.A
simple calculation yields that the L2 norms of the stochastic controllers are bounded
by twice the amount of the worst-case controller.

Finally, we simulated the system response under the following sinusoidal distur-
bance inputs:

w1(t) = 8 sin(t), w2(t) = 8 sin(2t+ 1).

We tried various levels for the magnitudes of the sine waves. For smaller-magnitude
sine waves, the stochastic controllers showed better performance than the worst-case
controller. When the magnitudes were fixed at 8, the performances of the two stochas-
tic controllers were very different.These simulation results are plotted in Figures 7.7–
7.9. We observe from these figures that the risk-sensitive controller again leads to the
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Fig. 7.1. Value function and control law for risk-sensitive design.
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Fig. 7.2. Value function and control law for risk-neutral design.



BACKSTEPPING CONTROLLERS FOR STOCHASTIC SYSTEMS 985

−3
−2

−1
0

1
2

3 −10

−5

0

5

10

0

50

100

150

200

250

x1

x2

V
a

lu
e

 f
u

n
ct

io
n

Worst−case design

−3
−2

−1
0

1
2

3 −10

−5

0

5

10

−800

−600

−400

−200

0

x1

x2

C
o

n
tr

o
l l

a
w

Worst−case design

Fig. 7.3. Value function and control law for worst-case design.
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Fig. 7.4. Risk-sensitive controller under white noise input.
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Fig. 7.5. Risk-neutral controller under white noise input.
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Fig. 7.6. Worst-case controller under white noise input.
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Fig. 7.7. Risk-sensitive controller under sinusoidal noise input.
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Fig. 7.8. Risk-neutral controller under sinusoidal noise input.
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Fig. 7.9. Worst-case controller under sinusoidal noise input.
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best overall system performance. A simple calculation yields that the L2 norm of the
output for the risk-sensitive control design is the smallest among the three, which is
107.3. Second best is the worst-case controller, whose output norm is 122.3. The
risk-neutral controller yields a norm of 479.4 for its output. Regarding the control
effort, we observe that the worst-case controller uses the least amount of control effort.
The risk-sensitive controller uses 33% more control effort when measured in L2 norm.
The system performance for the risk-neutral controller is not satisfactory under this
disturbance.

Overall, we observe that the risk-sensitive controller and the worst-case controller
are quite satisfactory for this simple example. The risk-sensitive controller leads to a
smaller output L2 norm in both of the simulations, at the expense of more control
effort. This does not contradict the observation that the risk-sensitive controller has a
smaller controller gain. It is generally observed that the behavior of the state variable
x2 is much better for the worst-case controller. Smaller control gain guarantees a
smaller control effort only if the system states behave the same way.

8. Conclusion. In this paper, we have presented a recursive control design for
strict-feedback stochastic nonlinear systems. Under an exponential (risk-sensitive)
cost function, we have obtained controllers that guarantee any desired positive level
of long-term average cost for a fixed risk-sensitivity parameter. Such an objective was
feasible because (i) no weighting was attached to the control variable, (ii) the system
was in the strict-feedback form, and (iii) there was weighting only on the output of
the system. The construction presented here for the risk-sensitive control problem
differs substantially from that of the H∞ problem [23], which is to be expected since
the equivalence between the two problems holds only as the noise intensity dimin-
ishes to zero. As a special case, the solution to the risk-neutral control problem has
also been obtained by simply taking the limit as the risk-sensitivity parameter ap-
proaches zero. Another special case treated was that in which the vector fields for the
disturbance vanish at the origin of the system; in this case, the control design can
actually guarantee a zero long-term average cost. Furthermore, the closed-loop system
becomes asymptotically stable in the large. These results have then been generalized
to a class of nonlinear systems involving zero dynamics that are strongly stabilizable.
The theoretical findings of the paper have been further illustrated in section 7 on a
second-order nonlinear system.

Future research opportunities on this topic lie in several directions. One of these
pertains to the parameter identification problem under a risk-sensitive performance
criterion, to generalize the results of [2] and [24] to the stochastic case. Another in-
teresting topic is the stochastic adaptive control design for strict-feedback systems, to
achieve a desired risk-sensitive performance level for a given risk-sensitivity parameter;
this would be a generalization of the results of [23] to the stochastic case.

Appendix.
In this appendix, we provide a proof of the fact (see Girsanov [9]) that the stochas-

tic process ζ(t) defined in the proof of Theorem 2.5 is a supermartingale. The precise
statement is as follows.

Theorem A.1. Let w(t) be an m-dimensional vector-valued standard Wiener
process on the time interval [0, tf ] adapted to a filtration F on a probability space
(Ω,F ,P ). Further let a vector-valued stochastic process f : [0, tf ] × Ω → Rm be
adapted to the filtration F .Define the scalar process

ζt0(f) := exp

(∫ t

0

f ′(s) dw − 1

2

∫ t

0

|f(s)|2 ds
)
.
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Then, we have E
(
ζt0(f)

) ≤ 1 ∀t ∈ [0, tf ].
Proof. Let each component of the mapping f be given by

f =
[
f1 · · · fm

]′
.

For each n = 1, 2, . . . , define the function fn : [0, tf ]× Ω→ Rm by

fn =
[

max {min {f1, n},−n} · · · max {min {fm, n},−n} ]′ .
Clearly, we have

lim
n→∞ fn = f almost everywhere.

It is easy to check that

E

(
exp

(
1

2

∫ t

0

|fn(s)|2 ds
))
≤ exp

(
1

2
n2t

)
<∞.

By the result of [21], we have

E
(
ζt0(fn)

)
= 1 ∀ t ∈ [0, tf ]; n = 1, 2, . . . .

By Fatou’s lemma, we have

1 = lim inf
n→∞ E

(
ζt0(fn)

) ≥ E (lim inf
n→∞ ζt0(fn)

)
= E

(
ζt0(f)

)
.

This completes the proof of the theorem.
Next, we present a lemma which is used in the proof of Proposition 2.6.
Lemma A.2. Let w(t) be an m-dimensional vector-valued standard Wiener pro-

cess on the time interval [0, tf ] adapted to a filtration F on a probability space (Ω,F ,P ).
Let x and z be two constant m-dimensional vectors satisfying

x′ dw = z′ dw

for some time instance t0 ≥ 0. Then, x = z.
Proof. Let x, z, and w(t) be given by

x =
[
x1 · · · xm

]′
z =

[
z1 · · · zm

]′
w(t) =

[
w1(t) · · · wm(t)

]′
.

At t0, we have

m∑
i=1

xi dwi(t0) =
m∑
i=1

zi dwi(t0).

For each i = 1, 2, . . . ,m, we multiply both sides of this equation by dwi(t0) and then
take expectations on both sides of the equation. This leads to

xi dt = zi dt, i = 1, 2, . . . ,m ⇒ xi = zi, i = 1, 2, . . . ,m,

from which it follows that x = z. This completes the proof of the lemma.
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[1] T. Başar and P. Bernhard, H∞-Optimal Control and Related Minimax Design Problems: A
Dynamic Game Approach, 2nd ed., Birkhäuser, Boston, MA, 1995.
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[6] R. A. Freeman and P. V. Kokotović, Design of “softer” robust control laws, Automatica J.
IFAC, 29 (1993), pp. 1425–1437.
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trollers for linear systems, IEEE Trans. Automat. Control, 39 (1994), pp. 738–752.

[19] M. Krstić, I. Kanellakopoulos, and P. V. Kokotović, Nonlinear and Adaptive Control
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AVERAGING RESULTS AND THE STUDY OF UNIFORM
ASYMPTOTIC STABILITY OF HOMOGENEOUS DIFFERENTIAL

EQUATIONS THAT ARE NOT FAST TIME-VARYING∗
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Abstract. Within the Liapunov framework, a sufficient condition for uniform asymptotic sta-
bility of ordinary differential equations is proposed. Unlike with classical Liapunov theory, the time
derivative of the V -function, taken along solutions of the system, may have positive and negative
values. It is shown that the proposed condition is useful for the study of uniform asymptotic stability
of homogeneous systems with order τ > 0. In particular, it is established that asymptotic stability
of the averaged homogeneous system implies local uniform asymptotic stability of the original time-
varying homogeneous system. This shows that averaging techniques play a prominent role in the
study of homogeneous—not necessarily fast time-varying—systems.

Key words. nonlinear systems, homogeneous systems, averaging, asymptotic stability

AMS subject classifications. 34, 34D, 34D20, 93D20
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1. Introduction. The classical Liapunov approach to uniform asymptotic sta-
bility of the null solution of a dynamical system ẋ(t) = f(x, t) requires the existence
of a positive definite, decrescent Liapunov function V (x, t) whose derivative along
the solutions of the system is negative definite. When this derivative is negative
semidefinite, stability rather than asymptotic stability follows; in case the differential
equation is autonomous, the Barbashin–Krasovskii theorem or LaSalle’s invariance
principle may be helpful in proving asymptotic stability. Extensions to periodic dif-
ferential equations are possible. For nonperiodic systems, Narendra and Annaswamy
[12] show that with V̇ (x, t) ≤ 0 uniform asymptotic stability can be proven if there
exists a T ∈ R+ such that ∀t : V (x(t+T ), t+T )−V (x(t), t) ≤ −γ(‖x(t)‖) < 0, where
γ(·) is a strictly increasing continuous function on R+ which is zero at the origin
and where x(t + T ) is the solution of the system at t + T with initial condition x(t)
at t. Weaker conditions than the Narendra–Annaswamy conditions also leading to
asymptotic stability have recently been obtained [1, 2, 3, 4]. The present paper and
[3, 4] have been inspired by the result of Narendra–Annaswamy. We claim that in the
asymptotic stability theorem of Narendra–Annaswamy, the negative semidefiniteness
condition on the time-derivative of the V -function can be dispensed with: the null
solution of a differential equation is uniformly asymptotically stable under the condi-
tion that for a positive definite decrescent V (x, t), ∃T > 0, and a strictly increasing
sequence of times t∗k such that V (x(t∗k+1), t∗k+1) − V (x(t∗k), t∗k) ≤ −γ(‖x(t∗k)‖) with
γ(·) : R+ → R+ continuous, strictly increasing and passing through the origin and
t∗k+1 − t∗k ≤ T ∀k ∈ Z and t∗k →∞ as k →∞ and t∗k → −∞ as k → −∞. Compared

to [12], V̇ (x, t) ≤ 0 is no longer required. Compared to [3], the condition on V needs
to be satisfied only for a sequence t∗k, not for all t. Unlike [4], this paper is focused
upon uniform asymptotic stability, not exponential stability.
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In section 2 of this paper, the classical theorem of Liapunov for discrete-time
nonlinear systems is recalled. In section 3, we propose a sufficient condition which
guarantees uniform asymptotic stability of a continuous-time nonlinear system. In
section 4 and section 5, a proposition and a theorem are stated concerning uniform
asymptotic stability of time-varying homogeneous systems ẋ(t) = f(x, αt) (∀α ∈ R+

0 )
with order τ > 0. It is shown that asymptotic stability of the averaged (time-invariant
homogeneous) system guarantees local uniform asymptotic stability of the original
time-varying homogeneous system. For stability results on time-invariant homoge-
neous systems, the reader is referred to [7, 9]. An important—perhaps surprising—
feature of our result is that it is valid independent of α. This shows that averaging
techniques play a prominent role in the study of time-varying—not necessarily fast
time-varying—homogeneous systems of order τ > 0.

As illustrated in section 6 and studied in [11], it is worthwhile mentioning that
the averaging results for homogeneous systems with order τ = 0 are different in the
sense that they are valid only for α sufficiently large.

The region of attraction of the homogeneous system ẋ(t) = f(x, αt) (α ∈ R+
0 )

with order τ > 0 depends on α. This region of attraction increases when α increases
and grows unbounded as α goes to infinity.

2. Theorem of Liapunov for discrete-time systems. Consider the time-
varying discrete-time system

xk+1 = g(xk, k)(1)

with g : Wd × Z→ Rn, Wd open, Wd ⊂ Rn. Let g(0, k) = 0 ∀ k ∈ Z and 0 ∈Wd.
Proposition 1. Consider a function V : Ud × Z → R, with Ud an open neigh-

borhood of 0. We assume the following.
Condition 1. V (x, k) is positive definite and decrescent; i.e., V (0, k) = 0 ∀k

and ∀x ∈ Ud : αV (‖x‖) ≤ V (x, k) ≤ βV (‖x‖). The functions αV (·) : R+ → R+

and βV (·) : R+ → R+ are strictly increasing continuous functions passing through the
origin.

Condition 2. There exists a function γ(·) : R+ → R+, which is continuous,
strictly increasing, and passing through the origin, and an open set U ′d ⊂ Ud ∩Wd,
which contains the origin such that ∀k ∈ Z ∀xk ∈ U ′d \ {0}:

V (xk+1, k + 1)− V (xk, k) ≤ −γ(‖xk‖) < 0,(2)

where xk+1 = g(xk, k).
Then the equilibrium point x = 0 of (1) is locally uniformly asymptotically stable.
Proof. The present proposition is the classical theorem of Liapunov for uniform

asymptotic stability for discrete-time nonlinear time-varying systems. For the proof
of this proposition, the reader is referred to [5, 8].

Remark 1. When the closed ball with radius ν centered at 0, Bν(0) ⊂ U ′d and
xk0
∈ Bν′(0) with ν′ = β−1

V (αV (ν)), then by (2), xk exists and xk ∈ Bν(0) ⊂ U ′d ∀k0

and ∀k ≥ k0. The proof of Proposition 1, which is entirely analogous to the proof of
the Liapunov theorem in the continuous-time case, implies that the open ball with
radius ν′ centered at 0, Bν′(0) belongs to the region of attraction.

3. A sufficient condition for uniform asymptotic stability. In this section,
a sufficient condition for uniform asymptotic stability of a continuous-time system is
proposed. In classical Liapunov theory, the time derivative of the Liapunov function
V along the solutions of the system is required to be negative definite. In the present
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case, the derivative of the V -function may have positive and negative values. The
theorem requires only the existence of a positive definite and decrescent V -function
and a sequence of times t∗k such that the values of this V -function decrease when
evaluated along the solutions at t∗k.

Consider

ẋ(t) = f(x, t)(3)

with f : Wc × R → Rn, Wc open, Wc ⊂ Rn. Let f(0, t) = 0 ∀ t ∈ R and 0 ∈ Wc.
Furthermore we assume that conditions are imposed on (3) such that existence and
uniqueness of its solutions are secured. These conditions are imposed on all the
differential equations mentioned in the present paper, and of these conditions we
single out the local Lipschitz condition. This local Lipschitz condition will be used
in the course of the proof of the propositions and the theorems hereafter: f is locally
Lipschitz, i.e., for ∀x ∈ Wc, ∃ a neighborhood N (x) ⊂ Wc, such that the restriction

f |N (x)×R
not
= f |N (x) is Lipschitz with Lipschitz function lx(t). We assume that lx(t)

is bounded ∀ t ∈ R. We are now ready to state a lemma and Proposition 2.
Lemma 1. Let U ⊂ Wc be an open neighborhood of 0. Consider a closed ball

Bµ(0) ⊂ U ; then ∀ T > 0, ∃µ′ > 0 such that (x0, t0) ∈ Bµ′(0) × R implies that
x(t) ∈ Bµ(0) for t ∈ [t0, t0 + T ]. Here x(t) is the solution of (3) evaluated at t with
initial condition x0 at t0. (The solutions are assumed to exist over the considered
time interval.)

Proof. The proof of the lemma is omitted. It can be found in [3].
Remark 2. The proof of the lemma shows that µ′ = µe−KT is an appropriate

choice of µ′. K is the Lipschitz constant of (3) on Bµ(0) [10, p. 70].
Proposition 2. Consider a function V : U ×R→ R, with U an open neighbor-

hood of 0. We assume that the following additional conditions are satisfied.
1. Condition 1. V (x, t) is positive definite and decrescent; i.e., V (0, t) = 0 ∀t

and ∀x ∈ U : αV (‖x‖) ≤ V (x, t) ≤ βV (‖x‖). The functions αV (·) : R+ → R+ and
βV (·) : R+ → R+ are strictly increasing continuous functions passing through the
origin.

2. Condition 2. There exists an increasing sequence of times t∗k (k ∈ Z) with
t∗k →∞ as k →∞ and t∗k → −∞ as k → −∞, ∃ finite T > 0 : t∗k+1−t∗k ≤ T (∀k ∈ Z);
there exists a function γ(·) : R+ → R+ which is continuous, strictly increasing, and
passing through the origin and an open set U ′ ⊂ U ∩Wc which contains the origin
such that ∀k ∈ Z ∀x(t∗k) ∈ U ′ \ {0}:

V (x(t∗k+1), t∗k+1)− V (x(t∗k), t∗k) ≤ −γ(‖x(t∗k)‖) < 0,(4)

where x(t∗k+1) is the solution of (3) at t∗k+1 with initial condition x(t∗k) at t∗k.
Then the equilibrium point x = 0 of (3) is locally uniformly asymptotically stable.
Proof. By the continuous-time system ẋ = f(x, t) and the sequence t∗k, we define

the discrete-time system xk+1 = g(xk, k) with g(xk, k) = x(t∗k+1) ∀xk ∈ U ′ = Wd.
Here x(t∗k+1) is the solution of (3) at t∗k+1 with initial condition x(t∗k) = xk at t∗k. The
continuous times t∗k are identified with the discrete times k (∀k ∈ Z) and the state
x(t∗k) is equal to xk (∀k ∈ Z).

Uniform asymptotic stability of xk+1 = g(xk, k). Condition 1 and Condition 2 of
Proposition 2 imply that Condition 1 and Condition 2 of Proposition 1 are fulfilled
with Wd = Ud = U ′d = U ′, which implies local uniform asymptotic stability of xk+1 =
g(xk, k).
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We are set to prove local uniform asymptotic stability of (3). First uniform
stability will be established and then uniform convergence will be established.

Uniform stability of ẋ = f(x, t). Consider a closed ball Bε(0) centered at 0 and
radius ε small enough such that Bε (0) ⊂ U ′. Let K be the Lipschitz constant of (3)
on Bε(0). Define ε′ := ε e−KT . Define δ′ := β−1

V (αV (ε′)) and δ′′ := e−KT δ′.
Consider the open ball Bδ′′(0). For all (x(t0), t0) ∈ Bδ′′(0) × R, there exists a

k0 ∈ Z such that t∗k0
− t0 < T . By Lemma 1 and Remark 2 with µ = δ′ and µ′ = δ′′,

one obtains that ∀t ∈ [t0, t
∗
k0

], t− t0 < T which implies that

‖x(t)‖ < δ′ = δ′′eKT < ε ∀t ∈ [t0, t
∗
k0

](5)

and ‖x(t∗k0
)‖ < δ′.

By Proposition 1 and Remark 1 with ν = ε′ and ν′ = δ′, it is clear that ∀n ∈ N:
xk0+n exists and ‖xk0+n‖ < ε′, where xk0+n is the solution of xk+1 = g(xk, k) at
k0 + n with initial condition xk0 = x(t∗k0

) at k0.
For all n ∈ N, xk0+n equals x(t∗k0+n), where x(t∗k0+n) is the solution of (3) at t∗k0+n

with initial condition x(t∗k0
) = xk0

at t∗k0
. This implies that ∀n ∈ N : ‖x(t∗k0+n)‖ =

‖xk0+n‖ < ε′.
Notice that ∀ t ≥ t∗k0

, ∃n ∈ N such that t − t∗k0+n < T . Since ‖x(t∗k0+n)‖ < ε′ =

εe−KT ∀n ∈ N, Lemma 1 and Remark 2 with µ = ε and µ′ = ε′ imply that

‖x(t)‖ < ε ∀ t ≥ t∗k0
.(6)

By (5) and (6), ‖x(t)‖ < ε ∀t ≥ t0 when (x(t0), t0) ∈ Bδ′′(0)× R.
Uniform stability of (3) is established when

∀εc > 0,∃δ(εc) > 0 : ‖x(t0)‖ < δ(εc)⇒ ‖x(t)‖ < εc ∀t, t0 such that t ≥ t0.

If Bεc ⊂ U ′, then take ε = εc. If Bεc(0) 6⊂ U ′, then take ε small enough such that
Bε(0) ⊂ U ′. Simply take δ(εc) = δ′′ = e−KTβ−1

V (αV (εe−KT )).
Uniform convergence of ẋ = f(x, t). We prove the existence of an ε1 > 0 such

that ∀ε2 > 0, there exists a T (ε2) ≥ 0 such that ‖x(t0)‖ < ε1 (t0 arbitrary) implies
‖x(t)‖ < ε2 ∀ t ≥ t0 + T (ε2). Here x(t) is the solution of (3) with initial condition
x(t0) at t0.

Take ε small enough such that Bε(0) ⊂ U ′. Let K be the Lipschitz constant of
(3) on Bε(0). Take ε1 = e−KTβ−1

V (αV (εe−KT )). For all (x(t0), t0) ∈ Bε1(0)×R, there
exists a k0 ∈ Z such that t∗k0

− t0 < T . Since ‖x(t0)‖ < ε1, by Lemma 1 and Remark 2

with µ = ε1e
KT and µ′ = ε1, one obtains that

‖x(t∗k0
)‖ < ε1e

KT = β−1
V (αV (εe−KT )).(7)

Take ε1d := β−1
V (αV (ε)). By the convergence property of xk+1 = g(xk, k), Proposi-

tion 1 and Remark 1 with ν = ε and ν′ = ε1d imply that ∀ε2d : ∃k(ε2d) such that
‖xk0
‖ < ε1d implies that ‖xk‖ < ε2d ∀k ≥ k0 + k(ε2d).
Since by (7) ‖xk0

‖ = ‖x(t∗k0
)‖ < ε1d, one obtains by taking ε2d = ε2e

−KT that
∀k ≥ k0 + k(ε2d) that

‖xk‖ = ‖x(t∗k)‖ < ε2e
−KT .(8)

By Lemma 1 and Remark 2 with µ = ε2 and µ′ = ε2e
−KT

‖x(t)‖ < ε2 ∀ t ≥ t∗k0+k(ε2d).(9)
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Since t∗k0
− t0 < T and since t∗k0+k(ε2d)− t∗k0

≤ k(ε2d)T , t∗k0+k(ε2d)− t0 < (k(ε2d) + 1)T .

Therefore ‖x(t)‖ < ε2 ∀t ≥ t0 + T (ε2) with T (ε2) := (k(ε2e
−KT ) + 1)T . This implies

uniform convergence to the origin and therefore also uniform asymptotic stability of
(3).

Remark 3. The proof of Proposition 2 shows that when Bε(0) ⊂ U ′ that Bδ(ε)(0)

with δ(ε) = e−KTβ−1
V (αV (εe−KT )) belongs to the region of attraction of (3).

Remark 4. If Condition 2 of Proposition 2 is replaced by the condition that
there exists an increasing sequence of times t∗k (k ∈ Z) with t∗k → ∞ as k → ∞ and
t∗k → −∞ as k → −∞, ∃ finite T > 0 : t∗k+1 − t∗k ≤ T (∀k ∈ Z), there exists an open
set U ′ ⊂ U ∩Wc which contains the origin such that ∀k ∈ Z ∀x(t∗k) ∈ U ′ \ {0},

V (x(t∗k+1), t∗k+1)− V (x(t∗k), t∗k) ≤ 0,

then the equilibrium point x = 0 of (3) is locally uniformly stable.

4. Homogeneous systems. Proposition 2 introduces a sufficient condition for
uniform asymptotic stability of a dynamical system. Because of Condition 2, it may
be hard in general to verify uniform asymptotic stability by means of this proposition.
This section and section 5 may be seen as an elaboration of the previous one. When
considering homogeneous systems, we show that Condition 2 of Proposition 2 may be
replaced by a condition independent of the flow.

Definition 1. The system ẋ(t) = f(x, t) with x = (x1, ..., xn)T is homogeneous
of order τ and with dilation δ(s, x) = (sr1x1, ..., s

rnxn)T (∀i ∈ {1, ..., n} : 0 < ri <∞)
if for each i ∈ {1, ..., n}

∀x ∈ Rn,∀t,∀s ≥ 0 : fi(s
r1x1, ..., s

rnxn, t) = sτ+rifi(x1, ..., xn, t).(10)

Definition 2. The homogeneous p-norm ρp with dilation δ(s, x) is a continuous
map from Rn to R+, x→ ρp(x) such that

ρp(x) :=

(
n∑
i=1

|xi|
p
ri

) 1
p

(11)

with p ∈ R+
0 .

Remark 5. Calling the function ρp a “norm” is a misnomer. In general ρp does
not satisfy the triangle inequality or the scale property.

Proposition 3. Consider the homogeneous system ẋ(t) = f(x, t) of order τ > 0
and with dilation δ(s, x) = (sr1x1, ..., s

rnxn)T . f is locally Lipschitz, i.e., ∀x, ∃
neighborhood N (x) such that the restriction f |N (x) is Lipschitz with Lipschitz function
lx(t) and lx(t) is bounded ∀t ∈ R.

If there exists an increasing sequence of times t∗k (k ∈ Z) with t∗k →∞ as k →∞
and t∗k → −∞ as k → −∞, ∃ finite T > 0 : t∗k+1 − t∗k ≤ T (∀k ∈ Z) and ∃ K1 > 0
such that ∀k and ∀x with ρr(x) = 1 and r > max{r1, ..., rn}

∂V

∂x
(x)

∫ t∗k+1

t∗k

f(x, t)dt ≤ −K1T,(12)

where
1. V (x) is a positive definite continuous homogeneous function, i.e.,

∀x ∈ Rn, ∀s ≥ 0 : V (sr1x1, ..., s
rnxn) = slV (x1, ..., xn)(13)

for some l > 0, and
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2. ∂V
∂x (x) := ( ∂V∂x1

(x), ..., ∂V∂xn (x)) is locally Lipschitz on Rn;
then ẋ = f(x, t) is locally uniformly asymptotically stable.

Proof. Before starting the main part of the proof, we introduce some notation
and we derive a number of inequalities to be used later on in the proof.

Define Sβ := {x ∈ Rn : |xi| ≤ β,∀i ∈ {1, ..., n}} (β ∈ R+
0 ). If we use the norm

‖x‖max = max1≤i≤n |xi|, then ∀x ∈ Sβ : ‖x‖max ≤ β. The max-norm is denoted as
‖ · ‖max whereas the Euclidean norm is denoted as ‖ · ‖.

By the local Lipschitz property of ẋ = f(x, t), it is Lipschitz on Sβ with a Lipschitz
constant which we denote as Kfβ . Therefore, ∀x, y ∈ Sβ and ∀ i ∈ {1, ..., n}

|fi(x, t)− fi(y, t)| ≤ ‖f(x, t)− f(y, t)‖max ≤ Kfβ‖x− y‖max.(14)

The set {x ∈ Rn|ρr(x) = 1} ⊂ S1 and therefore if i ∈ {1, ..., n} and ρr(x) = 1, then

|fi(x, t)| ≤ ‖f(x, t)‖max ≤ Kf‖x‖max ≤ Kf(15)

with Kf := Kf1. By the same argument, we obtain that ∀x, y ∈ Sβ∥∥∥∥∂V∂x (x)− ∂V

∂x
(y)

∥∥∥∥
max

≤ KV β‖x− y‖max,(16)

where KV β is the Lipschitz constant of ∂V
∂x on Sβ . When ρr(x) = 1, then∥∥∥∥∂V∂x (x)

∥∥∥∥
max

≤ KV(17)

withKV := KV 1. The estimates (14), (15), (16), and (17) will be used in the following.
I. Evolution of the V -function with respect to the sequence t∗k. The

time-derivative of V (x) along the solutions of the system ẋ(t) = f(x, t) is given by

V̇ (x, t) =
∂V

∂x
(x)ẋ =

∂V

∂x
(x)f(x, t).(18)

Consider

∆V (t∗k+1, t
∗
k) :=

∫ t∗k+1

t∗k

V̇ (x, t)dt =

∫ t∗k+1

t∗k

∂V

∂x
(x(t))f(x(t), t)dt,(19)

which may be rewritten as∫ t∗k+1

t∗k

∂V

∂x
(x(t∗k))f(x(t∗k), t)dt(20)

+

∫ t∗k+1

t∗k

(
∂V

∂x
(x(t))f(x(t), t)− ∂V

∂x
(x(t∗k))f(x(t∗k), t)

)
dt.(21)

In order to evaluate (19), we successively estimate (20) and (21).
II. Estimate of (20). In order to invoke the homogeneity properties of ẋ =

f(x, t), we spell out (20) as

n∑
i=1

∫ t∗k+1

t∗k

∂V

∂xi
(x(t∗k))fi(x(t∗k), t)dt.(22)
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By partially differentiating each member of (13) with respect to xi, one obtains that
∀x ∈ Rn \ {0}, ∀i ∈ {1, ..., n}, and ∀s ≥ 0

∂V

∂xi
(sr1x1, ..., s

rnxn) = sl−ri
∂V

∂xi
(x1, ..., xn).(23)

By (23) and the homogeneity of f(x, t), one obtains that (22) can be written as

ρτ+l
r (x(t∗k))

∫ t∗k+1

t∗k

n∑
i=1

∂V

∂xi
(δ(ρ−1

r (x(t∗k)), x(t∗k)))fi(δ(ρ
−1
r (x(t∗k)), x(t∗k)), t)dt(24)

or as

ρτ+l
r (x(t∗k))

∂V

∂x
(δ(ρ−1

r (x(t∗k)), x(t∗k)))

∫ t∗k+1

t∗k

f(δ(ρ−1
r (x(t∗k)), x(t∗k)), t)dt.(25)

Since δ(ρ−1
r (x(t∗k)), x(t∗k)) has a homogeneous norm equal to 1, (25) implies by (12)

that ∫ t∗k+1

t∗k

∂V

∂x
(x(t∗k))f(x(t∗k), t)dt ≤ −K1Tρ

τ+l
r (x(t∗k)).(26)

The inequality (26) will force ∆V (t∗k+1, t
∗
k) to be negative definite. We show that (21)

cannot account for a sign change when the initial state x(t∗k) is taken close enough to
the origin. To prove this, we estimate an upper bound for the absolute value of (21).

III. Estimate of (21). By (23) and the homogeneity of f(x, t), (21) can be
written as

ρτ+l
r (x(t∗k))

∫ t∗k+1

t∗k

LfV (δ(ρ−1
r (x(t∗k)), x(t)), t)− LfV (δ(ρ−1

r (x(t∗k)), x(t∗k)), t)dt,(27)

where ∂V
∂x (x)f(x, t) =: LfV (x, t).

In order to evaluate an upper bound for the absolute value of (27), we need the
max-norm of

δ(ρ−1
r (x(t∗k)), x(t))− δ(ρ−1

r (x(t∗k)), x(t∗k)) = δ(ρ−1
r (x(t∗k)), x(t)− x(t∗k))(28)

since we use the Lipschitz property of LfV . In III.1 we estimate the norm of (28)
and in III.2 we estimate the Lipschitz constant corresponding to LfV . In III.3 we
use these results to estimate the absolute value of (21).

III.1. Estimate of the norm of (28). Since

xi(t)− xi(t∗k) =

∫ t

t∗k

fi(x(s), s)ds,(29)

one obtains by the homogeneity of f(x, s) and by (15) that

|xi(t)− xi(t∗k)| ≤
∫ t

t∗k

ρτ+ri
r (x(s))Kfds.(30)

Since ∂ρr
∂xi

(sr1x1, ..., s
rnxn) = s1−ri ∂ρr

∂xi
(x1, ..., xn) and

d

dσ
ρr(x(σ)) =

∑n

i=1

∂ρr
∂xi

(x(σ))fi(x(σ), σ)

= ρτ+1
r (x(σ))

∑n

i=1

∂ρr
∂xi

(y(σ))fi(y(σ), σ)

(31)
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with y(σ) = δ(ρ−1
r (x(σ)), x(σ)). By defining g(σ) :=

∑n
i=1

∂ρr
∂xi

(y(σ))fi(y(σ), σ),

d

dσ
ρr(x(σ)) = ρτ+1

r (x(σ))g(σ).(32)

By direct substitution [6], it is clear that the solution of (32) equals

ρr(x(s)) =
ρr(x(t∗k))

(1− τρτr (x(t∗k))
∫ s
t∗k
g(σ)dσ)

1
τ

(33)

under the assumption that

1− τρτr (x(t∗k))

∫ s

t∗k

g(σ)dσ > 0.(34)

Since ri < r, ∂ρr
∂xi

is continuous on the set {x ∈ Rn|ρr(x) = 1}. Since y(σ) belongs to

this compact set (ρr(y(σ)) = 1), the continuity of ∂ρr∂xi
and (15) imply boundedness of

g(σ). There exists a gm > 0 such that ∀σ: g(σ) ≤ gm. This implies that

ρr(x(s)) ≤ ρr(x(t∗k))

(1− τρτr (x(t∗k))(s− t∗k)gm)
1
τ

< 2
1
τ ρr(x(t∗k))(35)

when t ∈ [t∗k, t
∗
k+1] with t∗k+1 − t∗k ≤ T ∀k ∈ Z and ρr(x(t∗k)) < (2τgmT )

− 1
τ =: ρ′. By

(35), it is obvious that (30) implies that

|xi(t)− xi(t∗k)| ≤ 2
τ+ri
τ KfTρ

τ+ri
r (x(t∗k)).(36)

Recall that

‖δ(ρ−1
r (x(t∗k)), x(t))− δ(ρ−1

r (x(t∗k)), x(t∗k))‖max = max
1≤i≤n

|xi(t)− xi(t∗k)|
ρrir (x(t∗k))

.(37)

Therefore, (36) and (37) imply the existence of a K̃ > 0 such that

‖δ(ρ−1
r (x(t∗k)), x(t))− δ(ρ−1

r (x(t∗k)), x(t∗k))‖max ≤ K̃Tρτr (x(t∗k))(38)

when ρr(x(t∗k)) < ρ′ and t ∈ [t∗k, t
∗
k+1].

Having estimated the norm of (28), we estimate the Lipschitz constant of LfV
which will be used in the calculation of an upper bound for (21).

III.2. Estimate of the Lipschitz constant. Notice that

δ(ρ−1
r (x(t∗k)), x(t)) = δ(ρ−1

r (x(t∗k)), x(t∗k))

+ δ(ρ−1
r (x(t∗k)), x(t))− δ(ρ−1

r (x(t∗k)), x(t∗k))
(39)

and

‖δ(ρ−1
r (x(t∗k)), x(t))‖max ≤‖δ(ρ−1

r (x(t∗k)), x(t∗k))‖max

+ ‖δ(ρ−1
r (x(t∗k)), x(t))− δ(ρ−1

r (x(t∗k)), x(t∗k))‖max

(40)

such that by (38)

‖δ(ρ−1
r (x(t∗k)), x(t))‖max ≤ 1 + K̃Tρτr (x(t∗k)) ≤ 1 +

K̃

2τgm
=: β̃(41)
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when t ∈ [t∗k, t
∗
k+1] and ρr(x(t∗k)) < ρ′ = (2τgmT )−

1
τ . Therefore, (41) implies that

δ(ρ−1
r (x(t∗k)), x(t)) ∈ Sβ̃ .
Since ∀x, y ∈ Sβ̃ and ∀t

LfV (x, t)−LfV (y, t)

=
∂V

∂x
(x)(f(x, t)− f(y, t)) +

(
∂V

∂x
(x)− ∂V

∂x
(y)

)
f(y, t),

(42)

the boundedness of ∂V
∂x and f on Sβ̃ , implied by (14) and (16), and the Lipschitz

properties of ∂V
∂x and f imply the existence of a Lipschitz constant KfV β̃ for LfV on

Sβ̃ . Therefore, ∀x, y ∈ Sβ̃ , and ∀t

|LfV (x, t)− LfV (y, t)| ≤ KfV β̃‖x− y‖max.(43)

III.3. Estimate of (21). By (38) and (43), one obtains that

|LfV (δ(ρ−1
r (x(t∗k)), x(t)), t)−LfV (δ(ρ−1

r (x(t∗k)), x(t∗k)), t)|
≤ KfV β̃K̃Tρ

τ
r (x(t∗k)).

(44)

By (44), the absolute value of (27)–(21) is less than or equal to

KfV β̃K̃T
2ρ2τ+l
r (x(t∗k))(45)

when ρr(x(t∗k)) < ρ′.
IV. Estimate of (19). By (26) and (45), (19) is less than or equal to

ρτ+l
r (x(t∗k))T (−K1 + K̃KfV β̃Tρ

τ
r (x(t∗k))).(46)

Define ρ := min{ρ′, ( K1

2KfV β̃K̃T
)

1
τ }. This implies by (46) that ∀x(t∗k) 6= 0 with

ρr(x(t∗k)) < ρ:

∆V (t∗k+1, t
∗
k) = V (x(t∗k+1))− V (x(t∗k)) ≤ −K1T

2
ρτ+l
r (x(t∗k)),(47)

where x(t∗k+1) is the solution of ẋ(t) = f(x, t) at t∗k+1 with initial condition x(t∗k) at
t∗k.

V. Uniform asymptotic stability. By (13), it is obvious that Condition 1
of Proposition 2 is fulfilled with U = Rn. By (47), it is clear that Condition 2 of
Proposition 2 is fulfilled with U ′ = {x|ρr(x) < ρ}. Therefore, Proposition 2 may be
applied, which implies local uniform asymptotic stability of the homogeneous system
ẋ = f(x, t).

Remark 6. Notice that r is taken to be larger than max{r1, ..., rn} (and not equal
to max{r1, ..., rn}) in order to avoid technical difficulties when taking the derivative

of
∑n
i=1 |yi|

r
ri with respect to time.

5. Uniform asymptotic stability of time-varying homogeneous systems.
Having Proposition 3 available, it is now possible to establish that asymptotic stability
of the averaged system of a time-varying homogeneous system implies local uniform
asymptotic stability of the original time-varying homogeneous system. Because of the
homogeneity and the order condition τ > 0, this result is valid even when the system
is not fast time-varying.
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Theorem 1. Consider the homogeneous system ẋ(t) = f(x, t) of order τ > 0
and with dilation δ(s, x) = (sr1x1, ..., s

rnxn)T . f is locally Lipschitz, i.e., ∀x, ∃
neighborhood N (x) such that the restriction f |N (x) is Lipschitz with Lipschitz function
lx(t) and lx(t) is bounded ∀t ∈ R. If the following conditions hold:

Condition 1. The averaged system ẋ(t) = f̄(x) is asymptotically stable, where

f̄(x) := lim
T→∞

1

2T

∫ +T

−T
f(x, t)dt(48)

is continuous in x;
Condition 2. There exists a continuous function M : [0,+∞[→ [0,+∞[ with

limσ→∞ σ−1M(σ) = 0 such that ∀t1, t2 ∈ R (t2 > t1)∥∥∥∥∫ t2

t1

(f(x, t)− f̄(x))dt

∥∥∥∥ ≤M(t2 − t1)(49)

when ρr(x) = 1 with r > max{r1, ..., rn}.
Then ẋ(t) = f(x, t) is locally uniformly asymptotically stable.

Proof. The proof of the theorem is based on Proposition 3. Definition (48) of the
averaged system ẋ(t) = f̄(x) implies its homogeneity of order τ with dilation δ(s, x) =
(sr1x1, ..., s

rnxn)T . Definition (48) also implies that f̄(0) = 0. By Condition 1, the
homogeneous system ẋ = f̄(x) is asymptotically stable. Let p be a positive integer
and let l be a real number larger than p(max1≤i≤n ri). Following Rosier [13], there
exists a Liapunov function V : Rn → R such that

P1. V (x) is of class C∞ in Rn \ {0} and of class Cp in Rn;
P2. V (0) = 0, V (x) > 0 ∀ x 6= 0 and V (x)→ +∞ as ‖x‖ → +∞;
P3. V is homogeneous: ∀x ∈ Rn \ {0} : ∀s > 0 : V (sr1x1, ..., s

rnxn) =
slV (x1, ..., xn);
P4. ∀x 6= 0 : ∂V∂x (x)f̄(x) < 0.

By P1, ∂V
∂x is continuous in Rn and the continuity of f̄(x) implies continuity of

∂V
∂x (x)f̄(x) on the compact set {x|ρr(x) = 1}. This implies by P4 that ∃β > 0
such that ∀x with ρr(x) = 1,

∂V

∂x
(x)f̄(x) ≤ −β.(50)

Take a t◦0 ∈ R and ∀T ′ and ∀x with ρr(x) = 1:

∂V

∂x
(x)

∫ t◦0+T ′

t◦0

f(x, t)dt = T ′
∂V

∂x
(x)f̄(x) +

∂V

∂x
(x)

∫ t◦0+T ′

t◦0

(f(x, t)− f̄(x))dt.(51)

By the continuity of ∂V
∂x on the compact set {x|ρr(x) = 1}, ∃MV > 0 such that∥∥∥∥∂V∂x (x)

∥∥∥∥ ≤MV(52)

when ρr(x) = 1. One obtains by Condition 2 that

∂V

∂x
(x)

∫ t◦0+T ′

t◦0

f(x, t)dt ≤ T ′ ∂V
∂x

(x)f̄(x) +MVM(T ′)(53)

≤ −βT ′ +MVM(T ′)(54)
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when ρr(x) = 1. By Condition 2, limT ′→∞
M(T ′)
T ′ = 0, which implies that ∃T ′′ such

that ∀T ′ ≥ T ′′ : M(T ′)
T ′ < β

MV
. Take such a T ′ and define a sequence of times

t∗k := t◦0 + kT ′, then ∀k ∈ Z and ∀x with ρr(x) = 1,

∂V

∂x
(x)

∫ t∗k+1

t∗k

f(x, t)dt ≤ −K1T
′(55)

with K1 = β −MV
M(T ′)
T ′ > 0.

With T = T ′ and t∗k = t◦0 + kT ′, (55) implies that (12) is satisfied and P3 implies
that (13) is satisfied. With p ≥ 2, ∂V∂x is continuously differentiable and therefore also
locally Lipschitz. By Proposition 3, one obtains local uniform asymptotic stability of
the homogeneous system ẋ = f(x, t).

Remark 7. Theorem 1 is a result on asymptotic stability of a homogeneous system
under a classical averaging condition, without requirements on the time-scale—typical
for averaging results.

Remark 8. The proof of Theorem 1 is based on Proposition 3 and the crucial
part of the proof of Proposition 3 is the negative definiteness of (19). This negative
definiteness of (19) is guaranteed by the negative definiteness of (20) when (21) is
sufficiently small. The expression (21) is small when, roughly, the variation of the
flow x(t) − x(t∗k) is small in comparison with x(t∗k). This proportional variation can

be reduced by reducing the size of the right-hand side ρτr (x(t∗k))K̃T of (38). A first
way of achieving this reduction is by a time-scale transformation. It is clear that
when the homogeneous system ẋ = f(x, t) satisfies the conditions of Theorem 1 with

T = Tf , then ∀α > 0: ẋ = f(x, αt) satisfies the conditions of Theorem 1 with T =
Tf
α .

By increasing α, i.e., by decreasing T =
Tf
α , ρτr (x(t∗k))K̃T can be made arbitrarily

small. For any fixed time-scale, there is still a second possibility of reducing the
size of ρτr (x(t∗k))K̃T by reducing ρr(x(t∗k)), i.e., by starting at initial conditions close
enough to the origin. This is the technique that leads to Theorem 1.

In [4], where exponential stability is considered, and in [11], where homogeneous
systems of order τ = 0 are considered, there is a different situation. The effect of a
decreasing proportional variation of the flow when starting close enough to the origin
is not available. The only way to obtain a small proportional variation is by making
α sufficiently large. This explains why the averaging results in [4] and [11] imply
uniform asymptotic stability of fast time-varying systems.

6. A counterexample and an example. The averaging result of Theorem 1,
for not necessarily fast time-varying systems, is valid for homogeneous systems of order
τ > 0. As explained in Remark 8, the averaging result is not valid for homogeneous
systems with an order τ = 0.

This is easily illustrated. Consider the linear time-varying system ẋ(t) = A(t)x(t)
[10, p. 144] with

A(t) =

( −1 + 1.5 cos2t 1− 1.5 sint cost
−1− 1.5 sint cost −1 + 1.5 sin2t

)
.(56)

The averaged system ẋ(t) = Āx(t) with

Ā =

( −0.25 1
−1 −0.25

)
(57)
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is asymptotically stable but the original time-varying system ẋ(t) = A(t)x(t) is un-
stable with transition matrix

Φ(t, 0) =

(
e0.5tcost e−tsint
−e0.5tsint e−tcost

)
.(58)

Since Ā is Hurwitz, there exists a positive definite matrix P such that ĀTP + PĀ
is negative definite. Consider the homogeneous system ẋ(t) = ‖x(t)‖A(t)x(t) with
positive order. The averaged system ẋ(t) = ‖x(t)‖Āx(t) is asymptotically stable
since along its flow the derivative of xTPx equals ‖x‖xT (ĀTP + PĀ)x, which is
negative definite. By Theorem 1, asymptotic stability of ẋ(t) = ‖x(t)‖Āx(t) implies
local uniform asymptotic stability of ẋ(t) = ‖x(t)‖A(t)x(t).

7. Semiglobal uniform asymptotic stability. The conditions of Theorem 1
imply local uniform asymptotic stability of the homogeneous time-varying system
ẋ = f(x, t) with order τ > 0. These conditions also imply that ∀α > 0: ẋ = f(x, αt)
is locally uniformly asymptotically stable. No global stability property is obtained. In
the present section, we prove that the region of attraction of the homogeneous system
ẋ = f(x, αt) depends on α. We show that the bounded region of attraction increases
when α increases and grows unbounded as α goes to infinity.

Theorem 2. The homogeneous system ẋ = f(x, αt) of order τ > 0, where
ẋ = f(x, t) satisfies all the conditions of Theorem 1, is semiglobally uniformly asymp-
totically stable, i.e., ∀R > 0, ∃αR > 0, and also a class KL-function βR(·, ·) such that
∀x0 with ρr(x0) < R, ∀t0, ∀t ≥ t0

ρr(xαR(t, t0, x0)) ≤ βR(ρr(x0), t− t0).(59)

Here xαR(t, t0, x0) is the solution at t of the homogeneous system ẋ = f(x, αRt) with
initial condition x0 at t0.

Proof. The conditions imposed by Theorem 1 on ẋ = f(x, t) are satisfied, which
implies local uniform asymptotic stability of ẋ = f(x, t). This is equivalent to the
existence of a ρ > 0 and a class KL-function βρ(·, ·) such that ∀t0, ∀t ≥ t0, ∀x0 with
ρr(x0) < ρ

ρr(x1(t, t0, x0)) ≤ βρ(ρr(x0), t− t0),(60)

where x1(t, t0, x0) denotes the solution at t of ẋ = f(x, t) with initial condition x0

at t0. We denote the solution of ẋ = f(x, αt) with initial condition x0 at t0 as
xα(t, t0, x0). The solutions of ẋ = f(x, t) and ẋ = f(x, αt) are related, i.e., ∀α > 0,
∀t0, and ∀t ≥ t0

xα(t, t0, x0) = δ( τ
√
α, x1(αt, αt0, δ

−1( τ
√
α, x0))).(61)

Define αR := (Rρ )
τ
. For all x0 with ρr(x0) < R, ∀t0, ∀t ≥ t0, by (61)

ρr(xαR(t, t0, x0)) = τ
√
αR ρr(x1(αRt, αRt0, δ

−1( τ
√
αR, x0))).(62)

Since ρr(δ
−1( τ
√
αR, x0)) < ρ, applying (60) to the right-hand side of (62) implies that

for all x0 with ρr(x0) < R, ∀t0, ∀t ≥ t0

ρr(xαR(t, t0, x0)) ≤ τ
√
αRβρ(ρr(δ

−1( τ
√
αR, x0)), αR(t− t0)) = βR(ρr(x0), t− t0)

(63)

with the obvious definition of βR(·, ·).
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8. Conclusions. Proposition 2 gives a sufficient condition for uniform asymp-
totic stability of a differential equation. This result is related to the result of Narendra
and Annaswamy [12], but negative semidefiniteness on V̇ (x, t) is dispensed with.

This result is useful for the investigation of uniform asymptotic stability of homo-
geneous sytems with order τ > 0. More precisely, averaging becomes a useful tool for
studying uniform asymptotic stability: asymptotic stability of the averaged system
implies local uniform asymptotic stability of the original time-varying system. It is
important that this result is not restricted to fast time-varying systems. The region of
attraction of ẋ = f(x, αt) increases with increasing α. The uniform asymptotic sta-
bility is semiglobal since by taking α large enough, every bounded region of attraction
can be guaranteed.

Comparing these results with the results of M’Closkey and Murray [11], the fol-
lowing should be noted:

1. We are dealing with homogeneous systems of order τ > 0 while M’Closkey
and Murray are dealing with homogeneous systems of order τ = 0.

2. Because of the order τ > 0, asymptotic stability of the averaged system
implies asymptotic stability, not exponential stability, of the original time-varying
system. M’Closkey and Murray consider homogeneous systems of order τ = 0 and
therefore they are able to conclude exponential stability, with respect to the homoge-
neous norm, of the original time-varying system.

3. We obtain local asymptotic stability results for the homogeneous system ẋ =
f(x, αt) with order τ > 0 for every α > 0. By setting σ = αt and ε = 1

α , ẋ = f(x, αt)
is equivalent to ẋ = εf(x, σ). M’Closkey and Murray deal with homogeneous systems
ẋ = εf(x, σ, ε) of order τ = 0 and therefore, the stability results are valid only for ε
sufficiently small.

Acknowledgments. The authors acknowledge the constructive comments of the
anonymous reviewers.
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Abstract. This paper deals with optimal control problems of parabolic equations in the presence
of pointwise state constraints. We consider bounded controls which act in the initial condition of the
state equation. The state variable is a bounded continuous function on the domain Q = Ω×]0, T [
but is not continuous on Q. In this case, the multiplier associated with state constraints is a regular
bounded finitely additive measure on Q (but not a σ-additive one). Using some properties of the

Stone–C̆ech compactification, we prove a decomposition theorem for this measure which allows us
to interpret the adjoint equation in a classical sense. We obtain new optimality conditions for these
kinds of problems, and we apply these results to the case of bilateral constraints.
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1. Introduction. Consider an optimal control problem governed by a partial
differential equation, with state constraints of the form y ∈ C, where C is a closed
convex subset of a Banach space Z. It is well known that some conditions are needed
on C to establish first order optimality conditions. For example, C must be of finite
codimension in Z (which is satisfied if the interior of C is nonempty in Z). In this
case, the adjoint state satisfies a partial differential equation in which appears a
multiplier ζ belonging to Z ′, the topological dual of Z. Different cases where Z
is separable are treated in [3], [4], [5], [9], [11], [14], [16]. There are situations in
which Z is not separable. In such problems, the main drawback is that the adjoint
equation cannot be interpreted in the sense of distributions and classical methods for
partial differential equations cannot be used (to prove existence and uniqueness, and
to study approximation). In this paper, we use some properties of the Stone–C̆ech
compactification to derive optimality conditions.

Since the use of these tools is completely new in the context of optimal control
problems, we have chosen a simple problem to illustrate such situations: we consider
a control problem for a semilinear parabolic equation with a control in the initial
condition, the cost functional depends only on the final observation and on the control,
and pointwise state constraints are imposed on the whole domain. The problem is
simple because there is only one control and because the control acts only in the initial
condition. However, the same method may be applied to other control problems. In
particular, the Stone–C̆ech compactification may be used to obtain new optimality
conditions for problems with Dirichlet boundary controls in the presence of pointwise
state constraints. (Such problems are considered in [10], [12], [13].) Some results have
been presented in [1], and a complete analysis will be carried out in a forthcoming
paper [2].
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Consider the following semilinear parabolic equation:

∂y

∂t
+Ay+Φ(·, y) = 0 in Q,

∂y

∂nA
+Ψ(·, y) = 0 on Σ, y(·, 0) = w in Ω,(1)

where Q = Ω×]0, T [, Ω is a bounded domain in RN , Σ = Γ×]0, T [, Γ is the boundary
of Ω, T > 0, w ∈ Wad ⊂ L∞(Ω) is a control in the initial condition, A is a second

order elliptic operator of the form Ay(x) = −∑N
i,j=1Di(aij(x)Djy(x)) (Di denotes

the partial derivative with respect to xi),
∂y
∂nA

denotes the conormal derivative with
respect to A, and Φ and Ψ are Carathéodory functions (assumptions are specified in
section 2.1). Constraints of the form

g(y) ∈ C(2)

are imposed on the state variable y. (Here g is a continuous mapping from Cb(Q\Ω0)
into Cb(Q \ Ω0), C is a closed convex subset with a nonempty interior in Cb(Q \ Ω0),
and Ω0 = Ω× {0}.) The paper is concerned with the control problem

(P) inf{J(y, w) | y ∈ Cb(Q \ Ω0), w ∈Wad, (y, w) satisfies (1) and (2)},
where the cost functional is given by

J(y, w) =

∫
Ω

L(x, y(x, T ), w(x)) dx.

Since the initial condition w belongs to L∞(Ω) (and not to C(Ω)), the solution yw of
(1) belongs to Cb(Q\Ω0) (and not to C(Q)). Since Cb(Q\Ω0) is not separable, we are
in the situation described at the beginning. One way to obtain optimality conditions
is to proceed as in [12], [3]. We can associate with (P) a problem in which the
state constraint (2) is penalized, we can write optimality conditions for the penalized
problem, and, by passing to the limit with respect to the penalization parameter, we
recover optimality conditions in which the adjoint state p obeys:∫

Q

(
− p∂z

∂t
+

N∑
i,j=1

aijDjpDiz + Φ′y(x, t, ȳ)pz
)
dxdt+

∫
Σ

Ψ′y(s, t, ȳ)pz dsdt

+

∫
Ω

ᾱL′y(x, ȳ(T ), w̄)z dx+
〈
g′(ȳ)∗ζ̄, z

〉
(Cb(Q\Ω0))′×Cb(Q\Ω0)

= 0

for all z ∈ C1(Q) such that z(0) = 0, where (ȳ, w̄) is an optimal solution for (P), ᾱ
is a multiplier of the cost functional, and ζ̄ ∈ (Cb(Q \ Ω0))′ is a multiplier associated
with the state constraint. As mentioned above, because of the term g′(ȳ)∗ζ̄, such an
equation cannot be studied in the classical framework of partial differential equations.
To overcome this difficulty, we identify Cb(Q\Ω0) with the space C((Q\Ω0)#), where
(Q \ Ω0)# is the Stone–C̆ech compactification of Q \ Ω0. Next, following an idea of
DiPerna and Majda [7], we can associate with any ζ ∈ (Cb(Q\Ω0))′ ≡M((Q\Ω0)#)
an element of M(Q × (Q \ Ω0)#). In this way, we prove a decomposition theorem
for elements of (Cb(Q \ Ω0))′ (Corollary 4.8). Each ζ ∈ (Cb(Q \ Ω0))′ is represented
by a “regular part,” which is a bounded Radon measure on Q \Ω0 and an additional
part, which acts only on Ω0. Due to this decomposition, we prove that only the
regular part intervenes in the adjoint equation. The additional part intervenes in the
optimality conditions. We state optimality conditions for (P) in Theorem 2.1. We
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give applications of these optimality conditions to the case of bilateral constraints in
section 6. Notice that optimality conditions obtained in Corollary 6.2 are particularly
simple.

The rest of the paper is organized as follows. Assumptions and the main result
(Theorem 2.1) are stated in section 2. We have collected some results for the state and
the adjoint equations in section 3. Results related to the Stone–C̆ech compactification
are proved in section 4. The proof of the optimality conditions is given in section 5.

2. Assumptions. Main results. Throughout the paper, Ω denotes a bounded
open subset in RN (N ≥ 2) of class C2+γ for some 0 < γ ≤ 1. The coefficients aij of
the operator A belong to C1+γ(Ω) and satisfy the conditions

aij(x) = aji(x) for every i, j ∈ {1, . . . , N}, m0|ξ|2 ≤
N∑

i,j=1

aij(x)ξiξj

for all ξ ∈ RN and all x ∈ Ω, with m0 > 0. In (1), ∂y
∂nA

denotes the conormal
derivative of y with respect to A, that is,

∂y

∂nA
(s, t) =

∑
i,j

aij(s)Djy(s, t)ni(s),

where n = (n1, . . . , nN ) is the unit normal to Γ outward Ω.
For every 1 ≤ ` ≤ ∞, the usual norms in the spaces L`(Ω), L`(Q), L`(Σ) will be

denoted by || · ||`,Ω, || · ||`,Q, || · ||`,Σ. The Hilbert space

W (0, T ;H1(Ω), (H1(Ω))′) =
{
y ∈ L2(0, T ;H1(Ω)) | dy

dt
∈ L2(0, T ; (H1(Ω))′)

}
will be denoted by W (0, T ). We introduce the space

Y∞ =
{
y ∈W (0, T ) | ∂y

∂t
+Ay ∈ L∞(Q),

∂y

∂nA
∈ L∞(Σ), and y(·, 0) ∈ L∞(Ω)

}
.

Endowed with the norm

y −→ ||y||W (0,T ) + ||∂y
∂t

+Ay||∞,Q + || ∂y
∂nA
||∞,Σ + ||y(·, 0)||∞,Ω,

Y∞ is a Banach space. Throughout what follows, 〈·, ·〉∗,Q\Ω0
denotes the duality

pairing between the spaces (Cb(Q \ Ω0))′ and Cb(Q \ Ω0). If µ ∈ Mb(Q \ Ω0) (the
space of bounded Radon measures on Q\Ω0) and y ∈ Cb(Q\Ω0), we set 〈µ, y〉b,Q\Ω0

=∫
Q\Ω0

y(x, t)dµ(x, t).

2.1. Assumptions. A1. For every y ∈ R, Φ(·, y) and Ψ(·, y) are, respectively,
measurable on Q and Σ. For almost all (x, t) ∈ Q, Φ(x, t, ·) is of class C1, and for
almost all (s, t) ∈ Σ, Ψ(s, t, ·) is of class C1. Moreover, the following estimates hold:

|Φ(x, t, 0)|+ |Φ′y(x, t, y)| ≤ C0, |Ψ(s, t, 0)|+ |Ψ′y(s, t, y)| ≤ C0 for some C0 ≥ 0.

A2. For every (y, w) ∈ R2, L(·, y, w) is measurable on Ω. For almost all x ∈ Ω,
L(x, ·, ·) is of class C1. The following estimate holds:

|L(x, y, w)|+ |L′y(x, y, w)|+ |L′w(x, y, w)| ≤ L1(x, t)η(|w|)η(|y|),
where L1 ∈ L1(Ω) and η is a nondecreasing function from R+ into R+.

A3. Wad is a closed convex subset in L∞(Ω).
A4. g : Cb(Q \ Ω0) −→ Cb(Q \ Ω0) is of class C1.
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2.2. Statement of the main result. Define the following Hamiltonian func-
tion:

H(x, y, w, p, α) = αL(x, y, w)− pw for all (x, y, w, p, α) ∈ Ω× R3 × R+.

As mentioned in the introduction, every ζ ∈ (Cb(Q\Ω0))′ is identified with a measure
ˆ̂
ζ ∈M(Q×(Q\Ω0)#) (see section 4). For notational simplicity,

ˆ̂
ζ will also be denoted

by ζ. The canonical projection from M(Q× (Q \ Ω0)#) onto M(Q) is denoted by π
and defined by

π : ζ ∈M(Q× (Q \ Ω0)#) −→ πζ ∈M(Q),〈
πζ , φ

〉
M(Q)×C(Q)

=
〈
ζ, φ
〉
M(Q×(Q\Ω0)#)×C(Q×(Q\Ω0)#)

for all φ ∈ C(Q).

Throughout the following, for any ζ ∈ (Cb(Q \Ω0))′, |ζ| stands for the total variation
of ζ. If µ ∈Mb(Q \Ω0), we denote by g′(ȳ)∗µ the Radon measure on Q \Ω0 defined
by

z −→
〈
µ, g′(ȳ)z

〉
b,Q\Ω0

for all z ∈ C0(Q \ Ω0).

Moreover, [g′(ȳ)∗µ]|Q denotes the restriction of g′(ȳ)∗µ to Q, [g′(ȳ)∗µ]|Σ denotes the
restriction of g′(ȳ)∗µ to Σ, and [g′(ȳ)∗µ]|ΩT denotes the restriction of g′(ȳ)∗µ to

Ω× {T}.
Theorem 2.1. If A1–A4 are fulfilled and if (ȳ, w̄) is a solution of (P), then

there exist ᾱ ≥ 0, p̄ ∈ L1(0, T ;W 1,1(Ω)), ζ̄ ∈ (Cb(Q \ Ω0))′, and a bounded linear
transformation Λζ̄ : Cb(Q\Ω0) −→ L∞π|ζ̄|(Q), such that the following conditions hold:

Nontriviality condition:

(ζ̄, ᾱ) 6= 0.(3)

Complementary condition:〈
ζ̄, z − g(ȳ)

〉
∗,Q\Ω0

=
〈
πζ̄ , z − g(ȳ)

〉
b,Q\Ω0

+

∫
Ω0

Λζ̄

(
z − g(ȳ)

)
dπ|ζ̄| ≤ 0(4)

for all z ∈ C.
Adjoint equation:

−∂p̄∂t +Ap̄+ Φ′y(x, t, ȳ)p̄+ [g′(ȳ)∗πζ̄ ]|Q = 0 in Q,

∂p̄
∂nA

+ Ψ′y(s, t, ȳ)p̄+ [g′(ȳ)∗πζ̄ ]|Σ = 0 on Σ,

p̄(x, T ) + ᾱL′y(x, ȳ(T ), w̄) + [g′(ȳ)∗πζ̄ ]|ΩT = 0 on Ω.

(5)

Optimality condition for w̄:∫
Ω

H ′w
(
x, ȳ(T ), w̄, p̄(0), ᾱ

)
(w̄ − w) dx+

∫
Ω0

Λζ̄

(
g′(ȳ)(zw̄ − zw)

)
dπ|ζ̄| ≤ 0(6)

for all w ∈Wad, where zw is the solution of:

∂z

∂t
+Az = 0 in Q,

∂z

∂nA
= 0 on Σ, z(·, 0) = w in Ω.(7)



NECESSARY OPTIMALITY CONDITIONS 1015

Decomposition property of ζ̄:〈
ζ̄, h
〉
∗,Q\Ω0

=
〈
πζ̄ , h

〉
b,Q\Ω0

+

∫
Ω0

Λζ̄(h) dπ|ζ̄| for all h ∈ Cb(Q \ Ω0).(8)

Property of the operator Λζ̄ :∫
Ω0

Λζ̄(h) dπ|ζ̄| =
〈
πζ̄ , h

〉
M(Ω0)×C(Ω0)

for all h ∈ C(Q).(9)

Remark 2.2. In the case when Wad ⊂ C(Ω) (C is a closed convex subset of C(Q)
and g : C(Q) −→ C(Q)), by using the property (9) satisfied by the operator Λζ̄ , the
complementary condition is written as〈

πζ̄ , z − g(ȳ)
〉
M(Q)×C(Q)

≤ 0 for all z ∈ C,

the optimality condition for w̄ is written as∫
Ω

H ′w
(
x, ȳ(T ), w̄, p̄(0), ᾱ

)
(w̄ − w) dx+

〈
[g′(ȳ)∗πζ̄ ]|Ω0

, w̄ − w
〉
M(Ω)×C(Ω)

≤ 0

for all w ∈Wad, and the condition (ζ̄, ᾱ) 6= 0 is equivalent to (πζ̄ , ᾱ) 6= 0 (it is a direct
consequence of (9)). In this case, we recover optimality conditions proved in [14] and
[16].

Remark 2.3. As in [16], we can recover optimality conditions in qualified form
(that is, with ᾱ = 1 in (5) and (6)) under a strong stability condition.

3. State equation and adjoint equation.

3.1. Existence, uniqueness, and regularity of the state variable. The
following result is proved in [16, Proposition 3.4].

Proposition 3.1. Let (a, b) be in L∞(Q)× L∞(Σ) satisfying ||a||∞,Q ≤ C0 and
||b||∞,Σ ≤ C0. For every (f, h, y0) ∈ Lq(Q) × Lr(Σ) × L∞(Ω) (with q > N

2 + 1 and
r > N + 1), the solution y of

∂y

∂t
+Ay + ay = f in Q,

∂y

∂nA
+ by = h on Σ, y(0) = y0 in Ω

belongs to W (0, T ) ∩ Cb(Q \ Ω0). Moreover, for every τ ∈]0, T ], y satisfies

||y||∞,Q ≤ C
(
||f ||q,Q + ||h||r,Σ + ||y0||∞,Ω

)
,

||y||C(QτT ) ≤ C(τ)
(
||f ||q,Q + ||h||r,Σ + ||y0||2,Ω

)
for all q > N

2 + 1 and all r > N + 1, where C ≡ C(T,Ω, N,C0, q, r) and C(τ) ≡
C(T,Ω, N,C0, q, r, τ).

Theorem 3.2 (see [15, Theorem 3.1]). Let w be in L∞(Ω); then (1) admits a
unique weak solution yw in W (0, T ) ∩ Cb(Q \ Ω0). This solution satisfies

||yw||∞,Q ≤ C1(1 + ||w||∞,Ω),

where C ≡ C(T,Ω, N,C0). Moreover, the mapping w −→ yw is continuous from
L∞(Ω) into Cb(Q \ Ω0).
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Theorem 3.3 (see [16, Corollary 3.1]). For every M > 0 and every τ > 0, there
exist C ≡ C(T,Ω, N,C0,M, τ) and θ̄ > 0 such that, for every w ∈ Wad satisfying
||w||∞,Ω ≤M , the weak solution yw of (1), corresponding to w, is Hölder continuous
on Ω× [τ, T ] and satisfies

||yw||Cθ̄,θ̄/2(Ω×[τ,T ]) ≤ C.

3.2. Adjoint equation. Let (a, b) be in L∞(Q)×L∞(Σ) such that ||a||∞,Q ≤ C0

and ||b||∞,Σ ≤ C0. We consider the following terminal boundary value problem:

−∂p
∂t

+Ap+ ap = µQ in Q,
∂p

∂nA
+ bp = µΣ on Σ, p(T ) = µΩT

on Ω,(10)

where µ = µQ+µΣ +µΩT
is a bounded Radon measure on Q\Ω0, µQ is the restriction

of µ to Q, µΣ is the restriction of µ to Σ, and µΩT
the restriction of µ to Ω× {T}.

Definition 3.4. A function p ∈ L1(0, T ;W 1,1(Ω)) is a weak solution of (10) if
and only if∫

Q

(
p
∂z

∂t
+

N∑
i,j=1

aijDjpDiz + ayp
)
dxdt+

∫
Σ

bpz dsdt =
〈
µ, z
〉
b,Q\Ω0

for all z ∈ C1(Q) satisfying z(0) = 0 on Ω.
We recall an existence theorem for parabolic equations with measures as data

stated in [14], [5].
Theorem 3.5. Let (a, b) be in L∞(Q)×L∞(Σ) satisfying ||a||∞,Q ≤ C0, ||b||∞,Σ ≤

C0, and let µ be in Mb(Q \ Ω0). Equation (10) admits a unique solution p in
L1(0, T ;W 1,1(Ω)). For every (δ, d) satisfying δ > 1, d > 1, N

2d + 1
δ <

1
2 , p belongs to

Lδ
′
(0, T ;W 1,d′(Ω)), and

||p||Lδ′ (0,T ;W 1,d′ (Ω)) ≤ C||µ||Mb(Q\Ω0),

where C ≡ C(Ω, T, δ, d, C0) is a positive constant independent of a and b. Moreover,
there exists a function in L1(Ω), denoted by p(0), such that∫
Q

(
∂z

∂t
+Az + az

)
p dxdt+

∫
Σ

(
∂z

∂nA
+ bz

)
p dsdt =

〈
µ, z
〉
b,Q\Ω0

−
∫

Ω

z(0)p(0) dx

for every z ∈ Y∞ = {y ∈W (0, T ) | ∂y
∂t +Ay ∈ L∞(Q), ∂y

∂nA
∈ L∞(Σ), and y(0) ∈

L∞(Ω)}.
Proof. The first part of the theorem is stated in [14], the only new result being

the Green formula for test functions z belonging to Y∞. (In [14], test functions belong
to Y∞ ∩ C(Q).) Let z ∈ Y∞ and set fz = ∂z

∂t + Az + az, hz = ∂z
∂nA

+ bz, kz = z(0).
Let (zn0)n be a sequence of regular functions converging to z(0) for the weak-star
topology of L∞(Ω) and for the strong topology of L2(Ω). Let zn be the solution of

∂zn
∂t

+Azn + azn = fz in Q,
∂zn
∂nA

+ bzn = hz on Σ, zn(0) = zn0 in Ω.

It is clear that zn ∈ C(Q). Moreover, the function φ = zn − z is the solution of

∂φ

∂t
+Aφ+ aφ = 0 in Q,

∂φ

∂nA
+ bφ = 0 on Σ, φ(0) = z(0)− zn0 in Ω
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and satisfies (see Proposition 3.1)

||zn − z||Cb(Q\Ω0) ≤ C||zn0 − z(0)||∞,Ω ≤ C ′,

||zn − z||C(QτT ) ≤ C(τ)||zn0 − z(0)||2,Ω for every τ ∈]0, T ].

Therefore, (zn)n converges to z uniformly on QτT , for every τ ∈]0, T ]. On the other
hand, by using the Green formula stated in [14], it follows that∫
Q

(∂zn
∂t

+Azn+azn

)
p dxdt+

∫
Σ

( ∂zn
∂nA

+bzn

)
p dsdt =

〈
µ, zn

〉
b,Q\Ω0

−
∫

Ω

zn0p(0) dx.

We claim that

lim
n→∞

〈
µ, zn

〉
b,Q\Ω0

−
∫

Ω

zn0 p(0) dx =
〈
µ, z
〉
b,Q\Ω0

−
∫

Ω

z(0)p(0) dx.

Indeed, for every ε > 0, there exists τε > 0 such that |µ|(Ω×]0, τε[) ≤ ε
C′ . Thus,∣∣∣〈µ, z − zn〉

b,Q\Ω0

+

∫
Ω

(z(0)− zn0)p(0) dx
∣∣∣

≤ ||µ||M(Qτε ) ||z − zn||C(Qτε ) + |µ|
(

Ω×]0, τε[
)
||z − zn||Cb(Ω×]0,τε[)

+
∣∣∣ ∫

Ω

(z(0)− zn0)p(0) dx
∣∣∣ ≤ C||z − zn||C(Qτε ) + ε+

∣∣∣ ∫
Ω

(z(0)− zn0)p(0) dx
∣∣∣.

By passing to the limit first when n tends to infinity, and next when ε tends to zero,
we prove the above claim and the proof is complete.

4. The Stone–C̆ech compactification. Let us introduce the compactification
in the sense of Stone–C̆ech. Let O be a locally compact subset of Q, and let Cb(O) be
the space of bounded continuous functions on O. Denote by (Cb(O))′ the topological
dual of Cb(O) and by B0 the unit ball of (Cb(O))′. For every (x, t) ∈ O, consider
ν(x,t) in (Cb(O))′ defined by〈

ν(x,t), h
〉

(Cb(O))′×Cb(O)
= h(x, t), h ∈ Cb(O).(11)

It is clear that

sup
(x,t)∈O

∣∣∣ν(x,t)(h)
∣∣∣ = sup

(x,t)∈O

∣∣∣〈ν(x,t), h〉(Cb(O))′×Cb(O)

∣∣∣ = ||h||Cb(O).

Proposition 4.1 (see [6, p. 137]). The mapping (x, t) −→ ν(x,t) is a homeo-
morphism from O into a subset of B0. (B0 is endowed with the weak-star topology of
(Cb(O))′.)

Let O# be the closure of the set {ν(x,t) | (x, t) ∈ O}, for the weak-star topology
of (Cb(O))′. It is a Hausdorff compact space which, in view of the previous propo-
sition, admits a dense subset homeomorphic to O. This is called the Stone–C̆ech
compactification of O.

Proposition 4.2. Each h ∈ Cb(O) can be uniquely extended to a function
τ(h) ∈ C(O#), such that

||τ(h)||C(O#) = ||h||Cb(O).
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Proof. With each h ∈ Cb(O), we associate τ(h) ∈ C(O#) defined by

τ(h)(q#) = 〈q#, h〉(Cb(O))′×Cb(O) for every q# ∈ O#.

We have supq#∈O# |τ(h)(q#)| = supq#∈O# |〈q#, h〉(Cb(O))′×Cb(O)|, and because the

set O is identified with a dense subset of O#, it follows that

||τ(h)||C(O#) = sup
q#∈O#

∣∣∣τ(h)(q#)
∣∣∣ = sup

q#∈O#

∣∣∣〈q#, h〉(Cb(O))′×Cb(O)

∣∣∣
= sup

(x,t)∈O

∣∣∣ν(x,t)(h)
∣∣∣ = ||h||Cb(O).

Remark 4.3. For every h1, h2 ∈ Cb(O) and every real continuous function f ,
we have (see [9, pp. 274− 275])

τ(h1h2) = τ(h1)τ(h2), τ(f(h)) = f(τ(h)).

Moreover, there exists a continuous mapping i from O# into O, such that

τ(φ) = φ ◦ i for all φ ∈ C(O).

(See [8, Theorem 26, p. 278].)
The set C(O) ⊗ C(O#) of linear combinations of functions of the form φψ with

φ ∈ C(O) and ψ ∈ C(O#) is a subspace of C(O × O#). The following result gives
interesting properties for elements ofM(O×O#) (the topological dual of C(O×O#)).

Lemma 4.4. Let η be a Radon measure on O × O#, let πη ∈ M(O) be the
projection of η on O, and let π|η| ∈ M+(O) be the projection of |η| on O. There

exists a bounded linear operator Λη : C(O#) −→ L∞π|η|(O), such that〈
η, φψ

〉
#

=

∫
O
φΛη(ψ) dπ|η| for all (φ, ψ) ∈ C(O)× C(O#),(12)

where 〈·, ·〉# is the duality pairing between M(O ×O#) and C(O ×O#).

Proof. Let η be in M(O ×O#). With notation of Lemma 4.4 we have〈
πη, φ

〉
M(O)×C(O)

=
〈
η, φ
〉

#
for all φ ∈ C(O).

Let ψ be in C(O#), and consider the Radon measure ηψ on O defined by〈
ηψ, φ

〉
M(O)×C(O)

=
〈
η, φψ

〉
#
.

It satisfies ∣∣∣〈ηψ, φ〉M(O)×C(O)

∣∣∣ ≤ ||ψ||C(O#)

∫
O
|φ| dπ|η|.

Thus, the measure ηψ is absolutely continuous with respect to π|η| and, due to the
Radon–Nikodým theorem, admits a representation of the form:〈

ηψ, φ
〉
M(O)×C(O)

=

∫
O
fψφdπ|η| for all φ ∈ C(O), where fψ ∈ L1

π|η|(O).
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The integrand fψ linearly depends on ψ and defines a linear transformation Λη such
that 〈

ηψ, φ
〉
M(O)×C(O)

=

∫
O

Λη(ψ)φdπ|η| for all φ ∈ C(O).

Observe that Λη is bounded in L∞π|η|(O). Indeed, since

∣∣∣ ∫
O

Λη(ψ)φdπ|η|
∣∣∣ ≤ ||ψ||C(O#)

∫
O
|φ| dπ|η| for all φ ∈ C(O),

and since (L1
π|η|(O))′ = L∞π|η|(O), it follows that

||Λη(ψ)||L∞π|η| (O) = sup
{φ∈C(O)| ||φ||

L1
π|η| (O)

=1}

∣∣∣ ∫
O

Λη(ψ)φdπ|η|
∣∣∣ ≤ ||ψ||C(O#)

for all ψ ∈ C(O#). The proof is complete.

Remark 4.5. A measure ζ ∈ (Cb(O))′ can be identified with ζ̂ ∈M(O#) via the
formula〈

ζ̂, χ
〉
M(O#)×C(O#)

=
〈
ζ, χ ◦ ν(·)

〉
(Cb(O))′×Cb(O)

for all χ ∈ C(O#)(13)

(where ν(·) is the evaluation measure defined by (11)). Additionally, elements of

(Cb(O))′ can be considered as elements of M(O×O#) (the topological dual of C(O×
O#)). More precisely, with each ζ̂ ∈ M(O#) (defined by (13)), we associate

ˆ̂
ζ ∈

M(O ×O#) defined by〈
ˆ̂
ζ, ψ

〉
#

=
〈
ζ̂, ψ ◦ e

〉
M(O#)×C(O#)

=
〈
ζ, (ψ ◦ e) ◦ ν(·)

〉
(Cb(O))′×Cb(O)

(14)

for all ψ ∈ C(O × O#), where e is the continuous mapping from O# into O × O#,
defined by

e(q#) =
(
i(q#), q#

)
q# ∈ O#,

and where i is the continuous mapping defined in Remark 4.3.

Lemma 4.6. Let ζ ∈ (Cb(O))′, and let
ˆ̂
ζ ∈M(O×O#) be the associated measure

defined by (14). Then〈
ζ, φh

〉
(Cb(O))′×Cb(O)

=
〈

ˆ̂
ζ, φτ(h)

〉
#

for all (φ, h) ∈ C(O)× Cb(O),(15)

where τ is defined in Proposition 4.2. Moreover, if ` is a continuous function with
compact support in O, then〈

ˆ̂
ζ, `φτ(h)

〉
#

=
〈
πˆ̂
ζ
, `φh

〉
M(O)×C(O)

for all (φ, h) ∈ C(O)× Cb(O).(16)
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Proof. Due to (13) and (14), for every φ ∈ C(O) and every h ∈ Cb(O), we have〈
ζ, φh

〉
(Cb(O))′×Cb(O)

=
〈
ζ, τ(φh) ◦ ν(·)

〉
(Cb(O))′×Cb(O)

=
〈
ζ̂, τ(φh)

〉
M(O#)×C(O#)

=
〈
ζ̂, τ(φ)τ(h)

〉
M(O#)×C(O#)

=
〈
ζ̂, (φ ◦ i) τ(h)

〉
M(O#)×C(O#)

=
〈
ζ̂, (φτ(h)) ◦ e

〉
M(O#)×C(O#)

=
〈

ˆ̂
ζ, φτ(h)

〉
#
.

Therefore, we have proved (15). To prove (16), observe that, since `φ belongs to
C(O), with (15) we have〈

ζ, `φh
〉

(Cb(O))′×Cb(O)
=
〈

ˆ̂
ζ, `φτ(h)

〉
#
.

On the other hand, since `φh belongs to C(O), from the definition of ζ̂ and
ˆ̂
ζ, it

follows that〈
ζ, `φh

〉
(Cb(O))′×Cb(O)

=
〈
ζ, τ(`φh) ◦ ν(·)

〉
(Cb(O))′×Cb(O)

=
〈
ζ̂, τ(`φh)

〉
M(O#)×C(O#)

=
〈
ζ̂, (`φh) ◦ i

〉
M(O#)×C(O#)

=
〈
ζ̂, (`φh) ◦ e

〉
M(O#)×C(O#)

=
〈

ˆ̂
ζ, `φh

〉
#

=
〈
πˆ̂
ζ
, `φh

〉
M(O)×C(O)

.

The proof is complete.
A very useful result is given in the following theorem.

Theorem 4.7. Let ζ ∈ (Cb(O))′, and let
ˆ̂
ζ ∈M(O×O#) be the associated mea-

sure defined by (14). There exists a bounded linear transformation Λˆ̂
ζ

: C(O#) −→
L∞π|ˆ̂ζ|

(Q), such that

〈
ζ, hφ

〉
(Cb(O))′×Cb(O)

=
〈
πˆ̂
ζ
, hφ

〉
Mb(O)×Cb(O)

+

∫
O\O

Λˆ̂
ζ

(
τ(h)

)
φdπ|ˆ̂ζ|

for all (φ, h) ∈ C(O)×Cb(O). (In 〈πˆ̂
ζ
, φh〉Mb(O)×Cb(O), πˆ̂

ζ
denotes the restriction of

πˆ̂
ζ

to O.)

Proof. Due to (15) and Lemma 4.4, by setting ψ = τ(h) in (12), we obtain〈
ζ, hφ

〉
(Cb(O))′×Cb(O)

=
〈

ˆ̂
ζ, φτ(h)

〉
#

=

∫
O
φΛˆ̂

ζ

(
τ(h)

)
dπ|ˆ̂ζ|(17)

for all (φ, h) ∈ C(O) × Cb(O). For φ ∈ C(O), the integrals
∫
O φΛˆ̂

ζ
(τ(h)) dπ|ˆ̂ζ|

and
∫
O φh dπˆ̂

ζ
are obtained by passing to the limit in

∫
O φ`kΛˆ̂

ζ
(τ(h)) dπ|ˆ̂ζ| and in∫

O φ`kh dπˆ̂
ζ
, where (`k)k is a sequence of continuous functions with compact support

in O. From (16) and (17), we have〈
ˆ̂
ζ, `kφτ(h)

〉
#

=
〈
πˆ̂
ζ
, `kφh

〉
M(O)×C(O)

=

∫
O
φ`kΛˆ̂

ζ

(
τ(h)

)
dπ|ˆ̂ζ|.
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Therefore, we deduce that∫
O
φ`kΛˆ̂

ζ

(
τ(h)

)
dπ|ˆ̂ζ| =

∫
O
φ`kh dπˆ̂

ζ
.

By passing to the limit, when k tends to infinity, we obtain∫
O
φΛˆ̂

ζ

(
τ(h)

)
dπ|ˆ̂ζ| =

∫
O
φh dπˆ̂

ζ
=
〈
πˆ̂
ζ
, φh

〉
Mb(O)×Cb(O)

.

Consequently,∫
O
φΛˆ̂

ζ

(
τ(h)

)
dπ|ˆ̂ζ| =

∫
O
φΛˆ̂

ζ

(
τ(h)

)
dπ|ˆ̂ζ| +

∫
O\O

φΛˆ̂
ζ

(
τ(h)

)
dπ|ˆ̂ζ|

=

∫
O
φh dπˆ̂

ζ
+

∫
O\O

φΛˆ̂
ζ

(
τ(h)

)
dπ|ˆ̂ζ|

for every φ ∈ C(O) and every h ∈ Cb(O). The proof is complete.
Corollary 4.8. Let ζ ∈ (Cb(Q \ Ω0))′. There exists a bounded linear transfor-

mation Λζ : Cb(Q \ Ω0) −→ L∞π|ζ|(Q), such that〈
ζ, hφ

〉
∗,Q\Ω0

=
〈
πζ , hφ

〉
b,Q\Ω0

+

∫
Ω0

Λζ(h)φdπ|ζ|

for all h ∈ Cb(Q \ Ω0) and all φ ∈ C(Q). Moreover, for every h̃ in C(Q), we have∫
Ω0

Λζ(h̃) dπ|ζ| =
〈
πζ , h̃

〉
M(Ω0)×C(Ω0)

.

Proof. The first assertion is a direct consequence of Theorem 4.7, by setting

O = Q\Ω0, Λζ = Λˆ̂
ζ
◦τ , and by identifying ζ with the measure

ˆ̂
ζ, defined on O×O#,

by (14). If h̃ belongs to C(Q), by definition of πζ and with Theorem 4.7, we have〈
ζ, h̃
〉
∗,Q\Ω0

=
〈
πζ , h̃

〉
M(Q)×C(Q)

=
〈
πζ , h̃

〉
b,Q\Ω0

+

∫
Ω0

Λζ(h̃) dπ|ζ|.

It follows that
∫

Ω0
Λζ(h̃) dπ|ζ| = 〈πζ , h̃〉M(Ω0)×C(Ω0). The proof is complete.

Corollary 4.9. Let ζ be a nonnegative measure belonging to (Cb(Q \ Ω0))′.
There exists a bounded linear transformation Λζ : Cb(Q \ Ω0) −→ L∞πζ (Q), such that〈

ζ, hφ
〉
∗,Q\Ω0

=
〈
πζ , hφ

〉
b,Q\Ω0

+

∫
Ω0

Λζ(h)φdπζ

for all (h, φ) ∈ Cb(Q \ Ω0) × C(Q). Moreover, if h̃ is a nonnegative function in
Cb(Q \ Ω0), then

∫
Ω0

Λζ(h̃) dπζ ≥ 0.

Proof. The equality πζ = π|ζ| is obvious. Let h̃ be a nonnegative function in

Cb(Q \ Ω0). Observe that the Radon measure ζh̃ defined by〈
ζh̃, φ

〉
M(Q)×C(Q)

=
〈
ζ, φh̃

〉
∗,Q\Ω0

φ ∈ C(Q),
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is nonnegative and that

ζh̃(E) =

∫
E

Λζ(h̃) dπζ for all Borel sets E ⊂ Q.

Therefore,
∫

Ω0
Λζ(h̃) dπζ = ζh̃(Ω0) ≥ 0. The proof is complete.

For ζ ∈ (Cb(Q \ Ω0))′ we denote by (πζ , π|ζ|,Λζ) the triplet corresponding to ζ
defined in Corollary 4.8. The following result gives another property of the operator
Λζ often used later.

Proposition 4.10. Let (a, b) be in L∞(Q)×L∞(Σ), let w be in L∞(Ω), and let
z1 and z2 be solutions of

∂z1

∂t
+Az1 + az1 = 0 in Q,

∂z1

∂nA
+ bz1 = 0 on Σ, z1(·, 0) = w in Ω,

∂z2

∂t
+Az2 = 0 in Q,

∂z2

∂nA
= 0 on Σ, z2(·, 0) = w in Ω.

Then, for every h ∈ Cb(Q \ Ω0), we have
∫

Ω0
Λζ(hz1) dπ|ζ| =

∫
Ω0

Λζ(hz2) dπ|ζ|.
Proof. Notice that the function z1 − z2 is the solution of

∂z

∂t
+Az + az = −az2 in Q,

∂z

∂nA
= −bz2 on Σ, z(·, 0) = 0 in Ω,

and it belongs to C0(Q \ Ω0). It follows that, for every h ∈ Cb(Q \ Ω0), the function
(z1 − z2)h belongs to C0(Q \ Ω0). From Corollary 4.8, we obtain〈

ζ, (z1 − z2)h
〉
∗,Q\Ω0

=
〈
πζ , (z1 − z2)h

〉
b,Q\Ω0

+

∫
Ω0

Λζ((z1 − z2)h) dπ|ζ|

=
〈
πζ , (z1 − z2)h

〉
b,Q\Ω0

.

Thus,
∫

Ω0
Λζ(z1h) dπ|ζ| =

∫
Ω0

Λζ(z2h) dπ|ζ|.

5. Optimality conditions.

5.1. Metric space of controls. Taylor expansions. We endow Wad with the
distance d(w1, w2) = ||w1 − w2||∞,Ω.

Lemma 5.1. The metric space (Wad, d) is complete. Moreover, the mapping which
associates (yw, J(yw, w), dC(g(yw))) with the control w is continuous from (Wad, d)
into Cb(Q \ Ω0)× R× R.

Proof. It is a direct consequence of Theorem 3.2.
In the following, we consider control problems in which the state constraints (2)

are penalized. For a given solution w̄ of (P), the penalization is chosen so that w̄
is an ε2-solution of the penalized problem. To obtain optimality conditions for the
penalized problem, we first establish Taylor expansions in the theorem below.

Theorem 5.2 (see [16, Theorem 4.1]). Let ρ be such that 0 < ρ < 1. For every
w1, w2 ∈ L∞(Ω), if wρ = w1 +ρw2, if yρ and y1 are the solutions of (1) corresponding
respectively to wρ and w1, then we have

yρ = y1 + ρz + rρ with lim
ρ→0

1

ρ
||rρ||C(Q) = 0,

J(yρ, wρ) = J(y1, w1) + ρ∆J + o(ρ),
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where z is the weak solution of

∂z

∂t
+Az + Φ′y(·, y1)z = 0 in Q,

∂z

∂nA
+ Ψ′y(·, y1)z = 0 on Σ, z(0) = w2 in Ω,

and

∆J =

∫
Ω

(
L′w(x, y1(T ), w1)w2 + L′y(x, y1(T ), w1)z(T )

)
dx.

5.2. Approximate optimality conditions. Let (ȳ, w̄) be a solution of problem
(P). For every ε > 0, define

Jε(y, w) = {[(J(y, w)− J(ȳ, w̄) + ε2)+]
2

+ (dC(g(y)))2} 1
2 ,

where dC denotes the distance to C in Cb(Q \ Ω0).
Due to Lemma 5.1, the functional w −→ Jε(yw, w) is continuous and bounded on

the metric space (Wad, d). Moreover, we have

Jε(yw, w) > 0 for every w ∈Wad and Jε(ȳ, w̄) = ε2 ≤ inf
Wad

Jε(yw, w) + ε2.

Due to the Ekeland variational principle, there exists wε ∈Wad such that

d(w̄, wε) ≤ ε and Jε(yε, wε) ≤ Jε(yw, w)+ εd(wε, w) for every w ∈Wad,(18)

where yε is the solution of (1) corresponding to wε. The following theorem gives an
approximate optimality condition for (yε, wε). Optimality conditions for (ȳ, w̄) will be
recovered by passing to the limit, when ε tends to zero, in this approximate optimality
condition.

Theorem 5.3. Let wε ∈Wad satisfy (18). There exist αε ≥ 0, pε ∈ L1(0, T ;W 1,1(Ω)),
ζε ∈ (Cb(Q \ Ω0))′, and a bounded linear transformation Λε ≡ Λζε : Cb(Q \ Ω0) −→
L∞π|ζε|(Q) such that

||ζε||2(Cb(Q\Ω0))′ + (αε)
2 = 1,(19) 〈

ζε, z − g(yε)
〉
∗,Q\Ω0

=
〈
πζε , z − g(yε)

〉
b,Q\Ω0

+

∫
Ω0

Λε

(
z − g(yε)

)
dπ|ζε| ≤ 0(20)

for all z ∈ C,


−∂pε∂t +Apε + Φ′y(x, t, yε)pε + [g′(yε)∗πζε ]|Q = 0 in Q,

∂pε
∂nA

+ Ψ′y(s, t, yε)p̄ε + [g′(yε)∗πζε ]|Σ = 0 on Σ,

pε(T ) = −αεL′y(x, yε(T ), wε)− [g′(yε)∗πζε ]|ΩT on Ω,

(21)

∫
Ω

H ′w
(
x, yε(T ), wε, pε(0), αε

)
(wε − w) dx+

∫
Ω0

Λε

(
g′(yε)(zε,wε − zε,w)

)
dπ|ζε|(22)

≤ Cε (1 + ||w − wε||∞,Ω) for all w ∈Wad,
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where zε,w̃ (with w̃ = wε or w̃ = w) is the weak solution of

∂z

∂t
+Az+Φ′y(·, yε)z = 0 in Q,

∂z

∂nA
+Ψ′y(·, yε)z = 0 on Σ, z(0) = w̃ in Ω.(23)

Proof. Let (yε, wε) satisfy (18). Let us set

Aε =
{

(z, λ) ∈ Cb(Q \ Ω0)× R | ∃w ∈Wad, z = g(yε) + g′(yε)(zε,w − zε,wε)

and λ ≥ J ′y(yε, wε) (zε,w − zε,wε) + J ′w(yε, wε)(w − wε) + ε d(wε, w)
}
,

B = int C×]−∞, 0[,

where int C denotes the interior of C. The sets Aε and B are convex, and B is open.
Let us prove that Aε ∩B = ∅. Suppose that there exists wo ∈Wad, λo ∈ R, such that

g(yε) + g′(yε)(zε,wo − zε,wε) ∈ int C,(24)

0 > λo ≥ J ′y(yε, wε) (zε,wo − zε,wε) + J ′w(yε, wε)(wo − wε) + ε d(wε, wo).(25)

Set wρε = wε+ρ(wo−wε), zρε = g(yε)+ 1
ρ (g(yρε )−g(yε)), and denote by yρε the solution

of (1) corresponding to wρε . From (24), (25), and Theorem 5.2, it follows that

lim
ρ↘0

zρε ∈ int C and 0 > lim
ρ↘0

(J(yρε , w
ρ
ε )− J(yε, wε)

ρ
+ ε

d(wε, w
ρ
ε )

ρ

)
.

Therefore, there exists ρo > 0 such that, for every 0 < ρ ≤ ρo < 1, we have

g(yρε ) = ρ zρε + (1− ρ) g(yε) ∈ int C and J(yρε , w
ρ
ε ) < J(yε, wε)− ε d(wε, w

ρ
ε ).

Observe that

Jε(y
ρ
ε , w

ρ
ε ) = (J(yρε , w

ρ
ε )− J(ȳ, w̄) + ε2)+ = J(yρε , w

ρ
ε )− J(ȳ, w̄) + ε2

< J(yε, wε)− J(ȳ, w̄) + ε2 − ε d(wε, w
ρ
ε ) ≤ Jε(yε, wε)− ε d(wε, w

ρ
ε ).

This contradicts (18) and proves that Aε ∩ B = ∅. From a geometric version of the
Hahn–Banach theorem, there exists (αε, ζε) ∈ R× (Cb(Q \ Ω0))′, such that

αε λε+
〈
ζε, zε

〉
∗,Q\Ω0

> αε λ+
〈
ζε, z

〉
∗,Q\Ω0

for all (zε, λε) ∈ Aε, for all (z, λ) ∈ B.
(26)
We can easily check that αε is nonnegative and that (αε, ζε) 6= 0. By a normalization
procedure, we can suppose that (αε, ζε) satisfies (19). Due to (26), we obtain

αε λε+
〈
ζε, zε

〉
∗,Q\Ω0

≥ αε λ+
〈
ζε, z

〉
∗,Q\Ω0

for all (zε, λε) ∈ Aε, for all (z, λ) ∈ B.
(27)
Therefore, by taking zε = g(yε), z ∈ C, and λε = λ = 0, we deduce that〈

ζε, z − g(yε)
〉
∗,Q\Ω0

≤ 0 for all z ∈ C.(28)

Due to Corollary 4.8, there exists a bounded linear transformation Λε ≡ Λζε : Cb(Q\
Ω0) −→ L∞π|ζε|(Q), such that〈

ζε, h
〉
∗,Q\Ω0

=
〈
πζε , h

〉
b,Q\Ω0

+

∫
Ω0

Λε(h) dπ|ζε| for all h ∈ Cb(Q \ Ω0).
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Thus, (20) follows from (28). Let w ∈Wad; by setting zε = g(yε)+g′(yε)(zε,w−zε,wε),
λε = J ′y(yε, wε) (zε,w − zε,wε) + J ′w(yε, wε)(w − wε) + ε d(wε, w), λ = 0, and z = g(ȳ),
in (27), with (18) and Proposition 3.1, we obtain

αε

(
J ′y(yε, wε) (zε,w − zε,wε) + J ′w(yε, wε)(w − wε)

)
(29)

+
〈
πζε , g

′(yε)(zε,w − zε,wε)
〉
b,Q\Ω0

+

∫
Ω0

Λε

(
g′(yε)(zε,w − zε,wε)

)
dπ|ζε|,

≥ −αε ε d(wε, w) +
〈
ζε, g(ȳ)− g(yε)

〉
∗,Q\Ω0

≥ −Cε (1 + ||w − wε||∞,Ω),

where C is independent of ε. If pε is the solution of (21), with Theorem 3.5, we obtain∫
Ω

−αεL′y(x, yε(T ), wε)(zε,w − zε,wε)(T ) dx−
〈
ζε, g

′(yε)(zε,w − zε,wε)
〉
∗,Q\Ω0

(30)

=

∫
Ω

pε(0)(w − wε) dx−
∫

Ω0

Λε

(
g′(yε)(zε,w − zε,wε)

)
dπ|ζε|.

The optimality condition (22) follows from (29) and (30).

5.3. Proof of optimality conditions. Theorem 3.5 gives

||pε||Lδ′ (0,T ;W 1,d′ (Ω)) ≤ C
(
||L′y(·, yε(T ), wε)||1,Ω + ||g′(yε)||L(Cb(Q\Ω0))||πζε ||Mb(Q\Ω0)

)
≤ C

(
||L′y(·, yε(T ), wε)||1,Ω + ||g′(yε)||L(Cb(Q\Ω0))||ζε||(Cb(Q\Ω0))′

)
for every δ > 1, d > 1 satisfying N

2d + 1
δ <

1
2 (L(Cb(Q \ Ω0)) is the space of linear

continuous mappings from Cb(Q \ Ω0) into Cb(Q \ Ω0)). Since the sequences (ζε)ε,
(yε)ε, and (wε)ε are bounded in (Cb(Q \ Ω0))′, Cb(Q \ Ω0), and L∞(Ω) respectively,
it follows that the sequence (pε)ε is bounded in Lδ

′
(0, T ;W 1,d′(Ω)) for every (δ, d)

satisfying N
2d + 1

δ < 1
2 . Then there exists a subsequence, still indexed by ε, and p̄

such that (pε)ε converges to p̄ weakly in Lδ
′
(0, T ;W 1,d′(Ω)) for every (δ, d) satisfying

N
2d + 1

δ <
1
2 . Moreover, due to classical imbeddings, (pε)ε converges to p̄ weakly in

Lq
′
(Q) for all q > N

2 + 1, and the sequence of traces (pε|Σ)ε converges to p̄|Σ weakly

in Lr
′
(Σ) for all r > N + 1. The sequence (αε)ε (or at least a subsequence) converges

to ᾱ ≥ 0, (wε)ε converges to w̄ in L∞(Ω), and (yε)ε converges to ȳ in Cb(Q \ Ω0).

From assumptions on Φ, Ψ and L, we can prove that the sequence (Φ′y(·, yε),
Ψ′y(·, yε), L′y(·, yε(T ), wε))ε converges to (Φ′y(·, ȳ),Ψ′y(·, ȳ), L′y(·, ȳ(T ), w̄)) in Lθ(Q) ×
Lθ(Σ) × L1(Ω) for every θ < ∞. The sequence (ζε)ε is bounded in (Cb(Q \ Ω0))′.
Then there exists a generalized sequence, still indexed by ε, such that (ζε)ε converges
to a limit ζ̄ for the weak-star topology of (Cb(Q \ Ω0))′. Due to Corollary 4.8, there
exists a bounded linear transformation Λζ̄ : Cb(Q \ Ω0) −→ L∞π|ζ̄|(Q), such that

〈
ζ̄, h
〉
∗,Q\Ω0

=
〈
πζ̄ , h

〉
b,Q\Ω̄0

+

∫
Ω0

Λζ̄(h) dπ|ζ̄| for all h ∈ Cb(Q \ Ω0).
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For every z ∈ C1(Q) satisfying z(0) = 0, we have

∫
Q

pε ∂z
∂t

+
∑
i,j

aijDizDjpε + Φ′y(x, t, yε)pεz)

 , dxdt+

∫
Σ

pεΨ
′
y(s, t, yε)z dsdt

+

∫
Ω

αεL
′
y(x, yε(T ), wε)z(x, T ) dx = −

〈
πζε , g

′(yε)z
〉
b,Q\Ω0

= −
〈
ζε, g

′(yε)z
〉
∗,Q\Ω0

.

By passing to the limit in this variational formulation, it follows that:

∫
Q

p̄ ∂z
∂t

+
∑
i,j

aijDizDj p̄+ Φ′y(x, t, ȳ)p̄z

 dxdt+

∫
Σ

p̄Ψ′y(s, t, ȳ)z dsdt

+

∫
Ω

ᾱL′y(x, ȳ(T ), w̄)z(x, T ) dx = −
〈
ζ̄, g′(ȳ)z

〉
∗,Q\Ω0

= −
〈
πζ̄ , g

′(ȳ)z
〉
b,Q\Ω0

for every z ∈ C1(Q) satisfying z(0) = 0. Therefore, p̄ is the weak solution of equation
(5). On the other hand, by using the Green formulas satisfied by p̄ and pε, we have

−
∫

Ω

αεL
′
y(x, yε(T ), wε)(zε,w − zε,wε)(T ) dx−

∫
Ω

pε(0)(w − wε) dx(31)

=
〈
ζε, g

′(yε)(zε,w − zε,wε)
〉
∗,Q\Ω0

−
∫

Ω0

Λε

(
g′(yε)(zε,w − zε,wε)

)
dπ|ζε|

and

−
∫

Ω

ᾱL′y(x, ȳ(T ), w̄)(z̄w − z̄w̄)(T ) dx−
∫

Ω

p̄(0)(w − w̄)(0) dx(32)

=
〈
ζ̄, g′(ȳ)(z̄w − z̄w̄)

〉
∗,Q\Ω0

−
∫

Ω0

Λζ̄

(
g′(ȳ)(z̄w − z̄w̄)

)
dπ|ζ̄|,

where z̄w̃ (for w̃ = w̄ or w̃ = w) is the solution of

∂z

∂t
+Az + Φ′y(·, ȳ)z = 0 in Q,

∂z

∂nA
+ Ψ′y(·, ȳ)z = 0 on Σ, z(0) = w̃ in Ω.(33)

Let us set

Iε =

∫
Ω

(
pε(0)(w − wε)− p̄(0)(w − w̄)

)
dx

−
∫

Ω0

Λε

(
g′(yε)(zw − zwε)

)
dπ|ζε| +

∫
Ω0

Λζ̄

(
g′(ȳ)(z̄w − z̄w̄)

)
dπ|ζ̄|.
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From (31) and (32), it follows that∣∣∣Iε∣∣∣ ≤ ∣∣∣ ∫
Ω

ᾱL′y(x, ȳ(T ), w̄)(z̄w − z̄w̄)(T ) dx

−
∫

Ω

αεL
′
y(x, yε(T ), wε))(zε,w − zε,wε)(T ) dx

∣∣∣
+
∣∣∣〈ζ̄, g′(ȳ)(z̄w − z̄w̄)

〉
∗,Q\Ω0

−
〈
ζε, g

′(yε)(zε,w − zε,wε)
〉
∗,Q\Ω0

∣∣∣
≤
∣∣∣∣∣∣ᾱL′y(·, ȳ(T ), w̄)− αεL′y(·, yε(T ), wε)

∣∣∣∣∣∣
1,Ω

∣∣∣∣∣∣zε,w − zε,wε∣∣∣∣∣∣∞,Q
+
∣∣∣∣∣∣ᾱL′y(·, ȳ(T ), w̄)

∣∣∣∣∣∣
1,Ω

∣∣∣∣∣∣(zε,w − zε,wε)− (z̄w − z̄w̄)
∣∣∣∣∣∣
∞,Q

+
∣∣∣〈ζ̄ − ζε, g′(ȳ)(z̄w − z̄w̄)

〉
∗,Q\Ω0

∣∣∣
+
∣∣∣∣∣∣g′(ȳ)(zw − zw̄)− g′(yε)(zε,w − zε,wε)

∣∣∣∣∣∣
∞,Q

.

Since the generalized sequence (αε, wε, yε, zε,wε , zε,w, ζε)ε converges to (ᾱ, w̄, ȳ, z̄w̄, z̄w, ζ̄),
we obtain limε Iε = 0. Therefore, by passing to the limit in the approximate opti-
mality conditions satisfied by wε, we obtain∫

Ω

H ′w
(
x, ȳ(T ), w̄, p̄(0), ᾱ

)
(w̄ − w) dx+

∫
Ω0

Λζ̄

(
g′(ȳ)(z̄w̄ − z̄w)

)
dπ|ζ̄| ≤ 0(34)

for all w ∈ Wad. Let zw̃ (for w̃ = w̄ or w̃ = w) be the solution of (7) corresponding
to w̃. Due to Proposition 4.10, we have∫

Ω0

Λζ̄

(
g′(ȳ)z̄w̃

)
dπ|ζ̄| =

∫
Ω0

Λζ̄

(
g′(ȳ)zw̃

)
dπ|ζ̄|.(35)

By taking (34) and (35) into account, we obtain (8). On the other hand, by passing
to the limit in 〈

ζε, z
〉
∗,Q\Ω0

≤
〈
ζε, g(yε)

〉
∗,Q\Ω0

for all z ∈ C,

we obtain condition (4). Finally, by passing to the limit in αε
2+(||ζε||(Cb(Q\Ω0))′)

2 = 1,

we obtain ᾱ2 + (limε ||ζε||(Cb(Q\Ω0))′)
2 = 1. If ᾱ > 0, the proof is complete. If

ᾱ = 0, we must prove that ||ζ̄||(Cb(Q\Ω0))′ > 0. Since intCb(Q\Ω0)C 6= ∅, there exists

a ball B(z, 2ρ) ⊂ C in Cb(Q \ Ω0), with center z and radius 2ρ > 0. We can choose
z̃ε ∈ B(0, 2ρ) such that 〈ζε, z̃ε〉∗,Q\Ω0

= ρ||ζε||(Cb(Q\Ω0))′ . Since z + z̃ε ∈ C, we have〈
ζε, z + z̃ε − g(yε)

〉
∗,Q\Ω0

≤ 0.

By passing to the limit, we obtain ρ+ 〈ζ̄, z − g(ȳ)〉∗,Q\Ω0
≤ 0, and thus ζ̄ 6= 0.

6. Application of Theorem 2.1. Consider state constraints of the form

a(x, t) ≤ y(x, t) ≤ b(x, t) for all (x, t) ∈ Q \ Ω0,(36)
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where a and b are two functions in C(Q) satisfying a(x, t) < b(x, t) on Q. The state
constraints (36) may be written in the form (2) by setting

y ∈ C = {z ∈ Cb(Q \ Ω0) | a ≤ z ≤ b}.(37)

Theorem 6.1. Suppose that A1–A4 are fulfilled and that the state constraint (2)
is defined by (37). Then there exist ᾱ ≥ 0, p̄ ∈ L1(0, T ;W 1,1(Ω)), ζ̄ ∈ (Cb(Q \ Ω0))′,
two bounded linear transformations Λ+ : Cb(Q \ Ω0) −→ L∞πζ̄+ (Q), and Λ− : Cb(Q \
Ω0) −→ L∞πζ̄− (Q) such that

(πζ̄− , πζ̄+ , ᾱ) 6= 0,(38)

〈
πζ̄+ , ȳ

〉
b,Q\Ω0

=
〈
πζ̄+ , b

〉
b,Q\Ω0

,

∫
Ω0

Λ+(ȳ)dπζ̄+ =
〈
πζ̄+ , b

〉
M(Ω0)×C(Ω0)

,(39)

〈
πζ̄− , ȳ

〉
b,Q\Ω0

=
〈
πζ̄− , a

〉
b,Q\Ω0

,

∫
Ω0

Λ−(ȳ)dπζ̄− =
〈
πζ̄− , a

〉
M(Ω0)×C(Ω0)

,(40)


−∂p̄∂t +Ap̄+ Φ′y(x, t, ȳ)p̄+ [πζ̄+ − πζ̄− ]|Q = 0 in Q,

∂p̄
∂nA

+ Ψ′y(s, t, ȳ)p̄+ [πζ̄+ − πζ̄− ]|Σ = 0 on Σ,

p̄(x, T ) + ᾱL′y(x, ȳ(T ), w̄) + [πζ̄+ − πζ̄− ]|ΩT = 0 on Ω,

(41)

∫
Ω

H ′w
(
x, ȳ(T ), w̄, p̄(0), ᾱ

)
(w̄ − w) dx(42)

+
〈
πζ̄+ , b

〉
M(Ω0)×C(Ω0)

−
〈
πζ̄− , a

〉
M(Ω0)×C(Ω0)

≤
∫

Ω0

Λ+(zw) dπζ̄+−
∫

Ω0

Λ−(zw) dπζ̄−

for all w ∈Wad, where zw is the solution of (7) corresponding to w.
Proof. Due to Theorem 2.1, there exist ᾱ ≥ 0, p̄ ∈ L1(0, T ;W 1,1(Ω)), ζ̄ ∈

(Cb(Q \ Ω0))′, and a bounded linear transformation Λζ̄ : Cb(Q \ Ω0) −→ L∞π|ζ̄|(Q),

such that (3)–(8) are satisfied. We consider ζ̄ as an element of M(Q × (Q \ Ω0)#).
The condition (4) may be rewritten as〈

ζ̄, τ(z)− τ(ȳ)
〉

#
≤ 0 for all z ∈ C

(that is, 〈ζ̄, τ(z)−τ(ȳ)〉# ≤ 0 for all τ(z) ∈ Ĉ = {ẑ ∈ C((Q\Ω0)#) | τ(a) ≤ ẑ ≤ τ(b)}),
where 〈·, ·〉# denotes the duality pairing 〈·, ·〉M(Q×(Q\Ω0)#)×C(Q×(Q\Ω0)#) and τ is the

operator defined in Proposition 4.2. Therefore,〈
ζ̄, τ(z̃)− τ(ỹ)

〉
#
≤ 0 for all − b− a

2
≤ z̃ ≤ b− a

2

(
with ỹ = ȳ − b+ a

2

)
and 〈

ζ̄, τ(ỹ)
〉

#
= sup
|z̃|≤ b−a2

〈
ζ̄, τ(z̃)

〉
#

= sup
|φ|≤1

〈
ζ̄, τ
(b− a

2
φ
)〉

#



NECESSARY OPTIMALITY CONDITIONS 1029

= sup
τ(|φ|)≤τ(1)

〈
ζ̄, τ
(b− a

2

)
τ(φ)

〉
#

= sup
|τ(φ)|≤1

〈
ζ̄, τ
(b− a

2

)
τ(φ)

〉
#

=
〈
|ζ̄|, τ

(b− a
2

)〉
#
.

From the definition of ỹ and from the above equality, by a straightforward calculation,
we obtain 〈

ζ̄+, τ(ȳ − b)
〉

#
+
〈
ζ̄−, τ(a− ȳ)

〉
#

= 0.

From a ≤ ȳ ≤ b (and thus τ(a) ≤ τ(ȳ) ≤ τ(b)), we see that〈
ζ̄+, τ(ȳ − b)

〉
#

= 0,
〈
ζ̄−, τ(a− ȳ)

〉
#

= 0.(43)

Due to Theorem 4.7, there exist two bounded linear transformations Λζ̄+ : C((Q \
Ω0)#) −→ L∞πζ̄+ (Q) and Λζ̄− : C((Q \ Ω0)#) −→ L∞πζ̄− (Q), such that

〈
ζ̄+, τ(h)

〉
#

=
〈
πζ̄+ , h

〉
b,Q\Ω0

+

∫
Ω0

Λζ+(τ(h)) dπζ̄+ ,(44)

〈
ζ̄−, τ(h)

〉
#

=
〈
πζ̄− , h

〉
b,Q\Ω0

+

∫
Ω0

Λζ−(τ(h)) dπζ̄−(45)

for all h ∈ Cb(Q \ Ω0). Let us set Λ+ = Λζ+ ◦ τ and Λ− = Λζ− ◦ τ . From (43), the
results are〈

πζ̄+ , ȳ
〉
b,Q\Ω0

+

∫
Ω0

Λ+(ȳ) dπζ̄+ =
〈
πζ̄+ , b

〉
b,Q\Ω0

+

∫
Ω0

Λ+(b) dπζ̄+ ,

〈
πζ̄− , ȳ

〉
b,Q\Ω0

+

∫
Ω0

Λ−(ȳ) dπζ̄− =
〈
πζ̄− , b

〉
b,Q\Ω0

+

∫
Ω0

Λ−(a) dπζ̄− .

Since a ≤ ȳ ≤ b, due to Corollary 4.9 with the above equalities, we have

0 ≤
∫

Ω0

Λ+(b− ȳ) dπζ̄+ =
〈
πζ̄+ , ȳ − b

〉
b,Q\Ω0

≤ 0,

0 ≤
∫

Ω0

Λ−(ȳ − a) dπζ̄− =
〈
πζ̄− , a− ȳ

〉
b,Q\Ω0

≤ 0.

Consequently, we have proved (39) and (40). We still must prove (42). With (44) and
(45), it follows that∫

Ω0

Λζ̄(z) dπ|ζ̄| =
〈
ζ̄, τ(z)

〉
#
−
〈
ζ̄, z
〉
b,Q\Ω0

=
〈
ζ̄, z
〉
∗,Q\Ω0

−
〈
ζ̄, z
〉
b,Q\Ω0

=
〈
ζ̄+, z

〉
∗,Q\Ω0

−
〈
ζ̄+, z

〉
b,Q\Ω0

−
〈
ζ̄−, z

〉
∗,Q\Ω0

+
〈
ζ̄−, z

〉
b,Q\Ω0

=

∫
Ω0

Λ+(z) dπζ̄+ −
∫

Ω0

Λ−(z) dπζ̄− for all z ∈ Cb(Q \ Ω0).



1030 NADIR ARADA AND JEAN-PIERRE RAYMOND

The optimality condition (42) follows from (6), from the above equality, and from∫
Ω0

Λ+(zw̄ − ȳ) dπζ̄+ =

∫
Ω0

Λ−(zw̄ − ȳ) dπζ̄− = 0.

The proof is complete.
Corollary 6.2. Suppose that assumptions of Theorem 6.1 are satisfied. Suppose

in addition that there exists w̃ ∈Wad satisfying a(x, 0) + ε̃ ≤ w̃(x) ≤ b(x, 0)− ε̃ on Ω
(for some ε̃ > 0). Then there exist ᾱ ≥ 0, p̄ ∈ L1(0, T ;W 1,1(Ω)), µ̄a ∈ Mb(Q \ Ω0),
and µ̄b ∈Mb(Q \ Ω0) such that

µ̄a ≥ 0, µ̄b ≥ 0, (µ̄a, µ̄b, ᾱ) 6= 0,(46)

〈
µ̄b, ȳ

〉
b,Q\Ω0

=
〈
µ̄b, b

〉
b,Q\Ω0

,
〈
µ̄a, ȳ

〉
b,Q\Ω0

=
〈
µ̄a, a

〉
b,Q\Ω0

,(47)

p̄ satisfies (41) with πζ̄ |Q\Ω0
≡ µ̄b − µ̄a,(48)

∫
Ω

H ′w
(
x, ȳ(T ), w̄, p̄(0), ᾱ

)
(w̄ − w) dx ≤ 0(49)

for all w ∈Wad with a(0) ≤ w ≤ b(0).
Proof. Due to Theorem 6.1, there exist ᾱ ≥ 0, p̄ ∈ L1(0, T ;W 1,1(Ω)), ζ̄ ∈

(Cb(Q \Ω0))′, and a bounded linear transformation Λζ̄ : Cb(Q \Ω0) −→ L∞πζ̄ (Q) such

that (38)–(42) are satisfied.
1. We claim that (πζ̄+ |Q\Ω0

, πζ̄− |Q\Ω0
, ᾱ) 6= 0. Arguing by contradiction, we

suppose that (πζ̄+ |Q\Ω0
, πζ̄− |Q\Ω0

, ᾱ) = 0. It follows that p̄ ≡ 0. With (38), we have

(πζ̄− |Ω0
, πζ̄+ |Ω0

) 6= 0, and with (42), we deduce that∫
Ω0

Λ−(zw) dπζ̄− −
∫

Ω0

Λ+(zw) dπζ̄+ ≤
〈
πζ̄− , a

〉
M(Ω0)×C(Ω0)

−
〈
πζ̄+ , b

〉
M(Ω0)×C(Ω0)

for all w ∈Wad, where zw is the solution of (7) corresponding to w. In particular,∫
Ω0

Λ−(zw̃) dπζ̄− −
∫

Ω0

Λ+(zw̃) dπζ̄+ ≤ 〈πζ̄− , a〉M(Ω0)×C(Ω0) − 〈πζ̄+ , b〉M(Ω0)×C(Ω0).

(50)
With a comparison principle, we prove that

za(0)+ε̃(x, t) ≤ zw̃(x, t) ≤ zb(0)−ε̃(x, t) for all (x, t) ∈ Q \ Ω0.

From Corollary 4.9, it follows that〈
πζ̄+ , a

〉
M(Ω0)×C(Ω0)

+ε̃πζ̄+(Ω0) ≤
∫

Ω0

Λ+(zw̃) dπζ̄+ ≤
〈
πζ̄+ , b

〉
M(Ω0)×C(Ω0)

−ε̃πζ̄+(Ω0),

〈
πζ̄− , a

〉
M(Ω0)×C(Ω0)

+ε̃πζ̄−(Ω0) ≤
∫

Ω0

Λ−(zw̃) dπζ̄− ≤
〈
πζ̄− , b

〉
M(Ω0)×C(Ω0)

−ε̃πζ̄−(Ω0),
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and thus 〈
πζ̄− , a

〉
M(Ω0)×C(Ω0)

−
〈
πζ̄+ , b

〉
M(Ω0)×C(Ω0)

≤
∫

Ω0

Λ−(zw̃) dπζ̄− −
∫

Ω0

Λ+(zw̃) dπζ̄+ − ε̃[πζ̄−(Ω0) + πζ̄+(Ω0)],

which is in contradiction with (50). By setting µ̄a ≡ πζ̄− |Q\Ω0
and µ̄b ≡ πζ̄+ |Q\Ω0

, we

obtain (46), (47), and (48).
2. Let a(0) ≤ w ≤ b(0). With a comparison principle and Corollary 4.9, it follows

that ∫
Ω0

Λ+(zw) dπζ̄+ ≤
∫

Ω0

Λ+(zb(0)) dπζ̄+ =
〈
πζ̄+ , b

〉
M(Ω0)×C(Ω0)

,∫
Ω0

Λ−(za(0)) dπζ̄− =
〈
πζ̄− , a

〉
M(Ω0)×C(Ω0)

≤
∫

Ω0

Λ−(zw) dπζ̄− .

Taking (42) into account, we obtain∫
Ω

H ′w(x, ȳ(T ), w̄, p̄(0), ᾱ)(w̄ − w) dx

≤
〈
πζ̄− , a

〉
M(Ω0)×C(Ω0)

−
〈
πζ̄+ , b

〉
M(Ω0)×C(Ω0)

+

∫
Ω0

Λ+(zw) dπζ̄+ −
∫

Ω0

Λ−(zw) dπζ̄−

≤ 0 for all w ∈Wad with a(0) ≤ w ≤ b(0).

The proof is complete.

Acknowledgment. The authors would like to thank E. Casas for helpful re-
marks during the preparation of this paper.
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ON THE WEAK CLOSURE OF SETS OF FEASIBLE STATES
FOR LINEAR ELLIPTIC EQUATIONS

IN THE SCALAR CASE∗
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Abstract. A suitable description of the weak closure of feasible states is given for the family of
equations

divA(x)∇u = f(x) in Ω , u ∈ H1
0 (Ω), Ω ⊂ Rn,

with A ∈ M, where the set M consists of all measurable symmetric matrices whose eigenvalues at
almost every x ∈ Ω belong to a given finite set {(λ1

1, . . . , λ
1
n); . . . ; (λN1 , . . . , λ

N
n )} ⊂ Rn and which

satisfy additional constraints on the measure of sets where the eigenvalues of A are equal to some
(λi1, . . . , λ

i
n), i = 1, . . . , N . Applications to optimal control problems are also considered.

Key words. elliptic equation, optimal control, feasible states, weak closure

AMS subject classifications. 49J20, 49M20

PII. S0363012997324326

1. Introduction. For optimal control problems of the type

(1.1) I(u) → min, u ∈ H1
0 (Ω), A ∈M,

(1.2) Au := divA∇u = f in Ω,

where M is a given set of measurable symmetric positive definite matrices and I is a
weakly continuous functional, it is very natural to extend the set M to the set GM
which corresponds to the G-closure of the set of admissible operators of the type (1.2)
defined by A ∈ M. Since analytical descriptions of GM are known only for a few
cases, the problem of the G-closure can be substituted by a problem of finding another
larger set M′ of matrices, M ⊂ M′, such that the set Z(M′, f) of all solutions of
(1.2) with A ∈ M′ is equal to the closure in the weak topology of H1

0 (Ω) of the set
Z(M, f) of all solutions of (1.2) with A ∈M.

If such a set M′ is found, then from the point of view of solving the problem
(1.1)–(1.2) there is not a great difference if one uses the set GM or the setM′. Only
two questions remain: how to interpret an optimal solution from M′ and how to
construct a minimizing sequence for the original problem by using the knowledge of
the optimal solution from M′.

In this paper, we consider the problem (1.1)–(1.2) withM =M(d), whereM(d)
is defined by means of a given finite set of matrices {D1; . . . ;DN} ⊂ Rn×n, a vector
d = (d1, . . . , dN ) ∈ RN , and
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M(d) =

{
A ∈ [L2(Ω)]

n×n |

A(x) =
N∑
i=1

θi(x)Qi(x)DiQ
−1
i (x) almost everywhere (a.e.) x ∈ Ω,

Qi(x) ∈ O a.e. x ∈ Ω,

θi(x) = 0 or 1, i = 1, . . . , N, θ1(x) + · · ·+ θN (x)

= 1 a.e. x ∈ Ω,∫
Ω

θi(x)dx ≤ di, i = 1, . . . , N

}
.

Here O is the set of all orthogonal constant n× n matrices.
From the point of view of practical problems the matrices Di play the role of

properties of givenN materials (not necessary isotropic) and the additional constraints
on θi play the role of constraints on the volumes occupied by each material.

The above-formulated problem and its analogues have been studied by many
authors. Most of these investigations were based on the evaluation of the G-closure of
the set of admissible matrices. For problems without restrictions on volumes occupied
by each material the corresponding G-closures were obtained by Frankfort and Murat
[2] (n = N = 2, anisotropic materials) and Lurie and Cherkaev [4] (isotropic materials,
arbitrary n and m). The characterization of mixtures using two isotropic materials in
given proportions were given in Lurie and Cherkaev [4], [5], Murat and Tartar [8], and
Tartar [12]. Many investigations have been devoted to bounds on effective properties
of composites. We mention here Milton and Kohn [7], Milton [6], Nesi [9], Zhikov,
Kozlov, and Oleinik [15], and references therein. Nevertheless, as far as we know, an
analytical description of the G-closure for the case of N , N ≥ 3, does not exist, given
isotropic materials taken in prescribed proportion.

Various aspects of related optimal control problems are discussed in Lurie [3].
In Cherkaev [1] the idea was developed that from the point of view of optimization
it is necessary to find out only a part of the G-closure which really defines the only
candidates to optimality.

The first results different from pure extensions via the G-closure were obtained
by Raitums [10] for the case without restrictions on the amounts of materials. Almost
at the same time similar ideas were developed in Murat and Tartar [8] for the case
of two isotropic materials, with restrictions on amounts of materials. In Tartar [13]
it was indicated that these ideas in a natural way can be extended to the case of an
arbitrary number of anisotropic materials.

We must especially mention the recently published paper by Tartar [14], who via
a different approach obtained a successful extension of the set M(d) which coincides
with the set WM(d) (see section 2 for the precise definition) described in our paper.
The main difference between our approach and Tartar’s [14] is that we give an explicit
analytical procedure (proofs of Lemma 3.6 and Theorem 2.1 below) which describes
how for a given pair (A∗, u∗) ∈WM(d)×H1

0 (Ω),

divA∗∇u∗ = f in Ω,

a sequence {Ak} ⊂ M(d) (rank 2 laminated structure) is constructed such that the
corresponding sequence {uk} of solutions of
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divAk∇uk = f in Ω, k = 1, 2, . . . ,

converges to u∗ weakly in H1
0 (Ω).

In the following sections we give an explicit description of a set of matrices
WM(d) such that for every fixed f ∈ H−1(Ω) the set Z(WM(d), f) of all solu-
tions of (1.2) with A ∈WM(d) is equal to the closure in the weak topology of H1

0 (Ω)
of the set of all solutions of (1.2) with A ∈ M(d). Moreover, we show that the set
WM(d) defines a G-closed family of operators and that for every solution u0 of (1.2)
with some A0 ∈ WM(d) there exists a sequence of matrices {Ak} ⊂ M(d) which
defines a rank 2 laminated structure and G-converges to a matrix A∗ such that

A∗(x)∇u0(x) = A0(x)∇u0(x) a.e. x ∈ Ω.

2. Notation and statements of results. Let n ≥ 2 be an integer, let Rn be
the n-dimensional Euclidean space with elements x = (x1, . . . , xn), ξ = (ξ1, . . . , ξn),
and let Ω ⊂ Rn be a bounded domain with a uniformly Lipschitz boundary ∂Ω.

Throughout this paper we shall use the following notations:

|.|, 〈.〉 the norm and the scalar product in Rn, respectively.
|E| or measE the Lebesgue measure of a measurable subset E ⊂ Ω.
O the set of all constant n× n orthogonal matrices.
Q a constant orthogonal matrix or a matrix function

Q = Q(x), x ∈ Ω, with values Q(x) ∈ O a.e. x ∈ Ω.
ν, µ fixed positive constants with 0 < ν < µ.
M(ν, µ) the set of all symmetric constant n× n matrices D such that

〈Dξ, ξ〉 ≥ ν|ξ|2 ∀ξ ∈ Rn, |Dξ| ≤ µ|ξ| ∀ξ ∈ Rn.

M(ν, µ) the set {A ∈ [L2(Ω)]
n×n | A(x) ∈M(ν, µ) a.e. x ∈ Ω}.

λj(A)(x) eigenvalues of a matrix A ∈M(ν, µ) at a point x
arranged in the increasing order, i.e.,
ν ≤ λ1(A)(x) ≤ · · · ≤ λn(A)(x) ≤ µ.

λj(A) the corresponding functions with values at a point x ∈ Ω
equal to λj(A)(x), j = 1, . . . , n, respectively.

lj vector functions with values in Rn.
wlim the limit in the weak topology of L2(Ω)

or its Cartesian products.
G-limit the limit in the sense of the G-convergence.

diag(a1, . . . , an) a diagonal matrix

 a1 0
. . .

0 an

 .

a ≤ b for vectors a = (a1, . . . , an), b = (b1, . . . , bn) the inequality
a ≤ b means that aj ≤ bj , j = 1, . . . , n.

A ≤ B for matrices A,B ∈M(ν, µ) the inequality A ≤ B.
means that 〈(B(x)−A(x)) ξ, ξ〉 ≥ 0 ∀ξ ∈ Rn a.e. x ∈ Ω.

Consider elliptic operators

(2.1)
A : H1

0 (Ω)→ H−1(Ω),
Au := divA∇u

defined by means of matrices A ∈ M(ν, µ). To emphasize that an operator A of the
kind (2.1) is defined by a matrix A we shall use the notation A(A).

We shall say that a sequence of matrices {Ak} ⊂ M(ν, µ) G-converges to a matrix
A0 if and only if the corresponding sequence of operators {A(Ak)} G-converges to the
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operator A(A0). For more details of the G-convergence see Zhikov, Kozlov, and
Oleinik [15].

It is well known (see, for instance, Zhikov, Kozlov, and Oleinik [15] or Raitums
[11]) that every subsetM⊂M(ν, µ) possesses a G-closure which belongs toM(ν, µ).
We shall denote by GM the G-closure of a set M⊂M(ν, µ). We remind the reader
that GM consists of all matrices B such that there exists a sequence {Ak} ⊂ M
which G-converges to B.

The G-convergence of a sequence of matrices {Ak} to a matrix A0 shall be denoted
by

Ak
G−→ A0 or A0 = G− limitAk.

We shall say that a matrix A0 is a rank 1 composite (or that A0 is obtained
by means of a rank 1 laminated structure) if there exists a sequence of matrices
As, s = 1, 2, . . . , such that

(i) As → A0 strongly in [L2(Ω)]
n×n

as s→∞;
(ii) for every matrix As there exists a sequence {Ask} ⊂ M(ν, µ) of admissible

matrices which G-converges to As and for almost every x0 ∈ Ω there exists a
neighborhood Es(x0) of x0 and a constant vector ls ∈ Rn such that

Ask(x) = Ask (〈x, ls〉) in Es(x0), k = 1, 2, . . . .

We shall say that a matrix A0 is a rank 2 composite (or that A0 is obtained by
means of a rank 2 laminated structure) if A0 is constructed from rank 1 composites
in the same way as rank 1 composites are constructed from admissible matrices.

Let N ≥ 2 be an integer, let Di ∈M(ν, µ), i = 1, . . . , N , be diagonal matrices,

Di = diag(λ1(Di), . . . , λn(Di)), i = 1, . . . , N,

and let d = (d1, . . . , dN ) be a vector with nonnegative components such that

d1 + · · ·+ dN ≥ |Ω|.
We introduce the following sets:

S = {θ ∈ [L2(Ω)]
N | θ = (θ1, . . . , θN ), θi(x) = 0 or 1, i = 1, . . . , N,

θ1(x) + · · ·+ θN (x) = 1 a.e. x ∈ Ω},

K(d) =

{
p ∈ [L2(Ω)]

N | p = (p1, . . . , pN ), pi(x) ≥ 0 a.e. x ∈ Ω, i = 1, . . . , N,

p1(x) + · · ·+ pN (x) = 1 a.e. x ∈ Ω,∫
Ω

pi(x)dx ≤ di, i = 1, . . . , N

}
,

M(d) =

{
A ∈M(ν, µ) | A(x) =

N∑
i=1

θi(x)Qi(x)DiQ
−1
i (x) a.e. x ∈ Ω,

θ = (θ1, . . . , θN ) ∈ S, Qi(x) ∈ O a.e. x ∈ Ω, i = 1, . . . , N,∫
Ω

θi(x)dx ≤ di, i = 1, . . . , N

}
,
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Λ(p) =

{
(λ1, λn) ∈ [L2(Ω)]

2 | λ1(x) ≤ λn(x) a.e. x ∈ Ω,(
1

λ1(x)
, λn(x)

)
≤
(

N∑
i=1

pi(x)
1

λ1(Di)
,

N∑
i=1

pi(x)λn(Di)

)
a.e. x ∈ Ω

}
,

Λ0(p) =

{
(λ1, λn) ∈ Λ(p) |(

1

λ1(x)
, λn(x)

)
=

(
N∑
i=1

pi(x)
1

λ1(Di)
,

N∑
i=1

pi(x)λn(Di)

)
a.e. x ∈ Ω

}
,

Λ(d) =
⋃

p∈K(d)

Λ(p),

Λ0(d) =
⋃

p∈K(d)

Λ0(p).

By Λ(p)(x) and Λ0(p)(x) we shall denote the sets of values defined by functions
from Λ(p) and Λ0(p) at a point x, respectively.

Consider the optimal control problem

(2.2)
I(u)→ min,

divA∇u = f in Ω, A ∈M(d), u ∈ H1
0 (Ω),

where the element f ∈ H−1(Ω) and the functional I are fixed. We always suppose
that the functional I is weakly continuous on H1

0 (Ω).
Such problems correspond to the optimal layout of N given anisotropic materials

described by means of matrices D1, . . . , DN , respectively, with additional constraints
on the volumes occupied by each material.

Together with the problem (2.2) we will consider the problem

(2.3)
I(u)→ min,

divA∇u = f in Ω, A ∈ GM(d), u ∈ H1
0 (Ω),

which is the extension of the problem (2.2) via the G-closure, and the problem

(2.4)
I(u)→ min,

divA∇u = f in Ω, A ∈WM(d), u ∈ H1
0 (Ω),

where

(2.5) WM(d) = {A ∈M(ν, µ) | (λ1(A), λn(A)) ∈ Λ(d)}.

It is clear that problem (2.3) possesses an optimal solution.
For a given set of matricesM⊂M(ν, µ) denote by Z(M, f) the set of all feasible

states of the state equation

divA∇u = f in Ω
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with A ∈M, i.e.,

Z(M, f) = {u ∈ H1
0 (Ω | there exists a matrix A ∈M such that

divA∇u = f in Ω}.
The main results of the paper are the following.
Theorem 2.1. For every fixed f ∈ H−1(Ω) the problems (2.3) and (2.4) have

one and the same set of feasible states, i.e.,

Z (GM(d), f) = Z (WM(d), f) ,

and the set Z (WM(d), f) is closed in the weak topology of H1
0 (Ω).

Theorem 2.2. The set WM(d) is G-closed.
Theorem 2.3. Problem (2.4) has at least one optimal solution (A0, u0) ∈WM(d)×

H1
0 (Ω) and there exists a matrix A∗ ∈ GM(d) such that

A∗(x)∇u0(x) = A0(x)∇u0(x) a.e. x ∈ Ω.

The pair (A∗, u0) is an optimal solution of the problem (2.3) and the matrix A∗ is a
rank 2 composite constructed by means of matrices from M(d).

3. Properties of the set WM(d).
Lemma 3.1. The set

Λ =

{(
1

λ1(A)
, λn(A)

)
∈ [L2(Ω)]2 | A ∈WM(d)

}
is convex and closed.

Proof. From the definitions of the sets Λ(p), Λ(d), and WM(d) it immediately
follows that

Λ =

{(
1

λ1
, λn

)
∈ [L2(Ω)]2 | λ1(x) ≤ λn(x) a.e. x ∈ Ω,(

1

λ1(x)
, λn(x)

)
≤
(

N∑
i=1

pi(x)
1

λ1(Di)
,
N∑
i=1

pi(x)λn(Di)

)
a.e. x ∈ Ω,

p ∈ K(d)

}
.

The set K(d) is convex and closed; therefore the set Λ is convex and closed too.
Lemma 3.2. Let p ∈ K(d) and let the sequence {Ak} ⊂ M(d) be defined as

(3.1)

Ak(x) =
N∑
i=1

θki (x)Qki (x)Di

(
Qki (x)

)−1
a.e. x ∈ Ω, k = 1, 2, . . . ,

Qki (x) ∈ O a.e. x ∈ Ω, i = 1, . . . , N, k = 1, 2, . . . ,

θk = (θk1 , . . . , θ
k
N ) ∈ S, k = 1, 2, . . . ,

θk ⇀ p weakly as k →∞.

If the sequence {Ak} G-converges to a matrix A0 then

(λ1(A0), λn(A0)) ∈ Λ(p).
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Proof. Without loss of generality we can assume that the sequences {Ak} and
{A−1

k } weakly converge to A+ and A−1
− , respectively. It is well known (see, for in-

stance, Zhikov, Kozlov, and Oleinik [15]) that

A− ≤ A0 ≤ A+,

which gives that

(3.2) λ1(A−)(x) ≤ λ1(A0)(x) ≤ λn(A0)(x) ≤ λn(A+)(x) a.e. x ∈ Ω.

On the other hand, for every fixed nonnegative ϕ ∈ L2(Ω)∫
Ω

1

λ1(A−)
ϕdx ≤ lim

k→∞

∫
Ω

max
|ξ(x)|≤1

〈A−1
k (x)ξ(x), ξ(x)〉ϕdx

= lim
k→∞

∫
Ω

max
|ξ(x)|≤1

〈
N∑
i=1

θki (x)Qki (x)D−1
i

(
Qki (x)

)−1
ξ(x), ξ(x)

〉
ϕdx

≤ lim
k→∞

∫
Ω

N∑
i=1

θki
1

λ1(Di)
ϕdx =

∫
Ω

N∑
i=1

pi
1

λ1(Di)
ϕdx.

Analogously, for every nonnegative ϕ ∈ L2(Ω),∫
Ω

λn(A+)ϕdx ≤
∫

Ω

N∑
i=1

piλn(Di)ϕdx.

Both these estimates together with (3.2) give that

1

λ1(A0)(x)
≤ 1

λ1(A−)(x)
≤

N∑
i=1

pi(x)
1

λ1(Di)
a.e. x ∈ Ω,

λn(A0)(x) ≤ λn(A+)(x) ≤
N∑
i=1

pi(x)λn(Di) a.e. x ∈ Ω,

which proves the statement of Lemma 3.2.
Lemma 3.3. Let p ∈ K(d), let (λ0

1, λ
0
n) ∈ Λ0(p), and let (l1, . . . , ln) be an n-

tuple of measurable vector functions orthonormed at a.e. x ∈ Ω. Let the functions
p, l1, . . . , ln be piecewise constant with one and the same partition Ω = Ω1 ∪ · · · ∪Ωm.

Then there exists a sequence of matrices Ak ∈ M(d), k = 1, 2, . . ., of the type
(3.1) such that

(i) {Ak} G-converges to a matrix A0 ∈ GM(d) and (λ1(A0), λn(A0)) = (λ0
1, λ

0
n)

in Ω, A0lj = λj(A0)lj in Ω, j = 1, . . . , n;
(ii) Ak ⇀ A+ weakly as k →∞ and λn(A+) = λ0

n in Ω;
(iii) A−1

k ⇀ A−1
− weakly as k →∞ and λ1(A−) = λ0

1 in Ω;
(iv) the functions θk in the representation (3.1) of matrices Ak satisfy

∫
Ωr
θki dx =∫

Ωr
pidx, i = 1, . . . , N, r = 1, . . . ,m, k = 1, 2, . . . , θk ⇀ p weakly as

k →∞;
(v) in every Ωr, r = 1, . . . ,m, Ak(x) = Ak (〈x, l1(x)〉) , k = 1, 2, . . . .
Proof. Let Q = Q(x), x ∈ Ω, be a matrix such that its jth column is equal to

lj , j = 1, . . . , n, respectively. It is obvious that Q(x) ∈ O a.e. x ∈ Ω. Define the
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matrices Ak as

(3.3)

Ak(x) =
N∑
i=1

θki (x)Q(x)DiQ
−1(x) a.e. x ∈ Ω,

(θk1 , . . . , θ
k
N ) = θk ∈ S,∫

Ωr

(θki − pi)dx = 0, i = 1, . . . , N, r = 1, . . . ,m, k = 1, 2, . . . ,

θk(x) = θk(〈x, l1(x)〉) a.e. x ∈ Ω,

θk ⇀ p weakly as k →∞.
By construction Ak ∈ M(d), k = 1, 2, . . . , and in every Ωr, r = 1, . . . ,m,

Ak(x) = Ak (〈x, l1〉) , k = 1, 2, . . . .
The function l1 is constant in every Ωr, r = 1, . . . ,m; therefore, by the well-known

formulae for layered structures and by the locality properties of the G-convergence
(see, for instance, Zhikov, Kozlov, and Oleinik [15]) the sequence {Ak} defined by
(3.3) has properties (i)–(v).

Lemma 3.4. Let p ∈ K(d), let (λ0
1, λ

0
n) ∈ Λ0(p) and let (l1, . . . , ln) be an n-tuple

of measurable vector functions orthonormed at a.e. x ∈ Ω. Then there exists a matrix
A0 ∈ GM(d) such that

(i) A0 is the rank 1 composite defined by means of matrices from M(d);
(ii) (λ1(A0), λn(A0)) = (λ0

1, λ
0
n) in Ω;

(iii) the eigenvectors of A0 are equal to l1, . . . , ln, respectively, i.e.,

A0lj = λj(A0)lj in Ω, j = 1, . . . , n.

Proof. For every integer s = 1, 2, . . . , there exist piecewise approximations
ps, ls1, . . . , l

s
n of p, l1, . . . , ln, respectively, with one and the same partition

Ω = Ωs1 ∪ · · · ∪ Ωsms

(the corresponding approximations (λs1, λ
s
n) for (λ0

1, λ
0
n) are uniquely defined by ps)

such that

(3.4)

ps → p strongly as s→∞,
lsj → lj strongly as s→∞, j = 1, . . . , n,∫

Ω

psidx =

∫
Ω

pidx, i = 1, . . . , N, s = 1, 2, . . . ,

such that ps ∈ K(d), s = 1, 2, . . . , and such that every n-tuple (ls1, . . . , l
s
n) is or-

thonormed at a.e. x ∈ Ω. Our approximations satisfy the assumptions of Lemma 3.3;
hence, there exist piecewise constant matrices As ∈ GM(d), s = 1, 2, . . . , such that
every matrix As is obtained by means of a rank 1 laminated structure from matrices
from M(d) and

λ1(As) =

(
N∑
i=1

psi
1

λ1(Di)

)−1

in Ω,

λj(As) =
N∑
i=1

psiλj(Di) in Ω, j = 2, . . . , n,

Asl
s
j = λj(As)l

s
j in Ω, j = 1, . . . , n,

s = 1, 2, . . . .
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Here we have used the fact that the eigenvalues λj(A0), j = 2, . . . , n, in the con-
struction of A0 in the proof of Lemma 3.3 are the limits of the sequences {λj(Ak)}, j =
2, . . . , n, respectively.

Now, from the strong convergences (3.4) it follows immediately that the sequence
{As} converges strongly to a matrix A0 which has the properties (i)–(iii). In turn,
the standard diagonal process (matrices As are G-limit matrices for sequences from
M(d)) gives that A0 ∈ GM(d).

Lemma 3.5. The set WM(d) is G-closed.
Proof. Let the sequence {Ak} ⊂ WM(d) G-converges to a matrix A0. Without

losing generality we can assume that

Ak ⇀ A+ weakly as k →∞,
A−1
k ⇀ A−1

− weakly as k →∞.

Since (λ1(Ak), λn(Ak)) ∈ Λ(pk) for some pk ∈ K(d), k = 1, 2, . . ., then

(3.5)

(
1

λ1(Ak)
, λn(Ak)

)
≤
(

N∑
i=1

pki
1

λ1(Di)
,
N∑
i=1

pki λn(Di)

)
in Ω, k = 1, 2, . . . .

Let pk ⇀ p0 weakly as k →∞. Analogously to the proof of Lemma 3.2, from estimate
(3.5) we obtain that

(
1

λ1(A0)
, λn(A0)

)
≤
(

N∑
i=1

p0
i

1

λ1(Di)
,
N∑
i=1

p0
iλn(Di)

)
in Ω.

The set K(d) is weakly closed; hence, p0 ∈ K(d) and (λ1(A0), λn(A0)) ∈ Λ(p0),
which gives the inclusion A0 ∈WM(d).

Lemma 3.6. Let p ∈ K(d) and let (λ0
1, λ

0
n) ∈ Λ0(p). Then there exists a pair of

functions (α, β) = (α(t, x), β(t, x)) , (t, x) ∈ [0, 1] × Ω, such that these functions are
continuous in t for a.e. x ∈ Ω, measurable in x and that

(α(t, x), β(t, x)) ∈ Λ(p)(x) a.e. x ∈ Ω, 0 ≤ t ≤ 1,
(α(0, x), β(0, x)) =

(
λ0

1(x), λ0
n(x)

)
a.e. x ∈ Ω,

α(1, x) = β(1, x) a.e. x ∈ Ω.

In addition, for every fixed measurable-in-x function θ = θ(x), x ∈ Ω, such that
0 ≤ θ(x) ≤ 1 a.e. x ∈ Ω, and every fixed measurable n-tuple (l1, . . . , ln) of or-
thonormed at a.e. x ∈ Ω vector functions there exists a rank 2 composite Aθ ∈ GM(d)
such that

(λ1(Aθ)(x), λn(Aθ)(x)) = (α(θ(x), x), β(θ(x), x)) a.e. x ∈ Ω,
Aθlj = λj(Aθ)lj in Ω, j = 1, . . . , n.

Proof. Let Q be a matrix such that its jth column is equal to lj , j = 1, . . . , n. By
virtue of Lemma 3.4 and Corollary 3.1 there exists a rank 1 composite B0 ∈ GM(d)
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such that

B0 = Qdiag (λ1(B0), . . . , λn(B0))Q−1 in Ω,

(λ1(B0), λn(B0)) = (λ0
1, λ

0
n) in Ω,

B0 = G-limit

N∑
i=1

θkiQDiQ
−1,∫

Ω

θki dx =

∫
Ω

pidx, i = 1, . . . , N, k = 1, 2, . . . ,

θk ⇀ p weakly as k →∞.

Analogously, if we use, instead of the matrices Di, the clusters of matrices
{diag (λj1(Di), . . . , λjn(Di))} with different order of eigenvalues on the diagonal and
using layers orthogonal to l1 or ln we obtain rank 1 composites B1, B2 ∈ GM(d) such
that

B1 = Qdiag(λ0
1, a, . . . , a, λ

0
n)Q−1 in Ω,

B2 = Qdiag(λ0
n, a, . . . , a, λ

0
1)Q−1 in Ω,

a =
1

n− 2
(λ2(B0) + · · ·+ λn−1(B0)) in Ω.

Both matrices B1 and B2 locally at a.e. x ∈ Ω are the rank 1 composites con-
structed by means of the matrices Di (and their rotations) taken in the proportions
defined by p(x). The only difference is that the matrix B1 is constructed by means
of layers orthogonal to l1 (more precisely to approximations of l1) but the matrix B2

is constructed by means of layers orthogonal to ln.
Hence, every matrix of the type

B = θB2 + (1− θ)B1,

θ ∈ L2(Ω), θ(x) = 0 or 1 a.e. x ∈ Ω

has the same local distribution of involved matrices and B is a rank 1 composite
constructed by means of matrices from M(d).

Let Qs, λ
s
1, a

s, λsn, s = 1, 2, . . . , be piecewise approximations in the norm of
[L2(Ω)]n×n or L2(Ω) of the matrix Q and the functions λ0

1, a, λ
0
n, respectively, with

one and the same partition of Ω for a chosen s. Let ls1 be the first column of Qs and
let

Bs1 = Qsdiag(λs1, a
s, . . . , as, λsn)Q−1

s in Ω,

Bs2 = Qsdiag(λsn, a
s, . . . , as, λs1)Q−1

s in Ω.

For a given θ ∈ L2(Ω), 0 ≤ θ(x) ≤ 1 a.e. x ∈ Ω, define the sequence

Csk = θksB
s
2 + (1− θks)Bs1, k = 1, 2, . . . ,

where

θks(x) = 0 or 1 a.e. x ∈ Ω, k = 1, 2, . . . ,
θks ⇀ θ weakly as k →∞, s = 1, 2, . . . ,
θks(x) = θks (〈x, ls1〉) , k, s = 1, 2, . . . .
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For every fixed s = 1, 2, . . . , the sequence {Csk} G-converges as k → ∞ to the
matrix

Cs = Qsdiag

((
1− θ
λs1

+
θ

λsn

)−1

, as, . . . , as, (1− θ)λsn + θλs1

)
Q−1
s in Ω.

In turn, the sequence {Cs} converges strongly as s→∞ to the matrix

(3.6) Cθ = Qdiag

((
1− θ
λ0

1

+
θ

λ0
n

)−1

, a, . . . , a, (1− θ)λ0
n + θλ0

1

)
Q−1 in Ω.

The matrix Cθ belongs to GM(d) and Cθ is a rank 2 composite.
Let us represent the domain Ω as Ω = E1 ∪ E2, where

E1 = {x ∈ Ω | a(x) ≤ (λ0
1(x)λ0

n(x)
)1/2},

E2 = {x ∈ Ω | a(x) >
(
λ0

1(x)λ0
n(x)

)1/2}.
Define the function h1 = h1(x), x ∈ Ω, as the solution of the equation

1− h1

λ0
1(x)

+
h1

λ0
n(x)

=
1

a(x)
, x ∈ Ω;

the function h2 = h2(x), x ∈ Ω, as the solution of the equation

(1− h2)λ0
n(x) + h2λ

0
1(x) = a(x), x ∈ Ω;

and the functions h−, h+ as

h+(x) = max{h1(x);h2(x)}, x ∈ Ω,
h−(x) = min{h1(x);h2(x)}, x ∈ Ω.

By construction

0 ≤ h−(x) = h1(x) ≤ h2(x) = h+(x) ≤ 1 in E1,
0 ≤ h−(x) = h2(x) ≤ h1(x) = h+(x) ≤ 1 in E2.

Now we are able to define the functions α and β:

(3.7)

(α(t, x), β(t, x)) =

((
1− t
λ0

1(x)
+

t

λ0
n(x)

)−1

, (1− t)λ0
n(x) + tλ0

1

)
,

x ∈ Ω, 0 ≤ t ≤ h−(x),

(α(t, x), β(t, x)) =
(
a(x), (1− t)λ0

n(x) + tλ0
1(x)

)
,

x ∈ E1, h−(x) < t < h+(x),

(α(t, x), β(t, x)) =

((
1− t
λ0

1(x)
+

t

λ0
n(x)

)−1

, a(x)

)
,

x ∈ E2, h−(x) < t < h+(x),

(α(t, x), β(t, x)) = (a(x), a(x)) , x ∈ Ω, h+(x) ≤ t ≤ 1.

By construction the pair (α, β) has the desired properties and

(λ1(Cθ)(x), λn(Cθ)(x)) = (α(θ(x), x), β(θ(x), x)) , x ∈ Ω, 0 ≤ θ(x) ≤ h+(x).



1044 ULDIS RAITUMS

For 0 ≤ θ(x) ≤ h (x) the eigenvectors 11(x) and 1n(x) correspond to λ1(Cθ)(x)
and λn(Cθ)(x), respectively. However, for h (x) ≤ θ(x) ≤ ht(x), in E1 the eigenvec-
tors 1j(x), j = 1, . . . , n − 1, and 1n(x) and in E2 the eigenvectors 11(x) and 1j(x),
j = 2, . . . , n, respectively, correspond to λ1(Cθ)(x) and λn(Cθ)(x).

Since the set M(d) is invariant with respect to rotations then together with the
matrix Cθ ∈ GM(d) the set GM(d) contains the matrix

Aθ = Qdiag (λ1(Cθ), . . . , λn(Cθ))Q
−1 in Ω

which has the needed properties. It is obvious that the matrix Aθ is a rank 2 composite
too.

4. The extended problem. In this section we give the proofs of Theorems
2.1–2.3.

To begin with we will recall some properties of symmetric matrices.
Let A ∈M(ν, µ) and let a,b ∈ [L2(Ω)]n, a(x) 6= 0, b(x) 6= 0 a.e. x ∈ Ω. Suppose

that

Aa = b in Ω.

Then there exists a matrix A′ ∈M(ν, µ) such that

λ1(A′) = λ1(A), λ2(A′) = · · · = λn(A′) ≤ λn(A) in Ω,
A′a = b in Ω.

Furthermore, there exists a family of measurable symmetric n × n matrix functions
Bτ , τ < 0, defined as

(4.1)

λ1(Bτ )(x) = τF (x) +G(x) a.e. x ∈ Ω,

λ2(Bτ )(x) = · · · = λn(Bτ )(x) = −1

τ
F (x) +G(x) a.e. x ∈ Ω,

l1(Bτ ) =
b− λn(Bτ)a

|b− λn(Bτ )a| in Ω,

ln(Bτ ) =
b− λ1(Bτ )a

|b− λ1(Bτ )a| in Ω,

where

F (x) =

(
|a(x)|2|b(x)|2 − (〈a(x),b(x)〉)2

)1/2

|a(x)|2 a.e. x ∈ Ω,

G(x) =
〈a(x),b(x)〉
|a(x)|2 a.e. x ∈ Ω,

such that

Bτa = b in Ω.

In addition, for a.e. x ∈ Ω there exists τ = τ(x) such that

Bτ(x)(x) = A′(x).
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Here by l1(Bτ ) and ln(Bτ ) we denote the eigenvectors of Bτ which correspond to
λ1(Bτ ) and λn(Bτ ), respectively. It is clear that for a.e. x ∈ Ω the vectors a(x) and
b(x) belong to the linear hull of (l1(Bτ ), ln(Bτ )).

All these results can be found in Raitums [10], [11].
Proof of Theorem 2.1. BecauseM(d) ⊂WM(d) and the set WM(d) is G-closed

then GM(d) ⊂WM(d) and, as a consequence,

Z (GM(d), f) ⊂ Z (WM(d), f) ∀ f ∈ H−1(Ω).

Let u0 ∈ Z (WM(d), f), i.e., there exists a matrix A0 ∈WM(d) such that

divA0∇u0 = f in Ω.

Since A0 ∈ WM(d) then there exists a p0 ∈ K(d) such that (λ1(A0), λn(A0)) ∈
Λ(p0). Let (λ0

1, λ
0
n) ∈ Λ0(p0). We point out that the pair (λ0

1, λ
0
n) ∈ Λ0(p0) is

uniquely defined by p0.
By virtue of Lemma 3.6 there exists a pair of functions (α, β) = (α(t, x), β(t, x))

such that these functions are continuous in t for a.e. x ∈ Ω and that for a.e. x ∈ Ω the
curve (α(t, x), β(t, x)) , 0 ≤ t ≤ 1, connect the point

(
λ0

1(x), λ0
n(x)

)
with the bisectrix

λ1 = λn. This curve belongs to Λ(p0)(x).
On the other hand, there exists a family of matrices Bτ defined by formulae (4.1)

with a = ∇u0, b = A0∇u0 such that

Bτ∇u0 = A0∇u0 in Ω,

and for some τ = τ(x)(
λ1(Bτ(x))(x), λn(Bτ(x))(x)

) ∈ Λ(p0)(x) a.e. x ∈ Ω.

The matrices Bτ continuously depend on τ for a.e. x ∈ Ω.
Because the functions λ1(Bτ )(x) and λn(Bτ )(x) are increasing then for a.e. x ∈

Ω the curves (α(t, x), β(t, x)) and (λ1(Bτ )(x), λn(Bτ )(x)) intersect, i.e., there exist
measurable functions τ = τ(x), t = t(x) such that(

λ1(Bτ(x))(x), λn(Bτ(x))(x)
)

=
(
λ1(Ct(x))(x), λn(Ct(x))(x)

)
a.e. x ∈ Ω

(the matrix Ct(.) we take from the proof of Lemma 3.6) and that

Bτ(x)(x)∇u0(x) = A0(x)∇u0(x) a.e. x ∈ Ω.

We remind the reader that for a.e. x ∈ Ω the vectors ∇u0(x) and A0(x)∇u0(x)
always belong to the linear hull of

(
l1(Bτ(x))(x), ln(Bτ(x))(x)

)
.

The set GM(d) is invariant with respect to rotations; hence, GM(d) contains
a matrix C such that its eigenvalues coincide with the eigenvalues of Ct(.), and its
eigenvectors coincide with the eigenvectors of Bτ(.). Thus, we have obtained a matrix
C such that

(1) C ∈ GM(d) and C is a rank 2 composite constructed by means of matrices
from M(d);

(2) (λ1(C), λn(C)) ∈ Λ(p0) in Ω;
(3) C∇u0 = A0∇u0 in Ω.

The properties of the matrix C give that

divC∇u0 = f in Ω,
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i.e., that u0 ∈ Z (GM(d), f). Hence, Z (WM(d), f) = Z (GM(d), f) for every
f ∈ H−1(Ω). Since the set Z (GM(d), f) is closed in the weak topology of H1

0 (Ω)
then the set Z (WM(d), f) is closed in the weak topology of H1

0 (Ω) too.
Proof of Theorem 2.2. The statement of Theorem 2.2 is equal to the statement

of Lemma 3.5.
Proof of Theorem 2.3. Since the functional I in the problem (2.4) is weakly

continuous on H1
0 (Ω) and the set Z (WM(d), f) is closed in the weak topology of

H1
0 (Ω) then the functional I attains its minimum on Z (WM(d), f) at an element u0.

By the definition of Z (WM(d), f) there exists a matrix A0 ∈WM(d) such that

divA0∇u0 = f in Ω.

Hence, the pair (A0, u0) is an optimal solution of the problem (2.4).
In turn, if we put A∗ = C, where the matrix C is defined in the proof of Theorem

2.1, then A∗ satisfies all demands of the statement of Theorem 2.3.
In conclusion we point out only that Lemma 3.6 and the proof of Theorem 2.1

give a possibility of constructing a minimizing sequence for the initial problem (2.2)
via the knowledge of an optimal solution (A0, u0) of the problem (2.4).

Indeed, the knowledge of the matrixA0 gives a p0 ∈ K(d) with (λ1(A0), λn(A0)) ∈
Λ(p0) and the pair (λ0

1, λ
0
n) ∈ Λ0(p0). Lemma 5.6 gives the construction for the pair

(α, β). In reality the functions α and β do not depend on the eigenvectors of the
matrix A0. In turn, the knowledge of the pair (∇u0, A0∇u0) gives the necessary data
for the construction of the family {Bτ} in the proof of Theorem 2.1.

After computing intersection points r(x) for the curves (α(t, x), β(t, x)) and
(λ1(Bτ )(x), λn(Bτ )(x)) we will know the matrix C from the proof of Theorem 2.1.
Finally, the construction of the matrices Cθ from the proof of Lemma 3.6 gives the
matrices Ak ∈ M(d), k = 1, 2, . . ., for the minimizing sequence {(Ak, uk)} in the
problem (2.2).

From the point of view of applications it is more convenient from the very be-
ginning to start with piecewise approximations of A0 and ∇u0. After that all steps
in the construction of the minimizing sequence of controls {Ak} become simple and
clear, especially the construction of the rank 2 composites.

Acknowledgment. The author is indebted to unknown referees who consider-
ably improved the exposition of this paper.
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Abstract. In this paper we present a sequel of [Fleming and Hernandez-Hernandez, SIAM J.
Control Optim., 35 (1997), pp. 1790–1810], extending those results to discrete time, output feedback
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1. Introduction. Risk-sensitive control provides a link between stochastic and
robust control. Extensive literature can be found on this subject, covering different
kinds of models. Jacobson [J] established for the first time this connection for linear
systems, while for a continuous variable, finite time horizon, this idea was introduced
by Whittle [W]. Nonlinear continuous variable models were considered in [F-McE,
F-McE1], where Whittle’s idea was given as a rigorous mathematical basis using
viscosity solution methods. In addition, discrete time, finite horizon, output feedback
systems were studied in [B-J, J-B-E], and the infinite horizon, state feedback case
for finite state machines was treated in [F-HH]. See also [FG-M], where risk-sensitive
control problems on a finite time horizon for hidden Markov models were considered.

In this paper we are concerned with the infinite horizon, partially observed, risk-
sensitive control problem with finite state space and long run average cost. This
problem is solved by defining an appropriate information state that turns out to be
a sufficient statistic and an alternate risk-sensitive control problem with full state
information. The optimal growth rate is expressed as the upper value of a stochastic
dynamic game with average cost criteria. Introducing a discounted cost stochastic
dynamic game (cf. [F-McE, HH-M]), we prove that its value function satisfies an
Isaacs equation. By using the vanishing discount approach, it is shown that the risk-
sensitive dynamic programming equation holds. We also derive an optimal output
feedback control that is separated through the information state. See section 4.

It is well known that a partial state information dynamic game arises natu-
rally when an output feedback H∞-robust control is considered. In [B-J] (see also
[J-B-E, J-B]) this game was studied for finite state systems on a finite time horizon.
By introducing an information state, they define an equivalent dynamic game with
complete state information. In section 5 we analyze this deterministic dynamic game
with average cost per unit time criterion. Redefining the information state, we prove
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Mexico (dher@math.cinvestav.mx). The research of this author was partially supported by CONA-
CYT grant 3115P-E9608 and NSF grant EEC-9402384.

1048



RISK-SENSITIVE CONTROL 1049

the existence of a solution to the corresponding Isaacs equation without going through
the small noise limit of the risk-sensitive dynamic programming equation, as was done
in our previous work [F-HH]. When the upper value of this game is zero, it is shown
that a robust output feedback control can be obtained from the Isaacs equation. We
also analyze the case where the upper value is greater than zero, relating this fact to
Dower and James’s definition [D-J] of finite power gain.

The paper is organized as follows. To illustrate the ideas in a simple setting, in
section 2 we consider uncontrolled finite state Markov chains. The risk-sensitive index
is defined, and it is expressed in terms of a normalized information state. Also, it is
characterized as the optimal value of a stochastic control problem with average cost
criteria. Random perturbations of a finite state machine are considered in section 3,
describing the strength of the perturbations through a parameter ε. The small noise
limit is studied employing results from [F-HH]. In section 4 the partially observed risk-
sensitive control problem is solved using estimates for products of random matrices.
Finally, in section 5 we analyze the partial state information dynamic game described
above.

2. The risk-sensitive index. In this section we define the risk-sensitive index
for a discrete time partially observed Markov process. Introducing an information
state, we express the risk-sensitive index in terms of this completely observed state
and study its related linear eigenvalue problem. Through this section no minimizing
control is considered, and we postpone up to section 4 discussions involving risk-
sensitive control problems.

Let (Ω,F ,P) be an underlying probability space, and let X be a finite set with
N elements. On X consider a Markov chain {xt} with stationary transition proba-
bility matrix P = (Pxx′) and initial distribution θ0. Further, let {yt, t = 1, 2, . . .} be
a stochastic process with state space Y , with Y a finite set with M elements, and
with associated matrix Q = (Qxy), where Qxy is the probability of receiving mes-
sage y when the state is x. The realizations of the process {yt} are referred to as
the measurements (or observations) of the system. We denote by Yt the σ-algebra
σ(y1, . . . , yt), with Y0 := {∅,Ω}.

Throughout this section we assume the following.
(A) The transition matrix P is irreducible, and the matrix Q is positive (i.e.,

Qxy > 0 for all x, y).
Given a nonnegative function l defined on X and the risk averse factor µ > 0, the

risk-sensitive index is defined by

λ := lim
T→∞

1

µ
· 1

T
logEθ0 exp

{
µ
T−1∑
t=0

l(xt)

}
.(2.1)

Remark 2.1. Note that λ has nothing to do with the observation process, and
therefore it could be studied by the methods developed in [F-HH]. However, in order
to introduce the main ideas and make the presentation easier in section 4, we rewrite
the expectation in (2.1) in terms of a normalized “information state” process θt and
study by stochastic control methods its behavior as T goes to infinity. If θ0 = δx is a
Dirac distribution, then (2.1) is the same as [F-HH, Formula (2.15)] with ε = 1.

Remark 2.2. In [B-J] (see also [J-B-E]) an output feedback risk-sensitive control
problem on a finite horizon is considered, where an information state is derived that
turns out to be a sufficient statistic. However, in order to solve the infinite horizon
case, we have to introduce another statistic, which is just the normalization of the
one introduced by Baras and James [B-J].
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Let GT be the σ-algebra σ(x0, . . . , xT ; y1, . . . , yT ). Then (cf. [R-S]), there exists
a probability measure P+ on GT defined by

P+(x0, x1, . . . , xT ; y1, . . . , yT ) =
T−1∏
t=0

[
Pxtxt+1

· 1

M

]
θ0(x0)(2.2)

such that P is absolutely continuous with respect to P+, with

dP
dP+

|GT = LT =:
T−1∏
t=0

MQxt+1yt+1 .

Moreover, under P+, yt are independently and identically distributed random vari-
ables uniformly distributed, independent of xt′ with t′ ≤ t, and xt is a Markov chain
with transition matrix P .

Let V (θ0, T ) be the expectation on the right-hand side of (2.1). Then, it can be
written in terms of the probability measure P+ as

V (θ0, T ) = E+ exp

{
µ
T−1∑
t=0

l(xt)

}
LT .

Now we define the information state σT ∈ RN by σ0 = θ0 and

σT (x) = E+

[
I{xT=x} exp

{
µ
T−1∑
t=0

l(xt)

}
LT |YT

]
.(2.3)

It satisfies the recursion

σT+1 = A(yT+1)σT ,(2.4)

where A(y) is the transpose matrix of A∗(y) with entries

A∗(y)xx′ = MPxx′Qx′ye
µl(x).(2.5)

Then, relative to the norm |σ| = ∑N
i=1 |σi|, σ ∈ RN ,

V (θ0, T ) := E+|σT |.(2.6)

Let S := {θ ∈ RN : θi ≥ 0 and
∑N
i=1 θ

i = 1}. We define zt := |σt| and the
state information θt ∈ S by θt := σt

|σt| , t = 0, 1, . . .. Then, zt and θt are solutions of

the recursions

zt+1 = zt|A(yt+1)θt|,
z0 = 1,

(2.7)

and

θt+1 =
A(yt+1)θt
|A(yt+1)θt| =: F (θt, yt+1).(2.8)

Therefore, defining G(θ, y) := log |A(y)θ|, (2.6) can be rewritten in terms of {θt} and
{yt} as

V (θ0, T ) = E+zT

= E+ exp
T−1∑
t=0

G(θt, yt+1).
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Thus, we have expressed V (θ0, T ) in terms of the completely observed state informa-
tion {θt}. On the other hand, with θ = θ0,

V (θ, T + 1) = E+
[
eG(θ,y1)V (θ1, T )

]
.(2.9)

From (2.1), we expect that, for T large,

V (θ, T ) ≈ exp {ρT +W (θ)}(2.10)

for some number ρ and function W . Then, from substituting formally (2.10) into
(2.9), we should have

eρ+W (θ) = E+
[
eG(θ,y)+W (F (θ,y))

]
.(2.11)

Note that, formally, eW is a positive eigenfunction corresponding to the eigenvalue eρ

of the operator

Tψ(θ) = E+
[
eG(θ,y)ψ(F (θ, y))

]
, ψ ∈ C(S),

where C(S) denotes the set of continuous functions on S.
On the other hand, if

φ(x, T ) := Ex exp

{
µ
T−1∑
t=0

l(xt)

}
,

then (see [F-HH, Thm. 2.11])

λ = lim
T→∞

1

µ
· 1

T
log φ(x, T ).

In fact, from the Frobenius theory of positive matrices,

φ(x, T ) ≈ eµλTψ(x)

in the sense that the ratio tends to 1 as T → ∞. Here ψ is a positive eigenvector
corresponding to the eigenvalue eµλ of the matrix B with entries Bxx′ = eµl(x)Pxx′ .

Hence,

V (θ, T ) = 〈φ(·, T ), θ〉 ≈ eλT 〈ψ, θ〉,
and from (2.9) one gets that (2.11) holds with

ρ = µλ, W (θ) = log〈ψ, θ〉.
Equation (2.11) has the following control interpretation. Let P (Y ) be the set of

probability measures on Y , and define the set Π ⊂ P (Y ) by

Π :=
{
π = (π1, . . . , πM ) ∈ P (Y ) : πi > 0, i = 1, . . . ,M

}
.

Let ν be the uniform distribution on Y . We define the relative entropy function
I( · ‖ν) : P (Y )→ R ∪ {+∞} by

I(π‖ν) =


M∑
i=1

log(M · πi)πi if π ∈ Π,

+∞ otherwise.
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Then, it can be proved that (see [D-E]), for any function ψ : Y → R,

log

∫
eψdν = sup

π∈Π

{∫
ψdπ − I(π‖ν)

}
,(2.12)

and the supremum is attained at the unique probability measure π ∈ Π given by

πi =
1
M eψ(yi)∫
eψdν

, i = 1, . . . ,M.

Therefore, using (2.12), and taking the logarithmic transformation on both sides of
(2.11), the latter equation can be written as

ρ+W (θ) = sup
π∈Π

M∑
i=1

[
W (F (θ, yi)) +G(θ, yi)− log(Mπi)

]
πi.(2.13)

This equation corresponds to the dynamic programming equation of the following
stochastic optimal control problem (cf. [F-HH]). The control set is Π, while the

reward function is K(θ, π) =
∑M
i=1

[
G(θ, yi)− log(πiM)

]
πi, with (θ, π) ∈ S ×Π. An

admissible control is a sequence π̃ = {π̃t} of random variables taking values in Π such
that π̃t is Yt-adapted for each t = 0, 1, . . .. We denote by A the set of admissible
controls. Given π̃ ∈ A, it induces a probability measure P π̃ on (Ω,Y∞) in the
following way. For each cylinder set A = [ω ∈ Ω|y1(ω) = i1, . . . , yt(ω) = it], we define

P π̃(A) := π̃0(i1) · π̃1(i1)(i2) · · · π̃t−1(i1, . . . , it−1)(it).

Here π̃t is to be interpreted as the conditional probability distribution of yt given
y1, . . . , yt−1. On the other hand, the stochastic dynamics of the state information θt
are given by (2.8). Finally, the reward functional (to be maximized) is defined, for
π̃ ∈ A and θ ∈ S given, by

J π̃(θ) = lim sup
T→∞

1

T
Eπ̃

T−1∑
t=0

[G(θt, yt+1)− I(πt+1‖ν)] .

Actually, standard dynamic programming arguments show that

ρ = sup
π̃∈A

J π̃(θ) for all θ ∈ S.

Lemma 2.3. There exists a unique continuous solution (up to an additive con-
stant) W : S → R to the equation (2.11).

Proof. As noted above, W (θ) = log〈ψ, θ〉 is one solution. Let W1,W2 ∈ C(S)
such that

eρ+W1(θ) = E+
[
eG(θ,y)+W1(F (θ,y))

]
and

eρ+W2(θ) = E+
[
eG(θ,y)+W2(F (θ,y))

]
.

Then, dividing the first equation by eρ+W2(θ), we have that Z(·) := W1(·) −W2(·)
satisfies the equation

eZ(θ) =

∫
eZ(F (θ,y))g(θ, y)ν(dy),(2.14)
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with g(θ, y) = exp{W2(F (θ, y))−W2(θ) +G(θ, y)− ρ}.
Let K be the stochastic kernel defined on S by

K(θ,A) =
∑
y∈Y

IA(F (θ, y))ν(dy), θ ∈ S, A ∈ B(S).

In [K] it was proved that there exists a unique invariant measure υ ∈ P (S) corre-
sponding to K. On the other hand, let K̃ be the stochastic kernel defined by

K̃(θ,A) =
∑
y∈Y

IA(F (θ, y))g(θ, y)ν(dy), θ ∈ S, A ∈ B(S).

Since K̃ is Feller and S is compact, there exists an invariant measure υ̃ ∈ P (S)
corresponding to this kernel (see Proposition 8.3.4 in [D-E]), and using the facts that
υ is unique and that K(θ, ·) is equivalent to K̃(θ, ·) for all θ ∈ S, it follows that υ̃ is
unique. Then, from (2.14), we have that

eZ(θ) =

∫
eZ dυ̃ for all θ ∈ S.

3. Small noise limit. Let X and Y be the finite sets defined in section 2. Given
the functions f : X → X and g : X → Y , we consider the deterministic finite state
machine {

xt+1 = f(xt), t = 0, 1, . . . , x0 = x,
yt+1 = g(xt+1).

(3.1)

Further, we define a perturbed system
∑

by{
xt+1 = b(xt, ωt), t = 0, 1, . . . , x0 = x,
yt+1 = h(xt+1, ωt),

(3.2)

where the exogenous inputs ωt take values in a finite set Z and the functions b :
X × Z → X and h : X × Z → Y are given. Also, in order to measure the magnitude
of disturbances ω, we introduce the function ϑ : Z → R+.

Throughout this section we assume the following.
(A1) For each x, x′ ∈ X there exist T1, 0 < T1 < ∞, and ω̃ = (ω0, . . . , ωT1−1) ∈

ZT1 such that for the initial condition x0 = x and input ω̃, the system reaches x′ after
T1 steps.

(A2) Given x ∈ X, y ∈ Y , there exists ω ∈ Z such that y = h(x, ω).
Let ϕ1 : X ×X → R ∪ {+∞} and ϕ2 : X × Y → R be the functions defined by

ϕ1(x, x′) = min
ω∈Z
{ϑ(ω) : x′ = b(x, ω)}

and

ϕ2(x, y) = min
ω∈Z
{ϑ(ω) : y = h(x, ω)},

respectively, with the standard convention that the minimum over an empty set equals
+∞. The values ϕ1(x, x′) and ϕ2(x′, y) represent the minimum “magnitude” associ-
ated with the disturbances going from x to x′ and x′ to y in one time step.
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We define the matrices P ε = (P εxx′), Q
ε = (Qxy) by

P εxx′ =
1

Zε1(x)
exp

{
−ϕ1(x, x′)

ε

}
and

Qεxy =
1

Zε2(x)
exp

{
−ϕ2(x, y)

ε

}
,

where ε > 0 is a small noise parameter and Zε1 , Z
ε
2 are normalizing constants satisfying∑

x′ P
ε
xx′ = 1 and

∑
y Q

ε
xy = 1, respectively.

Remark 3.1. Note that from (A1)–(A2), it follows that the matrices P ε and Qε

satisfy assumption (A) in section 2.
Let δx, x ∈ X be the Dirac measure concentrated at x. The risk-sensitive index

for
∑

is the real number defined by

λµ,ε = lim
T→∞

ε

µ
· 1

T
log Eδx exp

{
µ

ε

T−1∑
t=0

`(xt)

}
.(3.3)

Then, Lemma 2.3 implies the existence of a unique continuous function Wµ,ε : S → R,
unique up to an additive constant, such that

exp
{µ
ε
· λµ,ε +Wµ,ε(θ)

}
= E+ exp {Wµ,ε(Fµ,ε(θ, y)) +Gµ,ε(θ, y)},(3.4)

with Fµ,ε(θ, y) := Aε(y)θ
|Aε(y)θ| , and Gµ,ε(θ, y) := log |Aε(y)θ|. Note that we have made

explicit the dependence on the parameters ε, µ.
Now we make the following transformations. Let ζ : RN → S defined by ζp :=

(exp µ
ε p)/| exp µ

ε p|. Further, define the functions W
µ,ε

: RN → R, G
µ,ε

: RN ×Y → R
and Lµ,ε : RN × Y → RN by

W
µ,ε

(p) = ε
µW

µ,ε(ζp),

G
µ,ε

(p, y) = ε
µG

µ,ε(ζp, y),

Lµ,ε(p, y) = ε
µ log Aε(y) exp{µε p},

respectively. Here log p and ep, for p ∈ RN , are understood to be componentwise.
Note that, for each p ∈ RN , y ∈ Y ,

Fµ,ε(ζp, y) =
Aε(y)e

µ
ε p

|Aε(y)e
µ
ε p|

=
exp{µεLµ,ε(p, y)}
| exp{µεLµ,ε(p, y)}|

= ζLµ,ε(p,y).

Therefore, we can rewrite (3.4) as

λµ,ε +W
µ,ε

(p) =
ε

µ
log
∑
y∈Y

exp
{µ
ε

[W
µ,ε

(Lµ,ε(p, y))(3.5)

+G
µ,ε

(p, y)]
} 1

M
.
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Let (p, q) := supx∈X(p(x) + q(x)) be the “sup-pairing” defined on RN ×RN . We

define the functions Lµ : RN × Y → RN and G
µ

: RN × Y → R by

Lµ(p, y)(x′) = max
x∈X

{
`(x)− 1

µ
[ϕ1(x, x′) + ϕ2(x′, y)] + p(x)

}
and

G
µ
(p, y) = (Lµ(p, y), 0)− (p, 0),

respectively. See [B-J].
Theorem 3.2.
(a) ε→ λµ,ε is uniformly bounded.
(b) Lµ,ε(p, y)→ Lµ(p, y) as ε→ 0 uniformly on compact subsets of RN × Y .
(c) G

µ,ε
(p, y)→ G

µ
(p, y) as ε→ 0 uniformly on compact subsets of RN × Y .

(d) There exist a sequence {εn}, with εn → 0, and a continuous function W
µ

:

RN → R, such that W
µ,εn

converges uniformly on compact subsets to W
µ

.
Proof. Equation (3.3) implies that 0 ≤ λµ,ε ≤ ‖`‖, while part (b) follows from

Theorem 3.4 in [B-J]. Let p ∈ RN , y ∈ Y . Then,

G
µ,ε

(p, y) =
ε

µ
log

∣∣∣∣∣Aε(y) · e
µ
ε p

|eµε p|

∣∣∣∣∣
=

ε

µ
log |Aε(y)e

µ
ε p| − ε

µ
log |eµε p|

→ (Lµ(p, y), 0)− (p, 0) as ε→ 0,

where the convergence is due to the Laplace–Varadhan lemma [F-W] and part (b).
Now we shall prove part (d). Let Bε = [Bεxx′ ] be the matrix with entries

Bεxx′ = e
µ
ε l(x)P εxx′ , and let ψµ,ε be the positive eigenvector (see section 2), with

maxx∈X ψ(x) = 1, corresponding to the dominant eigenvalue of Bε. Then, from
section 2, we may take

Wµ,ε(θ) = log〈ψµ,ε, θ〉
= log〈eµε ηµ,ε , θ〉,(3.6)

with ηµ,ε = µ
ε logψµ,ε. Moreover, Theorem 3.2 in [F-HH] implies that there exist a

sequence {εn}, with εn → 0, and a vector ηµ ∈ RN such that

ηµ,εn → ηµ as n→∞.(3.7)

Therefore, using the Laplace–Varadhan lemma, (3.6)–(3.7) imply that

W
µ,ε

(p)→W
µ
(p) := (p, ηµ)− (p, 0)(3.8)

uniformly on compact subsets of RN , where (p, q) is the sup-pairing.
Theorem 3.3. There exist a number λµ and a continuous function W

µ
: RN → R

such that

λµ +W
µ
(p) = max

y∈Y
{Wµ

(Lµ(p, y)) +G
µ
(p, y)}.(3.9)

Proof. Let {εn} be a sequence as in Theorem 3.2(d). Then, part (a) of that
theorem implies the existence of a subsequence of {εn}, which we denote again by
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{εn}, such that λµ,εn converges to some number λµ as n → ∞. Therefore, the
Laplace–Varadhan lemma applied on the right-hand side of (3.5) yields that (3.9)
holds.

Remark 3.4. Since l is nonnegative, λµ ≥ 0. As seen in [F-HH, section 2] λµ = 0
if and only if µ ≤ µ∗, where µ∗ > 0 is the H∞-norm. (Additional assumptions are
needed to ensure that µ∗ <∞.) Corresponding results for robust control with partial
state information are discussed in section 5.

4. The risk-sensitive control problem. In this section we introduce the risk-
sensitive control problem for partially observed Markov models. This problem shall be
solved using the dynamic programming method. We prove the existence of a solution
to the dynamic programming equation, which is a nonlinear eigenvalue problem. This
equation can be transformed, using the variational formula (2.12), into the Isaacs
equations for a stochastic dynamic game with average cost per unit time criterion.

Let X and Y be the same sets defined in section 1, and let U be a finite control
set. Given an underlying probability space (Ω,F ,P), we shall consider controlled
Markov processes xt with state space X, initial distribution θ0, and transition matrix
P (u) = [P (u)xx′ ], with u ∈ U . The state process xt is not observed directly, and
instead, the observation process {yt} is available. This process takes values in Y , and
its associated matrix is Q = [Qxy]. Intuitively, P (u) is the matrix of transitions from
xt to xt+1 if control ut is used, and Qxy is the probability of observing yt+1 = y if
xt+1 = x.

We denote by U the set of admissible control sequences ũ = {Ut}, where Ut
is a U -valued random variable adapted to the observations σ-field Yt, with Yt =
σ{y1, . . . , yt}, Y0 = {∅,Ω}. Given an admissible control sequence ũ, it defines a
probability measure on (Ω,Gt), with Gt = σ(x0, . . . , xt; y1, . . . , yt) such that

P ũθ0(x0, . . . , xt; y1, . . . , yt) =
t−1∏
t=0

P (ut)xtxt+1
Qxt+1yt+1

θ0(x0).

Throughout this section we assume the following.
(H) (a) There exists T1 > 0 such that for every uT1 = (u0, u1, . . . , uT1−1) ∈ UT1

and x, x′ ∈ X there exists xT1+1 = (x0, x1, . . . , xT1) ∈ XT1 with x0 =

x, xT1
= x′, and

∏T1−1
t=0 P (ut)xtxt+1

> 0.
(b) The matrix Q is positive.

Given the nonnegative cost per unit time function l : X ×U → R, for each ũ ∈ U
the cost functional (to be minimized) is the exponential growth criterion

λ(ũ) = lim sup
T→∞

1

T
· 1

µ
logEũθ0 expµ

T−1∑
t=0

l(xt, ut),(4.1)

where µ > 0 is the risk averse parameter, and analogously to Eũθ0 , P ũθ0 denotes the
probability induced by {xt}, {yt}, given ũ ∈ U and the initial distribution θ0.

Therefore, the goal is to find a control sequence ũ∗ which minimizes λ(ũ). We let

Λ = inf
ũ∈U

λ(ũ).

Paralleling section 2, we introduce an information state θ ∈ S and replace the orig-
inal partially observed risk-sensitive control problem with an equivalent completely
observed with state variable θ. Then, the dynamic programming method yields an
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optimal control for this original problem, which is separated through the information
state.

Let P+ be the analogous probability measure on GT given in (2.2). Under this
probability measure, the controlled Markov chain {xt} and the observation process
{yt} have the same properties mentioned in section 2.

Now we define, for T = 1, 2, . . . ,

σT (x) = E+

[
I{xT=x} exp

[
µ
T−1∑
t=0

l(xt, ut)

]
LT |YT

]
,

and the information state θT ∈ S by

θT =
σT
|σT | .

Both σT and θT satisfy the recursions (2.4) and (2.8), substituting A(y) with A(y, u),
which in this case has entries

A(y, u)xx′ = MP (u)x′xQxye
µl(x′,u).

Applying the same substitution in the definitions of G and F , one gets that (4.1) can
be written as

λ(ũ) = lim sup
T→∞

1

T

1

µ
logE+

θ exp

{
T∑
t=1

G(θt−1, ut−1, yt)

}
.

The corresponding dynamic programming equation (cf. Thm. 4.6 in [F-HH]) for
this control problem is given by

exp{Υ +W (θ)} = min
u∈U

[
E+ exp{G(θ, u, y) +W (F (θ, u, y))}] .(4.2)

As in section 2, let ν denote the uniform distribution on Y .
Theorem 4.1 (verification theorem). Let Υ ∈ R, W ∈ C(S) be a solution to the

dynamic programming equation (4.2). Then
(a) Υ ≤ µλ(ũ) for all ũ ∈ U ;
(b) let ũ∗ = {U∗t } ∈ U such that, for each t = 0, 1, . . . , Ũ∗t = u∗(θt), where

u∗ : S → U is a function with

u∗(θ) ∈ argmin
u∈U

[E+ exp{W (F (θ, u, y)) +G(θ, u, y)}].

Then Υ = µλ(ũ∗).
Proof. Given ũ ∈ U , T > 0, the dynamic programming principle implies that

exp{Υ +W (θ)} ≤ E+ exp

{
T−1∑
t=0

G(θt, ut, yt+1) +W (θT )

}
,

with equality for the control ũ∗. Now, take logs on both sides of this inequality, and
divide by µT . Then, noting that W (θT ) is bounded since θT is in the compact simplex
S, letting T →∞ the theorem follows.

Theorem 4.2. There exist a number Υ and a nonnegative continuous function
W : S → R such that (4.2) holds.

In order to prove this theorem, we shall need some preliminary results. First, we
shall introduce an infinite horizon, discounted cost stochastic game. Let Wβ denote
the upper value function of this game. Then, once we prove that {Wβ ;β ∈ (0, 1)} is
equicontinuous and (1− β)Wβ(θ∗) is uniformly bounded, where θ∗ ∈ S is a reference
point, the theorem follows in a straightforward way using the Arzelà–Ascoli theorem.
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Stochastic dynamic game. The stochastic dynamics of the state θt for the
controlled sequence (two players) is

θt+1 = F (θt, ut, yt+1).(4.3)

Here, the sequence {ut} ⊂ U represents the controls that the minimizer controller
(player 1) chooses at each time step, while the maximizer controller (player 2) chooses
a sequence {πt} ⊂ Γ, where πt is the distribution of yt+1. The information available
at each time t for both players is the history of observations {y1, . . . , yt}. We shall
make this precise using the following strategies.

Let V := {~u = {ut} | u0 = u0 ∈ U, ut : Y t×Γt → U, t ≥ 1} be the set of strategies
for player 1, and let W = {~π = {πt} | π0 = π0(u0) ∈ Γ, πt : Y t × U t → Γ, t ≥ 1} be
the set of strategies for player 2. Then, given the strategies ~u, ~π, we obtain the control
sequences ũ = {ũt}, π̃ = {π̃t}, with ũt, π̃t Yt-adapted, determined by ũ0 = u0,
π̃0 = π0(u0), ũ1(y1) = u1(y1, π1), π̃1(y1) = π1(y1, ũ0, ũ1(y1)) . . .. Note that player 1
chooses first at each time step t (upper game). Moreover, (~u, ~π) defines a probability
measure P~u,~π on Y∞, where Y∞ is the σ-algebra generated by the “cylinder sets,” in
the following way:

P ~u,~π(y1, y2, . . . , yn) = π̃0(u0)(y1)π̃1(y1)(y2) · · · π̃n−1(y1, . . . , yn−1)(yn).

We denote by E~u,~π the corresponding expectation operator. Finally, the reward per
stage function is K : S × U × Γ→ R, defined by K(θ, u, π) :=

∑M
j=1 π

j [G(θ, u, yj)−
log(πjM)].

Then, in order to prove Theorem 4.2, we shall introduce a sequence of infinite
horizon discounted games. Let β ∈ (0, 1) denote the discount factor. Given θ ∈ S,
~u ∈ V, and ~π ∈ W, define the payoff functional

Iβ(θ, ~u, ~π) = E~u,~π
∞∑
t=0

βtK(θt, ut, πt).

Definition 4.3. When there exists a pair of strategies ~u∗, ~π∗ such that

Iβ(θ, ~u∗, ~π) ≤ Iβ(θ, ~u∗, ~π∗) ≤ Iβ(θ, ~u, ~π∗) for all ~u, ~π,(4.4)

the value Iβ(θ, ~u∗, ~π∗) is called the upper value of the game, and ~u∗, ~π∗ are referred to
as a saddle point. The upper value function of this game is denoted by Vβ(θ).

Remark 4.4. In section 5 an Elliott–Kalton-type definition of value shall be used,
since it is natural for the robust control interpretation. For stochastic differential
systems the analogous definition was given by Fleming and Souganidis [F-S]. However,
in this case, our present definition allows us to work out the problem without using
the Elliott–Kalton definition of strategy.

Lemma 4.5. There is a unique concave continuous solution to the Isaacs equation

Vβ(θ) = inf
u∈U

sup
π∈Γ

M∑
j=1

πj
[
βVβ

(
F
(
θ, u, yj

))
+G(θ, u, yj)− log(Mπj)

]
,

(4.5)

and it is the upper value function defined above. Furthermore, the pair of strategies
~u = {u∗t }, ~π = {π∗t }, with u∗t (y1, . . . , yt, π0, . . . , πt−1) = u∗(θt) and π∗t (y1, . . . , yt, u0,
. . . , ut) = π∗(θt, ut), where

u∗(θ) ∈ argmin
u∈U

∫
eβVβ(F (θ,u,y))+G(θ,u,y)ν(dy)
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and

π∗[θ, u]j =
1
M eβVβ(F (θ,u,yj))+G(θ,u,yj)∫
eβVβ(F (θ,u,y))+G(θ,u,y)ν(dy)

is a saddle point.
Sketch of proof. First, note that, using (2.12), we can write equation (4.5) as

Vβ = inf
u∈U

log

∫
exp{βVβ(F (θ, u, y)) +G(θ, u, y)}ν(dy).

Now define, for φ ∈ C(S), the operator

Tφ(θ) = inf
u∈U

log

∫
exp{βφ(F (θ, u, y)) +G(θ, u, y)}ν(dy).

Then, straightforward calculations show that T is monotonic and contractive. There-
fore, by the fixed point theorem, there exists a unique Vβ ∈ C(S) such that TVβ = Vβ .
Moreover, standard dynamic programming arguments show that Vβ is the upper value
function in Definition 4.3. It remains to see that Vβ is concave. Let ψ0 = 1, and define
recursively

ψn+1(θ) = inf
u∈U

∫
|A(y, u)θ|ψβn(F (θ, u, y))ν(dy).

Then, from the above arguments, ψn ↗ ψ uniformly, with ψ = eVβ . Thus, in order
to prove that Vβ is concave, it is sufficient to prove that ψn is concave for each
n = 0, 1, . . . . We shall prove this by induction. For n = 0 this is obvious. Then,
provided ψn is concave, it follows, from Lemmas 1 and 2 in [A], that ψn+1 is also
concave.

Lemma 4.6. (a) For each β ∈ (0, 1) and θ ∈ S,

|(1− β)Vβ(θ)| ≤ ‖G‖.
(b) The family of functions {Vβ}β∈(0,1) is equicontinuous.
Proof. Let ~u∗ ∈ V be as in Lemma 4.5, and take ~π = {π̃t} ∈ W, with π̃t ≡ ν for

all t = 0, 1 . . .. Then, from (4.4), it follows that

Vβ(θ) ≥ − ‖G‖
1− β for all θ ∈ S.

On the other hand, since I( · ‖ν) ≥ 0, Vβ(θ) ≤ ‖G‖1−β . This proves (a).

Let T > 0, and let Y T , UT be the set of multi-indices of length T on Y and U ,
respectively. Given yT = (y1, . . . , yt) ∈ Y T , uT = (u0, . . . , uT−1) ∈ UT , we define

h(θ, uT , yT ) :=
A(yT , uT−1) · · ·A(y1, u0)θ

|A(yT , uT−1) · · ·A(y1, u0)θ| .

Note that

θT = F (θT−1, uT−1, yT )

= h(θ, uT , yT ).
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The asymptotic behavior of the state process θT relies on estimations for random
products of matrices. In particular, from assumption (A), it follows that there exist
constants C and r ∈ (0, 1) such that

‖h(θ, uT , yT )− h(θ̃, uT , yT )‖ ≤ CrT ‖θ − θ̃‖(4.6)

for all yT ∈ Y T , uT ∈ UT , and θ, θ̃ ∈ S. We refer to [F-K] (see also [K, Lemma 6.2]
and [A-M, Lemma 2.2]) for its proof.

Let ~u ∈ U , ~π ∈ W, and fix θ, θ̃ ∈ S. Then,

‖Iβ(θ, ~u, ~π)− Iβ(θ̃, ~u, ~π)‖ ≤ E~u,~π
∞∑
t=0

βt|G(θt, ut, yt+1)−G(θ̃t, ut, yt+1)|

≤
∥∥∥∥dGdθ

∥∥∥∥ · E~u,~π ∞∑
t=0

βt‖θt − θ̃t‖

=

∥∥∥∥dGdθ
∥∥∥∥
[
‖θ − θ̃‖+ E~u,~π

∞∑
t=1

βt|h(θ, ut, yt)− h(θ̃, ut, yt)|
]
.

Here θ̃t is the solution of (4.3) with initial state θ̃0 = θ̃.
Then, from (4.6), it follows that

‖Iβ(θ, ~u, ~π)− Iβ(θ̃, ~u, ~π)‖ ≤ c′‖dGdθ ‖
1− r ‖θ − θ̃‖,

for some suitable constant c′ independent of ~u, ~π. Therefore, for each θ, θ̃ ∈ S,

|Vβ(θ)− Vβ(θ̃)| ≤ c′‖dGdθ ‖
1− r ‖θ − θ̃‖.

This completes the proof of the lemma.
Proof of Theorem 4.2. First note that, from (4.5), (2.15) can be rewritten as

eVβ(θ) = inf
u∈U

∫
eβVβ(F (θ,u,y))+G(θ,y)ν(dy).(4.7)

Now, let θβ ∈ argminθ∈S{Vβ(θ}, and define Zβ(θ) := Vβ(θ)−Vβ(θβ). From Lemma 4.5
we have that β → |(1 − β)Vβ(θβ)| is uniformly bounded, and the functions {Zβ}
are equicontinuous. Therefore, the Arzelà–Ascoli theorem implies the existence of a
sequence βn ↑ 1 along which (1−βn)Vβ(θβn) converges to a limit Υ, and Zβn converges
to a limit W uniformly. Then, writing (4.7) as

e(1−β)Vβ(θβ)+Zβ(θ) = inf
u∈U

∫
eβZβ(F (θ,u,y))+G(θ,u,y)ν(dy),

the theorem follows from an application of the dominated convergence theorem.

5. Deterministic dynamic game and robust control. It is well known that
the output feedback robust control problem can be recast as a partially observed
dynamic game problem when the state space formulation is used. This dynamic game
was studied by James and Baras [J-B] for finite state machines and finite horizon.
Introducing an information state, they define an alternate deterministic dynamic game
with completely observed information state. In this section we shall consider this
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dynamic game on an infinite horizon and average cost per unit time criterion and
study its relationship with the robust control problem.

Consider the deterministic finite state controlled machine defined by{
xt+1 = f(xt, ut), t = 0, . . . ; x0 = x,
yt+1 = g(xt+1),

(5.1)

where the state xt evolves in the finite set X, the output yt takes values in Y , ut takes
values in U , and the functions f : X×U → X and g : X → Y are given. Also, in order
to model the influence of disturbances, we introduce a deterministic perturbation of
the system (5.1). Let b : X × U × Z → X and h : X ×W → Y be given functions
that define the dynamics of the system

∑u{
xt+1 = b(xt, ut, ωt), t = 0, . . . ;x0 = x,
yt+1 = h(xt+1, ωt+1),

(5.2)

where ωt takes values in the finite set Z, and xt, yt, and ut evolve in X, Y , and U ,
respectively. We assume that there is a “null disturbance” ωφ ∈ Z such that, for all
x ∈ X, u ∈ U ,

b(x, u, ωφ) = f(x, u),

h(x, ωφ) = g(x).

We also assume the following.
(H1) There exists T1, 0 ≤ T1 <∞, with the following property: for each x, x′ ∈ X

and ũ = (u0, . . . , uT1−1) ∈ UT1 , there exists ω̃ = (ω0, . . . , ωT1−1) ∈ ZT1 such that
x0 = x and xT1

= x′.
(H2) Given x ∈ X, y ∈ Y , there exists ω ∈ Z such that y = h(x, ω).
In particular, if (H1) holds with T1 = 1, the following stronger condition holds.
(H1′) Given x, x′ ∈ X, and u ∈ U , there exists ω ∈ Z such that x′ = b(x, u, ω).
Let ϑ1, ϑ2 : Z → R+ be functions that measure the magnitude of disturbances,

and define the functions ϕ1 : X × U ×X → R and ϕ2 : X × Y → R by

ϕ1(x, u;x′) = min
ω∈Z
{ϑ1(ω) : x′ = b(x, u, ω)}

and

ϕ2(x, y) = min
ω∈Z
{ϑ2(ω) : y = h(x, ω)},

respectively. We assume that

ϑ1(ωφ) = ϑ2(ωφ) = 0.

As in section 3 we use the convention that the minimum over the empty set equals
+∞. Assumption (H2) implies that ϕ2(x, y) < ∞, and ϕ1(x, u;x′) is always finite if
(H1′) holds.

Let l : X × U → R+ be the cost per stage function, and define the function
ÃLµ : RN × U × Y → RN by

ÃLµ(p, u, y)(x′) = max
x∈X

{
l(x, u)− 1

µ
[ϕ1(x, u;x′) + ϕ2(x′, y)] + p(x)

}
.

Assumptions (H1) and (H2) imply that Lµ(p, u, y)(x′) is finite (not −∞).
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Consider the difference equation{
pt+1 = ÃLµ(pt, ut, yt+1), t = 0, 1, . . . ,
p0 = p ∈ RN ,(5.3)

where ũ = {ut}∞t=0 and ỹ = {yt}∞t=1 are sequences on U and Y and play the role of
controls for the minimizer and maximizer controllers respectively. We associate the
finite-time payoff functional

Jµ(p0, T ; ũ, ỹ) = (pT , 0), T > 0,

with each pair of control sequences.
Now, following the Elliott–Kalton-type definition of upper value, we say that

Γ : Y∞ → U∞ is a strategy for the minimizer controller if, given ũ ∈ U∞, ỹ ∈ Y∞
such that Γ(ỹ) = ũ, Γ(ỹ)t depends only on y1, . . . , yt for each t ≥ 1, while u0 does not
depend on ỹ. Let V (p0, T ) denote the (upper) value of this dynamic game, defined by

V (p0, T ) = inf
Γ

sup
ỹ
Jµ(p0, T ; Γ, ỹ).

In [B-J, Thm. 4.1] it was proved that, given a strategy for the minimizer controller,

max
ỹ∈Y∞

(pT , 0) = max
x0,ω̃

{
p0(x0) +

T−1∑
t=0

[
l(xt, ut)− 1

µ
[ϑ1(ωt) + ϑ2(ωt+1)]

]}
.(5.4)

Remark 5.1.
(a) In section 4 we considered normalized information states θt, with Σx∈Xθt(x) =

1, rather than unnormalized information states as in [B-J]. Similarly, in the de-
terministic case we can consider also information states pt normalized by (pt, 0) =
maxx∈X pt(x) = 0.

(b) Notation. For p ∈ RN , c ∈ R, we shall denote by p+ c ∈ RN the vector with
components p(x) + c, x ∈ X.

Let ∆ = {α ∈ RN : maxx∈X α(x) = 0}, and define the normalized information
state αt ∈ ∆ by

αt(x) = pt(x)− (pt, 0).

Moreover, let Gµ : RN × U × Y → R be defined by

Gµ(p, u, y) = (ÃLµ(p, u, y), 0)− (p, 0).

Then, noting that, for each p ∈ RN , c ∈ R, Gµ(p+ c) = Gµ(p), we get

J(α0, T ; ũ, ỹ) =
T−1∑
t=0

Gµ(αt, ut, yt+1),(5.5)

whenever p0 = α0 ∈ ∆. Further, defining ÃL
µ

: ∆× U × Y → ∆ by

ÃL
µ
(α, u, y) = ÃLµ(α, u, y)−Gµ(α, u, y),

we have that

(5.3′) αt+1 = ÃLµ(αt, ut, yt+1)−Gµ(αt, ut, yt+1)

= ÃL
µ
(αt, ut, yt+1).
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Let ‖ · ‖ denotes the supremum norm. The next lemma summarizes several ele-
mentary but important properties of Gµ, ÃLµ, and ÃL

µ
.

Lemma 5.2. Assume (H1), (H2). For each p, p̂ ∈ RN , c ∈ R, y ∈ Y, u ∈ U, α ∈
∆, the following holds.

(a)

ÃLµ(p+ c, u, y) = ÃLµ(p, u, y) + c.

(b)

‖ÃLµ(p, u, y)− ÃLµ(p̂, u, y)‖ ≤ ‖p− p̂‖,

− 1

µ
‖ϕ2‖ ≤ Gµ(p, u, y) ≤ ‖l‖,

0 ≤ max
y∈Y

Gµ(p, u, y) ≤ ‖l‖.

(c) If (H1′) and (H2) hold, then

(p, 0)− 1

µ
[‖ϕ1‖+ ‖ϕ2‖] ≤ ÃLµ(p, u, y)(x) ≤ ‖l‖+ (p, 0),

−[‖l‖+
1

µ
(‖ϕ1‖+ ‖ϕ2‖)] ≤ ÃL

µ
(α, u, y)(x) ≤ 0.

Sketch of proof. Part (a) and the first inequality in (b) are immediate from the
definition of Lµ. For the rest of (b) it suffices to assume that (p, 0) = 0. Then

Gµ(p, u, y) = max
x,x′

{
l(x, u)− 1

µ
[ϕ1(x, u;x′) + ϕ2(x′, y)] + p(x)

}
.

One gets −µ−1‖ϕ2‖ ≤ Gµ(p, u, y) by choosing x such that p(x) = 0 and x′ =
b(x, u, ωφ). If y = h(x′, ωφ), then 0 ≤ Gµ(p, u, y). Clearly, Gµ ≤ ‖l‖, and the in-
equalities in (c) are proved similarly.

Note that, from part (b) of Lemma 5.2, it follows that, for each T ≥ 1, p0, p̃0 ∈
RN , ỹ, Γ,

‖pT − p̃T ‖ ≤ ‖p0 − p̃0‖,(5.6)

‖J(p0, T ; Γ, ỹ)− J(p̃0, T ; Γ, ỹ)‖ ≤ ‖p0 − p̃0‖,
and therefore

|V (p0, T )− V (p̃0, T )| ≤ ‖p0 − p̃0‖.(5.7)

Here p̃t is the solution to (5.3) with initial state p̃0.
Now, in order to study the above dynamic game on an infinite horizon and average

cost per unit time criterion, we shall consider first the discounted cost infinite horizon
payoff.

Let 0 < β < 1 be the discount factor, and define, for p0 ∈ RN , ỹ,Γ,

Jβ(p0; Γ, ỹ) =
∞∑
t=0

βt[(pt+1, 0)− (pt, 0)] + (p0, 0).(5.8)
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Then, using “summation by parts,” for each T > 0,

Jβ(p0, T ; Γ, ỹ) :=
T−1∑
t=0

βt[(pt+1, 0)− (pt, 0)] + (p0, 0)

= βT (pT , 0)−
T−1∑
t=0

(βt+1 − βt)(pt+1, 0)

= βT (pT , 0) + (1− β)
T−1∑
t=0

βt(pt+1, 0).

Further, by (5.6),

|Jβ(p0, T ; Γ, ỹ)− Jβ(p̃0, T ; Γ, ỹ)| ≤ βT ‖p0 − p̃0‖+ (1− β)
T−1∑
t=0

βt‖p0 − p̃0‖

≤ (βT + 1)‖p0 − p̃0‖.

Therefore, letting T →∞, we get

|Jβ(p0; Γ, ỹ)− Jβ(p̃0; Γ, ỹ)| ≤ ‖p0 − p̃0‖.(5.9)

Also, if p0 = α0 ∈ ∆, then, by (5.8) and the fact (pt+1, 0)− (pt, 0) = Gµ(pt, ut, yt+1),

(1− β)|Jβ(α0)| ≤ ‖Gµ‖.(5.10)

Let Wβ(α) be the (upper) value of the game with discounted infinite horizon
payoff. Then, (5.9)–(5.10) imply

|Wβ(α)−Wβ(α̃)| ≤ ‖α− α̃‖ for all α, α0 ∈ ∆,(5.11)

and

0 ≤ (1− β)Wβ(·) ≤ ‖Gµ‖,(5.12)

where the left-hand side inequality follows from Lemma 5.2(b).
The corresponding Isaacs equation for this game is

Wβ(α) = min
u∈U

max
y∈Y

[βWβ(ÃL
µ
(α, u, y)) +Gµ(α, u, y)],(5.13)

and standard dynamic programming arguments show that the upper-value function
Wβ is the unique continuous solution to this equation.

If (H1′) and (H2) hold, then from Lemma 5.2(c), for arbitrary α0 ∈ ∆, αt ∈ K
for all t ≥ 1, where K is a fixed compact set. Hence, it suffices to consider α0 ∈ K.
In fact, a similar property holds under the weaker assumptions (H1)–(H2).

Lemma 5.3. Assume (H1)–(H2). Then there exists a compact set K such that,
for arbitrary α0 ∈ ∆, αt ∈ K for all t ≥ T1.

Proof. We write x→ x′ under u if x′ = b(x, u, ω) for some ω. Let

C = max
x,x′,u

{ϕ1(x, u;x′) | x→ x′ under u}.
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Given x, x′, and ũ, let ω̃ be as in (H1). Then xt → xt+1 under ut for t = 0, 1, . . . , T−1.
From (5.3)

pt(xt)− 1

µ
(C + ‖ϕ2‖) ≤ pt+1(xt+1) ≤ ‖l‖+ (pt, 0),

from which, since x0 = x, xT1
= x′,

p0(x)− T1

µ
(C + ‖ϕ2‖) ≤ pT1

(x′) ≤ T1‖l‖+ (p0, 0).

Take p0 = α0 and x such that α0(x) = 0. Then ‖pT1
(x′)‖ ≤ C1 which implies

αT1
∈ K1 for some fixed compact set K1. Then also αmT1

∈ K1 for m = 1, 2, . . . , and
αt ∈ K for all t ≥ T1 for some compact K.

Let αβ ∈ argmin{ Wβ(α) | α ∈ K }. Thus, (5.11)–(5.12) imply that, for a
sequence βn ↗ 1,

(1− βn)Wβn(αβn)→ λµ,

Wβn(α)−Wβn(αβn)→Wµ(α),

uniformly on K, with minKW (α) = 0.
Further, rewriting (5.13), with β = βn, as

Wβn(α)−Wβn(αβn) = min
u

max
y

[βn(Wβn(ÃL
µ
(α, u, y))−Wβn(αβn))

+ Gµ(α, u, y)]− (1− βn)Wβn(αβn),

and letting n→∞, we get

λµ +Wµ(α) = min
u

max
y

[Wµ(ÃL
µ
(α, u, y)) +Gµ(α, u, y)].(5.14)

We have proved the following.
Theorem 5.4. There exist a number λµ and a nonnegative continuous function

Wµ : K → R such that (5.14) holds.
On the other hand, a standard dynamic programming argument implies that, for

0 < T <∞,

Wµ(α) = UV
[
T−1∑
t=0

[Gµ(αt, ut, yt+1)− λµ] +Wµ(αT )

]
,(5.15)

where UV denotes the upper value of the finite time game with running cost Gµ−λµ
and terminal cost Wµ(αT ). Further, we also have by (5.4) that

V (α, T ) = UV
[
T−1∑
t=0

Gµ(αt, ut, yt+1)

]
.

Since αt belongs to the compact set K, we get, by dividing by T and letting T →∞,
that

λµ = lim
T→∞

V (α, T )

T
.(5.16)

This shows, in particular, that λµ does not depend on the particular sequence {βn}.
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The next theorem follows in a way similar to [F-McE, sec. 8], and we omit its
proof.

Theorem 5.5. The upper-value function of the dynamic game with payoff func-
tional

P (α,Γ, ỹ) = lim sup
T→∞

1

T

T−1∑
t=0

Gµ(αt, ut, yt+1)

is equal to λµ.

Optimal stationary control policy. Let u∗ : K → U such that

u∗(α) ∈ argmin
u
{max

y
[Wµ(ÃL

µ
(α, u, y)) +Gµ(α, u, y)]}.(5.17)

Given α0 ∈ K, the policy u∗(·) determines a strategy Γ∗ as follows. Given ỹ =
(y1, y2, . . .), define α∗t by

α∗t+1 = ÃL
µ
(α∗t , u

∗(α∗t ), yt+1),

α∗0 = α0.

Now take

Γ∗(ỹ)t = u∗t = u∗(α∗t ).

Then from (5.14), for all y, α,

λµ +Wµ(α) ≥Wµ(ÃL(α, u∗(α), y)) +Gµ(α, u∗(α), y).

By iterating this inequality, we get, for all ỹ, T > 0,

λµT +Wµ(α0) ≥
T−1∑
t=0

Gµ(α∗t , u
∗
t , yt+1) +Wµ(α∗t ).

Further, by (5.5), this can be rewritten as

λµT +Wµ(α0) ≥ (p∗T , 0) +Wµ(α∗T ),

where

p∗t+1 = ÃLµ(p∗t , u
∗
t , yt+1),

p∗0 = α0.

Hence, by (5.4), for all x0 ∈ X, ω̃ ∈ Z∞, T > 0,

T−1∑
t=0

l(x∗t , u
∗
t ) +Wµ(α∗T ) ≤ −α0(x0) +

1

µ

T−1∑
t=0

[ϑ1(ωt) + ϑ2(ωt+1)](5.18)

+λµT +Wµ(α0),

where

x∗t+1 = b(x∗t , u
∗
t , ωt),

x∗0 = x0.
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Now, let us assume that λµ = 0. In this case (5.18) becomes a kind of “dissipation
inequality” (cf. (5.16) in [F-McE]). Suppose, moreover, that Wµ(α0) = minKW

µ(α).
Then, inequality (5.18) implies that, for all x0, ω̃, T > 0,

T−1∑
t=0

l(x∗t , u
∗
t ) ≤ −α0(x0) +

1

µ

T−1∑
t=0

[ϑ1(ωt) + ϑ2(ωt+1)].(5.19)

Thus, the output feedback robust control is achieved with µ−1, according to [B-J,
Definition 2.12], provided β = −α0 (in their notation for β(·)). If we assume that
l(xφ, uφ) = 0 and l(x, u) > 0 for all x 6= xφ, then α0(xφ) = 0. To see this recall that
−α0(x0) ≥ 0 with equality for some x0. Take x0 = x0 and ωt = 0 for all t. By (5.19),
l(x∗0, u

∗
0) = l(x0, u

∗
0) = 0 and hence x0 = xφ.

On the other hand, since V (p, T ) ≤ V (p, T + 1),

W (p) := lim
T→∞

V (p, T )

exists (maybe +∞). In the case of W (p) <∞,

W (p) = min
u

max
y

W (ÃLµ(p, u, y)).

This implies, particularly, since W (p+ c) = W (p) + c for all p ∈ RN , c ∈ R, that

W (α0) = UV[W (pT )]

= UV[W (αT ) + (pT , 0)]

whenever p0 = α0 ∈ ∆.
Replacing W (α) by Wµ(α), we can argue as before, with λµ = 0 and u∗ as in

(5.17).
In order to ensure that λµ = 0 for all sufficiently small µ, let us make (as in [B-J]

and [F-HH]) additional assumptions about the existence of a “null” state and control
xφ, uφ.

(H3)  f(xφ, uφ) = xφ,
l(xφ, uφ) = 0,
l(x, u) > 0 for (x, u) 6= (xφ, uφ).

(H4) There exists an integer T0 such that for any initial condition x0 = x, the
solution to xt+1 = f(xt, uφ) reaches xφ in T0 steps.

If any constant control u is chosen, with ut = u for t = 0, 1, . . . , then [F-HH,
sect. 2] and section 3 above give a corresponding λµu. By either (5.16) or Theorem 5.5,
λµu ≥ λµ. In particular, take u = uφ. Then (H3) and (H4) imply that λµuφ = 0 for
0 < µ ≤ µφ, for suitable µφ. Hence λµ = 0 for 0 < µ ≤ µφ. Let

µ∗ = sup{µ : λµ = 0}.
Then the crucial dissipation inequality (5.19) of robust control with partial state
information can be achieved using the optimal control policy u∗(α), provided µ ≤ µ∗.

Now let us assume that µ > µ∗, and hence λµ > 0. In this case, (5.18) implies,
since W (α∗T ) is bounded, that

lim sup
T→∞

{
1

T

T−1∑
t−1

l(x∗t , u
∗
t )−

1

T
· 1

µ

T−1∑
t=0

[ϑ1(ωt) + ϑ2(ωt+1)]

}
≤ qλµ.
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In terms of Definition 2.1 in [D-J], the above inequality means that the system Σu
∗

has finite power gain less than or equal to µ−1.

Small noise limit. For each u ∈ U , analogously to section 3, define the matrices
P ε(u) and Qε.

Then, replacing the matrices P (u), Q in section 4 by P ε(u), Qε, Theorem 4.2
implies (in view of (H1-H2)) the existence of a number Λµ,ε and a nonnegative con-
tinuous function Wµ,ε : S → R such that

exp
{µ
ε
· Λµ,ε +Wµ,ε(θ)

}
= min

u∈U
E+ exp {Gµ,ε(θ, u, y) +Wµ,ε(Fµ,ε(θ, u, y))} ,

(5.20)

where now Fµ,ε(θ, u, y) = Aε(u,y)θ
|Aε(u,y)θ| and Gµ,ε(θ, u, y) = log |Aε(u, y)θ|.

Now we proceed as in section 3 and define the functions W
µ,ε

: RN → R, G
µ,ε

:
RN × U × Y → R, and ÃLµ,ε : RN × U × Y → RN by

W
µ,ε

(p) = ε
µW

µ,ε
(ζp),

G
µ,ε

(p, u, y) = ε
µG

µ,ε
(ζp, u, y),

ÃLµ,ε(p, u, y) = ε
µ logAε(u, y)e

µ
ε p,

Note that, from the above transformations, we can write (5.19) as

Λµ,ε +W
µ,ε

(p) = min
u∈U

ε

µ
log
∑
y∈Y

exp{Wµ,ε
(ÃLµ,ε(p, u, y))

+ G
µ,ε

(p, u, y)} · 1

M
.

Then, using the same kind of arguments as in the proof of the Theorem 3.2, it
follows that

(a) ε→ Λµ,ε is uniformly bounded,
(b) ÃLµ,ε(p, u, y)→ ÃLµ(p, u, y) as ε→ 0 uniformly on compact sets of RN ×U×Y ,
(c) G

µ,ε
(p, u, y)→ Gµ(p, u, y) as ε→ 0 uniformly on compact sets of RN×U×Y.

In fact, if there exists a sequence {εn}, with εn → 0 as n → ∞, such that Λµ,εn

tends to some Λµ and W
µ,εn

converges uniformly on compact sets t o some function
Wµ : RN → R, the existence of a solution to (5.14) follows straightforwardly in view
of (a)–(c) above. In order to obtain such a sequence εn, it would suffice to prove
equicontinuity of the functions W

µ,ε
, which we have not succeeded in doing. For the

simpler situation in section 3 this difficulty was avoided by using the explicit form
(3.6) of Wµ,ε and a corresponding convergence result [F-HH, Thm. 3.2] for the state
feedback case.
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NEWTON’S MESH INDEPENDENCE PRINCIPLE FOR A CLASS OF
OPTIMAL SHAPE DESIGN PROBLEMS∗
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Abstract. Many optimal shape design problems can be stated as infinite dimensional minimiza-
tion problems. For deriving an implementable algorithm it has to be decided either to discretize the
problem and to use a finite algorithm to solve the discrete problem or to state an algorithm in func-
tion space and to discretize this algorithm. This issue has yet to be addressed in the field of optimal
shape design research. One big advantage for the latter procedure is a mesh independence behavior
as it has been proven by Allgower et al. [SIAM J. Numer. Anal., 23 (1986), pp. 160–169]. Since
their assertions are not directly applicable to these specific kinds of problems, a modified version of
their mesh independence principle is given here in order to derive more efficient algorithms for the
resulting large scale problems.

Key words. Newton’s method, optimal shape design, mesh independence principle

AMS subject classifications. 65K10, 49K20, 49M15, 49M05
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1. Introduction. In 1986, Allgower et al. [3] published a general mesh inde-
pendence proof for Newton’s method in the context of nonlinear equations. The ap-
plications of their theoretical results to various mathematical problems are presented
in the original paper and in the follow-up publication [2]. Heinkenschloss stated a
similar mesh independence result for the Gauss–Newton method, which was applied
to a parameter identification problem [21], [22], [23]. For quasi-Newton methods with
Broyden update, Kelley and Sachs analyzed the influence of discretizations in [27].

Besides the advantage of the mesh independence principle for predicting the con-
vergence of the computable method on the basis of the analyzed infinite dimensional
convergence, there is a further important point for practical implementations. The
mesh independence lays the theoretical foundation for the justification of refinement
strategies and helps to design this refinement process (see, e.g., [2]). Since the focus
is the infinite dimensional solution, a fine discretization scheme has to be chosen,
so that the discrete solution approximates the infinite dimensional solution appro-
priately. However, a fine discretization also means that the finite problem consists
of many variables, and therefore, an increased amount of work per iteration has to
be expected. Keeping the numerical method fixed, the only possibility of reducing
the total workload to obtain the discrete solution is to improve the starting point
of the nonlinear iteration. Apparently, this can be done by using information from
the coarse grid discretization leading to the concept of mesh refinement (respectively,
nested iteration). Several numerical computations confirm the efficiency of this strat-
egy for various algorithms (see, e.g., [17], [18]). The intention of this paper is to lay
the foundation for using mesh refinement to solve the resulting large scale problems
efficiently. This is done by proving an appropriately modified mesh independence
principle.

Shape optimization is described by finding the geometry of a structure which
is optimal in the sense of a given minimized cost function with respect to certain

∗Received by the editors May 15, 1996; accepted for publication (in revised form) April 20, 1998;
published electronically April 27, 1999.
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†Schueleinplatz 9, 81673 Muenchen, Germany (Manfred.Laumen@feilmeier.de).
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constraints. Many-faceted problems naturally arise in engineering applications with
the goal of designing a specific structure in an optimal sense, or alternatively, of
understanding and determining the shape of a given structure. Typical applications
are the design of a nozzle [35], a thermal diffuser [14], an airfoil boundary [36], or
various beams and plates [20], [38], with respect to specific optimality conditions.

Several methods, e.g., the speed method [38], the boundary element method [35],
the fictitious domain method [19], and the mapping method [8], have been developed
for such problems in the past. In particular, in recent years the homogenization
method has been the focus of research for solving such kinds of optimal shape design
problems (see, e.g., [1], [9], [11], [25], [33]). The computation of the solution is a time
consuming task for all of them because it normally leads to a large scale optimization
problem, which requires the subsequent solution of many boundary value problems.
We restrict our presentation to the mapping method which has the advantage that
the theory also covers a class of optimal control problems, where the coefficients of the
variational equation are influenced by the control. However, the mesh independence
assertions presented here can also be applied to the other kinds of methods.

The considered class of optimal shape design problems that are extensively inves-
tigated in [30], [31] can be written as

min
u∈Uad

J̃(u, ỹ, z̃).(1.1)

The design, respectively, control, function u ∈ Uad parametrizes the bounded domain

Ω̃ = {x̃ = (x̃1, x̃2)T ∈ R2 | x̃2 ∈ I := (0, 1) ∧ x̃1 ∈ (0, u(x̃2))}(1.2)

and Uad is a suitable subset of a function space U . The state ỹ ∈ Ṽ, Ṽ Hilbert space,
is the solution of an elliptic boundary value problem of the second kind on the domain
Ω̃, and the function z̃ ∈ Z̃, Z̃ Hilbert space, has to be introduced to describe a desired
state of the function ỹ or for handling inhomogeneous Dirichlet boundary conditions.

Since the boundary value problem is solved with the finite element method, the
weak formulation in terms of a variational equation on the moving domain Ω̃ is used
from the beginning. Based on the boundary partition ∂Ω̃ = Γ̃0 ∪ Γ̃1 with Γ̃0 ∩ Γ̃1 = ∅,
the space of the state is defined by

Ṽ = {φ ∈ H1(Ω̃)| γ0φ|Γ̃0
= 0},

where the trace map γ0 ∈ L(H1(Ω̃),H 1
2 (∂Ω̃)) of order zero is further omitted if the

meaning is obvious.
The mapping method transforms the moving domain Ω̃ to a fixed domain Ω

leading to an optimal control problem that is defined on fixed Ω. Therefore, we
assume that a suitable transformation T = T (u) completely determined by a function
u ∈ Uad exists, which is the case for several kinds of transformations, as presented, for
example, by Banks and Kojima [5]. Thus, by using the generalized substitution rule
the optimal shape design problem (1.1) is modified to the optimal control problem

min
u∈Uad

J(u, y, z)(1.3)

with a general variational equation

a(u; y, η) = l(u; η) ∀η ∈ V,(1.4)
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where the V-elliptic and continuous bilinear form a(u; ·, ·) : V × V → R is given by

a(u; y, η) =
∑
|i|,|j|≤1

〈aij(u)Diy,Djη〉L2(Ω) + 〈b(u)y, η〉L2(Γ1),

and the linear functional l(u; ·) : V → R is defined by

l(u; η) =
∑
|i|≤1

〈fi(u), η〉L2(Ω) + 〈f(u), η〉L2(Γ1).

This variational equation is described on the fixed domain Ω, where the coefficient
functions now depend nonlinearly on the parameter function u ∈ Uad. The tilde
indicating a function, boundary, etc., on the moving domain Ω̃ is omitted, if the
symbols are defined analogously on the fixed region Ω.

The derived minimization problem is further simplified by supposing initially the
nonactivity of the constraint u ∈ Uad; i.e., the problem (1.3), respectively, (1.4), can
be treated with the modified cost function

min
u∈U

J(u, y, z).(1.5)

This simplification is justified if the solution u∗ is supposed to be an interior point of
Uad, and if the starting point is near the solution, which is guaranteed, for instance,
if a nested iteration is used.

By using the Lax–Milgram lemma, the equality constraint (1.4) can be eliminated
by a solution operator y = S(u). Hence, the constrained minimization problem (1.5)
is modified to the unconstrained minimization problem

min
u∈U

J(u, S(u), z(u)).(1.6)

To handle the possible ill-posedness of the problems, a Tikhonov regularization term
(see, e.g., [6], [7]) is sometimes added to this cost function if necessary. Thus, (1.6) is
finally written as

min
u∈U

F (u)(1.7)

with F (u) := J(u, S(u), z(u)) + ε
2‖u− uT ‖2T , ε ∈ R, and a function uT .

There are two different procedures for stating numerical methods based on the
differentiability properties. One way is to derive the derivatives in function spaces and
to discretize the algorithm afterward as will be presented here. The other procedure
that is commonly used in the context of optimal shape design problems is to discretize
the problem first and then to state numerical methods for the discrete problem.

It is a well-known fact that both procedures could lead to different algorithms.
This fact is discussed in detail, for instance, by Chenais [12] in the context of opti-
mal shape design problems and by Kelley and Sachs [26], [28] for solving continuous
problems with quasi-Newton methods.

In contrast to the commonly used procedure for solving optimal shape design
problems, the discretization of the infinite dimensional algorithm offers the possibil-
ity of improving approximation results by comparing the computable iterates with
the underlying infinite dimensional ones. A typical question for the research in this
context is the provability of a mesh independence principle. In other words, do all
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quantities of the method, such as iterates, solutions, and convergence constants, de-
pend continuously on the discretization?

This illustrates impressively the demand of a mesh independence principle for
this specific class of problems. The research of Allgower et al. concerning Newton’s
method is stated in the context of nonlinear equations. Their work can be transferred
to our minimization problem by the necessary first order condition F ′(u) = 0 in U ′.
Then, Newton’s method is defined by (n ∈ N)

F ′′(un−1)(w)(v) = −F ′(un−1)(v) ∀v ∈ U ,
un = un−1 + w,(1.8)

where F, F ′, and F ′′ also depend on functions defined on the infinite dimensional
Hilbert space V. This method is discretized by the replacement of the infinite dimen-
sional spaces V and U with the finite dimensional subspaces VN and UM , leading to
the discretized algorithm

F ′′N (uMn−1)(wM )(vM ) = −F ′N (uMn−1)(vM ) ∀vM ∈ UM ,
uMn = uMn−1 + wM .(1.9)

At first glance, one difficulty for applying their results directly to the optimal
shape design problems under consideration arises from the fact that the uniform
boundedness of a projection operator Π is required. This operator should map the
infinite dimensional space U to the finite element space UM . Unfortunately, for our
problems U is chosen to be only a Banach and not a Hilbert space, which means that
the existence of such a projection cannot be assured. The lack of a Hilbert space can
be overcome in two ways.

First, we could try to extend the formulation of the problem from the Ba-
nach space U to any Hilbert space, for example, H1(I). However, the Fréchet-
differentiability has to be proven in this larger space, which is far more complicated.
Also, the extension strategy of Tröltzsch [39], who stated optimality conditions in
a Hilbert space assuming the differentiability only with respect to a smaller Banach
space, cannot be applied since it is not guaranteed that the extension of the derivative
with respect to H1(I) even exists.

Second, the Banach space U could be restricted to a smaller Hilbert space, for
example, H2(I). However, the mesh independence theorem has to be stated under
rather strong regularity conditions limiting the application to real problems.

On closer inspection of the Allgower et al. mesh independence theorem, one can
see that their assumptions on the projection operator Π : U → UM are required only
since they do not assume UM ⊂ U . Since this inclusion is naturally satisfied for
the finite element method that is commonly used for solving optimal shape design
problems, their theorem could be modified without using such a projection operator.

Another problem for applying the results of Allgower et al. is caused by their
consistency condition with respect to the derivatives of the cost function. For the
considered problems it is not reasonable to expect such a required order of consistency.

These are the reasons for presenting a new modified mesh independence principle
in the next section, which could be applied to these optimal shape design problems.
The main assertion of the paper is given in Theorem 2.2. Since the derivation of the
underlying complicated theory for the construction of Newton’s method to solve the
optimal shape design problems would be beyond the scope of this paper, we give only
evidence for the necessity of the modified mesh independence theorem in section 3
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and refer to the paper [31] for the theory. Finally, the discretization of the algorithm
is given by the finite element method, and numerical results confirm the practical
importance of the derived assertions.

2. Mesh independence principle. The modification of Newton’s mesh inde-
pendence theorem is adjusted to the notation of minimization problems and could
be applied to the optimal shape design problems under consideration. For the nth
iteration of Newton’s method it leads to the estimate of the error ‖un−uMn ‖U instead
of the weaker assertion of the standard theorem based on the error ‖Πun − uMn ‖U .
Throughout the proofs advantage is taken of the fact that the approximated func-
tion FN is defined for all u ∈ U , although it will be evaluated only for some points
uM ∈ UM .

Corresponding to the infinite dimensional convergence assertion, u0 can be chosen
to be in the ball U∗ := U(u∗, ρ∗) := {u ∈ U : ‖u − u∗‖U ≤ ρ∗} in order to guarantee
the convergence to the solution u∗. Some further assumptions concerning the cost
function FN , which are assumed to hold on a possibly smaller ball Û∗ := Û(u∗, ρ̂∗) :=
{u ∈ U : ‖u− u∗‖U ≤ ρ̂∗} with ρ̂∗ ≤ ρ∗, will be stated in the following.

Assumption C1. Let the assumptions of the theorem on the q-quadratic con-
vergence of Newton’s method for the infinite dimensional problem be satisfied. In
particular, with appropriate constants L and δ

‖F ′′(u)− F ′′(v)‖L(U,L(U,R)) ≤ L‖u− v‖U ∀u, v ∈ U∗,
‖F ′′(u∗)−1‖L(L(U,R),U) ≤ δ.

Assumption C2. There exist uniformly bounded Lipschitz constants L
(i)
N , i =

1, 2, such that

‖F ′N (u)− F ′N (v)‖L(U,R) ≤ L(1)
N ‖u− v‖U ∀u, v ∈ Û∗,∀N ∈ N,

‖F ′′N (u)− F ′′N (v)‖L(U,L(U,R)) ≤ L(2)
N ‖u− v‖U ∀u, v ∈ Û∗,∀N ∈ N.

Without loss of generality, we assume L
(i)
N ≤ L, i = 1, 2, for all N .

Assumption C3. There exists a sequence ζ
(1)
N with ζ

(1)
N

N→∞−→ 0, such that

‖F ′N (u)− F ′(u)‖L(U,R) ≤ ζ(1)
N ∀u ∈ Û∗,∀N ∈ N,

‖F ′′N (u)− F ′′(u)‖L(U,L(U,R)) ≤ ζ(1)
N ∀u ∈ Û∗,∀N ∈ N.

Assumption C4. There exists a sequence ζ
(2)
M with ζ

(2)
M

M→∞−→ 0, such that for all

M ∈ N there exists a ûM ∈ UM ∩ Û∗, such that ‖ûM − u∗‖U ≤ ζ(2)
M .

Assumption C5. F ′N and F ′′N correspond to the derivatives of FN .
Since the cost function F is assumed to be twice continuously Fréchet-differen-

tiable, its first derivative is also Lipschitz continuous

‖F ′(u)− F ′(v)‖L(U,R) ≤ L̂‖u− v‖U ∀u, v ∈ U∗,
where, without loss of generality, we also assume L̂ ≤ L.

Since ‖F ′′(u∗)−1‖L(U,L(U,R)) ≤ δ and

δ‖F ′′(u∗)− F ′′N (ûM )‖L(U,L(U,R))

≤ δ‖F ′′(u∗)− F ′′(ûM )‖L(U,L(U,R)) + δ‖F ′′(ûM )− F ′′N (ûM )‖L(U,L(U,R))

≤ δLζ(2)
M + δζ

(1)
N ≤ δζ̂ < 1
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hold for a constant ζ̂ ∈ R if M and N are sufficiently large, the Banach lemma [24,
Thm. V.2.4] yields the existence of F ′′(ûM )−1 with

‖F ′′(ûM )−1‖L(U,L(U,R)) ≤ δ

1− δζ̂ =: δ̂.

Analogously, since it is known that ρ∗ ≤ 2
3δL < 1

δL [37], the inequalities

δ‖F ′′(ui)− F ′′(u∗)‖L(U,L(U,R)) ≤ δL‖ui − u∗‖U ≤ δLρ∗ < 1

hold yielding the existence of F ′′(ui)−1 with

‖F ′′(ui)−1‖L(L(U,R),U) ≤ δ

1− δLρ∗ =: δ̂.

Therefore, possibly by redefining δ by the constant δ̂, it can be assumed that

‖F ′′(ui)−1‖L(L(U,R),U) ≤ δ ∀i ∈ N,(2.1)

‖F ′′N (ûM )−1‖L(L(U,R),U) ≤ δ ∀ûM ,∀N ∈ N,(2.2)

for M and N satisfying δLζ
(2)
M + δζ

(1)
N ≤ δζ̂ < 1.

The next theorem presents sufficient conditions for the existence of a solution of
the minimization problem

min
uM∈UM

FN (uM )(2.3)

and describes the convergence behavior of Newton’s method for M,N →∞.
Theorem 2.1. Let (C1)–(C5) be satisfied. Assume that the discretization pa-

rameters M and N fulfill the condition

ζMN := 2δ

(
max{1, L}+

1

2δ

)(
ζ

(1)
N + ζ

(2)
M

)
≤ min

{
ρ̂∗,

1

δL

}
.(2.4)

Then the discretized Newton’s method has a local solution uM∗ ∈ Û∗, and the dis-
cretization error satisfies

‖uM∗ − u∗‖U ≤ ζMN .

Proof. The basic idea is to apply Kantorowitsch’s theorem [24] to Newton’s
method with starting point uM0 = ûM ∈ Û∗ in order to obtain the existence of a
solution uM∗ of the infinite dimensional minimization problem. The corresponding
geometrical situation is sketched in Figure 2.1.

First, Assumptions C2–C4, equation (2.2), and the condition (2.4) yield the in-
equalities

2h := 2δL‖F ′′N (ûM )−1F ′N (ûM )‖U
≤ 2δL‖F ′′N (ûM )−1‖L(L(U,R),U)‖F ′N (ûM )‖L(U,R)

≤ 2δ2L
(‖F ′N (ûM )− F ′(ûM )‖L(U,R) + ‖F ′(ûM )− F ′(u∗)‖L(U,R)

)
≤ 2δ2L

(
ζ

(1)
N + L‖ûM − u∗‖U

)
≤ 2δ2Lmax{1, L}

(
ζ

(1)
N + ζ

(2)
M

)
(2.5)

≤ 2δ2L

(
max{1, L}+

1

2δ

)(
ζ

(1)
N + ζ

(2)
M

)
≤ δLζMN ≤ 1,

which imply the required assumption h ≤ 1
2 .
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u∗

ûM

r(h)

ζ
(2)
M

ρ̂∗

ρ∗

Fig. 2.1. Balls used for the local convergence investigations.

To be able to apply the Kantorowitsch theorem only the condition U(ûM , r(h)) ⊂
U(u∗, ρ̂∗) remains to be checked. Because of Assumption C4 this condition can be
rewritten as

r(h) :=
1

δL
(1−√1− 2h) ≤ ρ̂∗ − ζ(2)

M ,(2.6)

which is proven by using the given assumptions and inequality (2.6):

r(h) ≤ 1

δL

(
1−

√
1− 2δ2Lmax{1, L}

(
ζ

(1)
N + ζ

(2)
M

))

≤ 2δmax{1, L}(ζ(1)
N + ζ

(2)
M )

1 +

√
1− 2δ2Lmax{1, L}(ζ(1)

N + ζ
(2)
M )

≤ 2δmax{1, L}
(
ζ

(1)
N + ζ

(2)
M

)
≤ 2δ

(
max{1, L}+

1

2δ

)(
ζ

(1)
N + ζ

(2)
M

)
− ζ(2)

M

≤ ζMN − ζ(2)
M ≤ ρ̂∗ − ζ(2)

M .

Finally, this yields the existence of a solution uM∗ ∈ U(ûM , r(h)) and

‖uM∗ − u∗‖U ≤ ‖uM∗ − ûM‖U + ‖ûM − u∗‖U ≤ ζMN − ζ(2)
M + ζ

(2)
M = ζMN .

Now we have proven that a solution uM∗ ∈ U(ûM , r(h)) ⊂ U(u∗, ρ̂∗) of the dis-
cretized minimization problem exists. Next, the main theorem of the paper shows that
the discretized Newton’s method converges to the solution uM∗ for any uM0 ∈ U(u∗, ρ1)
for sufficiently small ρ1.

Theorem 2.2. Let Assumptions C1–C5 be satisfied, and assume that the dis-

cretization parameters M and N satisfy the condition ζMN ≤ 1
6 min

{
ρ̂∗
4 ,

1
6Lδ+1

}
.

Then the discretized Newton’s method converges to uM∗ for all uM0 ∈ U(u∗, ρ1) with
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ρ1 = 3
4 min{ 1

3Lδ ,
ρ̂∗
2 }. In addition, for all starting points satisfying the condition

‖uM0 − u0‖U ≤ τ

with τ =
2( 1

2 +‖u0−u∗‖U )ζMN

b2+
√
b2−6Lδ( 1

2 +‖u0−u∗‖U )ζMN
and b = 1 + 1

2ζMN − 2δL‖uM0 − u∗‖U , the

following convergence properties hold (c1, c2, c3, c4 ∈ R, n ∈ N):

‖uMn+1 − uM∗ ‖U ≤ c1‖uMn − uM∗ ‖2U ,(2.7)

‖uMn − un‖U ≤ c2ζMN ,(2.8)

‖F ′N (uMn )− F ′(un)‖L(U,R) ≤ c3ζMN ,(2.9)

‖uMn − uM∗ ‖U ≤ ‖un − u∗‖U + c4ζMN .(2.10)

Proof. The proof is divided into three parts. First, the convergence of the dis-
cretized Newton’s method is proven for all uM0 in a suitable ball around u∗. Then,
the convergence of the iteration function uMn to the infinite dimensional iteration un
is shown, and third, the proof is finished.

1. Since the assumptions of Theorem 2.1 are fulfilled, the existence of a solution
uM∗ ∈ Û∗ is guaranteed. Now, it will be shown that the convergence of the
discretized Newton’s method to this solution is guaranteed, if uM0 is chosen

to be in U(u∗, ρ2) with ρ2 = min
{

1
3Lδ ,

ρ̂∗
2

}
and ζMN ≤ min

{
ρ̂∗
4 ,

1
6Lδ+1

}
.

The inequalities

‖uM∗ − u∗‖U + ‖uM0 − uM∗ ‖U ≤ 2‖uM∗ − u∗‖U + ‖uM0 − u∗‖U
≤ 2ζMN + ρ2 ≤ ρ̂∗

imply that U(uM∗ , ‖uM0 −uM∗ ‖U ) ⊂ Û∗, which means that Assumptions C1–C5
are also valid in U(uM∗ , ‖uM0 − uM∗ ‖U ).

Since ‖F ′′(u∗)−1‖L(L(U,R),U) ≤ δ and since the definition of ζMN implies

ζ
(1)
N ≤ 1

2δ ζMN , the following inequalities are obtained using Theorem 2.1:

δ‖F ′′N (uM∗ )− F ′′(u∗)‖L(U,L(U,R))

≤ δ‖F ′′N (uM∗ )− F ′′N (u∗)‖L(U,L(U,R)) + δ‖F ′′N (u∗)− F ′′(u∗)‖L(U,L(U,R))

≤ δL‖uM∗ − u∗‖U + δζ
(1)
N ≤ δLζMN +

1

2
ζMN ≤

δL+ 1
2

6Lδ + 1
< 1.

Now the Banach lemma yields ‖F ′′N (uM∗ )−1‖L(L(U,R),U) ≤ δ
1−(δL+ 1

2 )ζMN
.

So all assumptions of the theorem on the q-quadratic convergence of
Newton’s method are fulfilled, yielding the convergence to uM∗ for all uM0 in
a neighborhood of uM∗ . By applying a refined formulation of this theorem,
which is given by Rheinboldt [3], [37], the convergence is even guaranteed for
all uM0 ∈ U(uM∗ , r∗) with r∗ = 2

3L‖F ′′N (uM∗ )−1‖L(L(U,R),U)
.

Only U(u∗, ρ2) ⊂ U(uM∗ , r∗) remains to be proven in order to ensure the
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convergence for any uM0 ∈ U(u∗, ρ2), which is implied by

‖uM0 − uM∗ ‖U ≤ ‖uM0 − u∗‖U + ‖u∗ − uM∗ ‖U
≤ ρ2 + ζMN

≤ 1 + 3LδζMN

3Lδ

<
2(1− LδζMN − 1

2ζMN )

3Lδ

≤ 2

3L‖F ′′N (uM∗ )−1‖L(L(U,R),U)
=: r∗.

To sum up, the discretized Newton’s method converges to uM∗ for all uM0 ∈
U(u∗, ρ2) with the q-quadratic convergence rate

‖uMn+1 − uM∗ ‖U ≤ δL‖uMn − uM∗ ‖2U ,
where c1 = δL is independent of the discretization parameters M and N .

2. In this part a proof by induction is used to show

‖uMn − un‖U ≤ τ ≤ c2ζMN(2.11)

for all uM0 ∈ U(u∗, ρ1), ρ1 = 3
4ρ2, and for all discretization parameters M and

N fulfilling ζMN ≤ 1
6 min

{
ρ̂∗
4 ,

1
6Lδ+1

}
, where τ is given by

τ =
2( 1

2 + ‖u0 − u∗‖U )ζMN

b2 +
√
b2 − 6Lδ( 1

2 + ‖u0 − u∗‖U )ζMN

≤ 2( 1
2 + ‖u0 − u∗‖U )ζMN

b2
=: c2ζMN

with b = 1 + 1
2ζMN − 2δL‖uM0 − u∗‖U . The constant τ is well defined, since

the inequalities

6Lδ

(
1

2
+ ‖u0 − u∗‖U

)
ζMN ≤ 2Lδ + 1

4(6Lδ + 1)
<

1

4
and b ≥ 1− 2δLρ1 ≥ 1

2

imply b2 ≥ 1
4 ≥ 6Lδ

(
1
2 + ‖u0 − u∗‖U

)
ζMN .

While the assertion (2.11) is fulfilled by assumption for n = 0, the induc-
tion step is based on the simple decomposition

uMi+1 − ui+1 = F ′′N (uMi )−1{[F ′′N (uMi )(uMi − ui)− F ′N (uMi ) + F ′N (ui)]

+[(F ′′N (uMi )− F ′′N (ui))(F
′′(ui)−1F ′(ui))]

+[F ′′N (ui)(F
′′(ui)−1F ′(ui))− F ′(ui)]

+[F ′(ui)− F ′N (ui)]}.(2.12)

Assumptions C1–C4, equation (2.1), and the definition of ζMN imply

δ‖F ′′N (uMi )− F ′′(ui)‖L(U,L(U,R))

≤ δ‖F ′′N (uMi )− F ′′N (ui)‖L(U,L(U,R)) + δ‖F ′′N (ui)− F ′′(ui)‖L(U,L(U,R))

≤ δ(Lτ + ζ
(1)
N ) ≤ δLτ +

1

2
ζMN ≤ δLζMN + 2‖u0 − u∗‖UδLζMN

1− 2δL‖u0 − u∗‖U +
1

2
ζMN

≤
1
3δL+ 1

4

6Lδ + 1
< 1
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resulting in the inequality ‖F ′′N (uMi )−1‖L(L(U,R),U) ≤ δ
1−(Lδτ+ 1

2 ζMN )
. Using a

standard argument [16, Lemma 2.4.2] we obtain

‖F ′′N (uMi )(uMi − ui)− F ′N (uMi ) + F ′N (ui)‖L(U,R) ≤ 1

2
L‖uMi − ui‖2U ≤

1

2
Lτ2,

and the derived convergence assertion ‖ui − u∗‖U ≤ ‖u0 − u∗‖U yields

‖(F ′′N (uMi )− F ′′N (ui))(F
′′(ui)−1F ′(ui))‖L(U,R)

≤ L‖uMi − ui‖U‖ui − ui+1‖U ≤ 2Lτ‖u0 − u∗‖U .

The assumptions of the theorem lead to

‖F ′′N (ui)(F
′′(ui)−1F ′(ui))− F ′(ui)‖L(U,R)

≤ ‖ − F ′′N (ui)(ui+1 − ui) + F ′′(ui)(ui+1 − ui)‖L(U,R)

≤ ‖F ′′N (ui)− F ′′(ui)‖L(U,L(U,R))‖ui+1 − ui‖U
≤ ζ(1)

N 2‖u0 − u∗‖U ≤ 1

δ
ζMN‖u0 − u∗‖U

and ‖F ′(ui)−F ′N (ui)‖L(U,R) ≤ ζ(1)
N ≤ 1

2δ ζMN . Using the decomposition (2.12)
the last inequalities complete the induction proof by

‖uMi+1 − ui+1‖U
≤ δ

1− (Lδτ + 1
2ζMN )

{
1

2
Lτ2 + 2L‖u0 − u∗‖Uτ +

(
1

2
+ ‖u0 − u∗‖U

)
ζMN

δ

}
= τ.

The last equality is based on the fact that τ is equal to the smallest solution
of the quadratic equation 3Lδτ2 − 2bτ + 2ζMN ( 1

2 + ‖u0 − u∗‖U ) = 0.
3. Finally, inequality (2.9) is shown by

‖F ′N (uMn )− F ′(un)‖L(U,R)

≤ ‖F ′N (uMn )− F ′N (un)‖L(U,R) + ‖F ′N (un)− F ′(un)‖L(U,R)

≤ L‖uNn − un‖U + ζMN ≤ (Lc2 + 1)ζMN =: c3ζMN ,

and inequality (2.10) results from

‖(uMn − uM∗ )− (un − u∗)‖U ≤ ‖uMn − un‖U + ‖uM∗ − u∗‖U
≤ c2ζMN + ζMN ≤ (c2 + 1)ζMN =: c4ζMN .

At the end of this section, the influence of the derived convergence results on the
required number of iterations is analyzed with respect to the stopping criterion

ti := ‖F ′′(ui)(ui+1 − ui)− F ′(ui)‖L(U,R) ≤ tol,

tMN
i := ‖F ′′N (uMi )(uMi+1 − uMi )− F ′N (uMi )‖L(U,R) ≤ tol.

The number i(tol), respectively, iMN (tol), is defined to be the smallest iteration
number satisfying the stopping criterion, i.e., iMN (tol) := min{i : tMN

i ≤ tol},
respectively, i(tol) := min{i : ti ≤ tol}.
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Lemma 2.3. Let the assumptions of Theorem 2.2 be satisfied. Then for every
tol > 0 and ε > 0, there exist parameters M̂, N̂ ∈ N such that

i(tol + ε) ≤ iMN (tol) ≤ i(tol) ∀M ≥ M̂,N ≥ N̂ , and

iMN (tol) = i(tol) ∀M ≥ M̂,N ≥ N̂ .

Proof. By using the different assumptions and Theorem 2.2, the inequality

|ti − tMN
i | ≤ cζMN(2.13)

can easily be derived. The remaining part corresponds to the proof of Corollary 4.2.6
in [21]. Based on (2.13) it is possible to choose M̂ and N̂ such that the inequalities

|ti(tol) − tMN
i(tol)| ≤ tol− ti(tol) ∀M ≥ M̂,N ≥ N̂ ,

|ti − tMN
i | ≤ ε ∀M ≥ M̂,N ≥ N̂ ,

are fulfilled. Then, for all M ≥ M̂,N ≥ N̂ ,

tMN
i(tol) ≤ ti(tol) + |ti(tol) − tMN

i(tol)| ≤ tol

implies iMN (tol) ≤ i(tol), and i(tol + ε) ≤ iMN (tol) is derived using

tiMN (tol) ≤ tMN
iMN (tol) + |tiMN (tol) − tMN

iMN (tol)| ≤ tol.

The definition of i(tol) ensures that ti(tol)−1 > tol. By choosing ε =
ti(tol)−1 − tol

2
we get tol + ε < ti(tol)−1. But to obtain a residual that is less than ti(tol)−1, at
least one more iteration is necessary, i.e.,

i(tol + ε) ≥ (i(tol)− 1) + 1.

This explains the frequently observed numerical behavior that the required itera-
tion number is independent of the discretization parameters if these are large enough.

3. Optimal shape design problems. The computing of the first two deriva-
tives of the cost function is based on the adjoint p ∈ V given by the solution of the
equation

a(u; η, p) = Jy(u, S(u), z(u))(η) ∀η ∈ V.(3.1)

Some assumptions are listed here for the infinite dimensional problems in order to
adapt the theorem of Newton’s q-quadratic convergence rate. Although they could
be weakened, for the sake of simplicity we have stated them in a rather general version.

Assumption A1. Ω ⊂ R2 is Lipschitz continuous.
Assumption A2. a(u; ·.·) is a V-elliptic bilinear form for all u ∈ Uad.
Assumption A3. The second Fréchet-derivatives of f(u) ∈ V ′, aij(u) ∈ L∞(Ω),

and b(u) ∈ L∞(Γ1) exist and are Lipschitz continuous in u.
Assumption A4. J : Uad×V ×Z⊗R is twice continuously Fréchet-differentiable

and Jy(u, S(u), z(u)) ∈ V ′, Jyu(u, S(u), z(u))(v) ∈ V ′ for all v ∈ U , Jyy(u, S(u), z(u)) ∈
(V × V)′, Jyz(u, S(u), z(u)) ∈ (V × Z)′ are Lipschitz continuous with respect to all
components.

Now, the well-known theorem can be written in the following version.
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Theorem 3.1. Let Assumptions A1–A4 be satisfied. Let z(u) ∈ Z be twice
continuously Fréchet-differentiable in an open neighborhood U of the solution u∗, and
z′′(u), as well as all partial derivatives of J , be Lipschitz continuous. The existence
of F ′′(u∗)−1 ∈ L(L(U ,R),U) and of the solution u∗ in the interior of Uad is further
ensured.

Then there exists a ρ∗ > 0, such that the iterative sequence {un} generated by
Newton’s method converges to the solution u∗ for every initial value u0 with ‖u0 −
u∗‖U ≤ ρ∗. Moreover, there is a suitable constant C depending on U and on the
existing Lipschitz constant L of the second derivative of the cost function, such that

‖un − u∗‖U ≤ C‖un−1 − u∗‖2U .(3.2)

Proof. The theorem is stated in such a way that all the assumptions for stating
the first derivative of the cost function are fulfilled (see [32], [31]). Hence, Newton’s
method is well defined and the desired assertion is derived as an application of the
general theorem on Newton’s q-quadratic convergence rate [40, p. 208].

The finite element method is used for the discretization of the variational equa-
tions in Ω ⊂ R2, as well as for the calculation of Newton’s equation in I ⊂ R. Let
{ψk}Mk=1, ψk ∈ UM , be the one-dimensional spline basis functions and let {φτ}Nτ=1, φτ ∈
VN , be the two-dimensional spline basis functions, which are used to solve the dis-
tinct variational equations. In the following a vector consisting of the N or M basis
coefficient is always denoted with an arrow on top of the same letter as the coefficient,
e.g., ~yN .

For the optimal shape design problems Newton’s equation is now written as

〈F ′′N (uM )(wM ), vM 〉 = 〈−F ′N (uM ), vM 〉 ∀vM ∈ UM ,(3.3)

which is equivalent to the linear system H ~wM = d, with the Hessian matrix H =〈
F ′′N (uM )(ψi), ψj

〉M
i,j=1

∈ RM×M and the vector d =
〈−F ′N (uM ), ψi

〉M
i=1
∈ RM . In

[31] it has been proven that the right-hand side vector can be computed by

d =
〈−Ju(uM , yN , z(uM ))− Jz(uM , yN , z(uM ))z′(uM ), ψi

〉M
i=1

−H1~p
N −H4(~uM − ~uMT )

and the required result of the matrix-vector multiplication H ~wM is given by

H ~wM = H1
~̂p
N

+H2
~̂y
N

+H3 ~w
M +H4 ~w

M

for any vector ~wM , where Hi, i = 1, . . . , 4, are specific sparse auxiliary matrices. The
state yN and the adjoint pN , as well as the derivative of the state ŷN = ŷN (wM ) and
of the adjoint p̂N = p̂N (wM ), are given by the solution of a variational problem of
the kind (1.4).

Now, the question will be answered as to how the discretization parameter N
influences the state, the adjoint, and the derivatives of the cost function. A detailed
analysis is necessary, since the corresponding errors are influenced not only explicitly
but also implicitly; for example, the error of the adjoint depends also on the error of the
state. The term semidiscretized problem is used in the sense that the discretization is
done only with respect to the parameter N , but not with respect to M . Nevertheless,
since UM ⊂ U , the approximation properties are also true for a fixed uM ∈ UM .
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Theorem 3.2. Let Assumptions A1–A4 be satisfied, z(u) ∈ Z be twice continu-
ously Fréchet-differentiable, J ∈ C2(U ,V,Z), and z′′(u), as well as all partial deriva-
tives of J , be further locally Lipschitz continuous with respect to all components, such
that Newton’s method is well defined.

If the infinite dimensional solution χ ∈ V of a variational equation with respect to
the bilinear form a(u;χ, η), u ∈ U fixed, and the corresponding semidiscretized solution
χN ∈ VN with respect to a(u;χN , ηN ), satisfy the convergence condition (cχ ∈ R)

‖χ− χN‖V ≤ cχζ(N) as N →∞,
then the following assertions for N →∞ are true (c1, c2, c3, c4 ∈ R):

‖y − yN‖V ≤ c1ζ(N),

‖p− pN‖V ≤ c2ζ(N),

‖F ′(u)− F ′N (u)‖L(U,R) ≤ c3ζ(N),

‖F ′′(u)− F ′′N (u)‖L(U,L(U,R)) ≤ c4ζ(N).

Proof. As a direct implication of the given assumptions, the inequality

‖y − yN‖V ≤ cyζ(N)(3.4)

is derived for the exact and discretized state. Analogously, the inequality

‖p− p̄N‖V ≤ cpζ(N)(3.5)

is obtained for the infinite adjoint p, and the solution, p̄N , of the equation

a(uM ; p̄N , ηN ) = Jy(uM ; y)(ηN ) ∀ηN ∈ VN .
Our main interest is not the solution p̄N , but the solution pN ∈ VN of the equation

a(uM ; pN , ηN ) = Jy(uM ; yN )(ηN ) ∀ηN ∈ VN ,
which is completely discretized with respect to N . The last two equations imply

a(uM ; p̄N − pN , ηN ) = Jy(uM ; y)(ηN )− Jy(uM ; yN )(ηN ) ∀ηN ∈ VN .
Using the V-ellipticity of the bilinear form yields the inequalities (L Lipschitz con-
stant)

‖p̄N − pN‖V ≤ c‖Jy(uM ; y)− Jy(uM ; yN )‖V′
≤ cL‖y − yN‖V
≤ ccyLζ(N).(3.6)

This leads to an estimate of the infinite adjoint and of the semidiscretized adjoint

‖p− pN‖V ≤ ‖p− p̄N‖V + ‖p̄N − pN‖V
≤ cpζ(N) + ccyLζ(N)

=: c2ζ(N)(3.7)

by exploiting (3.5) and (3.6). Finally, since every summand of F ′(uM ) depends Lip-
schitz continuously on at least y or p, the result is verified using the inequalities (3.4)
and (3.7).
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Since the proof for the second derivative of the cost function is nearly the same,
it is omitted here.

Theorem 3.2 reduces the approximation properties of the cost function derivatives
to the approximation property of the discretized variational equation. This issue is
well investigated in the research of finite elements. If the underlying mesh satisfies
certain conditions, then the convergence is guaranteed (see, e.g., Ciarlet [13]).

Corollary 3.3. Let Assumptions A1–A4 be satisfied, z(uM ) ∈ Z be twice
continuously Fréchet-differentiable, J ∈ C2(U ,V,Z), and z′′(u), as well as all partial
derivatives of J , be further locally Lipschitz continuous with respect to all components
such that Newton’s method is well defined.

Consider a regular triangulation, where all finite elements are affine-equivalent to
a reference element in the sense of Ciarlet [13]. Then, the use of linear spline basis
functions implies the following assertions for N →∞:

‖y − yN‖V → 0,

‖p− pN‖V → 0,

‖F ′(u)− F ′N (u)‖L(U,R) → 0,

‖F ′′(u)− F ′′N (u)‖L(U,L(U,R)) → 0.

Proof. The assumptions concerning the finite element mesh and the finite element
functions are defined in such a way that Theorem 18.2 of Ciarlet [13] can be applied.
Thus, for fixed u ∈ U , the solution of the semidiscretized variational equation con-
verges to the infinite dimensional solution in the V norm. In other words, ζ(N)→ 0
as N →∞, and a slight modification of Theorem 3.2 yields the desired result.

For the optimal shape design problems in question, Assumptions C1 and C3 can
now be replaced with the modified Assumptions D1 and D3 by using the implications
of Theorem 3.1, Theorem 3.2, and Corollary 3.3, respectively.

Assumption D1. Let A1–A4 be satisfied. Let z(u) ∈ Z be twice continuously
Fréchet-differentiable in U∗, and let z′′(u), as well as all partial derivatives of J , be
Lipschitz continuous. Furthermore, let the existence of F ′′(u∗)−1 ∈ L(L(U ,R),U)
and of the solution u∗ in the interior of Uad be guaranteed.

Assumption D3. The infinite dimensional solution χ ∈ V of a variational equa-
tion with respect to the bilinear form a(u;χ, η), u ∈ U fixed, and the corresponding
semidiscretized solution χN ∈ VN with respect to a(u;χN , ηN ), satisfy the conver-

gence condition (ζ
(1)
N

N→∞−→ 0): ‖χ− χN‖V ≤ ζ(1)
N .

Assumption D3 means that a convergent discretization scheme has to be used
to solve the variational equations. Corollary 3.3 translates this to the case of linear
spline basis functions with a regular triangulation that is often used in computation.

It should further be mentioned that in the special case of u∗ ∈ C2(I), the inequality

‖IMu∗ − u∗‖W1,∞ ≤ 1

M − 1
‖u∗‖W2,∞

(see, e.g., [4, p. 218]) with respect to the linear interpolation operator IM : U → UM
already guarantees C4 for linear spline basis functions by choosing ûM = IMu∗.

Assumption C5 has to be verified for the considered kind of discretization scheme
as it has been demonstrated by Chenais [12] for a specific class of problems. This
assumption could also be weakened by supposing the convergence of F ′N and F ′′N to
the derivatives of the discretized cost function with respect to N,M → ∞. Several
convergence assertions are given as an immediate consequence of Theorem 2.2.
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Lemma 3.4. Let the assumptions of Theorem 2.2 be satisfied. Then for all starting
points fulfilling ‖uM0 − u0‖U ≤ τ the following assertions hold for the state y:

‖yN∗ − y∗‖V ≤ ĉ1ζMN ,

‖yNn − yn‖V ≤ ĉ2ζMN , and

‖yNn − yN∗ ‖V ≤ ‖yn − y∗‖V + ĉ3ζMN .

Analogous results are true for the adjoint p, as well as for the derivatives ŷ and p̂.
Proof. Since the corresponding solution operators are proven to be Lipschitz

continuous with respect to u, this is an easy implication of Theorem 2.2.

4. Numerical results. The numerical results presented next correspond to the
considered class of optimal shape design problems with the cost function (ε = 10−5)

min
u∈U

∫
Ω

(y − z)2udx+
ε

2
‖u‖2H1(I).

Based on the definition of the initial and exact control

u0(x2) = 1.1 and u∗(x2) =

{
1− 0.1x2, x2 ≤ 0.5,

0.9 + 0.1x2, x2 > 0.5,

z is defined by z = u∗x1e
u∗x1x2 sin(u∗x1π) sin(x2π). Since the state y is the solution

of a boundary value problem with inhomogeneous Dirichlet condition, the splitting
y = ŷ+gD(u) must be introduced. The function gD(u) = ux1e

ux1x2 sin(ux1π) sin(x2π)
is defined on the boundary and ŷ = S(u) is the solution of the variational equation

a(u; ŷ, η) = l(u; η) ∀η ∈ H1
0(Ω),

where the bilinear form and the linear functional are defined by

a(u; ŷ, η) =

∫
Ω

1

u

(
e−ux1x2 + eux1x2x2

1u
′2) ŷx1

ηx1
− eux1x2x1u

′ŷx1
ηx2

− eux1x2x1u
′ŷx2

ηx1
+ ueux1x2 ŷx2

ηx2
dx,

l(u; η) =

∫
Ω

f(ux1, x2)u dx− a(u; gD(u), η) with

f(x̃1, x2) = (π2x̃1 − x2) sin(x̃1π) sin(x2π)− π(2 + x̃1x2) cos(x̃1π) sin(x2π)

− e2x̃1x2
[
(2x̃3

1 − x̃1π
2) sin(x̃1π) sin(x2π) + 3πx̃2

1 sin(x̃1π) cos(x2π)
]
.

Each linearized optimal control problem has been solved by the SYMMLQ al-
gorithm (see, e.g., [34]) with the stopping criterion ‖H ~wM − d‖2 ≤ 10−9. Since for
our example the variational equations consist of a symmetric bilinear form, the CG
method with a hierarchical and a diagonal preconditioner is implemented to accel-
erate the expected convergence rate. This iterative method terminates if the L2(Ω)
norm of the residual is less than or equal to 10−11. This stopping criterion is rather
small in order to exclude the influence of these errors on the observed convergence
rate. However, the algorithm could be accelerated by taking advantage of the inexact
Newton’s method [15]. The ‖ · ‖H1(I) norm is used for the Tikhonov regularization
term (uT ≡ 0, ε = 10−4) and the nonlinear iteration is stopped if the norm of F ′N is
less than 10−8.
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Table 4.1
Newton’s method with various parameters M and N .

IT SYM TIME ‖wM‖ FN (uMi ) ‖F ′N (uMi )‖ ‖uMi − u∗‖
M =

√
N = 17

0 0 1 0.000E + 00 0.351E − 01 0.514E − 01 0.126E + 00
1 22 4 0.120E + 00 0.280E − 02 0.104E − 01 0.601E − 01
2 24 4 0.316E − 01 0.274E − 03 0.213E − 02 0.406E − 01
3 20 4 0.225E − 01 0.642E − 04 0.340E − 03 0.214E − 01
4 19 4 0.141E − 01 0.390E − 04 0.177E − 03 0.101E − 01
5 19 4 0.572E − 02 0.283E − 04 0.113E − 03 0.659E − 02

M =
√
N = 33

0 0 5 0.000E + 00 0.341E − 01 0.255E − 01 0.126E + 00
1 55 52 0.105E + 00 0.215E − 02 0.455E − 02 0.413E − 01
2 60 55 0.305E − 01 0.959E − 04 0.693E − 03 0.189E − 01
3 61 56 0.127E − 01 0.124E − 04 0.816E − 04 0.945E − 02
4 41 38 0.642E − 02 0.762E − 05 0.261E − 04 0.464E − 02
5 39 35 0.269E − 02 0.641E − 05 0.138E − 04 0.233E − 02

M =
√
N = 65

0 0 20 0.000E + 00 0.339E − 01 0.127E − 01 0.126E + 00
1 142 599 0.104E + 00 0.178E − 02 0.205E − 02 0.347E − 01
2 168 712 0.279E − 01 0.641E − 04 0.286E − 03 0.109E − 01
3 257 1043 0.876E − 02 0.619E − 05 0.274E − 04 0.393E − 02
4 85 339 0.205E − 02 0.499E − 05 0.533E − 05 0.206E − 02
5 73 287 0.138E − 02 0.488E − 05 0.216E − 05 0.926E − 03

M =
√
N = 129

0 0 82 0.000E + 00 0.338E − 01 0.636E − 02 0.126E + 00
1 360 7412 0.104E + 00 0.158E − 02 0.961E − 03 0.322E − 01
2 481 9423 0.268E − 01 0.517E − 04 0.126E − 03 0.848E − 02
3 1064 19609 0.910E − 02 0.586E − 05 0.121E − 04 0.341E − 02
4 116 2095 0.328E − 02 0.482E − 05 0.116E − 05 0.435E − 03
5 73 1327 0.782E − 03 0.480E − 05 0.369E − 06 0.646E − 03

M =
√
N = 257

0 0 343 0.000E + 00 0.338E − 01 0.318E − 02 0.126E + 00
1 894 84506 0.105E + 00 0.148E − 02 0.463E − 03 0.310E − 01
2 1266 112849 0.263E − 01 0.461E − 04 0.590E − 04 0.763E − 02
3 4869 413652 0.678E − 02 0.534E − 05 0.571E − 05 0.198E − 02
4 671 54504 0.155E − 02 0.517E − 05 0.503E − 05 0.768E − 03
5 76 6384 0.424E − 03 0.485E − 05 0.168E − 05 0.670E − 03

The convergence behavior of Newton’s method is illustrated in Table 4.1. The
discretization parameters M and N are increased simultaneously, where five levels
and five iterations per level are considered. The first column gives the number of
the nonlinear iterations. The second gives the required number of iterations of the
SYMMLQ algorithm. Third, the required time, measured in seconds, for all iterations
is specified. Right next to it, the L2(I)-norm of the step, the value of the cost function,
the L2(Ω)-norm of the gradient, and the L2(I)-norm of the control error ui − u∗ are
tabulated. Attention is drawn to the fact that ui is the finite ith iteration, whereas u∗
is the solution of the infinite dimensional problem without regularization. On account
of this, q-quadratic convergence rate of these values cannot be expected.

The number of SYMMLQ-iterations increases to about two to three times that of
the previous coarse level. In other words, the condition number of the Hessian matrix
increases with the parameter M , which means that more variational equations must
be solved. A preconditioner for Newton’s equation could improve this behavior.

The convergence behavior is also improved for each increase in the discretization
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Table 4.2
Nested iteration of Newton’s method (u ≥ 0.3, u0 = 1.8).

IT TIMEΣ ‖wM‖ FN (uMi ) ‖F ′N (uMi )‖ ‖uMi − u∗‖
M=9, ε = 10−2 (Projected gradient method)

0 0 0.000E + 00 0.406E + 01 0.784E + 00 0.825E + 00
10 5 0.250E − 01 0.521E − 02 0.304E − 02 0.605E − 01
20 10 0.115E − 02 0.483E − 02 0.200E − 03 0.323E − 01
30 14 0.173E − 03 0.483E − 02 0.311E − 04 0.289E − 01
40 19 0.306E − 04 0.483E − 02 0.570E − 05 0.285E − 01
50 23 0.241E − 05 0.483E − 02 0.434E − 06 0.285E − 01
60 27 0.444E − 06 0.483E − 02 0.832E − 07 0.285E − 01
69 31 0.465E − 07 0.483E − 02 0.846E − 08 0.285E − 01

M=17, ε = 10−3 (Newton’s method)
0 32 0.000E + 00 0.646E − 03 0.139E − 02 0.285E − 01
1 36 0.256E − 01 0.504E − 03 0.220E − 03 0.795E − 02
2 39 0.473E − 02 0.492E − 03 0.487E − 04 0.731E − 02
3 42 0.181E − 02 0.491E − 03 0.186E − 04 0.766E − 02
4 45 0.445E − 03 0.490E − 03 0.844E − 05 0.779E − 02
5 48 0.117E − 03 0.490E − 03 0.449E − 05 0.782E − 02

M=33, ε = 10−4 (Newton’s method)
0 53 0.000E + 00 0.547E − 04 0.144E − 03 0.782E − 02
1 82 0.607E − 02 0.491E − 04 0.872E − 05 0.221E − 02
2 112 0.580E − 03 0.489E − 04 0.477E − 05 0.241E − 02
3 141 0.125E − 03 0.489E − 04 0.282E − 05 0.242E − 02
4 171 0.579E − 04 0.489E − 04 0.172E − 05 0.242E − 02
5 197 0.315E − 04 0.489E − 04 0.108E − 05 0.242E − 02

M=65, ε = 10−5 (Newton’s method)
0 216 0.000E + 00 0.514E − 05 0.172E − 04 0.242E − 02
1 502 0.180E − 02 0.487E − 05 0.514E − 06 0.732E − 03
2 762 0.130E − 03 0.486E − 05 0.249E − 06 0.806E − 03
3 1002 0.294E − 04 0.486E − 05 0.129E − 06 0.811E − 03
4 1198 0.126E − 04 0.486E − 05 0.733E − 07 0.812E − 03
5 1353 0.587E − 05 0.486E − 05 0.459E − 07 0.812E − 03

10 1697 0.305E − 06 0.486E − 05 0.114E − 07 0.812E − 03
11 1753 0.216E − 06 0.486E − 05 0.933E − 08 0.812E − 03

parameters. However, the discretization error apparently influences the convergence
rate. Although the q-quadratic convergence rate in the infinite dimensional setting
cannot be directly observed, the fast reduction of the gradient norm and the cost
function within the first iterations points to such a property. After the first iterations,
the convergence rate is dominated by the large discretization error.

The analyzed behavior of Newton’s method for increasing parameters M and N
naturally leads to the idea of nested iteration. Since Newton’s iteration on a coarse
grid requires less time than on a fine grid, it could be expected that this yields a more
efficient algorithm. Important issues in this context are how to control the increasing
parameters and how to choose the ratio between the parameters M and N . Within
the limitation of this report we deal with this problem only in passing.

The results of Table 4.2 are obtained by using four levels, M = 9, 17, 33, 65,
with N = M2, and each approximation is transferred to the finer grid by linear
interpolation. The regularization parameter is decreased with respect to the different
levels in order to handle the ill-posedness of the problem (ε = 10−j , j = 2, . . . , 5).
Now, the accumulated time is listed in the second column.

To illustrate the applicability of the derived algorithm the starting approximation
is chosen to be u0 = 1.8, which is far away from the solution u∗. A further constraint
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u ≥ 0.3 has to be added since otherwise the control would become negative, which
makes no sense for a domain. For simplicity, the projected gradient method with
Armijo rule [10] is implemented on the coarse grid, where the stopping criterion is
kept.

After the iterations on the coarse grid, the approximation is interpolated to the
finer grid to carry out five Newton iterations. Then, the approximation is interpolated
to the next finer grid and once again improved by five Newton iterations. This process
proceeds until the finest grid (M = 65) is reached in order to compare the results with
the presented method without nested iteration.

Although the starting point is further away from the solution this nested iteration
method is faster than Newton’s method on the fine grid. The bound 10−3 of the control
is satisfied after the first iteration on the finest grid and the computation requires only
about eight minutes. This has to be compared to 50 minutes for Newton’s method
without nested iteration, which is approximately required for computing a competitive
approximation.

Finally, it can be observed that the control error at each level is unchanged at
the last few iterations. Therefore, the refinement strategy could even be improved
by using a modified stopping criterion at each level. Since the issue of choosing an
appropriate stopping criterion is well discussed for various methods (see, e.g., [2], [23],
[29]), we will not deal further with this topic.

To sum up, the computational experiments give evidence for the convergence
assertions of the derived modified mesh independence theorem. It has been further
illustrated that one key to constructing more efficient methods is to exploit the infinite
dimensional information and to use a mesh refinement strategy.
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[7] J. Baumeister, Stable Solution of Inverse Problems, Advanced Lectures in Mathematics,
Friedr. Vieweg & Sohn, Braunschweig, 1987.

[8] D. Begis and R. Glowinski, Application de la méthode des éléments finis à l’approximation
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Abstract. This paper is concerned with existence and optimality properties of so-called guar-
anteed cost controllers for an uncertain system subject to structured uncertainty. The uncertainty
in the system is assumed to have a stochastic character and to satisfy certain stochastic integral con-
straints. It is shown that a minimax optimal guaranteed cost state feedback controller for a stochastic
system can be synthesized as a state feedback controller absolutely stabilizing this system. For each
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1. Introduction. Recently, Petersen and James [16] introduced a new general
framework to allow for both stochastic and deterministic uncertainty in a discrete-
time system. The motivation for this has been to combine two alternative uncertainty
models used commonly in control theory and applications. The one model considers
uncertainty arising from unmodelled dynamics, modelling and linearization errors,
and slow parameter deviations which are deterministic in nature. Another approach
involves the use of stochastic processes to model dynamics driven by noise signals and
uncertainties due to fast parameters variations. This framework involved defining a
new class of stochastic uncertain systems in which the uncertainty was described by
a stochastic uncertainty constraint.

This paper addresses the problem of developing a similar framework for contin-
uous-time systems. We introduce a rather general model of stochastic uncertainty
which naturally extends the deterministic structured uncertainty model (cf. [12, 15,
19, 20, 21, 22, 28]), allowing for stochastic perturbations. Thus, our uncertainty model
is a continuous-time counterpart of the discrete-time stochastic uncertainty models
introduced in [16]. However, we should emphasize the difference between the results
of this paper and those of [16]. The results in [16] concern uncertain systems with ad-
ditive noise perturbations. This paper deals with a multiplicative noise perturbation
model. Structured stochastic uncertainties with multiplicative noise perturbations
arise naturally in many control problems and are considered extensively in the litera-
ture (cf. [5, 7, 8, 9, 25, 30]). In what follows, we describe two examples that motivate
the class of problems considered in this paper.

Technically and in its content, this paper is closely related to the paper of Savkin
and Petersen [20]. The main problem addressed is finding a linear static state feedback
controller yielding a prescribed level of performance in the face of stochastic structured
uncertainty in the system. In [20], such a controller is found as a minimax optimal
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controller which minimizes the maximum (over all admissible uncertainties) value
of a cost functional. The class of controllers considered are static state feedback
controllers, which absolutely stabilize the system. However, the key point of the
controller proposed here is that its construction is based on the stabilizing solution
of a generalized Riccati equation related to a stochastic H∞ control problem and to
a stochastic differential game considered recently in [26]. Our set up has required the
results of [26] to be slightly modified. Therefore, we present these modifications in
sections 2 and 3. Then, in section 4 we consider the auxiliary problem of stochastic
absolute stabilizability of a system whose uncertainty satisfies a certain stochastic
integral quadratic constraint. The main result is given in section 5. It establishes that
the search for an minimax optimal controller can be reduced to a finite-dimensional
optimization problem over the solutions to a generalized Riccati equation.

One more important feature which distinguishes stochastic problems from de-
terministic ones is as follows. The stochastic Ito equations which serve to give a
mathematically rigorous description for system dynamics are nonautonomous equa-
tions in their nature. Technically, this is reflected in the fact that we have to take into
account the difference between the effect of initial conditions posed at different times;
i.e., roughly speaking, we cannot reduce a problem with initial condition x(s) = h,
s > 0, to a problem with an initial condition imposed of time zero. That is why all
systems and processes in this paper are considered with respect to the starting instant
s, not 0. In particular, this allows us to readily integrate problems with random initial
conditions [17] into our framework.

Notation. We use the notation Rn, Rn×q to denote the n-dimensional real
Euclidian vector space and the space of real n×q-matrices equipped with the Euclidian
matrix norm. We shall use symbols ‖ · ‖ and 〈·,·〉 to denote, respectively, the norm of
vectors and matrices and the inner product of vectors. Furthermore, given a positive
symmetrical matrix Q ∈ Rq×q, trΘ1QΘ′2 defines an inner product on Rn×q. Hence,
this space can be considered a subspace in the Hilbert space of Hilbert–Schmidt
operators.

Let {Ω,F ,P} be a complete probability space, and let w1(t), w2(t) be two mu-
tually independent Wiener processes in Rq1 , Rq2 with covariance matrices Q1, Q2,
respectively. Let Ft denote the increasing sequence of Borel sub-σ-fields of F , gener-
ated by {w1,2(s), 0 ≤ s < t}. Also, let E and E{·|Ft} be the corresponding uncon-
ditional and conditional expectation operators, respectively, where the latter is the
expectation with respect to Ft.

Let Ls2 denote the Hilbert space L2(Ω,Fs,P; Rn) of Fs-measurable random vari-

ables Ω→ Rn, which is complete with respect to the norm
(
E‖ · ‖2)1/2. For T ≤ ∞,

let L2(s, T ; Rn) denote the Hilbert space generated by the (t, ω)-measurable {Ft, t ≥
0}-nonanticipating processes x(t, ω): [s, T ] × Ω → Rn and complete with respect to

the norm ‖| · ‖| = (
∫ T
s

E‖ · ‖2dt)1/2. We shall write L2(s; Rn) for L2(s,+∞; Rn).

Given a symmetric positive definite q × q-matrix Q, let Rn×q
Q denote the Hilbert

space of n× q-matrices, with the inner product trΘ1QΘ′2.
We consider an uncertain stochastic system described by the following stochastic

differential Ito equation:

dx = (Ax(t) +B1u(t) +B2ξ(t))dt+ (Hx(t) + P1u(t))dw1(t) + P2ξ(t)dw2(t),(1)

z(t) = Cx(t) +Du(t),

where x(t) ∈ Rn is the state, u(t) ∈ Rm1 is the control input, z(t) ∈ Rp is a
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vector assembling all uncertainty outputs, and ξ(t) ∈ Rm2 is a vector assembling all
uncertainty inputs. Here A, B1, B2, C, D are matrices of corresponding dimensions,
and H, P1, P2 are linear bounded operators Rn → Rn×q1

Q1
, Rm1 → Rn×q1

Q1
, Rm2 →

Rn×q2
Q2

, respectively. In the sequel, we shall use the adjoint operators H∗, P ∗1 , P ∗2
defined by the following:

〈H∗Θ1, x〉 = trΘ1Q1(Hx)′, 〈P ∗1 Θ1, u〉 = trΘ1Q1(P1u)′,
〈P ∗2 Θ2, ξ〉 = trΘ2Q2(P2ξ)

′

∀ x ∈ Rn, u ∈ Rm1 , ξ ∈ Rm2 , Θ1 ∈ Rn×q1 , Θ2 ∈ Rn×q2 .

1.1. System uncertainty. The uncertainty in the above system (1) is described
by the equation

ξ(t) = ξφ(t): = φ(t, x(·)|t0, u(·)|t0).(2)

We suppose this uncertainty to satisfy the following stochastic integral quadratic
constraint.

Definition 1. Let R̄ ≥ 0, Ḡ > 0, W > 0 be given matrices. Then an uncertainty
of the form (2) is said to be admissible if the following conditions hold.

1. For any s ≥ 0, if u(·) ∈ L2(s, T ;Rm1), then there exists a unique solution to
(1), (2) that lies in L2(s, T ;Rn);

2. There exists a sequence {tj}∞j=1 such that tj > s, tj → ∞ as j → ∞ and
the following condition holds. If u(·) ∈ L2([s, tj ];R

m1) and x(·) ∈ L2([s, tj ];R
n), then

ξφ(·) ∈ L2([s, tj ];R
m2) and∫ tj

s

E
(〈z(t), R̄z(t)〉 − 〈ξφ(t), Ḡξφ(t)〉) dt ≥ −E〈h,Wh〉, h = x(s).(3)

We use the notation Φ(R̄, Ḡ,W ) to denote the set of admissible uncertainties.
However, we will write Φ wherever it produces no confusion.

Observe that the trivial uncertainty φ ≡ 0 satisfies the above constraint. In the
sequel, we shall refer to the system corresponding to this uncertainty as the nominal
system.

In a typical situation, the plant may contain several uncertain feedback loops. In
our notation, this is described by the decomposition of uncertainty output vector z
and uncertainty input vector ξφ into several blocks of reduced dimensions as follows:

z = [z′1, . . . , z
′
k]′, ξφ = [ξ′φ,1, . . . , ξ

′
φ,k]′.

This in turn induces a corresponding block decomposition on the matrices C, D,
B2, and P2 in (1). The version of Definition 1 that accounts for this structure of
uncertainty proceeds from the assumption that each uncertainty loop satisfies its own
stochastic integral quadratic constraint of the form of (3):∫ tj

s

E
(〈zi(t), R̄izi(t)〉 − 〈ξφ,i(t), Ḡiξφ,i(t)〉) dt ≥ −E〈h,Wih〉, i = 1, . . . , k,(4)

where R̄i ≥ 0, Ḡi > 0 and Wi > 0. Then for any numbers τ1 > 0, . . . , τk > 0, we
replace all of the constraints by a single stochastic integral quadratic constraint in the
form of (3):∫ tj

s

E
(〈z(t), R̄τz(t)〉 − 〈ξφ(t), Ḡτξφ(t)〉) dt ≥ −E〈h,Wτh〉, h = x(s),(5)
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where R̄τ , Ḡτ are the block diagonal matrices

R̄τ = diag[τ1R̄1, . . . , τkR̄k], Ḡτ = diag[τ1Ḡ1, . . . , τkḠk],

and Wτ =
∑k
i=1 τiWi.

A specific feature of the uncertainty description in the form of the integral quad-
ratic constraint (3) or the structured integral quadratic constraints (4) is that this
description employs a certain sequence {tj}∞j=1 of times. Obviously, in the particular
case where u(·) is a stabilizing control input which guarantees that the uncertainty
input ξ(·) of the form (2) and the solution x(·) to the system (1), driven by the control
input u(·) and uncertainty input ξ(·), both exist on [0,∞) and belong to L2[0,∞),
there is no need in employing the sequence {tj}∞j=1 to describe the uncertainty. Indeed,
given the constraint in the form (3) and stabilizing control input u(·), by passing to the
limit in (3) as tj → ∞, one can replace the integral over [0, tj ] in (3) by the integral
over the infinite interval [0,∞). Furthermore, by then making use of the Parseval
identity, one may proceed to consider the frequency domain version of the integral
quadratic constraint (3); cf. [15]. However, at this stage, we have yet not determined
that any control input u(·) is stabilizing. We wish to define the class of admissible
uncertainties for a generic control input; therefore we ought to avoid referring to
any particular stabilizing properties of the control input when the constraints on the
uncertainty are being defined. As in the deterministic case (cf. [20, 21, 22]), this can
be achieved by considering control inputs, uncertainty inputs, and the corresponding
solutions defined on a sequence of expanding finite intervals [0, tj ]. To give the reader
an idea on how conservative the uncertainty model described by Definition 1 is, note
that if for a certain uncertainty input ξφ, there exists no sequence {tj} such that
the constraint (3) is satisfied for suitable R̄, Ḡ, and W̄ , then this means that the
considered uncertainty input is not locally (and hence globally) square integrable.

The uncertainty constraint given by (3) or (4) extends the integral quadratic
constraints such as those given in [20, 21, 22] to stochastic systems with multiplicative
noise. As in these references, this uncertainty description allows for the uncertainty
input ξ to depend dynamically on the uncertainty outputs. Also, a constraint in the
form of (3) or (4) represents an extension of the discrete stochastic sum constraint
of [16] to the case of continuous-time stochastic systems. However, the results of
[16] allow for additive noise rather than multiplicative noise. Note also that the
uncertainty description in the form of the constraint (3) encompasses the standard
norm-bounded uncertainty description. Indeed, if

ξ(t) = ∆(t)z, ‖∆(t)‖ ≤ 1,

i.e., φ(t, x, u) = ∆(t)(Cx + Du), then the constraint (3) is satisfied with R̄ = I,
Ḡ = I, and any matrix W > 0 and sequence {tj}∞j=1, provided that x(·) and u(·) lie
in the corresponding L2 spaces. A corresponding observation is also true in the case
of structured norm-bounded uncertainty.

Stochastic extensions to integral quadratic constraints may provide a possible
approach to the problem of nonworst-case robust control design. Recall that the
standard deterministic worst-case robust control design presumes that all uncertain-
ties have an equal chance of occurring, so that one does not expect that certain
uncertainty inputs are more or less likely than others. Although the worst-case design
methodology has proved its efficacy in various engineering problems, it suffers from
the disadvantage that the designer lacks the opportunity to discriminate between “ex-
pected” uncertainties and those uncertainties which are known to seldom occur. In
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Fig. 1. The two carts system.

other words, the standard worst-case design methodology proceeds from the assump-
tion that the values that the uncertainty may take, are equally likely; i.e., one can
think of the uncertainty arising from a uniformly distributed random variable taking
its values in the space of uncertainty inputs. However, this may not accurately rep-
resent the uncertainty in the system under consideration. For example, it may have
been determined that the uncertainty inputs have a distribution other than the uni-
form distribution, and the designer may wish to make use of as much realistic a priori
information about the distribution of uncertainty values as possible. The following
example illustrates a situation in which this idea can be applied to go beyond the
worst-case robust control design in the case where the distribution of uncertainties is
Gaussian. In this case, we arrive at an underlying system of the form (1).

Suppose that the system to be controlled consists of two carts connected by a
spring as shown in Figure 1. There is a disturbance ξ of the form (2) acting on the
first cart. A control force u drives the second cart. The spring constant k has a specific
nominal value k0 = 1.25 but can vary and is considered uncertain. This may reflect
the nonlinear nature of the true spring. A series of experiments was undertaken to
determine values of the spring constant in various conditions. It was revealed that for
each time instant t, the histogram of observed values is consistent with a stationary
Gaussian distribution, with the mean k0. It was also found in the experiments that k
ranged over the interval [0.5, 2]. Assume that the masses of carts are m1 = m2 = 1.
Then, the system is described by the equation

ẋ = (A+ F∆(t)C)x+B1u+B2ξ,

where x = [x1 x2 ẋ1 ẋ2]′ ∈ R4, ∆(t) = k(t)− k0, and

A =


0 0 1 0
0 0 0 1

−1.25 1.25 0 0
1.25 −1.25 0 0

 , B1 =


0
0
0
1

 , B2 =


0
0
1
0

 ,

F =


0
0
−1

1

 , C =
[

1 −1 0 0
]
.(6)

Assume that for all t ≥ 0, ∆(t) is the Gaussian white noise process with zero
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Fig. 2. The uncertain electric circuit.

mean and E∆2(t) = σ2. We can then choose the value of the parameter σ such that
k(t) = k0 + ∆(t) obeys the bounds 0.5 ≤ k(t) ≤ 2 with a sufficiently high probability.
For example, for σ = 0.25, we have P (|k(t) − k0| ≤ 0.75) ≥ 0.997. This model of
spring rate variations leads us to the uncertain stochastic system1 of the form (1),

dx = (Ax+B1u+B2ξ)dt+Hxdw1(t),

z = Cx+Du,

where H = σFC, and w1(·) is the scalar Wiener process. Note that in this model,
the probability P (|k(t)−k0| ≤ 0.75) is increasing as σ2 ↓ 0. However, we shall always
have P (|k(t)− k0| ≤ 0.75) < 1; i.e., the value of the spring rate k(t) may exceed the
presumed bounds on uncertainty [0.5, 2] with nonzero probability. This phenomenon
indicates the “soft” norm bound on the uncertainty.

Another example showing how the above uncertainty description may arise is
given by the electric circuit shown in Figure 2. The differential equations describing
the current and voltage dynamics in this circuit are the following:

di

dt
= −R

L
i+

1

L
(V − VC),

dVC
dt

=
1

C
i,

where i is the current flowing in the circuit and VC is the capacitor voltage. One
can control the system by applying the appropriate voltage V . In the circuit, the
resistance R of the resistor and the inductance L of the inductor may vary as follows.

It is known that the resistance R may slowly vary from R− to R+ due to, e.g.,
the resistor temperature variations. That is, R = R(t) = R0 + R1∆R(t), where
R0 = (R+ +R−)/2 is the nominal value of the resistor, R1 = (R+−R−)/2, and ∆R(t)
satisfies the standard norm-bounded uncertainty constraint, |∆R(t)| ≤ 1. Also, it is
known that nearby electrical devices may induce changes in the inductance value.
That is, one may suppose that the inductance L = L(t) is given by L−1 = L−1

0 +
L−1

1 ζ(t), where ζ(t) is the Gaussian white noise with the mean 0 and the covariance
1, L0 is the mean inductance. The value of L1 can be determined by estimating the
covariance of the reciprocal inductance.

Letting x = [i, VC ] ∈ R2, z1 = i, z2 = VC − V , one can write a formal Langevin

1In this example, one relies on the fact that (FC)2 = 0 when proceeding from the formal Langevin
equation to a corresponding mathematically rigorous Ito equation. Conditions under which a solution
of the Langevin equation satisfies also a corresponding Stratonovich equation and, consequently, an
Ito equation are given in [24].
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equation for the system in Figure 2:

ẋ =

[ −R0/L0 −1/L0

−1/C 0

]
x+

[
1/L0

0

]
V +

[ −R1/L0

0

]
ξ1

+

([ −R0/L1 −1/L1

0 0

]
x+

[
1/L1

0

]
V +

[ −R1/L1

0

]
ξ1

)
ζ(t),

z = x+

[
0
−1

]
V, ξ1 = ∆R(t)z1.

The rigorous mathematical description of the system is then given by the following
Ito stochastic differential equation of the form (1):

dx =

([
−R0

L0
+

R2
0

2L2
1
− 1
L0

+ R0

2L2
1−1/C 0

]
x+

[
1
L0
− R0

2L2
1

0

]
V

+

[
−R1

L0
+ R0R1

L2
1

R1

2L2
1

R2
1

2L2
1

0 0 0

]
ξ

)
dt

+

([ −R0/L1 −1/L1

0 0

]
x+

[
1/L1

0

]
V +

[ −R1/L1 0 0
0 0 0

]
ξ

)
dw(t),

z = x+

[
0
−1

]
V, ξ = ∆(t)z, ∆(t) =

 ∆R(t) 0
0 ∆R(t)

(∆R(t))2 0

 .
It is easy to see that ∆′∆ ≤ 2I. As we have already mentioned, this constraint can
be converted into a certain integral quadratic constraint of the form (3). It is also
worth noting that in this example, the uncertainty is structured. Hence, the inte-
gral quadratic constraints on structured uncertainty of the form (4) can be used to
describe the uncertainty in this example. It is known that the use of the structured
integral quadratic constraints uncertainty description may lead to a potentially less
conservative guaranteed robust performance. This motivates us to consider an opti-
mal guaranteed cost control problem in section 5 for the system (1) with structured
uncertainty.

1.2. Guaranteed cost control problem. As has been mentioned above, the
main problem addressed in this paper is to find a linear static state feedback controller
resulting in an optimal performance in the face of stochastic uncertainty in the system
(1). In this section, we set up this problem.

Let R ∈ Rn×n, G ∈ Rm1×m1 , R′ = R > 0, G′ = G > 0, be given matrices.
Associated with the uncertain system (1), (2), consider the cost functional,

Js,h(u(·)) =

∫ ∞
s

E (〈x(t), Rx(t)〉+ 〈u(t), Gu(t)〉) dt,(7)

where x(t) is the solution to (1), (2) satisfying the initial condition x(s) = h.
Definition 2. Given a constant γ > 0 and the cost functional (7), the state

feedback controller

u0 = Kx(8)

is said to be a guaranteed cost controller for the uncertain system (1), (2), with cost
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functional (7) and initial condition h, if it satisfies the following conditions:
(i) This controller stabilizes the nominal system, i.e., the resulting closed-loop

nominal system,

dx(t) = [A+B1K]x(t)dt+ [H + P1K]x(t)dw1(t), x(s) = h,(9)

is exponentially stable in a mean-square sense. That is, there exist constants C > 0,
α > 0 such that

E‖x(t)‖2 ≤ CE‖h‖2e−α(t−s).

(ii) For all s > 0 and h ∈ Ls2, the corresponding solution to the closed-loop
uncertain system (1), (3), (8),

dx(t) = ([A+B1K]x(t) +B2ξ(t)) dt+ [H + P1K]x(t)dw1(t) + P2ξ(t)dw2(t),(10) (
z
u

)
=

[
C +DK

K

]
x, x(s) = h,

with any admissible uncertainty input (2), lies in L2(s,Rn). Furthermore, as a consequence,
the corresponding control input u(·) and admissible uncertainty input ξφ(·) lie in
L2(s,Rm1), L2(s,Rm2), respectively.

(iii) The corresponding value of the cost functional (7) is bounded by the constant
γ for all admissible uncertainties:

sup
φ(·)∈Φ

Js,h(u(·)) ≤ γ.(11)

Note that in the case of the structured uncertainty, the definition remains virtu-
ally the same, with the obvious replacement of the constraint (3) by the structured
constraints (4) (or their matrix version (5)).

We now introduce the set K of guaranteed cost controllers of the form (8). Note
that the constant γ in Definition 2 describes the prespecified required level of robust
performance of the closed-loop system. In the (nonoptimal) guaranteed cost control
problem, it is satisfactory to obtain any controller satisfying the condition (11). In
this paper, we address the optimal version of the guaranteed cost control problem,
in which we seek to find a control guaranteeing the minimum upper bound on the
worst-case performance of the uncertain closed-loop system driven by the uncertainty
input ξφ, φ ∈ Φ:

inf
u(·)∈K

sup
φ∈Φ

Js,h(u(·)).(12)

Note that in this minimax optimization problem, the admissible maximizers are those
which satisfy the constraint (3) (or the constraints (4)). Thus, the optimization prob-
lem (12) is a constrained minimax optimization problem. The controller solving the
constrained minimax optimization problem (12) will be referred to as a minimax
optimal guaranteed cost controller.

2. Stochastic differential game. In this section we consider the stochastic
linear quadratic differential game associated with (1). The set up is similar to that
in [26], where the special case of P1 = P2 = 0 is considered. The results presented
below extend in a straightforward manner those of [26]. This extension is of primary
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importance for the results of this paper and will be extensively used in what follows.
Hence, for the sake of completeness, we include these extensions here.

As in [26], the consideration of the stochastic linear quadratic differential game
in this section assumes that the underlying system has certain stability properties.
In particular, we shall require in this section that the matrix A is stable. In the
subsequent sections this assumption will be significantly weakened; see Assumption 2
in the next section.

Assumption 1. The linear system

dx(t) = Ax(t)dt+Hxdw1(t), x(s) = h,(13)

that corresponds to the system (1), driven by the control input u(·) = 0 and the
uncertainty input ξ(·) = 0, is exponentially stable in mean-square sense; i.e., there
exist constants C > 0, α > 0 such that

E‖x(t)‖2 ≤ Ce−α(t−s)E‖h‖2.(14)

As a consequence, the matrix A is a stability matrix.
Remark. In order to check Assumption 1, one can use Lyapunov arguments re-

ducing the stability test to finding a feasible solution Y to the linear matrix inequality

A′Y + Y A+H∗Y H ≤ −ε̄I, Y ′ = Y > 0,

for a certain constant ε̄ > 0.
Consider the stochastic differential game defined by (1) and the cost functional

=s,h(u, ξ) =

∫ +∞

s

E
{
F (x(t), u(t))− ‖ξ(t)‖2} dt,(15)

F (x, u) := 〈x,Rx+Qu〉+ 〈u,Q′x+Gu〉,
where R = R′ ∈ Rn×n, Q ∈ Rn×m1 , G = G′ ∈ Rm1×m1 , R ≥ 0, G > 0. In (15),
x(·) denotes the solution to (1) satisfying the initial condition x(s) = h and driven
by the pair of inputs (u(·), ξ(·)). In this game, u(·) ∈ L2(s,Rm1) is the minimizing
strategy, and ξ(·) ∈ L2(s,Rm2) is the maximizing strategy. Note that Assumption 1
assures that any pair of inputs (u(·), ξ(·)) ∈ L2(s,Rm1) × L2(s,Rm2) result in a
square-integrable solution on [s,+∞) for any initial condition; see, e.g., [3] and also
Lemma 4 in Appendix A. This implies that the cost functional (15) is well defined on
L2(s,Rm1) × L2(s,Rm2). Also, in what follows we shall consider the finite horizon
version of the cost functional (15) which is defined as follows:

=s,hT (u, ξ) =

∫ T

s

E
{
F (x(t), u(t))− ‖ξ(t)‖2} dt, s ≤ T <∞.(16)

Note that for T = +∞, =s,h∞ (u, ξ) = =s,h(u, ξ).
In the stochastic differential game, we seek to find

V := inf
u(·)∈L2(s,Rm1 )

sup
ξ∈L2(s,Rm2 )

=s,h(u, ξ).(17)

Lemma 1. Suppose that Assumption 1 is satisfied. Also, suppose there exists a
constant ε2 > 0 such that

=0,0(0, ξ) ≤ −ε2‖|ξ‖|2 ∀ ξ ∈ L2(0,Rm2).(18)
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Then the following conditions hold:
(a) For each s ≥ 0, h ∈ Ls2, there exists a unique ξs2(·) ∈ L2(s; Rm2) such that

=s,h(0, ξs2(·)) = sup
ξ(·)∈L2(s,Rm2 )

=s,h(0, ξ).(19)

Also, there exists a unique optimal ξs2T (·) ∈ L2(s, T ; Rm2) maximizing the cost func-

tion =s,hT (0, ξ(·)). Moreover,

‖|ξs2T (·)‖|2 ≤ cE‖h‖2, =s,hT (0, ξs2T (·)) ≤ cE‖h‖2(20)

for some c > 0 independent of s ≤ T ≤ +∞ and h.
(b) There exists a symmetric nonnegative definite matrix X2 such that

sup
ξ(·)∈L2(s,Rm2 )

=s,h(0, ξ) = E〈h,X2h〉.(21)

(c) For all T > 0, there exists a unique symmetric nonnegative definite solution
X2T (·) to the generalized Riccati equation

dX2T

dt
+A′X2T +X2TA+H∗X2TH +R(22)

+X2TB2(I − P ∗2X2TP2)−1B′2X2T = 0,

X2T = 0.

This solution satisfies the conditions 0 ≤ X2T (s) ≤ X2 and I−P ∗2X2T (s)P2 > 0. The
optimal input ξs2T (·) maximizing the functional (16) can be expressed in the form of
the feedback law

ξs2T (t) = (I − P ∗2X2T (t)P2)−1B′2X2Tx
s
2T (t),(23)

where xs2T (·) is the optimal trajectory satisfying the corresponding “closed-loop” equa-
tion

dx(t) = (A+B2(I − P ∗2X2T (t)P2)−1B′2X2T (t))xdt+Hxdw1(t)(24)

+P2(I − P ∗2X2T (t)P2)−1B′2X2T (t)xdw2(t), x(s) = h.

(d) The matrix X2 satisfying (21) is also the minimal solution to the generalized
Riccati equation

A′X2 +X2A+H∗X2H +R+X2B2(I − P ∗2X2P2)−1B′2X2 = 0,(25)

such that

I − P ∗2X2P2 > 0.(26)

Proof. See Appendix B.
Remark. As in [11], it can be proved that the matrix X2 satisfying conditions

(21), (25), and (26) is such that the system

dx(t) = (A+B2(I − P ∗2X2P2)−1B′2X2)xdt+Hxdw1(t)(27)

+P2(I − P ∗2X2P2)−1B′2X2xdw2(t), x(s) = h
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is exponentially mean-square stable. Note that in the particular case where H = 0,
P2 = 0, (25) becomes a standard Riccati equation, with the stable matrix A. Hence in
this case, the equation allows for a nonnegative definite stabilizing solution satisfying
condition (26).

The problem of the solvability of a generalized ARE is known in the literature as a
challenging problem; see, e.g., reference [18] and the references therein. This reference
presents a numerical algorithm based on homotopy methods, which solves a general
class of perturbed Riccati equations. The generalized algebraic Riccati equation (25)
is virtually the same as those in [18]. Hence a useful idea toward solving (25) may be
to apply the method of [18]. Also, it is worth noting that the solution X2 to (25) and
inequality (26) necessarily satisfies the linear matrix inequalities[ −A′X2 −X2A−R−H∗X2H X2B2

B′2X2 I − P ∗2X2P2

]
≥ 0, X2 ≥ 0.

Hence, the desired matrixX2 exists only if the above linear matrix inequalitites (LMIs)
are feasible.

Theorem 1. Suppose that Assumption 1 is satisfied and there exists a constant
ε2 > 0 such that condition (18) holds. Also, assume that there exists a constant ε1 > 0
such that

F (x, u) > ε1‖u‖2 ∀ x ∈ Rn, u ∈ Rm1 .(28)

Then the following conditions hold:
(a) For each s ≥ 0, h ∈ Ls2, there exists a unique saddle point (minimax pair)

for the cost function (15) in L2(s,Rm1)× L2(s,Rm2).
(b) There exists a unique symmetric nonnegative definite solution X ∈ Rn×n

to the generalized game-type algebraic Riccati equation

A′X +XA+H∗XH +R(29)

−(XB1 +H∗XP1 +Q)(G+ P ∗1XP1)−1(XB1 +H∗XP1 +Q)′

+XB2(I − P ∗2XP2)−1B′2X = 0

such that I − P ∗2XP2 > 0 and

V = E〈h,Xh〉.(30)

(c) The minimax pair can be expressed in the feedback form

u = F1x, ξ = F2x,

where

F1 = −(G+ P ∗1XP1)−1(XB1 +H∗XP1 +Q)′, F2 = (I − P ∗2XP2)−1B′2X.

(d) The stochastic closed-loop system,

dx = (A+B1F1 +B2F2)x+ (H + P1F1)xdw1(t) + P2F2xdw2(t),(31)

x(s) = h,

is exponentially stable in mean-square sense; i.e.,

E‖x(t)‖2 ≤ CE‖h‖2e−α(t−s).(32)

As a consequence, the matrix A+B1F1 +B2F2 is Hurwitz.
Proof. The proof follows using arguments similar to those used in proving the

corresponding theorem in [26] but with evident modifications due to the fact that we
have P1 6= 0, P2 6= 0 in this case. See Appendix C.
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Remark. In the particular case of H = P1 = P2 = 0, (29) reduces to the Riccati
equation known in deterministic H∞ control. In another particular case in which
B2 = 0, P2 = 0, this equation reduces to the generalized Riccati equation known in
linear-quadratic stochastic optimization [2, 27].

3. Stochastic H∞control with complete state measurement. In this sec-
tion we consider a stochastic H∞ control problem related to system (1). Again, this
section adapts corresponding results of [26] to our more general set-up. From now
on, we no longer assume that the system (13) is exponentially stable. That is, we
no longer assume that Assumption 1 is satisfied, and hence we do not suppose the a
priori stability of the matrix A in (1). In what follows, we shall use instead a property
which is a stochastic counterpart to the detectability of a pair of matrices.

Assumption 2. The system (1) is such that D′D > 0, the matrix R̃ = C ′(I −
D(D′D)−1D′)C is nonnegative definite, and there exists a matrix N ∈ Rn×m such that
the matrix A−B1(D′D)−1D′C −NR̃1/2 is stable, i.e., ‖ exp((A−B1(D′D)−1D′C −
NR̃1/2)t)‖ ≤ ae−αt, and

a2

α
‖H − P1(D′D)−1D′C‖2Q1

< 1.(33)

Given the system (1), the associated stochastic H∞ control problem is to find
a matrix K ∈ Rm1×n such that the state feedback controller u = Kx satisfies the
following conditions:

(i) The system

dx = (A+B1K)xdt+ (H + P1K)xdw1(t)(34)

is exponentially stable in mean-square sense, and the matrix A+B1K is stable;
(ii) The closed-loop system, corresponding to system (1) with feedback control

u = Kx,

dx = [(A+B1K)x(t) +B2ξ(t)]dt+ (H + P1K)x(t)dw1(t) + P2ξ(t)dw2(t),(35)

satisfies the following stochastic H∞-norm condition: there exists a constant ε > 0
such that

E

∫ +∞

s

(‖(C +DK)x(t)‖2 − ‖ξ(t)‖2) dt ≤ −εE∫ +∞

s

‖ξ(t)‖2dt for x(s) = 0(36)

for each ξ ∈ L2(s; Rm2).

Remark. The exponential stability of the nominal closed-loop system (34) is a
sufficient condition for the system (35) to have solutions lying in L2(s; Rn) for any
ξ(·) ∈ L2(s; Rm2).

Theorem 2. Suppose Assumption 2 is satisfied. Then the stochastic H∞ control
problem defined above has a solution if and only if there exists a minimal nonnegative
definite symmetric solution X to the generalized algebraic Riccati equation

A′X +XA+H∗XH + C ′C(37)

−(XB1 +H∗XP1 + C ′D)(D′D + P ∗1XP1)−1(B′1X + P ∗1XH +D′C)

+XB2(I − P ∗2XP2)−1B′2X = 0
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such that I − P ∗2XP2 > 0 and the stochastic system

dx = (A−B1(D′D + P ∗1XP1)−1(B′1X + P ∗1XH +D′C)(38)

+ B2(I − P ∗2XP2)−1B′2X)xdt

+ (H + P1(D′D + P ∗1XP1)−1(B′1X + P ∗1XH +D′C))xdw1

+ P2(I − P ∗2XP2)−1B′2Xxdw2(t)

is exponentially stable in the mean-square sense. If this condition is satisfied, then the
corresponding stabilizing feedback controller which solves the stochastic H∞ problem
is given by

K = −(D′D + P ∗1XP1)−1(B′1X + P ∗1XH +D′C).(39)

Conversely, if the stochastic H∞ control problem defined above has a solution, then
the solution to the Riccati equation (37) satisfies the condition

E〈h,Xh〉 ≤ sup
ξ∈L2(s;Rm2 )

E

∫ +∞

s

(‖Cx(t) +Du(t)‖2 − ‖ξ(t)‖2) dt(40)

for any state feedback control u(·) such that the closed-loop system corresponding to
this feedback control has L2-summable solutions for all ξ ∈ L2(s; Rm2), and the supre-
mum on the right-hand side in (40) is finite.

Proof. The proof follows using arguments of the corresponding result of [26] which
are readily extended to the statement above. See Appendix D.

4. Stochastic absolute stabilization. In this section, we address to the prob-
lem of absolute stabilization via a static state feedback controller. We construct a
stabilizing controller of the form (8) which leads to a closed-loop uncertain system
(1), (2), (8) which is absolutely stable in the following sense.

Definition 3. A controller of the form (8) is said to absolutely stabilize the
uncertain system (1), (2) if the following conditions hold:

(i) The nominal closed-loop system is stable. That is, for any initial condition
x(s) = h ∈ Ls2, the system (34) is exponentially mean-square stable.

(ii) There exists a constant c > 0, independent of the initial condition and such
that for any admissible uncertainty φ, the corresponding solution to the closed-loop
system (1), (2), (8) belongs to L2(s,Rn), the corresponding uncertain input ξφ(·)
belongs to L2(s,Rm2), and

‖|x(·)‖|2 + ‖|ξφ(·)‖|2 ≤ cE‖h‖2.(41)

Given matrices R ∈ Rn×n, G ∈ Rm1×m1 , R′ = R > 0, G′ = G > 0, consider the
generalized algebraic Riccati equation of the form of (37),

A′X +XA+H∗XH + C̄ ′C̄(42)

−(XB1 +H∗XP1 + C̄ ′D̄)(D̄′D̄ + P ∗1XP1)−1(B′1X + P ∗1XH + D̄′C̄)

+XB̄2(I − P̄ ∗2XP̄2)−1B̄′2X = 0,

where

C̄ =

 R1/2

0
R̄1/2C

 , D̄ =

 0
G1/2

R̄1/2D

 , B̄2 = B2Ḡ
−1/2, P̄2 = P2Ḡ

−1/2.(43)



1102 V. A. UGRINOVSKII AND I. R. PETERSEN

Also, associated with the uncertain system (1), (2), consider the cost functional (7).
Theorem 3. Suppose Assumption 2 is satisfied and suppose also that there ex-

ists a minimal nonnegative definite stabilizing solution X to the generalized Riccati
equation (42), i.e., such that I − P̄ ∗2XP̄2 > 0 and that the system

dx =
[
A−B1(D̄′D̄ + P ∗1XP1)−1(B′1X + P ∗1XH + D̄′C̄)(44)

+ B̄2(I − P̄ ∗2XP̄2)−1B̄′2X
]
xdt

+
[
H − P1(D̄′D̄ + P ∗1XP1)−1(B′1X + P ∗1XH + D̄′C̄)

]
xdw1(t)

+ B̄2(I − P̄ ∗2XP̄2)−1B̄′2Xxdw2(t)

is exponentially stable in mean-square sense, and as a consequence, the matrix

A−B1(D̄′D̄ + P ∗1XP1)−1(B′1X + P ∗1XH + D̄′C̄) + B̄2(I − P̄ ∗2XP̄2)−1B̄′2X

is stable. Then the controller given by

u0(t) = Kx(t), K: = −(D̄′D̄ + P ∗1XP1)−1(B′1X + P ∗1XH + D̄′C̄),(45)

is an absolutely stabilizing controller for uncertain system (1), (2). Furthermore, the
corresponding value of the cost function (7) satisfies the bound

sup
φ∈Φ

Js,h(u0(·)) ≤ E〈h, (X +W )h〉.(46)

Proof. Consider a stochastic differential game defined by the system

dx(t) = [Ax(t) +B1u(t) + B̄2ξ̄(t)]dt+ (Hx(t) + P1u(t))dw1(t)(47)

+P̄2ξ̄(t)dw2(t),

and the cost function

=̄s,h(u(·), ξ̄(·)) = Js,h(u(·)) + E

∫ ∞
s

(〈z(t), R̄z(t)〉 − ‖ξ̄‖2) dt(48)

= E

∫ ∞
s

(‖C̄x+ D̄u‖2 − ‖ξ̄‖2)dt,

where matrices B̄2, P̄2, C̄, and D̄ are defined as in (43). Under Assumption 2, the
conditions of the sufficiency part of Theorem 2 are satisfied for the system (47) and
cost functional (48). This leads to the conclusion that the controller (45) solves the
stochastic H∞ control problem associated with (47), (48). That is, the system (34),
where the matrix K is defined by (45), is exponentially stable in mean-square sense,
and as a consequence, the matrix A+B1K is stable. Furthermore, the controller (45)
satisfies the following stochastic H∞-norm condition: there exists a constant ε > 0
such that

E

∫ +∞

0

(‖(C̄ + D̄K)x(t)‖2 − ‖ξ̄(t)‖2) dt ≤ −εE∫ +∞

0

‖ξ̄(t)‖2dt(49)

for x(0) = 0 and ∀ ξ̄(·) ∈ L2(0,Rm2),

where x(·) is a solution to the equation

dx(t) = ((A+B1K)x(t) + B̄2ξ̄(t))dt+ (H + P1K)x(t)dw1(t)(50)

+P̄2ξ̄(t)dw2(t)
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obtained by the substitution of (45) into (47). This conclusion shows that the system
(50) and functional (48) satisfy the conditions of Lemma 1. Using the result of this
lemma, we obtain

=̄s,h(u0(·), ξ̄(·)) ≤ E〈h,XKh〉 ∀ ξ̄(·) ∈ L2(0,Rm2),(51)

where the matrix XK is the minimal solution to the following Riccati equation of the
form (25):

(A+B1K)′XK +XK(A+B1K) + (H + P1K)∗XK(H + P1K)(52)

+(C̄ + D̄K)′(C̄ + D̄K) +XKB̄2(I − P̄ ∗2XK P̄2)−1B̄′2XK = 0,

I − P̄ ∗2XK P̄2 > 0.

Also, one may observe that by using elementary transformations, (42) can be
transformed into the following equation:

(A+B1K)′X +X(A+B1K) + (H + P1K)∗X(H + P1K)(53)

+(C̄ + D̄K)′(C̄ + D̄K) +XB̄2(I − P̄ ∗2XP̄2)−1B̄′2X = 0,

I − P̄ ∗2XP̄2 > 0,

which is the same as (52). Thus, the minimal solutions to these equations are equal,
X = XK , and consequently, one can replace XK in (51) with the solution to the
algebraic Riccati equation (42) to obtain

=̄s,h(u0(·), ξ̄(·)) ≤ E〈h,Xh〉.(54)

The subsequent proof requires the use of Theorem 3 of [5]. In [5] this result,
referred to as the stochastic counterpart of the Kalman–Yakubovich lemma, estab-
lished the existence of a solution to a certain linear matrix inequality related to the
sign-indefinite linear-quadratic stochastic control problem considered in this reference.
We wish to apply this result to the “control problem” supξ̄(·) =s,h(u0, ξ̄(·)), with the
underlying system (50) and the stable system (34), with the matrix K given by (45).
The conditions under which one can apply Theorem 3 in [5] to the above control
problem are virtually the same as the conditions of Lemma 1. Note that Theorem 3
in [5] requires the cost functional in the above control problem to satisfy a certain
condition of coercivity [5, 13]. In our case the fact that this condition is satisfied fol-
lows in a straightforward way from the stochastic H∞ condition (49). Note also that
Assumption 3 of [5] holds in our case, since we deal with finite-dimensional equations
and operators. Since we have verified the conditions of Lemma 1 for the system (50)
and functional (48), the application of Theorem 3 in [5] implies the existence of a
symmetric matrix M and a positive constant ε satisfying the LMI

−2〈(A+B1K)x+ B̄2ξ̄,Mx〉 − 〈x, (H + P1K)∗M(H + P1K)x〉(55)

−〈ξ̄, P̄ ∗2MP̄2ξ̄〉 − ‖(C̄ + D̄K)x‖2 + ‖ξ̄‖2 ≥ ε(‖x‖2 + ‖ξ̄‖2) ∀ x ∈ Rn, ξ̄ ∈ Rm2 .

The standard form for this LMI is the following: −(A+B1K)′M −M(A+B1K)
−(H + P1K)∗M(H + P1K)− (C̄ + D̄K)′(C̄ + D̄K)

−MB̄2

−B̄′2M I − P̄2MP̄2

 > 0.
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Recall that the nominal closed-loop system (34) corresponding to the system (50),
driven by the uncertainty input ξφ(t) ≡ 0, is exponentially stable in mean-square
sense. Hence, E‖x(t)‖2 → 0 as t → ∞ in this particular case. Therefore, it follows
from (55) that

E〈h,Mh〉 ≥ ε1E
∫ ∞
s

‖x(t)‖2dt,

and hence M > 0. To establish this fact, we have used the Ito formula along the
solution to the system (34) on the interval [s, t], with initial condition x(s) = h and
then sent t to ∞.

Now, let ξφ(·) be the uncertainty input corresponding to an admissible uncertainty
φ(·) ∈ Φ. Then define

ξ̄(t) =

{
Ḡ1/2ξφ(t) = Ḡ1/2φ(t, x|ts,Kx|ts), t ∈ [s, tj ],
0, t > tj ,

where tj is as defined in Definition 1. Also, let x(t) be the corresponding solution to
(50) satisfying the initial condition x(s) = h. Then it follows from inequality (55)
that

−E〈x(t),Mx(t)〉|tjs + E

∫ tj

s

(−‖(C̄ + D̄K)x(t)‖2 + ‖ξ̄(t)‖2)dt(56)

≥ εE
∫ tj

s

(‖x(t)‖2 + 〈ξφ(t), Ḡξφ(t)〉)dt.

The Ito formula is used to derive (56) from (55). Hence, using (3) and the nonnega-
tiveness of R, G, we obtain

−E〈x(t),Mx(t)〉|tjs + E〈x(s),Wx(s)〉(57)

≥ −E〈x(t),Mx(t)〉|tjs −E

∫ tj

s

(〈x(t), Rx(t)〉+ 〈Kx(t), GKx(t)〉)dt

−E

∫ tj

s

(〈z(t), R̄z(t)〉+ 〈ξφ(t), Ḡξφ(t)〉) dt
≥ ε1E

∫ tj

s

(‖x(t)‖2 + 〈ξφ(t), Ḡξφ(t)〉)dt.

Since we have established that M > 0 and x(s) = h, (57) implies

ε1E

∫ tj

s

(‖x(t)‖2 + 〈ξφ(t), Ḡξφ(t)〉)dt ≤ E〈h, (M +W )h〉.(58)

Thus, we see that the expression on the left in (58) is uniformly bounded with respect
to tj . Therefore, (58) implies that x(·) ∈ L2(s,Rn) for any admissible φ. Also,
using the fact that Ḡ > 0, it also follows that ξφ(·) ∈ L2(s,Rm2) for any admissible
φ. Therefore, for any admissible uncertainty φ, the input ξ̄(·) = Ḡ1/2ξφ(·) is an
admissible uncertainty input in the stochastic H∞ control problem defined by the
system (47) and cost functional (48). For this uncertainty input, we obtain from (48)
and (54)

Js,h(u0) ≤ −
∫ ∞

0

E
(〈z(t), R̄z(t)〉 − 〈ξφ(t), Ḡξφ(t)〉) dt+ E〈h,Xh〉

≤ E〈h, (X +W )h〉.
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Remark. We have observed that the generalized algebraic Riccati equation (42)
can be transformed into an algebraic Riccati equation of the form (25). Hence as in
the case of (25), a possible approach to solving the algebraic Riccati equation (42) is
to apply homotopy methods [18].

5. Minimax optimal state feedback controller. In this section we assume
that the uncertainty in the system is structured and each uncertainty loop satisfies its
own stochastic integral quadratic constraint of the form (4). As has been mentioned in
the introduction, for any numbers τ1 > 0, . . . , τk > 0, we replace all of the constraints
by a single stochastic integral quadratic constraint (5). For the uncertain stochastic
system (1), with the uncertainty (2) satisfying this structured uncertainty constraint,
we solve the corresponding minimax optimal guaranteed cost control problem. The
main result of this section, Theorem 4, shows that the problem of finding the minimax
optimal guaranteed cost controller can be reduced to a finite-dimensional optimization
problem.

We shall assume in this section that the system (1) satisfies Assumption 2.
Let T denote the set of vectors τ ∈ Rk

+ such that the corresponding Riccati
equation (42) has a nonnegative stabilizing solution Xτ ; i.e.,

T =

τ ∈ Rk:
τ1 > 0, . . . , τk > 0 and Riccati equation (42) with
R̄ = R̄τ , Ḡ = Ḡτ , has a stabilizing solution
Xτ ≥ 0 such that Ḡτ − P ∗2XτP2 > 0.

(59)

Theorem 4.
(i) Given γ > 0 and initial condition h, there exists a guaranteed cost controller

for the uncertain system (1), (2) if and only if the set T defined in (59) is nonempty.
(ii) Suppose the set T is nonempty. Then

inf
u(·)∈K

sup
φ∈Φ

Js,h(u(·)) = inf
τ∈T

E [〈h, (Xτ +Wτ )h〉] .(60)

Furthermore, let τ∗ ∈ T attain the infimum on the right-hand side of (60). Then
the corresponding control u0

τ∗ defined by (45) with the matrix X = Xτ∗ is the state
feedback minimax optimal guaranteed cost control which minimizes the worst case of
the cost functional (48) in the constrained stochastic optimization problem (12) subject
to the stochastic integral quadratic constraint (4) and absolutely stabilizes the uncertain
system (1).

The proof of this theorem follows the same form as the proof of the main result
of [20]. As in [20], we use the so-called S-procedure [15, 20, 21, 22, 29] to reduce our
constrained optimization problem to a problem without constraints. However, in con-
trast to these papers, the system (1) is nonautonomous in nature due to the stochastic
perturbations. This leads us to consider a special construction of shift operators in
order to satisfy conditions of the S-procedure. This construction involves special met-
rical transitive transformations of stochastic processes. The basic properties of these
transformations are given in Appendix A.

As in [20], we begin with a result establishing that a stabilizing guaranteed cost
controller for the uncertain system (1), (2) exists if and only if the set T defined in
(59) is nonempty.

Lemma 2. Given a positive constant γ and initial condition h, the following
statements are equivalent:

(i) for the given γ > 0, there exists a guaranteed cost controller of the form
(8) which guarantees that the closed-loop uncertain system (1), (3), (8) with the cost
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function (7) and given initial condition does not exceed the prescribed cost value

sup
φ∈Φ

Js,h(u(·)) < γ;(61)

(ii) for a given initial condition, there exists a τ ∈ T such that

E〈h, (Xτ +Wτ )h〉 < γ.(62)

Proof of Lemma 2. (i)⇒(ii). First observe that since (8) corresponds to a guaran-
teed cost controller, then the nominal closed-loop system (9) is exponentially stable.
This implies that for any ξ(·) ∈ L2(s; Rm2), the corresponding solution x(·) to (10)
belongs to L2(s; Rn). As a consequence, the corresponding uncertainty output z(·)
lies in L2(s; Rp) and the corresponding control input uξ(·) lies in L2(s; Rm1).

Note that (61) implies the existence of a constant ε > 0 such that

(1 + ε)Js,h(uφ(·)) ≤ γ − ε ∀ φ ∈ Φ(R̄1, Ḡ1,W1, . . . , R̄k, Ḡk,Wk),(63)

where uφ(·) is the control input generated by the closed-loop uncertain system (10),
(2).

It follows from the above observation that the following quadratic functionals are
well defined on L2(s; Rm2) :

G0(ξ(·)) := −(1 + ε)Js,h(uξ(·)) + γ − ε,(64)

Gi(ξ(·)) := E

∫ ∞
0

(〈zi(t), R̄izi(t)〉 − 〈ξi(t), Ḡiξi(t)〉) dt+ E〈h,Wih〉,

where x(·) and zi(·) correspond to the solution of the closed-loop system (10) with
uncertainty input ξ(·) ∈ L2(s; Rm2). Furthermore, since (8) corresponds to a guaran-
teed cost controller, then for any admissible uncertainty φ, the corresponding admis-
sible uncertainty input ξφ(·) ∈ L2(s; Rm2) and the corresponding uncertainty output
z(·) ∈ L2(s; Rp). Therefore, since tj →∞ as j →∞, it follows from (4) that

Gi(ξφ(·)) ≥ 0 ∀ φ ∈ Φ(R̄1, Ḡ1,W1, . . . , R̄k, Ḡk,Wk) (i = 1, . . . , k).(65)

We now check that the quadratic functionals G0, G1, . . . , Gk form an S-system in
the terminology of [29]; i.e., we check that there exists a sequence of linear bounded
operators Tj :L2(s; Rm2)→ L2(s; Rm2), j = 1, 2, . . . , such that this sequence weakly
converges to zero in L(L2(s; Rm2)) and

Js,0(uj(·))→ Js,0(u(·)), Gi(ξj(·))→ Gi(ξ(·)) as j →∞(66)

∀ ξ(·) ∈ L2(s; Rm2) and i = 1, 2, . . . , k,

where uj(·) corresponds to the solution of (10) generated by the uncertainty input
Tjξ(·) with zero initial condition. We choose the operators Tj as follows: for each
ξ(·) ∈ L2(s; Rm2),

ξj(t, ω) = (Tjξ)(t, ω): =

{
0, s ≤ t < tj ,
ξ(t− tj ,Γtjω), t ≥ tj ,(67)

where tj is the sequence from Definition 1, tj →∞ as j →∞, and Γtj , j = 1, 2, . . . ,
are metrically transitive transformations from the translation semigroup generated by
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the Wiener process (w1, w2). (See Appendix A for details.) Given any two functions
ξ1(·), ξ2(·) ∈ L2(s; Rm2), the Cauchy inequality gives∣∣∣∣E∫ ∞

s

〈(Tjξ1)(t), ξ2(t)〉dt
∣∣∣∣2 =

∣∣∣∣∣E
∫ ∞
tj

〈ξ1(t− tj ,Γtjω), ξ2(t)〉dt
∣∣∣∣∣
2

≤ E

∫ ∞
s

‖ξ1(t)‖2dtE
∫ ∞
tj

‖ξ2‖2dt

since Γtj preserves probability measures, and Ef(x(Γtjω)) = Ef(x) for any Borel-

measurable vector function f . However, the term E
∫∞
tj
‖ξ2‖2dt in the above inequality

tends to 0 as j →∞. This implies Tj → 0 weakly.
Next, observe that Lemma 2 of [3] (see also Lemma 3 in Appendix A) states that

the solution to the closed-loop system (10) with zero initial condition and correspond-
ing to an uncertainty input Tjξ is such that

xj(t, ω) =

{
0, s ≤ t < tj ,
x(t− tj ,Γtjω), t ≥ tj ,(68)

uj(t, ω) =

{
0, s ≤ t < tj ,
u(t− tj ,Γtjω), t ≥ tj ,

zj(t, ω) =

{
0, s ≤ t < tj ,
z(t− tj ,Γtjω), t ≥ tj .

Then, the substitution of (67) and (68) into (64) gives (66). Thus, we conclude that
the family of functionals above forms an S-system. Furthermore, since Wi > 0, then
for a given nonzero h, zero input ξ(·) ≡ 0 gives Gi(0) > 0 ∀ i = 1, 2, . . . , k. This means
that constraints are regular in terminology of [29]. Also, it follows from (63) and (65)
that the condition G1(ξ(·)) ≥ 0, . . . , Gk(ξ(·)) ≥ 0 implies that G0(ξ(·)) ≥ 0. We have
satisfied all conditions of Theorem 1 of [29]. Therefore, for a given nonzero h, there
exist constants τ1 ≥ 0, . . . , τk ≥ 0 such that

G0(ξ) ≥
∑

τiGi(ξ) ∀ ξ(·) ∈ L2(s; Rm2).(69)

Now, let us use these τi to define the functional

Js,hε,τ (ξ(·)): = εJs,h(uξ(·)) + =̄s,h(uξ(·), Ḡ1/2
τ ξ(·)),(70)

where the coefficients of =̄s,h in (48) are defined as in (43):

=̄s,h(u(·), Ḡ1/2
τ ξ(·)) = Js,h(u(·)) + E

∫ ∞
s

(〈z(t), R̄τz(t)〉 − 〈ξ(t), Ḡτξ(t)〉) dt.
Then it follows from (69) that

Js,hε,τ (ξ(·)) ≤ γ − ε−E〈h,Wτ , h〉 ∀ ξ ∈ L2(s; Rm2).(71)

The same arguments as those in [20] (see Claims 1 and 2 in the proof of Lemma 3.2
of this reference) then give us

Js,0ε,τ (ξ(·)) ≤ 0 ∀ ξ ∈ L2(s; Rm2),(72)

and also τi > 0 ∀ i = 1, . . . , k.
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Next, let us show that the generalized Riccati equation (42) with R̄ = R̄τ , Ḡ = Ḡτ
has a nonnegative definite stabilizing solution Xτ such that Ḡτ −P ∗2XτP2 > 0, where
constants τ1, . . . , τk are as in (69). In terms of our notation, this will mean that
τ ∈ T . Notice that (72) implies

=̄s,0(uξ, Ḡ
1/2ξ(·)) ≤ −εJs,0(uξ(·)) ≤ 0 ∀ ξ ∈ L2(s; Rm2).(73)

Therefore, since R > 0, G > 0, Ḡτ > 0, it follows that there exists a constant α > 0
such that

E

∫ ∞
s

(‖C̄x(t) + D̄uξ(t)‖2 − ‖ξ̄(t)‖2
)
dt < −αE

∫ ∞
s

‖ξ̄(t)‖2dt(74)

∀ ξ̄(·) ∈ L2(s; Rm2)

for h = 0. To see this, suppose (74) does not hold; i.e., there exists a sequence
{ξ̄l(·)}∞l=1 ⊂ L2(s; Rm2) such that

lim
l→∞

E
∫∞
s
‖C̄xl(t) + D̄uξ̄l(t)‖2dt
‖|ξ̄l(t)‖|2 = 1.(75)

It is clear that we can choose this sequence such that ‖|ξ̄l‖| = 1, since (10) is linear
with respect to ξ̄, and (70) is a quadratic functional with respect to ξ̄. Then, using the
weak compactness of a ball in Hilbert space [31], there exists a subsequence {ξ̄lν}∞ν=1

such that ξ̄lν → ξ̄∗ weakly as ν → ∞, ‖|ξ̄∗‖| = 1. Also, xlν → x∗ weakly as ν → ∞,
since (10) is linear and (9) is exponentially stable. Furthermore, we observe that (73)
and (75) imply that xlν → 0 strongly since R > 0. Indeed, from (73) we have

=̄s,0(uξ̄lν , ξ̄
lν (·)) ≤ −ε1E

∫ ∞
0

‖xlν (t)‖2dt ≤ 0.(76)

From (75), the expression on the left-hand side of (76) tends to 0 as l → ∞. Hence
xlν → 0 strongly. Then we have ‖|C̄xlν + D̄uξ̄lν ‖| → 0 which contradicts (75). Thus
(74) must hold.

The inequality (74) implies that the given guaranteed cost control solves the
stochastic H∞ control problem for the system (1) and the cost function (48). Then,
we conclude, using Theorem 2, that there exists a symmetric, nonnegative definite
stabilizing solution Xτ to the Riccati equation (42), which is a minimal solution, and

Ḡτ − P ∗2XτP2 = Ḡ1/2
τ (I − P̄ ∗2Xτ P̄2)Ḡ1/2

τ > 0.

Thus, τ ∈ T . Moreover, inequality (40), established in Theorem 2, and condition (71)
imply that

E〈h,Xτh〉 ≤ sup
ξ̄(·)
=̄s,h(uξ(·), ξ̄(·)) ≤ sup

ξ(·)
Js,hε,τ (ξ(·)) ≤ γ − ε−E〈h,Wτh〉.(77)

Hence, condition (62) holds.
(ii)⇒(i). This part of the proof follows immediately from Theorem 3.
Proof of Theorem 4. The theorem follows immediately from Lemma 2. In partic-

ular, note that the absolute stabilizing properties of the minimax optimal guaranteed
cost controller were established in the second part of the proof of Lemma 2, where we
referred to Theorem 3.
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6. Conclusions. This paper has been concerned with existence and optimality
of a guaranteed cost controller for an uncertain system subject to structured uncer-
tainty. The new class of uncertainty satisfying so-called stochastic integral quadratic
constraints has been introduced. It has been shown that such constraints naturally
describe some practically important classes of uncertainty.

In this paper, we have shown that for each initial state of the system, the linear
static state feedback controller yielding an optimal worst-case performance in the face
of stochastic structured uncertainty in the system, is found by parametric optimiza-
tion of solutions of a parameter-dependent generalized matrix Riccati equation. The
generalized Riccati equation is of the type arising in stochastic H∞ theory and related
stochastic differential games.

As in the deterministic case, the S-procedure has been used to convert the con-
strained stochastic optimization problem into a problem without constraints. How-
ever, due to the stochastic character of uncertainty, this has led us to consider a special
construction of shift operators in order to satisfy conditions of the S-procedure. This
construction has involved special metrical transitive transformations of stochastic pro-
cesses.

Appendix A. Let Ω be any space of elements ω. Let P be a probability measure
defined on a Borel field F of ω sets. A transformation Γ, taking points of Ω into points
of Ω, is called a one-to-one measure-preserving point transformation if it is one-to-
one and has domain and range Ω and if it and its inverse take measurable sets into
measurable sets of the same probability.

A set transformation Γ defined on the Borel field F , taking sets of F into sets
of F , is called a measure-preserving set transformation if the following conditions are
satisfied:

(i) Γ is single-valued, modulo sets of probability 0; i.e., if Λ̃ is an image of Λ
under Γ, the class of all images of Λ is the class of all measurable sets differing from
Λ̃ by sets of probability 0.

(ii) P(ΓΛ) = P(Λ).
(iii) Neglecting ω sets of probability 0,

Γ(Λ1 ∪ Λ2) = ΓΛ1 ∪ ΓΛ2,

Γ(

∞⋃
i=1

Λi) =

∞⋃
i=1

ΓΛi,

Γ(Ω− Λ) = Ω− ΓΛ.

A one-to-one measure-preserving point transformation Γ induces a measure-pre-
serving set transformation.

A measurable set is called invariant under a measure-preserving point or set trans-
formation if it differs from its images by sets of probability 0. A measure-preserving
point or set transformation is called metrically transitive if the only invariant sets are
those which have probability 0 or 1.

A family {Γs, s ≥ 0} of transformations, taking points of Ω into points of Ω, is
called a translation semigroup of measure-preserving one-to-one point transformations
if each Γs is a one-to-one measure-preserving point transformation and if

Γs+t = ΓsΓt ∀ s, t ≥ 0.(A.1)

The transformation Γ0 will necessarily be the identity.
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A family {Γs, s ≥ 0} of set transformations is called a translation semigroup of
measure-preserving set transformations if (A.1) is true modulo the sets of probability
0. The transformation Γ0 will be the identity in the sense that every image of a
measurable set Λ under Γ0 will differ from Λ by at most a set of probability 0. A
translation semigroup of measure-preserving point or set transformations is called
metrically transitive if the only invariant sets are those which have probability 0 or 1.

The scalar Wiener process is an example of a process generating a metrically
transitive translation semigroup of measure-preserving set transformations [6]. These
transformations are generated by time shifts of strictly stationary increments of the
Wiener process. Also, it is known [6] that the semigroup of shifts of a strictly sta-
tionary process is metrically transitive if and only if the semigroup of shifts for the
corresponding canonical process in the coordinate space is metrically transitive. For
canonical processes, shifts are point transformations. This allows one to pass from
considering the Wiener process over an abstract probability space to considering its
canonical version for which metrically transitive shifts have a simple construction.

The canonical representation (see, e.g., [14]) for a scalar Wiener process is the
probability space (Ω,P,F) and the process w(t), t ≥ 0 such that

Ω is the set of continuous functions ω(t): [0,∞)→ R1, starting from zero at t = 0;
F is the Borel σ-field generated by the cylindrical subsets in Ω;
P is the Wiener probability measure on (Ω,F);
w(t) is a stochastic process defined as follows:

w(t, ω) = ω(t) (ω ∈ Ω, t ≥ 0).

As in [6], given any s ≥ 0, each ω ∈ Ω has corresponding ω1 ∈ Ω such that

w(t, ω1) = w(t+ s, ω)− w(s, ω) ∀ t ≥ 0.

The relation ω1 = Γsω generates a metrically transitive translation semigroup of
measure-preserving transformations.

Each of the above measure-preserving transformations induces a transformation
of random variables, which takes F̄t-measurable variables into F̄t+s-measurable ones.
Here {F̄t, t ≥0} denotes the Borel filtration, generated by w(θ), 0 ≤ θ < t. When ap-
plied to diffusion processes satisfying linear Ito equations, this fact gives the following
result.

Lemma 3 (see Brusin [3]). Let x(t, ω) and y(t + s, ω), t ≥ 0, s > 0, be two
Rn-valued stochastic processes being the unique solutions to integral equations (A.2)
and (A.3) below, respectively:

x(t, ω) = h(ω) +

∫ t

0

(Ax(θ, ω) +Bu(θ, ω))dθ(A.2)

+

∫ t

0

(Hx(θ, ω) + Pu(θ, ω))dw(θ),

y(t+ s, ω) = g(ω) +

∫ t+s

s

(Ay(θ, ω) +Bv(θ, ω))dθ(A.3)

+

∫ t+s

s

(Hy(θ, ω) + Pv(θ, ω))dw(θ),

h ∈ L0
2, g ∈ Ls2, u ∈ L2(0,Rm), v ∈ L2(s,Rm). If u(t,Γsω) = v(t + s, ω) and

g(ω) = h(Γsω) with probability 1, then

y(t+ s, ω) = x(t,Γsω) with probability 1.
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In section 2 and in the proof of Theorem 2, we have used another result of reference
[3]. For the sake of completeness, we include this result here in the form adapted to
the set-up of this paper. Note that in the particular case of a single input system
of the form (1) with the matrix A in companion form and state dependent noise, a
similar result was established in [23]. Theorem 2 in [23] dealt with an L2-property
of solutions with probability 1 while the result given below concerns the mean-square
L2-property.

Lemma 4 (see Brusin [3, Theorem 5]). Suppose Assumption 1 is satisfied. Then,
for any pair of inputs (u(·), ξ(·)) ∈ L2(s,Rm1)×L2(s,Rm2) and any initial condition
x(0) = h, the corresponding solution to (1) satisfies the condition:

‖|x(·)‖|2 ≤ c0
(
E‖h‖2 + ‖|u(·)‖|2 + ‖|ξ(·)‖|2) ,(A.4)

where c0 > 0 is a constant independent of h, u(·), and ξ(·).
Appendix B. Proof of Lemma 1. The problem (19) is a stochastic control

problem with a sign-indefinite integrand in the cost function. Thus, it is natural to
refer to the uncertainty inputs ξ(·) as “control” inputs in this control problem. A
solution to this class of control problems has been given in [4]; see also [5], where the
results of [4] were extended to the infinite-dimensional case. It is readily seen that
the conditions of Theorem 1 in [4, 5] are satisfied in the case under consideration.
Applying the result of Theorem 1 in [4, 5] to the control problem (19), it follows that
the first part of claim (a) of Lemma 1 holds. The existence of a symmetric matrix X2

satisfying condition (21) is also established by the above-mentioned result of [4, 5].
From the inequality =s,h(0, 0) ≥ 0, it follows that X2 ≥ 0. Hence, claim (b) also
holds.

The control problem

sup
ζ∈L2(s,T ;Rm2 )

=s,hT (0, ζ),(B.1)

considered in the second part of claim (a) of Lemma 1, can be solved by the same
method as that of [2, 11]. Reference [2] presents a solution to the standard finite
horizon stochastic optimal control problem. The control problem (B.1) differs from
control problems considered in reference [2] in that the integrand in (16) is sign-
indefinite. Hence, one needs to extend the results of [2] to the case considered in this
paper. This extension can be performed in the same fashion as has been done for
similar maximization problems for deterministic time-varying systems [11].

We first note that the control problem (B.1) has a unique solution. Indeed, as
in [2], it follows that the functional (16) is continuous. Also, in the same way as in
[3, 4, 5], one can obtain using the Riesz representation theorem, that

=s,hT (0, ζ) = −π(ζ, ζ) + 2Υ(h, ζ) + =s,hT (0, 0),

where π(·, ·), Υ(·, ·) are bilinear forms on the Hilbert product-spaces L2(s, T ; Rm2)×
L2(s, T ; Rm2), Ls2 ×L2(s, T ; Rm2), respectively. We now show that the bilinear form
π is coercive [13]. Let Φs,T denote a linear bounded operator L2(s, T ; Rm2) →
L2(s, T ; Rn) mapping a given control input ζ(·) into a corresponding solution of the
equation

dx = (Ax(t) +B2ζ(t))dt+Hx(t)dw1(t) + P2ζ(t)dw2(t), x(s) = 0.(B.2)
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Then, for any s2 ≤ s1 ≤ T1 ≤ T2 and ζ(·) ∈ L2(s1, T1,R
m2),

‖|R1/2Φs1,T1
ζ‖|2 = ‖|R1/2Φs2,T1

ζ̃‖|2 ≤ ‖|R1/2Φs2,T2
ζ̃‖|2,

where ζ̃ ∈ L2(s2, T2; Rm2) is the extension of ζ(·) to [s2;T2] by zero. From this
inequality and from (18), it follows that

−π(ζ, ζ) = ‖|R1/2Φs,T ζ‖|2 − ‖|ζ‖|2 ≤ −ε2‖|ζ‖|2(B.3)

for all 0 ≤ s < T ≤ +∞. That is, the form π(·, ·) is coercive. Then, Theorem 1.1 of
[13] implies that the control problem (B.1) has a unique solution which is characterized
by the equation

(Φ∗s,TRΦs,T − I)ζsT = −Φ∗s,TRxs,h,

where xs,h(·) is the solution to (13), with the initial condition x(s) = h, and I denotes
the identity operator. From (B.3), operators R1/2Φs,T and (I − Φ∗s,TRΦs,T )−1 are
uniformly bounded. Hence, conditions (20) are satisfied. This establishes the second
part of claim (a) of Lemma 1.

As in Theorem 6.1 of [2], one can prove that the above facts imply the existence
of a unique nonnegative definite solution to the Riccati equation (22). As in [2], we
need the following claim.

Claim 1. Let a symmetric nonnegative matrix X̂ be given such that I−P ∗2 X̂P2 ≥
λI, ‖(I − P ∗2 X̂P2)−1‖ ≤ 1/λ. For any X̃ such that ‖X̃ − X̂‖ ≤ λ/(2‖P2‖2Q), the

matrix I − P ∗2 X̃P2 is positive definite and hence is boundedly invertible, and ‖(I −
P ∗2 X̃P2)−1‖ ≤ 2/λ.

Proof. The proof of this claim follows from the same arguments as those used in
proving the corresponding fact in [2].

Let α > 0 be a given constant. Consider a constant λ > 0 and a matrix-valued
function P(t), t ∈ [T−α, T ] such that 0 ≤ P(t) = P ′(t), I−P ∗2P(t)P2 ≥ λI and hence
supt ‖(I−P ∗2P(t)P2)−1‖ ≤ 1/λ. As in [2], let us also consider the set of matrix-valued
functions

καP =

{
X̃(t), t ∈ [T − α, T ]: ‖X̃ − P‖ ≤ λ

2‖P2‖2Q

}
.

We define the distance on καP by ρ(X̂, X̃) = supt∈[T−α,T ] ‖X̃(t)−X̂(t)‖. With this dis-
tance, the set καP becomes a closed subset of the Banach space of continuous bounded
matrix-valued functions. Let the mapping ϕ(·) be defined as follows:

ϕ(Z): = A′Z + ZA+R+H∗ZH + ZB2(I − P ∗2ZP2)−1B′2Z.

It follows from Claim 1 that this mapping is well-defined on καP . Moreover, since P
has been chosen as described above, it can be proved that the mapping

Q(X̃(·))(t): = P +

∫ T

t

ϕ(X̃(θ))dθ, ∀ X̃ ∈ καP ,

is a contraction on καP , provided α is chosen sufficiently small. The reader is referred
to [2, Theorem 6.1] for details.

Let P(·) = 0. This choice agrees with the above conditions on the function P(·).
The choice of the constant λ is obvious. From the contraction mapping theorem,
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the contraction Q has a unique fixed point in καP≡0. Denoting this point X2T (·), we
observe that X2T (·) satisfies (22) on [T − α, T ], and also from Claim 1 for a certain
λ1 > 0, I − P ∗2X2TP2 ≥ λ1I and hence is boundedly invertible. As in Lemma 2.2 of
[11], this fact implies that

sup
ζ∈L2(s,T,Rm2 )

=s,hT (0, ζ) = E〈h,X2T (s)h〉

for any s ∈ [T − α, T ]. Also, we see from the above equation that 0 ≤ X2T (s) ≤ X2,
and consequently, the operator X2T is uniformly bounded on [T −α, T ]. Furthermore,
it is straightforward to verify, using (22), that the unique optimal control is expressed
in the feedback form

ξs2T (t) = (I − P ∗2X2T (t)P2)−1B′2X2Tx
s
2T (t).

Claim (c) of Lemma 1 now follows by iterating the above procedure a finite number
of steps, with P(t) ≡ X2T (T − (i− 1)α) at the ith step.

To prove claim (d) of Lemma 1, we note that one can prove in a standard fashion
that X2T (s) is monotone increasing in T . Hence, for all s ≥ 0 there exists a matrix
X̄2(s) = limT→∞X2T (s). Hence 0 ≤ X̄2(s) ≤ X2 ∀ s ≥ 0. Consequently, I −
P ∗2 X̄2(s)P2 ≥ 0. Also, letting T approach∞ in (22), it follows that X̄2(s) satisfies this
equation for all s ∈ [0,∞) such that I −P ∗2 X̄2(s)P2 is nonsingular. For all s ∈ [0,∞)
such that I−P ∗2 X̄2(s)P2 is singular, we must have that either d

dsX̄2(s) =∞ or X̄2(s)
is not differentiable.

On the other hand, from the second part of claim (a) of Lemma 1, it follows that

=s,hT (0, ξs2(·)) ≤ E〈h,X2T (s)h〉.
Letting T approach ∞, it follows from this inequality and (19), (21) that

=s,h(0, ξs2(·)) ≤ E〈h, X̄2(s)h〉 ≤ E〈h,X2h〉 = =s,h(0, ξs2(·)).
Hence, X̄2(s) = X2, and d

dsX̄2(s) = 0 ∀ s ∈ [0,∞). This implies that the matrix
I − P ∗2X2P2 is nonsingular. That is, condition (26) is satisfied.

Appendix C. Proof of Theorem 1. Note, that condition (28) of Theorem 1
implies that

=0,0(u, 0) ≥ ε1‖u(t)‖22 ∀ u ∈ L2([0,+∞)× Ω;Rm1).(C.1)

Conditions (C.1) and (18) are convexity-concavity conditions which guarantee the ex-
istence of a unique minimax pair for the cost function (15) on L2(s,Rm1)×L2(s,Rm2);
see [1]. Let us = us(h), ξs = ξs(h) denote this saddle point.

The proof of the existence of an operator X satisfying (30) follows the lines of
the corresponding result of linear-quadratic stochastic control [4, 5]. As in [4, 5], it
can be shown that there exists a self-adjoint operator Xs ∈ L(Ls2, L

s
2) such that for

all h ∈ Ls2, V = E〈h,Xsh〉. By the Lebesgue–Nikodým theorem [31], it then follows
that there exists a weakly measurable mapping Xs = Xs(ω): Ω→ Rn×n such that

〈g(ω), Xs(ω)h(ω)〉 = 〈g(ω), (Xsh)(ω)〉 almost surely (a.s.)

for all h, g ∈ Ls2. Next, we establish that Xs(ω) = X0(Γsω) a.s. where {Γs, s ≥ 0}
is a translation semigroup generated by the Wiener process (w1(t), w2(t)) (see [6]
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and Appendix A). Since X0 is weakly F0-measurable, then this operator is weakly
invariant with respect to Γs. This leads to the existence of X satisfying (30).

The proof of the claim that the operator X satisfying (30) also satisfies (29)
follows the same arguments as those used in proving Theorem 3.4 of [11]. This proof
is based on certain facts of linear-quadratic stochastic control concerning the existence
of nonnegative definite solutions to the generalized Riccati equation

dX1T

dt
+A′X1T +X1TA+H∗X1TH +R− (X1TB1 +H∗X1TP1 +Q)(C.2)

× (G+ P ∗1X1TP1)−1(X1TB1 +H∗X1TP1 +Q)′ = 0,

X1T (T ) = 0,

and the Riccati equation (22). Note that under the conditions of the theorem, the
existence of a nonnegative definite solution to (22) is guaranteed by Lemma 1.

Equation (C.2) is a Riccati differential equation corresponding to the following
standard stochastic control problem

inf
u∈L2([s,T ]×Ω;Rm1 )

=s,hT (u, 0).(C.3)

For the particular case Q = 0, the solution to the control problem (C.3) can be
found, e.g., in references [2, 27]. Note that under condition (28) of the theorem, the
results of [2] are readily extended to the case Q 6= 0. The extension of Theorem 6.1
of [2] to the case Q 6= 0 implies that there exists a unique symmetric nonnegative
definite bounded solution X1T (t) to (C.2) and that the feedback law u1T = −(G +
P ∗1X1TP1)−1(B′1X1T + P ∗1X1TH +Q′)x solves the control problem (C.3).

Now let us consider the stochastic differential game associated with (1) and the
cost functional (16):

inf
u(·)∈L2(s,T,Rm1 )

sup
ξ∈L2(s,T,Rm2 )

=s,hT (u, ξ).(C.4)

Under conditions (28), (18), stochastic counterparts to Theorems 3.1 and 3.2 of [11]
can be established.

Claim 2. If conditions (28), (18) are satisfied, then the game problem (C.4) has a
unique saddle point (uT , ξT ). Furthermore, there exists a unique nonnegative definite
solution to the Riccati equation

dXT (s)

ds
+A′XT +XTA+H∗XTH +R− (XTB1 +H∗XTP1 +Q)(C.5)

× (G+ P ∗1XTP1)−1(XTB1 +H∗XTP1 +Q)′

+XTB2(I − P ∗2XTP2)−1B′2XT = 0,

XT (T ) = 0,

and the saddle point of the game (C.4) is characterized by the feedback law

uT = F1Tx, F1T : = −(G+ P ∗1XTP1)−1(B′1XT + P ∗1XTH +Q′),(C.6)

ξT = F2Tx, F2T : = (I − P ∗2XTP2)−1B′2XT .(C.7)

Proof of Claim 2. The existence of a unique saddle point follows from the same
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concavity-convexity arguments as those used above and can be proved using the result
of [1].

Suppose that a solution XT to (C.5) exists on the interval [T −α, T ]. Let s ∈ [T −
α, T ] be given. Then, applying the Ito formula to the quadratic form x(t)′XT (t)x(t),
where x(t) satisfies (1), we obtain

=s,hT (u, ξ) = Eh′XT (s)h+ E

∫ T

s

‖(G+ P ∗1XTP1)1/2 (u(t)− F1Tx(t)) ‖2dt

− E

∫ T

s

‖(I − P ∗2XTP2)1/2 (ξ(t)− F2Tx(t)) ‖2dt,

where the matrices F1T and F2T are defined by (C.6), (C.7). Hence, we conclude that
the pair (C.6), (C.7) satisfies the saddle point condition:

=s,hT (uT , ξ) ≤ =s,hT (uT , ξT ) = Eh′XT (s)h ≤ =s,hT (u, ξT ).(C.8)

It remains to prove that (C.5) has a solution as required. We can prove this claim
in the same fashion as Lemma 1 by choosing α sufficiently small. Indeed for any P
chosen as in the proof of Lemma 1, one can consider the closed set καP . Note that
since G + P ∗1PP1 ≥ G ≥ λ̄I, then ‖(G + P ∗1PP1)−1‖ ≤ 1/λ̄. As in Claim 1 (see
also [2, Theorem 6.1]), we have that ‖(G+ P ∗1 X̃P1)−1‖ ≤ 2/λ̄ for any X̃ ∈ καP . This
observation allows us to conclude that the mapping

ϕ̃(Z) := A′Z + ZA+R+H∗ZH + ZB2(I − P ∗2ZP2)−1B′2Z
−(ZB1 +H∗ZP1 +Q)(G+ P ∗1ZP1)−1(B′1Z + P ∗1ZH +Q′)

is well defined on καP and that the mapping

Q̃(X̃(·))(t): = P +

∫ T

t

ϕ̃(X̃(θ))dθ

is a contraction on καP provided α is chosen sufficiently small. Then, fixed point
arguments lead us to the conclusion that there exists a bounded solution XT (t) to
(C.5) on [T − α, T ], and also I − P ∗2XT (t)P2 > 0. Using (C.8), with this solution
we have that 0 ≤ X1T (s) ≤ XT (s) ≤ X2T (s) ≤ X2 ∀ s ∈ [T − α, T ]. Thus, by
partitioning the interval [0, T ] into subintervals not longer than α and iterating the
above fixed point procedure, we can show the existence of a unique global solution to
the Riccati equation (C.5). Since the considered game (C.4) has the unique saddle
point and from (C.8), this saddle point is given by (C.6), (C.7). This completes the
proof of Claim 2.

The remainder of the proof of Theorem 1 follows using arguments similar to
those used in proving Theorem 3.4 in [11]. Consider a pair of inputs (C.6) and (C.7)
extended to [T,+∞) by zero. This pair is again denoted by (uT , ξT ). By optimality
we have

=s,hT (uT , ξ
s) ≤ =s,hT (uT , ξT ) ≤ =s,hT (us, ξT ) ≤ =s,h(us, ξs).(C.9)

Also, we have already shown that XT (s) ≤ X2. This bound on XT (s) holds for any
s < T . On the other hand, it is readily seen that XT (s) is monotone increasing
in T . Hence, for all s ≥ 0, there exists X̄(s) = limT→∞XT (s). Consequently,
X̄(s) ≤ X2 ∀ s ≥ 0 and this inequality and inequality (25) from Lemma 1 imply
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that I − P ∗2 X̄(s)P2 > 0. This in turn implies that there exist bounded limits for
F1T (s), F2T (s) as T → ∞. Let F̄1(s) and F̄2(s) denote these limits, respectively. In
the same fashion as in [11], we obtain that for any T0 > s, xT (·) → x̄(·) strongly in
C([s, T0], L2(Ω, P,Rn)), uT (·)→ ū(·) = F̄1(·)x̄(·) strongly in C([s, T0], L2(Ω, P,Rm1)),
and ξT (·) → ξ̄(·) = F̄2(·)x̄(·) strongly in C([s, T0], L2(Ω, P,Rm2)), where xT (·) is a
solution to (1), driven by the pair uT , ξT , and x̄(·) is a solution to the equation

dx = (A+B1F̄1(t)+B2F̄2(t))xdt+(H+P1F̄1(t))xdw1(t)+P2F̄1(t)xdw2(t), x(s) = h.

Also as in [11], it can be proved that the sequences {uT }, {ξT } are bounded in
L2(s,Rm1), L2(s,Rm2), respectively. Thus, one can extract subsequences denoted
again by {uT }, {ξT } such that (uT , ξT ) → (ũ, ξ̃) ∈ L2(s,Rm1) × L2(s,Rm2) weakly
as T →∞. This leads us to the conclusion that ū(·) = ũ(·), ξ̄(·) = ξ̃(·), which implies
that (ū, ξ̄) ∈ L2(s,Rm1)× L2(s,Rm2).

Letting T approach ∞ in (C.9), we obtain

=s,h(ū, ξs) ≤ E〈h, X̄(s)h〉 ≤ =s,h(us, ξ̄) ≤ =s,h(us, ξs) ≤ =s,h(ū, ξs).

Thus, we have that E〈h, X̄(s)h〉 = =s,h(us, ξs) = E〈h,Xh〉 and therefore

(us, ξs) = (ū, ξ̄).

That is, the feedback representation of the saddle point holds. To see that the matrix
X satisfies (29) one needs to pass to the limit as T →∞ in (C.5). Also, we see that
X = limT→∞XT is a minimal solution to (29) and this solution satisfies condition
(30). It is clear that the solution satisfying these conditions is unique.

The claim that the system (31) is exponentially mean-square stable follows from
the fact that for linear stochastic systems, stochastic L2-stability is equivalent to
stochastic exponential mean-square stability; see, e.g., [10].

Appendix D. Proof of Theorem 2. With the substitution

v = u+ (D′D)−1D′Cx(D.1)

into (1), the stochastic system under consideration becomes

dx = (Ãx(t) +B1v(t) +B2ξ(t))dt+ (H̃x(t) + P1v(t))dw1(t)(D.2)

+ P2ξ(t)dw2(t),

z̃ = C̃x+ D̃v.

Here the following notation is used:

Ã = A−B1(D′D)−1D′C, H̃ = H − P1(D′D)−1D′C,(D.3)

C̃ =

[
R̃1/2

0

]
, D̃ =

[
0
D

]
,

and the matrix R̃ is as defined in Assumption 2. Note that if the matrix K is a solution
to the stochastic H∞ problem defined in section 3, then K̃ = K+(D′D)−1D′C solves
a corresponding stochastic H∞ problem associated with the system (D.2), and vice
versa. The stochastic H∞ control problem associated with the system (D.2) is defined
in the same fashion as the original H∞ control problem; i.e., given the system (D.2),
find a matrix K̃ ∈ Rm1×n such that the state feedback controller v = K̃x satisfies the
following conditions:
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(i′) The system

dx = (Ã+B1K̃)xdt+ (H̃ + P1K̃)xdw1(t)(D.4)

is exponentially stable in the mean-square sense and the matrix Ã+B1K̃ is stable.
(ii′) The closed-loop system corresponding to system (D.2) with feedback control

v = K̃x,

dx = [(Ã+B1K̃)x(t) +B2ξ(t)]dt+ (H̃ + P1K̃)x(t)dw1(t) + P2ξ(t)dw2(t),(D.5)

satisfies the following stochastic H∞-norm condition: there exists a constant ε̃ > 0
such that

E

∫ +∞

s

(
‖(C̃ + D̃K̃)x(t)‖2 − ‖ξ(t)‖2

)
dt ≤ −ε̃E

∫ +∞

s

‖ξ(t)‖2dt(D.6)

for x(s) = 0

for each ξ ∈ L2(s; Rm2).
Note that the problem (i′), (ii′) is simpler than the original problem because we

have C̃ ′D̃ = 0, D̃′D̃ = D′D > 0 in this case. Also by Assumption 2, there exists a
matrix N such that the matrix Ã−NC̃ is a Hurwitz matrix and

‖exp((Ã−NC̃)t)‖ ≤ ae−αt, a2

α
‖H̃‖2Q1

< 1.(D.7)

This observation implies that the system

dy = (Ã−NC̃)ydt+ H̃ydw1(t), y(s) = y0 ∈ Ls2,(D.8)

is exponentially mean-square stable. In the particular case where H̃ = 0, this fact
amounts to the pair (C̃, Ã) being detectable.

First, we solve the problem (i′), (ii′).
Lemma 5.

(a) If the stochastic H∞ state feedback control problem (i′), (ii′) has a solution,
then there exists a symmetric nonnegative definite minimal solution X to the gener-
alized algebraic Riccati equation

Ã′X +XÃ+ H̃∗XH̃ + C̃ ′C̃(D.9)

−(XB1 + H̃∗XP1)(D̃′D̃ + P ∗1XP1)−1(B′1X + P ∗1XH̃)

+XB2(I − P ∗2XP2)−1B′2X = 0,

such that I − P ∗2XP2 > 0 and the stochastic system

dx = (Ã+B1F̃1 +B2F̃2)xdt+ (H + P1F̃1)xdw1(t) + P2F̃2xdw2(t),(D.10)

where

F̃1 = −(D̃′D̃ + P ∗1XP1)−1(B′1X + P ∗1XH̃),(D.11)

F̃2 = (I − P ∗2XP2)−1B′2Xx,

is exponentially stable in the mean-square sense. Also,

E〈h,Xh〉 ≤ sup
ξ∈L2(s;Rm2 )

E

∫ +∞

s

(
‖C̃x(t) + D̃v̂(t)‖2 − ‖ξ(t)‖2

)
dt(D.12)

for any state feedback control v̂(·) such that the closed-loop system corresponding to
(D.2) and this control has L2-summable solutions for all ξ ∈ L2(s; Rm2), and the
supremum on the left-hand side of (D.12) is finite.
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(b) Conversely, if there exists a symmetric nonnegative definite solution X to
(D.9) such that I−P ∗2XP2 > 0 and the stochastic system (D.10) is exponentially stable,
then the stochastic H∞ state feedback control problem (i′), (ii′) has a solution. The
corresponding stabilizing feedback controller which solves this stochastic H∞ problem
is given by

K̃ = −(D̃′D̃ + P ∗1XP1)−1(B′1X + P ∗1XH̃).(D.13)

Proof of Lemma 5. We shall use the following notation: ÃK = Ã + B1K̃, C̃K =
C̃ + D̃K̃, H̃K = H̃ + P1K̃.

(b)⇒(a). Let X be a symmetric nonnegative solution to (D.9) such that (D.10)
is exponentially mean-square stable. Let K̃ be given by (D.13). We wish to establish
that X and K̃ satisfy conditions (i′), (ii′).

Let us prove the stability of the system (D.4). Note that using (D.13), (D.9) can
be transformed as follows:

Ã′KX +XÃK + H̃∗KXH̃K + C̃ ′C̃ + K̃ ′(D̃′D̃)K̃(D.14)

+XB2(I − P ∗2XP2)−1B′2X = 0.

This implies that

Ã′KX +XÃK + H̃∗KXH̃K + C̃ ′C̃ + K̃ ′(D̃′D̃)K̃ ≤ 0.(D.15)

We now proceed as in [10, Lemma 4.6]. Letting x(t) be the solution to (D.4), first we
note that from (D.15),

E

∫ ∞
0

(
‖C̃x(t)‖2 + ‖D̃K̃x(t)‖2

)
dt ≤ Eh′Xh <∞,

and hence C̃x(·) and K̃x(·) are square integrable (the latter holds since D̃′D̃ > 0).
Next, note that ‖H̃ + P1K̃‖2Q1

≤ (1 + ν)‖H̃‖2Q1
+ (1 + 1

ν )‖P1K̃‖2Q1
for any ν > 0.

From (D.7), ν can be chosen sufficiently small in order to guarantee that

(1 + ν)a2

α
‖H̃‖2Q1

< 1.(D.16)

This observation allows us to obtain in the same way as in [10, Lemma 4.6] that
E‖x(t)‖2 ∈ L1[0,∞). This implies that (i′) holds.

We will now prove that condition (ii′) is also satisfied. From (D.14), we have that

E〈x(t), Xx(t)〉+ E

∫ t

0

{‖C̃Kx(t)‖2 − ‖ξ‖2}dt(D.17)

= −E

∫ t

0

‖(I − P ∗2XP2)1/2(ξ − (I − P ∗2XP2)−1B′2Xx)‖2dt,

where x(·) is the solution to (D.5) corresponding to the initial condition x(0) = 0.
Note, that the substitution ξ = ζ + (I − P ∗2XP2)−1B′2Xx into (D.5) leads to the

following equation:

dx = ((ÃK +B2(I − P ∗2XP2)−1B′2X)x+B2ζ(t))dt+ H̃Kxdw1(t)(D.18)

+ P2(ζ + (I − P ∗2XP2)−1B′2Xx)dw2,

x(0) = 0.
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In particular, the input ζ(t) = 0 corresponds to the stable system (D.10). This
implies (see, e.g., [3] and also Lemma 4 in Appendix A) that solutions of (D.18)
satisfy the condition ‖|x‖| ≤ c0‖|ζ‖|, where c0 > 0 is a constant independent of ζ.
That is, the mapping ζ(·)→ x(·) and, consequently, the mapping ζ(·)→ ξ(·) = ζ(·) +
(I − P2XP2)−1B′2Xx(·) generated by (D.18) are bounded mappings L2(0; Rm2) →
L2(0; Rn), L2(0; Rm2) → L2(0; Rm2), respectively. Thus, there exists a constant
c > 0 such that

‖|ξ(·)‖| ≤ c‖|ζ(·)‖| ∀ ζ ∈ L2(0; Rm2).

Note that the restriction of any solution of (D.18) to an interval [0, t] is equal to the
restriction of a corresponding solution of (D.5). Since X ≥ 0 and I − P ∗2XP2 > 0,
then (D.17) implies that

E

∫ ∞
0

{‖(C̃ + D̃K̃)x(t)‖2 − ‖ξ‖2}dt ≤ −εE
∫ ∞

0

‖ζ‖2dt ≤ − ε

c2
E

∫ ∞
0

‖ξ‖2dt.

(a)⇒(b). Given a matrix K̃ satisfying conditions (i′) and (ii′), we wish to prove
that there exists a solution to (D.9) stabilizing the system (D.10).

Let δ ∈ (0, δ̄] be a given constant. Consider the stochastic differential game of
the form (17) associated with the system

dx = (ÃKx+B1v +B2ξ)dt+ (H̃Kx+ P1v)dw1(t) + P2ξdw2(t),(D.19)

z̃ = C̃Kx+ D̃v

and cost functional

=s,hδ (v, ξ) =

∫ +∞

s

E
{
‖C̃Kx(t) + D̃v(t)‖2 + δ‖v(t)‖2 − ‖ξ(t)‖2

}
dt.(D.20)

By the condition (i′), (D.4) is stable, and hence the system (D.19) satisfies Assump-
tion 1. Also, it follows from (ii′) that the system (D.5) satisfies condition (18) of
Lemma 1 and Theorem 1 with ε2 = ε̃. In particular, Lemma 1 defines a matrix X2

such that I − P ∗2X2P2 > 0. Note that this matrix is independent of δ.
Condition (28) of Theorem 1 is also satisfied with ε1 = δ. It follows from this

theorem that for each δ ∈ (0, δ̄], the equation

Ã′KX +XÃK + H̃∗KXH̃K + C̃KC̃K − (XB1 + H̃∗KXP1 + C̃ ′KD̃)(D.21)

× (D̃′D̃ + δI + P ∗1XP1)−1(B′1X + P ∗1XH̃K + D̃′C̃K)

+XB2(I − P ∗2XP2)−1B′2X = 0

has a symmetric nonnegative definite minimal solution Xδ such that the system

dx = (ÃK +B1F1,δ +B2F2,δ)xdt+ (H̃K + P1F1,δ)xdw1(t)(D.22)

+P2F2,δxdw2(t)

is exponentially mean-square stable. In (D.22),

F1,δ = −(D̃′D̃ + δI + P ∗1X
δP1)−1(B′1X

δ + P ∗1X
δH̃K + C̃ ′KD̃),

F2,δ = (I − P ∗2XδP2)−1B′2X
δ.

As we have shown when proving Theorem 1, Xδ ≤ X2 and hence I − P ∗2XδP2 > 0.
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As in reference [11, Theorem 4.2], it follows that there exists a matrix X: =
limδ↓0Xδ, X = X ′ ≥ 0 which satisfies (D.9). To verify this fact, one must take into

account the fact that C̃ ′D̃ = 0. Also, we note that since X2 is independent of δ,
X ≤ X2 and hence I − P ∗2XP2 > 0. Next, letting δ ↓ 0 in (D.21), we obtain that the
above defined matrix X satisfies (D.9). Also, there exist the limits

F1,K = lim
δ↓0

F1,δ = −K̃ − (D̃′D̃ + P ∗1XP1)−1(B′1X + P ′1XH̃) = F̃1 − K̃,

F2,K = lim
δ↓0

F2,δ = (I − P ∗2XP2)−1B′2X = F̃2.

Note that X is defined as the limit of a sequence of minimal solutions, hence it
represents the minimal solution to (D.9).

We now show that the system (D.10) is exponentially mean-square stable. Con-
sider solutions xδ(·) and x(·) to (D.22) and (D.10), respectively, that correspond to
the initial condition xδ(s) = x(s) = h. Note that

0 ≤ =s,hδ (F1,δxδ, 0) ≤ Eh′Xδh = =s,hδ (F1,δxδ, F2,δxδ)(D.23)

≤ =s,h(0, F2,δxδ) ≤ Eh′X2h,

where the matrix X2 has been defined above. Hence, F2,δxδ(·) is bounded. This fact is
established in the same fashion as that in the proof of Theorem 1. Furthermore, from
(D.23), =s,hδ (F1,δxδ, F2,δxδ) is bounded. Since F2,δxδ(·) is bounded, this then implies

that C̃xδ(·) and (K̃ + F1,δ)xδ(·) are bounded in the corresponding space L2[s,∞).

Again, we have used the fact that C̃ ′D̃ = 0 and D̃′D̃ > 0 to reach this conclusion.
Hence, one can extract subsequences which have weak limit points in corresponding
L2-spaces. These limits are L2-summable functions on [s,+∞) × Ω. Also, as in the
proof of Theorem 1, for any T0 > s, xδ(·)→ x(·) in C([s, T0];L2(Ω, P,Rn)). Therefore,
for any T0 > s, the restrictions of the functions C̃x(·), (K̃ + F1,K)x(·) = F̃1x(·), and

F̃2x(·) to the interval [s, T0] are equal to restrictions of the corresponding weak limit
points. Hence C̃x(·), F̃1x(·), F̃2x(·) are square-integrable functions on [s,+∞)× Ω.

Let us rewrite (D.10) in the following form:

dx = ((Ã−NC̃)x+B1F̃1x(t) +B2F̃2x(t) +NC̃x(t))dt+ (H̃ + P1F̃1)xdw1(t)

+P2F̃2xdw2(t),

where N is the matrix defined in Assumption 2. Since (D.8) is stable and inputs
F̃1x(·), F̃2x(·), and C̃x(·) are square integrable on [s,∞)× Ω, then x(·) ∈ L2(s; Rn).
Hence, (D.10) is exponentially mean-square stable.

To see that (D.12) holds, let us consider the finite horizon version of the functional
(D.20):

=s,hδ,T (v, ξ) =

∫ T

s

E
{
‖C̃Kx(t) + D̃v(t)‖2 + δ‖v(t)‖2 − ‖ξ(t)‖2

}
dt,

with v ∈ L2(s, T ; Rm1), ξ ∈ L2(s, T ; Rm2). As in the infinite horizon case, we obtain
from Claim 2 (cf. [11, Theorem 4.1]), that there exists a matrix XT = limδ↓0Xδ

T ,
satisfying the matrix Riccati equation

dXT (s)

ds
+ Ã′KXT +XT ÃK + H̃∗KXT H̃K + C̃ ′KC̃K(D.24)



STABILIZATION AND MINIMAX OPTIMAL STOCHASTIC CONTROL 1121

− (XTB1 + H̃∗KXTP1 + C̃ ′KD̃)(D̃′D̃ + P ∗1XTP1)−1

× (XTB1 + H̃∗KXTP1 + C̃ ′KD̃)′

+XTB2(I − P ∗2XTP2)−1B′2XT = 0,

XT (T ) = 0.

Let v̂(·) be any state feedback controller such that the closed-loop system obtained
from (D.2) has L2-summable trajectories for all L2-summable uncertainty inputs.
Then, the corresponding closed-loop system obtained from (D.19), with state feedback
v(·) = v̂(·)− K̃x has also L2-summable trajectories for all L2-summable uncertainty
inputs. Hence, if ξ ∈ L2(s, T ; Rm2) and ξ̃(·) denotes its extension to the interval
[T,∞) by zero, then (D.24) implies

E〈h,XT (s)h〉 ≤ sup
ξ∈L2(s,T ;Rm2 )

∫ T

s

E
{
‖C̃Kx(t) + D̃v(t)‖2 − ‖ξ(t)‖2

}
dt

≤ sup
ξ∈L2(s,T ;Rm2 )

∫ ∞
s

E
{
‖C̃Kx(t) + D̃v(t)‖2 − ‖ξ̃(t)‖2

}
dt

≤ sup
ξ∈L2(s;Rm2 )

∫ ∞
s

E
{
‖C̃Kx(t) + D̃v(t)‖2 − ‖ξ(t)‖2

}
dt

= sup
ξ∈L2(s;Rm2 )

∫ ∞
s

E
{
‖C̃x(t) + D̃v̂(t)‖2 − ‖ξ(t)‖2

}
dt.

Also, note that XT → X as T → ∞, since X is a minimal solution. Thus, (D.12)
holds.

We now are in a position to finish the proof of Theorem 2. One can observe that
letting

K = K̃ − (D′D)−1D′C

and using the notation (D.3), (D.9) and (D.10) are transformed into (37) and (38),
respectively, and the feedback matrix (D.13) is transformed into the matrix (39).
Hence the theorem follows from Lemma 5.
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Abstract. We consider a control problem for a stochastic Burgers equation. This problem is
motivated by a model from the control of Turbulence (see [Choi et al., J. Fluid Mech., 253 (1993),
pp. 509–543]). We study a sequence of approximated Hamilton–Jacobi equations by using dynamic
programming.
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1. Introduction. It has been shown in [3] that the stochastic Burgers equation
is a good and simple model with which to study turbulence phenomena. The mathe-
matical study of this equation has been the object of several papers [2], [9], [10], [17],
[21].

This model also has been used in [6] to test a numerical algorithm for reducing
the cost function in the very important problem of the control of turbulence.

In this paper we consider the stochastic Burgers equation with distributed param-
eter controls. The cost function has the same form as in [6] and contains the analogue
of the kinetic energy. The problem is as follows: minimize

J(z) = E

(∫ T

0

[∣∣∣∣∂X∂ξ
∣∣∣∣2
L2(0,1)

+
1

2
|z(s)|2L2(0,1)

]
ds+

1

2
|X(T )|2L2(0,1)

)
,

where the control z is in L2(Ω × [0, T ] × [0, 1]), and X(t, ξ), ξ ∈ [0, 1], t ∈ [0, T ], is
the solution of the controlled Burgers equation

dX =

(
∂2X

∂ξ2
+

∂

∂ξ
(X2)

)
dt+

√
Qzdt+

√
QdW, ξ ∈ [0, 1], t ≥ 0,

X(t, 0) = X(t, 1) = 0, t ≥ 0,

X(0, ξ) = x(ξ), ξ ∈ [0, 1],

(1.1)

where x ∈ L2(0, 1).
Here W is a cylindrical Wiener process on L2(0, 1) (in other words dW

dt is the
“space–time white noise”) and is adapted to a stochastic basis (Ω,F , {Ft}t≥0,P) (of
course the control z has to be adapted to the filtration {Ft}t≥0). Moreover Q is a
symmetric linear operator on L2(0, 1). In (1.1) the operator

√
Q acts both on the

noise and on the control. This is essential in our work: it enables us to use a Hopf
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transform on the Hamilton–Jacobi equation (see below). This might be a restriction
in the applications. However, this assumption is not artificial. It can be interpreted
as a control acting on the solution in the same way as the noise or as a noise acting
on the control.

It is easy to see that the cost functional J cannot have finite values unless Q is a
nuclear operator. This is a simple consequence of the Ito formula.

In this paper we study this control problem following the dynamic programming
approach. We solve the associated Hamilton–Jacobi equation and prove that it has a
solution that coincides with the value function. More precisely, letA be the unbounded
operator on L2(0, 1) defined by

Ax =
∂2x

∂ξ2
, D(A) = H2(0, 1) ∩H1

0 (0, 1),

and F, g are the nonlinear functions:

F (x) =
∂(x2)

∂ξ
, g(x) =

∣∣∣∣∂x∂ξ
∣∣∣∣2
L2(0,1)

.

Then we can associate our control problem with the Hamilton–Jacobi equation

ut(t, x) =
1

2
Tr [Quxx(t, x)] + (Ax+ F (x), ux(t, x))

− 1

2
|
√
Q ux(t, x)|2 + g(x),

u(0, x) =
1

2
|x|2L2(0,1)

(1.2)

for x ∈ L2(0, 1), t ∈ [0, T ].
We prove below that there exists a solution u and that

u(T, x) = inf
z
J(z).(1.3)

Moreover, for each control z and its associated solution X of (1.1), the fundamental
identity holds:

u(T, x) +
1

2
E
∫ T

0

|
√
Q ux(T − s,X(s, x)) + z(s)|2L2(0,1)ds = J(z).(1.4)

We prove that the closed loop equation
dX∗ =

(
∂2X∗

∂ξ2
+

∂

∂ξ
(X∗2)−Qux(T − t,X∗(t))

)
dt+

√
Q dW,

X∗(t, 0) = X∗(t, 1) = 0, t ≥ 0,

X∗(0, ξ) = x(ξ), ξ ∈ [0, 1]

(1.5)

has a unique solution. It follows that there exists a unique optimal control given by

z∗(t) = −
√
Q ux(T − t,X∗(t)).(1.6)



CONTROL OF STOCHASTIC BURGERS MODEL OF TURBULENCE 1125

To prove the existence of a solution to the Hamilton–Jacobi equation (1.2) we use a
Hopf transform

u = − ln v.

The function v satisfies

vt(t, x) =
1

2
Tr [Qvxx(t, x)] + (Ax+ F (x), vx(t, x))− g(x)v(1.7)

so that using the Feynmann–Kac formula we have an explicit representation for u,

u(t, x) = − lnE
(

exp

[
−1

2
|Y (t)|2L2(0,1) −

∫ t

0

g(Y (s))ds

])
,(1.8)

where Y is the solution to the uncontrolled equation
dY =

(
∂2Y

∂ξ2
+

∂

∂ξ
(Y 2)

)
dt+

√
QdW, ξ ∈ [0, 1], t ≥ 0,

Y (t, 0) = Y (t, 1) = 0, t ≥ 0,

Y (0, ξ) = x(ξ), ξ ∈ [0, 1].

(1.9)

The study of second-order Hamilton–Jacobi equations has been the object of
several articles. Existence and uniqueness in finite and infinite dimensions have been
obtained using semigroups methods (see [1], [8], [4], [5], [13], [14], [15]) and also using
the concept of viscosity solution (see [7], [12], [19], [20], [16]). However, these results do
not cover our case. Indeed here we simultaneousy have a non-Lipschitz Hamiltonian
H(u) = 1

2 |
√
Q ux|2, a singular term in the cost functional g(x) = 1

2 | ∂∂ξX|2L2(0,1), and

the nonlinear term f(x) = ∂
∂ξ (X2) coming from the Burgers equation.

All the formula described above can be derived formally; we use an approxima-
tion technique to justify them. We consider an approximate problem which is finite
dimensional by using a Galerkin approximation and in which g and f are replaced by
bounded and Lipschitz functions. We obtain a control problem which we can solve
easily and a sequence {um} of approximations of the solution to (1.2). We derive
several a priori estimates and prove convergence of the approximation. The main
difficulty is that we are not able to obtain an a priori estimate in the space of C1

bounded functions on um. We have only the estimates

|um(t, x)| ≤ 1

2

(
|x|2L2(0,1) + Tr tQ

)
,

|umx (t, x)| ≤ Ce 1
2 (|x|2

L2(0,1)
+ Tr tQ)

and a similar estimate on umxx(t).
However, we are able to prove that um converges to a C2 function u which is

a solution of (1.2), that the formulas (1.1) and (1.3) hold, and that the closed loop
equation (1.5) has a unique solution. Thus the original control problem is completely
solved.

2. Preliminaries and main results. Let H = L2(0, 1) endowed with the usual
norm and inner product denoted by | · | and (·, ·). We define a linear operator A in H
by setting

Ax =
∂2x

∂ξ2
, x ∈ D(A) = H2(0, 1) ∩H1

0 (0, 1).
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As usual, Hk(0, 1), k ∈ N, is the Sobolev space of all functions in H whose derivatives
up to the order k belong to H, and H1

0 (0, 1) is the subspace of H1(0, 1) of all functions
whose traces at 0 and 1 vanish.

The operator A is self-adjoint and strictly negative and has a compact inverse.
We can define (−A)s and D((−A)s) for any s ∈ R. For s = 1

2 , we have D((−A)1/2) =
H1

0 (0, 1) and its norm and inner product are denoted by

‖x‖ = |(−A)1/2x|, ((x, y)) =
(

(−A)1/2x, (−A)1/2y
)
, x, y ∈ H1

0 (0, 1).

The sequence of eigenvalues of A is

λk = −k2π2, k ∈ N,
and it is associated with the orthonormal basis of eigenvectors {ek}k∈N,

ek =
√

2/π sin kξ, k ∈ N, ξ ∈ [0, 1].

For any positive integer m we denote by Pm the orthogonal projector on the space
spanned by e1, . . . , em.

We also consider a linear operator Q which is assumed to be symmetric, non-
negative, and of trace class; and a cylindrical Wiener process W on H associated
with a stochastic basis (Ω,F , {Ft}t≥0,P). (The reader is referred to [11] for precise
definitions.) Let L2

W (Ω× [0, T ];H) be the space of all square integrable and adapted
processes with values in L2(0, T ;H). For x ∈ H1

0 (0, 1) we set

F (x) =
∂

∂ξ
(x2).

The control problem we want to study is
Minimize

J(z) = E

(∫ T

0

(
‖X(t)‖2 +

1

2
|z(t)|2

)
dt+

1

2
|X(T )|2

)
over all z ∈ L2

W (Ω× [0, T ];H),

(2.1)

where X is the solution of the controlled Burgers equation{
dX = (AX + F (X) +

√
Q z)dt+

√
Q dW,

X(0) = x
(2.2)

and the initial datum x is in H.
For any z ∈ L2

W (Ω × [0, T ];H), (2.2) has a unique solution. More precisely, its
solution can be constructed as the limit of Galerkin approximations. For m ∈ N, we
define Fm by

Fm(x) =
∂

∂ξ
(fm(x)) , x ∈ H1

0 (0, 1),

where

fm(α) =
mα2

m+ α2
, α ∈ R,
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and we consider the following Galerkin approximation of (2.2):{
dXm = (AXm + PmFm(Xm) + Pm

√
Q zm)dt+ Pm

√
Q dW,

Xm(0) = xm,
(2.3)

where zm ∈ L2
W (Ω × [0, T ];PmH) and xm ∈ PmH. The existence and uniqueness

of Xm follow from the classical theory of finite dimensional stochastic differential
equations.

We will need a lemma, whose proof is given in the appendix.
Lemma 2.1. Let {xm}m∈N, {zm}m∈N be such that xm → x in H and zm → z

in L2
W (Ω × [0, T ];H) and almost surely in L2([0, T ] ×H). Let Xm be the solution of

(2.3). Then {Xm}m∈N is convergent to the unique solution X of (2.2) in

L2(Ω× [0, T ];H1
0 (0, 1)) ∩ L2(Ω;C([0, T ];H))

and almost surely in L2([0, T ]×H).
As mentioned in the introduction, we can formally associate the following Hamilton–

Jacobi equation with the control problem (2.1)–(2.2):

ut(t, x) =
1

2
Tr [Quxx(t, x)] + (Ax+ F (x), ux(t, x))

− 1

2
|
√
Q ux(t, x)|2 + ‖x‖2,

u(0, x) =
1

2
|x|2,

(2.4)

for t ∈ [0, T ], x ∈ H. Using the Hopf transformation

u = − ln v,

v formally satisfies

vt(t, x) =
1

2
Tr [Qvxx(t, x)] + (Ax+ F (x), vx(t, x))− ‖x‖2v,(2.5)

and so, by the Feynmann–Kac formula,

v(t, x) = E
(

exp

[
−1

2
|Y (t)|2 −

∫ t

0

‖Y (s)‖2ds
])

,(2.6)

where Y is the solution to the uncontrolled Burgers equation{
dY = (AY + F (Y ))dt+

√
Q dW,

Y (0) = x.
(2.7)

It is classical that Y is two times differentiable with respect to x. More precisely, we
have the following lemma, whose proof is given in the appendix.

Lemma 2.2. The function v defined by (2.6)–(2.7) is two times differentiable with
respect to x ∈ H. For any (x, h) ∈ H ×H, its derivative at x in the direction of h is
given by

vx(t, x)h = −E
[(

(Y (t), ηh(t)) + 2

∫ t

0

((Y (s), ηh(s)))ds

)
e
− 1

2 |Y (t)|2−
∫ t

0
‖Y (s)‖2ds

]
,

(2.8)
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where ηh is the solution of 
dηh

dt
= Aηh + 2

∂

∂ξ

(
Y ηh

)
,

ηh(0) = h.

(2.9)

Moreover, its second derivative is given by

vxx(t, x)(h, h) = −E
[(
|ηh(t)|2 + 2

∫ t

0

‖ηh(s)‖2ds+ (Y (t), ζh(t))

+ 2

∫ t

0

((Y (s), ζh(s)))ds

)
e
− 1

2 |Y (t)|2−
∫ t

0
‖Y (s)‖2ds

]

+E

[(
(Y (t), ηh(t)) + 2

∫ t

0

((Y (s), ηh(s)))ds

)2

e
− 1

2 |Y (t)|2−
∫ t

0
‖Y (s)‖2ds

]
,

(2.10)

where ζh is the solution of
dζh

dt
= Aζh + 2

∂

∂ξ

(
Y ζh + (ηh)2

)
,

ζh(0) = 0.

(2.11)

We will also consider the Galerkin approximation of (2.9),
dηhm
dt

= Aηhm + Pm
∂

∂ξ

(
f ′m(Ym)ηhm

)
,

ηhm(0) = Pmh,

(2.12)

and of (2.11), 
dζhm
dt

= Aζhm + Pm
∂

∂ξ

(
f ′m(Ym)ζhm + f ′′m(Ym)(ηhm)2

)
,

ζhm(0) = 0,

(2.13)

where Ym is the solution to dYm = (AYm + Fm(Ym))dt+ Pm
√
Q dW,

Ym(0) = xm

(2.14)

and xm ∈ PmH, h ∈ Pmh.
Lemma 2.3. Let {xm}m∈N be such that xm → x in H; then

sup
h∈H,|h|=1

∣∣ηPmhm − ηh∣∣2
L2(0,T ;H1

0 (0,1))
→ 0,

sup
h∈H,|h|=1

∣∣ηPmhm − ηh∣∣
C([0,T ];H)

→ 0,

sup
h∈H,|h|=1

∣∣ζPmhm − ζh∣∣2
L2(0,T ;H1

0 (0,1))
→ 0,

sup
h∈H,|h|=1

∣∣ζPmhm − ζh∣∣
C([0,T ];H)

→ 0
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almost surely when m→∞. The proof of this lemma is given in the appendix.
In section 4 we will prove, by an approximation technique, that v given by (2.6)

is a strict solution of (2.5). By strict solution we mean that v is a C2 function with
respect to x; that for any x ∈ D(A), t→ v(t, x) is a C1 function; and that (2.5) holds
for any (t, x) ∈ D(A)× [0, T ]. We will also obtain that u = ln v is a strict solution of
(2.4).

Then, again by approximation, we show that the fundamental identity (1.4) holds.
It remains to be proved that the closed loop equation (1.5) has a unique solution

X∗. The difficulty here is that we have only a rather bad estimate on ux. We will
consider this problem in section 5.

The main result of this paper, whose proof is presented in sections 4 and 5, is the
following.

Theorem 2.4. Let v be defined by (2.6)–(2.7) and u = − ln v; then u is a
strict solution to the Hamilton–Jacobi equation (2.4). Moreover for any z ∈ L2

W (Ω×
[0, T ];H), we have

u(T, x) +
1

2
E
∫ T

0

|
√
Q ux(T − s,X(s, x)) + z(s)|2ds = J(z),

where X is the solution of (2.2) and J is defined by (2.1).
The control problem (2.1) has a unique solution given by

z∗(t) = −
√
Q ux(T − t,X∗(t)),

where X∗ is the unique solution to the closed loop equation{
dX∗ = (AX∗ + F (X∗)dt−Qux(T − t,X∗(t))) dt+

√
Q dW,

X∗(0) = x.

Remark 2.5. In fact we prove a little bit more. Indeed, we show that the
optimal control z∗ and the optimal state X∗ are the limits of an approximated finite
dimensional problem.

3. Approximations. We already have introduced the Galerkin approximation
(2.3) of (2.2). We also need to approximate the terms ‖ ·‖2 and 1

2 | · |2 in the functional
J. If l ∈ N, we set

ϕl(x) =
1

2

l|x|2
l + |x|2 , x ∈ H, gl(x) =

l‖x‖2
l + ‖x‖2 , x ∈ H

1
0 (0, 1).

The approximated control problem is

Minimize

Jl,m(zm) = E

(∫ T

0

(gl(Xm(t)) +
1

2
|zm(t)|2)dt+ ϕl(xm(T ))

)

over all zm ∈ L2
W (Ω× [0, T ];PmH),

(3.1)

where Xm is the solution of (2.3).
We define for l,m ∈ N, xm ∈ PmH, t ∈ [0, T ]

vl,m(t, xm) = E
(
e
−ϕl(Ym(t))−

∫ t
0
gl(Ym(s))ds

)
,



1130 GIUSEPPE DA PRATO AND ARNAUD DEBUSSCHE

where Ym is the solution of (2.14). It defines a two times continuously differentiable
function with respect to xm ∈ PmH, and for h ∈ PmH we have

vl,mxm (t, x)h = −E
[((

Dxϕl(Ym(t)), ηhm(t)
)

+

∫ t

0

(
Dxgl(Ym(s)), ηhm(s)

)
ds

)

e
−ϕl(Ym(t))−

∫ t
0
gl(Ym(s))ds

]
,

(3.2)

where ηhm is the solution of (2.12) and

vl,mxmxm(t, x)(h, h) = −E
[((

Dxϕl(Ym(t)), ζhm(t)
)

+

∫ t

0

(
Dxgl(Ym(s)), ζhm(s)

)
ds

+D2
xϕl(Ym(t))(ηhm(t), ηhm(t)) +

∫ t

0

D2
xgl(Ym(s))(ηhm(s), ηhm(s))ds

)

×e−ϕl(Ym(t))−
∫ t

0
gl(Ym(s))ds

]

+E

[((
Dxϕl(Ym(t)), ηhm(t)

)
+

∫ t

0

(
Dxgl(Ym(s)), ηhm(s)

)
ds

)2

×e−ϕl(Ym(t))−
∫ t

0
gl(Ym(s))ds

]
,

(3.3)

where ζhm is the solution of (2.13). By the Feynman–Kac formula we know that vl,m

satisfies the equation
vl,mt =

1

2
Tr [PmQv

l,m
xm,xm ] +

(
Axm + PmFm(xm), vl,mxm

)− gl(xm)vl,m,

vl,m(0, xm) = e−ϕl(xm)

(3.4)

on PmH × [0, T ]. Also, clearly

vl,m(t, xm) ≥ e−l( 1
2 +T ).(3.5)

Therefore the function

ul,m = − ln vl,m

is two times continuously differentiable and it can be checked that it is a solution of
the Hamilton–Jacobi equation associated with (3.1):

ul,mt (t, x) =
1

2
Tr [PmQu

l,m
xm,xm ] +

(
Axm + PmFm(xm), ul,mxm

)
− 1

2
|Pm

√
Q ul,mxm |2 + gl(xm),

ul,m(0, xm) = ϕl(xm).

(3.6)
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A standard computation using Ito’s formula shows that

ul,m(T, xm) +
1

2

∫ T

0

∣∣∣√Q ul,mxm (T − t,Xm(t)) + zm(t)
∣∣∣2 dt

= ϕl(Xm(T )) +

∫ T

0

(
gl(Xm(t)) +

1

2
|zm(t)|2

)
dt

+

∫ T

0

(
ul,mxm (T − t,Xm(t)), Pm

√
Q dW (t)

)
.

(3.7)

Taking the expectation, we obtain the fundamental identity

ul,m(T, xm) +
1

2
E
∫ T

0

∣∣∣√Q ul,mxm (T − t,Xm(t)) + zm(t)
∣∣∣2 dt = Jl,m(zm).(3.8)

We deduce that if X∗l,m is the solution to the closed loop equation{
dX∗l,m =

(
AX∗l,m + PmFm(X∗l,m)− PmQul,mxm (T − t,X∗l,m)

)
dt+ Pm

√
Q dW,

X∗l,m(0) = xm,
(3.9)
then there exists a unique optimal control z∗l,m for (3.1) which is given by the feedback
formula

z∗l,m(t) = −
√
Q ul,mxm (T − t,X∗l,m).(3.10)

We will see below (see Lemma 4.1) that vl,mxm (T − t,X∗l,m) is a globally Lipschitz and

bounded function so that by (3.5) the same holds for ul,mxm (T − t,X∗l,m) and we know
that X∗l,m exists and is unique. We also have

Jl,m(z∗l,m) = ul,m(T, xm) = inf
zm
Jl,m(zm) = − lnE

(
e
−ϕl(ym(T ))−

∫ T
0
gl(Ym(s))ds

)
,

(3.11)
where Ym satisfies (2.14).

We will also use the function

vm(t, xm) = E
(
e
− 1

2 |Ym(t)|2−
∫ t

0
‖Ym(s)‖2ds

)
,(3.12)

where Ym is the solution of (2.14), with first and second derivatives given by

vmxm(t, xm)h

= −E
[(

(Ym(t), ηhm(t)) + 2

∫ t

0

((Ym(s), ηhm(s)))ds

)
e
− 1

2 |Ym(t)|2−
∫ t

0
‖Ym(s)‖2ds

]
,

(3.13)

vmxmxm(t, x)(h, h) = −E
[(

(Ym(t), ζhm(t)) + 2

∫ t

0

((Ym(s), ζhm(s)))ds

+|ηhm(t)|2 + 2

∫ t

0

‖ηhm(s)‖2ds
)
e
− 1

2 |Ym(t)|2−
∫ t

0
‖Ym(s)‖2ds

]

+E

[(
(Ym(t), ηhm(t)) + 2

∫ t

0

((Ym(s), ηhm(s)))ds

)2

e
− 1

2 |Ym(t)|2−
∫ t

0
‖Ym(s)‖2ds

]
,

(3.14)
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where ηhm and ζhm are defined by (2.12), (2.13).
In the next two sections, c denotes any constant depending only on the data

A,Q, T. We always use the same symbol c although the constants have different values.
Sometimes, we use a constant depending on ω ∈ Ω, or m ∈ N, . . . , in which case we
will write C(ω) or km, . . . .

Also, when f is a C1 (resp., C2) function from H or PmH to R, we will identify its
first (resp., second) differential fx (resp., fxx) with the gradient (resp., the Hessian)
of f ; i.e., we use the two notations

fx(x)h = (fx(x), h), x, h ∈ H
and

fxx(x)(h, h) = (fxx(x)h, h), x, h ∈ H,
respectively.

4. Passing to the limit. We take the limit in our approximation in two steps.
We first proceed to the limit l → ∞, then, using a priori estimates on the Galerkin
approximation, we take the limit m→∞. We first bound vl,m uniformly in l.

Lemma 4.1. For any m ∈ N there exists a constant kmdepending on m and on
A,Q, T such that for any xm ∈ PmH, t ∈ [0, T ]

(i) |vl,mxm (t, xm)| ≤ km,
(ii) |vl,mxmxm(t, xm)|L(PmH) ≤ km.

Proof. We have the following inequalities:

|(−A)1/2Dxgl(y)|2 ≤ 4gl(y), y ∈ H1
0 (0, 1),(4.1)

|Dxϕl(y)|2 ≤ 4ϕl(y), y ∈ H,(4.2)

|D2
xgl(y)(η, η)| ≤ 6‖η‖2, y, η ∈ H1

0 (0, 1),(4.3)

|D2
xϕl(y)(η, η)| ≤ 6|η|2, y, η ∈ H.(4.4)

Since f ′m is bounded by
√
m and (2.12) is a linear system of ordinary differential

equations, there exists a constant c(m,T ) such that

|ηhm(t)| ≤ c(m,T )|h|, h ∈ H.(4.5)

Similarly we have for the solution of (2.13)

|ζhm(t)| ≤ c(m,T )|h|2, h ∈ H.(4.6)

By (3.2), (4.1), (4.2), and the Cauchy–Schwarz inequality, for xm, h ∈ PmH, t ∈ [0, T ],

|vmxm(t, xm)h|

≤ c(m,T )E

[(
ϕl(Ym(t)) +

∫ t

0

gl(Ym(s))ds

)1/2

e
−ϕl(Ym(t))−

∫ t
0
gl(Ym(s))ds

]
|h|

≤ C(m,T )|h|,
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since
√
xe−x is bounded. This proves (i). Similarly (ii) follows from (3.3), (4.1)–(4.4),

and elementary inequalities.
Using (4.1)–(4.4) and the dominated convergence theorem it can be seen that for

any xm ∈ PmH, t ∈ [0, T ],

vl,m(t, xm)→ vm(t, xm),

vl,mxm (t, xm)→ vmxm(t, xm) in PmH,

vl,mxmxm(t, xm)→ vmxmxm(t, xm) in L(PmH)

(4.7)

when l →∞. Also, using Lemma 4.1 and with another application of the dominated
convergence theorem, it follows that vm is a solution of

vmt =
1

2
Tr [PmQv

m
xm,xm ] +

(
Axm + PmFm(xm), vmxm

)− ‖xm‖2vm,
vm(0, xm) = e−

1
2 |xm|2 .

(4.8)

From Lemma 4.1 we deduce the following estimates on

ul,m = − ln vl,m.

Lemma 4.2. For any m ∈ N, there exists a constant kmdepending on m and on
A,Q, T such that for any xm ∈ PmH, t ∈ [0, T ]

(i) |ul,m(t, xm)| ≤ 1
2

(|xm|2 + T Tr Q
)
,

(ii) |ul,mxm (t, xm)| ≤ km e
1
2 (|xm|2+T Tr Q),

(iii) |ul,mxmxm(t, xm)|L(PmH) ≤ kme
1
2 (|xm|2+T Tr Q) + k2

me
|xm|2+T Tr Q.

Proof. By Jensen’s inequality we have

vl,m(t, xm) ≥ e−E(ϕl(Ym(t))+
∫ t

0
gl(Ym(s))ds) ≥ e−E( 1

2 |Ym(t)|2+
∫ t

0
‖Ym(s)‖2ds)

.

By Ito’s formula we have

1

2
|Ym(t)|2 +

∫ t

0

‖Ym(s)‖2ds =

∫ t

0

(
Ym(s),

√
Q dW (s)

)
+

1

2

(|xm|2 + t Tr (PmQ)
)
,

since (Fm(Ym), Ym) = 0. Thus

vl,m(t, xm) ≥ e− 1
2 (|xm|2+t Tr (PmQ)) ≥ e− 1

2 (|xm|2+T Tr (PmQ)).

Now (i) follows from the definition of ul,m, and (ii), (iii) from the chain rule.
Let us define

um = − ln vm.

Then by (4.7) for any xm ∈ PmH, t ∈ [0, T ],

ul,m(t, xm)→ um(t, xm),

ul,mxm (t, xm)→ umxm(t, xm) in PmH,

ul,mxmxm(t, xm)→ umxmxm(t, xm) in L(PmH),

(4.9)
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and by (4.8) um is a solution of

umt (t, x) =
1

2
Tr [PmQu

m
xm,xm ] +

(
Axm + PmFm(xm), umxm

)
− 1

2
|Pm

√
Qumxm |2 + ‖xm‖2,

um(0, xm) =
1

2
|xm|2.

(4.10)

Using Ito’s formula we have for any zm ∈ L2(Ω× [0, T ];PmH), xm ∈ PmH,

um(T, xm) +
1

2

∫ T

0

∣∣∣√Q umxm(T − t,Xm(t)) + zm(t)
∣∣∣2 dt

=
1

2
|Xm(T )|2 +

∫ T

0

(
‖Xm(t)‖2 +

1

2
|zm(t)|2

)
dt

+

∫ T

0

(
umxm(T − t,Xm(t)), Pm

√
Q dW (t)

)
.

(4.11)

We now derive some a priori estimates uniform in m in order to take the limit m→∞.
Lemma 4.3. There exists a constant k1 depending on A,Q, T such that for any

xm ∈ PmH, t ∈ [0, T ]

(i) |vmxm(t, xm)| ≤ k1,

(ii) |vmxmxm(t, xm)|L(PmH) ≤ k1.

Remark 4.4.
• We are not able to give an a priori estimate on vl,m independently of m. This

explains why we take the limit in two steps.
• We do not have a lower bound on vm such as in (3.5) for vl,m. Thus we do

not know whether um has a bounded derivative. Formally um and vm are
associated to the control problem in which the cost functional Jl,m is replaced
by

Jm(zm) = E

(∫ T

0

(
‖Xm(t)‖2 +

1

2
|zm(t)|2

)
dt+

1

2
|Xm(t)|2

)
.(4.12)

We shall prove in section 5 that the corresponding closed loop equation has
a unique solution.

Proof of Lemma 4.3. Let us first note that

f ′′m(α) ≤ 2, α ∈ R.(4.13)

Let h ∈ PmH. We take the scalar product of (2.12) with ηhm and obtain

1

2

d

dt
|ηhm|2 + ‖ηhm‖2 =

(
Pm

∂

∂ξ
(f ′m(Ym)ηhm), ηhm

)
=

1

2

∫ 1

0

f ′′m(Ym)

(
∂

∂ξ
Ym

)
(ηhm)2dξ

≤ ‖Ym‖ |ηhm|2L4(0,1)

(4.14)
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by integration by parts and Hölder’s inequality. Using interpolation and the Sobolev
embedding theorem, we have

|ηhm|2L4(0,1) ≤ c|ηhm|3/2 ‖ηhm‖1/2.(4.15)

Hence, using Young’s inequality,

1

2

d

dt
|ηhm|2 + ‖ηhm‖2 ≤ c‖Ym‖4/3|ηhm|2 +

1

2
‖ηhm‖2,

and, by Gronwall’s lemma,
|ηhm(t)|2 ≤ ec

∫ t
0
‖Ym(s)‖4/3ds|h|2,∫ t

0

‖ηhm(s)‖2ds ≤ ec
∫ t

0
‖Ym(s)‖4/3ds|h|2.

(4.16)

We infer from (3.13) and the Cauchy–Schwarz inequality that

|vmxm(t, xm)h| ≤ E
[(
|Ym(t)|2 + 2

∫ t

0

‖Ym(s)‖2ds
)1/2

e
− 1

2 |Ym(t)|2−
∫ t

0
‖Ym(s)‖2ds+c

∫ t
0
‖Ym(s)‖4/3ds

]
|h|

and (i) follows from elementary inequalities.
For the second estimate we take the scalar product of (2.13) with ζhm and obtain

1

2

d

dt
|ζhm|2 + ‖ζhm‖2 =

(
Pm

∂

∂ξ
(f ′m(Ym)ζhm), ζhm

)
+

(
Pm

∂

∂ξ
(f ′′m(Ym)(ηhm)2), ζhm

)
and use ∣∣∣∣(Pm ∂

∂ξ
(f ′m(Ym)ζhm), ζhm

)∣∣∣∣ ≤ C‖Ym‖4/3|ζhm|2 +
1

4
‖ζhm‖2

and ∣∣∣∣(Pm ∂

∂ξ
(f ′′m(Ym)(ηhm)2), ζhm

)∣∣∣∣ =

∣∣∣∣∫ 1

0

f ′′m(Ym)(ηhm)2 ∂

∂ξ
ζhmdξ

∣∣∣∣
≤ 2|ηhm|2L4(0,1)‖ζhm‖≤ C|ηhm|4L4(0,1) +

1

4
‖ζhm‖2.

We deduce

d

dt
|ζhm|2 + ‖ζhm‖2 ≤ c‖Ym‖4/3|ζhm|2 + c‖ηhm‖4L4(0,1)

and by (4.15), (4.16), and Gronwall’s lemma
|ζhm(t)|2 ≤ ec

∫ t
0
‖Ym(s)‖4/3ds|h|4,∫ t

0

‖ζhm(s)‖2ds ≤ ec
∫ t

0
‖Ym(s)‖4/3ds |h|4.

(4.17)
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By the Cauchy–Schwarz inequality, (3.14), (4.16), (4.17), we obtain

|vmxmxm(t, xm)(h, h)| ≤ cE
[(

1 + |Ym(t)|2 +

∫ t

0

‖Ym(s)‖2ds
)

e
− 1

2 |Ym(t)|2−
∫ t

0
‖Ym(s)‖2ds+c

∫ t
0
‖Ym(s)‖4/3ds

]
|h|2,

and (ii) follows.
Applying Lemma 2.1 with zm = 0 and xm = Pmx, we easily prove that for each

x ∈ H, t ∈ [0, T ]

vm(t, Pmx)→ v(t, x)(4.18)

when m→∞. Also, we have for any x ∈ H, t ∈ [0, T ],

|vxm(t, Pmx)− vx(t, x)|
= sup
|h|=1

(vxm(t, Pmx), Pmh)− (vx(t, x), h)

= sup
|h|=1

E
[(

(Ym(t), ηPmhm (t)) + 2

∫ t

0

((Ym(s), ηPmhm (s)))ds

)
e
− 1

2 |Ym(t)|2−
∫ t

0
||Ym(s)||2ds

−
(

(Y (t), η(t)) + 2

∫ t

0

((Y (s), η(s)))ds

)
e
− 1

2 |Y (t)|2−
∫ t

0
||Y (s)||2ds

]

≤ E
[

sup
|h|=1

∣∣∣∣((Ym(t), ηPmhm (t)) + 2

∫ t

0

((Ym(s), ηPmhm (s)))ds

)
e
− 1

2 |Ym(t)|2−
∫ t

0
||Ym(s)||2ds

−
(

(Y (t), η(t)) + 2

∫ t

0

((Y (s), η(s)))ds

)
e
− 1

2 |Y (t)|2−
∫ t

0
||Y (s)||2ds

∣∣∣∣ ].
It follows from Lemma 2.2 and Lemma 2.3 that the quantity inside of the expectation
of the right-hand side above almost surely goes to zero. We infer from the dominated
convergence theorem and estimate (4.16) that

vmxm(t, Pmx)→ vx(t, x) in H.(4.19)

By a similar argument, we prove that for any x ∈ H, t ∈ [0, T ],

vmxmxm(t, Pmx)→ vxx(t, x) in L(H)(4.20)

when m → ∞. (The expressions of v, vx, vxx are given in (2.6), (2.8), (2.10).) Inte-
grating (4.8), we have for x ∈ H, t ∈ [0, T ],

vm(t, Pmx) = e−
1
2 |Pmx|2

+

∫ t

0

[1

2
Tr
(
PmQv

m
xmxm(s, Pmx)

)
+
(
PmAx+ PmFm(Pmx), vmxm(s, Pmx)

)
−‖Pmx‖2vm(s, Pmx)

]
ds.
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We choose x ∈ D(A). Using Lemma 4.3, we have for any s ∈ [0, T ]∣∣∣∣12 Tr
(
PmQv

m
xmxm(s, Pmx)

)
+
(
PmAx+ PmFm(Pmx), vmxm(s, Pmx)

)
−‖Pmx‖2vm(s, Pmx)

∣∣∣∣
≤ 1

2
k1 Tr Q+ k1

(
|Ax|2 + c|x|1/2‖x‖3/2

)
+ ‖x‖2.

We have used inequalities

0 ≤ vm(s, Pmx) ≤ 1

and the following consequence of Agmon’s inequality:

|PmFm(Pmx)| ≤ |Fm(Pmx)| ≤ |f ′m(Pmx)
∂

∂ξ
Pmx|

≤ 2|Pmx|L∞(0,1)‖Pmx‖ ≤ c|Pmx|1/2‖Pmx‖3/2 ≤ c|x|1/2‖x‖3/2.
We deduce from (4.18), (4.19), (4.20), and the dominated convergence theorem that
for x ∈ D(A), t ∈ [0, T ],

v(t, x) = e−
1
2 |x|2

+

∫ t

0

[1

2
Tr (Qvmxx(s, x)) + (Ax+ F (x), vx(s, x))− ‖x‖2v(s, x)

]
ds.

Since v, vx, vxx are continuous with respect to t, it follows that t 7→ v(t, x) is a C1

function for x ∈ D(A), and for x ∈ D(A), t ∈ [0, T ],

vt(t, x) =
1

2
Tr [Qvxx(t, x)] + (Ax+ F (x), vx(t, x))− ‖x‖2v(t, x),

so that v is a strict solution of (2.5). The following lemma is an easy consequence of
Lemma 4.2, Lemma 4.3, and (4.9).

Lemma 4.5. For any xm ∈ PmH, t ∈ [0, T ] we have

(i) 0 ≤ |um(t, xm)| ≤ 1
2

(|xm|2 + T Tr Q
)
,

(ii) |umxm(t, xm)| ≤ k1 e
1
2 (|xm|2+T Tr Q),

(iii) |umxmxm(t, xm)|L(PmH) ≤ k1e
1
2 (|xm|2+T Tr Q) + k2

1e
|xm|2+T Tr Q.

From (4.18), (4.19), and (4.20) we have for x ∈ H, t ∈ [0, T ],

um(t, Pmx)→ u(t, x),

umxm(t, Pmx)→ ux(t, x) in H,

umxmxm(t, Pmx)Pm → uxx(t, x) in L(H).

(4.21)

Arguing as above we see that t 7→ u(t, x) is a C1 function for x ∈ D(A), and for
x ∈ D(A), t ∈ [0, T ],

ut(t, x) =
1

2
Tr [Quxx(t, x)] + (Ax+ F (x), ux(t, x))− 1

2
|
√
Qux(t, x)|2 + ‖x‖2,
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and u is a strict solution of the Hamilton–Jacobi equation (2.4).
We now want to take the limit m→∞ in (4.11).
Lemma 4.6. Let x ∈ H and z ∈ L2

W (Ω× [0, T ];H), let X be the solution of (2.2)
and Xm the solution of (2.3), with xm = Pmx, zm = Pmz. Then

umxm(T − t,Xm(t))→ ux(T − t,X(t))

in L2(0, T ;H) P–almost surely.
Proof. It is shown in the proof of Lemma 2.1 that Xm is almost surely bounded

in L∞(0, T ;H) and it converges almost surely in L2(0, T ;H) to X. By the mean value
theorem and Lemma 4.5(iii) it follows

umxm(T − t,Xm(t))− umxm(T − t, PmX(t))→ 0

in L2(0, T ;H) almost surely. Also by (4.21)

umxm(T − t, PmX(t))− ux(T − t,X(t))→ 0

in H for any t ∈ [0, T ], and by Lemma 4.5(ii) and the dominated convergence theorem
we deduce that this convergence holds in L2(0, T ;H).

Let x ∈ H and z ∈ L2
W (Ω × [0, T ];H). We take xm = Pmx, zm = Pmz in (4.11).

Then thanks to Lemma 2.1, (4.21), and Lemma 4.6 we can take the limit and deduce
that

u(T, x) +
1

2

∫ T

0

∣∣∣√Q ux(T − t,X(t)) + z(t)
∣∣∣2 dt

=
1

2
|X(T )|2 +

∫ T

0

(
‖X(t)‖2 +

1

2
|z(t)|2

)
dt

+

∫ T

0

(
ux(T − t,X(t)),

√
Q dW (t)

)
.

(4.22)

From (3.8) we have

E

(∫ T

0

|
√
Q ul,mxm (T − t,Xm(t))|2dt

)

≤ 4Jl,m(zm) + 2E
∫ T

0

|zm|2dt.

By Ito’s formula, for t ∈ [0, T ]

1

2
E|Xm(t)|2 +

∫ t

0

||Xm(s)||2ds

= E
∫ t

0

(Xm(s), zm(s))ds+
1

2
|xm|2 +

1

2
t Tr PmQ

≤ 1

2

∫ t

0

|Xm(s)|2ds+
1

2
s

∫ t

0

|z(s)|2ds+
1

2
|x|2 +

1

2
T Tr Q.

By the Gronwall lemma it follows easily that

Jl,m(zm) ≤ c
(
|x|2 + T Tr (Q) + E

∫ T

0

|z|2dt
)
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and

E

(∫ T

0

|
√
Q ul,mxm (T − t,Xm(t))|2dt

)
≤ c

(
|x|2 + T Tr (Q) + E

∫ T

0

|z|2dt
)
.

It follows that
√
Q ul,mxm (T − t,Xm(t)) is bounded in L2(Ω× [0, T ]). Since it converges

pointwise to
√
Q ux(T − t,X(t)) we have by Fatou’s lemma

E

(∫ T

0

|
√
Q ux(T − t,X(t))|2dt

)
≤ c

(
|x|2 + T Tr (Q) + 2E

∫ T

0

|z|2dt,
)

and
√
Q ux(T − t,X(t)) belongs to L2(Ω× [0, T ]). Therefore we can take the expec-

tation in (4.22) and obtain the fundamental identity

u(T, x) +
1

2
E
∫ T

0

|
√
Q ux(T − t,X(t)) + z(t)|2dt = J(z).(4.23)

5. Existence of a solution to the closed loop equation. We now consider
the closed loop equation{

dX∗ = (AX∗ + F (X∗)dt−Qux(T − t,X∗(t))) dt+
√
Q dW,

X∗(0) = x.
(5.1)

We first note that thanks to Lemma 4.5 and (4.21)

|ux(t, x)| ≤ k1 e
1
2 (|x|2+T Tr Q), x ∈ H,(5.2)

|uxx(t, x)|L(H) ≤ 2k2
1 e

(|x|2+T Tr Q), x ∈ H.(5.3)

Hence ux is locally Lipschitz in x. This is the main ingredient in the proof of the
following result.

Lemma 5.1. There exists at most one solution of (5.1) with trajectories in

L∞(0, T ;H) ∩ L2(0, T ;H1
0 (0, 1)).

Proof. Let X1, X2 be two solutions of (5.1) and X = X1 −X2. We have

dX

dt
= AX + F (X1)− F (X2)−Q (ux(T − t,X1(t))− ux(T − t,X2(t))) .

It follows that dX
dt ∈ L2(0, T ;H−1(0, 1)) and

1

2

d

dt
|X|2 + ‖X‖2 = (F (X1)− F (X2), X)− (Qux(T − t,X1)−Qux(T − t,X2), X)

≤ 1

2
‖X‖2 + c

(
|X1|2L∞(0,1) + |X2|2L∞(0,1)

)
|X|2 + 4k4

1e
2(M2

1 +T Tr Q)|X|2,

where

M1 = max{|X1|L∞(0,T ;H), |X2|L∞(0,T ;H)}.
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By the Sobolev embedding theorem

|Xi|L∞(0,1) ≤ c‖Xi‖, i = 1, 2.

Thus by Gronwall’s lemma

|X(t)|2 ≤ ec
∫ T

0
(‖X1‖2+‖X2‖2)ds+M2T |X(0)|2,

with

M2 = 4k4
1e

2(M2
1 +T Tr Q).

The result follows since X(0) = 0.
We prove the existence of X∗ by approximation. Let X∗l,m be the solution of (3.9)

with xm = Pmx.
Lemma 5.2. There exists a constant k2 depending only on A,Q, T such that for

any l,m ∈ N

E

(
sup
t∈[0,T ]

|X∗l,m(t)|2
)
≤ k2

(|x|2 + Tr Q
)
.

Proof. First we have

Jl,m(z∗l,m) ≤ Jl,m(0) ≤ 1

2
(|xm|2 + t Tr Q)

by Ito’s formula, where z∗l,m is defined in (3.10). It follows that

E

(∫ T

0

|z∗l,m(t)|2dt
)
≤ |xm|2 + t Tr Q ≤ |x|2 + t Tr Q.(5.4)

By Ito’s formula

1

2
|X∗l,m(t)|2 +

∫ t

0

‖X∗l,m(s)‖2ds

=

∫ t

0

(√
Q z∗l,m(s), X∗l,m(s)

)
ds+

∫ t

0

(
X∗l,m(s),

√
Q dW (s)

)
+

1

2
(|xm|2 + t Tr (PmQ))

≤ c
∫ T

0

|z∗l,m(s)|2ds+
1

2

∫ T

0

‖X∗l,m(s)‖2ds

+ sup
t∈[0,T ]

∫ t

0

(
X∗l,m(s),

√
Q dW (s)

)
+

1

2

(|x|2 + t Tr Q
)
.

The result follows by the application of a Martingale inequality.
We deduce that there exists Xm in L2(Ω;L∞(0, T ;H)) such that

E

(
sup
t∈[0,T ]

|Xm(t)|
)
≤ k2

(|x|2 + Tr Q
)
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and

X∗l,m ⇀ Xmin L2(Ω;L∞(0, T ;H)), weak star.

We now derive a pathwise estimate for solutions of (3.9).
Lemma 5.3. Let k(ω) be a random variable. For any m ∈ N, there exist random

times tmk and constants cmk such that if X̃l,m is a solution of (3.9) satisfying

|X̃l,m(0)| ≤ k, P–almost surely,

then

sup
t∈[0,tm

k
]

|X̃l,m(t)|2 +

∫ tk

0

‖X̃l,m(s)‖2ds ≤ cmk , P–almost surely

Proof. Let

Wm
A (t) =

∫ t

0

e(t−s)APm
√
Q dW (s)

and

X l,m = X̃l,m −Wm
A .

Then

d

dt
X l,m = AX l,m + PmFm(X l,m +Wm

A )−Qul,mxm (T − t,X l,m +Wm
A ).

Using similar arguments as in the proofs of Lemmas 2.1 and 4.2 we can prove

d

dt
|X l,m|2 + ‖X l,m‖2 ≤ c|Wm

A |4/3L4(0,1)|X l,m|2 + ckme
2|Xl,m|2+2|Wm

A |2+T Tr Q

+ c|Wm
A |4L4(0,1).

We set

Fm(t) = e
−c
∫ t

0
|Wm

A (s)|4/3
L4(0,1)

ds|X l,m|2,

gm = 2e
c
∫ t

0
|Wm

A (s)|4/3
L4(0,1)

ds
,

hm = ckme
supt∈[0,T ] |Wm

A (t)|2+T Tr Q,

km = c sup
t∈[0,T ]

|Wm
A (t)|4.

It is easy to obtain

d

dt
Fm ≤ hmegmFm + km

so that

e−gmFm(t) ≥ − (hm + km) t+ e−gmk
2

,
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and if we take

tmk =
1

2(hm + km)
e−gmk

2

we have

Fm(t) ≤ 1

gm
ln 2 + k2

for t ∈ [0, tmk ]. Now the proof can be completed easily.
It is not difficult to use the estimate in Lemma 5.3 and to prove that, for almost

all ω ∈ Ω, a subsequence {X∗l,m} converges to X∗m a solution of dX∗m = (AX∗m + PmFm(X∗m)− PmQumxm(T − t,X∗m))dt+ Pm
√
Q dW,

X∗m(0) = xm

(5.5)

on the interval [0, tkm] whenever |xm| ≤ k. Arguing as in Lemma 5.1, (5.5) has at most
one solution so that the whole sequence converges.

We take

k = |Xm|L∞(0,T ;H).

Since {X∗l,m} converges pointwise to X∗m and in L2(Ω;L∞(0, T ;H)) weak star to Xm,

we have X∗m = Xm P–almost surely on [0, tmk ]. It follows |X∗m(tmk )| ≤ k, so that our
construction can be reiterated and X∗m can be prolonged to a solution of (5.5) on the
interval [0, T ]. Moreover, by Lemma 5.2 if xm = Pmx

E

(
sup
t∈[0,T ]

|X∗m|2
)
≤ k2

(|x|2 + T Tr Q
)
.

Arguing as in the proof of Lemma 5.3 and using Lemma 4.5 and the uniform bound-
edness of Wm

A in L∞(0, T ;L4(0, 1)), we prove the following pathwise estimate on X∗m.
Lemma 5.4. Let k(ω) be a random variable; there exists a random time tk and a

constant ck such that if X̃m is a solution of (5.5) satisfying

|X̃m(0)| ≤ k, almost surely,

then

sup
t∈[0,tk]

|X̃m(t)|2 +

∫ tk

0

‖X̃m(s)‖2ds ≤ ck, almost surely.

Now we can repeat the argument that we have used to construct X∗m and obtain
X∗, a solution of (5.1) on [0, T ] such that

E

(
sup
t∈[0,T ]

|X∗(t)|2
)
≤ k2

(|x|2 + T Tr Q
)
.

It remains to prove that

z∗(t) = −
√
Q ux(T − t,X∗(t))



CONTROL OF STOCHASTIC BURGERS MODEL OF TURBULENCE 1143

is an admissible control, i.e., that z∗ ∈ L2
W (Ω× [0, T ];H).

Arguing as in Lemma 4.6 we have

ul,mxm (T − t,X∗l,m(t))
l→∞→ umxm(T − t,X∗m(t))

m→∞→ ux(T − t,X∗(t))

in L2(0, T ;H) P–almost surely. Thus by (5.4) we have ux(T − t,X∗(t)) ∈ L2
W (Ω ×

[0, T ];H) and

E

(∫ T

0

|z∗(t)|2dt
)
≤ |x|2 + T Tr Q.

This ends the proof of Theorem 2.4.

Appendix A.

A.1. Proof of Lemma 2.1. For any m ∈ N we set

Wm
A (t) =

∫ t

0

e(t−s)APm
√
Q dW (s);

it is the unique solution of{
dWm

A = AWm
A dt+ Pm

√
Q dW,

Wm
A (0) = 0.

Also

WA(t) =

∫ t

0

e(t−s)A√Q dW (s)

is the unique solution (see [11]) of{
dWA = AWAdt+

√
Q dW,

WA(0) = 0.

It is not difficult to see that Wm
A converges to WA in L4([0, T ]× [0, 1]) almost surely.

Let Xm be the solution to (2.3). We set

Xm = Xm −Wm
A ;

thus 
dXm

dt
= AXm + PmFm(Xm +Wm

A ) + Pm
√
Q zm,

Xm(0) = xm.

(A.1)

To derive an a priori estimate, we take the scalar product of (A.1) by Xm. Using inte-
gration by parts, interpolation inequality, Sobolev embedding theorem, and Young’s



1144 GIUSEPPE DA PRATO AND ARNAUD DEBUSSCHE

inequality, we have

(
PmFm(Xm +Wm

A ), Xm

)
= −

∫ 1

0

(
fm(Xm +Wm

A )− fm(Xm)
) ∂
∂ξ
Xmdξ

≤ 2

∫ 1

0

|2Xm +Wm
A | |Wm

A |
∣∣∣∣ ∂∂ξXm

∣∣∣∣ dξ
≤ 2

(
2|Xm|L4(0,1) + |Wm

A |L4(0,1)

) |Wm
A |L4(0,1)‖Xm‖

≤ c|Wm
A |L4(0,1)|Xm|3/4‖Xm‖5/4 +

1

8
‖Xm‖2 + 8|Wm

A |4L4(0,1)

≤ c|Wm
A |8/3L4(0,1)|Xm|2 +

1

4
‖Xm‖2 + 8|Wm

A |4L4(0,1).

We deduce

d

dt
|Xm|2 + ‖Xm‖2 ≤ c|Wm

A |8/3L4(0,1)|Xm|2+16|Wm
A |4L4(0,1) + c|

√
Q zm|2

and

|Xm(t)|2 +

∫ t

0

‖Xm(s)‖2ds

≤ ec
∫ t

0
|Wm

A (s)|8/3
L4(0,1)

ds|xm|2

+

∫ t

0

e
c
∫ t
s
|Wm

A (r)|8/3
L4(0,1)

dr
(

16|Wm
A (s)|4L4(0,1) + c+ |

√
Q zm|2

)
ds.

This proves that for fixed ω ∈ Ω, {Xm} is a bounded sequence in L∞(0, T ;L2(0, 1))
and L2(0, T ;H1

0 (0, 1)). By standard arguments based on compactness and the unique-
ness of the limit (see [18]), we deduce that {Xm} converges almost surely to X in
L2([0, T ]× [0, 1]), the unique solution of

dX

dt
= AX + F (X +WA) +

√
Q z,

X(0) = x.

We set X = X +WA and have{
dX = (AX + F (X) +

√
Q z)dt+

√
Q dW,

X(0) = x.

We apply Ito’s formula to |Xm|2 and take the expectation

1

2
E|Xm(t)|2 + E

∫ t

0

‖Xm(s)‖2ds =
1

2
|xm|2

+E
(∫ t

0

(√
Q zm, X

m
)
ds+

1

2
tTr [PmQ]

)
.

(A.2)

Hence

E|Xm(t)|2 + E
∫ t

0

‖Xm‖2ds ≤ |xm|2 + cE
(∫ t

0

|
√
Q zm|2ds+ tTr Q

)
,
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which proves that Xm is bounded in L2(Ω, L2(0, T ;H1
0 (0, 1))) and Xm(t) in

L2(Ω, L2(0, 1)). It is classical that this implies

Xm ⇀ X in L2(Ω, L2(0, T ;H1
0 (0, 1)) weak,

Xm(t) ⇀ X(t) in L2(Ω, L2(0, 1)) weak.
(A.3)

Since zm converges to z in L2(Ω, L2(0, T ;L2(0, 1))) strongly, we also have

E
∫ t

0

(√
Q zm, X

m
)
ds→ E

∫ t

0

(√
Q z,X

)
ds.(A.4)

By Ito’s formula for |X|2, we also have

1

2
E|X(t)|2 + E

∫ t

0

‖X(s)‖2ds =
1

2
|x|2 + E

∫ t

0

(√
Q z,X

)
ds+

1

2
t Tr Q,

and by (A.2), (A.4)

1

2
E|Xm(t)|2 + E

∫ t

0

‖Xm(s)‖2ds→ 1

2
E|X(t)|2 + E

∫ t

0

‖X(s)‖2ds

so that convergences in (A.3) hold in the strong topology.
Let us write Ito’s formula for 1

2 |Xm − PmX|2 :

1

2
|Xm − PmX|2 +

∫ t

0

‖Xm − PmX‖2ds

=

∫ t

0

(√
Q (zm − Pmz), Xm − PmX

)
ds

+

∫ t

0

(PmFm(Xm)− PmF (X), Xm − PmX) ds

≤ c
∫ t

0

|
√
Q (zm − Pmz)|2ds+ c

∫ t

0

|fm(Xm)−X2|2ds+
1

2

∫ t

0

‖Xm − PmX‖2ds.

We deduce

E

(
sup
t∈[0,T ]

|Xm − PmX|
)
≤ cE

(∫ T

0

|
√
Q (zm − Pmz)|2ds

)1/2

+cE

(∫ T

0

|fm(Xm)−X2|2ds
)1/2

.

By standard estimates based on Ito’s formula it can be seen that {Xm} is bounded
in Lp(Ω, C([0, T ];L2(0, 1))) for any p ≥ 1. By Sobolev’s embedding theorem and the
strong convergence of Xm to X in L2(Ω, L2(0, T ;H1

0 (0, 1))), we can prove

E

(∫ T

0

|fm(Xm)−X2|2ds
)1/2

→ 0,

implying

E

(
sup
t∈[0,T ]

|Xm − PmX|
)
→ 0.

Since Xm is bounded in any Lp(Ω, C([0, T ];L2(0, 1))), the conclusion follows.



1146 GIUSEPPE DA PRATO AND ARNAUD DEBUSSCHE

A.2. Proof of Lemma 2.2. The existence of ηh and ζh solutions of (2.9) and
(2.11) is classical. Let Y x (resp., Y x+h) be the solution of (2.7) with initial datum
x ∈ H (resp., x+ h ∈ H). We set

r = Y x+h − Y x − ηh.
r satisfies the equation

dr

dt
= Ar +

∂

∂ξ

(
(Y x+h)2 − (Y x)2 − 2Y xηh

)
= Ar +

∂

∂ξ

(
(Y x+h − Y x)2 + 2Y xr

)
.

By similar arguments as in the proof of Lemma 4.3, we have

|Y x+h(t)− Y x(t)|2 +

∫ t

0

‖Y x+h(s)− Y x(s)‖2ds ≤ cec
∫ t

0
‖Y x(s)‖4/3ds |h|2(A.5)

and

|r(t)|2 +

∫ t

0

‖r(s)‖2ds

≤ cec
∫ t

0
‖Y x(s)‖4/3ds

∫ t

0

|Y x+h(s)− Y x(s)|3‖Y x+h(s)− Y x(s)‖ds.

It follows that

|r(t)|2 +

∫ t

0

‖r(s)‖2ds ≤ cec
∫ t

0
‖Y x(s)‖4/3ds|h|4.(A.6)

We have

|v(t, x+ h)− v(t, x)− vx(t, x)h|

= E

(
e
− 1

2 |Y x+h(t)|2−
∫ t

0
‖Y x+h(s)‖2ds − e− 1

2 |Y x(t)|2−
∫ t

0
‖Y x(s)‖2ds

+

(
(Y x(t), ηh(t)) + 2

∫ t

0

(Y x(s), ηh(s))ds

)
e
− 1

2 |Y x(t)|2−
∫ t

0
‖Y x(s)‖2ds

)

= E

((
e
− 1

2 (|Y x+h(t)|2−|Y x(t)|2)−
∫ t

0
(‖Y x+h(s)‖2−‖Y x(s)‖2)ds

−1 +
(
Y x(t), Y x+h(t)− Y x(t)

)
+ 2

∫ t

0

(
Y x(s), Y x+h(s)− Y x(s)

)
ds

−(Y x(t), r(t))− 2

∫ t

0

(Y x(s), r(s)) ds
)
e
− 1

2 |Y x(t)|2−
∫ t

0
‖Y x(s)‖2ds

)
.

By (A.5), (A.6), and elementary inequalities we obtain

|v(t, x+ h)− v(t, x)− vx(t, x)h|

≤ cE
[(

1 + |Y x(t)|2 +

∫ t

0

‖Y x(s)‖2ds
)

e
− 1

2 |Y x(t)|2−
∫ t

0
‖Y x(s)‖2ds+c

∫ t
0
‖Y x(s)‖4/3ds

]
|h|2.
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This proves the differentiability of v. The proof that v is twice differentiable is simi-
lar.

A.3. Proof of Lemma 2.3. We define

ehm = ηPmhm − Pmηh.
By integration by parts, Hölder’s inequality, and Agmon’s inequality

|x|L∞(0,1) ≤ c|x|1/2‖x‖1/2, x ∈ H1
0 (0, 1),

we have

1

2

d

dt
|ehm|2 + ‖ehm‖2 = −

∫ 1

0

[ (
(f ′m(Ym)− f ′m(Y ))ηhm

+f ′m(Y )ehm + f ′m(Y ) ((Pm − I)) ηh + (f ′m(Y )− 2Y )ηh
) ∂
∂ξ
ehm

]
dξ

≤ 1

2
‖ehm‖2 + c|ηPmhm | ‖ηPmhm ‖ |Ym − Y |2 + c|Y |‖Y ‖(|ehm|2 + |(I − Pm)ηh|2)

+c|ηh| ‖ηh‖ |f ′m(Y )− 2Y |2.
Thus by Gronwall’s lemma

|ehm|2 +

∫ t

0

‖ehm(s)‖2ds ≤ cec
∫ t

0
|Y (s)| ‖Y (s)‖ds

(∫ t

0

|ηPmhm | ‖ηPmhm ‖ |Ym − Y |2ds+

∫ t

0

|Y (s)| ‖Y (s)‖ |(I − Pm)ηh|2ds

+

∫ t

0

|ηh| ‖ηh‖ |f ′m(Y )− 2Y |2ds
)
.

We write

|(I − Pm)ηh|2 ≤ c‖(I − Pm)‖2L(D((−A)1/4),H)|ηh| ‖ηh‖,
and since Y is almost surely in

L∞(0, T ;L2(0, 1)) ∩ L2(0, T ;H1
0 (0, 1)),

by (4.16) and a similar estimate on η we have

|ehm(t)|2 +

∫ t

0

‖ehm(s)‖2ds ≤ c(ω)

(
sup
t∈[0,T ]

|Ym − Y |2

+|I − Pm|L(D((−A)1/4),H) + c

(∫ T

0

|f ′m(Y )− 2Y |4ds
)1/2)

|h|2.

We have

|f ′m(Y )− 2Y |4 =

∣∣∣∣ 2

m

Y 3

(1 + 1
mY

2)2
− 2

m2

Y 4

(1 + 1
mY

2)2

∣∣∣∣4
≤ c

m2
|Y |8L4(0,1) ≤

c

m2
|Y |6‖Y ‖2,
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so that

|ehm|2 +

∫ t

0

‖ehm(s)‖2ds ≤ c(ω)

(
sup
t∈[0,T ]

|Ym − Y |2

+|I − Pm|L(H) +
c

m

)
|h|2.

The first part of the lemma follows by Lemma 2.1. The proof of the second part goes
along the same line.
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Abstract. Regularization methods for the solution of nonlinear complementarity problems
are standard methods for the solution of monotone complementarity problems and possess strong
convergence properties. In this paper, we replace the monotonicity assumption by a P0-function
condition. We show that many properties of regularization methods still hold for this larger class of
problems. However, we also provide some counterexamples which indicate that not all results carry
over from monotone to P0-function complementarity problems.
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1. Introduction. We consider the nonlinear complementarity problem which is
to find a vector in Rn satisfying the conditions

x ≥ 0, F (x) ≥ 0, xTF (x) = 0;

here all inequalities are taken componentwise and F : Rn → Rn is any given function
which we assume to be continuously differentiable throughout this paper.

There exist several methods for the solution of the complementarity problem
NCP(F ); see, e.g., the recent paper [12]. The particular class of methods to be
considered in this paper are the so-called regularization methods, which are designed
to handle ill-posed problems. In fact, regularization-type methods have recently been
used very successfully in order to improve the robustness of several complementarity
solvers on difficult test problems; see [1, 2]. For a detailed discussion of ill-posedness
in mathematical programming, we refer the reader to [8]. Very roughly speaking, an
ill-posed problem may be difficult to solve since small errors in the computations can
lead to a totally wrong solution.

Regularization methods try to circumvent this difficulty by substituting the solu-
tion of the original problem with the solution of a sequence of well-posed (i.e., nicely
behaved) problems whose solutions form a trajectory converging to the solution of
the original problem. In the context of complementarity problems, if we consider
the so-called Tikhonov-regularization, this scheme consists of solving a sequence of
complementarity problems NCP(Fε)

x ≥ 0, Fε(x) ≥ 0, xTFε(x) = 0,

where Fε(x) := F (x) + εx and ε is a positive parameter converging to 0.
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Regularization methods for complementarity problems have already been consid-
ered in the literature; see, e.g., [28] and [6, Theorem 5.6.2 (b)]. The basic results
that can be established in the monotone case and that parallel the classical results
for regularization methods for convex optimization problems (see [8] or [25]) are as
follows:

(a) The regularized problem NCP(Fε) has a unique solution x(ε) for every ε > 0.
(b) The trajectory x(ε) is continuous for ε > 0.
(c) For ε → 0, the trajectory x(ε) converges to the least l2-norm solution of

NCP(F ) if NCP(F ) has a nonempty solution set; otherwise it diverges.

In this paper, we try to generalize as much as possible the above results to the larger
class of P0 nonlinear complementarity problems. Actually, such a scheme has already
been considered in the case of P0 linear complementarity problems in [32] (see also
[6]) and in [9]. These results will be discussed in section 2, where we also show, by an
example, the rather counterintuitive fact that if F is a nonlinear P0-function, then Fε
is not necessarily a uniform P -function. This fact makes the extension of some known
results for linear problems to nonlinear problems more difficult than one would expect.
In this paper we accomplish this task by an approach based on Fischer’s function and
the mountain pass theorem. In section 3, we then extend item (a) to the class of
P0-function complementarity problems, whereas section 4 is devoted to the (partial)
generalization of items (b) and (c). In section 5 we investigate an algorithm which
requires only an approximate solution of the perturbed problems; as far as we are
aware of, this is the first implementable algorithm which guarantees that a solution
of a P0 complementarity problem can be computed under the mere assumption that
the solution set is nonempty and bounded. We conclude with some final remarks in
section 6.

2. Preliminaries. We first restate some basic definitions.

Definition 2.1. A matrix M ∈ Rn×n is called

(a) a P0-matrix if, for every x ∈ Rn with x 6= 0, there is an index i0 = i0(x) with

xi0 6= 0 and xi0 [Mx]i0 ≥ 0;

(b) a P -matrix if, for every x ∈ Rn with x 6= 0, it holds that

max
i
xi[Mx]i > 0;

(c) an R0-matrix if x = 0 is the only solution of NCP(F ) for F (x) := Mx.

We refer the reader to the excellent book [6] by Cottle, Pang, and Stone for a
discussion of several properties of these classes of matrices. Some nonlinear general-
izations of these classes are defined in the following.

Definition 2.2. The function F : Rn → Rn is called a

(a) P0-function if, for all x, y ∈ Rn with x 6= y, there is an index i0 = i0(x, y)
with

xi0 6= yi0 and (xi0 − yi0)[Fi0(x)− Fi0(y)] ≥ 0;

(b) P -function if, for all x, y ∈ Rn with x 6= y, it holds that

max
i

(xi − yi)[Fi(x)− Fi(y)] > 0;
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(c) uniform P -function if there is a constant µ > 0 such that

max
i

(xi − yi)[Fi(x)− Fi(y)] ≥ µ‖x− y‖2

holds for all x, y ∈ Rn.
Obviously, every uniform P -function is a P -function and every P -function is a P0-

function. Moreover, an affine mapping F (x) := Mx+q is a P0-function (P -function) if
and only if M is a P0-matrix (P -matrix). Moreover, the class of P0-functions includes
the class of monotone functions. For further discussion, we refer the reader to Moré
and Rheinboldt [23].

In the affine case, there are some known results for regularization methods which
partially generalize the properties (a) and (c) illustrated in the introduction from
monotone to P0 problems. We summarize these results in the following theorem.

Theorem 2.3. Assume that F (x) = Mx+ q with M ∈ Rn×n being a P0-matrix
and q ∈ Rn. Then

(a) the regularized problem NCP(Fε) has a unique solution x(ε) for every ε > 0.
(b) if M is also an R0-matrix, then the sequence x(ε) is bounded for ε→ 0, and

every limit point is a solution of NCP(F ).
A proof of these results can be found in [6, Theorem 5.6.2 (a)]. Note also that, in

[32], item (b) is proved under an assumption which implies that the original problem
has a unique solution. A relaxation of the R0-condition is also discussed in the recent
paper [9] by Ebiefung. In the linear case the proof of statement (a) is quite simple
because if M is a P0-matrix, then M + εI is a P -matrix by Theorem 3.4.2 in [6], so
that NCP(Fε) has a unique solution by Theorem 3.3.7 in [6].

Therefore, in an attempt to extend the previous results from the linear to the
nonlinear case, the following question seems very natural: Is Fε a uniform P -function
for every fixed ε > 0 if F itself is a P0-function? If the answer to this question were
in the affirmative, then item (a) above could readily be extended, since a comple-
mentarity problem with a uniform P -function has a unique solution ([21, Corollary
3.2]). Unfortunately, the following example shows that Fε is not necessarily a uniform
P -function over Rn+ when F is nonlinear.

Example 2.4. Consider the function F: R2 → R2 defined by

F (x) := F (x1, x2) :=

(
0
−ex1

)
.

Since the Jacobian

F ′(x) =

(
0 0
−ex1 0

)
is obviously a P0-matrix for all x ∈ R2, the function F itself is a P0-function by
Corollary 5.3 in [23]. Now let ε > 0 and define

Fε(x) = F (x) + εx =

(
εx1

εx2 − ex1

)
.

We want to show that Fε is not a uniform P -function on Rn+. This means that we
want to show that, given a fixed value ε, we can find, for every fixed value µ, two points
in Rn+ (possibly depending on µ) for which the definition of a uniform P -function is
not satisfied with that µ.
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We will actually show that Fε is not a uniform P -function for every positive ε.
So suppose that ε > 0 is fixed. Choose a positive µ. Consider the following point
x = (x1, x2) :

x1 = 1, x2 =

√
ε

µ
(c− 1),(2.1)

where c is a constant such that

c ≥ 2,(2.2)

ε2

µ
(c− 1)2 −

√
ε

µ
(ec − e1) ≤ ε.(2.3)

Note that it is always possible to choose c large enough so that (2.3) is satisfied; in fact
the second term on the left-hand side of (2.3) is negative and decreases exponentially
with c and hence dominates the first term. Multiplying (2.3) by (c−1)2, we also obtain

ε2

µ
(c− 1)4 −

√
ε

µ
(c− 1)2(ec − e1) ≤ ε(c− 1)2.(2.4)

We also have, by (2.1),

ε(c− 1)2 < µ+ ε(c− 1)2 = µ

(
1 +

ε

µ
(c− 1)2

)
= µ(x2

1 + x2
2).(2.5)

Set y = cx. Then

max
i∈{1,2}

(xi − yi)[Fε,i(x)− Fε,i(y)]

= max
{
ε(x1 − y1)2, ε(x2 − y2)2 + (x2 − y2)(ey1 − ex1)

}
= max

{
ε(c− 1)2x2

1, ε(c− 1)2x2
2 − (c− 1)x2(ecx1 − ex1)

}
(2.1)
= max

{
ε(c− 1)2,

ε2

µ
(c− 1)4 −

√
ε

µ
(c− 1)2(ec − e1)

}
(2.4)
= ε(c− 1)2

(2.5)
< µ(x2

1 + x2
2)

=
µ

(c− 1)2 ‖x− y‖22
(2.2)

≤ µ‖x− y‖22.
Hence Fε is not a uniform P -function.

In the next section we shall show that, in spite of the fact that Fε is not necessarily
a uniform P -function, the regularized problems NCP(Fε) have a unique solution x(ε)
for every ε > 0. However, due to Example 2.4, the analysis is more complicated than
one would expect.

3. Existence of regularized solutions. In this section, we want to prove that
the regularized problem NCP(Fε) has a unique solution x(ε) for every ε > 0. The
main tool for proving this result is the (nonsmooth) function ϕ : R2 → R defined by

ϕ(a, b) :=
√
a2 + b2 − a− b.
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This function was introduced by Fischer [13] and plays a central role in the design
of several nonsmooth Newton-type methods for the solution of NCP(F ); see, e.g.,
[11, 7, 5]. Here, however, we use this function as a theoretical tool. To this end, let
us introduce the operator Φ : Rn → Rn by

Φ(x) :=

 ϕ(x1, F1(x))
...

ϕ(xn, Fn(x))


as well as the corresponding merit function Ψ : Rn → R by

Ψ(x) :=
1

2
Φ(x)TΦ(x) =

1

2
‖Φ(x)‖2.

We summarize some of the elementary properties of these functions in the following
result (see, e.g., [14, 11, 7]).

Proposition 3.1. The following statements hold:
(a) x∗ ∈ Rn solves NCP(F ) if and only if x∗ solves the nonlinear system of

equations Φ(x) = 0.
(b) The merit function Ψ is continuously differentiable on the whole space Rn.
(c) If F is a P0-function, then every stationary point of Ψ is a solution of

NCP(F ).
For the regularized problem, we define the corresponding operator and the corre-

sponding merit function similarly by

Φε(x) :=

 ϕ(x1, Fε,1(x))
...

ϕ(xn, Fε,n(x))


and

Ψε(x) :=
1

2
Φε(x)TΦε(x),

where Fε,i denotes the ith component function of Fε. The main result of this section
is based on the following three preliminary results.

Lemma 3.2. Let ε > 0 be arbitrary. Then the Jacobian matrices F ′ε(x) are
P -matrices for all x ∈ Rn. In particular, the function Fε : Rn → Rn is a P -function.

Proof. Since F is a P0-function, the Jacobian matrices F ′(x) are P0-matrices for
all x ∈ Rn by Theorem 5.8 in [23]. In view of Theorem 3.4.2 in [6], the Jacobian
matrices F ′ε(x) = F ′(x) + εI are therefore P -matrices for all x ∈ Rn. Hence Fε is a
P -function by Theorem 5.2 in [23].

A proof of the following simple result can be found in [18].
Lemma 3.3. Let {ak}, {bk} ⊆ R be any two sequences such that ak, bk → +∞ or

ak → −∞ or bk → −∞. Then |ϕ(ak, bk)| → ∞.
The following proposition contains the main step in order to prove the existence

of a solution of the regularized problems NCP(Fε).
Proposition 3.4. Suppose that F is a P0-function and ε > 0. Then the merit

function Ψε is coercive, i.e.,

lim
‖x‖→∞

Ψε(x) = +∞.
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Proof. Suppose by contradiction that the theorem is false. Then we can find an
unbounded sequence {xk} such that {Ψε(x

k)} is bounded. Since the sequence {xk}
is unbounded, the index set J := {i ∈ {1, . . . , n}|{xki } is unbounded} is nonempty.
Subsequencing if necessary, we can assume without loss of generality that {|xkj |} →
+∞ for all j ∈ J. Let {yk} denote the bounded sequence defined in the following way:

yki :=

{
0 if i ∈ J,
xki if i 6∈ J.

From the definition of {yk} and the assumption that F is a P0-function, we get

0 ≤ max1≤i≤n(xki − yki )[Fi(x
k)− Fi(yk)]

= maxi∈J xki [Fi(x
k)− Fi(yk)]

= xkj [Fj(x
k)− Fj(yk)],

(3.1)

where j is one of the indices for which the max is attained, which we have, without
loss of generality, assumed to be independent of k. Since j ∈ J, we have that

{|xkj |} → ∞.(3.2)

We now consider two cases.

Case 1. xkj → +∞. In this case, since Fj(y
k) is bounded by the continuity of Fj ,

(3.1) implies that Fj(x
k) does not tend to −∞. This in turn implies{√

(xkj )2 + (Fj(xk) + ε(xkj ))2 − xkj − (Fj(x
k) + εxkj )

}
→ +∞

by Lemma 3.3 since Fj(x
k) + εxkj tends to +∞.

Case 2. xkj → −∞. In this case it follows immediately from Lemma 3.3 that{√
(xkj )2 + (Fj(xk) + ε(xkj ))2 − xkj − (Fj(x

k) + εxkj )
}
→ +∞

(both if Fj(x
k) + εxkj is unbounded or not).

In either case we get Ψε(x
k) → +∞, thus contradicting the boundedness of the

sequence {Ψε(x
k)}.

Note that Proposition 3.4 can also be stated in an equivalent way by saying that
the level sets Lε(c) := {x ∈ Rn|Ψε(x) ≤ c} are compact for every c ∈ Rn. We are
now in a position to prove the following existence and uniqueness result.

Theorem 3.5. Assume that F is a P0-function. Then the regularized comple-
mentarity problem NCP(Fε) has a unique solution x(ε) for every ε > 0.

Proof. Let ε > 0. Then Fε is a P -function by Lemma 3.2. Therefore NCP(Fε)
has at most one solution by Theorem 2.3 in [22].

In order to prove the existence of a solution, let x0 ∈ Rn be arbitrary and define
c := Ψε(x

0). Because of Proposition 3.4, the corresponding level set Lε(c) is nonempty
and compact. Hence the continuous function Ψε attains a global minimum xε on L(c)
which, in view of the definition of the level set, is also a global minimum of Ψε on Rn.
Therefore xε is a stationary point of Ψε. However, Fε is a P -function; in particular, Fε
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itself is a P0-function, so that xε must be a solution of NCP(Fε) because of Proposition
3.1 (c).

Remark 3.6. It was pointed out to us by Gowda [15] (see also [27]) that the exis-
tence of the regularized solutions x(ε) can also be deduced, with a possibly marginally
shorter proof, by Theorem 3.4 in [20]. This offers an interesting alternative point of
view. The approach we use here is more algorithmically oriented and Proposition 3.4
has a great practical significance, as will become clear in section 5.

4. Behavior of the solution path. The aim of this section is to study the
properties of the solution path P := {x(ε)| ε > 0} and, in particular, conditions under
which x(ε) remains bounded when ε → 0. We are interested in the boundedness of
x(ε) because the following easily verifiable result holds.

Theorem 4.1. Let {εk} be a sequence of positive values converging to 0. If
{x(εk)} converges to a point x̄, then x̄ solves NCP(F).

The first noteworthy property we can establish is the continuity of x(ε).
Lemma 4.2. Assume that F is a P0-function. Then the mapping ε 7→ x(ε) is

continuous at any ε > 0.
Proof. By Lemma 3.2, the Jacobian matrix F ′ε(x) is a P -matrix for every ε > 0 and

every x ∈ Rn; in particular, M := F ′ε(x(ε)) is a P -matrix. This immediately implies
that every principal submatrix of M is again a P -matrix. Moreover, using the same
technique of proof as for Lemma 2.3 in [3], it is easy to see that any Schur-complement
of a P -matrix is also a P -matrix. Hence the assertion follows from Theorem 3.1 in
Kyparisis [19].

Note that Lemma 4.2 does not say anything about the continuity of the mapping
ε 7→ x(ε) at ε = 0. Continuity at 0 is equivalent to convergence of the solution
path x(ε) when ε goes to 0. As discussed in the introduction, this result holds if
F is monotone and the complementarity problem admits a solution. In the more
general setting we are considering, we are no longer able to prove such a strong result.
However, we can state the following result.

Theorem 4.3. Let F be a P0-function and assume that the solution set S of
NCP(F ) is nonempty and bounded. Then the path Pε̄ = {x(ε)| ε ∈ (0, ε̄]} is bounded
for any positive ε̄ and

lim
ε↓0

dist(x(ε)|S) = 0.

We postpone the proof of this theorem until the next section, where it will follow
from a more general result.

We next state two immediate consequences of Theorem 4.3.
Corollary 4.4. Let F be a P0-function and assume that NCP(F ) has a unique

solution x̄. Then limε↓0 x(ε) = x̄.
Due to a recent result in [10], the uniqueness of a solution of NCP(F ) is, for

P0 complementarity problems, equivalent to the existence of an isolated solution of
NCP(F ). Hence, alternatively, we could have stated Corollary 4.4 under the assump-
tion that NCP(F ) has a locally isolated solution.

Corollary 4.5. Let F (x) = Mx+q be an affine mapping with M ∈ Rn×n being
a P0- and R0-matrix. Then the path Pε̄ is bounded for any positive ε̄ and

lim
ε↓0

dist(x(ε)|S) = 0.
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Proof. Since the solution set of NCP(F ) is known to be nonempty and bounded
under the stated assumptions (see [6]), the result follows immediately from Theorem
4.3.

Note that Corollary 4.5 is already known (see Theorem 5.6.2 (a) in [6], restated
in Theorem 2.3 of this paper); however, our proof is completely different from the one
given in [6]. Moreover, it is easy to see that Corollary 4.5 can easily be extended to
nonlinear functions F if we assume that F is a P0-function and an R0-function. The
definition of the latter class of functions as well as some of its properties are given in
the recent paper [4]; see also [31].

The following counterexample shows that it is not possible to remove the bounded-
ness assumption of the solution set S in Theorem 4.3 without destroying the bounded-
ness of the path P. This contrasts sharply with what happens in the case of monotone
complementarity problems, where we always have the boundedness of the trajectory
if the solution set is nonempty.

Example 4.6. Let F : R2 → R2 be defined by F (x) := Mx+ q, where

M :=

(
0 1
0 0

)
and q :=

( −1
0

)
.

Obviously, F is a P0-function. The solution set S is given by

S := {(x1, x2)| (x1, 1), x1 ≥ 0} ∪ {(x1, x2)| (0, x2), x2 ≥ 1},
i.e., the solution set is unbounded. It is easy to see that x(ε) := (1/ε, 0) is the unique
solution of the corresponding regularized problem NCP(Fε). Obviously, x(ε) is neither
convergent nor bounded for ε → 0. Even worse, the distance of x(ε) to the solution
set S does not go to zero since dist(x(ε)|S) = 1 for every ε > 0.

5. Inexact regularization methods. In the previous section, we illustrated
several properties of the trajectory P which suggest that the original problem NCP(F )
can be solved by calculating the exact solutions of a sequence of regularized problems
NCP(Fε) for a sequence of parameters ε converging to 0. From a practical point of
view, however, it is usually not possible to solve the regularized problems NCP(Fε)
exactly for each ε > 0. In the following, we therefore present an algorithm which only
requires inexact solutions of these subproblems and which nevertheless preserves all
the convergence properties of its exact counterpart.

Algorithm 5.1 (inexact regularization method).
(S.0) Choose ε0 > 0, α0 ≥ 0, and set k := 0.
(S.1) Compute an approximate solution xk ∈ Rn of NCP(Fεk) such that

Ψεk(xk) ≤ αk.
(S.2) Terminate the iteration if a suitable stopping criterion is satisfied.
(S.3) Choose εk+1 > 0, αk+1 ≥ 0, set k ← k + 1, and go to (S.1).

Obviously, if we take αk = 0 at each iteration, we have xk = x(εk). Note that
a point xk satisfying Ψεk(xk) ≤ αk can easily be obtained by, e.g., applying any un-
constrained minimization technique to Ψεk . In fact, the level sets of Ψεk are compact
and every stationary point x̄ of Ψεk is such that Ψεk(x̄) = 0. Therefore, every suitable
minimization algorithm will produce a minimizing sequence and the point xk can be
surely determined in a finite number of steps. This situation reflects the fact that the
perturbed problems are well-posed and this, in turn, is one of the main motivations
for using regularization methods.
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To establish a result generalizing Theorem 4.3 to Algorithm 5.1 we need some
further technical results.

Lemma 5.2. Let C ⊂ Rn be a compact set. Then, for every δ > 0, there exists a
ε̄ > 0 such that

|Ψε(x)−Ψ(x)| ≤ δ
for all x ∈ C and all ε ∈ [0, ε̄].

Proof. The function Ψε(x) viewed as a function of both x and ε is continuous on
the compact set C × [0, ε̄]. The lemma is then an immediate consequence of the fact
that every continuous function on a compact set is uniformly continuous there.

Finally, we also restate a version of the famous mountain pass theorem which is
suitable for our purposes and which can easily be derived from standard statements
of this theorem; see, e.g., Theorem 9.2.7 in [24].

Theorem 5.3. Let f : Rn → R be continuously differentiable and coercive. Let
C ⊂ Rn be a nonempty and compact set and define m to be the least value of f on
the (compact) boundary of C:

m := min
x∈∂C

f(x).

Assume further that there are two points a ∈ C and b 6∈ C such that f(a) < m and
f(b) < m. Then there exists a point c ∈ Rn such that ∇f(c) = 0 and f(c) ≥ m.

In the convergence analysis of Algorithm 5.1, we will implicitly assume that Algo-
rithm 5.1 generates an infinite sequence so that the termination criterion in step (S.2)
is never active. The following result is our main convergence theorem for Algorithm
5.1. To the authors’ knowledge this convergence theorem is new even for monotone
complementarity problems.

Theorem 5.4. Let F be a P0-function and assume that the solution set S of
NCP(F ) is nonempty and bounded. Suppose that a sequence {xk} is generated ac-
cording to Algorithm 5.1. If εk → 0 and αk → 0, then {xk} remains bounded, and
every accumulation point of {xk} is a solution of NCP(F ).

Proof. We first note that it follows from a simple continuity argument that every
accumulation point of the sequence {xk} is a solution of NCP(F ). Hence it remains
to be shown that {xk} is a bounded sequence. Assume that the sequence {xk} is not
bounded. Then, subsequencing if necessary, we have {‖xk‖} → ∞. Hence there exists
a compact set C ⊂ Rn with S ⊂ intC and

xk 6∈ C(5.1)

for all k sufficiently large. Let a ∈ S be an arbitrary solution of NCP(F ). Then we
have

Ψ(a) = 0.

Since

m̄ := min
x∈∂C

Ψ(x) > 0,

we can apply Lemma 5.2 with δ := m̄/4 and conclude that

Ψεk(a) ≤ 1

4
m̄(5.2)
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and

m := min
x∈∂C

Ψεk(x) ≥ 3

4
m̄(5.3)

for all k sufficiently large. Since Ψεk(xk) ≤ αk by step (S.1) of Algorithm 5.1, we
have

Ψεk(xk) ≤ 1

4
m̄(5.4)

for all k large enough since αk → 0 by our assumption. Now let us fix an index k
such that (5.1)–(5.4) hold. Applying the mountain pass Theorem 5.3 with b := xk,
we obtain the existence of a vector c ∈ Rn such that

∇Ψεk(c) = 0 and Ψεk(c) ≥ 3

4
m̄ > 0.

In view of Proposition 3.1(c), however, the stationary point c of Ψεk must be a global
minimizer of Ψεk which gives us the desired contradiction.

Obviously, Theorem 4.3 follows from Theorem 5.4 by taking αk = 0 for all k and
using Theorem 4.1. Also, Corollaries 4.4 and 4.5 can easily be extended to the inexact
framework.

Corollary 5.5. Assume that F is a P0-function and suppose that a sequence
{xk} is generated according to Algorithm 5.1. Suppose that εk → 0 and αk → 0.
Then, if NCP(F ) has a unique solution x̄, we have

lim
εk→0

xk = x̄.

Corollary 5.6. Let F (x) = Mx+q be an affine mapping with M ∈ Rn×n being
a P0- and R0-matrix. Assume that {xk} is any sequence generated by Algorithm
5.1 such that εk → 0 and αk → 0. Then the sequence {xk} is bounded, and every
accumulation point of the sequence {xk} is a solution of NCP(F ).

If F is a monotone function such that NCP(F ) is strictly feasible (i.e., there exists
a vector x̂ ∈ Rn such that x̂ > 0 and F (x̂) > 0), then it is known ([17, Theorem 3.4])
that NCP(F ) has a nonempty and bounded solution set. Hence we also obtain the
following corollary from our main result (Theorem 5.4) of this section.

Corollary 5.7. Assume that F is a monotone function such that NCP(F ) is
strictly feasible. Suppose that εk → 0 and αk → 0. Then any sequence {xk} generated
by Algorithm 5.1 remains bounded, and every accumulation point of {xk} is a solution
of NCP(F ).

We finally stress that, as far as we know, the inexact regularization method,
Algorithm 5.1, investigated in this section is the first (implementable) algorithm which
guarantees that a solution of a P0-function complementarity problem with a bounded
and nonempty solution set can actually be computed.

6. Final remarks. In this paper we have shown that, under appropriate as-
sumptions, regularization methods can be successfully applied to P0 complementarity
problems. However, some properties that hold in the monotone case are lost. In par-
ticular, when the solution set of the problem is unbounded we can no longer guarantee
that the trajectory generated by the regularization method is bounded. There is an
open question which we think could be interesting to investigate further. When the
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solution trajectory x(ε) is bounded, does it converge and, if it does converge, to which
element? In the monotone case, x(ε) always converges to the least l2-norm solution
of NCP(F ). In the P0 case, the least l2-norm solution can even be not unique, since
the solution set is not necessarily convex.

After the completion of this paper, several contributions appeared on these issues.
In particular, in [30] it has been shown that every limit point of x(ε) is a weak Pareto
minimal element of S and that x(ε) actually converges if F is polynomial. We also
mention that several results presented in this paper have been carefully examined and
generalized to a wider class of problems in [16, 26, 27] and that the results of section
5 made it possible to develop superlinearly convergent algorithms for the solution of
P0 complementarity problems with bounded solution sets; see [26, 29].
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Abstract. We prove a maximum principle of Pontryagin type for the time optimal control
of a hybrid system. The system is nonlinear and consists of a controlled coupled ODE/PDE. The
control input acts via the boundary and the interior of the domain. Systems of this type frequently
arise in modeling population dynamics in a contaminated environment. For the regularization we
use Ekeland’s variational principle along with a singular perturbation technique. For this purpose
we introduce a new trajectory on an additional exterior domain, whose size may be considered as a
singular perturbation parameter. It turns out that the maximum principle is stable with respect to
the size of the additional exterior domain. The technique allows us to obtain necessary optimality
conditions without involving measure boundary data.

Key words. time optimal boundary control, Pontryagin’s maximum principle, Ekeland’s vari-
ational principle, Ekeland metric, singular perturbation
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1. Introduction. This paper is concerned with necessary optimality conditions
for parabolic boundary control problems. Its main purpose is to provide a regulariza-
tion technique via singular perturbations to obtain optimality conditions for the time
optimal control problem.

In order to obtain a Pontryagin type maximum principle, one usually has to study
equations with measure boundary data. The reason is that, for nonlinear or noncon-
vex problems with state restrictions, one cannot manage without strong variations (or
spike perturbations) of the control. This necessarily leads to Dirac measures in the
variational system describing the directional derivatives; see [6]. In contrast to non-
linear ODE, where the Dirac impulse just causes a jump of the trajectory, there is no
similar interpretation for the boundary control of a parabolic equation. Furthermore,
Dirac impulses in the boundary data cause technical difficulties (see [6]) and obviously
reduce the regularity of the solutions. For linear systems, the explicit representation
of the solutions via Green’s functions (see, e.g., [7]) still allows us to overcome these
difficulties; see [5], [6]. But for nonlinear systems, boundary element methods seem
to be not as far developed. The situation becomes even more serious when pointwise
state constraints are considered (see [10], [3]). Then the adjoint system necessarily
has Dirac data, and duality considerations cannot be carried through when the varia-
tional system is not smooth enough. For this reason another type of variation recently
has been introduced in [10], [3]. Here the variation is not concentrated locally around
one point but somehow distributed over the domain, with the effect that the varia-
tional system is smooth and even looks like the variational system of a weak variation
(L∞-perturbation) of the control. This technique leads to an integrated form of the
maximum principle, which, under slight continuity assumptions, can be transformed
into a pointwise maximum principle.
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1998; published electronically May 21, 1999.

http://www.siam.org/journals/sicon/37-4/33264.html
†Institut für Informatik und Praktische Mathematik, Christian–Albrechts–Universität zu Kiel,

Olshausen Str. 40, 24098 Kiel, Germany (ggr@numerik.uni-kiel.de).

1162



MAXIMUM PRINCIPLE VIA SINGULAR PERTURBATIONS 1163

We propose a different method to derive a maximum principle without involving
measure boundary data in the variational system. The basic idea is quite simple: since
it doesn’t cause too much trouble to deal with strong variations for ODEs we interpret
the boundary term as the steady state of a fast trajectory of an additional ODE. So,
instead of investigating the original system, we approximate it by a singularly per-
turbed augmented system, obtain necessary optimality conditions for the singularly
perturbed system via strong variations, and later let the singular perturbation tend
to zero.

The proposed regularization procedure is demonstrated by a hybrid model of
mathematical biology, introduced in [2], [1], but it is by far not restricted to this model.
Roughly speaking, it works for any boundary control problem which is well-posed with
respect to L1-perturbations (with a common L∞-bound) of the boundary data—a
property which is easily derived (also for semilinear parabolic equations) whenever
the boundary problem is well-posed with respect to Ekeland- and L∞-perturbations
of the boundary data. In contrast, the standard approach requires well-posedness for
the case where L1-data converge in the distributional sense to a Dirac measure.

The mathematical model of the present paper consists of a coupled pair of a
(linear) parabolic equation with Neumann type boundary conditions and a (nonlinear)
ODE in a Banach space:

∂
∂tY (x, t) = ∆Y (x, t),

∂
∂N(y)Y (y, t) =

∫
Ω
K(x, y, u(t))TZ(x, t)dx,

∂
∂tZ(x, t) = f(Z(x, t), Y (x, t), u(t)),
Y (x, 0) = Y 0(x),
Z(x, 0) = Z0(x),

(1)

where x ∈ Ω, y ∈ ∂Ω, t ∈ (0, T ] and ∂
∂N(y) denotes the outer normal derivative. Thus

the control input u(t) ∈ U acts via the boundary and the interior of the domain. We
are interested in the following time optimal control problem.

Given a function L : L1(Ω;Rn)→ R, find the control function that steers Z(·, t) ∈
L1(Ω;Rn) in minimal time to the target set, which is given by

{Z ∈ L1(Ω;Rn) : L(Z) = 0}.
The singular perturbation technique is based on the introduction of a new fast bound-
ary trajectory X(y, t), which leads to the singularly perturbed system

∂
∂tY (x, t) = ∆Y (x, t),

∂
∂N(y)Y (y, t) = X(y, t)− Y (y, t),

Y (x, 0) = Y 0(x),

(2)


ε(y) ∂∂tX(y, t) =

∫
Ω
K(x, y, u(t))TZ(x, t)dx− (X(y, t)− Y (y, t)),

∂
∂tZ(x, t) = f(Z(x, t), Y (x, t), u(t)),
X(y, 0) = 0,
Z(x, 0) = Z0(x).

(3)

Here ε(y) > 0 is assumed to be small in order to reflect that, for a given “slow” control
u, X(y, t) moves fast towards its (control dependent) equilibrium, which is given by

X(y, t) =

∫
Ω

K(x, y, u(t))TZ(x, t)dx+ Y (y, t).
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Note that, in general, the approximation of a nonlinear control system by singularly
perturbed systems causes delicate problems, since a “fast” control may force the fast
trajectory to perform oscillations, and more general averaging techniques are required;
see, e.g., [8], [13], [9]. Nevertheless, to prove the maximum principle via singular
perturbations, we can still manage with the steady state approach à la Tychonov
(see, e.g., [12]) for two reasons: first, by the linearity of the artificial fast equation for
X in (3); second, by the condition of the maximum principle itself that an optimal
control for the original time optimal problem exists.

Surely, our proposed method is not the only possibly one. First, by the linearity
of the diffusion equation, strong variations together with boundary element methods
(see, e.g., [6]) seem to be applicable, even if the proof that the nonsmooth varia-
tional system really describes the directional derivatives seems to be quite involved.
Second, the method of “distributed variations,” as in [3], [10], could be applicable,
even for semilinear diffusions, but with the obstacle of constructing a suitable loca-
tion for the perturbation, which should be quite complicated considering the coupled
dynamics. The advantage of our method is that the analysis towards necessary op-
timality conditions involves a singularly perturbed variational system without Dirac
data. This approach is extendable to semilinear diffusions and easily manages com-
plicated coupled dynamics. Furthermore, the singular perturbation parameter has a
physical meaning and the regularization method hence implies a sensitivity analysis
for the maximum principle against model errors.

Interpretation of the model. Models of this kind appear when modeling pop-
ulation dynamics in a contaminated environment. For example, Z(x, t) ∈ R could
be a population density or, more generally, if in Rn, the densities of several charac-
teristics of a population, that cause an environmental contamination density Y (x, t)
by polluting the boundary area. Y (x, t) enters the domain via the boundary and its
dynamics within the domain are described by a diffusion. On the other hand, the con-
tamination causes changes in the population characteristics and the circle is closed.
In [1] a slightly simpler model is investigated to describe the dynamics of viral dis-
eases. There it is assumed that the infectious agent is transported via diffusion and
necessary optimality conditions for optimal control problems without terminal state
restrictions are derived.

There is a crucial difficulty in connection with the hybrid character of the system
(1). Whereas the ODE describes different characteristics of a population distribution,
it clearly defines a domain Ω ⊂ R2 of interest. In [1] the area consists of a city at the
seashore. But if, additionally, a diffusion process is considered, it is not obvious how
to relate it to the domain Ω. By this reason any reasonable model should be stable
with respect to parameters describing the boundary conditions.

In our singular perturbation approach, we divide the environment into two parts.
First, we have the domain Ω, in which the differential equations for Y (x, t), the density
of the diffusing material, and for Z(x, t), the characteristics of the population, hold. It
is separated by the boundary ∂Ω from a new outer domain, in which X(y, t), the new
outer density of the diffusing material, is assumed to be “radially constant”: every
boundary point y ∈ ∂Ω corresponds to a line of length ε(y) > 0 in the outer domain
on which the density is spatially constant. If the outer domain is thin, i.e., if ε(y) > 0
is small, the density X(y, t) changes rapidly with respect to time. When ε(y) tends to
zero, the density X(y, t) converges rapidly towards its equilibrium. The flow through
the boundary ∂Ω is then determined by the difference X(y, t) − Y (y, t) of outer and
inner concentrations. Whereas the term

∫
Ω
K(x, y, u(t))TZ(x, t)dx generates an outer

concentration X(y, t), which naturally changes faster, the smaller the size ε(y) of the
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outer domain. Thus the singular perturbation approach also gives an interpretation
for the source term

∫
Ω
K(x, y, u(t))TZ(x, t)dx. It measures just the absolute quantity

of contaminated material transported to the boundary area. Finally, we remark that
a meaningful functional L, describing the terminal set L(Z) = 0, is given by L(Z) =∫

Ω
Zi(x)dx − k, for i = 1, . . . , n, and a natural number k ∈ N . In the model above,

Zi(x, t) ∈ R could be the density of the affected population, and thus the optimal
control problem would consist of reducing the number of affected individuals to a
given number k ∈ N in minimal time.

Organization of the paper. Section 2 contains the setting and the maximum
principles for the singularly perturbed system (2), (3) and for the original system
(1). In section 3 we briefly show the unique existence of solutions for the singu-
larly perturbed system. The variational system for the singularly perturbed system
is introduced in section 4. The last two sections contain the proofs of the maximum
principles.

2. Preliminaries and main results. Throughout the paper we assume the
following:

• The admissible control functions u ∈ L∞([0, T ];U) are measurable with values
in a compact subset U ⊂ Rm and are equipped with the Ekeland metric (λ denotes
the Lebesgue measure on [0, T ]):

d(u1, u2) = λ{t ∈ [0, T ] : u1(t) 6= u2(t)}.
• The domain Ω ⊂ R2 is bounded with smooth boundary ∂Ω.

• The function f ∈ C1,1,0(Rn × R × Rm;Rn) is continuous, bounded, and con-
tinuously differentiable with respect to the first and second arguments with bounded
derivative. For all Y ∈ R and v ∈ U the components of f(0, Y, v) ∈ Rn are nonnega-
tive.

• The function ε(·) ∈ C(∂Ω;R) is positive and continuous.

• The kernelK ∈ C(Ω×∂Ω×Rm;Rn) is continuous with nonnegative components.

• The initial distribution Y 0 ∈ C(Ω;R0) is nonnegative and continuous.

• The initial distribution Z0 ∈ L∞(Ω;Rn) is measurable, essentially bounded
with essentially nonnegative components.

• The function L : L1(Ω, Rn)→ R is continuously Frechet differentiable.

Remark 2.1. We did not make any attempts to optimize this setting. There are
possibly many ways to weaken the regularity conditions above. In particular, we men-
tion that the space dimension for the domain Ω could be any natural number; in just
the special model it is 2. The control range U could be any compact metric space
so that more complicated controls, also depending on the spatial variable, could be
taken into consideration.

In order to formulate the Pontryagin maximum principle, we define the adjoint
system with terminal conditions

∂
∂tP (x, t) = −∆P (x, t)− fY (Z0(x, t), Y0(x, t), u(t))TQ(x, t),

∂
∂N(y)P (y, t) = 0,

∂
∂tQ(x, t) = −fZ(Z0(x, t), Y0(x, t), u(t))TQ(x, t)

− ∫
∂Ω
K(x, y, u(t))P (y, t)dy,

P (x, T ) = 0,
Q(x, T ) = Λ.

(4)
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We denote solutions of the system (1) by Y0, Z0 and solutions of the adjoint system by
P0, Q0. The maximum principle for the time optimal control problem then becomes
the following theorem.

Theorem 2.1. If u∗0 : [0, T0]→ U is a time optimal control function for the system
(1) with arrival time T = T0, then there is a terminal condition Λ ∈ L∞(Ω;Rn) for
the adjoint system (4), such that for almost all times s ∈ [0, T0] and all control values
v ∈ U the maximum condition

0 ≤
∫
∂Ω

∫
Ω

(K(x, y, v)−K(x, y, u∗0(s)))TZ0(x, s)P0(y, s)dxdy

+

∫
Ω

Q0(x, s)T (f(Z0(x, s), Y0(x, s), v)− f(Z0(x, s), Y0(x, s), u∗0(s))dx

is valid. The multiplier Λ fulfills the transversality condition

Λ = sgn(L(Z0))∇L(Z0(·, T0)(u∗0)) ∈ L∞(Ω;Rn).

We prove this Pontryagin maximum principle by regularizing the original system
by singularly perturbed systems, so naturally we introduce a singularly perturbed
adjoint system with terminal conditions:

∂
∂tP (x, t) = −∆P (x, t)− fY (Zε(x, t), Yε(x, t), u(t))TQ(x, t),

∂
∂N(y)P (y, t) = R(y, t)− P (y, t),

ε(y) ∂∂tR(y, t) = R(y, t)− P (y, t),
∂
∂tQ(x, t) = −fZ(Zε(x, t), Yε(x, t), u(t))TQ(x, t)

− ∫
∂Ω
K(x, y, u(t))R(y, t)dy,

P (x, T ) = 0,
R(y, T ) = 0,
Q(x, T ) = Λ.

(5)

Throughout the paper, we will denote trajectories of the singularly perturbed system
(2), (3) by Yε, Xε, Zε and trajectories of the singularly perturbed adjoint system (5)
by Pε, Rε, Qε. Although we do not need it for the proof of Theorem 2.1, we also state
the maximum principle for the singularly perturbed system because we obtain the
proof of the following theorem as a byproduct.

Theorem 2.2. If u∗ : [0, T ] → U is a time optimal control function for the
singularly perturbed system (2), (3) with arrival time T ≥ 0, then there is a terminal
condition Λ ∈ L∞(Ω;Rn) for the singularly perturbed adjoint system (5), such that
for almost all times s ∈ [0, T ] and all control values v ∈ U the maximum condition

0 ≤
∫
∂Ω

∫
Ω

(K(x, y, v)−K(x, y, u∗(s)))TZε(x, s)Rε(y, s)dxdy

+

∫
Ω

Qε(x, s)
T (f(Zε(x, s), Yε(x, s), v)− f(Zε(x, s), Yε(x, s), u

∗(s)))dx

is valid. The multiplier Λ fulfills the transversality condition

Λ = sgn(L(Z0))∇L(Zε(·, T )(u∗)) ∈ L∞(Ω;Rn).
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The regularization procedure via singular perturbations requires some explana-
tion, especially since the system under consideration is nonlinear. For nonlinear sin-
gularly perturbed control systems, it is known that, even if the fast subsystem has an
exponentially stable equilibrium for any control value v ∈ U and any frozen slow state,
the correct limit system is richer than the one obtained with the standard Tychonov
approach. The explanation for this nonlinear phenomenon is that open-loop controls
that oscillate between two values can force the fast motion to oscillate, if the oscil-
lation of the open-loop control becomes faster as the perturbation becomes smaller.
On the other hand, by the nonlinearity of the system, oscillations of the fast motions
produce additional averaged dynamics of the slow motions, which are not captured by
the steady state approach à la Tychonov. Hence, in general, the original system (1) is
not rich enough to contain all limits of Yε, Zε trajectories of the singularly perturbed
system (2), (3), as the perturbation tends to zero. A correct limit system for (2), (3)
should take into account fast oscillations and could be considered as a generalized
relaxed system.

However, in connection with the maximum principle, these difficulties do not oc-
cur, since we are interested in only one special control, namely, the optimal control of
the time optimal problem. We do not need to care about the possible better trajecto-
ries of the singularly perturbed system and their limits (which would be trajectories of
a generalized relaxed system) simply by the fact that the maximum principle presumes
the existence of an optimal control.

3. Unique solutions of the singularly perturbed systems. In this section
we sketch a proof for the unique existence of solutions of the singularly perturbed
(adjoint) system and continuous dependence on the control. The corresponding state-
ments for the original (adjoint) system are implicitly proved in Lemma 6.1 in the last
section. We introduce appropriate function spaces

Yε, Pε, Y0, P0 ∈ C([0, T ];C(Ω;R)) ∩ L2((0, T );H1(Ω)),

Xε, Rε ∈ C([0, T ];C(∂Ω;R)),

Zε, Qε, Z0, Q0 ∈ C([0, T ];L∞(Ω;Rn)).

All function spaces are equipped with the standard topology.

Proposition 3.1. The singularly perturbed system (2), (3) and adjoint system
(5) have unique solutions (Yε, Xε, Zε)(u) for any T ≥ 0 and any control function
u ∈ L∞([0, T ];U). The solutions depend continuously on the control function.

Proof. In order to show the unique existence of solutions (Yε, Xε, Zε) of (2), (3),
we define the solution operators

SY : C([0, T ];C(∂Ω;R)× L∞(Ω;Rn))→ C([0, T ];C(Ω;R)) ∩ L2((0, T );H1(Ω)),

which map trajectories (X,Z) to solutions Y of the PDE (2). Conversely, we define

Su(X,Z) : C([0, T ];C(Ω;R)) ∩ L2((0, T );H1(Ω))→ C([0, T ];C(∂Ω;R)× L∞(Ω;Rn)),

which map trajectories Y (for a given control function u) to solutions (X,Z) of the
ODE (3). Note that the operator Su(X,Z) also depends on the size ε(y) > 0 of the
additional boundary region. For T ≥ 0 small enough, the composition

Su(X,Z) ◦ SY : C([0, T ];C(∂Ω;R)× L∞(Ω;Rn))→ C([0, T ];C(∂Ω;R)× L∞(Ω;Rn))
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is a (continuously differentiable) contraction for any control u ∈ L∞([0, T ];U): the
operator SY is affine linear and continuous (see [11] or [3]), thus continuously differ-
entiable and Lipschitz. A standard application of the Gronwall lemma also shows that
the nonlinear operator Su(X,Z) is continuously differentiable and Lipschitz since f is.
The Lipschitz constant of the operator Su(X,Z) defined by the integral equation{

X(y, t) =
∫ t

0
(
∫

Ω
K(x, y, u(τ))TZ(x, τ)dx− (X(y, τ) + Y (y, τ)))dτ,

Z(x, t) = Z0(x) +
∫ t

0
f(Z(x, τ), Y (x, τ), u(τ))dτ

becomes arbitrary small, as the time horizon [0, T ] becomes smaller. We conclude
that, for T ≥ 0 small enough, the singularly perturbed system (2), (3) has for any
control function u ∈ L∞([0, T ];U) a unique solution (Xε, Zε)(u), which is just the
fixed point of the contraction Su(X,Z) ◦ SY . Similarly, Yε(u) is the fixed point of the
contraction SY ◦ Su(X,Z). A standard application of the Gronwall lemma shows that

the nonlinear operator Su(X,Z) depends continuously on u ∈ L∞([0, T ];U) (in the sense

of pointwise convergence). Thus, also, the fixed point of the contraction Su(X,Z) ◦ SY
depends continuously on u ∈ L∞([0, T ];U). For arbitrary T ≥ 0 we can subdivide
the interval [0, T ] into smaller subintervals and construct appropriate contractions on
each subinterval to show successively the existence of a unique solution on the whole
time interval. The corresponding statement for the adjoint system can be proved in
essentially the same way and the proof is finished.

4. The singularly perturbed variational system. The main advantage of
our singular perturbation approach is that the variational system, which describes the
variations or directional derivatives of the trajectories corresponding to strong varia-
tions of the control, contains Dirac impulses only in the ODE part. An investigation of
the more complicated variational system for the original system (1) is no longer neces-
sary. In the following we introduce the variational system for the singularly perturbed
system and manifest its connections with the singularly perturbed adjoint system.

We use the strong variation for control functions. For a control value v ∈ U , a
time s ∈ (0, T ] and h ∈ (0, s], the strong variation uh of the control function u is
defined by

uh(t) :=

{
v for almost all t ∈ [s− h, s],
u(t) for almost all t ∈ [0, s− h] ∪ [s, T ].

(6)

Then the singularly perturbed variational system for the limits

(Vε, Uε,Wε) = lim
h→0+

1

h
((Yε, Xε, Zε)(u

h)− (Yε, Xε, Zε)(u))(7)

becomes for t ∈ [s, T ]

∂
∂tV (x, t) = ∆V (x, t),

∂
∂N(y)V (y, t) = U(y, t)− V (y, t),

ε(y) ∂∂tU(y, t) =
∫

Ω
K(x, y, u(t))TW (x, t)dx− (U(y, t)− V (y, t)),

∂
∂tW (x, t) = fZ(Zε(x, t), Yε(x, t), u(t))W (x, t),

+fY (Zε(x, t), Yε(x, t), u(t))V (x, t)
V (x, s) = 0,
U(y, s) = 1

ε(y)

∫
Ω

(K(x, y, v)−K(x, y, u(s)))TZ(x, s)dx,

W (x, s) = f(Zε(x, s), Yε(x, s), v)− f(Zε(x, s), Yε(x, s), u(s)).

(8)
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For t ∈ [0, s) the variation (Vε, Uε,Wε) is obviously equal to zero; thus, we have
the usual jump at time t = s, which is caused by a Dirac impulse. We show that
the solution of the singularly perturbed variational system (8) in fact describes the
variation of the trajectories with respect to the strong variation of the control. The
function spaces for the trajectories of the variational system are

Vε ∈ C([s, T ];C(Ω;R)) ∩ L2((0, T );H1(Ω)),

Uε ∈ C([s, T ];C(∂Ω;R)),

Wε ∈ C([s, T ];L∞(Ω;Rn)).

All function spaces are equipped with the standard topology. We omit showing the
unique existence of solutions to (8), since the proof is completely analogous to the
proof of Proposition 3.1.

Lemma 4.1. Let uh ∈ L∞([0, T ];U) be the strong variation of the control u ∈
L∞([0, T ];U). Then the limit (7) exists and is a solution of the singularly perturbed
variational system (8).

Proof. Since the operator Su(X,Z) ◦ SY is continuously differentiable, we can write

(again for T > 0 small enough)

1

h
((Xε, Zε)(u

h)− (Xε, Zε)(u))

=
1

h

(
Su

h

(X,Z) ◦ SY ((Xε, Zε)(u
h))− Su(X,Z) ◦ SY ((Xε, Zε)(u))

)
=

1

h

(
Su

h

(X,Z) ◦ SY ((Xε, Zε)(u
h))− Suh(X,Z) ◦ SY ((Xε, Zε)(u))

)
+

1

h

(
Su

h

(X,Z) ◦ SY ((Xε, Zε)(u))− Su(X,Z) ◦ SY ((Xε, Zε)(u))
)

= D(X,Z)

(
Su

h

(X,Z) ◦ SY ((Xε, Zε)(u))
)[ 1

h
((Xε, Zε)(u

h)− (Xε, Zε)(u))

]
+
o(h)

h

+
1

h

(
Su

h

(X,Z) ◦ SY − Su(X,Z) ◦ SY
)

((Xε, Zε)(u)).

A standard application of the Gronwall lemma shows the convergence

lim
h→0+

1

h

(
Su

h

(X,Z) ◦ SY − Su(X,Z) ◦ SY
)

((Xε, Zε)(u)) = (U2,W2)

in C([s, T ];C(∂Ω;R)× C(Ω;Rn)), where (U2,W2) fulfill the differential equation
ε(y) ∂∂tU2(y, t) =

∫
Ω
K(x, y, u(t))TW2(x, t)dx− U2(y, t),

∂
∂tW2(x, t) = fZ(Zε(x, t), Yε(x, t), u(t))W2(x, t),

U2(y, s) = 1
ε(y)

∫
Ω

(K(x, y, v)−K(x, y, u(s)))TZε(x, s)dx,

W2(x, s) = f(Zε(x, s), Yε(x, s), v)− f(Zε(x, s), Yε(x, s), u(s)).

At the same time we have the convergence of the bounded linear operator (in the
sense of the operator norm)

lim
h→0+

D(X,Z)

(
Su

h

(X,Z) ◦ SY ((Xε, Zε)(u))
)

= D(X,Z)

(
Su(X,Z) ◦ SY ((Xε, Zε)(u))

)
,
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where the limit operator maps (U,W ) ∈ C([s, T ];C(∂Ω;R)×L∞(Ω;Rn)) to solutions
(U1,W1) of the system

∂
∂tV (x, t) = ∆V (x, t),
∂
∂N V (y, t) = (U(y, t)− V (y, t)),

ε(y) ∂∂tU1(y, t) =
∫

Ω
K(x, y, u(t))TW1(x, t)dx− (U1(y, t)− V (y, t)),

∂
∂tW1(x, t) = fZ(Zε(x, t), Yε(x, t), u(t))W1(x, t)

+fY (Zε(x, t), Yε(x, t), u(t))V (x, t),
V (x, s) = 0,
U1(y, s) = 0,
W1(x, s) = 0.

Thus 1
h ((Xε, Zε)(u

h) − (Xε, Zε)(u)) is a fixed point of a contraction that depends
continuously on h. Note that the contraction constant does not depend on h! We
conclude that the limit (Uε,Wε) = limh→0+

1
h ((Xε, Zε)(u

h) − (Xε, Zε)(u)) exists and
fulfills the equation

(Uε,Wε) = D(X,Z)

(
Su(X,Z) ◦ SY ((Xε, Zε)(u))

)
[(U,W )] + (U2,W2).

It follows that (Uε,Wε) = (U1,W1) + (U2,W2) is a solution of the variational system
and the proof is finished.

We close this section with a lemma describing the relationship between the sin-
gularly perturbed variational system (8) and the singularly perturbed adjoint system
(5).

Lemma 4.2. For all times s ∈ (0, T ], all times t ∈ [s, T ], and all control values
v ∈ U the trajectories of the singularly perturbed variational system (8) and of the
singularly perturbed adjoint system (5) fulfill∫

Ω

(Pε(x, s)Vε(x, s) +Qε(x, s)
TWε(x, s))dx+

∫
∂Ω

ε(y)Rε(y, s)Uε(y, s)dy

=

∫
Ω

(Pε(x, t)Vε(x, t) +Qε(x, t)
TWε(x, t))dx+

∫
∂Ω

ε(y)Rε(y, t)Uε(y, t)dy

=

∫
Ω

Qε(x, T )TWε(x, T )dx.(9)

Proof. We can formally calculate

d

dt

∫
Ω

Pε(x, t)Vε(x, t)dx

=

∫
Ω

(
∂

∂t
Pε(x, t)Vε(x, t) + Pε(x, t)

∂

∂t
Vε(x, t)

)
dx

=

∫
Ω

(−∆Pε(x, t)Vε(x, t) + Pε(x, t)∆Vε(x, t))dx

−
∫

Ω

fY (Zε(x, t), Yε(x, t), u(t))TQε(x, t)Vε(x, t)dx

=

∫
∂Ω

(
∂

∂N(y)
Vε(y, t)Pε(y, t)− Vε(y, t) ∂

∂N(y)
Pε(y, t)

)
dy

−
∫

Ω

fY (Zε(x, t), Yε(x, t), u(t))TQε(x, t)Vε(x, t)dx
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=

∫
Ω

(Uε(y, t)Pε(y, t)− Vε(y, t)Rε(y, t))dy

−
∫

Ω

fY (Zε(x, t), Yε(x, t), u(t))TQε(x, t)Vε(x, t)dx

and

d

dt

∫
∂Ω

ε(y)Rε(y, t)Uε(y, t)dy

=

∫
∂Ω

ε(y)

(
∂

∂t
Rε(y, t)Uε(y, t) +Rε(y, t)

∂

∂t
Uε(y, t)

)
dy

=

∫
∂Ω

(Rε(y, t)Vε(y, t)− Pε(y, t)Uε(y, t))dy

+

∫
∂Ω

Rε(y, t)

∫
Ω

K(x, y, u(t))TWε(x, t)dxdy

and

d

dt

∫
Ω

Qε(x, t)
TWε(x, t)dx

=

∫
Ω

(
∂

∂t
Qε(x, t)

TWε(x, t) +Qε(x, t)
T ∂

∂t
Wε(x, t)

)
dx

= −
∫

Ω

∫
∂Ω

K(x, y, u(t))TRε(y, t)dyWε(x, t)dx

+

∫
Ω

Qε(x, t)
T fY (Zε(x, t), Yε(x, t), u(t))Vε(x, t)dx.

For the present this calculation is justified for smooth control functions and data (cf.
[7]). We conclude that for times t ∈ (s, T ]

d

dt

(∫
Ω

(Pε(x, t)Vε(x, t) +Qε(x, t)
TWε(x, t))dx+

∫
∂Ω

ε(y)Rε(y, t)Uε(y, t)dy

)
= 0

holds, from which it follows that∫
Ω

(Pε(x, t)Vε(x, t) +Qε(x, t)
TWε(x, t))dx+

∫
∂Ω

ε(y)Rε(y, t)Uε(y, t)dy

=

∫
Ω

(Pε(x, s)Vε(x, s) +Qε(x, s)
TWε(x, s))dx+

∫
∂Ω

ε(y)Rε(y, s)Uε(y, s)dy

is constant for all t ∈ [s, T ]. Since we can approximate any admissible control function
with respect to the Ekeland metric by continuous control functions, and the termi-
nal condition Λ and initial condition Z0 by smooth functions, we conclude that the
expression above is constant and the proof of the lemma is finished.

5. Proof of Theorem 2.2. The proof of the Pontryagin maximum principle for
the singularly perturbed system is standard and mainly follows the unifying concept
of [5], with the only differences being that by introducing the adjoint variables our
maximum principle has the familiar form and that the (smooth) target set gives more
information on the terminal adjoint state.
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Let u∗ be the optimal control for the singularly perturbed system (2), (3) and
T > 0 the arrival time. We take a sequence of times tn ∈ [0, T ) with tn → T and
define on L∞((0, T );U) the (positive) functional

Fn(u) := |L(Zε(·, tn)(u))|.
We define δn := Fn(u∗) > 0. By Ekeland’s variational principle (cf. [4]), there is a
control un with

d(un, u
∗) ≤

√
δn, Fn(u) ≥ Fn(un)−

√
δnd(u, un).

The second inequality holds especially for the strong variation uhn of the control func-
tion un; see (6). Then the inequality can be written as

|L(Zε(·, tn)(uhn))| − |L(Zε(·, tn)(un))|
h

≥ −
√
δn
d(uhn, un)

h
.

Taking the limit h→ 0+ we obtain

L(Zε(·, tn)(un))

|L(Zε(·, tn)(un))| 〈∇L(Zε(·, tn)(un),Wε(·, tn)(un)〉 ≥ −
√
δn,(10)

where Wε(un) is the strong variation of the trajectory Zε(un); see (6). The inequality
above holds for all v ∈ U and all Lebesgue points s ∈ [0, T ] of un, thus for all
s ∈ A(n) ⊂ [0, T ], where A(n) is a set of full Lebesgue measure in [0, T ]. Taking a
subsequence, we can assume that d(un, u

∗) ≤ 2−n. Then we can take the limit n→∞
in (10) and get

sgn(L(Z0))〈∇L(Zε(·, T )(u∗)),Wε(·, T )(u∗)〉 ≥ 0,(11)

where Wε(u
∗) is the strong variation of the trajectory Zε(u

∗). Now we define the
terminal condition of the adjoint system as

Λ = sgn(L(Z0))∇L(Zε(·, T )(u∗)).

Then the maximum condition (11) can be written as

sgn(L(Z0))

∫
Ω

Qε(x, T )(u∗)TWε(x, T )(u∗)dx ≥ 0,

and using Lemma 4.2 and the initial conditions at time t = s of the variational system
(8) we finish the proof.

6. Proof of Theorem 2.1. The proof of Theorem 2.1 is based on an approxi-
mation of the system (1) by the singularly perturbed system (2), (3). For this reason
we need a stability statement for small perturbations ε(y) = εn > 0 and controls that
are close to a given nominal control.

The following lemma is a key tool. It states that, if the perturbation of the control
is adapted to the singular perturbation of the system, the trajectories of the singularly
perturbed system converge to trajectories of the (unperturbed) system.

Lemma 6.1. For any sequence εn → 0 and un ∈ Bε2n(u) we have the convergence{
Zεn(un)→ Z0(u) in C([0, T0];L∞(Ω;Rn)),
Yεn(un)→ Y0(u) in C([0, T0];C(Ω;R)) ∩ L2((0, T );H1(Ω)),

(12)
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Qεn(un)→ Q0(u) in C([0, T0];L∞(Ω;Rn)),
Rεn(un)→ P0(u) in C([0, T0];C(∂Ω;R)).

(13)

Proof. We will show (12). We consider the (εn-dependent) solution operator
Su(X,Z), which maps trajectories Y to solutions (X,Z) of (3). For the fixed control
function u we can write Z(x, t) = Z0(x) +

∫ t
0
f(Z(x, r), Y (x, r), u(r))dr,

X(y, t) =
∫ t

0
e−(t−r)/εn

εn
(
∫

Ω
K(x, y, u(r))Z(x, r)dx+ Y (y, r))dr.

We note that r 7→ e−(t−r)/εn
εn

serves as mollifier, since, as εn → 0, we have∫ t

0

e−(t−r)/εn

εn
dr = 1− e−t/εn → 1,

∫ t

t−√εn

e−(t−r)/εn

εn
dr = 1− e−1/

√
εn → 1.

Thus, as εn → 0, we have the convergence in L1((0, T0);C(∂Ω;R))(
t 7→

∫ t

0

e−(t−r)/εn

εn

(∫
Ω

K(x, y, u(r))Z(x, r)dx+ Y (y, r)

)
dr

)
→
(
t 7→

∫
Ω

K(x, y, un(t))Z(x, t)dx+ Y (y, t)

)
.

We now take into account variations of the control function. First, we note that, as
εn → 0, ∫ t

t−εn2

e−(t−r)/εn

εn
dr = 1− e−

√
εn → 0.

Thus, if we take un ∈ Bε2n(u), we still have∣∣∣∣∫ t

0

e−(t−r)/εn

εn

∫
Ω

(K(x, y, u(r)))−K(x, y, u(r))Z(x, r)dxdr

∣∣∣∣ = O(
√
εn).

Hence, as εn → 0, we get the convergence in L1((0, T0);C(∂Ω;R))(
t 7→

∫ t

0

e−(t−r)/εn

εn

(∫
Ω

K(x, y, un(r))Z(x, r)dx+ Y (y, r)

)
dr

)
→
(
t 7→

∫
Ω

K(x, y, u(t))Z(x, t)dx+ Y (y, t)

)
.

Note that both the converging sequence and the limit are (uniformly bounded) in
L∞((0, T0);C(∂Ω;R)). With respect to the natural topology of L∞((0, T0);C(∂Ω;R))
for X the solution operator SY , which maps trajectories (X,Z) to solutions Y of (2),
is continuous. Also with respect to the Ekeland topology of L∞((0, T0);C(∂Ω;R))
for X we get continuity of SY (see Theorem 5.1 in [3]). Both continuity properties
imply continuity of SY with respect to the L1((0, T0);C(∂Ω;R)) topology for X!
Just use the fact that a sequence Xn in L∞((0, T0);C(∂Ω;R)), which converges in
L1((0, T0);C(∂Ω;R)), necessarily uniformly approximates the limit on a sequence of
sets An ⊂ (0, T0) with increasing Lebesgue measure λ(An) → T0. All in all, we
conclude that the fixed point of the contraction SY ◦Sun(X,Z) tends in L1([0, T ];C(∂Ω))×
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C([0, T ];L∞(Ω;Rn)) to t 7→ (
∫

Ω
K(x, y, u)Z0(x, t)(u)dx+Y0(y, t)(u), Z0(x, t)(u)), and

similarly the fixed point of the contraction Sun(X,Z) ◦ SY tends to Y0(u). The proof of

(13) is completely analogous. We just have to take into account that the equation
for R in the singularly perturbed adjoint system is stable in backwards time and
the same singular perturbation technique works again. The proof of the lemma is
finished.

Let u∗0 be the optimal control for the system (1) and T0 > 0 the arrival time.
We take sequences of times tn ∈ [0, T0) and of perturbation parameters εn > 0, with
tn → T0 and εn → 0, as n→∞. We define the functional

Fn(u) := |L(Zεn(·, tn)(u))|

obtained with the trajectory Zεn(u) of the singularly perturbed system (2), (3) with
ε(y) := εn > 0 for all y ∈ ∂Ω.

Lemma 6.2. For every sequence tn → T0, tn ∈ [0, T0), there is a sequence εn → 0,
εn > 0, and a sequence of radii µn → 0, µn > 0, such that, for n ∈ N large enough,
the functional Fn is positive on the ball Bµn(u∗0). δn := Fn(u∗0) especially is positive,
for n ∈ N large enough. Furthermore δn := Fn(u∗0)→ 0, as n→∞.

Proof. According to Lemma 6.1, applied to u = u∗0, we have

Zεn(un)→ Z0(u∗0)

if un ∈ Bε2n(u∗0). It follows that

L(Zεn(·, tn)(un))→ L(Z0(·, tn)(u∗0))

uniformly in tn ∈ [0, T0], if un ∈ Bε2n(u∗0). By optimality of u∗0 we have

|L(Z0(·, tn)(u∗0))| > 0

for every tn ∈ [0, T0). Thus, if we choose 0 < µn ≤ ε2n small enough, the functional
Fn is positive on Bµn(u∗0). It also follows that δn → 0 and the proof of the lemma is
finished.

Since δn = Fn(u∗0) is positive, for n ∈ N large enough, we get, as in the proof of
Theorem 2.2 for a un ∈ Bµn(u∗0) ∩B√δn(u∗0),

L(Zεn(·, tn)(un))

|L(Zεn(·, tn)(un))| 〈∇L(Zεn(·, tn)(un)),Wεn(·, tn)(un)〉 ≥ −
√
δn,

where Wεn(un) is the strong variation of the trajectory Zεn(un); see (7). We conclude
by Lemma 4.2 and by the initial conditions of (8) that

−
√
δn ≤

∫
Ω

Qεn(x, s) (f(Zεn(x, s), Yεn(x, s), v)− f(Zεn(x, s), Yεn(x, s), un(s))) dx

+

∫
∂Ω

Rεn(y, s)

∫
Ω

(K(x, y, v)−K(x, y, un(s)))Zεn(x, s)dy,(14)
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where Qεn = Qεn(un) and Rεn = Rεn(un) are solutions of the adjoint system

∂
∂tP (x, t) = −∆P (x, t)− fY (Zεn(x, t), Yεn(x, t), un(t))TQ(x, t),

∂
∂N(y)P (y, t) = R(y, t)− P (y, t),

ε(y) ∂∂tR(y, t) = R(y, t)− P (y, t),

∂
∂tQ(x, t) = −fZ(Zεn(x, t), Yεn(x, t), u(t))TQ(x, t)

− ∫
∂Ω
K(x, y, un(t))R(y, t)dy,

P (x, tn) = 0,
R(y, tn) = 0,
Q(x, tn) = sgn(L(Z0))∇L(Zεn(·, tn)(un))

(15)

obtained with terminal conditions at time t = tn, with the control un and with
ε(y) = εn. Since, as a slight adaptation of the proof of Lemma 6.1 shows, we have the
convergence of the trajectories of (15) to the trajectories of (4), obtained with terminal
conditions at time t = T0 and with the control u∗0, thus the maximum principle follows
from (14) and the proof is finished.
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Abstract. An algorithm for efficient solution of control constrained optimal control problems is
proposed and analyzed. It is based on an active set strategy involving primal as well as dual variables.
For discretized problems sufficient conditions for convergence in finitely many iterations are given.
Numerical examples are given and the role of the strict complementarity condition is discussed.
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1. Introduction and formulation of the problem. In the recent past sig-
nificant advances have been made in efficiently solving nonlinear optimal control
problems. Most of the proposed methods are based on variations of the sequen-
tial quadratic programming (SQP) technique; see for instance [HT, KeS, KuS, K, T]
and the references therein. The SQP-algorithm is sequential and each of its itera-
tions requires the solution of a quadratic minimization problem subject to linearized
constraints. If these auxiliary problems contain inequality constraints with infinite
dimensional image space, then their solution is still a significant challenge.

In this paper we propose an algorithm for the solution of infinite dimensional
quadratic problems with linear equality constraints and pointwise affine inequality
constraints. It is based on an active set strategy involving primal and dual variables.
It thus differs significantly from conventional active set strategies that involve primal
variables only; see [Sch] for example. In practice the proposed algorithm behaves
like an infeasible one. The iterates of the algorithm violate the constraints up to the
next-to-last iterate. The algorithm stops at a feasible and optimal solution.

Within this paper we do not aim for generality but rather we treat as a model
problem a unilateral control constraint optimal control problem related to elliptic par-
tial differential equations. The distributed nature of this problem, which is reflected in
the fact that it behaves like an obstacle problem for the biharmonic equation, makes
it difficult to analyze.

Let us briefly outline the contents of the paper. The algorithm will be presented
in section 2. We prove that if the algorithm produces the same active set in two
consecutive iterates, then the optimal solution has been obtained. In section 3 we shall
give sufficient conditions which guarantee that an augmented Lagrangian functional
behaves as a decreasing merit function for the algorithm. In practice this implies finite
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step convergence of the discretized problem. Section 4 is devoted to showing that for a
minor modification of the algorithm the cost functional is increasing until the feasible
optimal solution is reached. In section 5 several numerical examples are given. For
most examples the algorithm behaves extremely efficiently and typically converges in
less than five iterations. Thus, to present interesting cases the majority of the test
examples is in some sense extreme: either the strict complementarity condition is
violated or the cost of the control is nearly zero.

To describe the problem, let Ω be an open, bounded subset of RN , N ≤ 3, with
smooth boundary Γ and consider the following distributed optimal control problem:

(P) min J(y, u) =
1

2

∫
Ω

(y − zd)2 dx+
α

2

∫
Ω

(u− ud)2 dx,

−∆y = u in Ω, y = 0 on Γ,(1.1)

u ∈ Uad ⊂ L2(Ω),(1.2)

where zd, ud ∈ L2(Ω), α > 0, and Uad = { u ∈ L2(Ω) | u(x) ≤ b(x) a.e. in Ω}, b ∈
L∞(Ω).

It is well known that for every u ∈ L2(Ω) system (1.1) has a unique solution
y = T (u) in H2(Ω) ∩H1

o (Ω).
Remark 1.1. To emphasis the basic ideas of the proposed approach we treated

the rather simple problem (P). Many generalizations are possible. In particular, the
analysis of this paper can be extended to the case where −∆ in (1.1) is replaced by any
strictly elliptic second order differential operator. The algorithm itself can be easily
adapted to other optimal control problems involving, for example, ordinary differential
equations. Its numerical efficiency as well as the convergence analysis require some
additional research.

It is standard that problem (P) has a unique solution (y∗, u∗) characterized by
the following optimality system: −∆y∗ = u∗ in Ω, y∗ ∈ H1

o (Ω),
−∆p∗ = zd − y∗ in Ω, p∗ ∈ H1

o (Ω),
(α(u∗ − ud)− p∗, u− u∗) ≥ 0 for all u ∈ Uad,

where (·, ·) denotes the L2(Ω)-inner product.
Let us give an equivalent formulation for this optimality system, which is essential

to motivate the forthcoming algorithm.
Theorem 1.1. The unique solution (y∗, u∗) to problem (P) is characterized by

(S)



−∆y∗ = u∗ in Ω, y∗ ∈ H1
o (Ω),

−∆p∗ = zd − y∗ in Ω, p∗ ∈ H1
o (Ω),

u∗ = ud +
p∗ − λ∗
α

,

λ∗ = c

[
u∗ +

λ∗

c
−Π

(
u∗ +

λ∗

c

)]
= cmax

(
0, u∗ +

λ∗

c
− b
)

for every c > 0. Here Π denotes the projection of L2(Ω) onto Uad.
Proof. We refer to [IK].
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We point out that the last equation in (S),

λ∗ = c

[
u∗ +

λ∗

c
−Π

(
u∗ +

λ∗

c

)]
,(1.3)

is equivalent to

λ∗ ∈ ∂IUad(u∗),(1.4)

where ∂IC denotes the subdifferential of the indicator function IC of a convex set
C. This follows from general properties of convex functions (see [IK] for example)
and can also easily be verified directly for the convex function IUad . The replacement
of the well-known differential inclusion (1.4) [B] in the optimality system for (P) by
(1.3) is an essential ingredient of the algorithm that we shall propose.

Here and below, order relations like “max” and “≤” between elements of L2(Ω)
are understood in the pointwise almost everywhere (a.e.) sense.

Let us interpret the optimality system (S). From −∆y∗ = ud + p∗−λ∗
α it follows

that p∗ = α[−∆y∗ − ud] + λ∗ and hence

−α∆y∗ −∆−1y∗ + λ∗ = α ud −∆−1zd.

It follows that

αu∗ + ∆−2u∗ + λ∗ = αud −∆−1zd ,

λ∗ = cmax

(
0, u∗ +

λ∗

c
− b
)

for all c > 0,

which implies the highly distributed nature of the optimal control. Setting H =
αI + ∆−2 and f = αud −∆−1zd, system (S) can be expressed as

(S1)

 Hu
∗ + λ∗ = f,

λ∗ = cmax

(
0, u∗ +

λ∗

c
− b
)

for all c > 0.

We observe that by setting u = −∆y, system (S) constitutes an optimality system
for the variational inequality,

min
α

2

∫
Ω

|∆y|2dx+
1

2

∫
Ω

|y − (zd − α ∆ud)|2dx,
y ∈ H1

o (Ω) ∩H2(Ω),
−∆y ≤ b,

the regularity of which was studied in [BS].

2. Presentation of the algorithm. In this section we present the primal-dual
active set algorithm and discuss some of its basic properties. Let us introduce the
active and inactive sets for the solution to (P) and define

A∗ = { x | u∗(x) = b a.e. } and I∗ = { x | u∗(x) < b a.e. }.
The proposed strategy is based on (1.3). Given (un−1, λn−1) the active set for the
current iterate is chosen as

An =

{
x | un−1(x) +

λn−1(x)

c
> b a.e.

}
.

We recall that λ∗ ≥ 0 and in the case of strict complementarity λ∗ > 0 on A∗. The
complete algorithm is specified next.
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Algorithm.
1. Initialization: choose yo, uo, and λo and set n = 1.
2. Determine the following subsets of Ω:

An =

{
x | un−1(x) +

λn−1(x)

c
> b

}
, In =

{
x | un−1(x) +

λn−1(x)

c
≤ b

}
.

3. If n ≥ 2 and An = An−1, then stop.
4. Else, find (yn, pn) ∈ H1

o (Ω)×H1
o (Ω) such that

−∆yn =

{
b in An,
ud +

pn
α

in In,
−∆pn = zd − yn in Ω

and set

un =

{
b in An,
ud +

pn
α

in In.

5. Set λn = pn − α(un − ud), update n = n+ 1, and goto 2.
The existence of the triple (yn, un, pn) satisfying the system of step 4 of the algo-

rithm follows from the fact that it constitutes the optimality system for the auxiliary
problem

(Paux) min { J(y, u) | y ∈ H1
o (Ω), −∆y = u in Ω, u = b on An },

which has (yn, un) as unique solution.
We may use different initialization schemes. The one that was used most fre-

quently is the following: 
uo = b,

−∆yo = uo, yo ∈ H1
o (Ω),

−∆po = zd − yo, po ∈ H1
o (Ω),

λo = max(0, α(ud − b) + po).

(2.1)

This choice of initialization has the property of feasibility. Alternatively, we tested
the algorithm with initialization as the solution of the unconstrained problem, i.e.,

λo = 0,

−∆yo = ud +
po
α
, yo ∈ H1

o (Ω),

−∆po = zd − yo, po ∈ H1
o (Ω),

uo = ud +
po
α
.

(2.2)

For all examples the first initialization behaved better than or equal to the second.
The initialization process (2.1) has the property that the first set A1 is always

included in the active set A∗ of problem (P). More precisely we have the following
lemma.

Lemma 2.1. If (uo, yo, λo) are given by (2.1) with uo ≥ u∗, then λo ≤ λ∗. In
addition, if uo = b, then A1 ⊂ A∗.

Proof. The proof is the construction

λo = max(0, α(ud − uo) + po) = max(0, α(ud − uo) + ∆−1(yo − zd))
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and as a consequence of (S),

λ∗ = α(ud−u∗)+p∗ = α(ud−u∗)+∆−1(y∗−zd) = α(ud−u∗)−∆−2u∗−∆−1zd ≥ 0.

It follows that λ∗ − λo = λ∗ ≥ 0 if α(ud − uo) + ∆−1(yo − zd) ≤ 0 , and λ∗ − λo =
α(uo − u∗) + ∆−2(uo − u∗) + α(ud − uo) + ∆−1(yo − zd) else.

If uo ≥ u∗, the maximum principle yields ∆−2(uo − u∗) ≥ 0 and

λ∗ − λo
{

= λ∗ ≥ 0 if α(ud − uo) + ∆−1(yo − zd) ≤ 0,
≥ α(ud − uo) + ∆−1(yo − zd) ≥ 0 else.

Therefore λo ≤ λ∗.
In addition, if uo = b, then uo + λo

c = b+ λo
c > b on A1. Consequently λo > 0 on

A1 and λ∗ > 0. It follows that A1 ⊂ A∗ and the proof is complete.
A first convergence result which also justifies the stopping criterion in step 3 is

given in the following theorem.
Theorem 2.1. If there exists n ∈ N − {0} such that An = An+1, then the

algorithm stops and the last iterate satisfies

(Sn)


−∆yn = un =

{
b in An,
ud +

pn
α

in Ω−An,
−∆pn = zd − yn in Ω,
λn = pn − α(un − ud), un ∈ Uad,

with

λn = 0 on In and λn > 0 on An.(2.3)

Therefore, the last iterate is the solution of the original optimality system (S).
Proof. If there exists n ∈ N− {0} such that An = An+1, then it is clear that the

algorithm stops and the last iterate satisfies (Sn) by construction, except possibly for
un ∈ Uad. Thus we have to prove un ∈ Uad and (2.3).

• On In we have λn = 0 by step 5 of the algorithm. Moreover, un+λn
c = un ≤ b,

since In = In+1.
• On An we get un = b and un + λn

c > b since An = An+1. Therefore λn > 0
on An and un ∈ Uad.

To prove that the last iterate is a solution of the original optimality system (S), it
remains to show that

λn = c

[
un +

λn
c
−Π

(
un +

λn
c

)]
.

• On In we have λn = 0 and un + λn
c = un ≤ b. It follows that

un +
λn
c
−Π

(
un +

λn
c

)
= un −Π(un) = 0 = λn.

• On An we get un = b, λn > 0 and therefore

c

[
un +

λn
c
−Π

(
un +

λn
c

)]
= c

[
b+

λn
c
− b
]

= λn.

Now we give a structural property of the algorithm.
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Lemma 2.2. If un is feasible for some n ∈ N− {0} (i.e., un ≤ b), then An+1 ⊂
An.

Proof. On In we get λn = 0 by construction so that un + λn
c = un ≤ b (because

of feasibility). This implies In ⊂ In+1 and consequently An+1 ⊂ An.
Note that Theorem 2.1 and in particular (2.3) do not utilize or imply strict com-

plementarity. In fact, if (2.3) holds, then the set of x for which un(x) = b and
λn(x) = 0 is contained in In.

We end this section with simple cases, where we may conclude easily that the
algorithm is convergent.

Theorem 2.2. For initialization (2.1), the algorithm converges in one iteration
in the following cases:

1. zd ≤ 0, ud = 0, b ≥ 0 and the solution to −α∆u−∆−1u = zd is nonpositive.
2. zd ≥ 0, b ≤ 0, ud > b or zd ≥ 0, b ≤ 0, ud ≥ b and zd + ∆−1b is not zero as

element in L2(Ω).
Proof. Let us first examine case 1. The maximum principle implies that−∆−1uo ≥

0. Consequently zd+∆−1uo ≤ 0 and by a second application of the maximum principle

−∆−1(zd + ∆−1uo) ≤ 0.

Together with the fact that ud − b = −b ≤ 0, this implies

λo = max(0, α(ud − b)−∆−1(zd + ∆−1uo)) = 0.

Therefore A1 = ∅ and I1 = Ω.
Using the first iteration we obtain u1 = p1

α in Ω. Moreover, −∆y1 = u1 and
−∆p1 = zd − y1 imply that

−α∆u1 −∆−1u1 = zd.

By assumption u1 is feasible. Therefore A2 = A1 = ∅ and by Theorem 2.1 the
algorithm stops at the solution to (P).

Now we consider case 2. By assumption and due to (2.1) we have zd ≥ 0, b ≤
0, λo ≥ 0, and A1 = { λo > 0 }. Due to the maximum principle −∆−1uo ≤ 0 and

po = −∆−1(zd − yo) = −∆−1[zd − (−∆−1uo)] ≥ 0.

Moreover, if zd + ∆−1b is not the zero element in L2(Ω), then po > 0 in Ω and
α(ud − b) + po > α(ud − b).

If ud > b or (ud = b and zd + ∆−1b 6= 0), then λo = max(0, α(ud− b) + po) > 0 in
Ω (and λo = 0 on ∂Ω). Consequently A1 = Ω and u1 = b, λ1 = −∆−1(zd + ∆−1b) +
α(ud − b) > 0. This yields A2 = A1 = Ω and the algorithm stops.

3. Convergence analysis.

3.1. The continuous case. The convergence analysis of the algorithm is based
on the decrease of appropriately chosen merit functions. For that purpose we define
the following augmented Lagrangian functions:

Lc(y, u, λ) = J(y, u) + (λ, ĝc(u, λ)) +
c

2
‖ĝc(u, λ)‖2 and L̂c(y, u, λ) = Lc(y, u, λ

+),

where (·, ·) is the L2(Ω)-inner product, ‖ · ‖ is the L2(Ω)-norm, λ+ = max(λ, 0), and
ĝc(u, λ) = max(g(u),−λc ) with g(u) = u − b. Further (·, ·)|S and ‖ · ‖|S denote the

L2-inner product and norm on a measurable subset S ⊂ Ω. Note that the mapping

u 7→ (λ, ĝc(u, λ)) +
c

2
‖ĝc(u, λ)‖2
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is C1, which is not the case for the function given by

u 7→ (λ, g(u)) +
c

2
‖max(g(u), 0)‖2.

The following relationship between primal and dual variables will be essential.
Lemma 3.1. For all n ∈ N−{0} and (y, u) ∈ H1

o (Ω)×L2(Ω) satisfying −∆y = u
we have

J(yn, un)− J(y, u) = −1

2
‖y − yn‖2 − α

2
‖u− un‖2 + (λn, u− un)|An .(3.1)

Proof. Using ‖a‖2 − ‖b‖2 = −‖a − b‖2 + 2 (a− b, a) and steps 4 and 5 of the
algorithm, we find that

J(yn, un)−J(y, u) = −1

2
‖y−yn‖2−α

2
‖u−un‖2+(yn − y, yn − zd)+α (un − u, un − ud)

= −1

2
‖y − yn‖2 − α

2
‖u− un‖2 + (∆(yn − y), pn) + α (un − u, un − ud)

= −1

2
‖y − yn‖2 − α

2
‖u− un‖2 + (un − u,−pn + α(un − ud))

= −1

2
‖y − yn‖2 − α

2
‖u− un‖2 + (u− un, λn) .

Because λn = 0 on In the result follows.
Let us define

Sn−1 = { x ∈ An−1 | λn−1(x) ≤ 0 } and Tn−1 = { x ∈ In−1 | un−1(x) > b(x) }.
These two sets can be paraphrased by calling Sn−1 the set of elements that the active
set strategy predicts to be active at level n− 1 but the Lagrange multiplier indicates
should be inactive and by calling Tn−1 the set of elements that was predicted to be
inactive but the (n− 1)st iteration level corrects it to be active. We note that

Ω = (In−1\Tn−1) ∪ Tn−1 ∪ Sn−1 ∪ (An−1\Sn−1)(3.2)

defines a decomposition of Ω in mutually disjoint sets. Moreover, we have the following
relation between these sets at each level n:

In = (In−1\Tn−1) ∪ Sn−1, An = (An−1\Sn−1) ∪ Tn−1.(3.3)

In fact, as Ω = In ∪ An it is sufficient to prove that

(In−1\Tn−1) ∪ Sn−1 ⊂ In and (An−1\Sn−1) ∪ Tn−1 ⊂ An,
that is

Sn−1 ⊂ In and Tn−1 ⊂ An.
Since Sn−1 ⊂ An−1 we find un−1 = b on Sn−1. From the definition of Sn−1 we

conclude that λn−1 ≤ 0 so that un−1 + λn−1

c ≤ b. This implies Sn−1 ⊂ In. The
verification of Tn−1 ⊂ An is quite similar.

For the convenience of the reader we present these sets in Figure 3.1.
In Figure 3.1 the shaded region depicts In and the white region is An. Table 3.1

depicts the signs of primal and dual variables for two consecutive iteration levels.
Below, ‖∆−1‖ will denote the operator norm of ∆−1 in L(L2(Ω)).
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Fig. 3.1. Decomposition of Ω at levels n− 1 and n.

Table 3.1

λn−1 λn un−1 un

Tn−1 = In−1 ∩ An 0 > b = b
Sn−1 = An−1 ∩ In ≤ 0 0 = b
In−1\Tn−1 (⊂ In) 0 0 ≤ b
An−1\Sn−1 (⊂ An) > 0 = b = b

Theorem 3.1. If An 6= An−1 and

α+ γ ≤ c ≤ α− α2

γ
+

α2

‖∆−1‖2(3.4)

for some γ > 0, then L̂c(yn, un, λn) ≤ L̂c(yn−1, un−1, λn−1). In addition, if the second
inequality of (3.4) is strict, then either L̂c(yn, un, λn) < L̂c(yn−1, un−1, λn−1) or the
algorithm stops at the solution to (S).

Proof. A short computation gives

(λ, ĝc(u, λ)) +
c

2
‖ĝc(u, λ)‖2

=

(
1√
c
λ,
√
c ĝc(u, λ)

)
+

1

2

(√
c ĝc(u, λ),

√
c ĝc(u, λ)

)

=
1

2

∥∥∥∥√cmax

(
g(u),−λ

c

)
+

1√
c
λ

∥∥∥∥2

− 1

2c
‖λ‖2

=
1

2

∥∥∥∥max

(√
c g(u),− λ√

c

)
+

1√
c
λ

∥∥∥∥2

− 1

2c
‖λ‖2

=
1

2c
‖max(c g(u) + λ, 0)‖2 − 1

2c
‖λ‖2.

Moreover, for all (y, u, λ) we find

Lc(y, u, λ) = J(y, u) +
1

2c
‖max(c g(u) + λ, 0)‖2 − 1

2c
‖λ‖2.(3.5)
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By assumption An 6= An−1 and hence Sn−1 ∪ Tn−1 6= ∅. Using (3.5) we get

L̂c(yn, un, λn)− L̂c(yn−1, un−1, λn−1)
= J(yn, un)− J(yn−1, un−1)

+
1

2c

[‖max(c g(un) + λ+
n , 0)‖2 − ‖λ+

n ‖2 − ‖max(c g(un−1) + λ+
n−1, 0)‖2 + ‖λ+

n−1‖2
]

and by (3.1)

L̂c(yn, un, λn)− L̂c(yn−1, un−1, λn−1)

= −1

2
‖yn−1 − yn‖2 − α

2
‖un−1 − un‖2 + (un−1 − un, λn)Tn−1

+
1

2c

[‖max(c g(un) + λ+
n , 0)‖2 − ‖λ+

n ‖2 − ‖max(c g(un−1) + λ+
n−1, 0)‖2 + ‖λ+

n−1‖2
]
.

(3.6)
It will be convenient to introduce

d(x) = |max(c g(un(x)) + λ+
n (x), 0)|2 − |λ+

n (x)|2 − |max(c g(un−1(x))

+λ+
n−1(x), 0)|2 + |λ+

n−1(x)|2.
Let us estimate d on the four distinct subsets of Ω according to (3.2).
1. On In−1\Tn−1 we have λn(x) = λn−1(x) = 0, un−1(x) ≤ b(x) (g(un−1(x)) ≤

0), and

d(x) = |max(c g(un(x)), 0)|2 − |max(c g(un−1(x)), 0)|2 ≤ c2|un(x)− un−1(x)|2.
Moreover, as λn = pn − α(un − ud) = 0 and λn−1 = pn−1 − α(un−1 − ud) = 0 we

have un(x)− un−1(x) = pn(x)−pn−1(x)
α so that

|un(x)− un−1(x)| ≤ 1

α
|pn(x)− pn−1(x)| on In−1\Tn−1.

2. On Sn−1, λn(x) = 0, λn−1(x) ≤ 0, g(un−1(x)) = 0 so that d(x) =
|max(c g(un(x)), 0)|2. Here we used the positivity of λ+ to get λ+

n−1(x) = 0. To esti-
mate d(x) in detail we consider first the case where un(x) ≥ b(x). Since x ∈ Sn−1 ⊂ In
we obtain λn(x) = pn(x) − α[un(x) − ud(x)] = 0 and hence un(x) = pn(x)

α + ud(x).
Moreover, λn−1(x) = pn−1(x) − α[un−1(x) − ud(x)] ≤ 0 so that ud(x) − b(x) ≤
−pn−1(x)

α , where we used un−1(x) = b(x). Since by assumption un(x) ≥ b these
estimates imply

|un(x)− un−1(x)| = un(x)− b(x)

=
pn(x)

α
+ ud(x)− b(x) ≤ pn(x)

α
− pn−1(x)

α
=

1

α
|pn(x)− pn−1(x)|.

In addition it is clear that on the set In
d(x) = |max(c g(un(x)), 0)|2 ≤ c2|un(x)− un−1(x)|2.

In the second case, un(x) < b(x) so that max(c g(un(x)), 0) = 0 and d(x) = 0. Finally,
we have a precise estimate on the whole set In. Let us denote

I∗n = In−1\Tn−1 ∪ {x ∈ Sn−1 | un(x) ≥ b(x)} = In\{x ∈ Sn−1 | un(x) < b(x)};
then ∫

In
d(x) dx =

∫
I∗n
d(x) dx = c2‖max(g(un), 0)‖2I∗n ≤ c2 ‖un − un−1‖2I∗n .(3.7)
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We note that we have proved in addition that

‖un − un−1‖I∗n ≤
‖∆−1‖
α
‖yn − yn−1‖.(3.8)

3. On An−1\Sn−1 we have g(un−1(x)) = g(un(x)) = 0, λn−1(x) > 0 and hence

d(x) = |max(λ+
n (x), 0)|2 − |λ+

n (x)|2 ≤ 0.(3.9)

4. On Tn−1 we have λn−1(x) = 0, g(un(x)) = 0, g(un−1(x)) > 0 and thus

d(x) = −c2|g(un−1(x))|2 = −c2|un(x)− un−1(x)|2.(3.10)

Next we estimate the term (λn, un−1 − un)Tn−1
in (3.6):

(λn, un−1 − un)Tn−1
= (λn − λn−1, un−1 − un)Tn−1

= (pn − pn−1, un−1 − un)Tn−1
+ α‖un − un−1‖2Tn−1

and therefore

(λn, un−1 − un)Tn−1

≤ ‖∆−1‖ ‖yn − yn−1‖Ω‖un − un−1‖Tn−1
+ α‖un − un−1‖2Tn−1

.
(3.11)

Inserting (3.7)–(3.11) into (3.6) we find

L̂c(yn, un, λn)− L̂c(yn−1, un−1, λn−1)

≤ −1

2
‖yn−1 − yn‖2 − α

2
‖un−1 − un‖2I∗n −

α

2
‖un−1 − un‖2In\I∗n −

α

2
‖un−1 − un‖2Tn−1

+‖∆−1‖ ‖yn − yn−1‖Ω‖un − un−1‖Tn−1
+ α‖un − un−1‖2Tn−1

+
c

2
‖un−1 − un‖2I∗n −

c

2
‖un−1 − un‖2Tn−1

.

(3.12)

Using ab ≤ 1
2 (a

2

ρ + ρb2) for every ρ > 0 and relation (3.8), we get for c ≥ α

L̂c(yn, un, λn)− L̂c(yn−1, un−1, λn−1)

≤ −1

2
‖yn−1 − yn‖2 +

(c− α)

2
‖un−1 − un‖2I∗n +

(α− c)
2
‖un−1 − un‖2Tn−1

+
‖∆−1‖

2ρ
‖yn−1 − yn‖2 +

ρ‖∆−1‖
2

‖un−1 − un‖2Tn−1

≤ −1

2
‖yn−1 − yn‖2 +

(c− α)‖∆−1‖2
2α2

‖yn−1 − yn‖2

+
α− c+ ρ‖∆−1‖

2
‖un−1 − un‖2Tn−1

+
‖∆−1‖

2ρ
‖yn−1 − yn‖2

=
1

2

[
(c− α)

‖∆−1‖2
α2

+
‖∆−1‖
ρ

− 1

]
‖yn−1 − yn‖2

+
1

2
(α+ ρ‖∆−1‖ − c)‖un−1 − un‖2Tn−1

.

Setting γ = ρ‖∆−1‖, then L̂c(yn, un, λn) ≤ L̂c(yn−1, un−1, λn−1) provided that[[
(c− α)

α2
+

1

γ

]
‖∆−1‖2 − 1

]
≤ 0 and α+ γ − c ≤ 0.
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The latter condition is equivalent to

(3.4) α+ γ ≤ c ≤ α− α2

γ
+

α2

‖∆−1‖2 .

If the second inequality is strict, then L̂c(yn, un, λn) < L̂c(yn−1, un−1, λn−1) except if
yn = yn−1. In this latter case un = un−1 and the algorithm stops at the solution to
(S).

Remark 3.1. Note that for the choice γ = α condition (3.4) is equivalent to

2 α ≤ c ≤ α2

‖∆−1‖2 .(3.13)

Remark 3.2. If there exists γ such that (3.4) holds, then necessarily

c > α ≥ 2‖∆−1‖2
holds. Indeed, assume that α < 2‖∆−1‖2. Then

α+ γ < α− α2

γ
+ 2α,

that is

γ2 − 2αγ + α2 = (γ − α)2 < 0,

which is a contradiction.

3.2. The discrete case. So far we have given a sufficient condition for L̂c to act
as a merit function for which the algorithm has a strict descent property. In particular
this eliminates the possibility of chattering of the algorithm: it will not return to the
same active set a second time. If the control and state spaces are discretized, then
the descent property can be used to argue convergence in a finite number of steps.
More precisely, assume that a finite difference or finite element–based approximation
to (P) results in

(PN,M)
min JN,M(Y,U) =

1

2
‖M 1

2
1 (Y − Zd)‖2RN +

α

2
‖M 1

2
2 (U − Ud)‖2RM ,

S Y = M3 U,
U ≤ B.

Here Y and Zd denote vectors in RN corresponding to the discretization of y and
zd, and U, Ud, and B denote vectors in RM , corresponding to the discretizations of
u, ud, and b. Furthermore M1, S, and M2 are, respectively, N × N, N × N , and
M×M positive definite matrices while M3 is an N×M matrix. The norms in (PN,M)
denote Euclidean norms and the inequality is understood coordinatewise. Finally, it
is assumed that M2 is a diagonal matrix. It is simple to argue the existence of a
solution (Y ∗, U∗) to (PN,M). A first order optimality system is given by

S Y ∗ = M3 U
∗,

S P ∗ = −M1(Y ∗ − Zd),
U∗ = Ud +

1

α
M−1

2 (M>3 P
∗ − Λ∗),

Λ∗ = cmax

(
0, U∗ +

1

c
Λ∗ −B

)
,

(3.14)

with (P ∗,Λ∗) ∈ RN × RM for every c > 0. Here max is understood coordinatewise.
The algorithm for the discretized problem is given next.
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Discretized algorithm.
1. Initialization: choose Y o, Uo, and Λo, and set n = 1.
2. Determine the following subsets of {1, . . . ,M}:

An =

{
i | Un−1

i +
1

c
Λn−1
i > Bi

}
, In = {1, . . . ,M}\An.

3. If n ≥ 2 and An = An−1, then stop.
4. Else, find (Y n, Pn) ∈ RN × RN such that

S Y n = M3

{
B in An,

Ud +
1

α
M−1

2 M>3 Pn in In,

S Pn = −M1(Y n − Zd)
and set

Un =

{
B in An,

Ud +
1

α
M−1

2 M>3 Pn in In.

5. Set Λn = M>3 P
n − αM2(Un − Ud), update n = n+ 1, and goto 2.

The following corollary describing properties of the discretized algorithm can be
obtained with techniques analogous to those utilized above for analyzing the contin-
uous algorithm. We shall denote

m2 = min
i

(M2)i,i, m2 = max
i

(M2)i,i, and K = ‖M−1
2 M>3 ‖ ‖S−1M1‖.

Corollary 3.1. If

m2 (α+ γ) ≤ c < αm2 − α2

γ
+
α2‖M1‖
K

(3.15)

holds for some γ > 0, then the discretized algorithm converges in finitely many steps
to the solution of (PN ).

Proof. First we observe that if the discretized algorithm stops in step 3, then
the current iterate gives the unique solution. Then we show with an argument
analogous to that of the proof of Theorem 3.1 that with (3.15) holding, we have
LN,Mc (Yn, Un,Λn) < LN,Mc (Yn−1, Un−1,Λn−1) or (Yn, Un) = (Yn−1, Un−1), where the
discretized merit function is given by

LN,Mc (Y,U,Λ) =
1

2
‖M 1

2
1 (Y − Zd)‖2RN

+
α

2
‖M 1

2
2 (U − Ud)‖2RM

+ ( Λ, ĝc(U,Λ))RM +
c

2
‖ĝc(U,Λ)‖2RM

with ĝc(U,Λ) = (max(U1 − B1,−Λ1

c ), . . . ,max(UM − BM ,−ΛM
c ))>. If (Yn, Un) =

(Yn−1, Un−1), then An+1 = An and the discretized algorithm stops at the solu-
tion. The case LN,Mc (Yn, Un,Λn) < LN,Mc (Yn−1, Un−1,Λn−1) cannot occur for infinitely
many n since there are only finitely many different combinations of active index sets.
In fact, assume that there exists p < n such that An = Ap and In = Ip. Since (Yn, Un)
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is a solution of the optimality system of step 4 if and only if (Yn, Un) is the unique
solution of

min{ JN,M(y, u) | S Y = M3 U, U = B in An },
it follows that Yn = Yp, Un = Up, and Λn = Λp. This contradicts LN,Mc (Yn, Un,Λn) <
LN,Mc (Yp, Up,Λp) and ends the proof.

Remark 3.3. Note that for γ = α
m2

condition (3.15) is satisfied if

m2 α

(
1 +

1

m2

)
≤ c < α2‖M1‖

K
.

Therefore, one can choose c = m2 α (1 + 1
m2

) for any

α >
m2K

‖M1‖
(

1 +
1

m2

)
.

4. Ascent properties of the algorithm. In the previous section sufficient
conditions for convergence of the algorithm in terms of α, c, and ‖∆−1‖ were given.
Numerical experiments showed that the algorithm converges also for values of α, c,
and ‖∆−1‖ which do not satisfy the conditions of Theorem 3.1. In fact the only
possibility of constructing an example for which the algorithm has some difficulties
(which will be made precise in the following section) is based on violating the strict
complementarity condition.

Thus one is challenged to further justify theoretically the efficient behavior of the
algorithm. In the tests that were performed it was observed that the cost functional
was always increasing so that in practice the algorithm behaves like an infeasible
algorithm. To parallel theoretically this behavior of the algorithm as far as possible,
we slightly modify the algorithm. For the modified algorithm an ascent property of
the cost J will be shown.

Modified algorithm.
1. Initialization: choose uo, yo, and λo; set n = 1.
2. (a) Determine the following subsets of Ω:

An =

{
x | un−1(x) +

λn−1(x)

c
> b

}
, In =

{
x | un−1(x) +

λn−1(x)

c
≤ b
}
,

(b) and find (ỹ, p̃) ∈ H1
o (Ω)×H1

o (Ω) such that

−∆ỹ =

{
b in An,
ud +

p̃

α
in In,

−∆p̃ = zd − ỹ in Ω,

and set

ũ =

{
b in An,
ud +

p̃

α
in In.

3. λ̃ = p̃− α(ũ− ud).
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4. Set

Ã =

{
x | ũ(x) +

λ̃(x)

c
> b

}
.

If Ã = An, then stop, else goto 5.
5. Check for J(ỹ, ũ) > J(yn−1, un−1).

(a) If J(ỹ, ũ) > J(yn−1, un−1), then

n = n+ 1, yn = ỹ, un = ũ, λn = λ̃, and goto 2(a).

(b) Otherwise, determine

Tn−1 = { x ∈ In−1 | un−1(x) > b }.
• If measure of Tn−1 is null, then stop;
• else set

An = An−1 ∪ Tn−1, In = In−1\Tn−1,

then goto 2(b).
Theorem 4.1. If the modified algorithm stops in step 4, then (ũ, ỹ, λ̃) is the

solution to (S). If it never stops in step 5(b), then the sequence J(yn, un) (n ≥ 2) is
strictly increasing and converges to some J∗.

Proof. Let us first assume that the algorithm stops in step 4. In case An is
calculated from 2(a), then (ũ, ỹ, λ̃) is the solution to (S) by Theorem 2.1. If An
is determined from 5(b), then an argument analogous to that used in the proof of
Theorem 2.1 allows us to argue that again (ũ, ỹ, λ̃) is the solution to (S).

Next we assume that the algorithm never stops in step 4. Let us consider an
iteration level, where the check for ascent in step 5(a) is not passed. Consequently
An and In are redefined according to step 5(b) and (ỹ, ũ) are recalculated from 2(b).
We have already noticed that (ỹ, ũ) is a solution of the optimality system of step 2(b)
if and only if (ỹ, ũ) is the unique solution of

(Paux) min{ J(y, u) | −∆y = u in Ω, y ∈ H1
o (Ω), u = b in An }.

Since An = An−1 ∪ Tn−1 strictly contains An−1 it necessarily follows that

J(yn−1, un−1) ≤ J(ỹ, ũ).(4.1)

It will be shown next that equality in (4.1) is impossible. In fact if J(ỹ, ũ) =
J(yn−1, un−1), then due to uniqueness of the solution to (Paux) it follows that (ỹ, ũ) =
(yn−1, un−1) and consequently λ̃ = λn−1. OnAn = An−1∪Tn−1, we get ũ = b = un−1.
This implies that un−1 = b on Tn−1 and gives a contradiction to the assumption
that the measure of Tn−1 is non-null. Hence J(yn−1, un−1) = J(ỹ, ũ) is impossible.
Together with (4.1) it follows that J(yn−1, un−1) < J(ỹ, ũ) and thus the sequence
{J(yn, un)} generated by the modified algorithm is strictly increasing. The pair (yb, b)
with −∆yb = b in Ω is feasible for all (Paux) so that J(yn, un) ≤ J(yb, b). It follows
that J(yn, un) is convergent to some J∗.

We note in addition that ũ is feasible since ũ = un−1 = un−1 + λn−1

c ≤ b on In
(λn−1 = λ̃ = 0 on In).

The previous result can be strengthened in the case where (P) is discretized as
in subsection 3.1.
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Table 5.1
Example 1(a): ud ≡ 0 , α = 10−2, c = 10−1.

Iteration max(un − b) Size of An J(yn, un) Lc(yn, un, λn) L̂c(yn, un, λn)
1 4.8708e-02 1250 4.190703e-02 4.190785e-02 4.190785e-02
2 5.8230e-05 1331 4.190712e-02 4.190712e-02 4.190712e-02
3 0.0000e+00 1332 4.190712e-02 4.190712e-02 4.190712e-02
4 0.0000e+00 1332 4.190712e-02 4.190712e-02 4.190712e-02

Corollary 4.1. If the modified algorithm is discretized as described in the
previous section and if it never stops in step 5(b), then the (discretized) solution is
obtained in finitely many steps.

Proof. Unless the algorithm stops in step 4, the values of JN (Yn, Un) (n ≥ 2)
are strictly increasing. As argued in the proof of Corollary 3.1, at each level of the
iteration the minimization is carried out over an active set different from all those that
have been computed before. As there are only finitely many different possibilities for
active sets, the modified algorithm terminates in step 4 at the unique solution of
(S).

We have not found a numerical example in which the modified algorithm termi-
nates in step 5(b).

5. Numerical experiments. In this section we report on numerical tests with
the proposed algorithm. For these tests we chose Ω =]0, 1[×]0, 1[ and the five-point
finite difference approximation of the Laplacian. Unless otherwise specified the dis-
cretization was carried out on a uniform mesh with grid size 1/50.

For the chosen dimension ‖∆−1‖ = 1
2π2 so that 1

‖∆−1‖2 = 4π4 ' 390. Relation

(3.13), which is required for the applicability of Theorem 3.1, is satisfied if α ≥ 5. 10−3

to get the convergence via Theorem 3.1. Nevertheless we have also tested the method
for smaller values of α.

The tests were performed on a Hewlett-Packard workstation using the MATLAB
package.

5.1. Example 1. We set

zd(x1, x2) = sin (2πx1) sin (2πx2) exp(2x1)/6, b ≡ 0.

Several tests for different values for α, c, and ud were performed. We present two of
them. In the first one (3.13) is satisfied with strict inequalities; see Table 5.1.

Plots of the optimal state and optimal control are shown in Figure 5.1.

We present in Table 5.2 a second example where (3.13) is not fulfilled because α
is too small; in addition ud has been chosen infeasible.

Although the size of the set An, in the sense of number of grid points, in An is
increasing, the sequence An does not increase monotonically. More precisely, points
in An at iteration n may not belong to An+1 at iteration n+ 1.

We observe numerically that the algorithm stops as soon as an iterate is feasible.
Thus the sequence of iterates is not feasible until it reaches the solution. We could say
that we have an “outer” method. We must also underline that unlike with classical
primal active set methods, the primal-dual method that we propose can move a lot
of points from one iteration to the next.

We compared the new algorithm to an Uzawa method for the augmented La-
grangian with Gauss–Seidel splitting. For convenience we recall that algorithm.
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Fig. 5.1. Optimal state (left), optimal control (right).

Table 5.2
Example 1(b): ud ≡ 1, α = 10−6, c = 10−2.

Iteration max(un − b) Size of An J(yn, un) Lc(yn, un, λn) L̂c(yn, un, λn)
1 5.0986e+02 1250 1.734351e-02 9.858325e+00 9.858325e+00
2 4.4728e+02 1487 2.089663e-02 7.688683e+00 7.688683e+00
3 3.6796e+02 1677 2.375001e-02 5.612075e+00 5.612075e+00
4 5.8313e+02 1831 2.603213e-02 4.526200e+00 4.526200e+00
5 6.7329e+02 1944 2.782111e-02 3.657995e+00 3.657995e+00
6 5.3724e+02 2039 2.911665e-02 2.402021e+00 2.402021e+00
7 3.6175e+02 2098 2.981378e-02 1.191161e+00 1.191161e+00
8 1.5071e+02 2146 3.011540e-02 3.678089e-01 3.678089e-01
9 6.5928e+01 2178 3.018832e-02 7.796022e-02 7.796022e-02
10 2.3420e+01 2196 3.019715e-02 3.344241e-02 3.344241e-02
11 3.4889e+00 2208 3.019762e-02 3.022994e-02 3.022994e-02
12 0.0000e+00 2210 3.019762e-02 3.019762e-02 3.019762e-02
13 0.0000e+00 2210 3.019762e-02 3.019762e-02 3.019762e-02

Algorithm UGS.
• Step 1. Initialization: Set n = 1 and choose γ > 0.

Choose qo ∈ L2(Ω) and u−1 ∈ L2(Ω).
• Step 2. Choose kn ∈ N, set u−1

n = un−1, and for j = 0, . . . , kn

yjn = Arg min { Lγ(y, uj−1
n , qn) | y ∈ H2(Ω) ∩H1

o (Ω) },
ujn = Arg min { Lγ(yjn, u, qn) | u ∈ Uad }.

End of the inner loop: yn = yknn , un = uknn .
• Step 3.

qn+1 = qn +
ρ

kn + 1

kn∑
j=0

(Ayjn − ujn), where ρ ∈ (0, 2γ],

where

Lγ(y, u, q) = J(y, u) + (q,Ay − u)L2(Ω) +
γ

2
‖Ay − u‖2L2(Ω).

For this algorithm a detailed convergence analysis was given in [BK]. Due to
the splitting technique the second constrained minimization in Step 2 can be carried
out by a simple algebraic manipulation. Algorithm UGS is an iterative algorithm
that approximates the solution (y∗, u∗), whereas the new algorithm obtains the exact
(discretized) solution. For Example 1(a) (Table 5.1) the computing time was 61
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Table 5.3
uo ≡ 0 (≡ b).

Iteration max(un − b) size of An J(yn, un) Lc(yn, un, λn) L̂c(yn, un, λn)
1 4.4409e-15 1385 4.296739e-02 4.296739e-02 4.296739e-02
2 1.2546e-14 160 4.296739e-02 4.296739e-02 4.296739e-02
3 3.2752e-15 2078 4.296739e-02 4.296739e-02 4.296739e-02
4 4.5519e-15 2308 4.296739e-02 4.296739e-02 4.296739e-02
5 4.5242e-15 1613 4.296739e-02 4.296739e-02 4.296739e-02
6 4.3299e-15 1787 4.296739e-02 4.296739e-02 4.296739e-02

seconds whereas Algorithm UGS with accuracy set at 10−3 was stopped after 105
minutes. At that moment the difference between the algorithm and Algorithm UGS
was

|Jugs−J(y∗, u∗)| ≈ 4.10−8, ‖yugs−y∗‖L∞ ≈ 8.10−7, and ‖uugs−u∗‖L∞ ≈ 4.10−6,

where the index “ugs” refers to the result from Algorithm UGS. For Example 1(b)
(Table 5.2) the algorithm took 191 seconds whereas Algorithm UGS was stopped after
120 minutes.

5.2. Example 2. The desired state zd, b is set as in the previous example
and α = 10−2, c = 10−1. See Table 5.3. This example has been constructed such
that there is no strict complementarity at the solution. More precisely we have set
ud = b− 1

α [−∆−1zd + ∆−2b] so that the exact solution of problem (P) is u∗ = b = 0
and λ∗ = 0 and hence λ∗ is not positive where the constraint is active. This example
was considered by means of the optimality system (S) of Theorem 1.1.

In this example the canonical initial guess uo coincides with the solution u∗.
From Table 5.3 we observe that un, J(yn, un), Lc(yn, un), and L̂c(yn, un) remain
constant while the active sets An chatter. For different initial guesses for uo the
same type of behavior is observed, the algorithm always reaches the optimal value
for u and J in one iteration, and if the stopping criterion of the algorithm was based
on the coincidence of two consecutive values of J , it would stop after one iteration.
The chattering of active sets is due to lack of strict complementarity and machine
precision. Let us briefly consider this phenomenon and note at first that the signs
in the algorithm are set such that at the limit we should have Ω = I∗ (all inactive
with λ∗ = u∗ = 0). If x ∈ An−1, then un−1(x) = 0 by step 4 and λn−1(x) = ±ε,
with ε equal to the computer epsilon, will decide whether x ∈ An or In, although for
numerical purposes the exact pair for (u, λ) is already obtained. If x ∈ In−1, then
λn−1 = 0 and un−1(x) = ±ε will decide whether x ∈ An or In, while the influence of
this choice on J or Lc is of the order of ε2, i.e., it is numerically zero. Therefore we
decided to replace “> b” in the definition of An by “> b− ε ” (and In = Ω\An): the
algorithm now behaves as expected and stops after two iterations.

5.3. Example 3. We have seen with Example 1 (Tables 5.1 and 5.2) that the
augmented Lagrangian function decreases during iterations. We show with this exam-
ple that the augmented Lagrangian function may not decrease although the method
is convergent and provides the exact solution. Let us precise the data:

zd =

{
200 x1x2 (x1 − 1

2 )2 (1− x2) if 0 < x1 ≤ 1/2,
200 x2 (x1 − 1)(x1 − 1

2 )2 (1− x2) if 1/2 < x1 ≤ 1,

ud ≡ 0, b ≡ 1, c = 10−2.
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Table 5.4
Example 3(a): α = 10−6, uo ≡ 1 (≡ b).

Iteration max(un − b) Size of An J(yn, un) Lc(yn, un, λn) L̂c(yn, un, λn)
1 4.1995e+02 1100 3.314755e-02 9.645226e+00 9.645226e+00
2 3.8057e+02 1370 3.672870e-02 7.943326e+00 7.943326e+00
3 3.6453e+02 1300 3.963515e-02 7.393744e+00 7.393744e+00
4 3.7512e+02 1400 4.249987e-02 7.809205e+00 7.809205e+00
5 3.8952e+02 1500 4.555558e-02 8.300084e+00 8.300084e+00
6 3.9452e+02 1600 4.880515e-02 8.320358e+00 8.320358e+00
7 3.8004e+02 1700 5.203947e-02 7.485445e+00 7.485445e+00
8 3.3858e+02 1800 5.490267e-02 5.699382e+00 5.699382e+00
9 2.6458e+02 1898 5.701220e-02 3.286759e+00 3.286759e+00
10 1.5311e+02 1986 5.811845e-02 1.093548e+00 1.093548e+00
11 8.3048e+01 2040 5.834162e-02 3.099587e-01 3.099587e-01
12 1.5809e+01 2086 5.839423e-02 5.959874e-02 5.959874e-02
13 0.0000e+00 2098 5.839438e-02 5.839438e-02 5.839438e-02
14 0.0000e+00 2098 5.839438e-02 5.839438e-02 5.839438e-02
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1
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ALPHA = 1E-06
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# Iterations

Fig. 5.2. Influence of α on the behavior of Lc (logarithmic scale).

See Table 5.4. The solution was obtained in 210 seconds.

The plot in Figure 5.2 shows the influence of α on the behavior of the Lagrangian
function Lc.

We see that during the first iterations the augmented Lagrangian function does
not decrease if α is too small.

However, if the initialization point is close enough to the solution, then this func-
tion decreases. We have tested initialization points different from b which were closer
to the solution and obtained decrease of Lc. As an example we give in Table 5.5 the
results for α = 10−10 with an initialization according to (2.1) but with uo the solution
for α = 10−5.

Note that the total number of iterations including the initialization with α = 10−5

to obtain the solution corresponding to α = 10−10 is equal to 18. If one computes the
solution with initialization uo = b, the number of iterations is 27 and Lc decreases
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Table 5.5
Example 3(b): α = 10−10, uo given by the solution to (P) for α = 10−5.

Iteration max(un − b) Size of An J(yn, un) Lc(yn, un, λn)
1 1.6605e+03 1986 5.696032e-02 4.889158e+01
2 1.4741e+03 2034 5.750110e-02 2.948470e+01
3 1.1542e+03 2082 5.781067e-02 1.299992e+01
4 6.8931e+02 2130 5.793424e-02 2.631407e+00
5 1.6713e+02 2168 5.795024e-02 2.198494e-01
6 1.1931e+02 2172 5.795048e-02 1.276798e-01
7 7.0091e+01 2176 5.795058e-02 7.857522e-02
8 2.0618e+01 2180 5.795061e-02 5.958497e-02
9 0.0000e+00 2182 5.795061e-02 5.795061e-02
10 0.0000e+00 2182 5.795061e-02 5.795061e-02

after iteration 12. Thus a good initial guess can decrease the number of iterations to
obtain the solution. This process was repeated successfully for smaller values of α up
to α = 10−15 as well.
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Abstract. We prove new results on the continuity properties and on reachable sets of the
minimum time function associated with a linear dynamical system in a separable Hilbert space H.
Part of the results are new also in the finite dimensional case. The regularity results are stated thanks
to the result we obtain on the connection between the minimum time function and the minimum
energy.
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1. Introduction. This paper is devoted to the study of continuity properties of
the minimum time function associated with a linear dynamical system in finite and
infinite dimensions. We consider a separable Hilbert space H (the state space) with
norm | · | and scalar product 〈·, ·〉 and we consider a controlled dynamical system in
H whose behavior is described by the following linear Cauchy problem in H:{

y′(t) = Ay(t) +Bu(t); t > 0,
y(0) = x ∈ H,(1)

where A : D(A) ⊂ H → H is a closed linear operator that generates a strongly
continuous semigroup etA on H. Moreover, u : [0,+∞[→ U is a measurable function
with values in another Hilbert space U (the space of control parameters) and B : U →
H is a continuous linear operator. Given u ∈ L1

loc(0,+∞;U), there exists a unique
mild solution to (1) in [0,+∞) given by (see, e.g., Pazy [28])

y(t;x, u) = etAx+

∫ t

0

e(t−s)ABu(s)ds.(2)

Now we assume that the control strategies u(·) are taken in a given set of admissibility
Uad and consider the following minimum time problem:

Given x ∈ H, find the minimal time needed to bring x to 0 by applying an admis-
sible control strategy.

The function T (x) giving the minimal time to bring x to 0 is set equal to +∞ when
it is not possible to steer x to 0 in finite time by applying admissible control strategies,
and it is called the Bellman function of the system (1). Obviously, the function T
will depend on the set Uad of admissible control strategies. We will consider the case
where Uad is a ball centered at x = 0 of the space Lp(0,+∞;U), p ∈ (1,+∞] and
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†Dipartimento di Matematica, Università di Pisa, Via F. Buonarroti n.2, 56127 Pisa, Italy

(gozzi@dm.unipi.it). Current address: Dipartimento di Matematica per le Decisioni, Universitá
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call the associated Bellman function Tp(x). The regularity properties of the Bellman
function give important information on the system (1) and have been studied in many
papers when the dimension of H is finite and p = +∞.

Petrov [29] studied more general classes of admissible controls and stated that a
necessary and sufficient condition for the continuity of the minimal time function is
the local null controllability. In our context this is equivalent to the so-called Kalman
condition, i.e., that the matrix [B,AB, ..., An−1B] is full rank.

Petrov also describes necessary and sufficient conditions under which the Bell-
man function is Lipschitz continuous in a neighborhood of the origin. Other papers
related to Lipschitz continuity of the Bellman function T∞(x) are, e.g., Cannarsa and
Sinestrari [8, 9], which study various properties of the minimum time function in the
case when the state equation is nonlinear, and Hajek [20], which studies the case of
linear systems.

On the other hand, in many cases the minimal time function is neither differen-
tiable nor Lipschitz continuous. The Hölder continuity was investigated by Liverovskii
[23, 24], Petrenko [30], Ranguin [32, 33], and by Gyurkovics [19] who showed that,
when the system (1) satisfies the Kalman condition, the Hölder exponent of T∞ is
related to the minimum number k ≤ n− 1 such that the matrix [B,AB, ..., AkB] has
full rank. We refer moreover to Bacciotti [1, sections 25, 33] and to Bianchini and
Stefani [6] and the references therein for a discussion of the relationship between the
Hölder continuity of the minimum time function and geometrical properties of the
system also in the nonlinear case.

Other papers related to regularity properties of T∞(x) in finite dimension are
Bardi and Soravia [5] concerning Hölder continuity in the nonlinear case; Rampazzo
and Sartori [31] concerning the case of L1 controls; Bardi [4] concerning the dynamic
programming equation for T∞; and Conti [10]. See also Hermes and Lasalle; Lee and
Markus; and Li and Yong [21, 22, 25] for a wider exposition of the argument.

The minimum time problem has been studied also in the case when the dimension
of H is infinite and p = +∞. Carja [12] proved the continuity of the Bellman function
T∞ and various properties of the reachable set when the system is linear and null
controllable, while in Carja [14] the linear case with B = I is considered. In Carja
[13, 15] Hölder continuity results of T∞ in the linear case are proved. In these last two
papers Hölder continuity results for Tp, p < +∞ are also proved; however, part of the
method used to prove these results seems to be incorrect (see our section 3.2). We also
recall Tauraso [38] which contains continuity results for the minimum time function
of linear systems such as (1) in the case of p = 2 in connection with controllability
properties of the system.

Other papers on the minimum time problem in infinite dimension are, e.g.,
Fattorini [17] and Krabs [26, 27], which study existence and properties of optimal
controls that we will use in this paper. We recall also the papers of Barbu [2, 3]
in which the dynamic programming equation and the maximum principle in some
infinite dimensional case are studied.

The aim of this paper is to study the continuity properties of the Bellman function
Tp, p ∈ (1,+∞], in the case when the state space H is a separable Hilbert space by
generalizing the results of the papers mentioned above. We point out that in finite
dimension the natural approach (used in the papers mentioned above) is to connect
the continuity properties of Tp in a neighborhood of x = 0 with the minimum number
k ≤ n − 1 such that the matrix [B,AB, ..., AkB] has full rank. Since in infinite
dimension this is not possible, we use a different approach: we prove (see Theorem
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4.1) that the function Tp is implicitly defined by the minimum energy function (that
we will introduce later; see also section 2); we prove new regularity results for the
minimum energy function and we use them to prove various continuity properties of
Tp.

The connection between minimum time problems and minimum energy problems
has been observed in [38], where the case p = 2 is studied and a lower semicontinuity
result for T2 is proved, and in [15, Remark 3.1], where it is used to prove Hölder conti-
nuity of T∞ in some particular cases. However, in both cases, a precise formulation of
this connection and of its consequences is not given. Here the mentioned relationship
is established in a precise way for p ∈ (1,+∞] (see Theorem 4.1). To well exploit this
connection we study the regularity properties of the minimum energy. Some results
of this kind are available in the literature (see section 3.1) but we were able to prove
more. Our new results on the minimum energy are interesting also in themselves and
we gather them in section 3.2, Theorem 3.7. Then, using these new results we get an
estimate of the growth rate of Tp(x) in a neighborhood of x = 0 (see Theorem 4.6)
which can be seen as an estimate of the modulus of continuity (and in some cases of
the Hölder exponent) near this point. This estimate is then exploited in a different
way when p ∈ (1,+∞) and when p = +∞.

If p = +∞ via the dynamic programming principle, the estimate of Theorem
4.6 can be transferred (locally) to the whole reachable sets obtaining local uniform
continuity, an estimate of the local modulus and, in somes case, of the local Hölder
exponent. The fact that T∞ is locally uniformly continuous is already shown in [15]
where some estimates of the modulus of continuity are given, too. Here the estimate
proved in Theorem 4.6 gives a way to estimate the modulus of continuity of T∞ in
more general cases by using estimates for the minimum energy as t ↘ 0. In general
it is not easy to find such estimates, but in some cases it can be done, as shown in
section 5.

If 1 ≤ p < +∞, the dynamic programming principle does not hold, in general,
as shown in Example 5.14. If p ∈ (1,+∞), by using directly Theorem 4.1, we prove
that the function Tp is continuous (Theorem 4.8) and that the reachable sets enjoy
useful properties (Theorem 4.10). Moreover, by adding a new variable to the problem
(i.e., the radius of the ball of admissible strategies) we can also prove a version of the
dynamic programming principle which allows us again to transfer (with a different
method) the estimate of Theorem 4.6 to the whole reachable sets obtaining local
uniform continuity, an estimate of the local modulus and, in some cases, of the local
Hölder exponent. In particular, in the finite dimensional case, using results of Seidman
and Yong [35, 37] (see Theorem 3.6) that give sharp estimates for the minimum energy
as t↘ 0, we obtain precise estimates of the local Hölder exponent of Tp that seem to
be completely new.

We remark that the case p = 1 is the most difficult since the space L1 is not
reflexive nor a dual and so we cannot use the characterization of controllability given
in section 2. This case is not treated in this paper (see [31] for results in this direction).

Finally we recall that the behavior of the minimum energy function, in the case
p = 2, is related to the regularity properties of the stochastic diffusion process that
solves (1), where the control u is substituted by a white noise Ẇ . In particular, the
Kolmogorov equation associated with the process y enjoys good regularity properties
depending on the behavior of the singularity of the minimum energy as t↘ 0 (see [16,
Chapter 9] for an extensive treatment of the subject). So, in this paper, by proving
Theorem 4.1 we have indirectly shown a connection between the continuity properties
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of T2(x) in a neighborhood of x = 0 and the regularity properties of the solutions of
suitable second order partial differential equations (for results in this direction in the
finite dimensional case see, e.g., [18]).

The plan of the paper is the following. First we give some preliminaries and
the statement of the problem in section 2. Then we recall known results about null
controllability and minimum energy problems in section 3.1, while in section 3.2 we
give new results about continuity and monotonicity of the minimum energy that are
used in the rest of the paper. Section 4 is devoted to a statement and proof of the
main results, while in section 5 we discuss the uniform continuity (and in some cases
the Hölder continuity) of Tp and give some examples.

2. Preliminaries. This section is devoted to introducing the basic concepts that
will be used in the paper, i.e., the null controllability, the minimum time problem,
and the minimum energy problem. Consider the control system (1), where we assume
the following.

Hypothesis 2.1.
1. H and U are real separable Hilbert spaces.
2. A : D(A) ⊂ H → H is a closed linear operator that generates a C0 semigroup
etA on H satisfying ‖etA‖ ≤Meωt for given M ≥ 1 and ω ∈ R.

3. u : [0,+∞)→ U is a locally integrable function.
4. B : U → H is a continuous linear operator.

The unique mild solution (2) is continuous and can be written as

y(t;x, u) = etAx+ Ltu,(3)

where the operator Lt is defined as

Lt : Lp(0,+∞;U)→ H, Ltu =

∫ t

0

e(t−s)ABu(s)ds.(4)

We will assume that the control strategies belong to a given set of admissibility
Uad ⊂ L1

loc(0,+∞;U) which will vary depending on the context. We begin by taking,

for p ∈ [1,+∞], Uad = Up def
= Lp(0,+∞;U) and by considering the following null

controllability problem:

Given T > 0 and x ∈ H, find an admissible control strategy u such that
y(T ;x, u) = 0.

In the literature we refer to [39] for the various concepts of controllability, in
particular the null controllability. We now give the definition of p-null controllability.

Definition 2.2. Let T > 0, x ∈ H, and p ∈ [1,+∞]. If there exists a strategy
u ∈ Up such that y(T ;x, u) = 0, then the point x is said to be p-null controllable in
time T . If this happens for every x ∈ H, then the system (1) is said to be p-null
controllable in time T . If this happens for every T > 0 and x ∈ H, then the control
system (1) is said to be simply p-null controllable.

Definition 2.3. Given T > 0, x ∈ H, and p ∈ [1,+∞] we will denote by
M(p, T, x) the (possibly empty) set of control strategies u ∈ Lp(0,+∞;U) such that
y(T ;x, u) = 0.

Remark 2.4. The set M(p, T, x) is convex and closed and is nonempty if and
only if x is p-null controllable in time T . Moreover, by (3) and (4) it follows that x is
p-null controllable in time T if and only if eTAx ∈ LT (Up). Since LT (Uq) ⊂ LT (Up) for
q > p, then, if a point x is q-null controllable in time T , it is also p-null controllable
in time T for every p < q.
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Finally, the set Lt(Up) is increasing in the variable t. This remain true if we
consider, for any ρ > 0, the set Lt ({u ∈ Up, ‖u‖p ≤ ρ}).

We now take by Uad the following subset of controls:

Uad = Up,ρ = {u ∈ Up : |u|p ≤ ρ},

where ρ is a positive number. We denote by Rp,ρ(t) the set of states controllable to
the rest within time t by some controls in Up,ρ. More precisely,

Rp,ρ(t) = {x ∈ H : ∃u ∈ Up,ρ s.t. y(t, x, u) = 0}.

We observe that since H is a reflexive space, then Rp,ρ(t) is a closed set. We set

Rp,ρ =
⋃
t≥0

Rp,ρ(t)

and we define the minimum time function as

Tp,ρ(x) = inf{t ≥ 0 : x ∈ Rp,ρ(t)}, if x ∈ Rp,ρ(5)

and Tp,ρ(x) = +∞ otherwise. In some cases we will take for simplicity ρ = 1 and we
will write Tp instead of Tp,1 and Rp instead of Rp,1.

We recall that the continuity of the minimal time function in the origin is equiv-
alent to the p-null controllability of system (1) as the following result, proved in [15],
shows.

Theorem 2.5. Assume that Hypothesis 2.1 holds and let p ∈ (1,+∞], ρ > 0.
Then the system (1) is p-null controllable if and only if the corresponding minimal
time function Tp,ρ is continuous at the origin.

This result drives us to study only the case when the system (1) is p-null control-
lable. We end the section with the definition of the minimum energy problem.

Definition 2.6. Given T > 0, x ∈ H, and p ∈ [1,+∞], define the p-energy of a
control strategy u ∈M(p, T, x) as the quantity

Ep(u) =

(∫ +∞

0

|u(s)|pUds
) 1
p

, p ∈ [1,+∞),

E∞(u) = sup
t≥0
|u(t)|U ,

and the minimum p-energy to bring x to 0 as

E∗p (T, x)
def
= inf

u∈M(p,T,x)
Ep(u).

The minimum p-energy problem is

find the minimum p-energy needed to bring x to 0 in time T .

We observe that the second extremum of the integral can be taken as T , since
the control u(s) = 0 for s > T is admissible and it does not modify the value of the
minimum.
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3. Null controllability and minimum energy.

3.1. Known results. In this section we recall some known results about null
controllability and minimum energy that we will use in the rest of the paper. We
start with the following if and only if conditions for the 2-null controllability of the
system (1) (see, e.g., [39, Part IV, Chapter 1]).

Theorem 3.1. Assume Hypothesis 2.1.
(i) A point x ∈ H is 2-null controllable in time T > 0 if and only if eTAx ∈

Q
1
2

T (H), where QT =
∫ T

0
esABB∗esA

∗
ds.

(ii) The system (1) is 2-null controllable if and only if eTA(H) ⊂ Q 1
2

T (H) ∀T > 0.
(iii) The condition (ii) above is equivalent to

For every T > 0 there exists a constant C(T ) > 0

such that |eTA∗x| ≤ C(T )|Q1/2
T x| ∀x ∈ H.

In this case the operator Γ(T ) = Q
−1/2
T eTA is well defined and bounded on

H and ‖Γ(T )‖L(H) is the infimum of the constants C(T ) such that condition
(iii) holds.

(iv) If H = Rn, then the system (1) is 2-null controllable if and only if

rank [B,AB,A2B, ..., An−1B] = n.(6)

Remark 3.2. In the finite dimensional case all concepts of p-null controllability
coincide with (6) which is the well-known Kalman condition.

If p ∈ [1,+∞], then (i), (ii) of the above theorem still hold true with the operator

LT : Up → H in place of Q
1
2

T . Moreover, if p ∈ (1,+∞), then condition (iii) is true in
the following form (see, e.g., [11, Theorem 2.2]):

The system (1) is p-null controllable if and only if for every T > 0 there exists a
constant C(T ) > 0 such that

|eTA∗x| ≤ C(T )|L∗Tx| = C(T )

(∫ T

0

|B∗e(T−s)A∗x|qds
) 1
q

∀x ∈ H,(7)

where 1
q + 1

p = 1. As in the case p = 2 the smallest C(T ) is decreasing with respect
to T and blows up as T ↘ 0. If p = 1,+∞ the equivalence above is still true when
A generates a group but in general is false. In this case we have only that p-null
controllability implies (7) (see, e.g., [11]).

We now give a result about existence of optimal controls that, in the case p = 2,
gives an explicit formula for the optimal strategy. The proof can be found, e.g., in
[39, Part IV, Chapter 1] for the case p = 2. The case p 6= 2 can be obtained exactly
by repeating the same argument and we omit it. The case p = +∞ can be proved
using the same argument of [17].

Theorem 3.3. Let p ∈ (1,+∞). Assume Hypothesis 2.1 and let the system (1)
be p-null controllable. Then the problem

min

{∫ T

0

|u(s)|pds, u ∈ Lp(0,+∞;U) : y(T ;x, u) = 0

}
admits only one optimal solution which, in the case p = 2, is given by

u∗T,x(s) = −B∗e(T−s)A∗Q−
1
2

T Γ(T )x
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and in this case the value of the minimum is |Γ(T )x|2; B∗e(T−s)A∗Q−
1
2

T denotes the

closure of the operator B∗e(T−s)A∗Q−
1
2

T .
Let p = +∞. Assume Hypothesis 2.1 and let the system (1) be∞-null controllable.

Then the problem

min{||u||∞, u ∈ L∞(0,+∞;U) : y(T ;x, u) = 0}

admits at least one optimal solution.

Remark 3.4. The operator B∗e(T−s)A∗Q−
1
2

T is not a priori well defined on all H.
However, its closure is well defined on H due to the 2-null controllability assumption
(see [39, Part IV, Chapter 1]).

Moreover, we recall that if p = 1, in general an optimal control strategy for
the minimum energy problem does not exists. For example, one can take the one
dimensional case when A = a 6= 0 and B = 1.

The behavior of E∗p (t, x) when t → 0+ plays an important role in the rest of
the paper. We recall the following result, which is immediately provable taking the
control u(s) = −(1/T )B−1esAx. (See [16, Appendix B] for the case p = 2.)

Proposition 3.5. Assume that Hypothesis 2.1 holds and that B is onto. Then,
for every p ∈ [1,+∞] the system (1) is p-null controllable and for every fixed T0 there
exists a suitable constant C(T0) > 0 such that

E∗p (T, x) ≤ C(T0)|x|T−1+1/p, T ∈ (0, T0].

In finite dimension we have the following sharp result given by Seidman [35] and
by Seidman and Yong [37].

Theorem 3.6. If H = Rn, p ∈ [1,+∞], then, for almost every x ∈ H (setting
1/p = 0 when p = +∞)

E∗p (t, x) ∼ t−k−1+1/p|x| as t→ 0+,

where k is the first integer such that rank [B,AB, . . . , AkB] = n.
This theorem shows that the singularity of E∗p (t, x) as t → 0+ can have only a

finite range of behaviors. When the dimension of H is infinite this is not true as can
be deduced by the example given in [16, pp. 275–277] which shows that, in the case

p = 2 for every β ≥ 1, we can find diagonal operators A,B such that ‖Γ(t)‖ = o(t
β
2 )

as t→ 0.

3.2. New results. The following result about the regularity of the minimal
energy is interesting in itself and will be a key tool for proving properties of the
minimum time function and of reachable sets. For simplicity we will write Lp for
Lp(0,+∞;U).

Theorem 3.7. Let p ∈ (1,+∞]. Assume that Hypothesis 2.1 is satisfied and that
the system is p-null controllable. Then

(i) the function E∗p (t, ·) is homogeneus of degree 1 for every t > 0;
(ii) the function E∗p (·, x) is strictly decreasing for every x ∈ H;
(iii) if p ∈ (1,+∞), then the function E∗p is continuous. Moreover, for every ε > 0

there exists Cε such that

|E∗p (t, x1)− E∗p (t, x2)| ≤ Cε|x1 − x2|(8)
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for every t ≥ ε, x1, x2 ∈ H, and

|E∗p (t1, x)− E∗p (t2, x)| ≤ Cε
[
|x|(t2 − t1) +

∣∣∣x− e(t2−t1)Ax
∣∣∣](9)

for every x ∈ H, t2 > t1 > ε.
To prove the above theorem, we need first a useful representation lemma that

uses a minimax theorem to give a different representation of the minimum energy
function.

Lemma 3.8. Given p ∈ (1,+∞) consider the function

Lp : [0,+∞)×H × Lp ×H 7→ R, Lp(t, x;u, y) = ‖u‖pp + 〈y,Ltu+ etAx〉.

Then, for every (t, x) ∈ [0,+∞)×H we have

E∗p (t, x)p = inf
u∈Lp

sup
y∈H

Lp(t, x;u, y) = sup
y∈H

inf
u∈Lp

Lp(t, x;u, y)

and

E∗p (t, x)p = sup
y∈H

{〈y, etAx〉 − cp‖L∗tx‖qLq} ,(10)

where 1/p+ 1/q = 1 and cp = (1/q)[1/p]q/p.
Proof of Lemma 3.8. First we observe that

sup
y∈H

Lp(t, x;u, y) =

{ ‖u‖pp if etAx+ Ltu = 0,
0 otherwise

so that

inf
u∈Lp

sup
y∈H

Lp(t, x;u, y) = inf
u∈M(p,t,x)

‖u‖pp = E∗p (t, x)p.

The proof of the other equality

E∗p (t, x)p = sup
y∈H

inf
u∈Lp

Lp(t, x;u, y)

is much more difficult. Let us call, for brevity,

G1(t, x) = inf
u∈Lp

sup
y∈H

Lp(t, x;u, y) = E∗p (t, x)p

and

G2(t, x) = sup
y∈H

inf
u∈Lp

Lp(t, x;u, y).

We want to prove that G1 = G2. We begin by observing that, by easy verification,

inf
u∈Lp

sup
y∈H

Lp(t, x;u, y) ≥ sup
y∈H

inf
u∈Lp

Lp(t, x;u, y),

so G1 ≥ G2 and we have only to prove the reverse inequality. Since the function Lp
does not satisfy usual assumptions of minimax theorems, we consider for ε > 0 the
approximating function Lp,ε(t, x;u, y) = Lp(t, x;u, y)− ε|x|2. It can be easily verified
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that the function Lp,ε satisfies assumptions of [7, Proposition 1] (see also [38, Chapter
IV]) and so there exists a point (uε, yε) (a so-called “saddle point”) such that

max
y∈H

inf
u∈Lp(0,+∞;U)

Lp,ε(t, x;u, y) = Lp,ε(t, x;uε, yε) = min
u∈Lp

sup
y∈H

Lp,ε(t, x;u, y)

which gives, for every u ∈ Lp and y ∈ H,

Lp(t, x;uε, y)− ε|y|2 ≤ Lp(t, x;uε, yε)− ε|yε|2 ≤ Lp(t, x;u, yε)− ε|yε|2

so that

Lp(t, x;uε, yε) ≤ inf
u∈Lp

Lp(t, x;u, yε) ≤ sup
y∈H

inf
u∈Lp

Lp(t, x;u, yε)

= G2(t, x) ≤ E∗p (t, x)p < +∞.
The above two inequalities give

0 ≤ ‖uε‖pp = Lp(t, x;uε, 0) ≤ Lp(t, x;uε, yε)− ε|yε|2 ≤ G2(t, x)

so that the set {uε; ε > 0} is bounded and so there exists u0 ∈ Lp and a sequence
{εn}n∈N converging to 0 as n→ +∞ such that

uεn −→ u0 weakly in Lp.

Passing to the limit on this sequence we then obtain

Lp(t, x;u0, y) ≤ lim inf
n→+∞ Lp(t, x;uεn , y) ≤ lim inf

n→+∞ [Lp(t, x;uεn , y)− εn|y|2]

≤ lim inf
n→+∞ [Lp(t, x;uεn , yεn)− εn|yεn |2] ≤ lim inf

n→+∞ Lp(t, x;uεn , yεn) ≤ G2(t, x)

so that

G1(t, x) ≤ inf
u∈Lp

sup
y∈H

Lp(t, x;u, y) ≤ sup
y∈H

Lp(t, x;u0, y) ≤ G2(t, x)

which gives the claim G1 = G2.
Finally, to prove the last equality of the claim it is enough to observe that, by

standard calculations, we get

sup
y∈H

inf
u∈Lp

Lp(t, x;u, y)

= sup
y∈H

{
〈y, etAx〉+ inf

u∈Lp
[‖u‖pp + 〈y,Ltu〉

]}
.

Now, since L∗t : H 7→ Lq, [L∗t y](s) = B∗e(t−s)A∗y, we have

‖u‖pp + 〈y,Ltu〉 = ‖u‖pp + 〈L∗t y, u〉〈Lq,Lp〉
and

inf
u∈Lp

[‖u‖pp + 〈y,Ltu〉
]

= − sup
u∈Lp

[−‖u‖pp − 〈L∗t y, u〉]
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which is the convex conjugate function (see, e.g., [34, p. 104]) of ‖u‖pp calculated at

−L∗t y which, by standard calculations, is equal to cp‖L∗t y‖qq, where cp = (1/q)[1/p]q/p.
It follows that

inf
u∈Lp

[‖u‖pp + 〈y,Ltu〉
]

= −cp‖L∗t y‖qq

which gives the claim.
Remark 3.9.

(i) We observe that, in general, we cannot say that the map

H 7→ R, y 7→ 〈y, etAx〉 − cp‖L∗tx‖qLq
has a maximum point. However, if the system (1) is exactly controllable,
then there exists a unique maximum point (see, e.g., [38, Chapter IV]).

(ii) From the proof of Theorem 3.7 and from Remark 3.2 we can easily deduce
that a point x ∈ H is p-null controllable in time t > 0 if and only if

G2(t, x) = sup
y∈H

{〈y, etAx〉 − cp‖L∗tx‖qLq} < +∞.

We are now ready to give the proof of Theorem 3.7.
Proof of Theorem 3.7. (i) It is a straightforward consequence of the definition of

minimum energy and of the observation that

M(p, t, λx) = λM(p, t, x).

(ii) Given p ∈ (1,+∞], t1 ≥ 0, and x ∈ H it is clear that, if u0 is the minimum
p-energy control at (t1, x), then for every t2 > t1 the control u defined as u(r) = u0(r)
for r ∈ [0, t1] and u(r) = 0 for r ∈ (t1, t2] belongs to M(p, t2, x). This implies, in
particular, that E∗p (t1, x) ≥ E∗p (t2, x) for t2 > t1.

We now want to prove the strict inequality starting from the case p ∈ (1,+∞). In
this case we in fact have existence and uniqueness of the minimum p-energy control,
so to prove the strict inequality it is enough to prove that the above control u is not
optimal for t2 > t1. To this end we observe that, for p ∈ (1,+∞), t ≥ 0, x ∈ H, and
u ∈M(p, t, x), we can write

M(p, t, x) = u+ Ker Lt.

In particular, the control of minimum p-energy u∗ is such that, for any given w ∈
Ker Lt,

‖u∗‖Lp = min
λ∈R
‖u∗ + λw‖Lp

so that, by differentiating, we get

〈|u∗|p−2u∗, w〉〈Lq(0,t;U),Lp(0,t;U)〉 = 0.

Suppose now by contradiction that the control u defined above is optimal at time
t2 > t1. Then, for every w ∈ Ker Lt2 , we have

〈|u|p−2u,w〉〈Lq(0,t2;U),Lp(0,t2;U)〉 = 0.
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Choosing u1 ∈ Lp(0, t2 − t1;U) such that

Lt2−t1u1 = e(t2−t1)ALt1u0

(this is always possible thanks to the p-null controllability of the system (1)) the
control w1 defined as w1(s) = u0(s) for s ∈ [0, t1] and w1(s) = u1(s−t1) for s ∈ (t1, t2]
belongs to Ker Lt2 and is such that

〈|u|p−2u,w〉〈Lq(0,t2;U),Lp(0,t2;U)〉 = ‖u0‖Lp(0,t1;U) > 0,

which is a contradiction.
Consider now the case p = +∞. In this case we do not have uniqueness of the

optimal control, in general, so the above argument is not a straightforward application.
As before, let 0 < t1 < t2, x ∈ H, and let u0 be the minimum ∞-energy control at
(t1, x). Consider the control uλ ∈ L∞(0, t1;U) defined as uλ(r) = (1 − λ)u0(r)
for r ∈ [0, t1]. Then y(t1;xuλ) = λet1Ax. Now, from the ∞-null controllability
assumption we know that e(t2−t1)A(H) ⊂ Lt2−t1(U∞) so that (see [16, Appendix B])
for every ε > 0 there exists δ > 0 such that

e(t2−t1)A({|x| < δ}) ⊂ Lt2−t1({‖u‖∞ < ε}).
Now we choose 0 < ε < ‖u0‖∞, λ > 0 such that

λ|et1Ax| ≤ δ
and û such that ‖û‖∞ < ε, Lt2−t1 û = e(t2−t1)A

[
λet1Ax

]
. Then the control u1 ∈

Lp(0, t2;U) defined as u1(s) = λu0(s) for s ∈ [0, t1] and u1(s) = û(s−t1) for s ∈ (t1, t2]
belong to M(∞, t2, x) and ‖u1‖∞ < ‖u0‖∞, the claim follows.

(iii) We use the representation given in (10)

E∗p (t, x)p = sup
y∈H

{〈y, etAx〉 − cp‖L∗t y‖qLq} .
Using this, we have for brevityG(t, x) = E∗p (t, x)p, and taking x1 6= x2, withG(t, x1) >
G(t, x2),

G(t, x1)−G(t, x2) = supy∈H
{〈y, etAx1〉 − cp‖L∗t y‖qLq

}
− supy∈H

{〈y, etAx2〉 − cp‖L∗t y‖qLq
}

which, taking yε such that

G(t, x1) ≤ ε+ 〈yε, etAx1〉 − cp‖L∗t yε‖qLq ,
implies

G(t, x1)−G(t, x2) ≤ ε+ 〈etA∗yε, x1 − x2〉 ≤ ε+ |etA∗yε||x1 − x2|.(11)

By the p-null controllability assumption and by Remark 3.2 we have

|etA∗yε| ≤ C(t)|L∗t yε|Lq(12)

so that, taking ε ≤ G(t, x1) (if x1 = 0 we take the reverse inequality) we have

0 ≤ 〈etA∗yε, x1〉 − cp‖L∗t yε‖qLq ≤ |etA
∗
yε||x1| − cp‖L∗t yε‖qLq
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≤ C(t)|L∗t yε|Lq |x1| − cp‖L∗t yε‖qLq
and, by Young’s inequality, for any σ > 0 there exists Cσ > 0 such that

0 ≤ σ|L∗t yε|qLq + Cσ[C(t)|x1|]p − cp|L∗t yε|qLq
which finally gives, taking σ = cp/2,

cp/2|L∗t yε|qLq ≤ Ccp/2C(t)p|x1|p(13)

and then, by (12),

|etA∗yε| ≤ C(t)

[
2

cp
Ccp/2C(t)p|x1|p

]1/q

=

[
2

cp

]1/q

C
1/q
cp/2

C(t)p|x1|p−1.

By substituting the last inequality into (11) we get, taking also ε sufficiently small,

G(t, x1)−G(t, x2) ≤ ε+
[

2

cp

]1/q

C
1/q
cp/2

C(t)p|x1|p−1|x1−x2| ≤ C1(p)C(t)p|x1|p−1|x1−x2|,
(14)
where C1(p) is a suitable constant depending only on p. Now we observe that, given
a > b ≥ 0 and p ∈ (1,+∞), we have

a− b ≤ a1−p [ap − bp]

so that, in our case,

E∗p (t, x1)− E∗p (t, x2) ≤ E∗p (t, x1)1−p [G(t, x1)−G(t, x2)](15)

= G(t, x1)−1/q [G(t, x1)−G(t, x2)] .

By (10) and (12) we get

G(t, x1) ≤ sup
y∈H
{C(t)‖L∗t y‖Lq |x1| − cp‖L∗t y‖qLq}(16)

which gives, by standard calculations,

G(t, x1) ≤ c1−pp cqC(t)p|x1|p

so that putting the last equation and (14) into (15), we obtain

E∗p (t, x1)− E∗p (t, x2)

≤ [c1−pp cqC(t)p|x1|p
]−1/q

C1(p)C(t)p|x1|p−1|x1 − x2| = C2(p)C(t)|x1 − x2|,

where C2(p) = C1(p)[c1−pp cq]
−1/q. Then (8) follows by repeating the same argument,

exchanging the roles of x1 and x2.
To prove (9) we use a similar argument. First we fix t1 < t2 and we consider yε

such that

G(t1, x) ≤ ε+ 〈yε, et1Ax〉 − cp‖L∗t1yε‖qLq .
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Then, reasoning as in the above proof, we have

G(t1, x)−G(t2, x) ≤ ε+ 〈yε, et1Ax〉 − cp‖L∗t1yε‖qLq − 〈yε, et2Ax〉+ cp‖L∗t2y‖qLq

= 〈et1A∗yε, x− e(t2−t1)Ax〉+ cp

∫ t2

t1

|B∗esA∗yε|qds

≤ C(t1)‖L∗t1yε‖Lq |x− e(t2−t1)Ax|+ cp|B∗|q
∫ t2

t1

‖L∗syε‖qLqds.

Now, arguing as in (13), we get

|L∗t1yε|qLq ≤
2

cp
Ccp/2C(t1)p|x|p

and

sup
s∈[t1,t2]

‖L∗syε‖qLq ≤ ‖L∗t2yε‖qLq ≤
2

cp
Ccp/2C(t2)p|x|p

so that

G(t1, x)−G(t2, x) ≤ ε+ C3(p)
[
C(t1)p|x|p−1|x− e(t2−t1)Ax|+ (t2 − t1)C(t2)p|x|p

]

≤ ε+ C3(p)C(t1)p|x|p−1
[
|x− e(t2−t1)Ax|+ |x|(t2 − t1)

]
,

where we have used that C(t2) ≤ C(t1). Finally, reasoning as in (15) and using the
analogue of (16),

E∗p (t1, x) −E∗p (t2, x) ≤ E∗p (t1, x)1−p [G(t1, x)−G(t2, x)]

= G(t1, x)−1/q [G(t1, x)−G(t2, x)]

≤ [C4(p)C(t1)p|x|p]−1/q
C3(p)C(t1)p|x|p−1

[
|x− e(t2−t1)Ax|+ |x|(t2 − t1)

]

≤ C5(p)C(t1)
[
|x− e(t2−t1)Ax|+ |x|(t2 − t1)

]
which gives the claim.

Remark 3.10. From the proof of (ii) it follows that, for t1 < t2, there exists
ε(t2 − t1) > 0 such that

e(t2−t1)ALt1(Up,ρ) ⊂ Lt2(Up,ρ−ε).
Moreover, it also follows that, for (t, x) ∈ (0,+∞) × H, the optimal trajectory
y(·;x, u∗) corresponding to the minimum p-energy control u∗ arrives at 0 only at
the final time t. Finally, it is easy to find a one dimensional example (A = 0, B = 1),
where the minimum 1-energy is constant with respect to t. So the case p = 1 cannot
satisfy our claims.
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4. Main results. In this section we state and prove the following main results
of the paper: Theorem 4.1, where we prove that the minimum time is implicitly
defined by the minimum energy; Theorem 4.6, where we show that the growth rate
of the minimum time Tp,ρ(x) near x = 0 is connected to the explosion rate of the
minimum energy E∗p (t, x) as t↘ 0; Theorem 4.8, where we prove the continuity of the
minimum time and give an estimate of the modulus of local uniform continuity (and
of the Hölder exponent); and Theorem 4.10, where we prove topological properties of
reachable sets.

Theorem 4.1. Let p ∈ (1,+∞] and ρ > 0 be fixed. Assume that the system (1)
satisfies Hypothesis 2.1 and is p-null controllable. Then the minimal time function
Tp,ρ is defined implicitly by the equation

E∗p (Tp(x), x) = ρ.(17)

For the proof of this theorem we need two lemmas that are interesting in them-
selves. The first one states existence of optimal controls for the minimum time problem
while the second one states a “maximum principle” for the optimal control.

Lemma 4.2. Let p ∈ (1,+∞] and assume that the system (1) satisfies Hypothesis
2.1. Then there exists an optimal control for the minimum time problem.

Proof. We give the proof only for the case p ∈ (1,+∞), as the case p = +∞ can
be found in [17]. For brevity we will set ρ = 1 along this proof. Then let p ∈ (1,+∞)
and x ∈ Rp. By definition of Tp(x), there exists a sequence of controls un ∈ Up,1 and
a sequence of times Tn ↓ Tp(x) such that Tn ≤ 2Tp(x) and

y(Tn;x, un) = 0.

The control strategy un can be taken equal to 0 out of [0, Tn], and by passing to a
subsequence (which we still denote by un) it converges weakly to an element u0 ∈ Up,1.
Now we can write, for every h ∈ H,

0 = 〈y(Tn;x, un), h〉

= 〈eTnAx, h〉+

∫ 2Tp(x)

0

〈un(s), χ[0,Tn](s)B
∗e(Tn−s)A∗h〉ds.

By the strong continuity of {etA∗ , t ≥ 0}, it follows that for every h ∈ H the map
s → χ[0,Tn](s)B

∗e(Tn−s)A∗h is measurable and bounded and converges strongly in
Lq(0,+∞;U) as n → +∞ for q = p

p−1 . Then, by the weak convergence of un to u0

we have, for every h ∈ H,

0 = lim
n→+∞〈y(Tn;x, un), h〉 = 〈y(Tp(x);x, u0), h〉.

This gives y(T ;x, u0) = 0 and so the claim follows.
Lemma 4.3. Let p ∈ (1,+∞]. Assume that the system (1) satisfies Hypothesis

2.1 and is p-null controllable. Then any optimal control u∗ for the minimum time
problem satisfies the following “maximum principle”:

‖u∗‖p = ρ.
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Proof. For brevity we will set ρ = 1 along this proof. Let x ∈ H and assume by
contradiction that ‖u∗‖p = a < 1. Then we prove that Tp(x) is not optimal.

We observe first that, given u ∈ Up, x ∈ H, and 0 < s < t, we can write

Ltu = esALt−su+ Ls[u(t− s+ ·)]
so that, setting z(t− s) = y(t− s;x, u)− x and u(r) = u(t− s+ r), we have

y(t;x, u) = etAx+ Ltu = esAx+ esA[e(t−s)Ax− x] + esALt−su+ Ls[u(t− s+ ·)]

= esAx+ Ls[u(t− s+ ·)] + esAz(t− s) = y(s;x, u) + esAz(t− s).
Then taking in the above equation t = Tp(x) and u an optimal control for the minimum
time problem we have that, for 0 < s < t,

y(s;x, u) + esAz(t− s) = 0,

where u and z(t−s) are defined as above. Now, by the p-null controllability assumption
we have esA(H) ⊂ LsUp, which implies (see, e.g., [11]) that, for every s0 > 0, ε > 0,
there exists δ > 0 such that

esA{|x| ≤ δ} ⊂ LsUp,ε ∀s ≥ s0.

Now fix ε = (1 − a)/2 and s0 = Tp(x)/2. Take δ as above and s0 ≤ s < Tp(x)
such that |z(t − s)| ≤ δ. Then there exists a control û such that ‖û‖p ≤ 1−a

2 and
esAz(t− s) = Lsû so that

y(s;x, u+ û) = esAx+ Ls[u+ û] = esAx+ Lsu+ esAz(t− s) = 0.

The claim follows by contradiction.
Proof of Theorem 4.1. We argue by contradiction, setting for brevity ρ = 1. If

E∗p (Tp(x), x) = a > 1, then every control driving x to 0 in time Tp(x) has p-energy
strictly greater than 1 and so it is not admissible. This is impossible due to the
existence of the optimal control stated in Lemma 4.2.

Conversely, assume that E∗p (Tp(x), x) = a < 1. Then, by Theorem 3.3 there
exists a control driving x to 0 in time Tp(x) with energy a < 1. This contradicts
the “maximum principle” stated above. Finally we observe that if t 6= T (x), then
E∗p (t, x) 6= 1, since the minimum energy is strictly decreasing in the variable t.

Remark 4.4. Observe that, by definition of Tp(x), E∗p (T, x) ≤ 1 when T > Tp(x).
Similarly we have that E∗p (T, x) ≥ 1 when T < Tp(x). Then, in the case p ∈ (1,+∞),
the claim of Theorem 4.1 follows also by the continuity and the strict monotonicity
of E∗p (T, x) with respect to T (see Theorem 3.7).

Remark 4.5. The control u of minimal energy at time Tp(x) satisfies also Ep(u) =
1 and so it is optimal also for the minimum time problem. In particular, when
p ∈ (1,+∞), this implies the uniqueness of the optimal control for the minimum time
problem. Observe that if p = 1, we do not have existence of the minimum time optimal
control; it is enough to take the one dimensional case with A = 0, B = 1.

The representation given above allows us to connect the behavior of Tp near 0
with Lp estimates of controls bringing a given state x to 0.

Theorem 4.6. Let p ∈ (1,+∞]. Assume that the system (1) satisfies Hypothesis
2.1 and is p-null controllable. Let f : R+ → R+ be a continuous strictly decreasing
function such that limt→0+ f(t) = +∞. Then there exists T0 > 0 such that

E∗p (T, x) ≤ f(T )|x| ∀x ∈ H, T ∈]0, T0](18)
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if and only if, taking as f−1 the inverse of f , we have

Tp,ρ(x) ≤ f−1(ρ/|x|)
in a suitable neighborhood of x = 0. The same holds with the reverse inequalities.

Proof. For brevity we will set ρ = 1 along this proof. We start by proving the
“only if” part. Let 0 < T < T0 and x ∈ H. By Theorem 3.3, it follows that there
exists a control uT,x ∈ M(p, T, x) such that ‖uT,x‖p ≤ f(T )|x|. If f(T )|x| ≤ 1, then
the control uT,x belongs to Up,1 and is admissible for the minimum time problem. It
follows that for every x ∈ H, such that 1/|x| ∈ Im f , the time T (x) = f−1(1/|x|)
satisfies T (x) ≥ Tp(x) and the claim follows.

Conversely, assume that there exists R1 > 0 such that Tp(x) ≤ f−1(1/|x|) ∀|x| ≤
R1. This fact, together with the monotonicity of f−1, implies that, given t > 0, all
points x satisfying |x| ≤ R1 and

f−1(1/|x|) ≤ t⇐⇒ |x| ≤ 1/f(t)

are controllable to 0 in time t with controls in Up,1. It follows that, taking t such that
1/f(t) ≤ R1,

etA {|x| ≤ 1/f(t)} ⊂ Lt {‖u‖p ≤ 1}
which is equivalent to (see [11])

etA {|x| ≤ r} ⊂ Lt {‖u‖p ≤ f(t)r} ∀r > 0

which gives the claim. The proof in the case of the reverse inequalities is completely
similar and we omit it.

Remark 4.7. From the above proof we can infer that

Rp,ρ =
{
x ∈ H : limt→+∞ E∗p (t, x) < ρ

}
and that, setting g(t) = E∗p (t, x), g is invertible and Tp,ρ(x) = g−1 (ρ/|x|).

Moreover, if we have f(T ) = CT−β for suitable C > 0, then by the previous
theorem we get that E∗p (T, x) ≤ CT−β |x| for T in a neighborhood of t = 0 and x in a

neighborhood of x = 0 if and only if Tp(x) ≤ C0[|x|/ρ]1/β in another neighborhood of
x = 0. The same holds for the reverse inequalities. This means that the explosion rate
of E∗p (t, x) at t = 0 characterizes the Hölder continuity exponent of Tp,ρ(x) at x = 0.
So, in the finite dimensional case this exponent is completely determined thanks to
the sharp result of [35, 37] (see Theorem 3.6).

The main consequence of Theorem 4.1 is the following result on the local uniform
continuity (and the Hölder continuity) of Tp,ρ in the case p ∈ (1,+∞) (the continuity
of T∞ is already known and is proved in [15]).

Theorem 4.8. Let p ∈ (1,+∞). Assume that the system (1) satisfies Hy-
pothesis 2.1 and is p-null controllable. Then Tp(ρ, ·) is locally uniformly continuous
in x ∈ Rp,ρ. Assume also that, for a given decreasing function f : R+ → R+

with limr→0+ f(r) = +∞, condition (18) is satisfied. Then a modulus of conti-
nuity of Tp(ρ, ·) on Rp,ρ(t) ∩ {|x| ≤ K} is given by r 7→ g

(
Meωt[1 +K]r1−1/p

)
,

where g(r) = f−1(ρ/r).
More precisely, for every x1, x2 ∈ Rp,ρ(t) ∩ {|x| ≤ K} we have

|Tp(ρ, x1)− Tp(ρ, x2)| ≤ g
(
Meωt[1 +K] |(x1 − x2)|1− 1

p

)
.(19)
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In particular, if we can choose f(r) = C/rβ for suitable C > 0, β ≥ 1, then the
minimum time function Tp is locally Hölder continuous with exponent (qβ)−1, where
q−1 + p−1 = 1.

We will give the proof of the above theorem in section 5.2.
Remark 4.9. A representation of the minimum time function such as (17) and

a “maximum principle” such as the one of Lemma 4.3 can be found in [38] for the
case p = 2 but no consequence of these results is given there. Moreover, Lemma 4.3
could be seen as a consequence of the following fact: fixed x ∈ H and p ∈ (1,+∞],
the set-valued map t→M(p, t, x) is left lower semicontinuous (see [38] for the proof
of this fact in the case p = 2).

Finally, the fact that Tp,ρ is lower semicontinuous in H (also without assuming p-
null controllability) has been given in [38] for the case p = 2 by a topological argument
that can be generalized to the case p ∈ (1,+∞).

For the reachable sets we have the following theorem which generalizes to the case
p ∈ (1,+∞) a result given in [12] for the case p =∞.

Theorem 4.10. Assume that Hypothesis 2.1 holds and let p ∈ (1,+∞), ρ > 0.
(i) The system (1) is p-null controllable if and only if 0 ∈ Int Rp,ρ(t) for every

t > 0.
(ii) The system (1) is p-null controllable if and only if Rp,ρ(t1) ⊂ Int Rp,ρ(t2) for

every t1 < t2.
(iii) If the system (1) is p-null controllable, then Rp,ρ is open and limy→x Tp,ρ(y) =

+∞ ∀x ∈ Fr Rp,ρ.
(iv) If the system (1) is p-null controllable, then Rp,ρ(t) = {x : Tp,ρ(x) ≤ t},

Int Rp,ρ(t) = {x : Tp,ρ(x) < t}, and Fr Rp,ρ(t) = {x : Tp,ρ(x) = t}.
Before we prove the above theorem we give a lemma that is interesting in itself

since it allows us to use the properties of the functions E∗p and Tp,ρ to study Rp,ρ(t).
Lemma 4.11. Assume that Hypothesis 2.1 holds and let p ∈ (1,+∞). If the

system (1) is p-null controllable, then
(i) Rp,ρ(t) = {x : E∗p (t, x) ≤ ρ} = {x : Tp,ρ(x) ≤ t},
(ii) Int Rp,ρ(t) = {x : E∗p (t, x) < ρ} = {x : Tp,ρ(x) < t},
(iii) Fr Rp,ρ(t) = {x : E∗p (t, x) = ρ} = {x : Tp,ρ(x) = t}.
Proof of Lemma 4.11. For brevity we set ρ = 1 and drop the dependence on

ρ writing Rp, Tp instead of Rp,ρ, Tp,ρ. We prove only the identities Rp(t) = {x :
E∗p (t, x) ≤ 1}, Int Rp(t) = {x : E∗p (t, x) < 1}, and Fr Rp(t) = {x : E∗p (t, x) = 1}
since the other ones, {x : E∗p (t, x) ≤ 1} = {x : Tp(x) ≤ t}, {x : E∗p (t, x) < 1} = {x :
Tp(x) < t}, and {x : E∗p (t, x) = 1} = {x : Tp(x) = t}, easily follow from Theorem 4.1
and the strict decreasing property of the function t→ E∗p (t, x) for every x ∈ H.

For the first identity we observe that, by definition of Rp(t), we have

Rp(t) = {x : M(p, t, x) ∩ Up,1 6= ∅}.

Now, if x ∈ Rp(t) it is clear by the definition that E∗p (t, x) ≤ 1. Conversely, if
E∗p (t, x) ≤ 1 then, by the existence of the optimal control for the minimum energy
problem, we have x ∈ Rp(t).

For the second identity, first let E∗p (t, x) < 1. Then, by the continuity of the
map x → E∗p (t, x) we have that, for y in a suitable neighborhood of x, E∗p (t, y) < 1
and so x ∈ Int Rp(t). Conversely, let x ∈ Int Rp(t). By the first identity we have
E∗p (t, x) ≤ 1. If by contradiction we have E∗p (t, x) = 1, then by the homogeneity
of degree 1 of E∗p (t, ·) (see Theorem 3.7) it follows that for every λ > 1 we have
E∗p (t, λx) > 1 and so λx 6∈ Rp(t), which is a contradiction.
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For the third identity it is enough to recall that Rp(t) is closed and so

Fr Rp(t) = Rp(t)− Int Rp(t) = {x : E∗p (t, x) = 1}.
Proof of Theorem 4.10. As in the proof above we set ρ = 1 and drop the de-

pendence on ρ. We first observe that from the existence of optimal control we have,
also without assuming p-null controllability, Rp(t) = {x : Tp(x) ≤ t} ∀t > 0. Then
to prove (i) it is enough to observe that, by Theorem 2.5 (see [15]), the p-null con-
trollability of the system (1) is equivalent to the continuity of Tp at x = 0 and thus
equivalent to the fact that the set {Tp ≤ t} is a neighborhood of x = 0 for every t > 0.

We now prove (ii). First, if Rp(t1) ⊂ Int Rp(t2) for every t1 < t2, then given any
t > 0 we have 0 ∈ Rp( t2 ) ⊂ Int Rp(t) and thus have p-null controllability by part (i).
Conversely, if p-null controllability holds true, then, by Lemma 4.11, for every t1 < t2
we have

Rp(t1) = {x : Tp(x) ≤ t1} ⊂ {x : Tp(x) < t2} = Int Rp(t2).

We prove (iii). First we observe that Rp = ∪t>0{Tp < t} and so it is open.
Moreover, take x ∈ Fr Rp and a sequence (xn) ⊂ Int Rp such that xn → x. From
(ii) it follows that, for every t > 0, Rp(t) ⊂ Int Rp. So, since Rp(t) is closed, we
have definitively xn 6∈ Rp(t) which means Tp(xn) > t. The claim follows since t is
arbitrary.

Statement (iv) follows from Lemma 4.11.

5. Uniform continuity and Hölder continuity. In this section we are con-
cerned with Hölder continuity properties of the Bellman function Tp. In the above
section we obtained an estimate of the growth rate of Tp in a neighborhood of x = 0 in
connection with the explosion rate of the minimum energy at t = 0. Here we discuss
the possibility of extending such an estimate out of x = 0.

In the case p = +∞ we use the results of the previous section and the dynamic
programming principle, recalled below, to derive local Hölder continuity of the func-
tion T∞ in some cases by extending results of [15].

In the case p ∈ (1,+∞) (where no results are available in the literature even in
finite dimension) we observe, giving also an example, that the dynamic programming
principle does not hold in general. Then, letting ρ be a new state variable of the
problem, we prove a version of the dynamic programming principle which allows us
again to transfer (with a different method) the estimate of Theorem 4.6 to the whole
reachable sets obtaining local uniform continuity, an estimate of the local modulus
and, in some cases, of the local Hölder exponent.

We then discuss a finite dimensional example where, for a given T0 > 0, we have
‖Γ(t)‖ ≤ Ct−3/2, 0 < t ≤ T0, and T2,1 is locally Hölder continuous with exponent
1/3 and without higher exponents.

5.1. The case p = +∞. For simplicity we set ρ = 1 and drop the dependence
on ρ writing Rp, Tp instead of Rp,ρ, Tp,ρ.

We start by recalling the dynamic programming principle for the minimum time
problem if p = +∞ (proved, e.g., in [15]): For every t ≤ T∞(x), for all x ∈ R∞ we
have

T∞(x) = inf{t+ T∞(y(t;x, u)); u ∈ U∞,1}.
We observe that the dynamic programming principle is very important for studying
the regularity of T∞. In fact it allows us to estimate the continuity modulus of T∞
by its behavior in a neighborhood of 0 (see [15] for the proof).
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The above result, together with the result of the previous section, gives as a
consequence the following corollary (see [15] for the proof).

Corollary 5.1. Assume that the system (1) satisfies Hypothesis 2.1 and is
∞-null controllable. Then the minimum time function T∞ is locally uniformly con-
tinuous. Assume also that, for a given decreasing function f : R+ → R+ with
limr→0+ f(r) = +∞, condition (18) is satisfied. Then a modulus of continuity of
T∞ is given by

|T∞(x1)− T∞(x2)| ≤ g (Meωt |(x1 − x2)|) ,
where g(r) = f−1(1/r). In particular, if we can choose f(r) = C/rβ for suitable
C > 0, β ≥ 1, then the minimum time function T∞ is locally Hölder continuous with
exponent 1/β.

Remark 5.2. The claim of Corollary 5.1 is a consequence of the dynamic pro-
gramming principle. This renders the case p = +∞ easier to treat when we want
to prove continuity properties of the minimum time function. We will see that, even
for simple cases, for p < +∞ the dynamic programming principle does not hold (see
Example 5.14).

At this point, to prove local Hölder continuity of T∞ we can simplify the problem
to find good L∞ estimates on the controls that bring to 0 the points x belonging to
a neighborhood of 0. We remark that the best thing to do would be to calculate the
minimal ∞-energy needed to bring x to 0. We now show some situations where this
estimate can be given. Some of them (as we will specify below) are already given in
the literature, but our results allow us to see them in a unified approach.

We start by estimating the∞-norm of the control of minimal 2-energy u∗T,x defined
in Theorem 3.3, since this norm is surely greater than the minimal ∞-energy needed
to bring x to 0.

Proposition 5.3. Assume that Hypothesis 2.1 holds, that the system (1) is 2-
null controllable, and that A generates a group. Then the system (1) is also ∞-null
controllable. Moreover, if there exists C > 0 such that ‖Γ(t)‖ ≤ Ct−β/2 as t → 0+,
then T∞ is locally Hölder continuous of exponent 1

β . If the dimension of H is finite,

then T∞ is locally Hölder continuous of exponent 2/(1 + β).
Proof. We first remark that by Theorem 3.3 the control u∗T,x(r) = Γr(T )∗Γ(T )x,

where Γr(T ) = Q
− 1

2

T S(T − r)B transfer x to 0 in time T . We now show that u∗T,x
is bounded and we estimate ‖u∗T,x‖∞. Since A generates a group, then we can write
Γr(T ) = Γ(T )S(−r)B, which gives

‖u∗T,x‖∞ ≤ sup
r∈[0,T ]

‖Γ(T )‖2‖S(−r)B‖|x|

and the first part of the claim easily follows.
When the dimension of H is finite it is enough to use the results of Seidman and

Yong [37] contained in Theorem 3.6 for the case p = +∞.
Remark 5.4. In the case of finite dimension the results of Gyurkovics [19] state

that T∞ is locally Hölder continuous exactly of exponent 1/(k + 1), where k is the
first integer such that rank [B,AB, . . . , AkB] = n. By Theorem 3.6 it then follows
that the relationship between the singularity of ‖Γ(T )‖ as T → 0 and the continuity
properties of T∞ when H = Rn is the following: If ‖Γ(t)‖ ≤ Ct−β/2, then T∞ is locally
Hölder continuous of exponent 2/(1 + β). This result confirms the one of Proposition
5.3. The same result can be deduced by the estimate of the∞-minimum energy given
in Theorem 3.6 (see [37]).
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Remark 5.5. By the proof of Proposition 5.3, it follows that in the general case
an estimate of the ∞-minimum energy needed to steer a state x to 0 (and so of the
modulus of continuity of T∞) is given by an estimate of the norm of the operator
Γr(T )∗Γ(T ). In Proposition 5.3 such an estimate is given for the case when A is a
group or H is finite dimensional. In fact, in some special cases, also when A does not
generate a group, an estimate of this kind can be proved (see [16, Appendix B]). In
particular, when B is onto it can be easily proved that supr∈[0,T ] ‖Γr(T )∗Γ(T )‖ ≤ C/T
for a suitable constant C and so that ‖u∗T,x‖∞ ≤ C|x|/T . This follows also from
Proposition 3.5 and proves local Lipschitz continuity of T∞ when B is onto.

Remark 5.6. If we have for a given decreasing function f : R+ → R+ ‖Γ(T )‖ ≤
f(T ), then we obtain an estimate of the continuity modulus of T∞. For example, for
known boundary control problems (see, e.g., [36]) the best estimate is f(T ) = e1/T .
This case is not treated in this paper. However, such estimates suggest that for
boundary control problems the function T∞ should not be Hölder continuous.

Remark 5.7. The result of the latter proposition is useful in the infinite di-
mensional case when it is possible to give an estimate of ‖Γ(t)‖ as t ↘ 0. This is
not a simple task but can be done, for example, when the system (1) is an abstract
wave equation. This case has already been treated by Krabs [26] who found that
‖Γ(t)‖ ∼ t−3/2 as t ↘ 0 and by Carja [13] who applied this estimate to prove that
T∞ is locally Hölder continuous of exponent 1/3.

We now consider a diagonal case where the relation between the Hölder exponent
of T∞ and the singularity of ‖Γ(t)‖ as t ↘ 0 is the same as the finite dimensional
case. Assume the following.

Hypothesis 5.8. Let H be a separable Hilbert space and let {ek} be a complete
orthonormal system in H. We assume here that A and B are of the following form:

Aek = −αkek, Bek = bkek, k ∈ N,(20)

where {αk} is an increasing (to +∞) sequence of positive numbers and {bk} is a
bounded sequence of positive numbers.

Under Hypothesis 5.8 we have, for k ∈ N, Qtek = (1 − e−2αkt)b2k/(2αk) and, for
every t > 0,

‖Γ(t)‖2 = sup
k∈N

2αke
−2αkt

b2k(1− e−2αkt)
= sup

k∈N

2αk
b2k(e2αkt − 1)

.(21)

By Theorem 3.1 the system is 2-null controllable if and only if

‖Γ(t)‖2 = sup
k∈N

2αk
b2k(e2αkt − 1)

< +∞.(22)

In this case the control of minimum energy u∗T,x is given by

u∗T,x(s) =
+∞∑
k=1

2αk
bk

e−(2T−s)αk

1− e−2Tαk
xkek.

This control is bounded if and only if

sup
k∈N

2αk
bk

1

e2Tαk − 1
< +∞
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and in this case

‖u∗T,x‖∞ ≤ sup
k∈N

2αk
bk

1

e2Tαk − 1
|x|.

The estimates above depend on the behavior at infinity of the sequence (bk)k∈N. Let

us consider the particular case when bk = α
− r2
k for some r ≥ 0 (the case bk ∼ α

− r2
k

would give the same results). Then (22) is fulfilled since

‖Γ(t)‖2 = sup
n∈N

2α1+r
k

e2αkt − 1
≤ 1

t1+r
sup
s>0

2s1+r

e2s − 1
(23)

so that ‖Γ(t)‖ ≤√C(r)t−(1+r)/2, where C(r) = sups>0 2s1+r/(e2s − 1). Similarly we

can prove that, for a suitable positive constant c(r), ‖Γ(t)‖ ≥√c(r)t−(1+r)/2 for t
sufficiently small so that ‖Γ(t)‖ ∼ t−(1+r)/2 as t ↘ 0. Using the same arguments we
can also show that ‖u∗T,x‖∞ ∼ T−1−r/2. This allows us to extend to a diagonal infinite
dimensional case the finite dimensional results of Gyurkovics [19] (see Proposition 5.3
and Remark 5.4).

Example 5.9. An example in which Hypothesis 5.8 is satisfied is the following.
Let CN = [0, π]N and X = L2(CN ), N ≤ 3, and take the Laplace operator with
Dirichlet conditions at the boundary defined as

D(A) = H2(CN ) ∩H1
0 (CN ), Ax = ∆x for x ∈ D(A).

The operator A satisfies Hypothesis 2.1 and it generates an analytic semigroup of
compact operators. Moreover, A satisfies Hypothesis 5.8 by taking, for (n1, . . . , nN ) ∈
NN ,

en1,...,nN (ξ) =

(
2

π

)N
2

sinn1ξ1 · · · sinnNξN

and αn1,...,nN (ξ) = n2
1 + · · · + n2

N so that, by ordering the eigenvalues, we obtain

αk ≈ k
2
N as k → +∞. If we take B = A−

r
2 , r ≥ 0, then we have exactly the case

introduced above.
We now proceed by estimating the sup norm of a different control bringing x to

0 (a similar idea, yielding different results, is used in [15]).
Hypothesis 5.10.
(i) For every t > 0, etA(H) ⊂ B(H).
(ii) For some C,α > 0 |B−1esAx| ≤ Cs−α|x|, where B−1 denotes the pseudo-

inverse of B (see, e.g., [16, p. 407]).
Remark 5.11.

(i) Under Hypothesis 5.10(i), given x 6= 0 such that etAx 6= 0 for all t > 0, the
map t → 1/|B−1etAx| is locally integrable on (0,+∞) since |B−1etAx| >
|etAx|/‖B‖ and {etA, t ≥ 0} is strongly continuous.

(ii) Hypothesis 5.10(i) implies that Ker B∗ = 0 and so B(H) is dense.
Let ux(s) = −B−1esAx/|B−1esAx| (we take ux(s) = 0 if esAx = 0). In this case

we have that ux ∈ U∞,1 and

y(t;x, ux) = etAx

[
1−

∫ t

0

1

|B−1esAx|ds
]
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so, if T > 0 is such that ∫ T

0

1

|B−1esAx|ds = 1,

then T∞(x) ≤ T . Now thanks to Hypothesis 5.10(ii) we have, for t > 0,∫ t

0

1

|B−1esAx|ds ≥
∫ t

0

sα

C
|x|ds.

Since ∫ t

0

sα

C
|x|ds = 1⇐⇒ t = [C(α+ 1)]

1
α+1 |x| 1

α+1

we have, by Hypothesis 5.10(ii),

T∞(x) ≤ C1|x| 1
α+1 for some C1 > 0

which gives, by Theorem 4.6, that T∞ is locally Hölder continuous of exponent 1
α+1 .

We have thus proved the following.
Proposition 5.12. Assume that Hypotheses 2.1 and 5.10 hold true. Then the

system (1) is ∞-null controllable and T∞ is locally Hölder continuous with exponent
1/(α+ 1).

Remark 5.13. If the system (1) is 2-null controllable and Im {Q 1
2
t } ⊂ Im {B} ∀t >

0, then we can write

|B−1esAx| = |B−1Q
1
2
s Γ(s)x| ≤ |B−1Q

1
2
s ||Γ(s)x|.

So, if we assume that, for a given constant C > 0 and for s in a neighborhood of 0 we
have |Γ(s)x| ≤ Cs−β/2|x|, then, to apply Proposition 5.12 we have only to estimate

|B−1Q
1
2
s |. This can be done, for example, in the diagonal case described above yielding

the same results obtained there.
A framework where Proposition 5.12 can be used is the following. Let A be the

generator of an analytic semigroup on H such that A−1 ∈ L(H). Assume also that
B can be written as A−rB0, where B0 is continuous and onto (so that B−1

0 is also
continuous).

Then we clearly have, by the analyticity of the semigroup, etA(H) ⊂ D(Ar) =
B(H) and, for every t > 0, x ∈ H, and a suitable constant C > 0,

|B−1etAx| = |B−1
0 AretAx| ≤ ‖B−1

0 ‖ ‖AretA‖ |x| ≤ Ct−r|x|.

This implies that T∞ is locally Hölder continuous with exponent 1/(1 + r).

5.2. The case p ∈ (1,+∞). In the following we construct an example for
the case p = 2, showing that the dynamic programming principle does not apply.
This difference is crucial when studying regularity properties of the minimum time
function. Then we will consider the minimum time problem where the radius ρ of
the set of admissible controls is variable. For this problem we prove the dynamic
programming principle and then we use it to get local estimates of the modulus of
uniform continuity of the Bellman function.
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Applying the same argument used in the proof of Theorem 4.6 we obtain that, in
the case p = 2,

‖Γ(t)‖ ≤ C1t
−β/2|x| in a right neighborhood of t = 0

⇓
T2,ρ(x) ≤ C2[|x|/ρ]2/β in a neighborhood of x = 0

and, by the dynamic programming principle,

T2,ρ(x) ≤ C2[|x|/ρ]
2
β in a neighborhood of x = 0

m
T2,ρ(x1)− T2,ρ(x2) ≤ [C3/ρ

2/β ]|x1 − x2| 2β ∀x1, x2 ∈ R2, |x1 − x2| sufficiently small.

In particular this would imply that, when B = I, the function T2 is constant, which
is not true as can be seen by the following example.

Example 5.14. Let H = R and the state equation be

y′ = y + u; y(0) = x.

Then Qt =
∫ t

0
e2sds = e2t−1

2 and Γ(t) = Q
− 1

2
t etA =

√
2√

e2t−1
et so that

|Γ(t)x| =
√

2√
1− e−2t

|x| and, in particular, |Γ(t)x| ≈ C

t
1
2

.

By Theorem 4.1 we have |Γ(T2(x))x| = ρ, so we obtain by easy calculations that
R2,ρ = (− ρ√

2
, ρ√

2
) and T2,ρ(x) = − 1

2 log(1− 2x2/ρ2).

Remark 5.15. This example is in contrast with the result given in [15, Lemma
2.1]. In fact the proof of this lemma seems to be incorrect in the case p < +∞. From
the proof of the dynamic programming principle it can be seen that for p ∈ (1,+∞)
only the following inequality holds: Tp(x) ≥ inf{t+ Tp(y(t;x, u)), u ∈ Up,1}.

Consider now, for p ∈ (1,+∞], the minimum time problem, where the radius
ρ of the set of admissible controls is a state variable that represents the amount of
p-energy left to consume. Then ρ clearly follows the equation

d

dt
ρp(t) = |u(t)|p; ρ(0) = ρ0

which can be written in integral form as (denoting as ρ(t; ρ0, u) the unique solution
of the above equation)

ρp(t; ρ0, u) = ρp0 −
∫ t

0

|u(s)|pds.

The latter equation, coupled with (1), gives the state equation of the new problem
(with state variables ρ and y); the Bellman function will depend now on (ρ, x) and we
will denote it by Tp(ρ, x). We have the following result (which is the main advantage
of taking the ρ variable).

Theorem 5.16. Let p ∈ (1,+∞) and (ρ0, x0) ∈ (0,+∞) × Rp,ρ0
. For every

t ≤ Tp(ρ0, x0) we have

Tp(x) = inf {t+ Tp(ρ(t; ρ0, u), y(t;x0, u)); u ∈ U∞,ρ0} .
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Proof. The proof follows along the same line of the proof given in [15] after taking
account of the variability of ρ. Fix x ∈ H. The first step of the proof is to show

Tp(ρ0, x0) ≤ t+ Tp(ρ(t; ρ0, u), y(t;x0, u)) ∀u ∈ U∞,ρ0
.

If y(t;x0, u) is not in Rp,ρ0
, then Tp(ρ(t; ρ0, u), y(t;x0, u)) = +∞ and there is nothing

to prove. Hence, we can assume that y(t;x0, u) ∈ Rp,ρ(t;ρ0,u) and this is equivalent to
saying that Tp(ρ(t; ρ0, u), y(t;x0, u)) < +∞. Let s ≥ Tp(ρ(t; ρ0, u), y(t;x0, u)). Then
y(t;x0, u) ∈ Rp,ρ(t;ρ0,u)(s), i.e., y(s, y(t;x0, u), û) = 0 for some û ∈ U∞,ρ(t;ρ0,u). We
then have

esA
[
etAx0 + esA

∫ t

0

e(t−s)ABu(s)ds

]
+

∫ s

0

e(s−r)ABû(r)dr = 0

which means

e(s+t)Ax0 +

∫ t+s

0

e(t+s−r)ABu∗(r)dr = 0,

where u∗ ∈ U∞,ρ0
is defined as u∗(r) = u(r) for 0 ≤ r ≤ t and u∗(r) = û(r − t) for

t ≤ r ≤ s+ t. This implies that x0 ∈ Rp,ρ0
(s+ t) and then

Tp(ρ0, x0) ≤ t+ s ∀s ≥ Tp(ρ(t; ρ0, u), y(t;x0, u)).

Hence

Tp(ρ0, x0) ≤ t+ Tp(ρ(t; ρ0, u), y(t;x0, u)) ∀u ∈ U∞,ρ0
.

This ends the first step. To prove the claim it remains to show that for every ε > 0
there exists u ∈ U∞,ρ0

such that

Tp(ρ0, x0) ≥ t+ Tp(ρ(t; ρ0, u), y(t;x0, u))− ε for t ≤ Tp(ρ0, x0).

Fix ε > 0. By definition of Tp there exists s < Tp(ρ0, x0) + ε such that x0 ∈ Rp,ρ0(s).
Since x0 ∈ Rp,ρ0

(s), we have

esAx0 +

∫ s

0

e(s−r)ABv(r)dr = 0(24)

for some v ∈ Up,ρ0
. By assumption we have t ≤ Tp(ρ0, x0). This implies t ≤ s. We

consider t < s (otherwise everything is clear) and we rewrite (24) as

e(s−t)AetAx0 + e(s−t)A
∫ t

0

e(t−r)ABv(r)dr +

∫ s

t

e(s−r)ABv(r)dr = 0

which yields

e(s−t)Ay(t;x0, v) +

∫ s−t

0

e(s−t−r)ABv(t+ r)dr = 0.

Since we have v(t+·) ∈ Up,ρ(t;ρ0,v) the latter implies that y(t;x0, v) ∈ Rp,ρ(t;ρ0,v)(s−t)
and so that Tp(ρ(t; ρ0, v), y(t;x0, v)) ≤ s− t, i.e.,

t+ Tp(ρ(t; ρ0, v), y(t;x0, v)) ≤ s ≤ Tp(ρ0, x0) + ε.
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This ends the proof.
The key consequence of the above theorem is Theorem 4.8 which we prove below.
Proof of Theorem 4.8. Let ρ0 > 0, x1, x2 ∈ H, and Tp(ρ0, x1) > Tp(ρ0, x2). For

simplicity we will prove the claim when |x1 − x2| ≤ 1/2, as the estimate (19) for the
case |x1 − x2| > 1/2 follows by simply using the local boundedness of Tp(ρ0, ·) on
Rp,ρ0

∩ {|x| ≤ K}. Let t be such that Tp(ρ0, x1) > t. By the dynamic programming
principle

Tp(ρ0, x1) ≤ t+ Tp(ρ(t; ρ0, u), y(t;x1, u)) ∀u ∈ Up,ρ0 .(25)

Taking t = Tp(ρ0, x2) in (25) we find

Tp(ρ0, x1)− Tp(ρ0, x2) ≤ Tp (ρ(Tp(ρ0, x2); ρ0, u), y (Tp(ρ0, x2);x1, u)) ∀u ∈ Up,ρ0

so that, using Theorem 4.6 and calling g(r) = f−1(ρ0/r) (which is a strictly increasing
function),

Tp(ρ0, x1)− Tp(ρ0, x2) ≤ g
(
ρ0y (Tp(ρ0, x2);x1, u)

ρ(Tp(ρ0, x2); ρ0, u)

)
∀u ∈ Up,ρ0

.(26)

Now let λ ∈ (0, 1), let u2 be the optimal control for Tp(ρ0, x2), and choose uλ = λu2

in the above inequality. We then have, by easy calculations,

ρ(Tp(ρ0, x2); ρ0, uλ) = ρ0[1− λp]1/p > ρ0[1− λ]1/p.(27)

Moreover, since y(Tp(ρ0, x2);x2, u2) = 0, we have∫ Tp(ρ0,x2)

0

e(Tp(ρ0,x2)−s)ABu2(s)ds = −eTp(ρ0,x2)Ax2

and so

y(Tp(ρ0, x2);x1, uλ) = eTp(ρ0,x2)Ax1 − λeTp(ρ0,x2)Ax2

≤MeωTp(ρ0,x2)|x1 − x2|+ (1− λ)MeωTp(ρ0,x2)|x2|.
(28)

Hence, putting (27) and (28) into (26) we can write

Tp(ρ0, x1)− Tp(ρ0, x2) ≤ g
(
MeωTp(ρ0,x2)[|x1 − x2|+ (1− λ)|x2|]

[1− λ]1/p

)
.

Setting λ = 1− |x1 − x2| we then have

Tp(ρ0, x1)− Tp(ρ0, x2) ≤ g
(
MeωTp(ρ0,x2)[1 + |x2|]|x1 − x2|1−1/p

)
which gives the claim by interchanging the roles of x1 and x2.

In the finite dimensional case an answer about the local Hölder continuity of Tp
follows immediately from the following corollary and the result of Seidman and Yong
[35, 37] recalled in Theorem 3.6.

Corollary 5.17. Assume that the system (1) is p-null controllable (p ∈ (1,+∞))
and that H = Rn. Let k be the minimum integer such that the matrix

[
B,AB, ..., AkB

]
is full rank. Then the minimum time function Tp(ρ, ·) is Hölder continuous of exponent
[1 + kq]−1, where q−1 + p−1 = 1.



1220 FAUSTO GOZZI AND PAOLA LORETI

We now give a finite dimensional example where the exponent [1 + kq]−1 stated
above is sharp.

Example 5.18. Let n = 2, U = U2,1, and take the system (1) with

A =

(
0 0
1 0

)
B =

(
1 0
0 0

)
.

We have rank [B,AB] = 2 so 2-null controllability holds. By easy calculations we get
that the control of minimum energy u∗t,x(r) = −B∗e(t−r)A∗Q−1

t etAx is given by

u∗t,x(r) = −2

t

[(
2− 3r

t

)
x1 +

3

t

(
1− 2r

t

)
x2

]
and the minimum energy by

|Γ(t)x|2 =
4

t2

[
tx2

1 +
3

t
x2

2 + 3x1x2

]
.

Now to compute T2(x) we solve |Γ(T2(x))x|2 = 1 which gives

T2(x) =
2

2
3

3

[
2

4
3x2

1 + 2
2
3x1(4x3

1 + 9x2)
1
3 + (4x3

1 + 9x2)
2
3

]
.

Now it is not hard to show that T2(x) is locally Hölder continuous with exponent 1/3.
In fact, it is the sum of three functions: the first is locally Lipschitz continuous, the
second is locally Hölder continuous with exponent 1/3, and the third is locally Hölder
continuous with exponent 2/3. Moreover, T2(x) is not locally Hölder continuous with
higher exponents because it can be easily verified that the second function is not
locally Hölder continuous with exponents greater than 1/3.

Acknowledgments. The authors wish to thank P. Cannarsa for suggesting the
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Abstract. The convergence of the generalized simulated annealing with time-inhomogeneous
communication cost functions is discussed. This study is based on the use of log-Sobolev inequalities
and semigroup techniques in the spirit of a previous article by one of the authors. We also propose
a natural test set approach to study the global minima of the virtual energy. The second part of the
paper is devoted to the application of these results. We propose two general Markovian models of
genetic algorithms and we give a simple proof of the convergence toward the global minima of the
fitness function. Finally we introduce a stochastic algorithm that converges to the set of the global
minima of a given mean cost optimization problem.

Key words. simulated annealing, genetic algorithms, stochastic optimization
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Introduction. Let E be a finite state space and q an irreducible Markov kernel.
The main purpose of this paper is to study the limiting behavior of a large class of
time-inhomogeneous Markov processes controlled by two parameters (γ, β) ∈ R2

+ and
associated with a family of Markov kernels Qγ,β(x, y) having the following property:

∃k > 0 : k−1 q(x, y)e−βVγ(x,y) ≤ Qγ,β(x, y) ≤ k q(x, y)e−βVγ(x,y),(1)

where V : R+ × E2 → R+ ∪ {∞}, Vγ(x, y) < +∞ ⇐⇒ q(x, y) > 0, and for any
x, y ∈ E, (γ, β)→ Qγ,β(x, y) ∈ C1.

For a discussion on the origins of this problem the reader is referred to the in-
troduction of Trouvé [12], who studies the asymptotic behavior of such chains, with
time-homogeneous function V (x, y), using large deviation techniques. The fundamen-
tal notions here are those of the log-Sobolev constant a(γ, β) of Qγ,β and the relative
entropy of a measure with respect to another measure. Other complementary re-
sults relating to time-inhomogeneous communication cost function can be found in
Frigerio–Grillo [7], Younes [13], and more recently in Löwe [9], where Sobolev in-
equalities rather than log-Sobolev inequalities are used for classical models where q
is assumed to be reversible and Vγ is associated with an a priori potential depending
on γ.

For a probability measure m on E, inverse-freezing schedule β ∈ C1(R+,R+) and
γ ∈ C1(R+,R+), we denote (Ω, P, Ft, Xt) as the canonical process associated with the
family of generators (Lγt,βt)t≥0 = (Qγt,βt − I)t≥0 whose initial condition is m0 = m,
and we denote mt as the distribution of Xt.

The aim of section 1.1 is to give several conditions on the rate of increase of
γt, βt → +∞ to ensure the entropy ofmt with respect to πγt,βt converges to 0. We shall
examine as much of the theory as possible in a form applicable to general optimization
problems and applicable in particular to mean cost optimization problems.

∗Received by the editors December 20, 1996; accepted for publication (in revised form) July 24,
1998; published electronically May 26, 1999. This research was partly supported by INTAS-RFBR
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To illustrate our results we will restrict attention to various special classes of
generalized simulated annealing. We will commence with a detailed analysis of general
Markov kernels of the form

Qβ(x, y) =
∑
u∈U

qβ(x, u, y)e−βV (x,u,y),(2)

where U is a given finite set, V : E×U×E → R+, and qβ : E×U×E → R+, β ∈ R+,
is a family of functions satisfying some continuity and irreducibility conditions. This
situation can be formulated in the general form (1). We will settle this question and
provide the explicit computation of the corresponding communication cost function
V . In a final stage we will give several conditions on the rate of decrease of the cool-
ing schedule to ensure the convergence in probability of the corresponding canonical
process Xt, as t → +∞, to the set of global minima of the virtual energy associated
with V .

Another application is the situation in which the Markov kernel Qγ,β has the form

Qγ,β(x, y) = qβ(x, y) eβVγ(x,y)

with

lim
γ→+∞Vγ(x, y) = V (x, y), lim

β→+∞
qβ(x, y) = q(x, y)

for some Markov kernel q and some function V : E × E → R+. In this situation, let
πβ be the unique invariant probability measure of the Markov generator Lβ = Qβ−I,
where

Qβ(x, y) = q(x, y) e−β V (x,y).

We will give several conditions on the rate of decrease of the cooling schedule and on
the rate of convergence limt→+∞ Vγt = V to ensure the entropy of mt with respect to
πβt converges to 0.

The above results imply that the canonical process Xt converges in law to the
set of the global minima V ? of a virtual energy V . This leads us to investigate
more closely the properties of such function. Section 1.2 introduces a natural test set
approach to study V ?. Specifically, we will give a condition for a given subset H ⊂ E
to contain V ?.

Section 2 is devoted to application of these results, an area of which is the situation
in whichQβ is the transition probability kernel of a genetic algorithm. Such algorithms
can be formulated by a Markov process with state space E = SN (N > 1 and S a

finite set) and whose transition probabilities Qβ includes a mutation transition Q
(1)
β

and a selection mechanism Q
(2)
β . More precisely the mutation transition is modeled by

independent motion of each particle and the selection mechanism chooses randomly
in the previous population according to a given fitness function. The first convergence

result was obtained by Cerf [2] in the case in which Qβ = Q
(1)
β Q

(2)
β and the mutations

vanish, that is, limβ→+∞Q
(1)
β (x, y) = 1x(y).

In section 2.1 we will use the results of section 1.1 and the test set approach
introduced in section 1.2 to derive a new and simple proof of the convergence in
probability of such algorithms to the set of the global minima of the fitness function
in the following situations:

Qβ = Q
(1)
β Q

(2)
β and Qβ = αQ

(1)
β + (1− α)Q

(2)
β , 0 < α < 1.
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Finally, in subsection 2.2 we will apply the results of the first section to mean cost
optimization problems. However, here we touch upon a slightly different aspect of the
theory. Namely, the object will be to find the global minima of a function U : E → R+

defined by

U(x) = E(L(Z, x)),

where Z is a random variable taking values in a finite set F and L : F ×E → R+. We
will solve this optimization problem by an original method based on the use of Monte
Carlo simulations coupled with simulated annealing. This special case will require
specific developments because the corresponding function Vγ will necessarily behave
as a random process. We will present a time-inhomogeneous Markov process which
converges to the global minima of U .

1. General results. The purpose of this section is to study the limiting behavior
of time-inhomogeneous Markov chains controlled by two parameters (γ, β) ∈ R2

+ and
associated with a family of Markov kernelsQγ,β(x, y) having the property (1), with the
assumptions given in the introduction. This is in keeping with our second objective,
which is to introduce some areas in which such results are useful.

The reader who is especially interested in genetic algorithms has to consult Corol-
lary 1 and Propositions 3 and 4. Finally, the numerical solving of mean cost opti-
mization problems requires only the use of Theorem 2 or Corollary 4.

1.1. Relative entropy convergence. Our analysis will be based entirely on
considerations of the time-continuous semigroup associated with the Markov kernels
Qγ,β(x, y) introduced in (1). Namely, define for f : E → R

Lγ,βf(x) =
∑
y∈E

(f(y)− f(x)) Qγ,β(x, y).

For a probability measure m on E, an inverse-freezing schedule β ∈ C1(R+,R+), and
γ ∈ C1(R+,R+), we denote (Ω, P, Ft, Xt) as the canonical process associated with the
family of generators (Lγt,βt)t≥0 = (Qγt,βt − I)t≥0 whose initial condition is m0 = m,
and we write mt the distribution of Xt.

Whenever X is time-homogeneous (i.e., βt = β and γt = γ) it is well known that
Lγ,β has a unique invariant probability measure πγ,β so that

∀f : E → R πγ,β(Lγ,βf) = 0

and πγ,β charges all the points. It is also convenient to recall the notion of log-Sobolev
constant of Qγ,β . Namely,

a(γ, β)
def
= min {Eγ,β(f, f)/Lγ,β(f), Lγ,β(f) 6= 0} ,

where the Dirichlet form Eγ,β and Lγ,β are defined by

Eγ,β(f, g) = −〈Lγ,βf, g〉πγ,β = −
∑
x∈E

Lγ,βf(x) g(x) πγ,β(x),

Lγ,β(f) =
∑
x∈E

f(x)2 log
(
f(x)2/‖f‖22,πγ,β

)
πγ,β(x).
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Let us recall the notion of relative entropy of a measure m with respect to a measure
π charging all the points

Entπ(m) =
∑
x∈E

m(x) log (m(x)/π(x)) .

Using this notation, whenever X is time-homogeneous, one has the following basic
inequality (for instance, see Miclo [10]):

d

dt
Entπγ,β (mt) ≤ −2 a(γ, β) Entπγ,β (mt).(3)

For an expository paper on log-Sobolev constants for the general Markov chain on
finite spaces the reader is referred to Diaconis–Saloff-Costes [5]. Holley and Stroock [8]
use Sobolev and log-Sobolev inequalities to study the standard simulated annealing.
For another approach using only spectral gap estimates the reader should consult [4].
Using log-Sobolev inequalities, one of the authors addressed the convergence of a
simulated annealing associated with a Markov transition kernel of the form using the
entropy distance to stationarity (see [10]). The purpose of this section is to extend
these results to general Markov transition kernels of form (1).

What follows is an exposition of some basic results regarding the description of
πγ,β , by Bott–Mayberry [1] and also exposed in Freidlin–Wentzell [6]. For x ∈ E we
denote GE(x), or G(x) when there are no possible confusions, as the set of x-graphs.
We shall also use the following notations for x ∈ E and g ∈ G(x):

Rγ,β(x) =
∑

g∈G(x)

Qγ,β(g), Qγ,β(g) =
∏

(y→z)∈g
Qγ,β(y, z),

Vγ(g) =
∑

(y→z)∈g
Vγ(y, z), Qγ,β(x, y) = q(x, y) e−β Vγ(x,y).

Then, whenever X is time-homogeneous, its invariant distribution πγ,β is given by

πγ,β(x) = Rγ,β(x)/
∑
z∈E

Rγ,β(z).

Similarly, let µγ,β be the invariant probability measure of

Lγ,βf(x) =
∑
y∈E

(f(y)− f(x)) Qγ,β(x, y).

If a(γ, β) is the log-Sobolev constant of Qγ,β , then under assumption (1) there exists
some constant k1 > 0 such that

k−1
1 µγ,β(x) ≤ πγ,β(x) ≤ k1µγ,β(x).(4)

Now, from the very definition of µγ,β and (4), we have the estimate

−β−1 log πγ,β(x) −−−−−→
β → +∞

Vγ(x)−min
z∈E

Vγ(z) with Vγ(x)
def
= min

g∈G(x)
Vγ(g).

As a direct consequence of Lemma 3.3, Diaconis–Saloff-Costes [5], and the inequalities
(1) and (4) there exists some constant B > 0 such that

B−1 a(γ, β) ≤ a(γ, β) ≤ B a(γ, β).
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Finally, by Theorem 3.23 of Holley–Stroock [8] and the inequalities stated in Mi-
clo [10], we have the following proposition.

Proposition 1. There exists some constant A > 0 such that a(γ, β) ≥ A e−β c(γ)

1+β ,

where c(γ) is the critical height associated with the communication cost Vγ given by

c(γ) = max
x,y∈E

(
min
p∈Sx,y

eγ(p)− Vγ(x)− Vγ(y)

)
+ min
z∈E

Vγ(z),

eγ(p) = max
1≤i≤n

min (Vγ(pi−1) + Vγ(pi−1, pi), Vγ(pi) + Vγ(pi, pi−1)),

where Sx,y is the set of all the finite sequences from x to y and eγ(p) denotes elevation
of a path. It can also be shown that

c(γ) = max
x,y∈E

(
min
p∈Cx,y

ẽγ(p)− Vγ(x)− Vγ(y)

)
+ min
z∈E

Vγ(z),

where

ẽγ(p) = max
1≤i≤n

Vγ(pi−1) + Vγ(pi−1, pi)

and Cx,y is the set of all paths (admissible for q) from x to y.
By choosing t→ (γt, βt) to go to infinity and using (3) we arrive at

d

dt
Entπγt,βt (mt) ≤ −2 A

e−βt c(γt)

1 + βt
Entπγt,βt (mt)−

∑
x∈E

mt(x)
d

dt
log πγt,βt(x).(5)

Therefore it remains to estimate the derivatives dπγ,β/dβ and dπγ,β/dγ. For this
purpose, write

Qγ,β(g) = Qγ,β(g)/
∑
h∈Ix

Qγ,β(h), Ix =

g ∈ G(x) :
∏

(y→z)∈g
q(y, z) > 0

 .

By a simple analysis it is easily checked that

d

dβ
logRγ,β(x) =

∑
g∈Ix

Qγ,β(g)
d

dβ
logQγ,β(g),

d

dβ
log πγ,β(x) =

∑
z∈E

(
d

dβ
logRγ,β(x)− d

dβ
logRγ,β(z)

)
πγ,β(z).

In order to derive a useful inequality we assume there exist two functions d1, d2 :
R+ → R+ such that

sup
g∈∪xIx

d

dβ
logQγ,β(g)− inf

g∈∪xIx
d

dβ
logQγ,β(g) ≤ d1(γ),(6)

sup
g∈∪xIx

d

dγ
logQγ,β(g)− inf

g∈∪xIx
d

dγ
logQγ,β(g) ≤ d2(β).(7)

Note that by the very definitions of the sets Ix it clearly suffices to have∣∣∣∣ ddβ logQγ,β(x, y)

∣∣∣∣ ≤ d̃1(γ),

∣∣∣∣ ddγ logQγ,β(x, y)

∣∣∣∣ ≤ d̃2(β)
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for every q(x, y) > 0 and two functions d̃1, d̃2 : R+ → R+. Now we are ready to apply
the following technical lemma.

Lemma 1 (Stroock [11]). If µ is a probability measure and θ ∈ L1(µ)+ satisfies∫
θdµ = 1, then for every φ ∈ L∞(µ) satisfying

∫
φdµ = 0 one has∣∣∣∣∫ φ θ dµ

∣∣∣∣ ≤ √2 ‖φ‖L∞(µ)

(∫
θ log θ dµ

)1/2

.

Using this lemma with µ = πγ,β , φ = d log πγ,β/dβ (resp., φ = d log πγ,β/dγ), and
θ = mt/πγt,βt and writing

It
def
= (Entπγt,βt (mt))

1/2

we see from (5) that

dIt
dt
≤ −A0

e−βt c(γt)

1 + βt
It +A1 d1(γt)

∣∣∣∣dβtdt
∣∣∣∣+A2 d2(βt)

∣∣∣∣dγtdt
∣∣∣∣(8)

for some constants A0, A1, A2 > 0. Hence by taking, for t sufficiently large, an inverse-
temperature schedule of the form βt = K−1 log t we obtain

dIt
dt
≤ −At It +Bt

with

At = A0 t
−c(γt)/K(1 +K−1 log t)−1 and Bt = A1

d1(γt)

Kt
+A2 d2(K−1 log t)

∣∣∣∣dγtdt
∣∣∣∣ .

Now, it is well known that

∃t0 ∈ R+

∫ +∞

t0

As ds = +∞, lim
t→+∞

Bt
At

= 0 =⇒ lim
t→+∞ It = 0.

We can now summarize the entire consideration in the following way.
Theorem 1. Assume that c = lim supγ→+∞ c(γ) < +∞ and the conditions

sup
x∈E

∣∣∣∣ ddβ µγ,β(x)

∣∣∣∣ ≤ d1(γ), sup
x∈E

∣∣∣∣ ddγ µγ,β(x)

∣∣∣∣ ≤ d2(β)

are satisfied for two nonnegative functions d1, d2.
When the inverse-freezing schedule has parametric form βt = K−1 log t, for t

sufficiently large and K > c, we have

lim
t→+∞Entπγt,βt (mt) = 0(9)

whenever

dγt
dt

= o
(

1/(d2(log t1/K)tc/K log t)
)
, d1(γt)/t = o

(
1/(tc/K log t)

)
.(10)
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Remark. The hypothesis above might seem difficult to check; we shall see in fact
that in many cases it is indeed fulfilled. In practice the Markov kernels Qγ,β are
known and it clearly suffices to check that

sup
g∈∪xIx

d

dβ
logQγ,β(g)− inf

g∈∪xIx
d

dβ
logQγ,β(g) ≤ d1(γ),

sup
g∈∪xIx

d

dγ
logQγ,β(g)− inf

g∈∪xIx
d

dγ
logQγ,β(g) ≤ d2(β).

Because of the general orientation provided in this section we can proceed imme-
diately to review the most important special class of generalized simulated annealing,
which we shall study later. Let us consider the transition probability kernels

Qβ(x, y) =
∑
u∈U

qβ(x, u, y)e−βV (x,u,y),(11)

where U is a given finite set, V : U × E2 → R+, and qβ(x, u, y) ≥ 0. The proof of
Theorem 1 shows it is important that the Markov kernel q is irreducible. For this
purpose we will assume the existence of nonnegative functions q(x, u, y) so that

(C) qβ(x, u, y) > 0⇐⇒ q(x, u, y) > 0, lim
β→+∞

qβ(x, u, y) = q(x, u, y),

and we will work with the following irreducibility condition:

(I)∀x, y ∈ E ∃(pk, uk)1≤k≤r : p0 = x, pk ∈ E uk ∈ U pr = y q(pk, uk, pk+1) > 0.

Our immediate goal is to prove the following consequence of Theorem 1 which gives
conditions assuring the convergence stated in Theorem 1 for a time-inhomogeneous
Markov chain with transitions (11). This corollary is applied in section 2 to the
convergence of genetic algorithms

Corollary 1. Assume qβ and q satisfy the continuity and irreducibility condi-
tions (C) and (I). Then, the transition probabilities

Qβ(x, y) =
∑
u∈U

qβ(x, u, y)e−βV (x,u,y)(12)

satisfy the inequalities (1) with

V (x, y) = min
u∈U(x,y)

V (x, u, y), U(x, y) = {u ∈ U : q(x, u, y) > 0},

q(x, y) =
∑

u∈U?(x,y)

q(x, u, y), U?(x, y) = {u ∈ U(x, y) : V (x, u, y) = V (x, y)}.

Let V be the virtual energy function corresponding to the above communication cost
function

V (x) = min
g∈G(x)

∑
(y→z)

V (y, z)

and let c be the corresponding critical height. In addition, suppose that for every
q(x, u, y) > 0 and for some β0 ≥ 0

sup
β≥β0

∣∣∣∣d log qβ
dβ

(x, u, y)

∣∣∣∣ < +∞.(13)
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In this case, if m is a probability measure on E and if βt assumes the parametric form
βt = K−1 log t, for sufficiently large t, with K > c, then

lim
t→+∞Entπβt (mt) = 0 and lim

t→+∞P (Xt ∈ V ?) = 1,

where (Ω, P, Ft, Xt) is the canonical process associated with the family of generators
(Lβt)t≥0 = (Qβt − I)t≥0 whose initial condition is m0 = m, mt is the distribution of
Xt, πβ is the unique invariant probability measure of Lβ, and

V ? = {x ∈ E : V (x) = min
E

V }.

Proof. Using the form of qβ we have for some suitable function ε(β) → 0, as
β → +∞,

(1− ε(β)) Kβ(x, y) ≤ Qβ(x, y) ≤ (1 + ε(β)) Kβ(x, y),(14)

where

Kβ(x, y) =
∑

u∈U(x,y)

q(x, u, y)e−βV (x,u,y).

But now we have that

Kβ(x, y) =
∑

u∈U?(x,y)

q(x, u, y) e−βV (x,y)

+e−βV (x,y)
∑

u∈U(x,y)−U?(x,y)

q(x, u, y) e−β(V (x,u,y)−V (x,y))

= q(x, y)e−βV (x,y) + e−βV (x,y)
∑

u∈U(x,y)−U?(x,y)

q(x, u, y) e−β(V (x,u,y)−V (x,y)).

Thus, condition (I) implies that q is irreducible. Furthermore, if we write

I = {(x, y) ∈ E2 : U(x, y) 6= ∅},
J = {(x, u, y) ∈ E × U × E : (x, y) ∈ I u ∈ U(x, y)}

and

h1 = min
(x,y)∈I

∑
u∈U(x,y)−U?(x,y)

q(x, u, y)/q(x, y),

h2 = min
(x,u,y) : u 6∈U?(x,y)

V (x, u, y)− V (x, y),

then using (14) we get the system of inequalities

(1− ε(β)) q(x, y) eβV (x,y) ≤ Qβ(x, y) ≤ (1 + ε(β)) (1 + h1 e
−βh2)q(x, y) eβV (x,y).

To end the proof it remains to check condition (6). Choose q(x, y) > 0; after some
computations we find∣∣∣∣d logQβ(x, y)

dβ

∣∣∣∣ ≤ sup
u∈U(x,y)

∣∣∣∣d log qβ
dβ

(x, u, y)

∣∣∣∣+ sup
u∈U(x,y)

V (x, u, y).
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Thus (13) implies (6), and using Theorem 1 the proof of the first assertion is complete.
Examination of the invariant distribution of Lβ soon yields that ∀x 6∈ V ? we have
limβ→+∞ πβ(x) = 0. Then, to prove the last assertion it is enough to recall the basic
inequality

‖mt − πβt‖2TV ≤ 2 Entπβt (mt),

where ‖.‖TV is the distance in total variation given by

‖µ− ν‖TV = 2 sup
A⊂E

|µ(A)− ν(A)|.

It is quite clear from definition (12) that the following situations are covered:

Qβ = Q
(1)
β Q

(2)
β and Qβ = αQ

(1)
β + (1− α)Q

(2)
β , 0 < α < 1.

In section 2 we will develop properties of both class of chains which we shall find
includes, as a special case, the evolutionary processes studied by Cerf in [2]. For the
sake of unity and to highlight issues specific to evolutionary processes, we give some
examples to suggest how these results translate in this special situation.

Examples.
1. If d1(γ) = γp and d2(β) = βq for some p ≥ 0 and q > 0, it clearly suffices to

choose γt = log t.

2. Let us study a way to combine the transitions Q
(1)
β , . . . , Q

(r)
β given by

Q
(k)
β (x, y) = q

(k)
β (x, y) e−βV

(k)(x,y), V (k) : E2 → R+, q
(k)
β (x, y) ≥ 0.

It is clear from (11) that the following situation is covered:

(a) Qβ(x, y) = Q
(1)
β . . . Q

(r)
β (x, y) =

∑
z1,...,zr−1∈E

Q
(1)
β (x, z1) . . . Q

(r)
β (zr−1, y).

This situation can be formulated in the form (11) with U = Er−1 and

qβ(x, u, y) = q
(1)
β (x, u1) . . . q

(r)
β (ur−1, y),

V (x, u, y) = V (1)(x, u1) + · · ·+ V (r)(ur−1, y).

Also from (11), the following situation is covered:

(b) Q̃β(x, y) =

r∑
k=1

αk Q
(k)
β (x, y) with

r∑
k=1

αk = 1.

This situation can be formulated in the form (11) with E = {1, . . . , r} and

qβ(x, u, y) = αu q
(u)
β (x, y), V (x, u, y) = V (u)(x, y).

Probabilistically and in precise language 1(a) has the interpretation of being
the transition of a chain obtained through overlapping r − 1 other chains,
and 1(b) has the interpretation of being the transition of a chain obtained
through choosing randomly at each step among r chains. Let us remark, by
way of illustration, that it is also possible to consider a way of combining 1(a)
and 1(b) that subsumes such parallel and series combinations. For instance,

each transition probability Q
(k)
β in the expression (a) may be of type (b) and

conversely. As a result one has a great freedom in the design and the physi-
cal construction of the transition probabilities Qγ,β , and they appear ideally
suited to describe a large class of processes encountered in applications.
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3. Let us examine the above example when r = 2. In this situation we introduce
the irreducibility condition (I)′

q(1) irreducible and ∀x ∈ E q(2)(x, x) > 0(15)

and the continuity condition (C)′

lim
β→+∞

q
(k)
β (x, y) = q(k)(x, y), q

(k)
β (x, y) = 0⇐⇒ q(k)(x, y) = 0 ∀k = 1, 2,

(16)
where q(k)(x, y) are transition probability kernels such that

q(k)(x, y) = 0⇐⇒ V (k)(x, y) = +∞ ∀k = 1, 2.

In this situation the conditions (C) and (I) of Corollary 1 are satisfied. In
addition, if we assume that for every k = 1, 2 and q(k)(x, y)∣∣∣∣∣d log q

(2)
β

dβ
(x, y)

∣∣∣∣∣ < +∞,

then the last condition (13) introduced in Corollary 1 is satisfied.
Corollary 2. Suppose the Markov kernel of the chain has the form

Qγ,β = qβ(x, y)e−βVγ(x,y)

with

qβ(x, y) = 0⇐⇒ q(x, y) = 0, lim
β→+∞

qβ(x, y) = q(x, y)

and assume the following conditions are satisfied for every β, γ ∈ R+ and some con-
stant d > 0:

c = sup
γ
c(γ) < +∞, sup

g∈∪xIx
Vγ(g)− inf

g∈∪xIx
Vγ(g) ≤ d,

sup
g∈∪xIx

d

dβ
log qβ(g)− inf

g∈∪xIx
d

dβ
log qβ(g) ≤ d sup

g∈∪xIx

d

dγ
Vγ(g)− inf

g∈∪xIx
d

dγ
Vγ(g) ≤ d.

When the inverse freezing schedule has parametric form βt = K−1 log t, for t suffi-
ciently large and K > c, we have

lim
t→+∞Entπγt,βt (mt) = 0 whenever

dγt
dt

= o(1/(tc/K log2 t)).

As a consequence we have the well-known corollary that follows.
Corollary 3 (Miclo [10]). Suppose the Markov kernel of the chain has the form

Qγ,β = q(x, y)e−βV (x,y) def
= Qβ(x, y).

When the inverse freezing schedule has parametric form βt = K−1 log t, for t suffi-
ciently large and K > c, we have

lim
t→+∞Entπβt (mt) = 0,
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where πβ is the unique invariant probability measure of the Markov generator Qβ−I.
The usefulness of Theorem 1 will now be illustrated in the case where the transi-

tion probabilities Qγ,β converge to a transition probability kernel Qβ as γ → +∞.
Theorem 2. Let Qβ(x, y) be a Markov kernel such that Qβ(x, y) = 0 ⇐⇒

q(x, y) = 0. Suppose the assumptions of Theorem 1 are satisfied and for every
q(x, y) > 0

lim
t→+∞ | logQγt,βt(x, y)− logQβt(x, y)| = 0.(17)

Then

lim
t→+∞Entπβt (mt) = 0,(18)

where πβ is the unique invariant probability measure of the Markov generator Qβ−I.
Proof. By the same line of argument as before πβ may be described as follows:

πβ(x) =
Rβ(x)∑
z∈E Rβ(z)

with Rβ(x) =
∑
g∈Ix

Qβ(g) and Qβ(g) =
∏

(y→z)∈g
Qβ(y, z).

(19)
It follows that

log
πγ,β
πβ

(x) = − log

∑
g∈Ix

∏
(y→z)∈g

(QβQ
−1
γ,β)(y, z) Qγ,β(g)


− log

 ∑
x′∈E,g∈Ix′

∏
(y→z)∈g

(Qγ,βQ
−1
β )(y, z) Q̃β(g)

 ,

where

Qγ,β(g) = Qγ,β(g)/
∑
h∈Ix

Qγ,β(h) and Q̃β(g) = Qβ(g)/
∑

z∈E,h∈Iz
Qβ(h).

By Jensen’s inequality, we have

log
πγ,β
πβ

(x) ≤ 2 sup
g∈∪zIz

| logQγ,β(g)− logQβ(g)|.

Finally, we obtain

Entπβt (mt) ≤ Entπγt,βt (mt) + 2 sup
g∈∪xIx

| logQγt,βt(g)− logQβt(g)|.(20)

Using (9) the proof is complete.
We now make the above observations precise by considering more specific, al-

though general, transitions Qγ,β .
Corollary 4. Let V be a nonnegative function V : E×E → R+ and Qγ,β(x, y) =

qβ(x, y) eβVγ(x,y). Suppose the assumptions of Corollary 2 are satisfied and, for every
q(x, y) > 0,

|Vγt(x, y)− V (x, y)| = o(1/ log t).(21)
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When the inverse-freezing schedule has parametric form βt = K−1 log t, for t suffi-
ciently large and K > c, we have

lim
t→+∞Entπβt (mt) = 0 and lim

t→+∞P (Xt ∈ V ?) = 1,(22)

where πβ is the unique invariant probability measure of the Markov generator Qβ − I
with

Qβ(x, y) = q(x, y) e−βV (x,y), V ? = {x ∈ E : V (x) = min
E

V },

and

V (x) = min
g∈G(x)

∑
(y→z)∈g

V (y, z).

If Vγt(x, y) = (Ut(y) − Ut(x))+ with Ut : E → R+ and limt→+∞ Ut(x) = U(x),
condition (21) takes the form

lim
t→+∞ log t |Ut(x)− U(x)| = 0.

The following examples illustrate the results and the conditions stated in the above
theorems.
Examples.

1. Let us now turn our attention to the transition probability kernel

Qγ,β(x, y) = q(x, y) e−βVγ(x,y),

where

Vγ(x, y) = (Uγ(y)− Uγ(x))+ if q(x, y) > 0 and +∞ otherwise.

In this case conditions (6) and (7) take the form

sup
x∈E

Uγ(x)− inf
x∈E

Uγ(x) ≤ d1(γ), sup
x∈E

d

dγ
Uγ(x)− inf

x∈E
d

dγ
Uγ(x) ≤ d2(β)/β.

In addition, if

sup
x,γ

Uγ(x) < +∞, sup
x,γ

d

dγ
Uγ(x) < + infty,

then we can choose d2(β) = β d2 and d1(γ) = d1 < +∞ (d1, d2 > 0) and the
condition (10) takes the form

dγt
dt

= o(1/(tc/K(log t)2)).

2. Let us examine the above example with time-inhomogeneous potential given
by

Uγ(x) = θ(γ)−1

∫ θ(γ)

0

C(s, x) ds
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with C : R+ × E → R+ bounded and d
dγ log θ(γ) < +∞.

From the boundedness of C we can choose constants d1, d2 > 0 so that d1(γ) =
d1 and d2(β) = β d2 satisfy the required conditions. Finally, if γt = A log t
and θ(γ) = eγ , then we have

dγt
dt

= A/t = o
(

1/(tc/K(log t)2)
)
,

d

dγ
log θ(γ) = 1,

and

Uγt(x) =
1

tA

∫ tA

0

C(s, x) ds.

1.2. General results on the virtual energy. In section 1 we proved the
convergence in probability of a class of stochastic algorithms to the set of the global
minima V ? of a virtual energy function V . The crucial need of course is to estimate V ?.
In the case where q is symmetric and V (x, y) = (U(y)−U(x))+ with U : E → R+ it is
well known that V ? = U?. For a generalization of this see Trouvé [12]. The situation
becomes considerably more involved when the above assumptions are dispensed with.
The purpose of this section is to introduce a natural test set approach to study V ?.
More precisely, we will give several conditions for a given subset H ⊂ E to contain
V ?.

Let us recall some basic definitions. Let E be a finite set and q an irreducible
Markov kernel. Assume that a given function V : E × E → R+ satisfies

V (x, y) < +∞⇐⇒ q(x, y) > 0.

Let us write Cx,y the paths p in E joining x and y, that is,

∀k ∈ {0, . . . , |p| − 1} q(pk, pk+1) > 0 and p0 = x, p|p| = y,

where |p| is the length of p. For x, y ∈ E, p ∈ Cx,y, and g ∈ G(x) we note

V (p) =

|p|−1∑
k=0

V (pk, pk+1), V (g) =
∑

(y→z)∈g
V (y, z), V (x) = min

g∈G(x)
V (g).

For H ⊂ E and g an x-graph over H (that is, g ∈ GH(x)) it is convenient to define
a new communication cost VH by making the set H a taboo set. Namely, for every
x, y ∈ H

VH(x, y) = min {V (p) : p ∈ Cx,y with ∀k ∈ {1, . . . , |p| − 1} pk 6∈ H},
VH(g) =

∑
(y→z)∈g

VH(y, z).

It is also convenient to define the virtual energy function associated with VH :

∀x ∈ H VH(x) = min
g∈GH(x)

VH(g)− min
y∈H,h∈GH(y)

VH(h).

Finally, let us write

V (H) = min
x∈H

V (x) and V ?H =
{
x ∈ H : VH(x) = min

H
VH

}
.
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Lemma 2. ∀x ∈ H, VH(x) = V (x)− V (H).
Lemma 2 is an easy consequence of the following lemma.
Lemma 3. Let Q be an irreducible transition probability over E with invariant

measure µ. Let X be a Markov chain with transition probability Q and initial measure
m such that m(x) > 0 ∀x ∈ E. Given a subset H ⊂ E define

T1 = inf {n ≥ 1 : Xn ∈ H} Q̃ = P (XT1 = y/X0 = x).

Then Q̃ is an irreducible Markov kernel over H and its invariant probability measure
is given by

µ̃(x) = µ(x)/µ(H).

There are several ways to prove Lemmas 2 and 3. The following may be the
shortest in this context.

Proof of Lemma 3. The proof is a consequence of the law of large numbers. Let
us set by induction on the parameter n ≥ 1

Tn+1 = inf {k > Tn : Xk ∈ H}, n ≥ 1.

Now, under the above conditions, the random process Y = (Yn)n≥0 defined by

Y0 = X0, Yn = XTn , n ≥ 1,

is an irreducible Markov chain over H with transition probability kernel Q̃. Let µ̃ be
its invariant probability measure. First we note that P-almost surely

∀x ∈ E 1

n

n∑
i=1

1x(Yi) −−−−−→
n→ +∞

µ̃(x)

On the other hand we have

1

n

n∑
i=1

1x(Yi) =
Tn
n

(
1

Tn

Tn∑
i=1

1x(Xi)

)
,

n

Tn
=

1

Tn

Tn∑
i=1

1H(Xi),

and

1

Tn

Tn∑
i=1

1x(Xi) −−−−−→
n→ +∞

µ(x),
1

Tn

Tn∑
i=1

1H(Xi) −−−−−→
n→ +∞

µ(H)

P-almost everywhere (P.a.e.). The lemma follows immediately.
We come to the proof of Lemma 2.

Proof of Lemma 2. We shall give a sketch of the proof. Let us denote by Qβ the
Markov kernel over E given by

Qβ(x, y) =

{
|E|−1

exp−βV (x, y) if x 6= y,

1− |E|−1 ∑
z∈E :z 6=x exp−βV (x, z) otherwise.

Let µβ be the invariant measure of Qβ . From the description of µβ in terms of
x-graphs over E it is clear that

µβ(x) ∼
β → +∞

C(x) exp−βV (x)
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for some nonnegative function C : E → R∗+. If one now defines Q̃β as in Lemma 3,
by elementary large deviation arguments one sees the equivalence

Q̃β(x, y) ∼
β → +∞

q̃(x, y) exp−βVH(x, y) ∀x, y ∈ H

for some irreducible Markov kernel q̃ : E × E → R+. Therefore if µ̃β is the invariant

measure of Q̃β one has for some nonnegative function C̃ : E → R∗+

µ̃β(x) ∼
β → +∞

C̃(x) exp−βVH(x),

from which our claim follows easily.
We now give a definition that we will use in our formulation of our test set

approach to understand the limiting behavior of a generalized simulated annealing.
Definition 1. Let H be a subset of E. We say that a partition H = {H1, . . . , Hn}

of H is a V -partition if for every 1 ≤ i ≤ n and x, y ∈ Hi, x 6= y, there exists a path
p ∈ Cx,y such that

∀0 ≤ k < |p| pk ∈ Hi and V (pk, pk+1) = 0.

We observe that for a given subset H ⊂ E, one can always obtain a V -partition.
For instance

H = {{x} : x ∈ H}

is a V -partition. Given a V -partition H = {H1, . . . , Hn} of H ⊂ E, it is convenient to
define a new communication cost function VH by setting for every x ∈ Hi and y ∈ Hj ,
1 ≤ i, j ≤ n

VH(x, y) = {V (p) : p ∈ Cx,y ∃0 ≤ n1 < n2 ≤ |p|
∀0 ≤ k ≤ n1, pk ∈ Hi, ∀n1 < k < n2, pk 6∈ H, ∀n2 ≤ k ≤ |p|pk ∈ Hj} .

It is easily seen that VH(x, y) does not depend on the choice of x ∈ Hi and y ∈ Hj .
Moreover we note that if H = {{x} : x ∈ H}, then VH = VH .

Let VH be the virtual energy function associated with the communication cost
function VH, namely,

∀x ∈ H VH(x) = min
g∈GH(x)

VH(g) with VH(g) =
∑

(y→z)∈g
VH(y, z).

As usual, we also put

V ?H =
{
x ∈ H : VH(x) = min

H
VH
}
.

Proposition 2. If H is a V -partition of a subset H ⊂ E, then we have VH =
VH .

Proof. Let us prove that for every x ∈ H

min
g∈GH(x)

VH(g) = min
g∈GH(x)

VH(g).
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Because H = {H1, . . . , Hn} is a V -partition it is clear that VH ≤ VH . So our claim
will follow provided that for every g ∈ GH(x) we can build a new g̃ ∈ GH(x) such that
VH(g) ≥ VH(g̃). For this purpose let g ∈ GH(x) for some x ∈ H and let i ∈ {1, . . . , n}
such that x ∈ Hi. We will construct an x-graph g̃ ∈ GH(x) such that VH(g) ≥ VH(g̃).
For this we introduce the set

Γ = {(j → k) : ∃(y, z) ∈ g such that y ∈ Hj and z ∈ Hk}.
Obviously Γ is not an i-graph over {1, . . . , n} but examination of Γ soon yields that
it contains at least one i-graph Gi. Now for j 6= i and (j → k) ∈ Gi (unique) there
exists an arrow (yj → zk) ∈ g such that yj ∈ Hj and zk ∈ Hk.

On the other hand, from the definition of VH there exists a path p ∈ Cyj ,zk and
0 ≤ n1 < n2 ≤ |p| such that

∀0 ≤ l ≤ n1 pl ∈ Hj , ∀n1 < l < n2 pl 6∈ H, ∀n2 ≤ l ≤ |p| pl ∈ Hk,

and V (p) = VH(yj , zk). Given such a path p ∈ Cyj ,zk let us set

ỹj = pn1
, z̃k = pn2

.

Finally, because H is a V -partition there exists for every 1 ≤ i ≤ n a ỹj-graph
g̃j ∈ GHj (ỹj) such that V (g̃j) = 0, with the convention ỹi = x.

Using the above construction it is easily seen that the set of arrows

g̃ =

n⋃
i=1

g̃i
⋃ ⋃

(j→k)∈Gi
{(ỹj → z̃k)}

is an x-graph over H and, from the construction of g, it follows that

VH(g) ≥ VH(g̃) =
∑

(j→k)∈Gi
VH(ỹj , z̃k) =

∑
(j→k)∈Gi

VH(ỹj , z̃k) = VH(g̃).

This ends the proof.
The following concept of λ-stability leads to a natural test set approach to study

V ?.
Definition 2. Let λ be a nonnegative real number. A subset H ⊂ E is called λ-

stable with respect to a communication cost function V when the following conditions
are satisfied:

1. ∀x ∈ H ∀y 6∈ H, V (x, y) > λ,
2. ∀x /∈ H ∃y ∈ H, V (x, y) ≤ λ.
The importance of the notion of λ-stability resides in the following result, which

extends Lemma 4.1 of Freidlin–Wentzell [6].
Proposition 3. Let λ be a nonnegative real number and H ⊂ E. Any λ-stable

subset H with respect to V contains V ? and VH = V/H
Proof . Let H be a λ-stable subset of E. Let x 6∈ H and let g be an element of

G(x) such that V (g) = V (x). There exists almost one y ∈ H such that V (x, y) ≤ λ.
Now we note p the exit path from y to x extracted from g, that is,

p0 = y, p|p| = x and ∀k = 0, . . . , |p| − 1, (pk → pk+1) ∈ g.
Write k0 = inf{k = 0, . . . , |p| − 1 : pk 6∈ H}. Let g be the graph obtained from g
by replacing the arrow (pk0−1 → pk0

) by (x→ y). Then we have g ∈ G(pk0−1) and

V (x) = V (g) > V (g) ≥ V (pk0−1), pk0−1 ∈ H.
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This completes the proof of the first assertion. The last assertion is a clear consequence
of Lemma 2.

Let us now reduce all of the results of this section to a proposition which we shall
use for later reference.

Proposition 4. Let A be a 0-stable subset of E with respect to V and let A be
a V -partition of A. If H is a λ-stable subset of A with respect to VA for some λ ≥ 0,
then V ? ⊂ H.

Proof. Using Proposition 3 it is easily seen that V ? ⊂ A, VA = V/A = VA,
and V ?A ⊂ H. Thus one gets V ? = V ?A = V ?A ⊂ H, and the proof of Proposition 4 is
completed.

2. Applications. In this section we examine two applications. In section 2.1 we
use the results of the first section to derive a new and simple proof of the convergence
of the genetic algorithms. We shall prove this important result in a way different from
the original proof of Cerf [2]. The proof splits quite naturally into two distinct parts:

1. We use the relative entropy convergence results stated in the first section to
prove the convergence of the algorithm.

2. Then we investigate the test set approach, introduced in the second part of
section 1, to prove that the set of the global minima of the virtual energy
is contained in the product of the set of the global minima of the fitness
function.

In section 2.2 we apply Corollary 4 to construct a stochastic algorithm for the numer-
ical solving of a general mean cost optimization problem.

2.1. Genetic algorithms. A genetic algorithm is a discrete time Markov pro-
cess x̂ = (x̂n)n with state space E = SN (N > 1 and S a finite set) and whose
transition probabilities Gn include a mutation Mn and a selection Sn mechanism.
The N -tuple of elements of S, i.e., the points of the set E, are called particle systems
and most will be denoted by the letters x, y, z. In what follows, we shall distinguish
two kinds of combinations, namely,

(a) P (x̂n ∈ dx /x̂n−1 = z ) =

∫
E

Mn(z, dy) Sn(y, dx),

(b) P (x̂n ∈ dx /x̂n−1 = z ) = α Mn(z, dx) + (1− α) Sn(z, dx), 0 < α < 1.

Mutations. The mutation transition is modeled by independent motion of each
particle, that is,

Mn(z, dy) =
N∏
p=1

Kn(zp, dyp),

where Kn is a Markov kernel over S, z = (zp)1≤p≤N , and y = (yp)1≤p≤N .
Selection. In the selection transition the particles are chosen randomly and

independently in the previous population according to a given selection function Fn :
S → R+, namely,

Sn(y, dx) =
N∏
p=1

N∑
i=1

Fn(yi)
N∑
j=1

Fn(yj)

1yi(dx
p).
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The study of the convergence, as N → +∞ or n→ +∞, of such algorithms requires
specific developments because each individual particle is no longer Markovian and it
is difficult to produce mean error estimates. In [3] one of the authors applied and
extended such algorithms to nonlinear filtering problems. An apparent difficulty in
establishing a convergence result as n→ +∞ is finding a candidate invariant measure
that enables us to describe some aspects of the limiting behavior of the algorithm.
To our knowledge, Cerf gives in his Ph.D. dissertation [2] the first convergence result
n→ +∞ for a genetic algorithm to converge in probability to the global minima of a
given fitness function. More precisely, he studies the following situation:

1. The state space S is finite and Gn = Mn Sn.
2. The mutation Markov transition kernels Kn(x1, y1) are governed by a param-

eter a and a cooling schedule β(n) : N→ R+, namely,

Mn(x, y) = Q
(1)
β(n)(x, y)

def
=

N∏
p=1

kβ(n)(x
p, yp)(23)

with

kβ(x1, y1)
def
=


k(x1, y1) e−a β if x1 6= y1,

1−
∑
z1 6=x1

k(x1, z1) e−a β if x1 = y1,(24)

where k is a given irreducible Markov kernel on the space S.
3. The selection operator is built with a fitness function f : S → R+ and a

cooling schedule β(n) : N→ R+, namely,

Sn(x, y) = Q
(2)
β(n)(x, y)

def
=

N∏
p=1

N∑
i=1

e− β(n) f(xi)

N∑
j=1

e− β(n) f(xj)

1xi(y
p).(25)

Cerf gives several conditions on the rate of decrease of the cooling schedule β(n) →
+∞ to ensure all the particles visit the set of global minima, as times goes on, when
the number of particles is greater than a critical value. He carries out in a discrete
time setting a precise study using large deviation techniques and the powerful tools
developed by Trouvé [12]. Simplifying and extending techniques of Cerf and Trouvé,
our results are obtained by using the relative entropy convergence result stated in
Corollary 1 and by investigating the test set approach introduced in section 1.2.

2.1.1. General results and notations. In this section we will consider genetic
algorithms described by the transition probability kernel

Qβ = Q
(1)
β Q

(2)
β or Q̃β = α1Q

(1)
β +α2Q

(2)
β with α1 +α2 = 1 and 0 < α1 < 1

(26)
and nonnecessarily vanishing mutations. More precisely, we assume that the mutation
transition kernels kβ in (24) have the property

∃b > 0, b−1 k(x1, x2) e−β a(x1,x2) ≤ kβ(x1, x2) ≤ b k(x1, x2) e−β a(x1,x2),(27)

where a : S2 → R+, a(x, y) < +∞⇐⇒ k(x, y) > 0, k is an irreducible Markov kernel,
and the relation on S defined by

x1 ∼ x2 ⇐⇒ a(x1, x2) = 0
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is an equivalence relation. This leads us naturally to consider the partition S1, . . . , Sn(a),
n(a) ≥ 1, induced by ∼. If x1 is a typical element of S, then the equivalence class of
x1 will be denoted by S(x1):

S(x1) = {x2 ∈ S : x1 ∼ x2}.

We further require that

a(x1, x2) = 0 =⇒ f(x1) = f(x2)

and for some β0 > 0

∀x1, x2 ∈ S sup
β≥β0

|d log kβ(x1, x2)/dβ| < +∞.(28)

To our knowledge the models of evolutionary processes (26) have not been covered by
the literature of genetic algorithms.

Examples. The following mutation transition kernels have the properties (27) and
(28):

1. kβ(x1, x2) =

{
k(x1, x2) e−β a(x1,x2) if a(x1, x2) > 0,

|S(x1)|−1
(

1−∑y1 6∈S(x1) k(x1, y1) e−β a(x1,y1)
)

otherwise.

2. kβ(x1, x2) =
e−β a(x1,x2) k(x1, x2)∑

y1∈S e−β a(x1,y1) k(x1, y1)
∀(x1, x2) ∈ S2.

Finally, let us note that if a is given by

a(x1, x2) = a (1− 1x1(x2)) ∀(x1, x2) ∈ S2 : k(x1, x2) > 0,

then the first transition probability kernel is clearly the same as the mutation transi-
tion probability kernel (24) studied by Cerf.

In this special situation, the first model Qβ = Q
(1)
β Q

(2)
β is of course identical to

Cerf’s model of a genetic algorithm.
Let us recall some terminology introduced by Cerf in [2]. The cardinality of a set

will be denoted by |.|. If x and y belong to E = SN and f : S → R+, we write

[x] = {xk : 1 ≤ k ≤ N}, f? = {x1 ∈ S : f(x1) = min
S
f},

x̂ = {k : 1 ≤ k ≤ N , f(xk) = f̂(x)}, f̂(x) = min
1≤k≤N

f(xk),

x(y1) = Card{k : 1 ≤ k ≤ N , xk = y1}.

Using these notations, an easy calculation shows that for k = 1 or k = 2

Q
(k)
β (x, y) = q

(k)
β (x, y) e−βV

(k)(x,y), q
(k)
β (x, y) = q(k)(x, y) θ

(k)
β (x, y),

where

q(1)(x, y) =
∏

i:a(xi,yj)>0

k(xi, yi), q(2)(x, y) =

N∏
i=1

x(yi)

|x̂| ,

V (1)(x, y) =
N∑
i=1

a(xi, yi) if q(1)(x, y) > 0,
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V (2)(x, y) =
N∑
i=1

(
f(yi)− f̂(x)

)
if q(2)(x, y) > 0,

θ
(1)
β (x, y) =

∏
i:a(xi,yi)=0

kβ(xi, yi),

θ
(2)
β (x, y) =

1 + |x̂|−1
∑
k 6∈x̂

exp−β(f(xk)− f̂(x))

−N .
As usual, we will use the convention

∀k ∈ {1, 2} V (k)(x, y) = +∞⇐⇒ q(k)(x, y) = 0.

The asymptotic mutation dynamics of the genetic algorithms is governed by the kernel
k and the function a. The irreducibility condition on the kernel k and the fact that a
is an equivalence relation are sufficient conditions to allow the system of particles to
visit all the state space E. Thus, using the above notations, it is easily checked that

• q(1) is irreducible and q(2)(x, x) > 0 for every x ∈ E;
• for every k = 1, 2 and q(k)(x, y) > 0 we have supβ≥β0

|d log θkβ(x, y)/dβ| < +∞
for some β0 ≥ 0.

Then, returning to our general model (12), the conditions introduced in Corol-
lary 1 are satisfied in both situations:

1. Qβ(x, y)
def
= Q

(1)
β Q

(2)
β (x, y) =

∑
u∈U

qβ(x, u, y)e−βV (x,u,y)

with U = E, V (x, u, y) = V (1)(x, u)+V (2)(u, y), q(x, u, y) = q(1)(x, u)q(2)(u, y),

and θβ(x, u, y) = θ
(1)
β (x, u) θ

(2)
β (u, y), qβ(x, u, y) = θβ(x, u, y)q(x, u, y).

2. Q̃β(x, y)
def
= α1 Q

(1)
β (x, y) + α2Q

(2)
β (x, y) =

∑
u∈U

qβ(x, u, y)e−βV (x,u,y)

with U = {1, 2}, V (x, u, y) = V (u)(x, y), q(x, u, y) = αu q(u)(x, y),

and θβ(x, u, y) = θ
(u)
β (x, y), qβ(x, u, y) = θβ(x, u, y)q(x, u, y).

2.1.2. A convergence theorem. To clarify the notations, in the remainder of
section 2 we will use the diacritic (.̃) to distinguish the communication cost functions,
the virtual energy function, and the critical height associated with the transition
probability kernels Qβ from those associated with Q̃β .

From the above observations and Corollary 1, choosing β of the form

βt = K−1 log t, where K > c (resp., K > c̃),

for t sufficiently large yields that the canonical process (Ω, P, Ft, Xt) associated with
the family of generators (Lβt)t≥0 = (Qβt − I)t≥0 (resp., (Q̃βt − I)t≥0) converges in

probability to the set of the global minima V ? (resp., Ṽ ?) of the virtual energy V
(resp., Ṽ ) associated with Qβ (resp., Q̃β) and described in Corollary 1. One open
problem is to compare c and c̃. Let us remark that c̃ does not depend on the choice
of the parameter α ∈]0, 1[. In view of these observations the bulk of the proof rests
on showing that V ? and Ṽ ? are subsets of (f?), where (f?) is the set in E defined by

(f?) =
{
x ∈ E : f̂(x) = min

E
f
}
.
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The main purpose of this section is to prove a more general result. We will prove
that V ? and Ṽ ? are subsets of (f?) ∩A, where A is the set in E defined by

A = {x ∈ E : xk ∼ xl ∀1 ≤ k, l ≤ N}.
By A we will denote the partition of A induced by the equivalence relation ∼

A = {A1, . . . , An(a)}, Ai = {x ∈ E : [x] ⊂ Si} ∀1 ≤ i ≤ n(a).

As usual we associate with each typical element x = (x1, . . . , xN ) ∈ A the subset

A(x) = {y ∈ E : [y] ⊂ S(x1)}.
Note that A is 0-stable with respect to V and Ṽ . Moreover, from our constructions,
a routine proof yields that A is a V and Ṽ -partition of A. In view of Propositions 2
and 3 it follows that V ? ⊂ A, Ṽ ? ⊂ A, and

∀x ∈ A V (x) = min
g∈GA(x)

VA(g), Ṽ (x) = min
g∈GA(x)

ṼA(g).

Now, from Proposition 4, to prove that V ? and Ṽ ? are subsets of (f?) it clearly suffices
to find a constant λ such that the subset (f?)∩A is λ-stable with respect to VA and ṼA.

As we will see such results hold when the size N of the particle systems is greater
that a critical value which depends on the functions a and f . We shall study this
critical size now, beginning with two important lemmas.

Before proceeding we need to introduce some additional notations.
By Γx1,x2 , x1, x2 ∈ S, we denote the paths q in S joining x1 and x2, that is,

∀0 ≤ l < |q| k(xl, xl+1) > 0, q0 = x1, q|q| = x2.

We will also denote R(a) as the smallest integer such that for every x1, x2 ∈ S in two
different classes there exists a path joining x1 and x2 with length |q| ≤ R(a). More
precisely,

R(a) = max
1≤i,j≤n(a)

min
(xi,xj)∈Si×Sj

min
q∈Γxi,xj

|q|.

It also will be convenient to use the following definitions:

4a = min {a(x1, x2) : a(x1, x2) 6= 0}, 4f = min {|f(x1)−f(x2)| : f(x1) 6= f(x2)},
δ(a) = sup {a(x1, x2) : x1, x2 ∈ S}, δ(f) = sup {|f(x1)− f(x2)| : x1, x2 ∈ S}.

Lemma 4. For every x, y ∈ A such that f̂(x) ≥ f̂(y) we have

ṼA(x, y) ≤ δ(a) R(a).(29)

Moreover, for every x ∈ A there exists a state y ∈ (f?) ∩A such that

VA(x, y) ≤ (δ(a) + δ(f)) R(a).(30)

Lemma 5. For every x, y ∈ A such that f̂(x) < f̂(y) we have

VA(x, y) ≥ min(∆a,∆f) N and ṼA(x, y) ≥ min(∆a,∆f) N.(31)
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Let us write

λ(a, f) = (δ(a) + δ(f)) R(a), λ̃(a, f) = δ(a) R(a),

N(a, f) = λ(a, f)/min(∆a,∆f), Ñ(a, f) = λ̃(a, f)/min(∆a,∆f).

Combining Lemmas 4 and 5 one easily gets

N > N(a, f) =⇒ (f?) ∩A is λ(a, f)-stable with respect to VA,
N > Ñ(a, f) =⇒ (f?) ∩A is λ̃(a, f)-stable with respect to ṼA.

These results and Proposition 4 combine to yield the following theorem.
Theorem 3. We denote (Ω, P, Ft, Xt) as the canonical process associated with

the family of generators (Lβt)t≥0 = (Qβt − I)t≥0 (resp., (Q̃βt − I)t≥0), c (resp., c̃)

the critical height associated with the communication cost function V (resp., Ṽ ), and
mt the distribution of Xt. If βt assumes the parametric form βt = K−1 log t, for
sufficiently large t, with K > c and if N > N(a, f) (resp., Ñ(a, f)), then we have

lim
t→+∞Entπβt (mt) = 0 and lim

t→+∞P (Xt ∈ (f?) ∩A) = 1,

where πβ is the invariant probability measure of Lβ = Qβ − I (resp., Q̃β − I).
We come to the proof of Lemmas 4 and 5.
Proof of Lemma 4. Let x = (x1, . . . , xN ) and y = (y1, . . . , yN ) be two elements of

A such that f̂(x) ≥ f̂(y). First let us remark that

x1 ∼ y1 =⇒ ∀1 ≤ k ≤ N, a(xk, yk) = 0 =⇒ ∀1 ≤ k ≤ N, f(xk) = f(yk).

In this situation, a routine proof yields

VA(x, y) = 0 and ṼA(x, y) = 0.

If a(x1, y1) > 0 then the irreducibility condition implies the existence of a path q ∈
Γx1,y1 and a pair of integers 0 ≤ n1 < n2 ≤ |q| such that

∀0 ≤ k ≤ n1, qk ∈ S(x1), ∀n1 < k < n2, qk 6∈ S(x1), ∀n2 ≤ k ≤ |q|, qk ∈ S(y1).
(32)
Let us prove (29). For this, let p ∈ C̃x,y be the path defined by

∀0 ≤ k ≤ |q|, pk = (qk, x2, . . . , xN ), p|q|+1 = (y1), p|q|+2 = y.

From the definition of q we have

∀0 ≤ k ≤ n1, pk ∈ A(x), ∀n1 < k ≤ |q|, pk 6∈ A, ∀k ∈ {|q|+1, |q|+2}, pk ∈ A(y).
(33)
Moreover, it follows that

0 ≤
n1−1∑
k=0

Ṽ (pk, pk+1) ≤
n1−1∑
k=0

V (1)(pk, pk+1) = 0,

0 ≤ Ṽ (p|q|, p|q|+1) ≤ V (2)(p|q|, p|q|+1) = 0, and

Ṽ (p|q|+1, p|q|+2) = V (1)(p|q|+1, p|q|+2) = 0.
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Now, it appears from the proceeding that

Ṽ (p) ≤
n1−1∑
k=0

Ṽ (pk, pk+1) +

|q|−1∑
k=n1

Ṽ (pk, pk+1) + Ṽ (p|q|, p|q|+1) + Ṽ (p|q|+1, p|q|+2)

=

|q|−1∑
k=n1

Ṽ (pk, pk+1) ≤ δ(a)|q|.

Therefore Ṽ (x, y) ≤ δ(a) R(a) and the proof of (29) is completed.
The proof of (30) is just a little more complicated.

Suppose x ∈ A and y′ is an element of A such that f̂(x) ≥ f̂(y′) = minS f and
a(x1, y

′
1) > 0. Let q be the path joining x1 and y′1 and defined as in (32). Using the

above notations, let (tm)m be the sequence of integers defined by

t0 = n1, tm = inf
{
k > tm−1 : f(qk) < f(qtm−1

)
} ∀m ≥ 1.

Using the assumption f̂(x) ≥ f̂(y′) = minS f , examination of q soon yields that there
exists an m0 ≥ 1 such that tm0

≤ n2 and f(qtm0
) = minS f . Consequently, we have

constructed a sequence of states (qtm)0≤m≤m0 such that

f̂(x) = f(qt0) > f(qt1) > · · · > f(qtm) > · · · > f(qtm0
) = f̂(y),(34)

where y = (qtm0
, . . . , qtm0

) ∈ A ∩ (f?). With each state qtm we associate a state
pm ∈ E, 0 ≤ m ≤ m0, by setting

pt0 = (qt0 , x2, . . . , xN ), ptm = (qtm , . . . , qtm , xN ) ∀1 ≤ m ≤ m0.

First we note that ptm 6∈ A ∀1 ≤ m ≤ m0 and

f̂(x) = f̂(pt0) > f̂(pt1) > · · · > f̂(ptm) > · · · > f̂(ptm0
) = min

S
f = f̂(y).

Our next task is to construct a sequence of paths (p(m))0≤m≤m0+1 such that

p(0) ∈ Cx,pt0 , p(m) ∈ Cptm−1
,ptm , ∀1 ≤ m ≤ m0 p(m0+1) ∈ Cptm0

,y,

and
• the path p(0) has length |p(0)| = t0 and for every 0 ≤ k ≤ t0 the states p

(0)
k

belong to A(x);
• for every 1 ≤ m ≤ m0, p(m) is a path joining ptm−1 and ptm in time

|p(m)| = tm − tm−1,

and for every 0 ≤ k ≤ tm − tm−1 the states p
(m)
k do not belong to A except

the first initial state p
(1)
0 = pt0 ∈ A(x);

• p(m0+1) = (ptm0
, y).

It is straightforward to see that any path p(0) satisfying the above conditions has
null cost, that is, V (p(0)) = 0. Then, to obtain the desired upper bound it clearly
suffices to have

∀1 ≤ m ≤ m0 V (p(m)) ≤ (tm − tm−1) (δ(a) + δ(f)).

We proceed to define (p(m))0≤m≤m0+1 as follows:
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1. In view of (32) and (34) it is natural to define the initial path p(0) def
=

(p0, . . . , pt0) by setting

∀0 ≤ k ≤ t0 = n1 pk = (qk, x2, . . . , xN ) ∈ A(x).

As has already been noted, a simple calculation shows that

V (p(0)) =

t0−1∑
k=0

V (1)(pk, pk+1) + V (2)(pk+1, pk+1) = 0.

2. Taking into account that t1 is the first time k such that f(qk) < f̂(x) we are

lead to define p(1) def
= (pt0 , pt0+1, . . . , pt1) by setting

∀t0 ≤ k < t1 pk = (qk, x2, . . . , xN ), pt1 = (qt1 , . . . , qt1 , xN ).

Let us write pt1 = (qt1 , x2, . . . , xN ). In this situation pk 6∈ A ∀t0 < k ≤ t1
and it is easy to verify that

V (p(1)) ≤
t1−2∑
k=t0

V (1)(pk, pk+1) + V (2)(pk+1, pk+1) + V (1)(pt1−1, pt1)

+V (2)(pt1 , pt1)

≤ (t1 − t0)(δ(a) + δ(f)).

3. As for item 2, we define the paths p(m) def
= (ptm−1

, ptm−1+1, . . . , ptm) for 2 ≤
m ≤ m0 by setting

∀tm−1 ≤ k < tmpk = (qk, qtm−1
, . . . , qtm−1

, xN ), ptm = (qtm , . . . , qtm , xN ).

Here again we have pk 6∈ A ∀tm−1 ≤ k ≤ tm. Let us introduce a new state
ptm = (qtm , qtm−1

, . . . , qtm−1
, xN ). It is then an elementary matter to prove

the inequalities

V (p(m)) ≤
tm−2∑
k=tm−1

(
V (1)(pk, pk+1) + V (2)(pk+1, pk+1)

)
+V (1)(ptm−1, ptm) + V (2)(ptm , ptm)

≤ (tm − tm−1 − 1) (δ(a) + 2 δ(f)) + δ(a) + δ(f)

≤ (tm − tm−1) (δ(a) + δ(f)).

4. Finally, let us note that

0 ≤ V (p(m0+1)) ≤ V (1)(ptm0
, ptm0

) + V (2)(ptm0
, y) = 0.

Consider the path p = (p(0), . . . , p(m0+1)) ∈ Cx,y obtained by joining end to end all
these paths. From the above inequalities it follows easily that V (p) ≤ |q| (δ(a)+δ(f)).
As a clear consequence one gets

VA(x, y) ≤ (δ(a) + δ(f)) R(a).

This ends the proof of Lemma 4.
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Much more is true. In view of our assumptions on the function a and the con-
structions given in the proof of Lemma 4 we observe easily that

∀x ∈ A ∀y ∈ A ∩ (f?) VA(x, y) ≤ (δ(a) + δ(f)) R(a).

Proof of Lemma 5. Let (x, y) be a pair of points of A such that f̂(x) < f̂(y).

Now, let p belong to C̃x,y. Note that since f̂(x) < f̂(y) there exists a real number λ

such that f̂(x) < λ < f̂(y). Let us set

∀0 ≤ l ≤ |q| Il =
{
i ∈ {1, . . . , N} : f(pil) > λ

}
and nl = |Il|.

It follows easily that n0 = 0 and n|p| = N .
Now, let Tk, 0 ≤ k ≤ N , be the first time l ≥ 0 such that nl ≥ k. More precisely,

Tk = inf {l ∈ {0, . . . , |p|} : nl ≥ k} ∀0 ≤ k ≤ N.
Clearly it appears from the above that

T0 = 0, TN ≤ |p|, nTN = N, nT0
= n0 = 0.(35)

By definition of the communication cost function V (1) we can see that

V (1)(pTk−1, pTk) ≥
∑

i∈ITk−ITk−1

a(piTk−1, p
i
Tk

) ≥ (nTk − nTk−1) ∆a ∀1 ≤ k ≤ N.

(36)
More precisely, pTk−1 contains nTk−1 individuals piTk−1 such that f(piTk−1) > λ and

pTk contains nTk individuals pjTk such that f(pjTk) > λ. Therefore, if V (1)(pTk−1, pTk) <
+∞, then the transition pTk−1 → pTk necessarily involves at least (nTk − nTk−1) in-
dividual mutations.

Similarly, if V (2)(pTk−1, pTk) < +∞, then the system pTk contains at least (nTk −
nTk−1) new individuals piTk ∈ [pTk−1

] such that f(piTk) > λ. Thus a discussion similar
to that above leads to

V (2)(pTk−1, pTk) ≥ (nTk − nTk−1) ∆f.(37)

Finally, by definition of Ṽ , we have

Ṽ (q) ≥ Ṽ (pT1−1, pT1
) + · · ·+ Ṽ (pTN−1, pTN ).

Let us remark that

nTk−1 ≤ k − 1 ≤ nTk−1
∀1 ≤ k ≤ N.

Thus, combining (36) and (37) , we arrive at

Ṽ (q) ≥ N min (∆a,∆f).

Taking the minimum of all p ∈ C̃x,y and taking into account that V ≥ Ṽ we obtain

V (x, y) ≥ Ṽ (x, y) ≥ N min (∆a,∆f).

Finally we have

ṼA(x, y) ≥ Ṽ (x, y) ≥ N min (∆a,∆f) and VA(x, y) ≥ V (x, y) ≥ N min (∆a,∆f).
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This ends the proof of Lemma 5.
Remark. Lemmas 4 and 5 show that the costs of good transitions are bounded

whereas the costs of the bad ones increase at least linearly with the size of the system.
On the basis of the definition of V and Ṽ and in view of the proof of these lemmas
it is clear that the above result is easier to establish for the cost function Ṽ . It also
turns out that the estimate of the cost of bad transitions with respect to Ṽ provides
a quick and natural way to estimate their costs with respect to V .

In [2] an inductive proof of this result is presented for the genetic algorithm
associated with V and without the equivalence relation considered here. The main
contribution here is the extension of the results presented in [2] to any equivalence
relation a and to the genetic algorithm associated with the cost function Ṽ .

On the other hand and in contrast to the inductive proof presented in [2], the
approach described here is based on a precise study of the cost of bad or good paths.

The constants λ(a, f), λ̃(a, f) represent the difficulty for a population to travel
from an equivalence class to better ones. In connection with this remark it is inter-
esting to note that λ̃(a, f) does not depend on the fitness function f and

λ(a, f) > λ̃(a, f).

In other words, it is more difficult for the genetic algorithm associated with V to move
from one configuration to a better one. The above observations also imply that the
critical value N(a, f) is greater than Ñ(a, f).

Examples. Let us see what happens when our second general model (26) is spe-
cialized for the case where the state is

S = {−1,+1}S , S = [−n, n]p, p ≥ 1,

and the fitness function f : S → R is given by

f(x) =
1

2

∑
s∈S

∑
s′∈Vs

x(s) x(s′) +
1

2

∑
s∈S

x(s),

where

∀s ∈ S Vs = {s′ ∈ S : |sk − s′k| ≤ 1, 1 ≤ k ≤ p}.
Let k be the Markovian mutation kernel on S given by

k(x1, x2) =
1

|V(x1)| 1V(x1)(x2),

V(x1)
def
= {x2 ∈ S : Card{s ∈ S : x1(s) 6= x2(s)} ≤ 1}.

Suppose that the function a is given by

a(x1, x2) = (1− 1x1(x2)) ∀(x1, x2) ∈ S2 : k(x1, x2) > 0.

Then, one can check that

R(a) ≤ max
x,y

min
q∈Cx,y

|q| = card(S) = (2n+ 1)p and δ(a) = ∆(a) = 1.

Let N be an integer that N > (2n+1)p. The above theorem shows that N individuals
will solve the optimization problem when using the genetic algorithm associated with
Q̃β .
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2.2. Mean cost optimization. In this section we discuss the ways in which
the results of section 1 are applied in mean cost optimization problems. Namely, the
object will be to find the global minima of a function V : E → R+ given by

V (x) = E(U(Z, x)) or V (x) = min
g∈G(x)

∑
(y,z)∈g

E(V(Z; y, z)),

where
• E is a finite set and G(x) is the set of x-graphs over E,
• Z is a random variable taking value in a finite set F (we denote µ its distri-

bution),
• U : F × E → R+, and V : F × E × E× → R+.

We have seen how to construct a stochastic algorithm converging in probability to
global minima of the virtual energy associated with a communication cost function. It
is clear from the description above that the appropriate communication cost function
is given by

V (x, y) = (E(U(Z; y))− E(U(Z;x)))+ or V (x, y) = E(V(Z; y, z)).

Unfortunately the huge size of the set F often precludes the use of such an algorithm,
and the essential problem is to compute a mean cost function at each step. Therefore
it is natural to choose, for instance, a Markovian kernel K which ensures that

Vγt(x, y) =
1

tA

∫ tA

0

V(Zs;x, y) ds −−−−−−−−→
t→ +∞

V (x, y) = E(V(Z;x, y)) P.a.e.

or Vγt(x, y) =

(
1

tA

∫ tA

0

U(Zs; y) ds− 1

tA

∫ tA

0

U(Zs;x) ds

)+

−−−−−−−−→
t→ +∞

V (x, y) = (E(U(Z; y))− E(U(Z;x)))
+

P.a.e.,

where
• Vγ def

= 1/eγ
∫ eγ

0
V(Zs;x, y) ds or

Vγ
def
=
(

1
eγ

∫ eγ
0
U(Zs; y) ds− 1

eγ

∫ eγ
0
U(Zs;x) ds

)+

,

• γt = A log t,
• Zs is a time-homogeneous Markov process associated with the generator L =
K − I,
• µ is an invariant measure of L.

Before starting the description of our stochastic algorithm, we give some details about
the above convergences.

Lemma 6. Let K be a an irreducible transition kernel with unique invariant
measure µ. For every x, y ∈ E and A > 0 we have

lim
t→+∞

√
tA

log t
|Vγt(x, y)− V (x, y)| = 0 P.a.e.

Proof. In this situation it is well known that for every x, y ∈ E there exists a
bounded function F (.;x, y) such that

V(.;x, y)− µ(V(.;x, y)) = L(F(.;x, y)) and µ(F(.;x, y) = 0.
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This equation is the Poisson equation associated with V(.;x, y) and L. Thus, one gets
the decomposition

1

t

∫ t

0

(V(Zs;x, y)− µ(V(.;x, y))) ds =
1

t
(F (Zt;x, y)− F (Z0;x, y)−M(x, y)t),

where M(x, y) is a martingale with angle bracket 〈M(x, y)〉 given by

〈M(x, y)〉t =
∑
z∈F

∫ t

0

(F (z;x, y)− F (Zs;x, y))2 K(Zs, z) ds.

Since the function F is bounded we have 〈M(x, y)〉t ≤ c t for some nonnegative
constant. Finally, by the standard iterated-log law and since jumps are bounded, it
follows that

1

t
M(x, y)t ≤

√
2 c t log log(c t)

t

and thus limt→+∞
√

t
log t

∣∣ 1
tM(x, y)t

∣∣ = 0. This ends the proof.

Remark. The Poisson equation is a standard tool in the study of Markov processes.
For instance it was also used by Younes [13] to study the convergence of a stochastic
gradient algorithm to a maximum likelihood estimator. The context of Younes is
more complex than those considered here, and the speed of convergence cannot be
obtained by a mere application of the iterated logarithm law as before. But Younes
also noticed that if the convergence is fast enough (in a negative power in time), then
one can couple the estimation procedure to a simulated annealing algorithm (with the
classical reversibility conditions) to get the global minima of a function depending on
the parameter to be estimated. To do this, Younes uses the Dobrushin coefficients,
but the entropy approach enables one to get more precise results on the admissible
logarithmic schedules of temperature (the constant c given below).

Let us fix some terminology.

• Let (Ω(Z), P (Z), F
(Z)
t , Zt) be the canonical process associated with the gener-

ator L.
• For a given probability measure m on E, β, γ ∈ C1(R+,R+) and given the

Markov process Z we note (Ω(Z), P(Z), F(Z),t, Xt) the canonical process as-
sociated with the family of generators (Lγt,βt)t≥0 = (Qγt,βt − I)t≥0 whose
initial condition is m0 = m, and we note mt the distribution of Xt, where

Qγ,β(x, y) = q(x, y) e−β Vγ(x,y) with q irreducible.

• To capture all randomness we note Ω = Ω(Z)×Ω(Z), Ft = F
(Z)
t ×F(Z),t, and

we define P as follows:

∀A ∈ F(Z),t ∈ ∀B ∈ F (Z)
t P (A×B) =

∫
B

P(Z)(A) dP (Z).

The above lemma and Corollary 4 lead us to the following proposition.
Proposition 5. Let us set c = lim supγ→+∞ c(γ) < +∞ P.a.e., where c(γ) is

the critical height associated with the communication cost Vγ .
When the inverse-freezing schedule has parametric form βt = K−1 log t, for t

sufficiently large and K > c, we have

lim
t→+∞Entπβt (mt) = 0 P.a.e. and lim

t→+∞P (Xt ∈ V ?) = 1,(38)
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where πβ is the unique invariant probability of Lβ = Qβ − I with

Qβ(x, y) = q(x, y) e−βV (x,y).

In many practical situations we also want a quantitative measure of the conver-
gence (38). Unfortunately our method of proof is not suitable for estimating such
quantitative behavior. In our settings a natural alternative approach is to look at
the convergence of the mean value of the process t→ Entπβt (mt) with respect to the
random media (given by Z). In view of the inequality (20) we immediately observe
that the speed of convergence of the mean value is related to the speed of convergence
of the mean values of Entπγt,βt (mt) and |Vγt(x, y)−V (x, y)|. The first term, linked to
the critical height c(γt) and to the derivative of γt, depends in a complicated way on
the constant A, but we know that it is a nondecreasing function of the parameter A.
On the other hand, the second term is a nonincreasing function of the parameter A.
If we know how these quantities are linked to A a good adjustment of this parameter
is then related to a classical minimization problem. We will examine this quantitative
behavior in a forthcoming paper.

REFERENCES

[1] R. Bott and J.P. Mayberry, Matrices and trees, in Economics Activity Analysis, John Wiley,
New York, 1954.
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[9] M. Löwe, Simulated annealing with time-independent energy function via Sobolev inequalities,
Stochastic Process. Appl., 63 (1996), pp. 221–233.
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1. Introduction. The topological derivative for a shape functional is defined in
the following way [10].

Assume that Ω ⊂ RN is an open set and that there is given a shape functional

J : Ω \K → R

for any compact subset K ⊂ Ω. We denote by Bρ(x), x ∈ Ω, the ball of radius ρ > 0,

Bρ(x) = {y ∈ RN |‖y− x‖ < ρ}, Bρ(x) is the closure of Bρ(x), and assume that there
exists the following limit

T(x) = lim
ρ↓0
J (Ω \Bρ(x))− J (Ω)

|Bρ(x)| ,

which can be defined in an equivalent way by

T̃(x) = lim
ρ↓0
J (Ω \Bρ(x))− J (Ω)

ρN
.

The function T(x), x ∈ Ω is called the topological derivative of J (Ω) and provides the
information on the infinitesimal variation of the shape functional J if a small hole is
created at x ∈ Ω. We shall show in the sequel that the method is constructive; i.e., the
topological derivative can be evaluated for shape functionals depending on solutions
of elliptic equations defined in Ω.

The partial differential equation for uρ = uΩρ is called the state equation for the
shape optimization problems under consideration. We show that for a class of shape
functionals it is sufficient to solve in the unperturbed domain Ω the state equation
as well as the appropriate adjoint state equation in order to evaluate the topological
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derivative T(x), x ∈ Ω. This means that the derivative can be used in shape optimiza-
tion for broad classes of shape functionals and partial differential equations. Some
examples, where the derivative is explicitly given for model problems, are provided.

Our results can be described in the following way. For the shape functional J (Ω\
Bρ(x)) we introduce the function of the small parameter ρ ≥ 0 of the form J(ρ) =

J (Ω\Bρ(x)) and determine for N = 2 the second-order derivative J
′′
(0+). Therefore,

the following expansion is obtained:

J (Ωρ) = J (Ω) +
ρ2

2
J
′′
(0+) + o(ρ2) .

In the very special case of the energy functional, the so-called compliance func-
tional in linear elasticity, the topological derivative is in fact considered in [8]. The
derivative is used in numerical methods of optimal design for the specific choice of
shape functional [8]. In order to differentiate the energy functional with respect to the
variations of the boundary of the domain of integration the knowledge of the shape
derivative of the state equation with respect to the boundary variations is not re-
quired. Therefore, the results obtained for the particular case of the energy functional
cannot be directly generalized to the case of an arbitrary shape functional.

In this paper the derivative is defined for an arbitrary shape functional and evalu-
ated for solutions of scalar elliptic equations and the system of elasticity in the plane.

2. Elliptic equation in R2. Assume that Ω ⊂ R2 is a bounded domain with the
boundary ∂Ω = Γ1 ∪ Γ2, 0 ∈ Ω. Let K = [kij ]2×2, kij ∈ R, i, j = 1, 2, be a symmetric
positive definite matrix.

We consider the following elliptic equation with nonhomogeneous Dirichlet–Neu-
mann boundary conditions:

div(K · ∇u) = f in Ω,(2.1)

u = g on Γ1,

∂u

∂nK
= h on Γ2.

Let λ1, λ2 be the eigenvalues of K, ξ1, ξ2 ∈ R2 the corresponding eigenvectors, i.e.,
K · ξi = λiξ

i, i = 1, 2, and Rλ = [ξ1, ξ2]2×2, a rotation matrix consisting of the
eigenvectors. Using the matrix Rλ the following ellipse Eρ ⊂ R2 depending on the
small parameter ρ > 0 is defined:

Eρ =

{
x = (x1, x2) |x = Rλ · y , y = (y1, y2) ,

y2
1

λ1
+
y2

2

λ2
≤ ρ2

}
.

For sufficiently small ρ > 0 it is always possible to remove Eρ from Ω, obtaining

Ωρ = Ω \ Eρ , ∂Ωρ = ∂Ω ∪ ∂Eρ.
In such a domain we define the following system:

(P(Ωρ))


div(K · ∇uρ) = f in Ωρ,

uρ = g on Γ1,
∂uρ
∂nK

= h on Γ2,
∂uρ
∂nK

= 0 on Γρ = ∂Eρ,
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which coincides with (2.1) for ρ = 0.
The shape functionals we shall consider have the following form:

J1(Ωρ) = Ju(ρ) =

∫
Ωρ

F (uρ) dΩ,(2.2)

J2(Ωρ) = Jg(ρ) =

∫
Ωρ

[∇uρ ·K · ∇uρ]p dΩ,(2.3)

where p ≥ 1 is selected in such a way that (2.3) is well defined, and F is a C2 function
of its argument, and, e.g., |F (u)| ≤ C1|u|2, |F ′′(u)| ≤ C2, to assure the differentiability
of the functional (2.2). The value of p depends on the types of admissible domains
and the regularity of boundary data. We distinguish two typical cases of nonsmooth
domains for which the results are applicable.

(A1) Pure cracks are admissible, even having different types of boundary condi-
tions on both edges (i.e., Neumann and Dirichlet). Then p = 1 and g, h must be
compatible with u ∈ H1(Ω), which means that the boundary data g, h are selected in
such a way that the solution to (2.1) is a weak solution in the Sobolev space H1(Ω).

(A2) Reentrant corners with α < 2π are admissible and the same types of bound-
ary conditions on both edges (Neumann–Neumann or Dirichlet–Dirichlet) are pre-
scribed. Then p = 2 and g, h must be compatible with u ∈W 1

4 (Ω).
We refer the reader to [2] for the regularity of solutions to the elliptic equations

in nonsmooth domains. Observe that the interior regularity of u in Ω is determined
by the regularity of the right-hand side f for elliptic equations. The rather restrictive
assumption f ∈ C1(Ω) is sufficient for our purposes, but it is not optimal. On the
other hand the formulas (2.4), (2.5), defined below at x0 = 0, formally can be used
to define functions J ′′u (x), J ′′g (x), x ∈ Ω, which have the following property:

J ′′u (x), J ′′g (x) ∈ L1
loc(Ω)

for u, v, w ∈ H1(Ω), p = 1, and f ∈ L2(Ω).
The following form of topological derivatives is obtained.
Theorem 2.1. Assume that f ∈ C1(Ω) and the boundary data (g, h) satisfy (A1)

or (A2); then

J ′′u (0) = −2π
√
λ1λ2[F (u(0)) + f(0)w(0) + 2∇u ·K · ∇w|x=0 ],(2.4)

and

J ′′g (0) = −2π
√
λ1λ2[k(p)‖∇u ·K · ∇u‖2px=0 + f(0)v(0) + 2(∇u ·K · ∇v)|x=0],(2.5)

where the coefficient k(p) takes the values

k(1) = 2, k(2) = 6.

The functions w, v are the adjoint state variables defined by (2.28), (2.29), respec-
tively.

Remark 1. From (2.4), (2.5) it follows that the topological derivatives for the
shape functionals (2.2), (2.3) take the form at x = 0,

T1(0) = −
√
λ1λ2[F (u(0)) + f(0)w(0) + 2∇u ·K · ∇w|x=0 ],
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and

T2(0) = −
√
λ1λ2[k(p)‖∇u ·K · ∇u‖2px=0 + f(0)v(0) + 2∇u ·K · ∇v|x=0] ,

respectively.
Proof. The proof is divided into three steps. The first step consists in transforma-

tion of (P(Ωρ)) defined in Ωρ = Ω \ Eρ, into the simpler elliptic equation defined in
the domain Ωρ = Ω \Bρ by using an appropriate change of variables. Here we denote
Bρ = Bρ(0), 0 ∈ Ω. In the second and third steps the formulas are derived for the
latter equation and then translated to the original problem by the inverse change of
variables.

Step 1. Let us make the substitution y = Bx, where B = Λ−1/2Rλ, and Λ =
diag(λ1, λ1). Since ∇x = BT∇y, (2.1) is transformed to the Laplace equation, the
ellipse Eρ is transformed onto the ball Bρ centered at 0, and the resulting domain
is Ωρ = Ω \ Bρ. To keep notation simple, we shall use the same notation for the
transformed problem as for (2.1). Therefore, the transformed state equation takes the
following form:

∆u = f in Ω,(2.6)

u = g on Γ1,

∂u

∂n
= h on Γ2.

The corresponding equation in the domain Ωρ with the hole Bρ has the form

∆uρ = f in Ωρ,(2.7)

uρ = g on Γ1,

∂uρ
∂n

= h on Γ2,

∂uρ
∂n

= 0 on Γρ = ∂Bρ.

The resulting shape functionals after the change of variables take the form

Ju(ρ) =
√
λ1λ2

∫
Ωρ

F (uρ) dΩ,(2.8)

Jg(ρ) =
√
λ1λ2

∫
Ωρ

[∇uρ · ∇uρ]p dΩ.(2.9)

This is due to the fact that K = RλΛRTλ . To make the notation still simpler, we shall
compute derivatives of the following functionals:

Iu(ρ) =

∫
Ωρ

F (uρ) dΩ,(2.10)

Ig(ρ) =

∫
Ωρ

[∇uρ · ∇uρ]p dΩ.(2.11)

Step 2. In the sequel we denote by (·)′ the derivative ∂(·)/∂ρ, which can be
considered as a particular case of the shape derivative. We refer the reader to [9] for
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the details on the shape differentiability of integral shape functionals and solutions to
partial differential equations of elliptic type.

By an application of (C.2) it follows that

I ′u(ρ) =

∫
Ωρ

F ′u(uρ)u
′
ρ dΩ−

∫
Γρ

F (uρ) dS,(2.12)

I ′g(ρ) =

∫
Ωρ

2p||∇uρ||2p−2(∇uρ · ∇u′ρ) dΩ−
∫

Γρ

(
∂uρ
∂τ

)2p

dS.(2.13)

The weak solution uρ ∈ H1
g (Ωρ) to (2.7) satisfies the integral identity∫

Ωρ

∇uρ · ∇φdΩ =

∫
Γ2

hφ dS −
∫

Ωρ

fφ dΩ ∀φ ∈ H1
Γ1

(Ωρ),(2.14)

where for ρ ≥ 0 such that Bρ ⊂ Ω,

H1
g (Ωρ) = {ψ ∈ H1(Ωρ) | ψ = g on Γ1},

H1
Γ1

(Ωρ) = {ψ ∈ H1(Ωρ) | ψ = 0 on Γ1},

and we use the convention that the restriction to Ωρ of a function φ ∈ H1
Γ1

(Ω) is
denoted by φ.

The strong shape derivative u′ρ of the solution uρ to (2.14) is defined by the
relation

u′ρ = u̇ρ −∇uρ · V ,

where u̇ρ is the material derivative, and V is an appropriate vector field [9]. Further-
more, u′ρ ∈ H1

Γ1
(Ωρ) satisfies the integral identity [9],∫

Ωρ

∇u′ρ · ∇φdΩ−
∫

Γρ

∂uρ
∂τ

∂φ

∂τ
dS =

∫
Γρ

fφ dS,(2.15)

for all test functions φ ∈ H1
Γ1

(Ωρ) ∪ H2(Ωρ). The regularity of u′ρ is determined by
the regularity of u̇ρ and the gradient ∇uρ since V is sufficiently regular.

The adjoint state equation for the functional Iu is defined as follows: find wρ ∈
H1

Γ1
(Ωρ) such that

−
∫

Ωρ

∇wρ · ∇φdΩ =

∫
Ωρ

F ′u(uρ)φdΩ ∀φ ∈ H1
Γ1

(Ωρ);(2.16)

and for the functional Ig, find vρ ∈ H1
Γ1

(Ωρ) such that

−
∫

Ωρ

∇vρ · ∇φdΩ =

∫
Ωρ

2p||∇uρ||2p−2(∇uρ · ∇φ) dΩ ∀φ ∈ H1
Γ1

(Ωρ).(2.17)

The strong shape derivative w′ρ ∈ H1
Γ1

(Ωρ) of the solution wρ to (2.16) satisfies
the following integral identity [9]:

−
∫

Ωρ

∇w′ρ · ∇φdΩ +

∫
Γρ

∂wρ
∂τ

∂φ

∂τ
dS =

∫
Ωρ

F ′′u (uρ)u
′
ρφdΩ−

∫
Γρ

F ′u(uρ)φdS(2.18)
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for all test functions φ ∈ H1
Γ1

(Ωρ) ∪H2(Ωρ).
The strong shape derivative v′ρ ∈ H1

Γ1
(Ωρ) of the solution vρ to (2.17) is defined

in the similar way:

−
∫

Ωρ

∇v′ρ · ∇φdΩ +

∫
Γρ

∂vρ
∂τ

∂φ

∂τ
dS = −

∫
Γρ

2p‖∇uρ‖2p−2 ∂uρ
∂τ

∂φ

∂τ
dS(2.19)

+

∫
Ωρ

2p||∇uρ||2p−2(∇u′ρ · ∇φ) dΩ

+

∫
Ωρ

2p(2p− 2)||∇uρ||2p−4(∇u′ρ · ∇uρ)(∇uρ · ∇φ) dΩ

for all test functions φ ∈ H1
Γ1

(Ωρ) ∪ H2(Ωρ). Using φ = u′ρ ∈ H1
Γ1

(Ωρ) as a test
function, the following form of the derivatives (2.12), (2.13) is obtained:

I ′u(ρ) = −
∫

Γρ

[
F (uρ) + fwρ +

∂uρ
∂τ

∂wρ
∂τ

]
dS,(2.20)

I ′g(ρ) = −
∫

Γρ

[(
∂uρ
∂τ

)2p

+ fvρ +
∂uρ
∂τ

∂vρ
∂τ

]
dS.(2.21)

Since all integrands are bounded,

lim
ρ→0+

I ′u(ρ) = lim
ρ→0+

I ′g(ρ) = 0.(2.22)

By differentiating (2.21) once more, in view of (C.1) we get

I ′′u (ρ) =

∫
Γρ

[
∂F (uρ)

∂n
+
∂(fwρ)

∂n
+

∂

∂n

(
∂uρ
∂τ

∂wρ
∂τ

)]
dS

−
∫

Γρ

[
F ′u(uρ)u

′
ρ + fw′ρ +

(
∂uρ
∂τ

∂wρ
∂τ

)′]
dS

− 1

ρ

∫
Γρ

[
F (uρ) + fwρ +

∂uρ
∂τ

∂wρ
∂τ

]
dS

= I1(ρ) + I2(ρ) + I3(ρ).(2.23)

Observe, that ∂
∂n = − ∂

∂r on Γρ. Now, according to (A.4),

∂uρ
∂τ

=
1

r

∂uρ
∂θ

= −a
(
ρ2

r2
+ 1

)
sin θ + b

(
ρ2

r2
+ 1

)
cos θ +O(ρ1−ε).(2.24)

Hence

∂

∂n

∂uρ
∂τ

= −2a
ρ2

r3
sin θ + 2b

ρ2

r3
cos θ +O(ρ−ε) =

r=ρ
−2a

ρ
sin θ +

2b

ρ
cos θ +O(ρ−ε).

Similarly,

∂

∂ρ

(
∂uρ
∂τ

)
= −2a

ρ

r2
sin θ + 2b

ρ

r2
cos θ +O(ρ−ε) =

r=ρ
−2a

ρ
sin θ +

2b

ρ
cos θ +O(ρ−ε).
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Taking this into account leads to

∂

∂n

(
∂uρ
∂τ

∂wρ
∂τ

)
−
(
∂uρ
∂τ

∂wρ
∂τ

)′
= O(ρ−ε),

and the first two integrals cancel out,

lim
ρ→0+

[I1(ρ) + I2(ρ)] = 0.

We use for wρ the following expansion, the existence of which is proven in the Ap-
pendix:

wρ = w(0) + c

(
ρ2

r
+ r

)
cos θ + d

(
ρ2

r
+ r

)
sin θ +O(ρ2−ε).(2.25)

Taking into account (2.24),

lim
ρ→0+

I3(ρ) = −2πF (u(0))− 2πf(0)w(0)− 4π(ac+ bd).

As a result

I ′′u (0) = −2π[F (u(0)) + f(0)w(0) + 2(∇u · ∇w)|x=0 ],(2.26)

and similarly

I ′′g (0) = −2π[ k(p) ||∇u(0)||2p + f(0)v(0) + 2(∇u · ∇v)|x=0 ],(2.27)

where the coefficient k(p) takes on the values k(1) = 2, k(2) = 6. For ρ = 0 the
adjoint state variables w, v, satisfy the integral identities

w ∈ H1
Γ1

(Ω) :

∫
Ω

∇w · ∇φdΩ = −
∫

Ω

F ′u(u)φdΩ,(2.28)

v ∈ H1
Γ1

(Ω) :

∫
Ω

∇v · ∇φdΩ = −
∫

Ω

2p||∇u||2p−2(∇u · ∇φ) dΩ(2.29)

for all test functions φ ∈ H1
Γ1

(Ω).
In a special case, for p = 1, Γ2 = ∅, and g = 0, it follows that∫

Ω

∇v · ∇φdΩ =

∫
Ω

fφ dΩ ∀φ ∈ H1
0 (Ω);

hence v = 2u. The function k(p) is obtained by the integration∫ 2π

0

(−2a sin θ + 2b cos θ)2p dθ = k(p)(a2 + b2)p.

Step 3. The proof is completed by the change of variables x = B−1y.
The matrix K in the definition of Jg may be replaced in fact by an arbitrary

matrix, say H. However, in such a case it is not possible in general to get a simple
closed form of the expression

A(u, p) = lim
ρ→0+

1

ρ

∫
Γρ

[∇uρ · H̃ · ∇uρ]p dS,
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where H̃ = BHBT . We must introduce locally the orthogonal coordinate system
(er, eθ); see the expansions in elasticity in the Appendix. Denote c = cos θ, s = sin θ;
it follows that in this frame of reference the matrix H̃ transforms like a second-order
tensor H̃ → Ĥ = R(θ)H̃R(θ)T , where

R(θ) =

[
c −s
s c

]
.

After substituting the expansion for uρ and keeping in mind that
∂uρ
∂r = 0 on Γρ, so

that ∇uρ = [0,
∂uρ
∂τ ]T on Γρ, we get

A(u, p) = 4

∫ 2π

0

[ĥ22(−as+ bc)2]p dθ

= 4

∫ 2π

0

[(h̃11c
2 − 2h̃12cs+ h̃22s

2)(−as+ bc)2]p dθ.

Having computed the integral, we must again express it in terms of H. The assumption
H̃ = I is adopted in the paper in order to simplify the obtained formulas.

Remark 2. Let us note that the condition J ′(0) = 0 depends on the shape func-
tional. If a shape functional depends actually on the boundary ∂Ω of the domain Ω,
then in general J ′(0) 6= 0. For J (∂Ω) =

∫
∂Ω

= |∂Ω| we have J (∂Ωρ) = |∂Ω| + 2πρ
and

J (∂Ωρ)− J (∂Ω)

|∂Bρ(x)| = 1 .

Remark 3. The following function is used for the definition of the so-called Morrey
spaces Lp,λ(Ω), p ≥ 1, λ ≥ 0,

g(x) = sup
0<ρ<1

ρ−λ
∫
Bρ(x)

|u|pdx = sup
0<ρ<1

ρ−λ
[∫

Ω

|u|pdx−
∫

Ω\Bρ(x)

|u|pdx
]

for u ∈ Lp(Ω); see, e.g., [1] for details. However, the function g(x) is not useful in
applications to the shape optimization.

Let us point out that the difference between the topological derivative and the
function g(x) is substantial, since for our applications the function u = uρ is given by

a solution of the partial differential equation defined in the domain Ωρ = Ω \ Bρ(x)
and we would rather consider, e.g., the function

h(x) = sup
0<ρ<1

ρ−λ
[∫

Ω

|uΩ|pdx−
∫

Ωρ

|uΩρ |pdx
]
.

3. Test cases for Laplace equation. The explicit formulas for the derivatives
obtained in the previous section are presented for three examples.

Example 1. Let Ω = BR(0), and u(x, y) = x, so that

∆u = 0 in Ω, u = x on ∂Ω.

The solution uρ to (P(Ωρ)) takes the form

uρ =
R2

R2 + ρ2

(
ρ2

r
+ r

)
cos θ,
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and the adjoint state w is given by

w =
1

4
(r3 −R2r) cos θ

for the functional

Ju(ρ) =

∫
Ωρ

u2
ρ dΩ.

Hence

Ju(ρ) = π

(
R2

R2 + ρ2

)2 [
ρ4(lnR− ln ρ) + ρ2R2 − 5

4
ρ4 +

1

4
R4

]
and simple calculations show that

J ′′u (0) = π R2.

Notice that ∇u(0) = [1, 0], ∇w(0) = [−1/4R2, 0], so according to (2.4),

J ′′u (0) = (−4π)(−1/4R2) = πR2.

In general, the expression for J ′′u has the form

J ′′u = −2π

[
x2 +

1

2
(3x2 + y2 −R2)

]
= −π [5x2 + y2 −R2].

Hence the level set J ′′u ≤ 0 is an ellipse with the boundary

5x2 + y2 −R2 = 0.

Consider the second functional

Jg(ρ) =

∫
Ωρ

||∇uρ||2 dΩ

in this case with the adjoint state variable v = 0, in view of f = 0. Thus (2.5) leads
to

J ′′g (0) = −4π ||∇u(0)||2 = −4π.

On the other hand,

Jg(ρ) = 2π

(
R2

R2 + ρ2

)2 [
1

2
R2 − 1

2
ρ4R−2

]
thus J ′′g (0) = −4π

and the inequality J ′′g < 0 holds in Ω.
This example is generic, since any regular scalar function resembles in the small

neighborhood of the point an inclined plane. Since here u(x, y) = x = r cos θ, we may
write uρ as

uρ = u+
ρ2

r
cos θ − ρ2

R2 + ρ2

(
ρ2

r
+ r

)
cos θ,
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which agrees with the expansion (A.3), with a = 1 and b = 0. The pointwise conver-
gence holds in Ω \ {0}. In the 1-D case the equivalent problem would be

u′′ = 0 in (−1, 1), u(−1) = −1, u(1) = 1,

so that u(x) = x. However, here uρ is defined by

u′′ρ = 0 in (−1,−ρ), u(−1) = −1, u′(−ρ) = 0,

u′′ρ = 0 in (ρ, 1), u′(ρ) = 0, u(1) = 1.

Therefore,

uρ(x) =

{
−1 for x ∈ [−1,−ρ],

1 for x ∈ [ρ, 1],

and no convergence in Ω \ {0} takes place. This shows that the asymptotic expansion
is valid only in higher dimensions.

Example 2. Let us consider the equation

∆u = −1, u = 0 on ∂Ω,

where Ω = BR(0). Hence

u =
1

4
(R2 − r2),

uρ = u+
1

2
ρ2 ln(r/R).

Observe that (A.3) holds, since ∇u(0) = [0, 0]. The adjoint state w is given by

w = − 1

32
r4 +

1

8
R2r2 − 3

32
R4.

Hence the gradient of w vanishes at 0 and from (2.4) it follows that

J ′′u (0) = −2π

[(
1

4
R2

)2

+ (−1)

(
− 3

32
R4

)]
= − 5

16
πR4.

Explicit computations give the same result.
Again, we may compute the general expression for J ′′u . After appropriate trans-

formations,

J ′′u = − 1

16
πR4

[
7
( r
R

)4

− 16
( r
R

)2

+ 5

]
;

hence the level set J ′′u ≤ 0 is the circle r ≤ 0.6R.
The gradient of the functional Jg is obtained after some simple calculations. We

have v = 2u, so that ∇v(0) = [0, 0] as well. In addition

||∇u||2 =

(
∂uρ
∂r

)2

= −r
2 − ρ2

2r
;
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Fig. 3.1. A graph of J ′′u and its 0-level line.

hence

J ′′g (0) = πR2.

From our formula

J ′′g (0) = −2π

[
(−1)

(
1

2
R2

)]
= πR2.

In general,

J ′′g = −4π [r2 −R2/4],

and the level set of J ′′g ≥ 0 is the ring r ≥ R/2.
Example 3. Let us consider the homogeneous Laplace equation ∆u = 0 in Ω =

[0, 1]× [0, 1]. The boundary conditions are prescribed as follows:

u = 0 on Γ0 = ∂Ω− {0} × [0, 1],

u = 1 on Γ1 = {0} × [0.3, 0.7],
∂u

∂n
= 0 on Γn = ∂Ω \ (Γ0 ∪ Γ1).

The functional Ju(ρ) =
∫

Ωρ
u2
ρ is defined for Ωρ = Ω \ Bρ(x); here x ∈ Ω stands for

the center of the ball Bρ(x). The distribution of its second derivative as a function of
x ∈ Ω, computed numerically, is shown in Figure 3.1.

4. Plane elasticity problems. Let us consider the elasticity equations in the
plane

ATDAu = f in Ω,(4.1)

u = g on Γ1,

BTDAu = h on Γ2,
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and the same system in the domain with the circular hole Bρ(x0) ⊂ Ω centered at

x0 ∈ Ω, Ωρ = Ω \Bρ(x0),

ATDAuρ = f in Ωρ,(4.2)

uρ = g on Γ1,

BTDAuρ = h on Γ2,

BTDAuρ = 0 on Γρ.

Assuming that 0 ∈ Ω, we can consider the case x0 = 0. Here u = (u1, u2)T denotes
the displacement field, g is a given displacement field on the fixed part Γ1 of the
boundary, and h is a traction given on the loaded part Γ2 of the boundary. Finally,
the volume forces are denoted by f . In addition, the differential operator is introduced,

A =

 ∂
∂x1

, 0

0 , ∂
∂x2

∂
∂x1

, ∂
∂x1

 ,
and the matrix of material (Lame) coefficients is denoted by

D =

 λ+ 2µ , λ , 0
λ , λ+ 2µ , 0
0 , 0 , µ

 .
The following matrix is used for the Neumann boundary conditions:

BT =

[
n1 , 0 , n2

0 , n2 , n1

]
,

where n = [n1, n2]T is the unit outward normal vector on ∂Ωρ. In this notation the
stress tensor is replaced by the vector σ = [σ11, σ22, σ12]T , strain tensor is given by
the vector ε = [ε11, ε22, γ12]T (observe that γ12 = 2ε12), and the surface tractions are
defined by the formulas

ε = A · u, σ = D · ε, t = B · σ.(4.3)

The principal stresses associated with the displacement field u are denoted by
σI(u), σII(u); the trace of the stress tensor σ(u) is denoted by trσ(u) = σI(u)+σII(u).

The first shape functional under consideration depends on the displacement field

Ju(ρ) =

∫
Ωρ

F (uρ) dΩ, F (uρ) = (uρ ·H · uρ)p = ((uρ)THuρ)p .(4.4)

In fact, F may be any C2 function, similar to the case of the Laplace equation. It is
also useful in the framework of elasticity to introduce the yield functional of the form

Jσ(ρ) =

∫
Ωρ

[σ(uρ) · S · σ(uρ)]p dΩ =

∫
Ωρ

[σ(uρ)TSσ(uρ)]p dΩ,(4.5)

where S is an isotropic matrix. Isotropicity means here that S may be expressed as

S = [sij ] =

l + 2m l 0
l l + 2m 0
0 0 4m

 ,
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where l,m are any real constants. Their values for particular yield criteria are given
in numerical examples. The following assumptions assure that Ju, Jσ are well defined
for solutions of the elasticity system.

(B1) Pure cracks are admissible, even having different types of boundary condi-
tions prescribed on both edges (i.e., tractions and displacements). Then p = 1 and
g, h must be compatible with u ∈ H1(Ω;R2).

(B2) Reentrant corners with α < 2π and the same types of boundary conditions
are prescribed on both edges of each corner (traction–traction or displacement–displa-
cement). Then p = 2 and g, h must be compatible with u ∈W 1

4 (Ω;R2).
The interior regularity of u in Ω is determined by the regularity of the right-

hand side f of the elasticity system. For simplicity the following notation is used for
functional spaces:

H1
g (Ωρ) = {ψ = (ψ1, ψ2) ∈ H1(Ωρ;R2) | ψ = g on Γ1},

H1
Γ1

(Ωρ) = {ψ = (ψ1, ψ2) ∈ H1(Ωρ;R2) | ψ = 0 on Γ1},
H1

Γ1
(Ω) = {ψ = (ψ1, ψ2) ∈ H1(Ω;R2) | ψ = 0 on Γ1};

here we use the convention that, e.g., H1
g (Ωρ) stands for the Sobolev space of vector

functions H1
g (Ωρ;R2).

The weak solutions to the elasticity systems are defined as follows.
Find uρ ∈ H1

g (Ωρ) such that, for every φ ∈ H1
Γ1

(Ω),

−
∫

Ωρ

(Auρ)TDAφdΩ +

∫
Γ2

hTφdS =

∫
Ωρ

fTφdΩ.(4.6)

The adjoint state equations for the functional Ju are introduced.
Find wρ ∈ H1

Γ1
(Ωρ) such that, for every φ ∈ H1

Γ1
(Ω),

−
∫

Ωρ

(Awρ)TDAφdΩ =

∫
Ωρ

F ′u(uρ)TφdΩ.(4.7)

Finally, vρ ∈ H1
Γ1

(Ωρ) is the adjoint state for Jσ and satisfies for all test functions
φ ∈ H1

Γ1
(Ω) the following integral identity:

−
∫

Ωρ

(Avρ)TDAφdΩ = 2p

∫
Ωρ

[σ(uρ)TSσ(uρ)](p−1)σ(uρ)TSDAφdΩ.(4.8)

Now we may formulate the following result.
Theorem 4.1. Assume that the distributed force is sufficiently regular, f ∈ C1

(Ω;R2), and (B1) or (B2) is satisfied; then

J ′′u (0) = −2π

[
F (u) + fTw +

1

E
( auaw + 2bubw cos 2δ )

]
x=x0

,(4.9)

J ′′σ (0) = −2π

[
sp22Kp(au, bu) + fT v +

1

E
( auav + 2bubv cos 2δ )

]
x=x0

.(4.10)

Some of the terms in (4.9), (4.10) require explanation. The function Kp takes the
values

Kp(a, b) =

{
a2 + 2b2 for p = 1,

a4 + 6b4 + 12a2b2 for p = 2.
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We denote

au = trσ(u), bu = σI(u)− σII(u),

aw = trσ(w), bw = σI(w)− σII(w),

av = trσ(v), bv = σI(v)− σII(v).

Finally, the angle δ denotes the angle between principal stress directions for displace-
ment fields u and w in (4.9) and for displacement fields u and v in (4.10).

Proof. Let us calculate the derivatives of the functional Ju(ρ) with respect to the
parameter ρ, which determines the size of the hole Bρ, by using the material derivative
method. This leads to

J ′u(ρ) =

∫
Ωρ

F ′u(uρ)Tuρ′ dΩ−
∫

Γρ

F (uρ) dS,(4.11)

and in the same way for the state equation

−
∫

Ωρ

(Auρ′)TDAφdΩ +

∫
Γρ

(Auρ)TDAφdS = −
∫

Γρ

fTφdS,(4.12)

where uρ′ is the shape derivative.
After substitution of the test functions φ = wρ in the state equation, φ = uρ′ in

the adjoint state equation, we get

J ′u(ρ) = −
∫

Γρ

[(Auρ)TDAwρ + F (uρ) + fTwρ] dS(4.13)

= −
∫

Γρ

[
1

E
σθθ(w

ρ)σθθ(u
ρ) + F (uρ) + fTwρ

]
dS,

since for the displacement fields uρ, wρ the boundary conditions σθθ = τrθ = 0 on
Γρ are prescribed; here σθθ, τrθ denote the components of the stress tensor in the
reference frame tied with normal and tangent unit vectors on Γρ.

It is obvious that

J ′u(ρ) −→
ρ→0+

0;

therefore, we compute the second derivative

J ′′u (ρ) = I1(ρ)− I2(ρ)− I3(ρ),(4.14)

where

I1(ρ) =

∫
Γρ

∂

∂n

[
1

E
σθθ(w

ρ)σθθ(u
ρ) + F (uρ) + fTwρ

]
dS,

I2(ρ) =

∫
Γρ

[
1

E
(σθθ(w

ρ)σθθ(u
ρ))′ + F ′u(uρ)uρ′ + fTwρ′

]
dS,

I3(ρ) =
1

ρ

∫
Γρ

[
1

E
σθθ(w

ρ)σθθ(u
ρ) + F (uρ) + fTwρ

]
dS.

Taking into account that ∂
∂n = − ∂

∂r on Γρ and using the expansion (B.6), we obtain

∂

∂n
σθθ(u

ρ) =

[
au
ρ2

r3
− 6bu

ρ4

r5
cos 2θ

]
+O(ρ−ε) =

r=ρ
au

1

ρ
− 6bu

1

ρ
cos θ +O(ρ−ε).
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Similarly,

∂

∂ρ
σθθ(u

ρ) =

[
au

ρ

r2
− 6bu

ρ3

r4
cos 2θ

]
+O(ρ−ε) =

r=ρ
au

1

ρ
− 6bu

1

ρ
cos θ +O(ρ−ε).

This means that the singular terms cancel out

∂

∂n
σθθ(u

ρ)− ∂

∂ρ
σθθ(u

ρ) = O(ρ−ε)

and

I1(ρ)− I2(ρ) −→
ρ→0+

0.

Now we express the asymptotic expansion for σθθ(w
ρ) in the reference frame tied with

principal stress directions for the displacement field uρ, and not with its own field wρ:

σθθ(w
ρ) =

1

2
aw

(
1 +

ρ2

r2

)
− 1

2
bw

(
1 + 3

ρ4

r4

)
cos 2(θ − δ) +O(ρ1−ε).(4.15)

This leads to

lim
ρ→0+

∫ 2π

0

σθθ(u
ρ)σθθ(w

ρ) dθ

=

∫ 2π

0

[au − 2bu cos 2θ][aw − 2bw cos 2(θ − δ)] dθ
= 2π[auaw + 2bubw cos 2δ],

(4.16)

and the final expression for the second derivative of Ju results.
In the case of Jσ the integral terms become

I1(ρ) =

∫
Γρ

∂

∂n

[
1

E
σθθ(v

ρ)σθθ(u
ρ) + (s22σθθ(u

ρ)
2
)p + fT vρ

]
dS,

I2(ρ) =

∫
Γρ

[
1

E
(σθθ(v

ρ)σθθ(u
ρ))′ + +2psp22σθθ(u

ρ)
2p−1

σθθ(u
ρ)
′
+ fT vρ′

]
dS,

I3(ρ) =
1

ρ

∫
Γρ

[
1

E
σθθ(v

ρ)σθθ(u
ρ) + (s22σθθ(u

ρ)
2
)p + fT vρ

]
dS.

Again, in the same way as before,

I1(ρ)− I2(ρ) −→
ρ→0+

0.

The function Kp is defined by the expression

Kp(a, b) =
1

2π

∫ 2π

0

(a− 2b cos 2θ)2p dθ.

The proof of Theorem 4.1 is completed.
Remark 4. The matrix in the definition of Jσ, in fact, may be arbitrary, similar

to the case of the scalar equation, and not only isotropic. However, it is difficult
to imagine such a need for the isotropic material. Anyway, in the general case, we
would have to transform S according to the known rules determined by the rotation
of the reference frame. Then in the definition of I3(ρ) instead of s22 we would have
an expression containing all the elements of S and trigonometric functions of θ. The
integration is again possible but leads to more complicated formulas.
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5. Examples for plane elasticity.

Example 4. Let us take the square domain, with the side length a. It is fixed on
small segments of the length a/10 at the lower and upper part of the left side. The
elastic body is pulled by the downward force distributed over the segment of the length
a/3 located in the middle of the right side. The initial and distorted configurations
are shown in Figure 5.1. The material Lame coefficients satisfy relation λ = µ. We
consider the functional Ju with p = 8 (approximating maximal displacement) and the
following three types of Jσ, corresponding to the following yield criteria.

1. The elastic energy yield criterion (rarely used), which is equivalent modulo a
proportionality factor (assuming λ = µ for Lame coefficients) to the following relation:

σ2
red = 3σ2

11 + 3σ2
22 − 2σ11σ22 + 8σ2

12.(5.1)

This in turn corresponds to the isotropic matrix S with l = −1, m = 2, and Jσ given
by (4.5).

2. The Huber yield criterion (frequently used), which is equivalent modulo a
proportionality factor to the following relation:

σ2
red = 2σ2

11 + 2σ2
22 − 2σ11σ22 + 6σ2

12.(5.2)

This in turn corresponds to the isotropic matrix S with l = −1, m = 3/2, and Jσ
given by (4.5).

3. The maximal shear stress yield criterion (often used), which is equivalent
modulo proportionality factor to the following relation:

σ2
red = σ2

11 + σ2
22 − 2σ11σ22 + 4σ2

12.(5.3)

This in turn corresponds to the isotropic matrix S with l = −1, m = 1, and Jσ given
by (4.5).

The second derivatives of these functionals are shown in Figures 5.1–5.4. The
displacement functional here has the form Ju =

∫
Ω

(u2
1 + u2

2)4 dΩ. The energy yield
criterion is similar to the compliance functional considered in [8]. The level lines
are distributed uniformly across the range of functions, and the lighter shades denote
smaller values. The distributions of integrand functions and the densities of the second
derivatives of functionals look similar; they are not, however, proportional to each
other. The regions where the values of J ′′ are the smallest constitute the possible
locations of holes. The same comments apply to the next example.

Example 5. Let us take the elongated rectangle, fixed on both left and right sides
and loaded by the downward force over the small segment in the middle of the upper
side. Its initial and distorted configuration are shown in Figure 5.5. Again we consider
the same yield functions under assumption λ = µ. The numerical results are shown
in Figures 5.5–5.8.

Appendix A. Asymptotic expansions for Laplace equation in R2. Let us
consider the equation

∆u = f in Ω,(A.1)

u = g on Γ1,

∂u

∂n
= h on Γ2,
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Fig. 5.1. The square (original and distorted) and the distribution of the J ′′u density.

Fig. 5.2. The distribution of the elastic energy function (5.1) and the corresponding J ′′σ density.

with f ∈ C1(Ω) thus the solution u ∈ C3(Ω). We drill a hole at x0 ∈ Ω, denoted
Bρ(x0), ρ < d(x0,Γ), and define the set Ωρ = Ω \Bρ(x0). Now consider

∆uρ = f in Ωρ,(A.2)

uρ = g on Γ1,

∂uρ
∂n

= h on Γ2,

∂uρ
∂n

= 0 on Γρ = ∂Bρ(x0).

Assume for simplicity that x0 = 0. Then we have the following asymptotic expansion
relations. Denote

∇u|x=0 = [a, b]T .
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Fig. 5.3. The distribution of the Huber yield function (5.2) and the corresponding J ′′σ density.

Fig. 5.4. The distribution of the maximal shear stress yield function (5.3) and the corresponding
J ′′σ density.

Fig. 5.5. The object (original and distorted) and the distribution of the J ′′u density.

The solution u as a function of r, θ, can be expressed for r ≥ ρ as follows (see [5], Satz
4, and [3], [6]):

uρ = u+ a
ρ2

r
cos θ + b

ρ2

r
sin θ +R,(A.3)
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Fig. 5.6. The distribution of the elastic energy function (5.1) and the corresponding J ′′σ density.

Fig. 5.7. The distribution of the Huber yield function (5.2) and the corresponding J ′′σ density.

Fig. 5.8. The distribution of the maximal shear stress yield function (5.3) and the corresponding
J ′′σ density.

where

R = ρ2
[
O
(ρ
r

)
+ l(ρ, r)

]
,

and l(ρ, r) may contain finite powers of ln ρ, ln r. Hence R = O(ρ2−ε) for any ε > 0.
The above formula gives the asymptotic expansion in the function space to which

u belongs, the solution to (A.1). Besides, for smooth f ∈ C1(Ω), u is three times
continuously differentiable in an open neighborhood of Bρ.

Therefore, in the ring ρ ≤ r ≤ 2ρ , taking into account the regularity of u in the
neighborhood of x0 = 0, we have the expansion

uρ = u(0) + a

(
ρ2

r
+ r

)
cos θ + b

(
ρ2

r
+ r

)
sin θ +O(ρ2−ε) ,(A.4)

where u(0) denotes the value at x0 of the solution to (A.1).
The above formulas are given in the polar coordinate system with the center at

x0 = 0, which coincides with the center of the ball Bρ. In particular, from (A.4) it
follows that

∂uρ
∂τ

∣∣∣∣r=ρ =
1

ρ

∂uρ
∂θ

∣∣∣∣
r=ρ

= 2(−a sin θ + b cos θ) +O(ρ1−ε).(A.5)

Appendix B. Asymptotic expansions for the elasticity system in R2.
Let us consider the systems (4.1) and (4.2) and assume that the coordinate system is



1270 J. SOKOÃLOWSKI AND A. ŻOCHOWSKI

aligned with the principal stress directions, so that σ12 = 0. Denote also

au = [σI(u) + σII(u)]|x=0,(B.1)

bu = [σI(u)− σII(u)]|x=0.(B.2)

Let us introduce the polar coordinate system (r, θ). At each point in the plane we
define also the orthogonal coordinate axes, still denoted by (r, θ), and defined by the
unit vectors er, eθ , directed along r and perpendicular to it, counterclockwise. Given
the displacement field u, we may compute the components of the strain field (in the
orthogonal system and using the polar coordinates):

εrr =
∂ur
∂r

,(B.3)

εθθ =
ur
r

+
1

r

∂uθ
∂θ

,

γrθ =
1

r

∂ur
∂θ

+
∂uθ
∂r
− uθ

r
.

The corresponding isotropic Hook law has the form

εrr =
1

E
(σrr − νσθθ),(B.4)

εθθ =
1

E
(σθθ − νσrr),

γrθ =
1

G
τrθ,

where G = E/2(1 + ν). Then, similar to the Laplace case, the following expansion
holds (see, e.g., [4] and [6]) in the ring ρ ≤ r ≤ 2ρ:

uρr = ur(0) +
au

8Gr
[(κ− 1)r2 + 2ρ2](B.5)

+
bu

4Gr

[
(κ+ 1)ρ2 + r2 − ρ4

r2

]
cos 2θ +O(ρ2−ε),

uρθ = uθ(0)− bu
4Gr

[
(κ− 1)ρ2 + r2 +

ρ4

r2

]
sin 2θ +O(ρ2−ε),

where κ = (3− ν)/(1 + ν) for plane stress and

ur(0) = lim
r→0

ur(r, θ),

uθ(0) = lim
r→0

uθ(r, θ).

The corresponding expressions for the stresses have the form

σrr(u
ρ) =

1

2

[
au

(
1− ρ2

r2

)
+ bu

(
1− 4

ρ2

r2
+ 3

ρ4

r4

)
cos 2θ

]
+O(ρ1−ε),

σθθ(u
ρ) =

1

2

[
au

(
1 +

ρ2

r2

)
− bu

(
1 + 3

ρ4

r4

)
cos 2θ

]
+O(ρ1−ε),(B.6)

τrθ(u
ρ) = −1

2
bu

(
1 + 2

ρ2

r2
− 3

ρ4

r4

)
sin 2θ +O(ρ1−ε).
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Observe that due to the free edge condition on the boundary of the hole, we have

σrr(u
ρ) = τrθ(u

ρ) = 0 on ∂Bρ.

Appendix C. Derivatives of general functionals. Denote (·)′ρ = ∂(·)/∂ρ.
Then we know [9] that for general G,[∫

Γρ

G(uρ) dS

]′
ρ

=

∫
Γρ

[
G′u(uρ)u

′
ρ −

∂G(uρ)

∂n

]
dS +

1

ρ

∫
Γρ

G(uρ) dS,(C.1)

[∫
Ωρ

G(uρ) dΩ

]′
ρ

=

∫
Ωρ

G′u(uρ)u
′
ρ dΩ−

∫
Γρ

G(uρ) dS.(C.2)

The formulas (C.1), (C.2) follow from the general formulas for the shape derivatives
of integral functionals; we refer the reader to [9] for the details.

Appendix D. Asymptotic expansions for the adjoint function. The ad-
joint variable wρ satisfies the boundary value problem

∆wρ = F ′(uρ) in Ωρ,(D.1)

wρ = 0 on Γ1,

∂uρ
∂n

= 0 on Γ2 ∪ Γρ.

We know also that

uρ = u+ ψρ(r) · (a cos θ + b sin θ) +R,

where ψρ(r) = ρ2/r for r ≥ ρ. Let us neglect for a moment R, which is proportional
to a higher power of ρ. Then, due to the regularity of F,

F ′(uρ) = F ′u(u) + F ′′(u)ψρ(r) · (a cos θ + b sin θ) +O(ψ2
ρ).

Again, we neglect the last term, quadratic with respect to ρ. The function ψρ(r) ·
(a cos θ+ b sin θ) may be smoothly extended to ψ̄ρ , defined on the whole Ω by putting

ψ̄ρ =

{
1
2 (3ρ− r2/ρ) · (a cos θ + b sin θ) if r < ρ,

ψρ(r) · (a cos θ + b sin θ) if r ≥ ρ.

In the next step we consider the problems

∆p = F ′u(u) in Ω, p= 0 on Γ1,
∂p

∂n
= 0 on Γ2,

∆q = ψ̄ρ · F ′′u (u) in Ω, q= 0 on Γ1,
∂q

∂n
= 0 on Γ2.

The function p is equal to the adjoint variable in the domain without a hole and,
therefore, has the expansion

pρ = p+ ψρ(r) · (c cos θ + d sin θ) +R,
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where [c, d] = ∇p(0). There remains to analyze the expansion of q. We shall use here
the results of [2, Chapter 2], and [7, Chapter 2].

Let 2δ < dist(0,Γ)−ρ and Ωδ correspond to the domain Ω with the balls of radii
δ centered around the boundary corner points removed. Then, due to the regularity
of ψ̄ρ ,

‖q‖H2(Ω2δ) ≤ Cδ‖ψ̄ρ‖L2(Ω2δ),

‖q‖H3(Ω2δ) ≤ Cδ‖ψ̄ρ‖H1(Ω2δ),

and therefore both q and ∇q are pointwise bounded in Ω2δ. Moreover, it may be
checked by direct computations that

‖ψ̄ρ‖L2(Ω2δ) ≤ ρ2(Λ1 + Λ2| ln ρ|) = O(ρ2−ε),
‖ψ̄ρ‖H1(Ω2δ) ≤ Λρ.

Hence

q(0) = O(ρ2−ε), |∇q(0)| = O(ρ).(D.2)

In the last step we consider the expansion of q with respect to the hole Bρ1
(0). It has

the form

qρ1
= q(0) +

(
1 +

ρ2
1

r2

)
(∇q(0) · x) +O(ρ2−ε

1 ),

where x = [r cos θ, r sin θ]. By putting ρ1 = ρ and taking into account (D.2) we get

qρ = O(ρ2−ε),

and therefore the leading part of the expansion of wρ coincides with the expansion
of pρ, i.e., the adjoint variable with a fixed right-hand side. The neglected parts
contribute only to the higher order terms.
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Abstract. In this paper we investigate optimal control problems governed by variational in-
equalities. We present a method for deriving optimality conditions in the form of Pontryagin’s
principle. The main tools used are the Ekeland’s variational principle combined with penalization
and spike variation techniques.
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1. Introduction. The purpose of this paper is to present a method for deriving
a Pontryagin-type maximum principle as a first-order necessary condition of optimal
controls for problems governed by variational inequalities. We allow various kinds of
constraints to be imposed on the state. To be more precise, we consider the following
variational inequality:

∂y

∂t
+Ay + f(y) + ∂ϕ(y) 3 u in Q = Ω×]0, T [,(1.1a)

y = 0 on Σ = Γ×]0, T [,(1.1b)

y(0) = yo in Ω,(1.1c)

where Ω ⊂ Rn, T > 0, u is a distributed control, A is a second-order elliptic operator,
and ∂y

∂t denotes the derivative of y with respect to t; ∂ϕ(y) is the subdifferential of the
function ϕ at y. We shall give all the definitions we need in section 3 and (1.1) will
be made clear as well. The control variable u and the state variable y must satisfy
constraints of the form

u ∈ Uad = { u ∈ Lp(Q) | u(x, t) ∈ KU (x, t) almost everywhere (a.e.) in Q } ⊂ Lp(Q),
(1.2a)

where KU is a measurable set-valued mapping from Q with closed values in P(R)
(P(R) being the set of all subsets of R), and where

Φ(y) ∈ C(1.2b)

with 1 < p <∞, Φ is a C1 mapping from C(Q) into C(Q), and C ⊂ C(Q) is a closed
convex subset with finite codimension.
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The control problem is

(P) inf{J(y, u) | y ∈ C(Q), u ∈ Uad, (y, u) satisfies (1.1), (1.2)},
where the cost functional is defined by

J(y, u) =

∫
Q

F (x, t, y(x, t), u(x, t)) dx dt+

∫
Ω

L(x, y(x, T ))dx.(1.3)

Many authors (for example, Barbu [2], Mignot–Puel [17], Yong [23], Bonnans–Tiba [6],
Bonnans–Casas [5], and Bergounioux [3]) have already considered control problems
for variational inequalities from the theoretical or numerical point of view. Here we
are interested in optimality conditions in the form of Pontryagin’s principle. The
existence of an optimal solution is assumed a priori. The novelty of this paper is
twofold: We obtain the optimality conditions in Pontryagin’s form and we think that
our hypotheses seem to be minimal. In essence we ask for the state equation to be
well posed and assume differentiability of data with respect to the state. We allow
various kinds of constraints to be added on the control u and on the state. However,
we restrict the study to the case in which ϕ is the indicator function of the closed
convex set Ko = {z ∈ C(Q) | z ≥ 0} so that the variational inequality (1.1) becomes
the so-called obstacle problem.

To get Pontryagin’s principle, we use a method based on penalization of state
constraints and on Ekeland’s principle combined with diffuse perturbations [16, 20].
These techniques already have been used by many authors in the case of optimal
control of parabolic or elliptic equations [5, 16, 21]. Some of these techniques also
have been used for control problems governed by variational inequalities [5, 23, 4].
In those papers, the variational inequality is approximated via the Moreau–Yosida
approximation of the maximal monotone operator ∂ϕ.

Here we use another idea based on the formulation of (1.1) with a slackness
variable and the regularity of its solution. In fact, the solution of (1.1) is also a weak
solution of

∂y

∂t
+Ay + f(y) = u+ ξ in Q, y = 0 on Σ, y(0) = yo in Ω,(1.4)

where ξ is the Lagrange multiplier associated with the variational inequality and is
introduced as an additional control variable. Therefore we obtain a problem (P̃)
equivalent to (P), with constraints on both the control variable and the state variable
as well as coupled state-control constraints. We first give a Pontryagin’s principle for
(P̃). For this, we adapt the proof given in [21, 24, 7] to problem (P̃). Next we derive

optimality conditions for (P) from those for (P̃).

2. Assumptions. Let Ω be an open, smooth (with a C2 boundary Γ for exam-
ple), and bounded domain of Rn (2 ≤ n). In this paper we suppose that

p > n.

Remark 2.1. We must emphasize that this choice of p is not optimal. Indeed, we
should distinguish the integers p (for the Lp-space of the distributed control u) and
q (for the Lq-space of the initial value yo). The optimal choice should be u ∈ Lp(Q)
with p > n

2 + 1 and yo ∈ W 1,q
o (Ω) with q > n; at each occurrence we note how the

assumptions that follow could be weakened from this point of view. To make the
presentation clearer we simply assume that p = q > n.
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In addition we make the following assumptions.
(A1) A is a linear elliptic differential operator defined by

Ay = −
n∑

i,j=1

∂xi(aij(x)∂xjy) + a0(x)y with

aij ∈ C2(Ω) for i, j = 1 · · ·n,
a0 ∈ L∞(Ω),

n∑
i,j=1

aij(x)ξiξj ≥ mo

n∑
i=1

ξ2
i ∀x ∈ Ω,∀ξ ∈ Rn,mo > 0.

(2.1)

(A2) f : R→ R is a monotone increasing, globally Lipschitz C1-function.
Remark 2.2. The monotonicity assumption on f can be relaxed and replaced by

∃co ∈ R f ′y ≥ co.
An appropriate translation shows that we retrieve the case where f is monotonically
increasing, so we assume this for the sake of simplicity.

On the other hand one could consider a mapping f from R × R to R depending
on both y and u. The method would work in the same way. (In what follows,
we denote the real function f : R → R and the Nemytski operator associated to
f : y(·) 7→ f(y(·)) in Lp(Q) by the same symbol f .)

(A3) ϕ : W 1,p
o (Ω) → R ∪ {+∞} is a proper (i.e., nonidentically equal to +∞),

convex, lower semicontinuous function such that 0 ∈ dom ϕ.
(A4) yo ∈ dom ϕ.
(A5) For every (y, u) ∈ R2, F (·, y, u) is measurable on Q. For almost every

(x, t) ∈ Q, for every u ∈ R, F (x, t, ·, u) is C1 on R. For almost every (x, t) ∈ Q,
F (x, t, ·) and F ′y(x, t, ·) are continuous on R2. The following estimate holds:

|F (x, t, y, u)|+ |F ′y(x, t, y, u)| ≤ (M1(x, t) +m1|u|p)η(|y|),
where M1 ∈ L1(Q), m1 ≥ 0, and η is a nondecreasing function from R+ to R+ .

(A6) For every y ∈ R, L(·, y) is measurable on Ω. For almost every x ∈ Ω, L(x, ·)
is C1 on R. The following estimate holds:

|L(x, y)|+ |L′y(x, y)| ≤M2(x)η(|y|),
where M2 ∈ L1(Ω), η is as in (A5).

(A7) Φ is a C1 mapping from C(Q) into C(Q), and C is a closed convex subset of
C(Q) with finite codimension.

We recall that for p ∈ N
W 1,p(Ω) = {y ∈ Lp(Ω) | ∇y ∈ Lp(Ω)n } and

W 2,1,p(Q) =

{
y ∈ Lp(Q) | Dy, D2y,

∂y

∂t
∈ Lp(Q)

}
.

3. Existence and regularity of solutions to the variational inequality.
Let V and H be Hilbert spaces such that V ⊂ H ⊂ V ′ with continuous and dense
injections. We denote by (·, ·)V the V -scalar product, 〈·, ·〉 the duality product between
V and V ′, and ‖·‖V the V -norm. We consider a linear, continuous V -elliptic operator
A from V to V ′ and φ a convex, proper, and lower semicontinuous function from V
to R ∪ {+∞}. Then we may define the variational inequality

∂y

∂t
(t) +Ay(t) + ∂φ(y)(t) 3 u(t) a.e. t in [0, T ],

y(0) = yo

(3.1)
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in the following (variational) sense:

〈
∂y

∂t
(t) +Ay(t), y(t)− z

〉
+ φ(y(t))− φ(z) ≤ 〈 f(t), y(t)− z〉 a.e. t ∈ (0, T ) ∀z ∈ V.

(3.2)

Here ∂φ(y(t)) denotes the subdifferential of φ at z = y(t) ∈ V [8]:

∂φ(z) = { z∗ ∈ V ′ | φ(z)− φ(ζ) ≤ 〈z − ζ, z∗〉 ∀ζ ∈ V }.(3.3)

Now we set V = H1
o (Ω) and H = L2(Ω); we let g be a primitive function of f (such

that g(0) = 0 for example) and define

φ = ϕ+ g,(3.4)

where ϕ is given by (A3). Then ∂φ = g′ + ∂ϕ = f + ∂ϕ (g is the regular part of φ).
Therefore (1.1) makes sense in the (3.1) form with A = A and we may give a first
existence and regularity result as in the following theorem.

Theorem 3.1. Set p ≥ 2; let u ∈ Lp(Q) and yo ∈W 1,p
o (Ω). Assume that

∃γ ∈ Lp(Ω) ∩ ∂ϕ(yo);(3.5)

then (1.1) has a unique solution y ∈W 2,1,p(Q).
Proof. We first use a result of Tiba [22, Theorem 4.5, p. 26] that ensures that if

β is a maximal monotone graph ⊂ R × R, u ∈ Lp(Q) and yo ∈ W 1,p
o (Ω), then the

parabolic variational inequality
∂y

∂t
+Ay + β(y) 3 u a.e. in Q,

y(0, x) = yo(x) a.e. on Ω,
y(t, x) = 0 a.e. on Σ

has a unique solution in W 2,1,p(Q) if the compatibility relation

0 ∈ dom β, yo(x) ∈ dom β a.e. in Ω,
∃γ ∈ Lp(Ω) such that γ(x) ∈ β(yo(x)) a.e. in Ω

(3.6)

is fulfilled. One can apply this result to β = f + ∂ϕ, which is a maximal monotone
graph since f is monotone increasing and ϕ is convex, lower semicontinuous, and
proper. It remains to check (3.6), that is,

∃γ ∈ Lp(Ω) such that γ(x) ∈ f(yo(x)) + ∂ϕ(yo(x)) a.e. in Ω.

This is equivalent to

∃γ such that γ + f(yo) ∈ Lp(Ω), and γ(x) ∈ ∂ϕ(yo(x)) a.e. in Ω.

Since f is globally Lipschitz then f(yo) ∈ Lp(Ω) and we get the result.
We set

ξ = u− ∂y

∂t
−Ay − f(y) ∈ Lp(Q)
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(since f is globally Lipschitz and y ∈W 2,1,p(Q)). In addition, ξ(t) ∈ ∂ϕ(y(t)) almost
everywhere in ]0, T [; using the characterization of the subdifferential of a function in
Banach spaces this gives

ϕ(y(t)) + ϕ∗(ξ(t))− 〈y(t), ξ(t)〉 = 0 a.e in ]0, T [.(3.7)

In this last relation 〈, 〉 denotes the duality product between V = W 1,p
o (Ω) and V ′,

and ϕ∗ is the conjugate function of ϕ. For more details refer to Barbu–Precupanu [1]
or Ekeland–Temam [13]. It follows that the variational inequality (1.1) is equivalent
to

∂y

∂t
+Ay + f(y) = u+ ξ in Q,

y = 0 on Σ,
y(x, 0) = yo(x) in Ω

(3.8)

and (3.7). Because yo ∈ W 1,p
o (Ω) and (u, ξ) ∈ Lp(Q) × Lp(Q), the solution y of

equation (3.8) belongs to C(Q) ∩W 2,1,p(Q). More precisely, we have the following
theorem.

Theorem 3.2. (i) If p > n/2 + 1 and (u, ξ, yo) ∈ Lp(Q) × Lp(Q) × C(Ω), then
(3.8) has a unique weak solution yuξ in W (0, T ) ∩ C(Q) which satisfies

‖yuξ‖∞,Q ≤ C1(‖u‖p,Q + ‖ξ‖p,Q + ‖yo‖∞,Ω + 1),

where C1 = C1(T,Ω,m0, n, p). Moreover, for every ε > 0, yuξ is Hölder continuous
on [ε, T ]× Ω and belongs to W 2,1,p(Ω×]ε, T [).
(ii) If p > n and (u, ξ, yo) ∈ Lp(Q) × Lp(Q) × W 1,p

o (Ω), (3.8) has a unique weak
solution yuξ in W 2,1,p(Q) ∩ C(Q).

Proof. The existence of a unique weak solution yuξ in W (0, T ) ∩ C(Q) for (3.8)
can be proved as in the case of the Robin boundary condition (see Raymond–Zidani
[20, 21]). The Hölder continuity result holds thanks to [9]. Point (ii) can be found in
Bergounioux–Tröltzsch [4].

4. Optimal control of the obstacle problem.

4.1. The obstacle problem. Now we focus on the very case of control of the
obstacle problem, where

Ko = {z ∈W 1,p
o (Ω) | z ≥ 0 a.e. in Ω }(4.1)

and ϕ is the indicator function of Ko:

ϕ(z) =

{
0 if z ∈ Ko,

+∞ else.

It is clear that 0 ∈ dom ϕ = Ko. Moreover, the compatibility condition (3.5) is
fulfilled with γ = 0 so that Theorem 3.1 is valid. On the other hand, the (classical)
calculus of ϕ∗ shows that relation (3.7) is equivalent to

y(t) ≥ 0 in Ω ∀t ∈]0, T [ , ξ(t) ≥ 0 in Ω,(4.2)

and

∫
Ω

y(t, x) ξ(t, x) dx = 0 a.e. t ∈]0, T [,
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that is, at last

y ≥ 0 in Q , ξ ≥ 0 a.e. in Q, and

∫
Q

y(t, x) ξ(t, x) dx dt = 0.

We may summarize in the following theorem.
Theorem 4.1. Assume p > n, (u, yo) ∈ Lp(Q)×W 1,p

o (Ω); then the variational
inequality

∂y

∂t
+Ay + f(y) + ∂ϕ(y) 3 u in Q, y = 0 on Σ, y(0) = yo in Ω,(4.3)

where ϕ is the indicator function of Ko, has a unique solution y ∈ C(Q)∩W 2,1,p(Q).
Moreover, it is equivalent to


∂y

∂t
+Ay + f(y) = u+ ξ in Q, y = 0 on Σ, y(x, 0) = yo(x) in Ω,

ξ ≥ 0, y ≥ 0,

∫
Q

y(t, x) ξ(t, x) dx dt = 0.

(4.4)

In the following we denote

Vad = {ξ ∈ Lp(Q) | ξ ≥ 0 a.e. in Q } .(4.5)

4.2. Pontryagin principle. Now we consider the following problem (P̃): Min-
imize J(y, u) subject to

∂y

∂t
+Ay + f(y) = u+ ξ in Q, y = 0 on Σ, y(., 0) = yo in Ω,(4.6a)

Φ̃(y) ∈ C̃ (“pure” state constraint),(4.6b)

(u, ξ) ∈ Uad × Vad (“pure” control constraints),(4.6c)∫
Q

y(t, x) ξ(t, x) dx dt = 0 (mixed state-control integral constraints),(4.6d)

where

Φ̃(y) = (Φ(y), y) and C̃ = C × {y ∈ C(Q) | y ≥ 0 }.(4.7)

The results of section 3 yield that problems (P) and (P̃) are equivalent. In
particular if (ȳ, ū) is a solution of (P), then there exists ξ̄ ∈ Lp(Q) such that (ȳ, ū, ξ̄)

is an optimal solution of (P̃) with ξ̄ = ∂ȳ/∂t+Aȳ+ f(ȳ)− ū. Let us mention that we
are interested not in existence results (although we will give an example in the last
section of this paper ) but in optimality conditions for (ȳ, ū). Consequently, we study
optimality conditions for (ȳ, ū, ξ̄) to get those for (ȳ, ū) .

Let us define the Hamiltonian functions by

H1(x, t, y, u, q, ν) = νF (x, t, y, u) + q u(4.8)
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for every (x, t, y, u, q, ν) ∈ Q× R4, and

H2(y, ξ, q, λ) = q ξ + λ y ξ(4.9)

for every (y, ξ, q, λ) ∈ R4.

Theorem 4.2 (Pontryagin principle for (P̃)). If (A1)−(A7) are fulfilled and if

(ȳ, ū, ξ̄) is a solution of (P̃), then there exist q̄ ∈ L1(0, T ;W 1,1
o (Ω)), ν̄ ∈ R, λ̄ ∈ R,

and (µ̄, θ̄) ∈M(Q)×M(Q)(M(Q) is the space of Radon measures on Q)), such that

(ν̄, λ̄, µ̄, θ̄) 6= 0, ν̄ ≥ 0,(4.10a)

∀z ∈ {z ∈ C(Q) | z ≥ 0 } 〈µ̄, z − ȳ〉Q ≤ 0, and ∀z ∈ C 〈θ̄, z − Φ(ȳ)〉Q ≤ 0,

(4.10b)


−∂q̄
∂t

+A∗q̄ + f ′y(ȳ)q̄ = ν̄F ′y(x, t, ȳ, ū) + µ̄|Q + [Φ′(ȳ)∗θ̄]|Q + λ̄ξ̄ in Q,

q̄ = 0 on Σ, q̄(T ) = ν̄L′y(x, ȳ(T )) + µ̄|ΩT + [Φ′(ȳ)∗θ̄]|ΩT in Ω,

(4.10c)

q̄ ∈ Lδ′(0, T ;W 1,d′
o (Ω)) for every (δ, d) satisfying

n

2d
+

1

δ
<

1

2
,(4.10d)

H1(x, t, ȳ(x, t), ū(x, t), q̄(x, t), ν̄) = min
u∈KU (x,t)

(4.10e)

H1(x, t, ȳ(x, t), u(x, t), q̄(x, t), ν̄) a.e. in Q,

H2(ȳ(x, t), ξ̄(x, t), q̄(x, t), λ̄) = min
ξ∈R+

H2(ȳ(x, t), ξ, q̄(x, t), λ̄) a.e. in Q,(4.10f)

where µ̄|Q (resp., [Φ′(ȳ)∗θ̄]|Q) is the restriction of µ̄ (resp., [Φ′(ȳ)∗θ̄]) to Q, µ̄|ΩT
(resp., [Φ′(ȳ)∗θ̄]|ΩT ) is the restriction of µ̄ (resp., [Φ′(ȳ)∗θ̄]) to Ω×{T}, 〈·, ·〉Q denotes

the duality product between M(Q) and C(Q), A∗ is the adjoint operator of A, and
1
d + 1

d′ = 1.
Remark 4.1. We briefly describe these relations: (µ̄, θ̄) are the multipliers associ-

ated with the state constraints; µ̄ corresponds to y ≥ 0; and an immediate consequence
of relation (4.10b) is the complementarity result µ̄ ≤ 0, 〈µ̄, ȳ〉Q = 0. θ̄ is associated

to the (general) constraint Φ(y) ∈ C. λ̄ is the multiplier associated to the integral
constraint

∫
Q
y(t, x) ξ(t, x) dx dt = 0, and q̄ is the classical adjoint state which takes

into account the cost functional via ν̄.
Condition (4.10a) is a nontriviality condition. We must emphasize that we get (a

priori) nonqualified optimality conditions. If ν̄ 6= 0, the problem is qualified.
Remark 4.2. One may note that if ξ̄ = 0, then it could happen that ν̄ = µ̄ =

θ̄ = 0 and λ̄ 6= 0, so that q̄ = 0; therefore, the optimality system could appear to
be useless. However, this is the case where the solution (ȳ, ū) is the solution of a
control problem governed by a classical semilinear parabolic equation, since we have
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∂ȳ/∂t+Aȳ+ f(ȳ) = ū and the associated optimality systems are well known for this
kind of problem. We refer for instance to [20].

Theorem 4.3 (Pontryagin principle for (P)). If (A1)–(A7) are fulfilled and
if (ȳ, ū) is a solution of (P), then there exists q̄ ∈ L1(0, T ;W 1,1

o (Ω)), ν̄ ∈ R, λ̄ ∈
R, (µ̄, θ̄) ∈ M(Q) × M(Q) such that (4.10a), (4.10b), (4.10d), and (4.10e) hold.
Moreover, we have


−∂q̄
∂t

+A∗q̄ + f ′y(ȳ)q̄ = ν̄F ′y(x, t, ȳ, ū) + µ̄|Q

+[Φ′(ȳ)∗θ̄]|Q + λ̄

(
∂ȳ

∂t
+Aȳ + f(ȳ)− ū

)
in Q,

q̄ = 0 on Σ, q̄(T ) = ν̄L′y(x, ȳ(T )) + µ̄|ΩT + [Φ′(ȳ)∗θ̄]|ΩT in Ω,

(4.11a)

q̄(x, t)

(
∂ȳ

∂t
+Aȳ + f(ȳ)− ū

)
(x, t) = 0 a.e. (x, t) ∈ Q.(4.11b)

Remark 4.3. Relation (4.11b) is a pointwise complementarity condition. There-
fore, q̄ may be viewed as a Lagrange multiplier associated with the pointwise constraint(

∂y

∂t
+Ay + f(y)− u

)
(x, t) ≥ 0.

Let us recall a regularity result for a weak solution of parabolic equation with
measures as data, as follows.

Proposition 4.1. Let µ be in Mb(Q \ (Ω × {0} ∪ Σ)) and let a be in Lp(Q)
satisfying

a ≥ C0, ‖a‖Lp(Q) ≤M,

where M > 0. Consider the equation

−∂q
∂t

+A∗q + aq = µQ in Q, q = 0 on Σ, q(T ) = µΩT
on Ω,(4.12)

where µ = µQ + µΩT
is a bounded Radon measure on Q \ (Ω × {0} ∪ Σ), µQ is the

restriction of µ to Q, and µΩT
is the restriction of µ to Ω× {T}. Equation (4.12)

admits a unique weak solution q ∈ L1(0, T ;W 1,1
o (Ω)). For every (δ, d) satisfying

d > 2, δ > 2, n
2d + 1

δ <
1
2 , q ∈ Lδ′(0, T ;W 1,d′

o (Ω)), and we have

‖q‖
Lδ′ (0,T ;W 1,d′

o (Ω))
≤ C2‖µ‖Mb(Q\(Ω×{0}∪Σ)),

where C2 = C2(T,Ω, n, C0,M, p, δ, d) is independent of a. Moreover, there exists a
function q(0) ∈ L1(Ω) such that∫

Q

q

{
∂y

∂t
+Ay + ay

}
dxdt = 〈y, µ〉b − 〈y(0), q(0)〉C(Ω)×M(Ω)

for every y ∈ Y = {y ∈W (0, T ) ∩ C(Q) | ∂y∂t +Ay ∈ Lp(Q), y = 0 in Σ}, where 〈·, ·〉b
denotes the duality product between Cb(Q\ (Ω×{0}∪Σ)) and Mb(Q\ (Ω×{0}∪Σ)).
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(Cb(Q \ (Ω×{0}∪Σ)) denotes the space of bounded continuous functions on Q \ (Ω×
{0} ∪Σ), while Mb(Q \ (Ω× {0} ∪Σ)) denotes the space of bounded Radon measures
on Q \ (Ω× {0} ∪ Σ), that is, the topological dual of Co(Q \ (Ω× {0} ∪ Σ)).)

Proof. The proof is the same as the one given in [19] for the Neumann boundary
conditions (see also [7]). An easy adaptation of this proof yields the previous result.
However, for the convenience of the reader we recall that q is the weak solution
of (4.12) if and only if q belongs to L1(0, T ;W 1,1

o (Ω)), aq ∈ L1(Q), and for every
ϕ ∈ C1(Q) satisfying ϕ(x, 0) = 0 on Ω and ϕ(·) = 0 on Σ we have∫

Q

{
q
∂ϕ

∂t
+ Σi,jaijDjϕDiq + aϕq

}
dx dt = 〈ϕ, µ〉b.

As in [7], we can prove that the weak solution q belongs to Lδ
′
(0, T ;W 1,d′

o (Ω)) for
every (δ, d) satisfying the condition

d > 2, δ > 2,
n

2d
+

1

δ
<

1

2
.(4.13)

We remark that the set of pairs (δ, d) satisfying the above condition is nonempty.
We remark also that if (δ, d) satisfies (4.13), if a belongs to Lp(Q), and if q belongs
to Lδ

′
(0, T ;W 1,d′

o (Ω)), then aq ∈ L1(Q). Now, since q ∈ Lδ′(0, T ;W 1,d′
o (Ω)) (where

(δ, d) satisfies (4.24)), and since

divxt ((ΣjaijDjq)1≤i≤n, q) =
∂q

∂t
−Aq belongs to Mb(Q),

then we can define the normal trace of the vector field ((
∑
j aijDjq)1≤i≤n, q) in the

space W
−1
m ,m(∂Q) (for some 1 < m < n+1

n ). If we denote by γo((
∑
j aijDjq)1≤i≤n, q)

this normal trace, we can prove (see Theorem 4.2 in [19]) that this normal trace
belongs toM(∂Q) and the restriction of γo((

∑
j aijDjq)1≤i≤n, q) to Ω×{T} is equal

to µΩT
, and if q(0) is the measure on Ω which satisfies the Green formula of our

Theorem 3.2, then −q(0) is the restriction of γo((
∑
j aijDjq)1≤i≤n, q) to Ω× {0}. In

fact, it can be proved that q(0) belongs to L1(Ω) (see Theorem 4.3 in [19]).

4.3. Proof of Theorems 4.2–4.3. First we assume that Theorem 4.2 is valid.
As mentioned before, if (ȳ, ū) is an optimal solution for (P), then (ȳ, ū, ξ̄) is a solution

for (P̃), where ξ̄ = ∂ȳ
∂t +Aȳ+ f(ȳ)− ū ∈ Lp(Q). Thanks to Theorem 4.2, there exist

(ν̄, λ̄, µ̄, q̄) such that (4.10) holds. Replacing ξ̄ by its value in (4.10c) obviously leads
to (4.11a). Furthermore, relation (4.10f) implies

(q̄(x, t) + λ̄ȳ(x, t)) (ξ̄(x, t)− ξ) ≤ 0 a.e. (x, t) ∈ Q ∀ξ ∈ R+,

which gives

(q̄(x, t) + λ̄ȳ(x, t)) ξ̄(x, t) = 0 a.e. (x, t) ∈ Q.
Since ȳ(x, t) ξ̄(x, t) = 0 a.e. in Q we obtain (4.11b). This concludes the proof of
Theorem 4.3.

It remains to show that Theorem 4.2 is valid. Note that Pontryagin’s principle
for a control problem with unbounded controls, with pointwise state constraints, and
with state-control constraints in integral form already have been studied in [7]. For
the convenience of the reader, we give the main ideas of the proof.
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Step 1: Metric space of controls. In this paper we shall consider control problems
for which the state constraints (4.6b) and the state-control integral constraints (4.6d)
are penalized. These problems are constructed in such a way to make (ȳ, ū, ξ̄) an
approximate solution. The idea is to apply the Ekeland variational principle next. For
this we have to define a metric space of controls, endowed with the so-called Ekeland
distance d, to make the mapping (u, ξ) 7−→ yuξ continuous from this metric space into
C(Q). Thanks to Theorem 3.2, this continuity condition will be realized if convergence
in the metric space of controls implies convergence in Lp(Q)×Lp(Q). Here, since we
deal with (generally) unbounded controls, the convergence in (Uad × Vad, d) does not
imply the convergence in Lp(Q)×Lp(Q) (see [14, p. 227]). To overcome this difficulty,
as in [24, 20], we define a new metric as follows. For 0 < k <∞, we set

Uad(ū, k) = {u ∈ Uad | |u(x, t)− ū(x, t)| ≤ k a.e. (x, t) ∈ Q},

Vad(ξ̄, k) = {ξ ∈ Vad | |ξ(x, t)− ξ̄(x, t)| ≤ k a.e. (x, t) ∈ Q}.
We endow the control space with Ekeland’s metric:

d((u1, ξ1), (u2, ξ2)) = Ln+1({(x, t | u1(x, t) 6= u2(x, t)})+Ln+1({(x, t) | ξ1(x, t) 6= ξ2(x, t)}),
where Ln+1 denotes the Lebesgue measure in Rn+1. Then, as in [24, 20], we can prove
the following lemma.

Lemma 4.1. (Uad(ū, k)×Vad(ξ̄, k), d) is a complete metric space for the distance
d, and the mapping which associates (yuξ, J(yuξ, u)) with (u, ξ) is continuous from
(Uad(ū, k)× Vad(ξ̄, k), d) into C(Q)× R.

In [7], the authors have used another method to build the metric space of controls.
This construction was adapted to the type of constraints they have considered.

Step 2: Penalized problems. Since C(Q) is separable, there exists a norm | · |C(Q),

which is equivalent to the norm ‖·‖C(Q) such that (C(Q), |·|C(Q)) is strictly convex and

M(Q), endowed with the dual norm of | · |C(Q) (denoted by | · |M(Q)), also is strictly

convex (see [11, Corollary 2, p. 148, or Corollary 2, p. 167]). Let K be a convex subset
of C(Q). We define the distance function to K (for the new norm | · |C(Q)) by

δK(ζ) = inf
z∈K
|ζ − z|C(Q).

Since K is convex, then δK is convex and Lipschitz of rank 1, and we have

lim sup
ρ↘0,

ζ′→ζ

δK(ζ ′ + ρz)− δK(ζ ′)
ρ

= max{〈ξ, z〉Q | ξ ∈ ∂δK(ζ)}(4.14)

for every ζ, z ∈ C(Q), where ∂δK(ζ) is the subdifferential of δK at (ζ). Moreover, as
K is a closed convex subset of C(Q) it is proved in [16, Lemma 3.4] that for every
ζ 6∈ K, and every ξ ∈ ∂δK(ζ), |ξ|M(Q) = 1. Since ∂δK(ζ) is convex in M(Q) and

(M(Q), | · |M(Q)) is strictly convex, then if ζ 6∈ K, ∂δK(ζ) is a singleton and δK is

Gâteaux-differentiable at ζ. Let us notice that when K := {z ∈ C(Q) | z ≥ 0}, the
distance function to K is given by δK(ζ) = |ζ−|C(Q), where ζ− = min(0, ζ).

Endowing C(Q)×C(Q) with the product norm we have similarly δC̃(Φ̃(y))2 = |y−|2C(Q)
+

δC(Φ(y))2 (C̃ is defined by (4.7)). Let us consider the penalized functional

Jε(y, u, ξ) =

{[(
J(y, u)− J(ȳ, ū) + ε2

)+]2
+δC̃(Φ̃(y))2 +

(∫
Q

y(x, t)ξ(x, t) dx dt

)2
} 1

2

.
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With such a choice, for every ε > 0 and k > 0, (ȳ, ū, ξ̄) is a ε2-solution of the penalized
problem

(Pk,ε) inf{Jε(y, u, ξ) | y ∈ C(Q), (u, ξ) ∈ Uad(ū, k)×Vad(ξ̄, k), (y, u, ξ) satisfies (4.6a)},
i.e.,

inf(Pk,ε) ≤ Jε(ȳ, ū, ξ̄) ≤ inf(Pk,ε) + ε2

(since inf(Pk,ε) ≥ 0 and Jε(ȳ, ū, ξ̄) = ε2).
For every k > 0, we choose ε(k) = εk ≤ 1

k2p and we denote by (Pk) the penalized
problem (Pk,εk). Thanks to Ekeland’s principle [13, p. 30], for every k ≥ 1 there
exists (uk, ξk) ∈ Uad(ū, k)× Vad(ξ̄, k) such that

d((uk, ξk), (ū, ξ̄)) ≤ εk ≤ 1

k2p
,(4.15a)

Jεk(yk, uk, ξk) ≤ Jεk(yuξ, u, ξ) + εk d((uk, ξk), (u, ξ))(4.15b)

for every (u, ξ) ∈ Uad(ū, k) × Vad(ξ̄, k) (yk and yuξ being the states correspond-
ing respectively to (uk, ξk) and (u, ξ)). In view of the definition of εk, we have
limk ‖uk − ū‖p,Q = limk ‖ξk − ξ̄‖p,Q = 0. Indeed, Ln+1({(x, t) | uk(x, t) 6= ū(x, t)}) +
Ln+1({(x, t) | ξk(x, t) 6= ξ̄(x, t)}) ≤ 1

k2p , and |uk(x, t) − ū(x, t)| ≤ k, |ξk(x, t) −
ξ̄(x, t)| ≤ k a.e. on Q. Thus ‖uk − ū‖p,Q ≤ 1

k , ‖ξk − ξ̄‖p,Q ≤ 1
k .

To exploit the approximate optimality conditions (4.15), we introduce a particular
perturbation of (uk, ξk).

Step 3: Diffuse perturbations. For fixed (uo, ξo) in Uad × Vad, we denote by
(uok, ξok) (k > 0) the pair of functions in Uad(ū, k)× Vad(ξ̄, k) defined by

uok(x, t) =

{
uo(x, t) if |uo(x, t)− ū(x, t)| ≤ k,
ū(x, t) if not,

(4.16a)

ξok(x, t) =

{
ξo(x, t) if |ξo(x, t)− ξ̄(x, t)| ≤ k,
ξ̄(x, t) if not.

(4.16b)

Observe that for every k ≥ 1, (uok, ξok) belongs to Uad(ū, k) × Vad(ξ̄, k), and that
(uok, ξok)k converges to (uo, ξo) in Lp(Q)× Lp(Q). Applying Theorem 4.1 of [7] (see
also [24, 21] for more details), we deduce the existence of measurable sets Ekρ with

Ln+1(Ekρ ) = ρLn+1(Q), such that if we denote by (uρk, ξ
ρ
k) the pair of controls defined

by

uρk(x, t) =

{
uk(x, t) on Q \ Ekρ ,
uok(x, t) on Ekρ ,

ξρk(x, t) =

{
ξk(x, t) on Q \ Ekρ ,
ξok(x, t) on Ekρ

(4.17)

and if yρk is the state corresponding to (uρk, ξ
ρ
k), then we have

yρk = yk + ρzk + rρk, lim
ρ→0

1

ρ
|rρk|C(Q) = 0,(4.18a)

J(yρk, u
ρ
k) = J(yk, uk) + ρ∆kJ + o(ρ),(4.18b)
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Q

yρkξ
ρ
k dx dt =

∫
Q

ykξk dx dt+ ρ

∫
Q

[zkξk + yk(ξok − ξk)] dx dt+ o(ρ),(4.18c)

where zk is the weak solution of

∂zk
∂t

+Azk+f ′y(yk)zk = uk−uok+ξk−ξok inQ, zk = 0 on Σ, zk(0) = 0 in Ω,

and

∆kJ =

∫
Q

[
F ′y(x, t, yk, u)zk + F (x, t, yk, uok)− F (x, t, yk, uk)

]
dx dt+

∫
Ω

L′y(x, yk(T ))zk(T ) dx.

Setting (u, ξ) = (uρk, ξ
ρ
k) in (4.15b), it follows that

lim sup
ρ→0

Jεk(yk, uk, ξk)− Jεk(yρk, u
ρ
k, ξ

ρ
k)

ρ
≤ εkLn+1(Q).(4.19)

Taking (4.18) and the definition of Jεk into account, we get

−νk∆kJ −〈µk, zk〉Q −〈θk,Φ′(yk)zk〉Q − λk
[
〈ξk, zk〉Q + 〈yk, ξok − ξk〉Q

]
≤ εkLn+1(Q),

(4.20)

where

νk =
(J(yk, uk)− J(ȳ, ū) + ε2

k)+

Jεk(yk, uk, ξk)
, λk =

(∫
Q

yk(x, t)ξk(x, t) dx dt

)
Jεk(yk, uk, ξk)

,

µk =


|y−k |C(Q)∇|y−k |C(Q)

Jεk(yk, uk, ξk)
if |y−k |C(Q) 6= 0,

0 otherwise,

θk =


δC(Φ(yk)∇δC(Φ(yk))

Jεk(yk, uk, ξk)
if δC(Φ(yk)) 6= 0,

0 otherwise.

For every k > 0, we consider the weak solution qk of

−
∂qk
∂t

+A∗qk + f ′y(yk)qk = νkF
′
y(x, t, yk, uk) + µk|Q + [Φ′(yk)∗θk]|Q + λkξk in Q,

qk = 0 on Σ, qk(T ) = νkL
′
y(x, yk(T )) + [Φ′(yk)∗θk]|ΩT + µk|ΩT in Ω,

(4.21)

where µk|Q (resp., [Φ′(yk)∗θk]|Q) is the restriction of µk (resp., [Φ′(yk)∗θk]) to Q, and
µk|ΩT (resp., [Φ′(yk)∗θk]|ΩT ) is the restriction of µk (resp., [Φ′(yk)∗θk]) to Ω × {T}.
By using the Green formula of Proposition 4.1 with zk, we obtain∫
Q

νkF
′
y(x, t, yk, uk)zk dx dt+ λk

∫
Q

zk(x, t)ξk(x, t) dx dt+

∫
Ω

νkL
′
y(x, yk(T ))zk(T ) dx

+ 〈µk, zk〉Q + 〈θk,Φ′(yk)zk〉Q =

∫
Q

qk (uok − uk + ξok − ξk) dx dt.



PONTRYAGIN PRINCIPLE FOR VARIATIONAL INEQUALITIES 1285

With this equality, (4.20), and the definition of ∆kJ , we get∫
Q

[νkF (x, t, yk, uk) + qkuk + qkξk + λkykξk] ds dt

≤
∫
Q

[νkF (s, t, yk, uok) + qkuok + qkξok + λkykξok] ds dt+
1

k2p
Ln+1(Q)

(4.22)

for every k > 0 and every (uo, ξo) ∈ Uad×Vad (where (uok, ξok) is defined with respect
to (uo, ξo)).

Step 4. Convergence of sequence (νk, λk, µk, θk, qk)k; Pontryagin principle. Ob-
serving that ν2

k + λ2
k + |µk|2M(Q)

+ |θk|2M(Q)
= 1, there exist (ν̄, λ̄, µ̄, θ̄) ∈ R+ × R+ ×

M(Q)×M(Q) and a subsequence, still denoted by (νk, λk, µk, θk)k, such that

νk → ν̄, λk → λ̄, µk ⇀ µ̄ and θk ⇀ θ̄ weak∗ in M(Q).

With the same arguments as in [21, Section 6.2, Step 4], we prove that (qk)k, or at

least a subsequence of (qk)k, weakly converges to q̄ in Lδ
′
(0, T ;W 1,d′

0 (Ω)) for every
(δ, d) such that n

2d + 1
δ <

1
2 . Recall that (uk, ξk)k converges to (ū, ξ̄) in Lp(Q)×Lp(Q).

Hence yk also converges to ȳ. Passing to the limit when k tends to infinity in (4.22)
gives∫
Q

[
H1(x, t, ȳ, ū, q̄, ν̄) +H2(ȳ, ξ̄, q̄, λ̄)

]
dx dt ≤

∫
Q

[
H1(x, t, ȳ, u, q̄, ν̄) +H2(ȳ, ξ, q̄, λ̄)

]
dx dt

for every (u, ξ) ∈ Uad × Vad. This inequality is equivalent to∫
Q

H1(x, t, ȳ(x, t), ū(x, t), q̄(x, t), ν̄) dx dt(4.23a)

= min
u∈Uad

∫
Q

H1(x, t, ȳ(x, t), u(x, t), q̄(x, t), ν̄) dx dt

∫
Q

H2(ȳ(x, t), ξ̄(x, t), q̄(x, t), λ̄) dx dt = min
ξ∈Vad

∫
Q

H2(ȳ(x, t), ξ(x, t), q̄(x, t), λ̄) dx dt.

(4.23b)

Now, by using Lebesgue’s points argument (see [21, 24]), we obtain (4.10e) and (4.10f).
On the other hand, it is clear that ν̄ ≥ 0. Moreover, from the definitions of µk and
θk, we deduce

〈µk, z − yk〉Q ≤ 0 ∀z ∈ {z ∈ C(Q) | z ≥ 0} and 〈θk, z − Φ(yk)〉Q ≤ 0 ∀z ∈ C.
(4.24)

When k tends to infinity, we obtain (4.10b) and a part of (4.10a). It remains to
prove that (ν̄, λ̄, µ̄, θ̄) is nonzero; for this, we recall that ν2

k+λ2
k+|µk|2M(Q)

+|θk|2M(Q)
=

1.
If (ν̄, λ̄) 6= 0, then the proof is complete. If not, we can prove that |µ̄|M(Q) +

|θ̄|M(Q) > 0.
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First we recall that C has a finite codimension in C(Q) and that {z ∈ C(Q) | z ≥ 0}
is a subset of C(Q) with a nonempty interior. Then C̃ is a subset of C(Q)×C(Q) with

a finite codimension. Moreover, from (4.24) we deduce that for every (z1, z2) ∈ C̃
〈µk, z2 − ȳ〉Q + 〈θk, z1 − Φ(ȳ)〉Q ≤ 〈µk, yk − ȳ〉Q

+〈θk,Φ(yk)− Φ(ȳ)〉Q ≤ |yk − ȳ|C(Q) + |Φ(yk)− Φ(ȳ)|C(Q).

The last right-hand side quantity tends to 0 as k → +∞. With this estimate and
using limk |µk|M(Q) + limk |θk|M(Q) = 1, thanks to Lemma 3.6 of [16], we conclude

that (µ̄, θ̄) 6= 0 when (ν̄, λ̄) = 0.

5. Examples. Let us consider the following optimal control problem where the
cost functional is defined by

J(y, u) =

∫ T

0

[g(t, y(t)) + h(u(t))] dt+ ψ(y(T )),(5.1)

where
(A5∗) the function h : L2(Ω) → R ∪ {+∞} is convex and lower semicontinuous

and there exist c1 > 0, c2 ∈ R such that

∀u ∈ L2(Ω) h(u) ≥ c1|u|2L2(Ω) − c2,(5.2)

(A6∗) the function g : [0, T ] × L2(Ω) → R ∪ {+∞} is measurable in t, g(., 0) ∈
L1(0, T ), and for every r > 0 there exists γr > 0 independent of t such that

∀t ∈ [0, T ] |y|L2(Ω) + |z|L2(Ω) ≤ r,
|g(t, y)− g(t, z)|+ |ψ(y)− ψ(z)| ≤ γr|y − z|L2(Ω).

(5.3)

Conditions on g and ψ could be weakened. For more details one can refer to Barbu
[2, p. 317].

Now we consider

(P)

Minimize J(y(yo, u), u),
u ∈ Uad,
y(yo, u) is the solution of (4.3),

where Uad is a nonempty, convex subset of Lp(Q), closed for the L2(Q)-topology, and
p is an integer such that n < p. Although we are especially interested in optimality
conditions for solutions of problem (P), we give an existence result in the following
theorem.

Theorem 5.1. For any yo ∈ Ko (defined by (4.1)), problem (P) has at least one
solution u. Moreover, the corresponding state belongs to C(Q) ∩W 2,1,p(Q).

Proof. One can find this result in Barbu [2, Proposition 1.1., p. 319] when Uad =
L2(Q). This is easily adapted to the case where Uad is a closed convex subset of
L2(Q). A priori estimations do not change so that we get the “suitable” convergence
in the “suitable” spaces. The only modification concerns the cluster points of the
control sequences. Because Uad is convex and closed for the L2(Q)-topology these
points belong to Uad. Because Uad ⊂ Lp(Q), we can use regularity results of Theorem
4.1.

Remark 5.1. The assumption that Uad has to be a convex subset of Lp(Q) (for
some p > n) closed for the L2(Q)-topology may be difficult to ensure: for example
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Uad = Lp(Q) is not suitable. However, we give more precise example sets Uad in what
follows. Let us refine the example. We set

J(y, u) =
1

2

∫
Ω

(y(x, T )− zd(x))2 dx+
N

2

∫
Q

u(x, t)2 dx dt(5.4)

(with N > 0) so that with the previous notations we get

F (x, t, y, u) =
N

2
u2, h(u(t)) =

N

2
‖u(t)‖2L2(Ω),

L(x, y) =
1

2
(y − zd(x))2, g(t, y(t)) ≡ 0, ψ(y(T )) =

1

2
‖y(T )− zd‖2L2(Ω).

It is easy to see that both (A5∗) and (A6∗) are fulfilled for such a choice of h, g, ψ.
Therefore the optimal control problem

(P2)


min J(y, u),

∂y

∂t
+Ay + f(y) ≥ u in Q, y = 0 on Σ, y(0) = yo in Ω,

u ∈ Uad,
y(x, t) ≥ 0 ∀(x, t) ∈ Q,

where yo ∈ W 1,p
o (Ω), yo ≥ 0, zd ∈ L2(Ω), and Uad is a nonempty, convex subset of

Lp(Q) closed for the L2(Q)-topology, has an optimal solution.
We always assume, of course, that (A1) and (A2) are valid (one may choose

A = −∆ for instance, where ∆ is the Laplacian operator); we have already seen that
(A3) and (A4) are fulfilled with the special choice of ϕ and yo. It is also easy to see
that (A5) and (A6) are ensured with F and L defined as above. Thus we may give
optimality conditions for (P2), as follows.

Theorem 5.2. Assume (A1) and (A2) are valid. Then problem (P2) has an op-
timal solution (ȳ, ū) ∈ [W 2,1,p(Q)∩C(Q)]×Lp(Q). Moreover, there exist (ν̄, λ̄, µ̄, q̄) ∈
R×R×M(Q)× L1(0, T ;W 1,1

o (Ω)) such that the following optimality system holds:

(ν̄, λ̄, µ̄) 6= 0, ν̄ ≥ 0,(5.5a)

∀z ∈ {z ∈ C(Q) | z ≥ 0 }, 〈µ̄, z − ȳ〉Q ≤ 0,(5.5b)


∂ȳ

∂t
+Aȳ + f(ȳ) = ū+ ξ̄ in Q,

ȳ = 0 on Σ, ȳ(0) = yo in Ω,

(5.5c)

ȳ ≥ 0, ξ̄ ∈ Vad, ū ∈ Uad,
∫

Ω

ȳ(t) ξ̄(t) dx = 0 a.e. on [0, T ],(5.5d)

 −∂q̄
∂t

+A∗q̄ + f ′(ȳ)q̄ = µ̄|Q + λ̄ ξ̄ in Q,

q̄ = 0 on Σ, q̄(T ) = ν̄[ȳ(T )− zd] + µ̄|ΩT in Ω,
(5.5e)
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([(ν̄Nū+ q̄)(u− ū)](x, t)) ≤ 0 ∀ u ∈ Uad, and a.e. (x, t) ∈ Q,(5.5f)

q̄(x, t) ξ̄(x, t) = 0 a.e. (x, t) ∈ Q,(5.5g)

where ξ̄ =
∂ȳ

∂t
+Aȳ + f(ȳ)− ū.

Proof. This is a direct consequence of Theorem 4.2 where Φ = Id and C is the
whole space. Considering the Hamiltonian functions and relations (4.10e) and (4.10f)
give (5.5e) and (5.5f) immediately.

We end this section with two examples for Uad.

5.1. Case where Uad is bounded in L∞(Q). Let us set

Uad = { u ∈ L∞(Q) | a(x, t) ≤ u(x, t) ≤ b(x, t) in Q },
where a, b ∈ L∞(Q). Uad is of course a convex subset of Lp(Q) for any p > n.
Moreover, we get the following lemma.

Lemma 5.1. Uad is closed for the L2(Q)-topology.
Proof. Let un ∈ Uad converging to u in L2(Q). Then un(x, t) converges to u(x, t)

a.e. in Q so that we get a(x, t) ≤ u(x, t) ≤ b(x, t) a.e. in Q. Thus u ∈ L∞(Q). It is
clear that u ∈ Uad.

Therefore, in view of Remark 5.1, we get the result stated in the next theorem
for yo = 0 and

J(y, u) =
1

2

∫
Ω

(y(x, T )− zd(x))2 dx+
N

2

∫
Q

u2(x, t) dx dt.

Theorem 5.3. Assume (A1) and (A2) are valid. Then problem (P2) has an
optimal solution (ȳ, ū) ∈ [W 2,1,p(Q) ∩ C(Q)] × Lp(Q) for any p > n. Moreover there
exists (ν̄, λ̄, µ̄, q̄) ∈ R × R ×M(Q) × L1(0, T ;W 1,1

o (Ω)) such that (5.5a)–(5.5d) and
(5.5g) hold with−

∂q̄

∂t
+A∗q̄ + f ′(ȳ)q̄ = µ̄|Q + λ̄ ξ̄ in Q,

q̄ = 0 on Σ, q̄(T ) = ν̄[ȳ(T )− zd] + µ̄|ΩT in Ω,
(5.6)

[(ν̄Nū+ q̄)(u− ū)](x, t) ≤ 0 ∀ u ∈ Uad and a.e. (x, t) ∈ Q.(5.7)

5.2. Case where Uad = {u ∈ Lp(Q) | u(x, t) ≥ 0 a.e. in Q}. When
Uad = {u ∈ Lp(Q) | u(x, t) ≥ 0 a.e. in Q} and yo ≥ 0 in Ω, thanks to the maximum
principle for parabolic equations, the constraint y ≥ 0 is automatically fulfilled in
(4.6b) so that the corresponding multiplier µ̄ is equal to 0 (or at least does not
appear). Therefore the corresponding Pontryagin optimality system consists of (5.5a)
and (5.5c)–(5.5g), where (5.5e) is replaced by −

∂q̄

∂t
+A∗q̄ + f ′(ȳ)q̄ = λ̄ ξ̄ in Q,

q̄ = 0 on Σ, q̄(T ) = ν̄[ȳ(T )− zd] in Ω.

(5.8)

This implies in particular that q̄ ∈W 2,1,p(Q) ∩ C(Q).
For this simple example we can see that the optimality conditions (5.2) are not

trivial because we cannot have ν̄ = λ̄ = 0.
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6. Conclusion. The optimality conditions we have obtained are given in a non-
qualified form. So far it is difficult to compare precisely these results with those
already existing, since they usually are in a qualified form [6, 5, 17] or they concern
elliptic variational inequalities. Nevertheless we must emphasize that in this paper
we obtain interesting informations about optimal solutions (at least in simple cases).
Indeed, we have seen in Example 5 that (5.5e) provides precise information on the
structure of the multipliers µ̄ + ξ̄ λ̄ for the distributed multiplier, for instance, and
the adjoint state q̄: the regular part of this adjoint state belongs to C(Q) while the
nonsmooth part belongs to L1(0, T ;W 1,1

o (Ω)). This information seems new, compared
with that in Barbu [2, Section 5.1.4, p. 331], for example.

The method developed in [5, 23] for elliptic variational inequalities is still true for
the parabolic case, but we think that this method does not allow the condition (4.11b)
to be obtained. However, in [23, 5] the authors give a qualification assumption under
which they can derive Pontryagin’s principle in qualified form.

Since we now can preview the generic form of the Lagrange multipliers, we can
check optimal control problems where the variational inequality is more general than
the obstacle type or occurs on the boundary, with boundary control.
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Abstract. In this paper we provide a relaxation result for control systems under both equal-
ity and inequality constraints involving the state and the control. In particular, we show that the
Mangasarian–Fromowitz constraint qualification allows us to rewrite constrained systems as differ-
ential inclusions with locally Lipschitz right-hand side. Then the Filippov–Ważewski relaxation
theorem may be applied to show that ordinary solutions are dense in the set of relaxed solutions. If,
besides agreeing with the above constraints, the state has to remain in a control-independent set K,
then the Mangasarian–Fromowitz condition cannot hold. This case is investigated as well by means
of a condition on the feasible velocities on the boundary of K.
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1. Introduction. Let us consider a control system of the form

x′(t) = f(t, x(t), u(t)), u(t) ∈ U,(1)

where the time parameter t belongs to an interval [t0, T ], the state x takes values in
Rn, U (the control set) is a subset of a complete separable metric space Z, and the
function f maps [t0, T ] ×Rn × Z into Rn. The trajectory-control pairs are subject
to the constraints

h(t, x(t), u(t)) ≤ 0, g(t, x(t), u(t)) = 0 almost everywhere (a.e.) in [t0, T ],(2)

where

h = (h1, . . . , hm) : [t0, T ]×Rn ×Z 7→ Rm and g : [t0, T ]×Rn ×Z 7→ Rp.

In this paper we study the closure of the solution set of the control system (1) under
state constraints (2). A classical way to investigate this problem relies on the study
of the feedback set-valued map

G(t, x) = {u ∈ U | h(t, x, u) ≤ 0, g(t, x, u) = 0}
(see, for instance, [6, 7]). In fact, observe that a trajectory-control pair (x, u) solves
(1), (2) if and only if

u(t) ∈ G(t, x(t)) a.e in [t0, T ].

More generally, one can consider a set-valued map G : [t0, T ] × Rn 7→ U and the
control system{

x′(t) = f(t, x(t), u(t)), u(t) ∈ G(t, x(t)), t ∈ [t0, T ],
x(t0) = x0.

(3)
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In several dynamic optimization problems it is interesting to answer the following two
questions:
Q1. Is the set of solutions to the system (3) (in particular, to (1), (2)) precompact

in the space of continuous functions?
Q2. What is its closure?
While the answer to the first question comes from functional analysis (via a

standard application of the Ascoli theorem), the answer to the second one can be
provided in different ways. One can use for instance generalized curves, which were
introduced within the context of calculus of variations by L. C. Young and extended to
control systems by J. Warga [22] and E. J. McShane [16] (see also [23] and references
therein). Generalized curves are defined as the trajectories corresponding to relaxed
controls. To be more precise, let f satisfy some standard regularity assumptions (see
section 3), and letM(U) denote the set of probability measures on U . M(U) can be
regarded as a subset of C(U)∗, the dual of the space C(U) of continuous real functions
defined on U . Define the space of admissible relaxed controls as

Ûadm(t0, T ) = {µ ∈ L∞([t0, T ];M(U))| for a.e. t ∈ [t0, T ], supp(µt) ⊂ G(t, x(t))} ,
where supp(µt) denotes the support of µ(t, ·), and x(·) is the unique continuous solu-
tion to the integral equation

x(t) = x(t0) +

∫ t

t0

∫
U

f(s, x(s), u)µ(s, du)ds.

It turns out that such a solution is absolutely continuous. It is called a generalized
curve of (3). Under standard assumptions, if a sequence xn(·) of solutions to (3)
converges uniformly to some x(·), then x(·) is a generalized curve.

The second approach goes back to papers by L. Cesari [8], A. Lasota and C. Olech
[14], and C. Olech [18] (see also the bibliography of [7] and [6]). It relies on Mazur’s
theorem and uses the convex hull of the right-hand side of (3). Absolutely continuous
functions satisfying

x′(t) ∈ co f(t, x(t), G(t, x(t))) a.e. in [t0, T ]

are called relaxed solutions of (3). The above system is the relaxed (convexified) differ-
ential inclusion corresponding to (3) (of course, the meanings given here to expressions
like relaxed control, generalized curve, and relaxed solutions are purely conventional).
It is well known that under standard hypotheses the uniform limit of solutions to (3)
is a relaxed trajectory. Actually, under general assumptions the set of generalized
curves coincides with the set of relaxed trajectories (see also Theorem 3.4 below).
Therefore the set of relaxed curves (or, equivalently, of generalized curves) contains
the closure of the solutions to (3). In order to complete the answer to question Q2,
one has to solve the following problem:
Q3. Can we approximate every relaxed solution by “ordinary” trajectories of the

control system (3)?
A general answer to this question is contained in the celebrated Filippov–Ważewski

theorem, in the framework of differential inclusions. For control systems, a partial
answer is given, e.g., in [6, 7], where only the case when the set-valued map G(·, ·) is
independent of the state is investigated.

E. N. Barron and J. Jensen have recently published a paper [5] concerning a
related question. They studied the Mayer problem

minimize ψ(x(T ))
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over solutions to the constrained system (1), (2) satisfying x(t0) = x0 in the case
when g = 0 (i.e., only inequality constraints are present). They were looking for
an enlarged class of trajectories that should be considered in order for the above
control problem to have a solution, and the infimum of the original problem was the
same as the minimum of the relaxed problem. Let us remark that an answer to this
problem does not necessarily imply a positive answer to question Q3 (while, by virtue
of the continuity of the map x(·) 7→ ψ(x(T )) the converse implication holds true),
the latter being outside the declared goal of [5]. Actually our aim is to introduce
a strong extension of the problem (see [21]), while the objective in [5] is to obtain
a weak extension (see [9]). Incidentally, since our hypotheses are more general than
those assumed in [5], our results show that the extension provided by E. N. Barron
and J. Jensen is in fact strong. Under a rank condition recalled below and some
technical assumptions, E. N. Barron and J. Jensen proposed the following answer to
their problem.

Let Û(t0, T ) = L∞([t0, T ];M(U)). The space of admissible relaxed controls is
defined by

Ûh(t0, T ) =
{
µ ∈ Û(t0, T )| for a.e. t ∈ [t0, T ], µ− ess supu∈U h(t, x(t), u) ≤ 0

}
,

where x(·) is the generalized curve corresponding to the relaxed control µ. The relaxed
problem is

minimize ψ(x(T ))

over all generalized curves satisfying x(t0) = x0. They showed that, under usual
technical assumptions, the set of generalized curves of (1), (2) (with g = 0) starting
at x0 is compact, and so the relaxed problem has a solution. Next they proved that
the value functions of the original and the relaxed problems coincide. For this aim
they checked that these value functions solve the same Hamilton–Jacobi boundary
value problem, which, in turn, has a unique solution.

Let us briefly recall the rank condition used by E. N. Barron and J. Jensen. Let
u ∈ G(t, x) and let us denote the set of all “active” indices by

I(t, x, u) =
{
i1 < · · · < ik | ∀ 1 ≤ j ≤ k, hij (t, x, u) = 0 and hq(t, x, u) 6= 0∀ q 6= ij

}
.

Define the map hI(t,x,u) = (hi1 , . . . , hik). It is assumed in [5] that the rank of the
matrix

∂hI(t,x,u)

∂u
(t, x, u)

is equal to the number of elements in I(t, x, u) (to be more precise, the authors restrict
their investigation to the case where the maps h1, . . . , hm−1 do not depend on (t, x)).
This rank condition is often met in the optimal control theory of the Bolza problem
(see, for instance, [6, p. 36], where the author also considered the problem (1), (2) in
the case when g = 0) but apparently there are no results in the literature answering
in the whole generality the above-mentioned question Q3, although a tool providing
an answer has existed since 1962 in the form of the Filippov–Ważewski relaxation
theorem for differential inclusions. Namely, to get a positive answer it is enough to
assume that the set-valued map x ; f(t, x,G(t, x)) is locally Lipschitz. On the other
hand an example provided by Plís [19] shows that the Lipschitz condition cannot be
weakened to a continuity condition.
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The first aim of this paper is to investigate questions Q1–Q3 in the presence of
both equality and inequality constraints. We show that the Mangasarian–Fromowitz
constraint qualification (of which the above rank condition is a particular case) yields
the local Lipschitz continuity of the map x ; G(t, x). The crucial argument to achieve
this result is a careful application of an inverse mapping theorem (extending a result
from [11] for maps defined on a metric space. Once the Lipschitz continuity of x ;

G(t, x) is established, if f(t, ·, ·) is locally Lipschitz, the above mentioned Filippov–
Ważewski theorem may be applied and question Q3 may be positively answered.

The last part of the paper is devoted to the relaxation problem in a situation when
the Mangasarian–Fromowitz constraint qualification is not verified, namely, when we
add a state constraint of the form k(x) ≤ 0 to the above constraints (2). Nevertheless
we can provide a result concerning this case by assuming a generalization (provided
in [17]) of a condition originally proposed—for relaxation purposes—by P. Loreti [15].

The outline of the paper is as follows. In section 2 we provide some preliminaries
on set-valued inverse mapping theorems and differential inclusions. Section 3 is de-
voted to relaxation of (1), (2) under the Mangasarian–Fromowitz condition. Section
4 covers a case where this condition is violated. A concluding short section provides
a simple application concerning the value function of the Mayer problem.

2. Preliminaries.

2.1. Inverse mapping theorems. This section is basically an adaptation of
some results from [11] to the form we need in this paper. We denote by Bδ(x) and

B(x, δ) the closed ball of center x and radius δ; by
o

B and B the open and closed unit
balls, respectively; by Graph(G) the graph of the set-valued map G : X ; Y ,

Graph(G) = {(x, y) ∈ X × Y | y ∈ G(x)} ;

and by Dom(G) its domain

Dom(G) = {x ∈ X | G(x) 6= ∅} .
Observe the following simple fact.

Proposition 2.1. Let ϕ be a map from a metric space X to a normed space Y
and ρ > 0, ε > 0, δ > 0, x ∈ X be given. Then, the following two statements are
equivalent:

i. ϕ satisfies the uniform open mapping principle at x: ∀ x ∈ Bδ(x) and 0 ≤ h ≤
ε, ϕ(x) + ρh

o

B ⊂ ϕ(Bh(x)).
ii. The inverse map ϕ−1 is pseudo-Lipschitz at ϕ(x): ∀ x ∈ Bδ(x) and y ∈ Y

satisfying ‖y − ϕ(x)‖ < ρε,

dist
(
x, ϕ−1(y)

) ≤ 1

ρ
‖ϕ(x)− y‖ .

Pseudo-Lipschitz maps were introduced in [1]. The proof of Proposition 2.1 is
straightforward. Most recently they have been called Aubin continuous maps.

Definition 2.2 (see [11]). The upper variation of ϕ : X 7→ Y at x is the closed
subset of Y defined by

ϕ]1(x) = Limsuph→0+

ϕ(Bh(x))− ϕ(x)

h
.

In other words v ∈ ϕ]1(x) if and only if there exist sequences hi → 0+, vi → v
such that ϕ(x) + hivi ∈ ϕ(Bhi(x)).
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Let X be a Banach space, K ⊂ X, and x ∈ K. The contingent cone to K at x is
defined by

TK(x) = Limsuph→0+

K − x
h

(see, for instance, [4, Chapter 4]).
Let X,Y be Banach spaces and ϕ : X 7→ Y be a Fréchet differentiable map (or

locally Lipschitz and Gâteaux differentiable map). Consider a subset K ⊂ X, x ∈ K,
and let ϕ|K denote the restriction of ϕ to K. Then it is not difficult to check that

ϕ′(x)(TK(x) ∩B) ⊂ (ϕ|K)]1 (x),(4)

so that

ϕ′(x)(co (TK(x) ∩B)) ⊂ co (ϕ|K)]1 (x)

and, in particular,

ϕ′(x)(B) ⊂ ϕ]1(x).(5)

Theorem 2.3. Consider a complete metric space (X, dX), a Banach space Y with
the norm Gâteaux differentiable away from zero and a continuous map ϕ : X 7→ Y .
Let x ∈ X and assume that for some ε > 0, ρ > 0

ρB ⊂
⋂

x∈Bε(x)

coϕ]1(x).

Then for every x ∈ Bε/2(x) and y ∈ Y satisfying ‖y − ϕ(x)‖ < ρε/2,

dist
(
x, ϕ−1(y)

) ≤ 1

ρ
‖ϕ(x)− y‖ .

In order to prove Theorem 2.3 we shall make use of Ekeland’s variational principle
(see, e.g., [3, 4]), which we recall for the reader’s convenience.

Theorem 2.4. Let (X, d) be a complete metric space and f : X 7→ R ∪ {+∞}
be an extended lower semicontinuous bounded from below function. Consider x0 ∈ X
such that f(x0) 6= +∞ and ε > 0. Then there exists x ∈ X, a solution to{

i. f(x) + εd(x0, x) ≤ f(x0),
ii. ∀ x 6= x, f(x) < f(x) + εd(x, x).

Proof of Theorem 2.3. By Proposition 2.1 we have to show that for every x1 ∈
Bε/2(x), 0 ≤ h ≤ ε/2

ϕ(x1) + ρh
o

B⊂ ϕ(Bh(x1)).

We fix such x1, h and pick y ∈ Y satisfying ‖y − ϕ(x1)‖ < ρh. We define 0 < θ < 1
by

θ2 = ‖y − ϕ(x1)‖ /ρh.
Applying Theorem 2.4 to the complete metric space Bh(x1) and the continuous func-
tion x 7→ ‖y − ϕ(x)‖, we prove the existence of x2 ∈ Bθh(x1) ⊂ Bε(x) such that

∀ x ∈ Bh(x1), ‖ϕ(x2)− y‖ ≤ ‖ϕ(x)− y‖+ θρdX(x, x2).(6)
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It remains to show that y is equal to ϕ(x2). Indeed, assume for a moment that
y 6= ϕ(x2). By differentiability of the norm, there exists p ∈ Y ? of ‖p‖? = 1 such that
∀h > 0, v ∈ Y

‖ϕ(x2) + hv − y‖ = ‖ϕ(x2)− y‖+ 〈p, hv〉+ ov(h),(7)

where limh→0+ ov(h)/h = 0. We fix v ∈ ϕ]1(x2) and let hj → 0+, vj → v be such
that ϕ(x2) + hjvj ∈ ϕ(Bhj (x2)). Then from (6) and (7) we obtain

0 ≤ 〈p, hjv〉+ hj ‖vj − v‖+ θρhj + ov(hj).

Dividing by hj and taking the limit yields 〈p, v〉 ≥ −θρ. Since v ∈ ϕ]1(x2) is arbitrary
we proved that

∀ v ∈ co (ϕ]1(x2)
)
, 〈p, v〉 ≥ −θρ.(8)

By the assumption of the theorem, ρB ⊂ co
(
ϕ]1(x2)

)
. Thus (8) yields −ρ ≥ −θρ.

Since 0 < θ < 1 and ρ > 0, we derived a contradiction. Consequently ϕ(x2) = y.

2.2. Relaxation of differential inclusions. Consider a set-valued map F from
[t0, T ]×Rn into subsets of Rn and the differential inclusion

x′ ∈ F (t, x).(9)

An absolutely continuous function x : [t0, T ] 7→ Rn is called a solution to (9) if

x′(t) ∈ F (t, x(t)) a.e. in [t0, T ].(10)

Denote by S[t0,T ](x0) the set of solutions to (9) starting at x0 ∈ Rn at time t0 and
defined on the time interval [t0, T ]. Let us recall a result concerning the density of
the set of solutions to the differential inclusion{

x′(t) ∈ F (t, x(t)) a.e. in [t0, T ],
x(t0) = x0

(11)

into the set of solutions to the convexified (relaxed) differential inclusion{
x′(t) ∈ co F (t, x(t)) a.e. in [t0, T ],
x(t0) = x0.

(12)

Assume
i. ∀ (t, x) ∈ [t0, T ]×Rn, F (t, x) is closed,
ii. ∀ x ∈ Rn, F (·, x) is measurable,
iii. ∃ γ ∈ L1(t0, T ), for a.e. t ∈ [t0, T ],∀ x ∈ Rn, supv∈F (t,x) ‖v‖ ≤ γ(t)(1 + ‖x‖).

(13)
Observe that if F satisfies (13), then so does the set-valued map (t, x) ; co (F (t, x)).
If in addition for almost every t, F (t, ·) is upper semicontinuous, then it is well known,
thanks to the Dunford–Pettis criterion, the Mazur theorem, and the convergence
theorem (see, for instance, [4, 6, 7]) that under assumptions (13) the set of solutions to
(12) is compact in the space of continuous functions C(t0, T ). This and the Filippov–
Ważewski theorem (see, for instance, [2] for the time-independent case, [4, p. 402], or
[12]) yield the following well-known result.

Theorem 2.5. Suppose (13) and that{ ∀ ρ > 0,∃ k ∈ L1(t0, T ) such that for almost all t ∈ [t0, T ],
the map F (t, ·) is k(t)− Lipschitz on Bρ(0).

(14)
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Then the closure of S[t0,T ](x0) in C(t0, T ) is compact and equal to the set of solutions
to the relaxed inclusion (12).

Remark. The convergence theorem can be found, e.g., in [4] for time-independent
maps. However it can be extended with exactly the same proof to all measurable with
respect to time set-valued maps.

2.3. Control systems with state-dependent control sets. Let Z be a com-
plete separable metric space, let G : [t0, T ] ×Rn ; Z be a given set-valued map,
and consider the control system

x′ = f(t, x, u), u ∈ G(t, x), t ∈ [t0, T ].(15)

Such systems were considered, e.g., in [6, 7]. An absolutely continuous function x :
[t0, T ] 7→ Rn is called a solution to (15) if for some measurable selection u(t) ∈
G(t, x(t)) we have

x′(t) = f(t, x(t), u(t)) a.e. in [t0, T ].

We introduce the set-valued map F : [t0, T ]×Rn ; Rn defined by

F (t, x) = f(t, x,G(t, x)) = {f(t, x, v) | v ∈ G(t, x)},
and replace (15) by the differential inclusion (10). We impose the following assump-
tions:  ∀ (x, u) ∈ Rn ×Z, f(·, x, u) is measurable,

∀ t ∈ [t0, T ], f(t, ·, ·) is continuous,
G is upper semicontinuous and has closed nonempty images.

(16)

Observe that if in addition G(t, x) are compact, then F has compact images.
From the measurable selection theorem (see, for instance, [4, Chapter 8]), Theo-

rem 2.6 follows.
Theorem 2.6. If (16) holds true, then the sets of solutions to control system

(15) and differential inclusion (10) do coincide.
Thanks to the above result Theorem 2.5 can be applied to the control system (15)

whenever the map x ; f(t, x,G(t, x)) satisfies the required Lipschitz property. This
holds, for example, whenever G(·, ·) is locally Lipschitz and f(t, ·, ·) is k(t)-Lipschitz
for some k ∈ L1. On the other hand it is well known that if the Lipschitz property
fails, then the conclusion of Theorem 2.5 may fail as well. A corresponding example
was provided by Plís in 1962.

Example (derived from [19, Plís]). We recall first the Plís construction.
Consider the map F : R2 ; R2

F (x1, x2) =
{

(v1, v2) | v1 ∈ {−1,+1} , v2 =
√
|x2|+ |x1|

}
.

This map is continuous but not locally Lipschitz around zero. For every x ∈ S[0,T ](0)
solving (11) for t0 = 0 and x0 = 0 we have x2(t) ≥ t2/4, while x ≡ 0 solves the
relaxed inclusion (12). Thus the conclusion of Theorem 2.5 is not valid in this case
(trajectories of the original inclusion are not dense in the trajectories of the convexified
one).

Consider a C∞-map g : R2 × R2 7→ R such that g(x, u) = 0 if and only if
u ∈ F (x). Such a map exists since the set Graph(F ) is closed. Let f(t, x, u) = u and
G(t, x) = {u | g(x, u) = 0}. Then F (x) = f(t, x,G(t, x)). This implies that solutions
to

x′(t) = f(t, x(t), u(t)), g(x(t), u(t)) = 0, x(0) = 0
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are not dense in the solutions to

x′(t) ∈ co f(t, x,G(t, x)), x(0) = 0.

3. Solutions of control systems under constraints. In this section we study
relaxation of control systems under constraints. Speaking of the closure of the solu-
tion’s set of a given Cauchy problem we always mean the closure in the space of
continuous functions C(t0, T ) endowed with the supremum norm. Consider a com-
plete separable metric space Z, real numbers t0 < T , a map (describing the dynamics)

f : [t0, T ]×Rn ×Z 7→ Rn,

and the control set U ⊂ Z. We associate with this data the control system

x′(t) = f(t, x(t), u(t)), u(t) ∈ U.(17)

Consider the maps defining state-control constraints

h = (h1, . . . , hm) : [t0, T ]×Rn ×Z 7→ Rm and g : [t0, T ]×Rn ×Z 7→ Rp.

We investigate solutions to (17) under additional constraints

h(t, x(t), u(t)) ≤ 0, g(t, x(t), u(t)) = 0 a.e. in [t0, T ].(18)

A way to study the above problem is to introduce the set-valued map

G(t, x) = {u ∈ U | h(t, x, u) ≤ 0, g(t, x, u) = 0} ,(19)

where h(t, x, u) ≤ 0 means hi(t, x, u) ≤ 0 for every i = 1, . . . ,m.
Observe that if a trajectory-control pair (x, u) solves (17), (18), then

u(t) ∈ G(t, x(t)) a.e. in [t0, T ].(20)

Naturally, the converse statement holds true as well, if (x, u) satisfies (17) and (20),
then (18) is satisfied.

Another type of problem that will be considered in this section is the one with
equality constraints independent of controls. Let ϕ : [t0, T ] ×Rn 7→ Rp. The state
constraints are given by

ϕ(t, x(t)) = 0, h(t, x(t), u(t)) ≤ 0.(21)

Observe that if (x, u) solves (17), (21), and ϕ is differentiable, then for almost all
t ∈ [t0, T ] we have

∂ϕ

∂t
(t, x(t)) +

∂ϕ

∂x
(t, x(t))f(t, x(t), u(t)) = 0.

Setting

G1(t, x) =

{
u ∈ U | ∂ϕ

∂t
(t, x) +

∂ϕ

∂x
(t, x)f(t, x, u) = 0, h(t, x, u) ≤ 0

}
we deduce that u(t) ∈ G1(t, x(t)) a.e.

Proposition 3.1. Assume that ϕ is differentiable and locally Lipschitz and
let (x, u) be a trajectory-control pair of (17) such that u(t) ∈ G1(t, x(t)) a.e. If
ϕ(t0, x(t0)) = 0, then (x, u) satisfies the state-control constraints (21). Conversely,
every trajectory-control pair (x, u) to (17), (21) verifies u(t) ∈ G1(t, x(t)) a.e.
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In order to prove this proposition it is enough to differentiate the map t 7→
ϕ(t, x(t)).

Observe that the above result reduces the constrained system (17), (21) to the
constrained system (17), (18) with g given by

g(t, x, u) =
∂ϕ

∂t
(t, x) +

∂ϕ

∂x
(t, x)f(t, x, u).(22)

We shall next provide sufficient conditions for Lipschitz continuity of the map x ;

G(t, x). Recall that in view of the Example of section 2 such a property is needed to
build a satisfactory relaxation theory.

3.1. Control-dependent constraints. In this section Z is a Banach space and
U = Z. Set

Rk
+ = {(α1, . . . , αk)| αi ≥ 0 ∀ i = 1, . . . , k} ,

and consider the set-valued map G : [t0, T ] ×Rn ; Z defined by (19). With every
(t, x, u) we associate the set of all “active” indices

I(t, x, u) =
{
i1 < · · · < ik | ∀ 1 ≤ j ≤ k, hij (t, x, u) = 0 and hq(t, x, u) 6= 0∀ q 6= ij

}
,

and define

hI(t,x,u)(s, y, v) = (hi1 , . . . , hik) (s, y, v) ∀ (s, y, v) ∈ [t0, T ]×Rn ×Z.
Assume that the constraints satisfy the Mangasarian–Fromowitz-type conditions:

∂h
∂u ,

∂g
∂u are continuous,

∀ u ∈ G(t, x), ∂g
∂u (t, x, u) is surjective,

∀ u ∈ G(t, x), ∃ v ∈ U, ∂hI(t,x,u)

∂u (t, x, u)(v) < 0, ∂g
∂u (t, x, u)(v) = 0.

(23)

Remark. In [5] a relaxation problem is considered where only inequality con-
straints act on the system. The main assumption made in [5] is a rank condition, which
is stronger than (23). In fact, assume that there is no g in (18) and, ∀u ∈ G(t, x),
denote by k(t, x, u) the number of elements in I(t, x, u). The rank condition states
that the rank of the matrix

∂hI(t,x,u)

∂u
(t, x, u)

is equal to k(t, x, u). This means that the linear operator

∂hI(t,x,u)

∂u
(t, x, u) : U → Rk(t,x,u)

is surjective. Hence there exists v ∈ U as in (23). The converse statement in general
does not hold.

We also assume that

∀ (t̄, x̄) ∈ [t0, T ]×Rn, ∃ r > 0, ε > 0, L > 0 ∀ (t, x) ∈ Bε(t̄, x̄),

i. {u ∈ U | h(t, x, u) ≤ r, ‖g(t, x, u)‖ ≤ r} is compact,
ii. ∀ u ∈ U, (h, g)(·, ·, u) is L-Lipschitz on Bε(t̄, x̄),
iii. ∀ bounded K ⊂ U, ∃M > 0 such that ∀ (t, x) ∈ Bε(t̄, x̄),

h(t, x, ·) is M-Lipschitz on K.

(24)
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We claim that G is upper semicontinuous (see, for instance, [2] for the definition).
By (24.i) it has compact images. Clearly its graph is closed. We check next that its
domain is closed as well. Indeed if (t, x) ∈ Dom(G), then there exist (ti, xi) → (t, x)
and ui ∈ G(ti, xi). Because of assumption (24.ii) ∀i large enough

‖g(t, x, ui)‖ = ‖g(t, x, ui)− g(ti, xi, ui)‖ ≤ r,

h(t, x, ui) ≤ h(t, x, ui)− h(ti, xi, ui) ≤ r.
We deduce from (24.i) that the sequence ui has an accumulation point u. Then
h(t, x, u) ≤ 0, g(t, x, u) = 0 and therefore (t, x) is in the domain of G.

We next fix (t̄, x̄) ∈ Dom(G). By (24.ii), for some δ > 0 and ∀(t, x) ∈ Bδ(t̄, x̄) ∩
Dom(G) we have

G(t, x) ⊂ {u ∈ U | h(t̄, x̄, u) ≤ r, ‖g(t̄, x̄, u)‖ ≤ r} .
Since the set-valued map G has a closed graph and since ∀(t, x) ∈ Bδ(t̄, x̄)∩Dom(G)
it takes its values in a compact set, we deduce that G is upper semicontinuous at
(t̄, x̄). The domain of G being closed and the point (t̄, x̄) ∈ Dom(G) being arbitrary,
we conclude that G is upper semicontinuous.

Theorem 3.2. Assume that (23), (24) hold true and that Dom(G) 6= ∅. Then
Dom(G) = [t0, T ]×Rn and G is locally Lipschitz on [t0, T ]×Rn.

Proof. We first observe that assumption (23) yields

∀ u ∈ G(t, x), Im

(
∂hI(t,x,u)

∂u
,
∂g

∂u

)
(t, x, u) + Rk

+ × 0 = Rk+p,(25)

where k denotes the number of elements in I(t, x, u). It is enough to show that G
has nonempty values and is locally Lipschitz continuous on a neighborhood of every
point of its domain. In particular, since we already know that this domain is closed,
we deduce that it is equal to [t0, T ]×Rn.

We fix (t̄, x̄) ∈ Dom(G), and consider the compact set

Z(t̄, x̄) = {u ∈ G(t̄, x̄) | I(t̄, x̄, u) 6= ∅} ⊂ G(t̄, x̄).

Let ε, r > 0, L > 0 be as in assumption (24) and ū ∈ Z(t̄, x̄). Consider ρ(ū) > 0 such
that

4ρ(ū)B ⊂
(
∂hI(t̄,x̄,ū)

∂u
,
∂g

∂u

)
(t̄, x̄, ū)(B) +

(
Rk

+ ∩B
)× {0} .

It exists because of (25) and the separation theorem. Since ∂h
∂u and ∂g

∂u are continuous,
there exists ε > δ(ū) > 0 such that ∀ (t, x) ∈ Bδ(ū)(t̄, x̄) ∀ u ∈ Bδ(ū)(ū),

2ρ(ū)B ⊂
(
∂hI(t̄,x̄,ū)

∂u , ∂g∂u

)
(t, x, u)(B) +

(
Rk

+ ∩B
)× {0} .

By continuity of h and g, for some 0 < ν(ū) ≤ δ(ū) we have
∀ (t, x) ∈ Bν(ū)(t̄, x̄) ∀ u ∈ Bν(ū)(ū),∥∥hI(t̄,x̄,ū)(t, x, u)

∥∥+ ‖g(t, x, u)‖ < ρ(ū)δ(ū)/2,

∀ i /∈ I(t̄, x̄, ū), hi(t, x, u) < 0.

(26)
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Since Z(t̄, x̄) is compact, there exist ui ∈ Z(t̄, x̄), i = 1, . . . , s, satisfying

Z(t̄, x̄) ⊂ O :=

s⋃
i=1

o

B (ui, ν(ui)/8).

Furthermore, for some µ > 0 and all u ∈ G(t̄, x̄) \ O, h(t̄, x̄, u) ≤ −2µ. The last
inequality means that hj(t̄, x̄, u) ≤ −2µ∀j.

Using that ∂g
∂u is continuous, by (25) we can find ε̂ > 0 and ρ0 > 0 such that

∀ (t, x) ∈ Bε̂(t̄, x̄) ∀ u ∈ G(t̄, x̄) + ε̂B, ρ0B ⊂ ∂g

∂u
(t, x, u)(B).

Moreover, for some 0 < ε̄ < ε̂

∀ (t, x) ∈ Bε̄(t̄, x̄) ∀ u ∈ G(t̄, x̄) + ε̄B, ‖g(t, x, u)‖ < ρ0ε̂/2.

Set

ρ̄ = min {ρ0, ρ(ui) | i = 1, . . . , s} , ν̄ = min {ε̄, ν(ui) | i = 1, . . . , s} ,
and let M be a Lipschitz constant (independent of (t, x) ∈ Bε(t̄, x̄)) of h(t, x, ·) on
G(t̄, x̄) + ε̂B, which exists by (24.iii)). Since G is upper semicontinuous and h is
continuous, we can find 0 < δ < ν̄

8 such that

∀ (t, x) ∈ Bδ(t̄, x̄), G(t, x) ⊂ G(t̄, x̄) +B(0, ν̄/8)

and

2Lδ < ρ̄ε̂/2, Lδ < ρ̄ν̄, Lδ(1 +M/ρ̄) < µ

∀ u ∈ G(t, x) \ O, h(t, x, u) ≤ −µ.
Consider (t1, x1), (t2, x2) ∈ Bδ(t̄, x̄), and y1 ∈ G(t1, x1), i.e., g(t1, x1, y1) = 0. If
y1 ∈ G(t1, x1) \O, then h(t1, x1, y1) ≤ −µ. From (5) and Theorem 2.3 applied to the
map ϕ = g(t2, x2, ·), ε = ε̂/2, y = 0, x̄ = y1, using that G(t2, x2) is compact, we
deduce that there exists y2 ∈ U such that g(t2, x2, y2) = 0 and

‖y2 − y1‖ ≤ 1

ρ̄
‖g(t2, x2, y1)‖ ≤ L

ρ̄
(|t2 − t1|+ ‖x2 − x1‖) .

Therefore

h(t2, x2, y2) ≤ h(t1, x1, y1) + Lδ

(
1 +

M

ρ̄

)
≤ −µ+ µ = 0

and y2 ∈ G(t2, x2). Consider next the case −µ < h(t1, x1, y1) ≤ 0. Then y1 ∈
G(t1, x1) ∩ O. Thus for some i

y1 ∈ B(ui, ν(ui)/8) +B(0, ν(ui)/8) = B(ui, ν(ui)/4),

where ui ∈ Z(t̄, x̄). Furthermore∥∥hI(t̄,x̄,ui)(t2, x2, y1)
∥∥+ ‖g(t2, x2, y1)‖ < ρ(ui)δ(ui)/2.

Let k denote the number of elements in I(t̄, x̄, ui). By applying Theorem 2.3 to the
function ϕ : U ×Rk

+ 7→ Rk+p defined by

ϕ(z, α) := (hI(t̄,x̄,ui), g)(t2, x2, z) + (α, 0)
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with

ε = δ(ui), y = (hI(t̄,x̄,ui)(t1, x1, y1), 0), x̄ = ui, x = (y1, 0),

we deduce from (4) that there exist y2 ∈ U and α ∈ Rk
+ such that

(hI(t̄,x̄,ui), g)(t2, x2, y2) = (hI(t̄,x̄,ui)(t1, x1, y1)− α, 0)

and

‖y2 − y1‖
≤ ρ(ui)

−1
(∥∥hI(t̄,x̄,ui)(t2, x2, y1)− hI(t̄,x̄,ui)(t1, x1, y1)

∥∥+ ‖g(t2, x2, y1)‖)
≤ 2L(ρ̄)−1 (|t2 − t1|+ ‖x2 − x1‖) .

In particular, y2 ∈ G(t2, x2); therefore G(·, ·) is 2L
ρ̄ -Lipschitz on Bδ(t̄, x̄).

We impose the following assumptions on f :

i. ∀ x, u, f(·, x, u) is measurable,

ii. ∀ ρ > 0, ∃ k ∈ L1(t0, T ) such that for almost all t ∈ [t0, T ],
the map f(t, ·, ·) is k(t)-Lipschitz on Bρ(0)× U,

iii. ∃ γ ∈ L1(t0, T ), such that for a.e. t ∈ [t0, T ],
∀ x ∈ Rn, supu∈U ‖f(t, x, u)‖ ≤ γ(t)(1 + ‖x‖).

(27)

Consider the case Dom(G) 6= ∅. Then, by Theorem 3.2, the sets F (t, x) = f(t, x,G(t, x))
are nonempty and compact, the set-valued map F is measurable in t and locally Lip-
schitz in x in the sense of (14). By subsection 2.3 the control system (15) may be
rewritten as the differential inclusion (10).

Theorem 3.3. Under assumptions (23), (24), and (27) the closure of solutions to
(17), (18) starting at x0 is compact and equal to the set of solutions to the differential
inclusion {

x′ ∈ co f(t, x,G(t, x)),
x(t0) = x0.

Notice that if Dom(G) = ∅, then the above result holds true. When Dom(G) 6= ∅
it follows from Theorems 2.5 and 3.2.

For control problems without constraints one of the approaches to the relaxation
theory uses probability measures (i.e., relaxed controls see, e.g., [23]). It has also been
used by E. N. Barron and J. Jensen [5] for the problem with inequality constraints.
Actually, Theorem 3.3 can be reformulated in terms of relaxed controls, so that it
implies, in particular, the result from [5].

More precisely, let M(U) denote the set of probability measures on U and set

Û(t0, T ) = L∞([t0, T ];M(U)).

The setM(U) is endowed with the weak star topology of C(U)∗, the dual of the space
C(U) of continuous real functions defined on U . Generalizing the definition given in
[5] to the case involving equality constraints as well, we define the space of admissible
relaxed controls as

Ûhg(t0, T ) := {µ ∈ Û(t0, T ) | for almost all t ∈ [t0, T ],
µ− ess supu∈U h(t, x(t), u) ≤ 0, µ− ess supu∈U ‖g(t, x(t), u)‖ = 0},
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where x(·) is the (unique) continuous solution of the integral equation

x(t) = x(t0) +

∫ t

t0

∫
U

f(s, x(s), u)µ(s, du)ds.

x(·) is called the generalized curve of (17) corresponding to the relaxed control µ. From
assumptions (27) it follows that x is absolutely continuous.

Corollary 3.4. Under assumptions (23), (24), (27) the closure of solutions to
(17), (18) starting at x0 is compact and equal to the set of generalized curves of the
control system (17) starting at x0 and corresponding to the admissible relaxed controls

Ûhg(t0, T ).
Proof. This result is an immediate consequence of Theorem 3.3. We provide

its proof for the sake of completeness. By the very definition of admissible relaxed
controls,

µ (t, {u ∈ U | h(t, x(t), u) > 0 or g(t, x, u) 6= 0}) = 0

for almost all t ∈ [t0, T ]. Thus, for almost all s ∈ [t0, T ],∫
U

f(s, x(s), u)µ(s, du) =

∫
G(s,x(s))

f(s, x(s), u)µ(s, du).

Let p ∈ Rn, t ∈ [t0, T ]. Then

〈p, x(t)− x(t0)〉 ≤
∫ t

t0

max
u∈G(s,x(s))

〈p, f(s, x(s), u)〉 ds

and consequently, from the separation theorem,

x(t)− x(t0) ∈
∫ t

t0

co f(s, x(s), G(s, x(s)))ds.

Because x is absolutely continuous, we deduce from the mean value theorem (see [2,
p. 21]) that x′(s) ∈ co f(s, x(s), G(s, x(s))) a.e.

Conversely, consider a solution x to the differential inclusion

x′(t) ∈ co f(t, x(t), G(t, x(t))), x(t0) = x0.

There exists then measurable functions λi : [t0, T ] 7→ [0, 1] and measurable selections
vi(s) ∈ f(s, x(s), G(s, x(s))), i = 0, . . . , n, such that

n∑
i=0

λi(s) = 1,
n∑
i=0

λi(s)vi(s) = x′(s) a.e. in [t0, T ]

(see, for instance, [4, Chapter 8]). Consider measurable selections ui(s) ∈ G(s, x(s))
such that ∀i = 0, . . . , n, vi(s) = f(s, x(s), ui(s)) and set

µ(s, u) =

{
λi(s) if u = ui(s), i = 0, . . . , n,
0 otherwise.

Then µ ∈ Ûhg(t0, T ) and x is the corresponding generalized curve.
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3.2. Control-independent equality constraints. By the results from the be-
ginning of section 3, when the equality constraints are control independent, the prob-
lem can be reduced to the one considered in subsection 3.1. We translate the results of
subsection 3.1 for such situation. For the sake of simplicity we assume here that there
are no inequality constraints, which is equivalent to setting h = −1. It is straight-
forward to extend the following considerations to the case where actual inequality
constraints h(t, x, u) ≤ 0 (and even supplementary equality constraints g(t, x, u) = 0)
are considered as well.

Consider a continuously differentiable ϕ : [t0, T ] × Rn 7→ Rp and let Z be a
Banach space, U = Z. We introduce the set-valued map

G(t, x) =

{
u ∈ U | ∂ϕ

∂t
(t, x) +

∂ϕ

∂x
(t, x)f(t, x, u) = 0

}
.(28)

Thanks to Proposition 3.1 we know that the system (17) subject to the constraint

ϕ(t, x(t)) = 0(29)

is equivalent to (17), (18) with g defined by (22) and h = −1.
Thus we may apply the results of subsection 3.1. For this aim assume that

(∂ϕ∂t ,
∂ϕ
∂x ) is locally Lipschitz,

f is differentiable with respect to u, ∂f
∂u is continuous, and

∀ u ∈ G(t, x), ∂ϕ
∂x (t, x)∂f∂u (t, x, u) is surjective,

(30)


∀ (t̄, x̄) ∈ [t0, T ]×Rn,∃ ε > 0, r > 0 ∀ (t, x) ∈ Bε(t̄, x̄), such that the set

{u ∈ U | ‖∂ϕ∂x (t, x)f(t, x, u)‖ ≤ r − ‖∂ϕ∂t (t, x)‖} is compact,

∃ L > 0 ∀ u ∈ U, f(·, ·, u) is L-Lipschitz on Bε(t̄, x̄).

(31)

Under these conditions, by Theorem 3.2, the set-valued map G(·, ·) is locally Lipschitz
and so we have similar relaxation theorems. Applying Theorem 3.3 with h = −1 we
get the following result.

Theorem 3.5. Under assumptions (27), (30), (31) the closure of solutions to
(17), (29) starting at x0 is compact and equal to the set of solutions to the differential
inclusion {

x′ ∈ co f(t, x,G(t, x)),
x(t0) = x0.

Define the set of admissible relaxed controls Ûϕ(t0, T ) = Ûhg(t0, T ) as in subsec-
tion 3.1 with h = −1 and g as above. Corollary 3.4 yields the following.

Corollary 3.6. Under assumptions (27), (30), (31) the closure of solutions to
(17), (29) starting at x0 is compact and equal to the set of generalized curves of the
control system (17) starting at x0 and corresponding to the admissible relaxed controls

Ûϕ(t0, T ).

3.3. Constrained control sets. In this section we assume that U is a closed
subset of a finite-dimensional space Z = Rm. For every u ∈ U , let CU (u) denote the
Clarke tangent cone to U at u. It is well known (see, for instance, [4, Chapter 4]) that

Liminfu′→Uu TU (u′) = CU (u)(32)

and that CU (u) is convex.
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First, we consider the constrained control system (17), (18). Define G(t, x) by
(19) and assume that (24) holds true. The surjectivity assumption (23) has to be
replaced by the following one:

∂h
∂u ,

∂g
∂u are continuous and ∀ u ∈ G(t, x), ∂g

∂u (t, x, u)(CU (u)) = Rp

∀ u ∈ G(t, x),∃ v ∈ CU (u),
∂hI(t,x,u)

∂u (t, x, u)(v) < 0, ∂g
∂u (t, x, u)(v) = 0.

(33)

Exactly in the same way as in subsection 3.1 we check that G is upper semicontinuous,
has compact images, and that its domain is closed.

Proposition 3.7. Under assumptions (24) and (33), G(·, ·) is locally Lipschitz
on [t0, T ]×Rn.

Proof. Observe that (33) and the separation theorem yield(
∂hI(t,x,u)

∂u
,
∂g

∂u

)
(t, x, u)(CU (u)) + Rk

+ × 0 = Rk+p,(34)

where k is the number of elements in I(t, x, u). Let Z(t̄, x̄) have the same meaning
as in the proof of Theorem 3.2, and fix ū ∈ Z(t̄, x̄). Using the separation theorem it
is not difficult to show that (34) implies the existence of ρ(ū) > 0, vi ∈ CU (ū), i =
1, . . . , s ≤ m+ 1, such that ‖vi‖ ≤ 1 and

8ρ(ū)B ⊂
(
∂hI(t̄,x̄,ū)

∂u
,
∂g

∂u

)
(t̄, x̄, ū) (co {v1, . . . , vs}) + (Rk

+ ∩B, 0).

From (32) we deduce that for some δ(ū) > 0 and ∀u ∈ U ∩Bδ(ū)(ū)

4ρ(ū)B ⊂
(
∂hI(t̄,x̄,ū)

∂u
,
∂g

∂u

)
(t̄, x̄, ū) (co (TU (u) ∩B)) + (Rk

+ ∩B, 0).

By continuity of the derivative, we can choose δ(ū) in such a way that ∀(t, x) ∈
Bδ(ū)(t̄, x̄) and u ∈ G(t, x) ∩Bδ(ū)(ū)

2ρ(ū)B ⊂
(
∂hI(t̄,x̄,ū)

∂u
,
∂g

∂u

)
(t, x, u) (co (TU (u) ∩B)) + (Rk

+ ∩B, 0).

Using (4) and applying exactly the same arguments as those in the proof of Theorem
3.2 we conclude.

Arguing as in Theorem 3.3 we deduce the following theorem.
Theorem 3.8. Under assumptions (24), (27), and (33) the closure of solutions to

(17), (18) starting at x0 is compact and equal to the set of solutions to the differential
inclusion {

x′ ∈ co f(t, x,G(t, x)),
x(t0) = x0.

Observe that Corollary 3.4 is still valid in this new situation. Define the set of
admissible relaxed controls Ûhg(t0, T ) as in subsection 3.1 with U as above.

Corollary 3.9. Under assumptions (24), (27), and (33) the closure of solutions
to (17), (18) starting at x0 is compact and equal to the set of generalized curves of the
control system (17) starting at x0 and corresponding to the admissible relaxed controls

Ûhg(t0, T ).
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Consider next equality constraints (29) and the set-valued map (28). Assume
that 

(∂ϕ∂t ,
∂ϕ
∂x ) is locally Lipschitz,

f is differentiable with respect to u, ∂f
∂u is continuous, and

∀ u ∈ G(t, x), ∂ϕ
∂x (t, x)∂f∂u (t, x, u)(CU (u)) = Rp.

(35)

Define g by (22). From Theorem 3.8 we get the following theorem.
Theorem 3.10. Under assumptions (27), (31), and (35), the closure of solutions

to (17), (29) starting at x0 is compact and equal to the set of solutions to the differential
inclusion {

x′ ∈ co f(t, x,G(t, x)),
x(t0) = x0.

Define the set of admissible relaxed controls Ûϕ(t0, T ) = Uhg(t0, T ) as in subsec-
tion 3.1 with U as above, h = −1, and g given by (22). Then we have the corollary
below.

Corollary 3.11. Under assumptions (27), (31), and (35), the closure of solu-
tions to (17), (29) starting at x0 is compact and equal to the set of generalized curves
of the control system (17) starting at x0 and corresponding to the admissible relaxed

controls Ûϕ(t0, T ).

4. Control-independent inequality constraints. In this section we subject
the control-trajectories pairs to the constraints

x ∈ Θ, h(t, x, u) ≤ 0, g(t, x, u) = 0,(36)

where Θ ⊆ Rn is an open subset and Θ denotes its closure (in view of subsection 3.2
the case of a constraint of the form ϕ(t, x) = 0 is already covered by this formulation).
Observe that Θ is control independent. For instance, it may be given by

Θ := {x ∈ Rn : k(x) ≤ 0},
with k ∈ C(Rn). Since ∂k

∂u (x) = 0 ∀x ∈ Rn, we cannot apply any longer the techniques
of section 3. To relax (17), (36) we use a result from [17] on the existence of admissible
trajectories which keep a controlled distance from a given (generally not admissible)
trajectory. Consider a set-valued map F from [t0, T ]×Rn into the subsets of Rn, and
let F verify hypotheses (13) and (14). For each subset A ⊆ Rn and each constant
ρ ≥ 0, let B(A, ρ) denote the set {y ∈ Rn | d(y,A) ≤ ρ}. Let us consider assumption
(H) below on the behavior of F near ∂Θ.

Hypothesis (H).
1. Θ = Θ1 ∩ Θ2, where Θ1 and Θ2 are open subsets verifying the following

conditions, respectively:
2. there exist constants η, q, r and a continuous selection α(t, x) ∈ F (t, x) defined

on [t0, T ]×B(∂Θ1, η) such that at any (t, x) ∈ [t0, T ]× (Θ1 ∩B(∂Θ1, η)) one has

B(x+ sα(t, x), sr) ⊂ Θ1

∀s ∈]0, q];
3. ∀(t, x) ∈ [t0, T ]× ∂Θ2 one has 0 ∈ F (t, x); moreover, there is δ > 0 such that

∀(t, x) ∈ [t0, T ]× ∂Θ2 there exists a closed proper cone V and ε > 0 such that

(x+ Vε) ∩B(x, δ) ∩Θ2 = {x} and F (s, y) ⊆ V
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∀(s, y) ∈ B((t, x); δ) ∩ ([t0, T ]×Θ2), where Vε denotes the ε-conical neighborhood of
V ; i.e.,

Vε :=

{
λ

(
v

‖v‖ +B(0, ε)

)
, λ > 0, v ∈ V \{0}

}
.

Remark. Condition H1 is a generalization of a condition originally introduced
by M. Soner [20]. For a control system with fixed control set and for a smooth Θ
he used such a condition to prove the continuity of the value function of an infinite
horizon problem. Later the condition was adapted to nonsmooth constraint sets by
H. Ishii and S. Koike [13], while the generalization to differential inclusion is provided
in [10]. In the same framework as Soner’s, condition H2 was used by P. Loreti [15] for
relaxation purposes as well. Finally, condition H3 has been introduced in [17].

Theorem 4.1 (see [17]). Let the map F be locally Lipschitz (in both variables)
with compact values and let hypothesis (H) be in force. Then, for any compact subset
Q ⊆ Θ there exists a positive constant C such that ∀x0 ∈ Q, and for any solution x(·)
of the Cauchy problem

x′(t) ∈ F (t, x(t)), x(t0) = x0

(possibly violating the constraint x(t) ∈ Θ) there is a solution z(·) of the same Cauchy
problem such that

z(t) ∈ Θ ∀ t ∈ [t0, T ] and sup
t∈[t0,T ]

‖x(t)− z(t)‖ ≤ C sup
t∈[t0,T ]

d(x(t),Θ).

As a corollary of Theorem 4.1 we obtain the following analogue of the Filippov–

Ważewski theorem for differential inclusion with state constraints. Denote by SΘ
[t0,T ](x0)

the set of solutions to the differential inclusion (11) that verify the state constraint
x(t) ∈ Θ for every t ∈ [t0, T ].

Theorem 4.2. Let the map F be locally Lipschitz with compact values and let

hypothesis (H) be in force. Then the closure of SΘ
[t0,T ](x0) is compact and equal to the

set of solutions to the relaxed inclusion (12) that verify the constraint x(t) ∈ Θ for
every t ∈ [t0, T ].

Remark. By assuming a smoothness hypothesis on ∂Θ, it is possible to replace the
Lipschitz condition on F with the weaker conditions (13), (14) (see [17]). Similarly,
when the boundary is smooth, the Lipschitz hypothesis on f in all theorems below
can be replaced by the weaker conditions (27).

Proof. Since SΘ
[t0,T ](x0) ⊆ S[t0,T ](x0), from Theorem 2.5 it follows that the closure

of SΘ
[t0,T ](x0) is compact and is contained in the set of the solutions to the relaxed

inclusion (12) that verify the constraint x(t) ∈ Θ for every t ∈ [t0, T ]. Let us prove
the converse inclusion. We may assume that the constant C appearing in Theorem
4.1 is greater than or equal to 1. Let us choose an ε > 0 and a trajectory y(·)
of the relaxed inclusion (12) satisfying the constraint y(t) ∈ Θ. By the Filippov–
Ważewski theorem (Theorem 2.5) one can find a trajectory x(·) of the differential
inclusion (11) such that ‖x(t) − y(t)‖ ≤ ε/2C for every t ∈ [t0, T ]. Observe that in
general x(·) violates the constraints. However, in view of Theorem 4.1 a trajectory

z ∈ SΘ
[t0,T ](x0) can be found that verifies ‖z(t)−x(t)‖ ≤ Cd for every t ∈ [t0, T ], with

d := sup
{
d(x(t),Θ)|t ∈ [t0, T ]

}
. Since d ≤ ‖x(t) − y(t)‖ for all t ∈ [t0, T ], we obtain

that ‖z(t)− y(t)‖ ≤ ε/2 + ε/2C ≤ ε, so concluding the proof.
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In particular, we obtain the theorem below.
Theorem 4.3. Let us assume (24), (33) and that for every compact K ⊂ Rn,

there exists a constant L > 0 such that ∀u ∈ U, f(·, ·, u) is L-Lipschitz on [t0, T ]×K,
and let F (t, x) := f(t, x,G(t, x)) have compact values and verify hypothesis (H). Then
the closure of solutions to (17), (36) is compact and equal to the set of solutions to{

x′ ∈ co f(t, x,G(t, x)),
x(t0) = x0, x(t) ∈ Θ.

Of course, by means of arguments quite similar to those exploited in the proof
of Corollary 3.4 it is possible to reformulate the above theorem in terms of relaxed

controls. Let us define the set ÛΘ
hg(t0, T ) of relaxed controls by setting

ÛΘ
hg(t0, T ) := {µ ∈ Û(t0, T ) | x([t0, T ]) ⊂ Θ, and, for almost all t ∈ [t0, T ],

µ− ess supu∈U h(t, x(t), u) ≤ 0, µ− ess supu∈U ‖g(t, x(t), u)‖ = 0},
where x is a generalized curve of (17) corresponding to the relaxed control µ.

Corollary 4.4. Under all the assumptions of Theorem 4.3 the closure of solu-
tions to (17), (36) is compact and equal to the set of generalized curves of the con-
trol system (17) starting at x0 and corresponding to the admissible relaxed controls

ÛΘ
hg(t0, T ).

5. Applications. As an application of the results of the previous sections one
finds that under suitable hypotheses the value function of the Mayer problem coincides
with the value function of the relaxed Mayer problem. This was in fact the main
motivation of the paper by E. N. Barron and J. Jensen [5].

Let us consider a function ψ : Rn 7→ R and the constrained control system

x′(t) = f(t, x(t), u(t)), u(t) ∈ U,(37)

h(t, x(t), u(t)) ≤ 0, g(t, x(t), u(t)) = 0 a.e. in [t0, T ],(38)

x(t) ∈ Θ in [t0, T ],(39)

where f : [0, T ]×Rn×Z 7→ Rn and h, g, Z, U, Θ are as in Theorem 4.3. We consider
the following minimization problem:

V (t0, x0) := inf {ψ(x(T )) | x solves (37), (38), (39), x(t0) = x0} .
The map V is called the value function. Consider the set-valued map G(·, ·) defined
by (19) and the relaxed differential inclusion

x′(t) ∈ co f(t, x,G(t, x)).(40)

The value function of the relaxed problem is defined by

V co(t0, x0) := inf {ψ(x(T )) | x solves (39), (40), x(t0) = x0} .(41)

Theorem 5.1. Let ψ be continuous and let the hypothesis of Theorem 4.3 be
verified. Then the infimum in (41) is attained and V = V co. Moreover, V is contin-
uous.

Proof. The existence of an optimal trajectory for the relaxed problem (41) is a
standard result, which can be obtained via the so-called direct method (of course, for
this purpose it is sufficient to assume that ψ is lower bounded and lower semicontin-
uous). As for the equality V = V co, it is a straightforward consequence of Theorem
4.3 and of the continuity of ψ. The continuity of V was proved in [17].

Obviously, in view of the results of section 4, this theorem can be reformulated
in terms of relaxed controls as well.
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Abstract. A compactness condition used to establish the equivalence of infinite-dimensional
linear programming problems with stochastic control problems in [SIAM J. Control Optim., 36
(1998), pp. 609–653.] was misstated. The correct statement of the condition is given, as well as an
example to show that the erroneous condition is not sufficient to obtain equivalence.

PII. S0363012998343033

An important condition in [2] is misstated, resulting in an error that may be
seriously misleading to users of the results. Expression (6.1) on p. 644, which reads

ψ(u) ≤ a+ bc(x, u) or ψ(u) ≤ a+ bc(s, x, u),(1)

should read

ψ(u) ≤ a+ bc(x, u)β or ψ(u) ≤ a+ bc(s, x, u)β ,(2)

where 0 < β < 1, or slightly more generally,

Φ(ψ(u)) ≤ a+ bc(x, u) or Φ(ψ(u)) ≤ a+ bc(s, x, u),(3)

where Φ is a Young function; that is, Φ : [0,∞) → [0,∞), Φ is nondecreasing, and

limr→∞
Φ(r)
r =∞.

Condition (vi) of the paper (p. 612) requires that for each f ∈ D(A), there exist
constants af and bf such that

|Af(x, u)| ≤ af + bfψ(u).(4)

If µn ∈ P(E × U), µn → µ weakly, and supn
∫
E×U c(x, u)µn(dx× du) <∞, then (4),

together with either (2) or (3), implies

lim
n→∞

∫
E×U

Af(x, u)µn(dx× du) =

∫
E×U

Af(x, u)µ(dx× du).(5)

In general, (5) will not hold if (2) and (3) are replaced by the weaker condition (1) as
stated in the paper. The conclusion (5) is used explicitly and implicitly throughout
section 6 of the paper.

We are, in fact, in the process of writing a second paper that will cover the
situations in which (1) is satisfied but not (2) or (3). Such situations arise naturally
in the context of singular control, where the conclusions of section 6 are not valid (or
it would not be singular control). As a simple example, consider the classical linear
regulator, U = E = R, D(A) = C2

c (R),

Af(x, u) =
1

2
f ′′(x) + uf ′(x),
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with running cost

c(x, u) = |x|+ |u|.

The optimal solution to this problem, say for long run average cost, is reflecting Brow-
nian motion on an interval [−b, b]. (See, for example, Karatzas [1].) An asymptotically
optimal sequence of regular feedback controls is given by

un(x) = nI(−∞,−b](x)− nI[b,∞)(x).
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Abstract. A Lagrange multiplier rule for finite dimensional Lipschitz problems that uses a
nonconvex generalized gradient is proven. This result uses either both the linear generalized gradient
and the generalized gradient of Mordukhovich or the linear generalized gradient and a qualification
condition involving the pseudo-Lipschitz behavior of the feasible set under perturbations. The op-
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1. Introduction. In this paper we derive necessary conditions for a finite di-
mensional constrained optimization problem. The main differences between this and
other work is that a small nonconvex generalized gradient is used in conjunction with
the generalized gradient of Mordukhovich or with a geometric condition for problems
with equality, inequality, and set constraints.

The basic tools used in this paper are the linear generalized gradient (LGG),
[21, 22] and the generalized gradient of Mordukhovich and Ioffe (MGG) [7, 8, 9,
11, 13, 14, 15, 16, 17]. In finite dimensions both of these generalized gradients are
defined through proximal subgradients. The LGG is always contained in the gradient
of Mordukhovich. Both have a nice calculus, with that for LGG involving mostly
Lipschitz functions. These generalized gradients are closely related to well known
convex generalized gradients. For Lipschitz functions the closed convex hull of the
LGG is the generalized gradient of Michel and Penot (MPGG) [10, 12, 19, 20], and
the closed convex hull of MGG is the Clarke generalized gradient (CGG) [3, 4, 5].

Since LGG and MGG are generally not convex, they are smaller, respectively,
than the generalized gradients of Michel and Penot and Clarke. In particular, this
implies that any multiplier rules using these generalized gradients will be sharper
when they apply.

There are several important differences between LGG and MGG. One major
difference between these generalized gradients is that MGG is upper-semicontinuous
(usc) as a multifunction [14], whereas LGG is not. Another difference is that if a
function is Fréchet differentiable, then LGG is a singleton [22]. The corresponding
condition for MGG is that MGG is a singleton if and only if a function is strictly
differentiable [14].

When comparing the multiplier results in this paper with those involving MPGG
or CGG it is often useful to consider situations where one generalized gradient is
single valued. In order to do this we will use the facts that CGG is a singleton if
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and only if a function is strictly differentiable and MPGG is a singleton if a function
is Gâteaux differentiable. This will be used to show that the results in this paper
may be sharper than those using only MPGG, MGG, or CGG for finite dimensional
Lipschitz problems. The basic problem considered in this paper is

min f(x) subject to gi(x) ≤ 0, i = 1, 2, . . . ,m,

hj(x) = 0, j = 1, 2, . . . , k, and(*)

x ∈ U.

Here all of the functions are Lipschitz functions from Rn to R and U is a closed
subset of Rn. This is a fairly general problem that includes the problem in [21] and
the finite dimensional version of the problem in [10]. It is not as general as the problem
considered by Mordukhovich [14] since the functions are Lipschitz.

The main optimality condition presented in this paper is a Lagrange multiplier
result that uses both LGG and MGG or LGG and a geometric condition. It is sharper
than the results of Mordukhovich for (*), but it is weaker in the sense that lower-
semicontinuous (lsc) functions are not included. In one version of the result, the MGG
is used for the equality constraints and LGG is used for all other functions. Under a
pseudo-Lipschitz condition on the behavior of the feasible sets for the equality con-
straints, one can replace MGG with LGG for the equality constraints. This condition
on the constraints is similar to conditions used by Mordukhovich and others.

The pseudo-Lipschitz condition used in this paper is equivalent to a condition
using MGG. Our emphasis on the geometric condition makes it clearer that the results
involving only LGG do not require the upper-semicontinuity of MGG.

The first section of this paper is an introduction to the definitions and calculus of
LGG and MGG. In the second section several technical results showing how equality
constraints relate to generalized gradients are proven. The third section is devoted
to the main result and several of its corollaries and to a discussion of the relationship
with other results. Finally it is shown how one can use our results in a natural setting,
bilevel programming.

2. Basic definitions and results. In order to prove the Lagrange multiplier
results we use some calculus results for the generalized gradients in this paper. The
proofs of the multiplier results in this paper use the definitions and most of the results
in this section. They are all proven elsewhere. For the results involving MGG the
reference [14] is usually cited, although many of the results are also in [16] and other
papers of Ioffe and Mordukhovich. The basic objects used to define both the LGG and
the MGG are the proximal normal and proximal subgradient. For our purposes the
definition is restricted to Rn. There are similar ways to define the MGG in Banach
spaces. First we define proximal normals and proximal subgradients.

Definition 2.1. Let C ⊂ Rn be a closed set and let f : Rn → R be lsc. A v ∈ Rn
is a proximal normal to C at x ∈ C if, for some λ > 0,

C ∩ B̄(x+ λv, λ‖v‖) = {x}.

Here B̄(x, ρ) is the closed ball centered at x with radius ρ. A w ∈ Rn is a proximal
subgradient to f at x if, for some µ,

f(y) ≥ f(x) + 〈w, y − x〉 − µ‖y − x‖2

on a neighborhood of x.
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These definitions have been used to characterize a number of generalized gradients
and normal cones [3, 4, 5, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22].
They are also used, through normal cone definitions, to define co-derivatives [14, 15,
16, 17, 21, 22]. An element of the normal cone of Mordukhovich is defined as the
limit of a sequence of proximal normals [11, 14]. To define the linear normal cone one
restricts which sequences of proximal normals are allowed.

Definition 2.2. A sequence of proximal normals vk → v to a closed set C ⊂ Rn
at xk → x̄ is linear if either xk 6= x̄ for all k and, for some λ > 0 and all sufficiently
large k,

C ∩ B̄ (xk + λ‖xk − x̄‖vk, λ‖xk − x̄‖ ‖vk‖) = {xk},

or xk = x̄ for all k.
This simply says that the size of the balls defining the proximal normals can be

taken as a constant times the distance from xk to x̄. The effect of this is similar to
the restriction on the length of vectors when defining MPGG.

With this definition we now define the normal cones.
Definition 2.3. Let C be a closed subset of Rn. The linear normal cone LNC

to C at x̄ [22] is

N`Cx̄ := cl{v : v is the limit of a linear sequence of proximal

normals to C for x̄}.

The Mordukhovich normal cone MNC to C at x̄ [14] is

NMCx̄ := {v : v is the limit of a sequence of

proximal normals to Cat xk → x̄}.

It is clear from this definition that MNC always contains LNC. One may also
note that MNC is closed without taking the closure of the set of limits of proximal
normals. Now we define the generalized gradients. Here xk →f x means that xk → x
and f(xk)→ f(x). In what follows, ‖x− y‖f = ‖x− y‖+ |f(x)− f(y)|.

Definition 2.4. A sequence of proximal subgradients vk → v to a lsc f at xk → x̄
is linear for x̄ or linear if either xk = x̄ for all k or xk →f x̄, xk 6= x̄ and there exist
µ, δ > 0 such that

f(xk + h) ≥ f(xk) + 〈vk, h〉 − µ

‖xk − x̄‖f ‖h‖
2

on B(xk, δ‖xk − x̄‖f ).
As with the normal cone, the definition of the linear generalized gradient uses

this restricted convergence. One removes this restriction on sequences of proximal
subgradients to get MGG.

Definition 2.5 (see [14, 22]). Let f : Rn → R be lsc. The LGG to f at x̄ is the
set

∂`f(x̄) := cl{v : v is the limit of a linear sequence of proximal

subgradients to f for x̄}.
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The MGG to f at x̄ is the set

∂Mf(x̄) := cl{v : v is the limit of a sequence of proximal

subgradients to f at xk → x̄}.

As was stated in the introduction, if a function is Fréchet differentiable at a point,
LGG is a singleton. This means that for some problems our results will be finer than
those using MGG or CGG.

In addition, this generalized gradient can be smaller than MPGG. A simple ex-
ample is f(x) = −|x|. For this function MPGG is [−1, 1] whereas LGG is {−1, 1}.
This means that results using LGG are different than those using MPGG for equality
or inequality constraints. Additionally, since LGG is not convex, it can be used more
successfully for set constraints. A simple set is the graph of f(x) = |x|. At the corner
in the graph of f(x) = |x| the normal cone for MPGG is R2, whereas the LNC is
{(x, y) : |y| = |x| or y ≤ |x|}. The results for LGG do not coincide with MPGG
multiplier results in finite dimensions.

As one hopes, there is a close relationship between these generalized gradients
and the corresponding normal cones. In what follows, δC(x) is the indicator function
of C,

δC(x) =

{
0 if x ∈ C,
+∞ otherwise,

and d(C, x) is the distance from x to C.
Theorem 2.6 (see [14, 22]). Let C be a closed subset of Rn. Then

∂`δC(x̄) = N`Cx̄

and

∂MδC(x̄) = NMCx̄.

Theorem 2.7 (see [14, 22]). If C is a closed set in Rn, then

N`Cx̄ = cl ∪λ≥0 λ∂`d(C; x̄)

and

NMCx̄ = ∪λ≥0λ∂Md(C; x̄).

Even with the restriction to linear convergence, the calculus for LGG is fairly
rich. It includes a sum rule, a chain rule, and a variety of other results. Only a few
results are stated here. It is important to note that some kind of Lipschitz behavior is
used in all of these results. The results for MGG are valid in more general situations
than those stated here.

Theorem 2.8 (see [7, 14, 22]). Let f be a lsc function from Rn to R and let g be
a Lipschitz function from Rn to R. Then if f(x̄) is finite,

∂`(f + g)(x̄) ⊂ ∂`f(x̄) + ∂`g(x̄)



LAGRANGE MULTIPLIERS WITH NONCONVEX GRADIENTS 1317

and

∂M (f + g)(x̄) ⊂ ∂Mf(x̄) + ∂Mg(x̄).

There are rules for positive multiples of a function.

Proposition 2.9 (see [14, 22]). Let f be a lsc function from Rn to R and let
α ≥ 0. Then if f(x̄) is finite,

∂`(αf)(x̄) = α∂`f(x̄)

and

∂M (αf)(x̄) = α∂Mf(x̄).

The following rule will be used in the next section to get an inclusion for the
normal cone to the product of sets.

Theorem 2.10 (see [14, 22]). Let f : Rn → R be lsc and let g : Rm → R be
locally Lipschitz. If f is finite at x̄, then

∂`(f(x̄) + g(ȳ)) ⊂ ∂`f(x̄)× ∂`g(ȳ)

and

∂M (f(x̄) + g(ȳ)) = ∂Mf(x̄)× ∂Mg(ȳ).

The most basic optimality condition holds for the LGG. Without this result a
generalized gradient is not very useful for optimization. We, of course, need it in the
proof of the main result.

Proposition 2.11 (see [14, 22]). If f : Rn → R is lsc and x̄ is a local minimizer
of f , then

0 ∈ ∂`f(x̄) and 0 ∈ ∂Mf(x̄).

The next result concerns the LGG for the maximum of a finite collection of
functions. This type of result is often used to prove calculus rules and Lagrange
multiplier rules [21]. It is important in the proof of the main theorem. A similar
result holds for MGG [14].

Theorem 2.12. [21] Let g1, g2, . . . , gn be a finite collection of Lipschitz functions
from Rm to R. Then

∂` max
i=1,2,...,n

gi(x) ⊂
 ∑
i=1,2,...,n

λi∂`gi(x) : λi ≥ 0, λi = 0 if i /∈ I(x) and
∑
i∈I(x)

λi = 1

 ,

where I(x) = {i : gi(x) = maxj=1,...,n gj(x)}.
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3. Equalities and generalized gradients. The basic technique for handling
equality constraints in this paper is to rewrite the equality constraints as indicator
functions of level sets for the functions. If one can rewrite the generalized gradients of
these indicator functions in terms of the generalized gradients of the original functions,
one can prove Lagrange multiplier results. This is what we do.

In this section we relate the normal cone to the level set of a function and the gen-
eralized gradient of that function. This result is a generalization of the standard result
that a normal to the intersection of the level sets of a finite number of C1 functions
with linearly independent derivatives is a linear combination of their derivatives. As
is noted by Rockafellar [18], this type of result is not very useful when a generalized
gradient is convex.

The basic result we wish to prove is that the normal cone to a set of the form
{x : hj(x) = 0, j = 1, 2, . . . ,m} is contained in the positive linear combinations of
the generalized gradients of the hj ’s. This result is not true without some condition.
The condition used here corresponds to the linear independence of the derivatives in
classical results.

First we look at the case of a single function. The classical result is that the normal
cone is the multiples of the gradient of h if ∇h(x) 6= 0. Since ∂h(x) 6= −∂(−h)(x), it
is not surprising that the classical condition ∇h(x) 6= 0 is replaced by the condition
that 0 /∈ ∂h(x) ∪ ∂(−h)(x).

We prove only the results in this section for LGG. The same or similar results
hold for MGG with simpler proofs. The results for MGG are stated without proofs.

Proposition 3.1. Assume h is a Lipschitz function from Rn to R with h(x̄) = 0.
Let C = {x : h(x) = 0}. If 0 /∈ ∂`h(x̄) ∪ ∂`(−h)(x̄), then

N`Cx̄ ⊂ ∪α∈R∂`(αh)(x̄).

If 0 /∈ ∂Mh(x̄) ∪ ∂M (−h)(x̄), then [14]

NMCx̄ ⊂ ∪α∈R∂M (αh)(x̄).

Proof. Note that P = ∂`h(x̄) ∪ ∂`(−h)(x̄) is a closed set since h is Lipschitz and
all proximal subgradients must have norm at most L, the Lipschitz constant for h.
Since 0 /∈ P , P is bounded away from zero. Thus P ′ = ∪α≥0αP is a closed cone. If
the set of all limits of linear sequences of proximal normals to C at x̄ is in P ′, the
result follows.

Let v /∈ P ′ be the nonzero limit of a linear sequence of proximal normals to C at
x̄. Then there are vk → v such that either each vk is a proximal normal to C at x̄
or the vk’s form a linear sequence of proximal normals to C at xk → x̄ with xk 6= x̄.
The two cases are similar. Only the latter, more difficult case is considered.

Since v 6= 0, one may assume that vk 6= 0 for all k. Assume that for some µ > 0,

C ∩ B̄(xk + µkv
k, µk‖vk‖) = {xk}

where µk = µ‖xk − x̄‖. Since h is continuous and nonzero on B(xk + µkv
k, µk‖vk‖),

it has constant sign there. Assume h is positive on this set. If it is negative, work
with −h.

To simplify notation, let zk = xk + µkv
k/2 and ρk = µk‖vk‖/2.
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For each k define a function rkδ,ω,

rkδ,ω(x) = ω +


0 if 0 ≤ ‖x− zk‖ < ρk,

− (‖x−zk‖−ρk)2

ρkδ
if ρk ≤ ‖x− zk‖ < (1 + Lδ)ρk,

−L2(‖x− zk‖ − (1 + Lδ)ρk)− L2δρk otherwise.

By definition, when ω ≤ 0, rkδ,0(x) is less than h if x ∈ B(zk, ρk) or ‖x − zk‖ >
(1 + Lδ)ρk. Let Ukδ be the set

Ukδ = B̄(zk, (1 + Lδ)ρk)\B(xk + µkv
k, µk‖vk‖).

Note that for each k the gradient of rkδ,ω at any x is either zero or in the direction

from x to zk. As δ ↘ 0, the gradients of rkδ,ω on Ukδ are independent of ω and converge

uniformly to points on the line segment [0, 2L] · vk

‖vk‖ .
For each k, there is a maximum ωk ≤ 0 such that rkδ,ωk(x) ≤ h(x) for all x. For this

ωk, if rkδ,ωk(yk) = h(yk), then the gradient wk of rkδ,ωk at yk is a proximal subgradient

to h at yk. In addition, the wk’s form a linear sequence of proximal subgradients to
h at yk → x̄.

For a fixed δ, by passing to a subsequence, one can assume that the wk’s converge
to some wδ ∈ ∂`h(x̄). Since 0 /∈ ∂`h(x̄), the wδ’s are bounded away from 0. Taking a
sequence of δ’s converging to zero and passing if necessary to a subsequence, there is
a w ∈ ∂`h(x̄) such that v = λw for some λ > 0.

This completes the proof by contradicting that v /∈ P ′.
If one assumes the function h is Fréchet differentiable at x̄, this result reduces

to the conculsion that the LNC to C = {x : h(x) = h(x̄)} at x̄ is a single line if
∇h(x̄) 6= 0.

The following proposition is needed for the main technical result of this section,
Proposition 3.4. It relates the normal cone to the product of sets to the product of
the normal cones. Unlike MNC, this will not be an equality except for special sets
where one can control convergence rates for all sets and sequences at the same time.

Proposition 3.2. Let C1, C2, . . . , Ck be closed subsets of Rn and let C0 = C1 ×
C2 × · · · × Ck ⊂ Rnk. Then

N`C0(x, x, . . . , x) ⊂ N`C1x×N`C2x× · · · ×N`Ckx
and [14]

NMC0(x, x, . . . , x) = NMC1x×NMC2x× · · · ×NMCkx.

Proof. The first part can be proven by a simple direct argument using the fact
that ‖xi‖ ≤ ‖(x1, x2, . . . , xn)‖ to generate linear sequences of proximal normals for
each Ci from a linear sequence of proximal normals to C0. The result for NMCx has
a simple direct proof in the reference.

In Proposition 3.4 the normal cone to an intersection of sets is expressed in terms
of the sum of the normal cones to the original sets. Simple examples show that some
condition on the sets is required for this type of result.

Example 3.1. Let X = R2 and take C1 = B̄((0, 1), 1) ∪ B̄((0,−1), 1) and C2 =
{(x, 0) : x ∈ R}. Here C1 is the union of two closed balls that are tangent and
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intersect at the origin. The tangent to the balls at the origin is C2. This means
that C = C1 ∩ C2 = {(0, 0)}, N`C1(0, 0) = {(0, 0)}, NMC1(0, 0) = N`C2(0, 0) =
NMC2(0, 0) = {(0, y) : y ∈ R}, and N`C(0, 0) = NMC(0, 0) = R2. Clearly the sum of
the normal cones does not contain the normal cone of the intersection.

The condition used in this paper involves the behavior of all of the level sets near
the point of interest. There are different ways of expressing this condition. Each is
interesting in its own right.

Take C1, C2, . . . , Ck to be closed subsets of Rn. Let Φ(v) be the set valued function
from Rnk to Rn defined by

Φ(v) = ∩ki=1(Ci + vi).

The condition is that Φ is pseudo-Lipschitz at (0, x̄). Aubin [2] introduced the concept
of a pseudo-Lipschitz multifunction. A multifunction Ω(v) is pseudo-Lipschitz at (v, z)
with z ∈ Ω(v) if there are neighborhoods V of v and Z of z and a c > 0 such that for
any v1 and v2 in V ,

Ω(v1) ∩ Z ⊂ Ω(v2) + c‖v1 − v2‖B(0, 1).

Among other things, this implies that Ω is nonempty on V .
If, in our problem, there is only one equality or set constraint, the multifunction

Φ is automatically pseudo-Lipschitz. This is easy to see since Φ(v) will be a linear
translation of a single set. Another situation where Φ is pseudo-Lipschitz is where
there is no set constraint, all of the equality constraints are C1, and their gradients
are linearly independent. This is a classical constraint qualification.

This pseudo-Lipschitz condition on Φ can also be expressed as saying the set
valued function

Ψ(w) = D ∩ ((C1 + w1)× (C2 + w2)× · · · × (Ck + wk)
)
,

with D = {(x, x, . . . , x) ∈ Rnk : x ∈ Rk}, is pseudo-Lipschitz at x̄k =
(
(0, 0, . . . , 0),

(x̄, x̄, . . . , x̄)
)
. We use this version of the pseudo-Lipschitz condition in the proofs of

Propositions 3.3 and 3.4. In this setting it is easier to relate the normal cone of the
intersection to the normal cones of the individual sets.

This type of condition and its relationship to MGG and MNC are discussed in
[15, 17]. Using Theorem 4.1 in [17], one can show that a sufficient condition for Φ(v)
to be pseudo-Lipschitz is

N(D, x̄k) ∩NMgphHx̄k = {0},

where H(x) = (h1(x), h2(x), . . . , hk(x)). One can also use the following sufficient
condition for Φ to be pseudo-Lipschitz:

N(D, x̄k) ∩NMC1 × C2 × · · · × Ckx̄k = {0},

where x̄k = (x̄, x̄, . . . , x̄). Rewriting this yields∑
vi∈NMCix̄
i=1,2,...,k vi = 0 implies vi = 0, i = 1, 2, . . . , k.

These conditions involving MNC are versions of the standard condition used in Mor-
dukhovich’s multiplier rule [14]. They are also used by other authors.
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It turns out that this is also a necessary condition for Φ(v) to be pseudo-Lipschitz.
We will use the next result throughout the rest of the paper in proofs and to state
results in terms of the pseudo-Lipschitz property.

Proposition 3.3. Let Φ be as above. The multifunction Φ is pseudo-Lipschitz
at x̄ if and only if

N(D, x̄k) ∩NMC1 × C2 × · · · × Ckx̄k = {0}.(C)

Proof. The sufficiency follows from Theorem 4.1 of [17] using F : Rk×Rn → Rnk
defined by

F (x1, . . . , xk, y) = (y − x1 − C1, . . . , y − xk − Ck),

λ = {0}, and Ω = Rk × Rn × Rnk. It can also be proven directly by noting that if Ψ
is not pseudo-Lipschitz at x̄, then there exist xp → x̄ such that

d(C1 × · · · × Ck, xp)
d(D ∩ (C1 × · · · × Ck), xp)

→ 0.

Applying a variational argument yields a sequence of proximal normals to C1×· · ·×Ck
at yp → x̄ such that ‖vp‖ = 1 for all p and vp|D → 0. The sufficiency follows. To
prove the necessity we work with Ψ instead of Φ. Assume there is a

v ∈ N(D, x̄k) ∩NMC1 × C2 × · · · × Ckx̄k\{0}.
Then there are sequences vj and xj such that xj → x̄k, vj → v, and vj is a

proximal normal to C1 × C2 × · · · × Ck at xj . Note that 0 ∈ Ψ(−xj). If the rate of
change of d(0,Ψ(−xj − αvj)) as α increases from 0 can be made arbitrarily large for
large j, then Ψ, and hence Φ, are not pseudo-Lipschitz at x̄. Since vj is a proximal
normal to C1 × C2 × · · · × Ck at xj , D ∩ B(rjv

j − αvj , rj‖vj‖) ∩ Ψ(−xj − αvj) = ∅
for some fixed rj > 0 and for all α > 0. This implies, if θj is the angle between vj

and D, the rate of change of d(0,Ψ(−xj − αxj)) as α increases at α = 0 is at least
‖vj‖ tan(θj). Since θj → π/2 as j →∞, Ψ is not pseudo-Lipschitz at x̄k.

See Mordukhovich’s work [13, 14, 15, 16] for more details and examples of this
type of equivalence. The next result is the most important of this section. It and its
corollary are used in the next section.

Proposition 3.4. Let C1, C2, . . . , Ck be closed subsets of Rn and let C = ∩kj=1Cj.
If Φ(v) is pseudo-Lipschitz at (0, x̄), then

N`Cx̄ ⊂
k∑
j=1

N`Cj x̄

and

NMCx̄ ⊂
k∑
j=1

NMCj x̄.

Proof. The proofs are almost identical for the LNC and MNC. Therefore, as usual,
only the proof for the LNC is given. Using Theorem 2.6 we can work with the LGG of
δC0

and δC rather than with the LNC. In addition, we work with C0 = C1×C2×· · ·×Ck
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and D. The case when there are proximal subgradients to δC at x̄ is omitted because
it is similar to what follows. Let v ∈ N`Cx̄ and let vk → v be a linear sequence of
proximal subgradients to δC at xk → x̄, xk 6= x̄. Take y ∈ Rnk, yk = (xk, xk, . . . , xk),
ȳ = (x̄, x̄, . . . , x̄), and wk = (vk, vk, . . . , vk). Then, for some µ and ρ,

δC0
(y) ≥ δC0

(yk) + 〈wk, y − yk〉 − ρk‖y − yk‖2

if y ∈ D, ‖y − yk‖ ≤ µk = µ‖yk − ȳ‖, and ρk = ρ/‖yk − ȳ‖. It is relatively simple to
show that if the conditions of the proposition are met, there are λ, β > 0 such that,
if zk = (z, z, . . . , z) ∈ C0 and D ∩ C0 ∩ (zk + (0, βµ‖zk‖] · B̄(wk, λ)) = ∅, then

C0 ∩ (zk + (0, βµ‖zk‖] · B̄(wk, λ)) = ∅

for any z in the intersection of C and some neighborhood of x̄. Fix ε > 0. One may
assume that the gradient of ρk‖y − yk‖2 < ε if ‖y − yk‖ < 2βµk(‖vk‖ + λ). Choose
an η > 0 such that if d(y,D) = λµkβ/2 and ‖yD − yk‖ ≤ βµk(‖vk‖+ λ), then

rk(y) = 〈wk, y − yk〉 − ρk‖yD − yk‖2 − ηk(d(y,D))2 < 0,(3.1)

where yD is the orthogonal projection of y onto D and ηk = η/‖yk − ȳ‖.
This means that the function rk in (3.1) is less than zero on the boundary of

S = B(yk, βµk(‖vk‖+λ)∩{y : d(y,D) ≤ λµkβ/2}. Thus, for some ω < 0, rk(y)+ω ≤
δC0(y) on S and equals δC0(y) at some point zk in the interior of S. The gradients
of rk at zk → ȳ form a linear sequence of proximal subgradients to δC0

. Taking a
subsequence, if necessary, one may assume that these converge to a vε such that the
orthogonal projection of vε onto D satisfies ‖vε − v‖ ≤ ε.

There are two situations. If, as ε ↘ 0, a sequence of the vε’s is bounded, then
there is a v0 ∈ ∂`δC0(ȳ) whose orthogonal projection onto D is v. On the other
hand, if no bounded sequence exists, then, by renorming to unit lengths, there is
a v1 ∈ ∂`δC0

(ȳ) ⊂ ∂MδC0
(ȳ) such that v1 is orthogonal to D. This contradicts

the condition involving the Mordukhovich cone before the propositions and hence
contradicts our assumptions. This means that v0 exists.

Since N`C0ȳ ⊂ N`C1x̄ × N`C2x̄ × · · · × N`Ckx̄ and the normal cone to D is
{(w1, w2, . . . , wk) :

∑k
i=1 w

i = 0}, the result follows.
Finally comes the result that yields the multiplier rules in the next section. It

relates the normal cone to a set defined by equality constraints to the generalized
gradients of the constraints. An arbitrary set constraint is included to match the
optimization problem in this paper.

Theorem 3.5. Let h1, h2, . . . , hk be Lipschitz functions from Rn to R and let
Ck+1 be a closed subset of Rn. Assume that hj(x̄) = 0 for j = 1, 2, . . . , k. Take
Cj = {x : hj(x) = 0} and take Φ(v) as in Proposition 3.5. Assume Φ(v) is pseudo-
Lipschitz at (0, x̄). If 0 /∈ ∂`hj(x̄) ∪ ∂`(−hj)(x̄) for j = 1, 2, . . . , k, then

N`Cx̄ ⊂
∑

j=1,2...k
αj∈R ∂`(αhj)(x̄) +N`Ck+1x̄.

If 0 /∈ ∂Mhj(x̄) ∪ ∂M (−hj)(x̄) for j = 1, 2, . . . , k, then [14]

NMCx̄ ⊂
∑

j=1,2...k
αj∈R ∂M (αhj)(x̄) +NMCk+1x̄.

Proof. Apply Propositions 3.1 and 3.4 to the sets defined in the theorem.



LAGRANGE MULTIPLIERS WITH NONCONVEX GRADIENTS 1323

4. The main results. In this section Lagrange multiplier rules are given for the
LGG that include equality constraints. Recall that the problem being considered is

min f(x) subject to gi(x) ≤ 0, i = 1, 2, . . . ,m,(4.1)

hj(x) = 0, j = 1, 2, . . . , k,(*)

x ∈ U.(4.2)

All of the functions are Lipschitz functions from Rn to R and U is a closed subset of
Rn.

The main result in this section is related to Theorem 6.1.1 of Clarke [5], the
theorem of Ioffe [10], and the generalized gradient interpretation of Theorem 7.5 of
Mordukhovich [14]. All of those results state that if x̄ is a minimizer of (*), then for
some constants β ≥ 0, λi ≥ 0, i = 1, 2, . . . ,m, and αJ , j = 1, 2, . . . , k, not all zero,
one has

0 ∈ ∂
βf0 +

m∑
i=1

λigi +
k∑
j=1

αJhj

 (x̄) +N(U, x̄).

Here ∂ represents either the CGG, the MPGG, or the MGG. The results of Clarke and
Penot assume that all functions are Lipschitz. Clarke’s results are finite dimensional,
Ioffe’s require that U is convex, and Mordukhovich only assumes that the functions
are lsc. Mordukhovich’s result is sharper than Clarkes since the CGG always contains
the MGG. The results in this section are stronger than Theorem 7.5 of Mordukhovich
[14] in that the LGG is used. On the other hand, the results are weaker because only
Lipschitz functions are allowed. The results are sharper than the finite dimensional
restriction of the theorem of Ioffe [10] in the sense that convexity is not required. For
the result that only involves LGG the pseudo-Lipschitz behavior of Φ(v) is invoked
instead of using the upper-semicontinuity of MGG or the convexity of MPGG. This
means that the results do not compare directly with previous results. The Lagrange
multiplier rule is now stated and a proof given. We again take Cj = {x : hj(x) = 0}
for j = 1, 2, . . . , k, C = ∩j=1,2,...,kCj ∩ U , and

Φ(v) = ∩j=1,2,...,k(Cj + vj) ∩ (U + vk+1).

Theorem 4.1. Let x̄ be a minimizer of (*). Then there exist β ≥ 0, λi ≥ 0 and
αj, not all zero, such that λigi(x̄) = 0 for all i and

0 ∈ β∂`f(x̄) +
m∑
i=1

λi∂`gi(x̄) +
k∑
j=1

∂M (αjhj)(x̄) +NMUx̄.

Proof. Apply Theorems 2.6, 2.8, and 2.12 to the function

max{f(x)− f(x̄), g1(x), g2(x), . . . , gm(x)}+ δC(x)

to get that

0 ∈ β∂`f(x̄) +

m∑
i=1

λi∂`gi(x̄) +N`Cx̄

⊂ β∂`f(x̄) +

m∑
i=1

λi∂`gi(x̄) +NMCx̄,
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where either β or one of the λ’s is not zero and λigi(x̄) = 0 for all i. If 0 ∈ ∂Mhj(x̄)∪
∂M (−hj)(x̄) for some j, the result is true. If

0 /∈
∑

j=1k

(α1...αk) 6=0
∂M (αhj)(x̄) +NMUx̄,

Theorem 3.5 applies to NMCx̄ since Φ(v) must be pseudo-Lipschitz. This also means
that the result holds.

Since ∂`s(x) ⊂ ∂Ms(x) for any function, one can replace the LGG in Theorem
4.1 with MGG to get the following restriction of Theorem 7.5 of Mordukhovich [14].

Corollary 4.2. Let x̄ be a minimizer of (*). Then there exist β ≥ 0, λi ≥ 0,
and αj, not all zero, such that λigi(x̄) = 0 for all i and

0 ∈ β∂Mf(x̄) +

m∑
i=1

λi∂Mgi(x̄) +

k∑
j=1

∂M (αjhj)(x̄) +NMUx̄.

If one uses the pseudo-Lipschitz behavior of the multifunction Φ, defined in section
3, one can remove MGG from the result. Professor A. Ioffe has stated that, if one does
not use a convex or usc generalized gradient, a constraint qualification is necessary for
a Lagrange multiplier result. We use the pseudo-Lipschitz behavior of Φ. This result
is tighter than the above result since the pseudo-Lipschitz behavior of Φ is equivalent
to 0 /∈ ∑k

j=1[NMCj x̄\{0}] + [NMUx̄\{0}]. The proof is almost identical to that for
Theorem 4.1.

Theorem 4.3. Let x̄ be a minimizer of (*) and assume that Φ(v) is pseudo-
Lipschitz at (0, x̄). Then there exist β ≥ 0, λi ≥ 0, and αj, not all zero, such that
λigi(x̄) = 0 for all i and

0 ∈ β∂`f(x̄) +
m∑
i=1

λi∂`gi(x̄) +
k∑
j=1

∂`(αjhj)(x̄) +N`Ux̄.

Now we turn our attention to examples showing that these results actually differ
from previous results. We first give an example where a nonconvex set constraint
excludes using Ioffe’s result.

Example 4.1. Consider the problem

min
x,y∈R

2 |y| − x subject to (x, y) ∈ U,

where U = {(x, y) : x ≥ y or x ≤ −y}. Ioffe’s result doesn’t apply since U is not
convex. If one uses MGG, CGG, or LGG, the only critical point is x̄ = (0, 0), where
MGG, CGG, and LGG coincide:

∂f(x̄) = ∂Mf(x̄) = ∂`f(x̄) = {−1} × [−2, 2].

Also

NMUx̄ = N`Ux̄ = [0,∞)× {(1,−1), (1, 1)}.

Remark 4.1. It is important to note that multiplier existence results may depend
on how the constraint region is represented. That is, the same constraint region
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can satisfy a constraint qualification using one representation while it does not with
another. Unfortunately, it is sometimes difficult, if not impossible, for the modeler to
determine whether or not a given representation has the right properties. An example
of this phenomenon occurs in Example 4.1. In this example, if the set U is written as
a functional constraint, y − |x| ≤ 0, then Ioffe’s result applies.

The next example shows that, even without a set constraint, the results in this
paper are sharper than those using convex generalized gradients. Here ∂P denotes
the MPGG and ∂ denotes the CGG.

Example 4.2. Let f be an arbitrary differentiable function from R2 → R and
define g by

g(x, y) =


−x+ y, x, y > 0,

x+ y, x < 0, y > 0,

−x− y, x > 0, y < 0,

x− y, x, y < 0.

The point we consider is (0, 0). For this function we have

∂`g(0, 0) = ∂Mg(0, 0) = {−1, 1} × [−1, 1]

and

∂g(0, 0) = ∂P g(0, 0) = [−1, 1]× [−1, 1].

For the problem

min f(x, y) s.t. g(x, y) ≤ 0,

the feasible set is {(x, y) : |x| ≥ |y|}. For any Lipschitz f the point (0, 0) is a critical
point for CGG and MPGG. On the other hand, the multiplier conditions for MGG
and LGG in this paper are met only if there is a (v, w) in ∂Mf(0, 0) or ∂`f(0, 0) with
|v| = |w|.

The fact that the multifunction Φ(v) is always pseudo-Lipschitz if there is a single
equality constraint allows simple examples to demonstrate that Theorem 4.3 is sharper
than Theorem 4.1. The basis of the following example is that the constraint function
is Fréchet differentiable at the point of interest but it is not strictly differentiable
there.

Example 4.3. Let f(x, y) = (y − 1)2 and let

h(x, y) =


1
n + 1

(100n)2 − 10|x− 1
n | if x ∈ ( 1

n − 1
90000n2 ,

1
n + 1

110000n2

)
for n ∈ N,

x otherwise.

Consider the problem

min f(x, y) s.t. h(x, y) = 0.

The feasible set C = {(x, y) : h(x, y) = 0} is the y-axis. This means that the optimal
point is (0, 1). Since h is Fréchet differentiable along the y-axis, ∂`f(0, y) = (1, 0) and
the only critical point is (0, 1) when one applies Theorem 4.3. On the other hand
one can calculate that ∂Mh(0, y) = [−10, 10] × {0} for any y ∈ R. This means that
all feasible points are critical points for Theorem 4.1. Here the MGG result is not as
tight as the result using only LGG.
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5. Bilevel optimization. An application of the main results of paper is given
in this section. It is a simple bilevel problem that demonstrates how one might use
the linear and Mordukhovich generalized gradients in tandem. The problem is

min f(x, y) subject to(UL)

y ∈ argmin {min
y
g(x, y)}.(LL1)

Here we assume that f : Rn → R and g : Rm → R are Lipschitz functions. There
has been a large amount of recent research on bilevel problems, see for example [1,
6, 23, 24]. If one tries to derive necessary conditions for this problem one encounters
several problems almost immediately. The first is that the lower level constraint on
the upper level problem is not “nice.” Another is that a second order derivative is
required to directly include a necessary condition for LL1 as a constraint on the upper
level problem. If one uses a good generalized gradient ∂#, the necessary condition for
the lower level problem LL1 is

0 ∈ ∂#,yg(x, y).

Let S1(x) = {y : 0 ∈ ∂#,yg(x, y)}. Since one must make strong assumptions to make

S1(x) = argmin{min
y
g(x, y)},

we first replace the original problem with

min f(x, y) subject to(UL)

y ∈ S1(x).(LL)

When considering which generalized gradients to use for a second order object,
most people require that the graph of z → ∂#g(z) is a multifunction with closed
graph. (A requirement that sets be closed is used in the definitions of almost all
normal cones and generalized gradients.) In our situation this means that the object
one should use for the first order condition on the lower level problem is either MGG
or CGG. Since, as was mentioned earlier, CGG is not appropriate, we use MGG.
An additional problem is that using MGG in the lower level necessary condition will
only make S1(x) closed for each x. What is actually desired is that S1(x) have closed
graph. In order to do this, one must expand S1(x) again. The easiest way is to replace
S1 with

S(x) = {y : (x∗, 0) ∈ ∂Mg(x, y)}.
Under our assumption that g is Lipschitz, we have S1(x) ⊂ S(x). Replacing S1(x)
with S(x), we express the graph of S as the first two components of the intersection of
the two sets; C1 = gph∂Mg(x, y) and C2 = {(x, y, x∗, 0) : x, x∗ ∈ Rn, y ∈ Rm and 0 ∈
Rm}. The second set can be written as an equality constraint h(x, y, z, w) = w = 0.
The problem now becomes

min
x,y,z,w

f(x, y) subject to (x, y, z, w) ∈ gph∂Mg(x, y)(5.1)

and h(x, y, z, w) = 0.

Applying Theorem 4.1 to problem (5.1) gives the following condition. There exist
z∗ and λ ≥ 0, not both zero, and x∗ such that

(x∗, 0) ∈ ∂Mg(x, y)
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and

(0, 0, 0, 0) ∈ λ∂`f(x, y)× {0} × {0}+NMgph∂Mg(x, y)(x, y, x∗, 0) + (0, 0, 0, z∗).

The second condition can be rewritten as there exists (x∗1, y
∗
1) ∈ D∗∂Mg(x, y)(s∗, w∗)

such that

(0, 0) ∈ ∂`f(x, y) + (x∗1, y
∗
1)

and

(0, 0) ∈ (s∗, w∗) + (0, z∗).

Here D∗ is the co-derivative of Mordukhovich. This says there exist w∗ and λ ≥ 0,
not both zero, and

(x∗1, y
∗
1) ∈ D∗∂M

(
g(x, y)(x, y, x∗, 0)

)
(0, w∗)

such that

(0, 0) ∈ λ∂`f(x, y) + (x∗1, y
∗
1).

The above gives the following result. This result does not make any assumptions about
the properties of ∂Mg(x, y) except for the closed graph property. This is different from
most results since there are no qualifications on the argmin set of LL.

Theorem 5.1. Let (x̄, ȳ) be a solution to (5.1). Then there exist λ ≥ 0 and
w∗ ∈ Rm, not both zero, such that

−λ∂`f(x̄, ȳ) ∩D∗∂M
(
g(x, y)(x̄, ȳ, x∗, 0)

)
(0, w∗) 6= ∅.

Many of the qualifications used in necessary conditions for bilevel programming
guarantee that the multifunction S(x) is well behaved. Convexity of g(x, y) in y
implies that S(x) is a closed convex set for each x and strict convexity reduces S to a
function. Both of these give that S(x) is closed valued. Other conditions are used to
guarantee that, in addition, S(x) has closed graph. In some sense, these usually come
down to giving S(x) some Lipschitz property. The type of condition used in Zhang
[24] involves the inverse of the multifunction (x, y) → ∂Mg(x, y). The condition we
use is that this inverse is pseudo-Lipschitz. The similarity with Zhang’s condition is
discussed in his paper. Since C2 is a subspace that contains the range space of the
inverse, this implies that Ψ(v), the intersection of our two sets under perturbations,
is pseudo-Lipschitz. Applying Theorem 4.1. gives the following result.

Theorem 5.2. Let (x̄, ȳ) be a solution to (5.1). If the inverse of (x, y) →
∂Mg(x, y) is pseudo-Lipschitz at (x∗, 0, x̄, ȳ) for all (x∗, 0) ∈ ∂Mg(x̄, ȳ), then there
exist λ ≥ 0 and w∗, not both zero, and a z∗ such that

(z∗, 0) ∈ ∂Mg(x, y),

and there is (x∗1, y
∗
1 , 0, w

∗) ∈ N`gph∂Mg(x, y)(x̄, ȳ, z∗, 0) with

−(x∗1, y
∗
1) ∈ λ∂`f(x̄, ȳ).
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These two results show how the two generalized gradients, in combination, give
nice results for a complicated situation. It is very difficult to give examples when the
functions under consideration are not smooth. If the functions are all assumed to be
C2, one can rewrite Theorem 5.1.

Corollary 5.3. Let (x̄, ȳ) be a minimizer of problem (5.1) where f and g are
C2 functions. Then there are λ ≥ 0 and w∗, not both zero, such that

0 = ∂yg(x̄, ȳ)

and

λ∇f(x̄, ȳ) = Jg(x̄, ȳ)(0, w∗).

This is the desired necessary condition for a smooth unconstrained bilevel prob-
lem. The following is a simple example to show how this can be used.

Example 5.1. Let f(x, y) = 4x2 + y2 and

g(x, y) =

{
cos(

√
x2 + y2) if (x, y) 6= (0, 0),

1 if (x, y) = (0, 0).

The first condition in Corollary 5.3 yields that
√
x2 + y2 = kπ/2 for any k or

y = 0. This includes both local minima and local maxima. Adding on the second
condition gives the points (kπ/2, 0) and (0, kπ/2) for k = 0, 1, 2, . . . . This is the best
that one can do with first order necessary conditions. It is interesting to note that
the number of possible minima is extremely large. This is an unfortunate, but very
common, situation.
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Abstract. A spectral test for the observability and reachability of linear time-invariant systems—
the Popov–Belevitch–Hautus test—is well known and serves as a powerful characterization of these
properties. In this paper it is shown that similar tests exist for linear time-varying systems. The test
presented here involves a check over a subset of the spectrum of the weighted block shift known as
the set of almost eigenvalues.
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1. Introduction. For linear time-invariant (LTI) systems described by a state-
space realization, spectral tests exist to determine fundamental properties of the re-
alization such as stability, reachability, and observability.

It has long been known that, for linear time-varying (LTV) systems, the loca-
tion of eigenvalues of the “A” matrix in the realization does not furnish meaningful
information regarding the system’s stability. However, it was shown in [5, 8] that
for discrete-time systems, stability could be characterized by the spectral radius of an
operator arising from the state-space realization. In this paper we show how only part
of the spectrum, the set of almost eigenvalues, is required to characterize stability.

For reachability and observability regarding LTI systems, the PBH (for Popov–
Belevitch–Hautus; see [9]) test allows one to determine these properties based on the
eigenvalues/eigenvectors of the A matrix. For LTV systems, however, no correspond-
ing test in known. In this paper we show that a test analogous to the PBH test for
discrete-time LTV systems can be formulated. Moreover, it will be reminiscent of the
spectral test for stability developed in [5, 8].

The rest of the paper is organized as follows. In section 2 we describe the operator-
theoretic setting that will be used throughout the paper. This setting is used in
section 3 to review the characterization of stability developed in [5, 8]. Spectral tests
for observability and detectability are considered in sections 4 and 5, respectively,
whereas the dual results for reachability and stabilizability are found in section 6.
Finally, concluding remarks are presented in section 7.

2. Preliminaries. In this section we introduce the class of systems that will
be considered, as well as the notation and some basic concepts used throughout the
paper.

The notation is standard. All matrices and vectors are assumed real. For a
matrix M ∈ Rm×n, MT denotes its transpose. We consider the set of sequences from
Z → Rn. The subset of square summable sequences is denoted `n2 . This is a Hilbert

∗Received by the editors May 23, 1997; accepted for publication (in revised form) June 8, 1998;
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space with inner product

〈x,y〉`n2 :=
∞∑

k=−∞
xTk yk

and norm

‖x‖2 =

√√√√ ∞∑
k=−∞

|xk|2 <∞ .

Where the dimension of the underlying space is immaterial this will be omitted.
In the space of linear operators we will consider only the subset of bounded

operators mapping `m2 to `p2. A linear operator G, mapping `m2 to `p2, has an infinite-
dimensional matrix representation (G)k,j = Gk,j , where Gk,j ∈ Rp×m for every k, j ∈
Z. The subspace of operators which are memoryless is denoted by M. These are the
operators with block-diagonal matrix representations, and in general we will use the
shorter notation G = diag{Gk}.

By the adjoint of an operator G : `m2 → `p2 we denote the unique operator G∗ :
`p2 → `m2 satisfying

〈x,Gy〉`p2 = 〈G∗x,y〉`m2
∀ x ∈ `m2 and y ∈ `p2. Note that, for the operators that we consider, the adjoint is
just the transpose of the infinite-dimensional matrix G.

By the norm of an operator we mean the `2-induced operator norm

‖G‖ = sup
0 6=w∈`m2

‖Gw‖2
‖w‖2 .

An operator T : `n2 → `n2 is called invertible if there exists S : `n2 → `n2 such that
TS = ST = I. The operator S is the inverse of T , denoted S = T−1.

We say that an operator W : `n2 → `n2 is positive definite (W > 0) if W = W ∗

and if there exists an ε > 0 such that 〈x,Wx〉 ≥ ε〈x,x〉 for all x ∈ `n2 . It can be
checked that if W > 0, then W is invertible and W−1 > 0.

In the following discussion we will consider systems of the form

xk+1 = Akxk +Bkuk,(2.1)

yk = Ckxk.

To simplify the notation in the sequel, we form block-diagonal operators using the
state-space matrix sequences {Ak}, {Bk}, and {Ck},

A := diag{Ak}, B := diag{Bk}, C := diag{Ck},
which are all memoryless operators. We will always assume that these sequences
are uniformly bounded. One further operator is needed. Let Z be the usual unit
advance operator, satisfying (Zx)k = xk+1. Note that Z∗Z = ZZ∗ = I. Using these
operators we can describe the system (2.1) as

Zx = Ax+Bu,(2.2)

y = Cx.



1332 M. A. PETERS AND P. A. IGLESIAS

The operator G, mapping u ∈ `m2 to y ∈ `p2, will often be called the system G.
Finally, to abbreviate notation we will use the weighted shifts A := Z∗A and

B := Z∗B, and we introduce the spectral radius of an operator T : `n2 → `n2 , which is
defined as

ρ(T ) := lim
n→∞ ‖T

n‖1/n.(2.3)

In the next section we will relate stability properties of the system (2.2) to con-
ditions on the spectrum of the shifted operator A.

3. Uniform exponential stability. We say that the operator A is uniformly
exponentially stable (UES) if there exist constants c > 0 and β ∈ [0, 1) such that
∀ k ∈ Z and l ∈ N

‖Ak+l−1Ak+l−2 · · ·Ak‖ ≤ cβl.
An equivalent expression is that ∀ k0 and xk0

, the inequality

|xk| ≤ cβk−k0 |xk0 |
is satisfied ∀ k > k0.

If A is UES, we say that the corresponding system (2.2) is stable. The notion of
uniform exponential stability can be characterized in terms of the spectral radius of
the block-weighted shift A, in a way which is reminiscent of the well-known result for
LTI systems.

Lemma 3.1 (see [5, 8]). Suppose that the operator A ∈ M. Then A is UES if
and only if ρ(A) < 1.

For an LTI system (i.e., Ak = A ∀ k) it can easily be shown that ρ(A) = ρ(A).
Hence, an LTI system is stable if and only if all the eigenvalues of A have magnitude
less than 1.

For time-varying systems, however, we will be checking for points λ in the spec-
trum of the block-weighted shift A. Because this is an infinite-dimensional operator,
which may not have eigenvalues, we will work with the slightly more general sets of
almost eigenvalues and almost eigenvectors [2]. A number λ ∈ C is an almost eigen-
value of an operator T if there exists a sequence {xn}n≥0, where each of the xn is an
element of `2 with ‖xn‖2 = 1, such that

lim
n→∞ ‖Txn − λxn‖2 = 0.

The sequence {xn} is called an almost eigenvector corresponding to λ. We find the
following.

Lemma 3.2. If A ∈M is UES, then all almost eigenvalues of A have magnitude
less than 1.

Proof. The spectral radius of an operator is the maximum modulus of all
elements of the spectrum of the operator. The set of almost eigenvalues of an op-
erator is a subset of the spectrum [2]. Hence, if A is UES, from Lemma 3.1 all
elements of the spectrum have magnitude less than 1, and hence so do all almost
eigenvalues of A.

The result of this lemma follows directly from those of [5, 8]. The converse,
however, is new. We now show that instead of checking for the maximum magnitude
over all elements of the spectrum, we need only check the subset of the spectrum
consisting of the almost eigenvalues.
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Lemma 3.3. For A ∈M, if all almost eigenvalues of A have magnitude less than
1, then A is UES.

Proof. Suppose that A is not UES. Then

(∀c > 0)(∀β ∈ [0, 1))(∃k0 ∈ Z)(∃l ∈ N) ‖Ak0+l−1Ak0+l−2 · · ·Ak0‖ > cβl.

Now, for n ∈ N take c = n and β = 1 − 1/n. Then there exists k0 ∈ Z, l ∈ N, and
|xk0 | = 1 such that

|Ak0+l−1 · · ·Ak0xk0 | > n(1− 1/n)l.(3.1)

The reason for taking c = n is that it forces l to go to infinity in case n goes to infinity,
which we will use later on. Define the number

rn := |Ak0+l−1 · · ·Ak0
xk0
|−1/l,

which is well defined, with 1/rn > (1 − 1/n)n1/l ≥ 1 − 1/n. With this notation we
define the sequence

(xn)k :=

 xk0
for k = k0,

rk−k0
n Ak−1 · · ·Ak0xk0 for k = k0 + 1, . . . , k0 + l − 1,

0 elsewhere

and x̄n := xn/‖xn‖2. Obviously ‖x̄n‖2 = 1. For the sequence x̄n we can compute∥∥∥∥Ax̄n − 1

rn
x̄n

∥∥∥∥2

2

=
1

r2
n

|xk0 |2
‖xn‖22

+
r

2(l−1)
n

‖xn‖22
|Ak0+l−1 · · ·Ak0xk0 |2

=
1

r2
n‖xn‖22

(
1 + r2l

n |Ak0+l−1 · · ·Ak0xk0 |2
)

=
2

r2
n‖xn‖22

,

where we used the definition of rn.
Since A is uniformly bounded, there exists an α such that ‖Ak‖ < α ∀ k. (Note

that α ≥ 1; otherwise (3.1) cannot be satisfied for n large enough such that 1−1/n >
α.) It is easy to check that rn > 1/α. Hence,∥∥∥∥Ax̄n − 1

rn
x̄n

∥∥∥∥2

2

<
2α2

‖xn‖22
.(3.2)

Now we see the importance of taking c = n. Namely, if n becomes larger, then also l
is forced to be large in order to satisfy (3.1) since A is uniformly bounded, and it is
easy to show that l → ∞ as n → ∞. Since |xk0 | = |xk0+l| = 1 (by definition of rn)
and A is uniformly bounded, it can be shown that ‖xn‖2 → ∞ as n → ∞. Hence,
the right-hand side of (3.2) goes to zero as n goes to infinity. Since

1/α < rn < 1− 1/n

there exists a subsequence of n ∈ N for which rn converges, say rn → r (n → ∞),
and we see that 1/r is an almost eigenvalue of A. Since 1/rn > 1 − 1/n, we have
1/r ≥ 1. Therefore A has an almost eigenvalue with magnitude greater than or equal
to 1.
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Note that the construction in the proof of Lemma 3.3 leads to an almost eigenvalue
of A which is real and nonnegative (namely λ = 1/r). In fact, we can show that it is
sufficient only to consider real nonnegative almost eigenvalues.

Lemma 3.4. If λ is an almost eigenvalue of A, then |λ| is also an almost eigen-
value of A, and it has a corresponding real almost eigenvector.

Proof. Assume ‖Axn − λxn‖2 → 0 as n → ∞ for ‖xn‖2 = 1. Hence, with
λ = |λ|eiθ, we have

∞∑
k=−∞

∣∣∣Akxnk − |λ|eiθxnk+1

∣∣∣2 → 0 (n→∞).

This is equivalent to
∞∑

k=−∞

∣∣∣Akeikθxnk − |λ|ei(k+1)θxnk+1

∣∣∣2 → 0 (n→∞),(3.3)

which shows that x̃n, given by x̃nk = eikθxnk , is an almost eigenvector for the almost
eigenvalue |λ|. Note that ‖x̃n‖2 = ‖xn‖2 = 1. To construct a real almost eigenvector,
we can separate the real and the imaginary parts in (3.3), which gives

∞∑
k=−∞

∣∣∣AkRe(x̃nk)− |λ|Re(x̃nk+1
)
∣∣∣2 +

∣∣∣AkIm(x̃nk)− |λ|Im(x̃nk+1
)
∣∣∣2 → 0

as n goes to infinity. Hence, we can take either

z1n :=
Re(x̃n)

‖Re(x̃n)‖2 or z2n :=
Im(x̃n)

‖Im(x̃n)‖2
in order to have a real almost eigenvector. Note that, since ‖Re(x̃n)‖22 +‖Im(x̃n)‖22 =
1, at least one of them is well defined.

Remark . In a similar way we can show that |λ|eiψ is an almost eigenvalue for
every ψ ∈ [0, 2π). This generalizes the well-known result that for the shift operator
Z∗ (i.e., A = I), the whole unit circle is part of the spectrum.

Example 3.5. We will illustrate the results of Lemma 3.4. In fact, by choosing
an LTI system as our example, we show how the result considered is new even for the
LTI setting. Consider the LTI system with

Ak = A =

[
0 1
−1 0

]
.

In this case λ = i is an eigenvalue of the matrix A with eigenvector x = [ 1
i ], and it is

also an almost eigenvalue of A with almost eigenvector xn given by

xnk =


1√

2(2n+ 1)

[
1
i

]
for k = −n, . . . , n− 1, n,[

0
0

]
for k 6= −n, . . . , n− 1, n.

Following the construction in the lemma we find a real almost eigenvector zn, corre-
sponding to |λ| = 1, given by

zn0 =
1√

(2n+ 1)

[
1
0

]
, zn1 =

1√
(2n+ 1)

[
0
−1

]
,

zn2 =
1√

(2n+ 1)

[ −1
0

]
, zn3 =

1√
(2n+ 1)

[
0
1

]
,
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znk =

 znkmod4
for k = −n, . . . , n− 1, n,[

0
0

]
for k 6= −n, . . . , n− 1, n.

Remark . The computation of the generalized eigenvalues/eigenvectors will in
general not be trivial. Some general comments on the computation of the spectrum
of weighted shifts such as those considered here can be found in [10].

Summarizing the results, we have the following theorem.
Theorem 3.6. The following statements are equivalent:
(i) A is UES.
(ii) ρ(A) < 1.
(iii) All almost eigenvalues of A have magnitude less than 1.
These statements are the time-varying analogues of the well-known LTI results.

In the next section we will outline the concept of uniform observability and discuss a
PBH-type test which checks whether a system satisfies this property.

4. Uniform observability. Recall that an LTI system is said to be observable if
different initial conditions give rise to different outputs. Specifically, for the unforced
LTI equation

xk+1 = Axk,

yk = Cxk,

the pair (C,A) is observable if CAlx0 = CAlx̄0 for l = 0, 1, . . . , n − 1 implies that
x0 = x̄0.

As is well known, n is the maximum number of steps needed to recover the initial
state from the output, although it might be possible in fewer.

Lemma 4.1. An LTI system is observable if and only if

Ax = λx
Cx = 0

}
=⇒ x = 0.

That is, A has no unobservable eigenvalues.
Note that it is necessary to perform the PBH test only at eigenvalue/eigenvector

pairs of the matrix A.
In the time-varying case, we consider systems of the form

xk+1 = Akxk,

yk = Ckxk.

A corresponding notion of observability for time-varying systems can be formulated
based on the idea that for an observable system, different initial conditions should
lead to different outputs. This leads to the concept of uniform l-step observability [9].

Definition 4.2. The pair (C,A) is called uniformly l-step observable if there
exists ε > 0 such that ∀ k0, xk0

, and x̄k0
, the inequality

k0+l−1∑
k=k0

|yk − ȳk|2 ≥ ε|xk0
− x̄k0

|2

is satisfied.
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The uniform requirement ensures that the same ε will be suitable for all starting
points k0.

Example 4.3. Consider a time-varying system with Ak = 0 ∀ k and

Ck =

{
1 for k ≤ 0,

1/k for k > 0.

Based on the observation of the output, at any time k, the initial state, can be
recovered in one step, regardless of the particular value of k. Nevertheless, for k0 > 0
we have that

yk =

{
1/k0xk0

for k = k0,
0 elsewhere.

It follows that the difference in output yk − ȳk can be made arbitrarily small (in an
`2 sense) compared to xk0

− x̄k0
by choosing k0 large.

For LTI systems, we can always choose l = n. For LTV systems, this is not true.
Definition 4.4. The pair (C,A) is called uniformly observable if there exists a

positive integer l for which the system is uniformly l-step observable.
Remark. It is important that l be finite. For example if Ak = 1 ∀ k and

Ck =

{ −1/k for k < 0,
1 for k ≥ 0,

it is easy to check that the pair (C,A) is not uniformly l-step observable for any finite
l, but it is for l =∞.

Since the system is linear, it is easy to check that the definition of uniform l-step
observability is dependent only on the difference between the initial states; thus we
can assume without loss of generality that x̄k0

= 0 and ȳk = 0 ∀ k.
The l-step observability Gramian operator is the block-diagonal operator

Ml :=
l−1∑
j=0

(A∗)jC∗CAj .(4.1)

Using this operator we find the following.
Lemma 4.5. The pair (C,A) is uniformly l-step observable if and only if Ml >

0.
Proof. Since

k0+l−1∑
k=k0

|yk|2 =

k0+l−1∑
k=k0

|CkAk−1 · · ·Ak0
xk0
|2 = xTk0

(Ml)k0
xk0

for arbitrary k0 and initial condition xk0
, the result is immediate.

If the system is time-invariant, all the block diagonal elements of Ml are the
same. These elements have the form

(Ml)k =

k+l−1∑
r=k

(Ar−k)TCTCAr−k =

l−1∑
p=0

(Ap)TCTCAp.

For an LTI system it is well known that this matrix is positive definite for a finite l if
and only if the system is observable. Hence, we have the following corollary.
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Corollary 4.6. For an LTI system, the pair (C,A) is uniformly observable if
and only if the pair (C,A) is observable.

Hence, the LTI results can be recovered directly from results we find for time-
varying systems.

Now, we are interested in testing whether a given pair (C,A) is uniformly ob-
servable, in terms of a PBH test analogous to Lemma 4.1 for LTI systems. This can
be done by considering the set of almost eigenvalues corresponding to the weighted
shift operator A.

Lemma 4.7. If the pair (C,A) is uniformly observable, then there exists no
almost eigenvalue of A for which the corresponding almost eigenvector xn satisfies
‖Cxn‖2 → 0 as n→ 0.

Proof. If the pair (C,A) is uniformly observable, there exists l ∈ N for which
Ml > 0. Now, suppose that λ is an almost eigenvalue of A with corresponding almost
eigenvector xn. Hence, ‖xn‖2 = 1, and we can assume without loss of generality that
xn is such that

Axn = λxn + qn where ‖qn‖2 ≤ 1/n.

Also assume that ‖Cxn‖2 → 0 as n → 0, in particular, that ‖Cxn‖2 ≤ 1/n. For
j ≥ 1 we find that

‖CAjxn‖2 = ‖CAj−1(λxn + qn)‖2
≤ |λ| ‖CAj−1xn‖2 + ‖C(Z∗A)j−1‖ ‖qn‖2
≤ |λ| ‖CAj−1xn‖2 + ‖C‖ ‖Z∗A‖j−1 1

n
.

By recursion, it follows that ∀ j ≥ 1

‖CAjxn‖2 ≤ |λ|
j

n
+
‖C‖
n

j−1∑
r=0

‖A‖j−r−1|λ|r.

Now, by defining γ := max{1, ‖A‖l−1}, we see that for 1 ≤ j ≤ l − 1 this is bounded
above by

∥∥CAjxn∥∥2
≤ |λ|

j

n
+
γ ‖C‖
n

j−1∑
r=0

|λ|r.

This yields

〈xn,Mlxn〉 =
l−1∑
j=0

‖CAjxn‖2

≤ 1

n

l−1∑
j=0

|λ|j +
γ ‖C‖
n

l−1∑
j=1

j−1∑
r=0

|λ|r

=
1

n

1− |λ|l
1− |λ| +

γ ‖C‖
n

1− 2|λ|+ |λ|l
(1− |λ|)2

whenever |λ| 6= 1. For |λ| = 1 it is easy to compute

〈xn,Mlxn〉 =
l−1∑
j=0

‖CAjxn‖2 ≤ l

n
+
‖C‖ γ
n

l(l + 1)

2
.
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It follows that

〈xn,Mlxn〉 → 0 (n→∞)

and since Ml > 0 we see that ‖xn‖2 → 0, which contradicts the assumption that xn
is an almost eigenvector.

The next result shows that the converse is also true.
Lemma 4.8. If there are no almost eigenvalues of A for which the corresponding

almost eigenvector xn satisfies ‖Cxn‖2 → 0 as n → ∞, then the pair (C,A) is
uniformly observable.

Proof. Suppose that A has no almost eigenvalues for which the corresponding
eigenvector satisfies ‖Cxn‖2 → 0 as n→∞. Then

(∃γ > 0)(∀λ ∈ C)(∀‖x‖2 = 1) ‖Ax− λx‖22 + ‖Cx‖22 ≥ γ.

This implies that the same statement is also true for all x with ‖x‖2 ≥ 1. Therefore

‖Ax− λx‖22 + ‖Cx‖22 < γ =⇒ ‖x‖2 < 1.

Define δ := γ/2 > 0. Then for every λ

‖Ax− λx‖22 < δ
‖Cx‖22 < δ

}
⇒ ‖x‖22 < 1.(4.2)

Now, assume that the pair (C,A) is not uniformly observable. Then

(∀l ∈ N)(∀ε > 0)(∃k0, |xk0
| = 1)

k0+l−1∑
k=k0

|yk|2 < ε.(4.3)

For l ∈ N, define εl := δl−2(l−1). According to (4.3) we find a sequence k0(l) and
|xk0(l)| = 1. Similar to the proof of Lemma 3.3, we define the sequence

rl := min
{
|Ak0(l)+l−1 · · ·Ak0(l)xk0(l)|−1/l, l

}
,

where rl := l if the inverse is not well defined. With this notation we define the
sequence

(xl)k :=


xk0(l) for k = k0(l),

r
k−k0(l)
l Ak−1 · · ·Ak0(l)xk0(l) for k = k0(l) + 1, · · · , k0(l) + l − 1,

0 elsewhere

and x̄l := xl/‖xl‖2. For the sequence x̄l we will compute the norms in (4.2). Obvi-
ously rl > 0 ∀ l ∈ N, and it is easy to get∥∥∥∥Ax̄l − 1

rl
x̄l

∥∥∥∥2

2

=
1

r2
l

|xk0(l)|2
‖xl‖22

+
r

2(l−1)
l

‖xl‖22
|Ak0(l)+l−1 · · ·Ak0(l)xk0(l)|2

=
1

r2
l ‖xl‖22

(
1 + r2l

l |Ak0(l)+l−1 · · ·Ak0(l)xk0(l)|2
)
,

≤ 2

r2
l ‖xl‖22

,(4.4)
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where the inequality follows by definition of rl.
We consider two distinct possibilities. Suppose that there exists an l2 > 2/δ for

which rl = l. It follows that the bound in (4.4) yields∥∥∥∥Ax̄l − 1

rl
x̄l

∥∥∥∥2

2

< δ

since ‖xl‖22 ≥ |xk0(l)|2 = 1.
Now, suppose that no such l exists equivalently, that

rl = |Ak0(l)+l−1· · ·Ak0(l)xk0(l)|−1/l < l

∀ l large enough. As in the proof of Lemma 3.3 we get that rl > 1/α, where ‖Ak‖ <
α ∀ k. Hence, in (4.4) we have∥∥∥∥Ax̄l − 1

rl
x̄l

∥∥∥∥2

2

<
2α2

‖xl‖22
.

However, with this solution for rl, it follows by construction of the sequence xl and
the boundedness of A that ‖xl‖2 →∞ as l→∞ (see the proof of Lemma 3.3). Thus
there exists an l such that ‖xl‖22 > 2α2/δ, ensuring that (4.4) is bounded above by δ.
Furthermore,

‖Cx̄l‖22 =

k0(l)+l−1∑
k=k0(l)

r
2(k−k0(l))
l

‖xl‖22
|yk|2

≤ max{1, r2(l−1)
l }

‖xl‖22

k0(l)+l−1∑
k=k0(l)

|yk|2.

Since |xk0(l)| = 1, we have that ‖xl‖22 ≥ 1, and using the construction of εl we get

‖Cx̄l‖22 < max
{

1, r
2(l−1)
l

}
εl

= max
{

1, r
2(l−1)
l

}
δl−2(l−1)

≤ δ,
where the last step follows since rl ≤ l. Thus we have found l ∈ N such that ‖Ax̄l −
1
rl
x̄l‖22 < δ and ‖Cx̄l‖22 < δ. On the other hand, however, we know that ‖x̄l‖22 = 1,

contradicting (4.2).
Remark. We see that, by letting δ tend to zero, the construction in the proof of

Lemma 4.8 leads to an almost eigenvalue of A which is real and nonnegative; namely
λ = 1/r, where rl → r for a subsequence of l for which this limit exists. (Note that
if rl = l for l large enough, this corresponds to an almost eigenvalue λ = 0.) We
have seen this in Lemma 3.4, where we showed that we have to consider only real
nonnegative almost eigenvalues of A for checking uniform exponential stability of A.
Following the construction of real almost eigenvectors in the proof of Lemma 3.4, we
see that ‖Re(x̃n)‖22 + ‖Im(x̃n)‖22 = 1. Hence, one of these two has a squared norm
larger than or equal to 1/2. By choosing this one, it is immediate that the resulting
zn satisfies

‖Czn‖22 ≤ 2‖Cxn‖22.
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This shows that, in the PBH test stated in the previous lemmas, it is sufficient to
consider real nonnegative almost eigenvalues only.

Summarizing, we have the following theorem.
Theorem 4.9. The following statements are equivalent:
(i) The pair (C,A) is uniformly observable.
(ii) There exists l ∈ N such that Ml > 0.

(iii) There exists no almost eigenvalue of A for which the corresponding almost
eigenvector xn satisfies ‖Cxn‖2 → 0 as n→∞.

It can be shown that if the pair (C,A) is uniformly observable, there exists a
bounded memoryless operator H such that A+HC is UES.

Lemma 4.10 (see [6]). If the pair (C,A) is uniformly observable, then the oper-
ator

H := −AAlM−1
l+1(A∗)lC∗,

where l is such that (ii) in Theorem 4.9 is satisfied, guarantees that AH := A+HC
is UES.

Next we will discuss the concept of uniform detectability, which is less restrictive
than uniform observability.

5. Uniform detectability. For uniform detectability, the requirement that dif-
ferent inputs result in significantly different outputs will be restricted to those initial
states for which the state itself does not decay fast enough. Formally, this yields the
definition as introduced in [1, 3].

Definition 5.1. The pair (C,A) is called uniformly detectable if there exist
l, p ∈ N and constants γ ∈ [0, 1) and ε > 0 such that, whenever

|xk0+p| ≥ γ|xk0
|

for some k0 and xk0 , then

k0+l−1∑
k=k0

|yk|2 ≥ ε|xk0
|2.

The idea is that, when a zero-input trajectory starting at xk0
fails to converge

much toward the origin, then xk0 should be observable to a minimum level.
In terms of the observability Gramian (4.1), this definition can be rewritten as

xTk0
((A∗)pAp)k0

xk0
≥ γ|xk0

|2 =⇒ xTk0
(Ml)k0

xk0
≥ ε|xk0

|2.
If the pair (C,A) is uniformly observable, then Ml > 0 for some l ∈ N (see

Lemma 4.5). Hence, we immediately have the following lemma.
Lemma 5.2. If the pair (C,A) is uniformly observable, then the pair (C,A) is

also uniformly detectable.
The concept of uniform detectability has been well investigated [1, 3]. A result

that will prove to be useful is the following.
Lemma 5.3 (see [1]). The pair (C,A) is uniformly detectable if and only if there

exists an operator H ∈M for which A+HC is UES.
Remark. In case the pair (C,A) is uniformly observable, it is possible to define an

operator H guaranteeing that A+HC is UES in terms of the observability Gramian
(see Lemma 4.10). In the case of uniform detectability, however, a Riccati operator
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equation has to be solved to find a stabilizing feedback (see [3]), which is much less
appealing of course.

For LTI systems, the matrix pair (C,A) is defined to be detectable if there exists
a matrix H such that A+HC is stable. Hence, the following is an immediate result
from Lemma 5.3.

Corollary 5.4. For an LTI system the pair (C,A) is detectable if and only if
the corresponding pair (C,A) is uniformly detectable.

Now, we are interested in testing uniform detectability of a system in terms of
the almost eigenvalues of the block-weighted shift A. For LTI systems the PBH test
is given by the following result.

Lemma 5.5. An LTI system is detectable if and only if ∀ |λ| ≥ 1

Ax = λx
Cx = 0

}
=⇒ x = 0.

That is, A has no unobservable eigenvalues with magnitude greater than or equal to
1.

For time-varying systems we find similar results.
Lemma 5.6. If the pair (C,A) is uniformly detectable, then A has no almost

eigenvalues with magnitude greater than or equal to 1, for which the corresponding
eigenvector xn satisfies ‖Cxn‖2 → 0 as n→∞.

Proof. Suppose that the pair (C,A) is uniformly detectable. According to
Lemma 5.3 there exists an operator H such that AH := A +HC is UES. Now, let
λ be any almost eigenvalue of A, with corresponding eigenvector xn with ‖xn‖2 = 1.
Suppose that ‖Cxn‖2 → 0 as n→∞. Then

‖AHxn − λxn‖2 = ‖Axn − λxn +Z∗HCxn‖2
≤ ‖Axn − λxn‖2 + ‖Z∗HCxn‖2
≤ ‖Axn − λxn‖2 + ‖H‖‖Cxn‖2,

since ‖Z∗‖ = 1. We know that λ is an almost eigenvector of A, H is bounded and
‖Cxn‖2 → 0 as n→∞; hence, it follows that this expression goes to zero as n goes
to infinity. Thus λ is an almost eigenvalue of AH , and since AH is UES, it follows
from Lemma 3.2 that λ has magnitude less than 1.

Lemma 5.7. If A has no almost eigenvalues with magnitude greater than or equal
to 1 for which the corresponding eigenvector xn satisfies ‖Cxn‖2 → 0 as n→∞, then
the pair (C,A) is uniformly detectable.

Proof. The proof is a combination of the proofs of Lemmas 3.3 and 4.8. Sup-
pose that A has no almost eigenvalues with magnitude larger than or equal to 1 for
which the corresponding eigenvector satisfies ‖Cxn‖2 → 0 as n → ∞. Then, as in
Lemma 4.8, there exists δ > 0 such that for every |λ| ≥ 1

‖Ax− λx‖22 < δ
‖Cx‖22 < δ

}
=⇒ ‖x‖22 < 1.(5.1)

Now, assume that the pair (C,A) is not uniformly detectable. Then

(∀l, p ∈ N)(∀γ ∈ [0, 1))(∀ε > 0)(∃k0, |xk0
| = 1) |xk0+p| ≥ γ and

k0+l−1∑
k=k0

|yk|2 < ε.

(5.2)
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For l ∈ N, define εl := δ(1− 1/l)2(l−1) and γl := (1− 1/l)l and take p = l. According
to (5.2) we find a sequence k0(l) and |xk0(l)| = 1. Again we define the sequence

rl := |Ak0(l)+l−1 · · ·Ak0(l)xk0(l)|−1/l,

which is well defined with rl < 1/(1−1/l). With this notation we define the sequence

(xl)k :=


xk0(l) for k = k0(l),

r
k−k0(l)
l Ak−1 · · ·Ak0(l)xk0(l) for k = k0(l) + 1, . . . , k0(l) + l − 1,

0 elsewhere

and x̄l := xl/‖xl‖2. For the sequence x̄l we will compute the norms in (5.1). As in
the proof of Lemma 3.3 we can compute∥∥∥∥Ax̄l − 1

rl
x̄l

∥∥∥∥2

2

=
2

r2
l ‖xl‖22

<
2α2

‖xl‖22
,(5.3)

where the inequality follows by definition of rl, where ‖Ak‖ < α ∀ k.
Using construction of the sequence xl and the boundedness of A it can be shown

that ‖xl‖2 →∞ as l→∞ (see the proof of Lemma 3.3). Thus there exists an L ∈ N
such that ∀ l > L the right-hand side of (5.3) is bounded above by δ. Furthermore,
as in the proof of Lemma 4.8, we can show that

‖Cx̄l‖22 ≤
max{1, r2(l−1)

l }
‖xl‖22

k0(l)+l−1∑
k=k0(l)

|yk|2.

Since |xk0(l)| = 1, we have that ‖xl‖22 ≥ 1, and using the construction of εl, we get

‖Cx̄l‖22 < max
{

1, r
2(l−1)
l

}
εl

= max
{

1, r
2(l−1)
l

}
δ(1− 1/l)2(l−1)

≤ δ,
where the last step follows since rl < (1 − 1/l)−1. Thus we have found L ∈ N such
that ∀ l > L we have that ‖Ax̄l − 1

rl
x̄l‖22 < δ and ‖Cx̄l‖22 < δ. Since rl is bounded,

we can take a subsequence of l ∈ N for which rl converges, say rl → r as l → ∞.
Since 1/rl < 1− 1/l, we have 1/r ≥ 1. Hence we have

‖Axl − 1
rxl‖22 < δ,
‖Cxl‖22 < δ

for l large enough. But on the other hand we know that ‖x̄l‖22 = 1, contradicting
(5.1).

Notice that again it suffices to only consider real nonnegative almost eigenvalues.
Summarizing, we have the following theorem.

Theorem 5.8. The following statements are equivalent:
(i) The pair (C,A) is uniformly detectable.
(ii) There exists an operator H ∈M for which A+HC is UES.
(iii) There exists no almost eigenvalue of A with magnitude greater than or equal

to 1 for which the corresponding almost eigenvector xn satisfies ‖Cxn‖2 → 0
as n→∞.

In the next section we will shortly outline the results for the dual properties
of uniform observability (resp., uniform detectability), namely uniform reachability
(resp., uniform stabilizability).
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6. Uniform reachability and uniform stabilizability. In this section, we
consider systems of the form

xk+1 = Akxk +Bkuk.

For the concept of uniform reachability we use the definition in [9].
Definition 6.1. The pair (A,B) is called uniformly reachable if there exists

l ∈ N such that for every k0, ξ, there exists a uniformly bounded (with respect to |ξ|)
input uk0

, . . . , uk0+l−1 such that xk0+l = ξ where we start at xk0
= 0.

Since xk0
= 0, we have

xk0+l =

k0+l−1∑
j=k0

Ak0+l−1 · · ·Aj+1Bjuj .

It is easy to see that the matrix

R(k0, l) := [ Bk0+l−1 Ak0+l−1Bk0+l−2 · · · Ak0+l−1 · · ·Ak0+1Bk0 ]

has to be right-invertible, and this right-inverse has to be uniformly bounded in k0.
Define the l-step reachability Gramian operator as the block-diagonal operator

Wl :=

l−1∑
j=0

AjBB∗(A∗)j .

Since

R(k0, l)R(k0, l)
T = (Wl)k0+l

we have the following.
Corollary 6.2. The pair (A,B) is uniformly (l-step) reachable if and only if

Wl > 0.
Define the time-reverse operator Ω as [4]

(Ωx)k = x−k.

It is straightforward to check that (ΩTΩ)i,j = TT−j,−i for any operator T . It is also

easy to see that Ω = Ω∗, Ω2 = I and that the shift operator satisfies ΩZ = Z∗Ω.
An important property of this time-reverse operator is that A is UES if and only if
ΩA∗Ω is UES [4, 7]. Since

Wl = Z∗Ω

 l−1∑
j=0

(ΩAΩZ)j(ΩBΩ)(ΩB∗Ω)(Z∗ΩA∗Ω)j

ΩZ,

we can compare this with the observability Gramian (4.1). With Ω2 = Z∗Z = I
it is immediate that the pair (A,B) is uniformly reachable if and only if the pair
(ΩB∗Ω,ΩA∗Ω) is uniformly observable. Going through the details we can show the
following equivalences.

Theorem 6.3. The following statements are equivalent:
(i) The pair (A,B) is uniformly reachable.
(ii) There exists l ∈ N such that Wl > 0.
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(iii) There exists no almost eigenvalue of ZA∗ for which the corresponding almost
eigenvector xn satisfies ‖B∗xn‖2 → 0 as n→∞.

Moreover, if the pair (A,B) is uniformly reachable, then the operator

F := −B∗(A∗)lW−1
l+1Al+1,

where l is such that (ii) is satisfied, guarantees that A+BF is UES.
For the concept of uniform stabilizability we use the definition in [1, 3].
Definition 6.4. The pair (A,B) is called uniformly stabilizable if there exist

l, p ∈ N and constants γ ∈ [0, 1) and ε > 0 such that, whenever

|xk0+p| ≥ γ|xk0
|

for some k0 and xk0
, then

xTk0
(Wl)k0+lxk0

≥ ε|xk0
|2.

The idea is that, when a zero-input trajectory starting at xk0
fails to converge

much toward the origin, there exists a bounded input steering the state toward the
origin. Note that this mimics the LTI case, where stabilizability is equivalent to the
requirement that any uncontrollable mode be asymptotically stable. Also, it is easily
seen that uniform reachability implies uniform stabilizability.

Again, using the time-reverse operator Ω, it can be shown that the pair (A,B) is
uniformly stabilizable if and only if the pair (ΩB∗Ω,ΩA∗Ω) is uniformly detectable
(see also [1]). Hence we find the following equivalences.

Theorem 6.5. The following statements are equivalent:
(i) The pair (A,B) is uniformly stabilizable.
(ii) There exists an operator F ∈M for which A+BF is UES.
(iii) There exists no almost eigenvalue of ZA∗ with magnitude greater than or

equal to 1 for which the corresponding almost eigenvector xn satisfies ‖B∗xn‖2 →
0 as n→∞.

7. Conclusions. The work of [5, 8] was the first to show spectral characteriza-
tions of key properties of LTV systems could be formulated, which were the direct ana-
logues of the LTI characterizations, provided that one works with the block-weighted
shift A. In this paper we have shown that one need work only with the subset of this
spectrum, consisting of the almost eigenvalues of A.

We have also shown that this allows one to consider spectral tests for observability
and detectability and their duals, reachability and stabilizability, for linear discrete-
time time-varying systems. These tests are the natural generalization of the PBH
tests known in the LTI setting.

As was mentioned in the text, computation of the almost eigenvalues/eigenvectors
will be difficult in most general cases. Nevertheless, we believe that the real use of the
PBH test, even for time-invariant systems, lies not in the numerical determination
of controllability/observability, but in its use in theoretical derivations. The charac-
terizations of observability and detectability found in this paper should prove to be
similarly useful.
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optimal until the fold-locus is reached, but lose optimality beyond. Thus fold points correspond to
conjugate points. A simple cusp point in the parametrized flow of extremals generates a swallow-
tail in the parametrized value. More specifically, there exists a region in the state space which is
covered 3:1 with both locally minimizing and maximizing branches. The changes from the locally
minimizing to the maximizing branch occur at the fold-loci and there trajectories lose strong local
optimality. However, the branches intersect and generate a cut-locus which limits the optimality of
close-by trajectories and eliminates these trajectories from optimality near the cusp point prior to
the conjugate point. In the language of partial differential equations, a simple cusp point generates
a shock in the solutions to the Hamilton–Jacobi–Bellman equation while fold points will not be part
of the synthesis of optimal controls near the simple cusp point.
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cusp singularities, conjugate points
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1. Introduction. We study singularities in solutions to the Hamilton–Jacobi–
Bellman equation for the value-function of an optimal control problem for ordinary
differential equations. It is well known (see, for instance, [3]) that the necessary
conditions for optimality given in the Pontryagin maximum principle [28] also give
the characteristic equations for the Hamilton–Jacobi–Bellman equation. Thus, if the
flow of extremals (trajectories which satisfy the necessary conditions of the Pontryagin
maximum principle) covers an open region R of the state-space diffeomorphically, then
a smooth solution to the Hamilton–Jacobi–Bellman equation can be constructed on
R by the method of characteristics. In general, however, except for special problems
like the linear-quadratic regulator, the value function is typically not smooth. The
difficulties in finding solutions to optimal control problems or, equivalently, in finding
solutions to the Hamilton–Jacobi–Bellman equation, precisely lie in analyzing the
singularities.

There is a large body of literature on singularities of solutions to the Hamilton–
Jacobi–Bellman equation. Most of these papers deal with general topological prop-
erties of the singular set or try to establish smoothness of solutions. In [17] Fleming
proves that the singular set is closed and of Hausdorff dimension at most equal to the
dimension of the state space. Dafermos [16] analyzes singular sets for more general
hyperbolic conservation laws, but only in dimension one. Cannarsa and Soner [11]
analyze the local structure of the singular set for viscosity solutions which satisfy cer-
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tain Lipschitz-type conditions. This literature typically addresses the problem from
a PDE point of view. Few papers deal with the optimal control problems directly.
Cannarsa and Frankowska [11] show that smoothness of the value-function at a point
of a trajectory implies smoothness at all later times along the trajectory. Byrnes and
Frankowska [9] and Byrnes and Jhemi [10] use convexity properties of the Hamiltonian
of the optimal control problem to obtain special structures for the Hamilton–Jacobi–
Bellman equation as a Riccati-type PDE and they give conditions for the absence of
shocks, i.e., for smooth solutions. In most of these papers, establishing the differentia-
bility of the value-function or of solutions to the Hamilton–Jacobi–Bellman equation
is the main interest; it is not to analyze the structure of singularities in more detail.

A different approach to solve optimal control problems is the theory of regular
synthesis. Here the value function is only derived indirectly. Instead the optimal
control is synthesized as a feedback control. The original paper by Boltyanskii [5]
gives conditions which allow to construct the value-function despite singularities and
to prove the optimality of the corresponding trajectories. These conditions have
been weakened considerably since then by Brunovsky [7] and Sussmann [33] and by
Sussmann and Piccoli [27]. General results about the existence of a regular synthesis
have been proven by Brunovsky [7]. Detailed results which establish regular syntheses
exist in low dimensions. Piccoli [26] analyzed the generic singularities for time-optimal
control for two-dimensional systems based on Sussmann’s results [34, 35, 36]. In
dimension three, Krener and Schättler [22] and Schättler and Jankovic [?] construct
a regular synthesis for time-optimal control problems under codimension 0 and 1
conditions. In these results the precise structure of the singularities of the value-
function is established under generic assumptions. Naturally it is quite difficult if not
impossible to obtain precise results under general conditions. Kupka [23] analyzes the
least degenerate singularities for extremals in the cotangent bundle, i.e., together with
the corresponding multipliers. However, projections into the state space still need to
be taken to construct a regular synthesis.

In this paper we describe a framework which aims to analyze and explain singu-
larities in solutions to the Hamilton–Jacobi–Bellman equation through the behavior
of the extremal trajectories of the optimal control problem. The starting point for
our analysis is smoothly parametrized families of extremals (see section 3). In our
view this is a natural concept which simply formalizes the notion of integrating ex-
tremals of the control problem backward from the terminal manifold without imposing
that the flow is a diffeomorphism, i.e., is a field. Yet the relevant identities for the
corresponding parametrized cost can be established (“shadow prices”) which, when
coupled with injectivity of the flow, allow us to prove that the cost is the value func-
tion and hence that controls are optimal. While the global existence of these smooth
parametrizations depends on the nature of the problem, they generically exist locally
around a reference extremal and thus this concept is well suited to study strong local
optimality. These parametrizations can typically be obtained in a rather straightfor-
ward way near reference extremals which are sufficiently regular finite concatenations
of continuous controls (like bang-bang extremals or more general concatenations with
singular arcs) by taking the terminal point(s) and/or switching times along the arcs
as parameters [24].

Given a smoothly parametrized family of extremals, well-known results from the
singularity theory of functions [20] can be applied. In this paper we analyze the effect
which the occurrence of the two least degenerate singularities, the so-called fold and
simple cusp catastrophes [37, 38], in the flow of extremals have on the structure of
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the value-function. For the fold singularity these results, or rather their formulations
which give the implications on the structure of optimal controls, are classical. Fold
points in smooth parametrizations of the extremals generate “edges of regression” [2]
in the corresponding value function. It follows that the fold generates the well-known
behavior of trajectories which stay strongly locally optimal until the fold-locus is
reached but lose optimality beyond. Hence fold singularities correspond to conjugate
points. Numerous formulations of related statements exist in the literature ranging
from early engineering texts [8] to modern formulations [14]. For instance, Caroff and
Frankowska [14] analyze the characteristics of the Hamilton–Jacobi–Bellman equation
and formulate necessary conditions for a weak minimum and sufficient conditions for
a strong minimum in terms of conjugate points. The closest formulation to ours is
the one given by Agrachev and Gamkrelidze in terms of concepts from symplectic
geometry. It has been shown [1, Theorem 3.1] that extremals lose optimality as
the corresponding extremal lifts (which form Lagrangian manifolds in the cotangent
bundle) pass a fold. The details, however, are beyond the scope of this article and
we strongly recommend the reader consult the expository article [1]. For the sake
of completion, and to set the stage, in this paper we include a brief section on the
fold singularity, which states the result in the framework of parametrized families of
extremals; we refer the reader to [21] for the proof.

Our focus in this paper is on the effect which a simple cusp singularity in the flow
of extremals has on the value function. Indeed, the behavior of optimal trajectories
implied by the fold singularity is seldom seen in a regular synthesis of optimal trajec-
tories, i.e., although these trajectories stay locally optimal up to the conjugate point,
they are no longer optimal globally prior to the conjugate point. This is explained by
the behavior of extremals near a simple cusp point. The simple cusp point generates
a region in the state space which is covered 3:1 by both locally minimizing and locally
maximizing branches of the corresponding value function. Away from the simple cusp
point the changes from the locally minimizing to the maximizing branches occur at
the fold-loci and there trajectories lose strong local optimality. However, the two
minimizing (maximizing) branches intersect and generate a cut-locus which limits the
optimality of the close-by trajectories and indeed eliminates these trajectories from
optimality near the cusp point prior to the conjugate point. An analogous behavior of
optimal trajectories can already be seen in the classical calculus of variations. For the
problem of finding surfaces of revolution of minimum surface area, smooth solutions
correspond to the catenaries and cease to be locally optimal at the conjugate point
which is the fold point in the parametrization [4, 15]. However, the Goldschmidt
solutions (which correspond to broken extremals) are better already for points prior
to the conjugate point in the catenaries and the optimal solution is determined by
the cut-locus between these two families of trajectories [15, pp. 143–148]. Exactly
the same behavior is described in [22] for the three-dimensional time-optimal control
problem to an equilibrium point for the generic nonlinear system.

Our result can also be interpreted in terms of the classification of Lagrangian sin-
gularities. If the parametrized flow of extremals undergoes a simple cusp singularity,
then the corresponding value exhibits a swallow-tail singularity [2]; respectively, in
the terminology of [20], its graph looks like the singular set of a swallow-tail singular-
ity. This connection, which implies all the statements about the optimal trajectories
made above, will be proven by elementary means in this paper. In particular, ver-
ifiable conditions for the existence of a simple cusp in the parametrization of the
extremals allow us to determine the occurrence of the swallow-tail singularity in the
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parametrized value. In summary, our main result implies that the simple cusp catas-
trophe generates a shock (a point for which there exist multiple characteristics) in
the solutions to the Hamilton–Jacobi–Bellman equation while fold catastrophes near a
simple cusp will not be part of the solution or synthesis of optimal controls near the
simple cusp point.

In section 2 we formulate the optimal control problem and review the conditions
of the maximum principle and the Hamilton–Jacobi–Bellman equation. Section 3
contains a formulation of the method of characteristics for the Hamilton–Jacobi–
Bellman equation. This material is classical and is based on ideas from field theory
[13, 39, 3, 25]. These results are included since we are not aware of a published
reference which would treat the subject in the form as we need it in the sense that our
presentation emphasizes the parametrization aspect. The proofs which are based on
[30] are only indicated. In section 4 we discuss the normal forms for local coordinates
for the fold and simple cusp points and the corresponding changes of coordinates.
Normal coordinates will then be used in sections 5 and 6 to analyze the local behavior
of the parametrized cost when a parametrized family of extremals undergoes a fold
or a simple cusp singularity.

2. Problem formulation. Let U be a subset of Rm, the control set, and denote
by U the class of all locally bounded Lebesgue measurable maps defined on some
interval I ⊂ R with values in U , u : I → U , the space of (admissible) controls.
Suppose

f : R× Rn × Rm → Rn, (t, x, u) 7→ f(t, x, u),

the dynamics of the control system, is a continuous map which for fixed t ∈ R is
r-times continuously differentiable in (x, u). Let N be a k-dimensional embedded
Cr+1-submanifold of (t, x)-space R × Rn, the terminal manifold. Thus, near every
point q ∈ N , there exists an open set Ω ⊂ R × Rn containing q and a Cr+1-map
Ψ : Ω→ R×Rn with components ψi, i = 0, . . . , n−k, which have linearly independent
gradients ∇ψi and satisfy N ∩Ω = {(t, x) ∈ Ω : ψi(t, x) = 0, i = 0, . . . , n−k}. Also
let ϕ : N → R be a Cr+1-function. We consider the problem to minimize over U a
cost functional given in Bolza form as

J (u; τ, ξ) =

∫ T

τ

L(s, x, u)ds+ ϕ(T, x(T ))(2.1)

subject to the dynamics ẋ = f(t, x, u) with initial condition x(τ) = ξ and terminal
condition (T, x(T )) ∈ N . The terminal time T is free. (A fixed terminal time would
be included as a constraint in N .)

The maximum principle gives necessary conditions for a controlled trajectory
(x, u) to be optimal. In our notation we distinguish between tangent vectors which
we write as column vectors (such as x, f(t, x, u) etc.) and cotangent vectors which we
write as row vectors (like the multipliers λ and ν in the statement of the Maximum
principle below). We denote the space of n-dimensional row vectors by (Rn)∗. Define
the Hamiltonian function H,

H : R× [0,∞)× (Rn)∗ × Rn × Rm → R

as

H(t, λ0, λ, x, u) = λ0L(t, x, u) + λf(t, x, u)(2.2)
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Theorem 2.1 (Pontryagin maximum principle [28]). Suppose the controlled tra-
jectory (x, u) defined over the interval [τ, T ] is optimal. Then there exist a con-
stant λ0 ≥ 0, a covector ν ∈ (Rn+1−k)∗, and an absolutely continuous function
λ : [τ, T ] → (Rn)∗, the adjoint variable, such that (λ0, λ(t)) 6= 0 for all t ∈ [τ, T ]
and the following conditions are satisfied:

1. Adjoint equation: almost everywhere in [τ, T ]

λ̇(t) = −λ0Lx(t, x(t), u(t))− λ(t)fx(t, x(t), u(t)),(2.3)

2. Minimum condition: almost everywhere in [τ, T ]

H(t, λ0, λ(t), x(t), u(t)) = min
v∈U

H(t, λ0, λ, x, v)(2.4)

3. Transversality condition: the vector (H + λ0ϕt,−λ + λ0ϕx) is orthogonal to
the terminal constraint in the endpoint, i.e., at the terminal time T we have
that

0 = λ0ϕt + νDtΨ +H, λ = λ0ϕx + νDxΨ.(2.5)

We call controlled trajectories (x, u) for which there exist multipliers λ0, λ, and
ν such that the conditions of the maximum principle are satisfied extremals and
sometimes we refer to the triple (λ, x, u) as an extremal lift. Note that the conditions
are linear in the multipliers (λ0, λ, ν) and thus it is possible to normalize this vector.
In particular, if λ0 > 0, then we can divide by λ0 and thus assume λ0 = 1. These
kinds of extremals are called normal while extremals with λ0 = 0 are called abnormal.
The existence of optimal abnormal extremals can in general not be ruled out.

Sufficient conditions for optimality center around feedback controls, Hamilton–
Jacobi theory, and the related notions of fields of extremals and the value-function.
Define the value-function V on some open subset R of the state-space, V : R→ R, as

V (t, x) = inf
u∈U
J (u; t, x),(2.6)

i.e., as the infimum over all u ∈ U of the values of the cost functional J (u; t, x) if the
initial conditions of the dynamics are given by (t, x). It is elementary to see [19] that
if the value-function V is differentiable at (t, x), then V satisfies the inequality

Vt(t, x) + Vx(t, x)f(t, x, u) + L(t, x, u) ≥ 0(2.7)

for all u ∈ U and equality holds for a (sufficiently regular) optimal control. Conversely,
if V is any continuously differentiable function and u∗ = u∗(t, x) is an admissible feed-
back control which, together, satisfy the so-called Hamilton–Jacobi–Bellman equation
on an open connected set R containing N , i.e.,

Vt(t, x) + min
u∈U
{Vx(t, x)f(t, x, u) + L(t, x, u)} ≡ 0.(2.8)

V (t, x) = ϕ(t, x) for (t, x) ∈ N,(2.9)

then it is well known (and completely elementary under these differentiability condi-
tions) that the feedback control u∗ is optimal on R (i.e., with respect to any other
controlled trajectory which entirely lies in R) and that V is the corresponding value-
function. In particular, each of the extremals in the associated field is a strong local
minimum over the set R.
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3. The method of characteristics in optimal control. In this section we
show how a solution to the Hamilton–Jacobi–Bellman equation can be constructed
from a parametrized family of normal extremals which satisfy the maximum princi-
ple and cover a set R injectively. The construction below formulates the method of
characteristics adapted to the optimal control problem and is a refinement of argu-
ments in [30] which are based on notes by Knobloch. In sections 4 and 5 we use this
particular local construction to relate corank 1 singularities in the parametrization to
singularities in solutions to the Hamilton–Jacobi–Bellman equation.

Definition 3.1. A Cr-parametrized family E of extremals is an 8-tuple (P ; T =
(t0, tf ); ξ, ν;x, u, λ0, λ) consisting of

• an open set P in some n-dimensional manifold and a pair T = (t0, tf ) of
r times continuously differentiable functions t0 : P → R and tf : P → R
defined on P which satisfy t0(p) < tf (p) for all p ∈ P . They define the
domain of the parametrization as D = {(t, p) : p ∈ P, t ∈ Ip = [t0(p), tf (p)]}.
The functions t0 and tf define the (compact) intervals of definition for the
controlled trajectories with tf denoting the terminal time.
• an r-times continuously differentiable function ξ : P → N which parametrizes

the terminal conditions for the states.
• extremal lifts consisting of controlled trajectories (x, u) : D → Rn × U , cor-

responding adjoint vectors λ0 : P → [0,∞) and λ : D → (Rn)∗, and a row
vector ν : P → (Rn+1−k)∗ which parametrizes the terminal conditions for the
costates. Specifically, we assume

1. the multipliers (λ0(p), λ(t, p)) are nontrivial for all t ∈ Ip,
2. the controls u = u(·, p), p ∈ P , parametrize admissible controls which

are continuous in (t, p) and for t fixed depend r-times continuously dif-
ferentiable on p with the derivatives continuous in (t, p),

3. the trajectories x = x(t, p) solve the terminal value problems for the
dynamics

ẋ(t, p) = f(t, x(t, p), u(t, p)), x(tf (p), p) = ξ(p),(3.1)

4. the costate λ = λ(t, p) solves the corresponding adjoint equation

λ̇(t, p) = −λ0(p)Lx(t, x(t, p), u(t, p))− λ(t, p)fx(t, x(t, p), u(t, p)),

(3.2)

with terminal conditions

λ(tf (p), p) = λ0(p)ϕx(tf (p), ξ(p)) + ν(p)DxΨ(tf (p), ξ(p)),(3.3)

5. the controls solve the minimization problem

H(t, λ0(p), λ(t, p), x(t, p), u(t, p)) = min
v∈U

H(t, λ0(p), λ(t, p), x(t, p), v),
(3.4)

6. the transversality condition on the terminal time,

H(tf (p), λ0(p), λ(tf (p), p), x(tf (p), p), u(tf (p), p))(3.5)

+λ0(p)ϕt(tf (p), ξ(p)) + ν(p)DtΨ(tf (p), ξ(p)) = 0,

holds.
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This notion of a Cr-parametrized family of extremals is a natural concept to
formalize an approach which tries to construct a field of extremals by integrating the
system and adjoint equations backward from the terminal manifold while maintaining
the minimum condition (3.4) without requiring that the flow is a diffeomorphism. No
injectivity assumptions are made.

It follows from standard results about differentiable dependence on parameters of
solutions to ordinary differential equations that the trajectories x = x(t, p) (and their
time-derivatives ẋ(t, p)) are r-times continuously differentiable in p for fixed t and that
these derivatives are continuous jointly in (t, p). We denote this class of functions by
C1,r. These partial derivatives can be calculated as solutions to the corresponding
variational equations which are obtained by interchanging the time-derivative with the
p-derivatives. At the moment we do not impose regularity conditions on λ0 and ν.
Consequently λ(t, p) need not be differentiable in p. However, if λ0 and ν are r-times
continuously differentiable, then the costate λ has the same smoothness properties as
the state x. In this case we call E a nicely Cr-parametrized family of extremals.

Modifications of the definitions for the time-invariant case are straightforward
with the one exception that we then want the control to lie in Cr−1,r. This guarantees
that x(t, p) has the desired differentiability properties.

Example. Consider the optimal control problem to minimize

J(u) =
1

2

∫ T

0

||u||22dt+ ϕ(x(T ))(3.6)

subject to

ẋ = f(x) +

m∑
i=1

gi(x)ui, ui ∈ R,(3.7)

where f and the gi are Cr vector fields on Rn, ϕ is Cr+1, and the terminal time T is
fixed. It is easy to see that extremals for this problem are normal and thus, without
loss of generality, we may normalize λ0 ≡ 1. The Hamiltonian

H =
1

2

m∑
i=1

u2
i + λ

(
f(x) +

m∑
i=1

gi(x)ui

)
(3.8)

is strictly convex in u with the unique minimum given by ui = −λgi(x). Substituting
this relation into the dynamics and adjoint equation gives the following system of 2n
ordinary differential equations

ẋ = f(x)−
m∑
i=1

gi(x)gi(x)TλT(3.9)

λ̇ = −λ
(
Df(x)−

m∑
i=1

Dgi(x)gi(x)TλT

)
.(3.10)

If we take as parameter space P = Rn and integrate these differential equations
backward with terminal conditions

x(T, p) = p, λ(T, p) = ϕx(T, p),(3.11)
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then the solutions x = x(t, p) and λ = λ(t, p) exist on a maximal interval Ip =
(t0(p), T ] and these solutions are Cr functions of t and p. In particular, the controls

ui(t, p) = −λ(t, p)gi(x(t, p))(3.12)

are also Cr,r. Thus this generates a nicely Cr parametrized family of extremals.
More generally, if a terminal manifold N is given with free terminal time, then

extremals will be parametrized through their endpoints in the terminal manifold N (k-
dimensional) and the vector ν in the transversality condition which gives the terminal
condition for the multiplier λ ((n + 1 − k)-dimensional). However, we also need to
enforce the transversality condition (3.5) on H which pins down the terminal time.
Hence the parameter space is n-dimensional.

While the procedure is straightforward, clearly the smoothness conditions re-
quired in the parametrizations need not be satisfied in general. But the definition
of a Cr-parametrized family of extremals and the shadow price lemma given below
generalize to parametrized families of broken extremals which have discontinuities
on manifolds described by Cr functions t = t(p). For instance, a family of bang-
bang trajectories can easily be parametrized using the switching times as parameters.
In this paper, however, we consider only parametrized families where the control is
continuous (respectively, Cr−1,r in the time-invariant case) since we want to study
singularities as they arise in smooth parametrizations and study their effect on the
parametrized value-function. In our view these parametrizations are no artefact, but
arise naturally. Particularly this holds if the parameter set P is restricted to some
small neighborhood of some reference value respective to reference trajectory. Then
our results have immediate implications on the strong local optimality of the reference
trajectory.

OnD we define the cost C : D → R along a Cr-parametrized family E of extremals
as

C(t, p) =

∫ tf (p)

t

L(s, x(s, p), u(s, p))ds+ ϕ(tf (p), ξ(p)),(3.13)

i.e., C(t, p) denotes the cost for the optimal control problem with initial condition
(t, x) = (t, x(t, p)) corresponding to the control u = u(t, p). It follows from our
assumptions and the above smoothness properties that C is continuously differentiable
in t with time-derivative

∂C

∂t
= −L(t, x(t, p), u(t, p))(3.14)

and that both C and its time-derivative ∂C
∂t are r-times continuously differentiable in

p.
Notation. For a function like C we denote the gradient with respect to p (which

we consider a row vector) by ∂C
∂p . Consequently, for a column vector like x =

(x1, . . . , xn)T we denote by ∂x
∂p the matrix whose rows are given by the gradients

of the components of x, i.e., ∂x
∂p =

(
∂xi
∂pj

)
1≤i,j≤n

with row index i and column index

j. However, to be consistent, for a row-vector like λ = (λ1, . . . , λn) we denote the

matrix of the partial derivatives
(
∂λj
∂pi

)
1≤i,j≤n

with row index i and column index j

by ∂λ
∂p . In this sense, we have ∂λ

∂p =
(
∂λT

∂p

)T
. This will allow us to write most formulas
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without having to use transposes. Finally we denote by ∂2C
∂p2 the Hessian matrix of

the second derivatives of a function C.
The following relation is crucial to the whole construction:
Lemma 3.1 (shadow prices). Let E be a C1-parametrized family of extremals.

Then we have that

λ0(p)
∂C

∂p
(t, p) = λ(t, p)

∂x

∂p
(t, p).(3.15)

Proof (sketch). For p fixed both sides of (3.15) are continuously differentiable
functions in t. It therefore suffices to show that both sides have the same t-derivative
with identical values at the terminal time tf (p). The latter can be shown by adjoining
the terminal condition with multiplier ν = ν(p) to C and then using the transversality
conditions (2.5) after differentiating in p. Furthermore, using the adjoint equation and
the variational equation for ∂x

∂p , it follows that

d

dt

{
λ(t, p)

∂x

∂p
(t, p)

}
= λ0(p)

∂2C

∂t∂p
(t, p) +Hu

∂u

∂p
(t, p),

where Hu is evaluated along the parametrized extremal. But

Hu(t, λ0(p), λ(t, p), x(t, p), u(t, p))
∂u

∂p
(t, p) ≡ 0 on D(3.16)

follows from the minimization property of the extremal control u(t, p).
If the parametrization of the extremals covers the state-space diffeomorphically,

then the shadow price lemma provides the bridge between the necessary conditions for
optimality of the maximum principle and the sufficient conditions of the Hamilton–
Jacobi theory. Theorem 3.1 below formalizes this. In its essential contents the
statement is classical and can be found in many books on optimal control such as
[3, 18]. It is included here since it also gives a means to calculate the singularities in
a parametrized flow of extremals.

Theorem 3.1. Let E be a Cr-parametrized family of normal extremals, r ≥ 1,
and suppose the map

σ : D → R× Rn, (t, p) 7→ (t, x(t, p))(3.17)

is a C1-diffeomorphism from some open subset O ⊂ intD onto an open subset R ⊂
R×Rn of the state-space (i.e., the map is bijective and has an everywhere nonvanishing
Jacobian). Then the function V : R→ R, V = C ◦ σ−1, is continuously differentiable
in t and r-times continuously differentiable in x on S. The function u∗ : R →
R, u∗ = u ◦σ−1 is an admissible feedback-control which is continuous in t and r-times
continuously differentiable in x. Together the pair (V, u∗) solves the Hamilton–Jacobi–
Bellman equation

Vt(t, x) + min
u∈U
{Vx(t, x)f(t, x, u) + L(t, x, u)} ≡ 0(3.18)

on R. Furthermore, the following identities hold in the parameter space on O:

Vt(t, x(t, p)) = −H(t, λ(t, p), x(t, p), u(t, p))(3.19)

Vx(t, x(t, p)) = λ(t, p).(3.20)
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If E is nicely Cr-parametrized, then V is (r + 1)-times continuously differentiable in
x on R and we also have

Vxx(t, x(t, p)) =
∂λT

∂p
(t, p)

(
∂x

∂p
(t, p)

)−1

.(3.21)

Proof (sketch). By assumption σ is injective with C1,r inverse. Thus V and u∗

are well defined and a priori V ∈ C1,r. Since C = V ◦ σ, we have that

∂C

∂p
(t, p) = Vx(t, x(t, p))

∂x

∂p
(t, p),

and thus, in view of Lemma 3.1 and the fact that ∂x
∂p is nonsingular (3.20) follows.

Equations (3.18) and (3.19) then follow directly from the conditions of the maximum
principle. If E is nicely Cr parametrized, then λ is Cr in p, and thus we still have
Vx ∈ C1,r since Vx = λ◦σ−1 on R. In particular, differentiating (3.20) with respect to
p and observing that we need to take a transpose in λ to keep the notation consistent,
we get (3.21).

The relation (3.21) can be used to calculate singularities in the map x. Under the
assumptions of Theorem 3.1 the function

Q(t, p) = Vxx(t, x(t, p)) =
∂λT

∂p
(t, p)

(
∂x

∂p
(t, p)

)−1

(3.22)

satisfies the differential equation

Q̇ = −Qfx − fTx Q−Hxx − (Qfu +Hxu)
∂u

∂p

(
∂x

∂p

)−1

,(3.23)

where the partial derivatives of f and H are evaluated along the extremal correspond-
ing to the parameter p. This follows by direct differentiation. In particular, if the
gradient Hu vanishes identically and the matrix Huu is positive definite along (λ, x, u)
on I, then

∂u

∂p
= −H−1

uu

(
Hux

∂x

∂p
+ fTu

∂λT

∂p

)
,(3.24)

and we can eliminate the control-term from (3.23) to get the customary Riccati-
equation for the second derivatives Vxx [8]:

Q̇ = −Qfx − fTx Q−Hxx + (Qfu +Hxu)H−1
uu

(
Hux + fTu Q

)
.(3.25)

In this case singularities in ∂x
∂p therefore relate to the explosion times of the Riccati-

equation. It is clear from (3.21) that explosion times in the Riccati-equation can only
occur as ∂x

∂p becomes singular and conversely
Corollary 3.1. Suppose

∂x

∂p
(t0, p0)v0 = 0 and w0 = vT0

∂λ

∂p
(t0, p0) 6= 0.

Then the solution Q(·, p0) to the Riccati-equation (3.25) has a finite explosion time at
t = t0.
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Proof. We have limt→t0 Q(t, p0)∂x∂p (t, p0)v0 = limt→t0
∂λT

∂p (t, p0)v0 = ∂λT

∂p (t0, p0)v0 =

wT0 6= 0. Since also limt→t0
∂x
∂p (t, p0)v0 = ∂x

∂p (t0, p0)v0 = 0, it follows that Q(·, p0) has
a finite explosion time at t0.

In particular, it is well known, and commercial software exists on how to calculate
these points numerically. The next corollary, which follows by differentiating (3.15)
with respect to p, relates left- and right-eigenvectors at singular points of the flow
map. This will be needed to interpret the transversality conditions from singularity
theory for the parametrized flow.

Corollary 3.2. Let E be a C2-parametrized family of normal extremals. Then
the matrix

Ξ(t, p) =
∂λ

∂p
(t, p)

∂x

∂p
(t, p)(3.26)

is symmetric.
Corollary 3.3. Let E be a C2-parametrized family of normal extremals. Sup-

pose

∂x

∂p
(t0, p0)v0 = 0 and w0 = vT0

∂λ

∂p
(t0, p0) 6= 0.

Then w0 is a left-eigenvector for eigenvalue 0 to ∂x
∂p (t0, p0),

w0
∂x

∂p
(t0, p0) = 0.(3.27)

Proof. We have for all z ∈ Rn that

w0
∂x

∂p
(t0, p0)z = vT0

∂λ

∂p
(t0, p0)

∂x

∂p
(t0, p0)z = zT

∂λ

∂p
(t0, p0)

∂x

∂p
(t0, p0)v0 = 0

and thus w0
∂x
∂p (t0, p0) = 0.

4. Normal forms for functions near singularities. In this section we recall
the normal forms for folds and cusps for Cr maps F : Rn 7→ Rn and present the
required equations for the changes of coordinates. The normal forms are classical and
go back to fundamental papers by Whitney [38] and Thom [37]. We include a brief
exposition following the presentation in [20]. However, in view of our applications
to the optimal control problem, we formulate the results already for the map σ :
(t, p) 7→ (t, x(t, p)), where t plays the role of a bifurcation parameter. The singular
set, S, of σ or equivalently of x, is given as S = {(t, p) ∈ D : rank∂x∂p (t, p) < n} and

the corank 1 singularities, S1, are where ∂x
∂p has rank n − 1. If (t0, p0) ∈ S1, then

∂x
∂p (t0, p0) has a simple eigenvalue zero. We will denote the corresponding left- and
right-eigenvectors by w0 and v0, respectively. By choosing a sufficiently small open
neighborhood D of (p0, t0) we may assume that σ has only corank 1 singularities on
D. Furthermore, it is a mere consequence of the rank assumption [6, Chap. II.7] that
there exist local changes of coordinates in the parameter space Φ : D → D′, (t, p) 7→
(τ, ξ) = Φ(t, p) = (t− t0, ξ(t, p)) and in the state-space Ψ : R→ R′, (t, x) 7→ (τ, η) =
Ψ(t, x) = (t − t0, η(t, x)), such that the map σ has the following form in the new
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coordinates:

k : D′ → R′, (τ, ξ) =


τ
ξ1
...
ξn

 7→ k(τ, ξ) =


τ
ξ1
...

ξn−1

h(τ, ξ)

(4.1)

for some function h ∈ C1,r (i.e., h is continuously differentiable in τ and r times
continuously differentiable in ξ.) Furthermore, h(0, 0) = 0 and ∂h

∂ξn
(0, 0) = 0. In

particular, if the gradient of ∂h
∂ξn

does not vanish at (t0, p0), then S1 is an (n − 1)-

dimensional embedded submanifold near (t0, p0). The transversality conditions which
determine the normal forms at the singular points are best expressed in the coordinates
for k and we first give the required formulas for this change of coordinates. However,
having the change of coordinates into normal form in mind we already allow more
general changes of coordinates Φ and Ψ in which the time variable may be changed
according to τ = τ(t, p) and τ̄ = τ̄(t, x). The structure of the map k is retained.

In the new coordinates the singular set is given by

S′ =

{
(τ, ξ) ∈ D′ :

∂h

∂ξn
(τ, ξ) = 0

}
(4.2)

and the right-eigenvector to eigenvalue 0 is given by the coordinate vector field
(0, e′n)T = (0, ∂

∂ξn
)T . Let (ρ, v)T be the image of (0, ∂

∂ξn
)T under this coordinate

change, i.e., (
0
e′n

)
= DΦ(t, p)

(
ρ(t, p)
v(t, p)

)
.(4.3)

Since Ψ ◦ σ = k ◦ Φ, it follows that

DΨ(t, x)Dσ(t, p)

(
ρ(t, p)
v(t, p)

)
=

∂h

∂ξn
(τ, ξ)

(
0
e′n

)
(4.4)

and thus for (t, p) ∈ S, we have

0 = Dσ(t, p)

(
ρ(t, p)
v(t, p)

)
=

(
ρ(t, p)

∂x
∂p (t, p)v(t, p)

)
.(4.5)

Hence, v defines a C1,r time-varying vector field on D which gives the right-eigenvector
to eigenvalue 0 in the singular set S. Analogously, we can define a C1,r time-varying
covector field on D which gives the left-eigenvector w through the change of coordi-
nates in the range applied to the left-eigenvector

$(τ, ξ) =

(
−∂h
∂τ

(τ, ξ), . . . ,− ∂h

∂ξn−1
(τ, ξ), 1

)
(4.6)

for Dk(τ, ξ). Here we define

(π(t, p), w(t, p)) = $(τ̄ , η)DΨ(t, x(t, p))(4.7)
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and obtain

w(t, p)
∂x

∂p
(t, p) =

∂h

∂ξn
(τ, ξ)

∂ξn
∂p

(t, p).(4.8)

Using these changes of coordinates it is possible to relate the transversality conditions
in the different coordinate systems.

Lemma 4.1. If τ = t− t0, then for (τ, ξ) = Φ(t, p) ∈ S′ we have that

∂2h

∂ξ2
n

(τ, ξ) = w(t, p)
∂2x

∂p2
(t, p)(v(t, p), v(t, p)),(4.9)

∂3h

∂ξ3
n

(τ, ξ) = w(t, p)

(
∂3x

∂p3
(t, p)(v(t, p), v(t, p), v(t, p))

+3
∂2x

∂p2
(t, p)

(
∂v

∂p
(t, p)v(t, p), v(t, p)

))
,(4.10)

∂2h

∂τ∂ξn
(τ, ξ) = w(t, p)

∂2x

∂t∂p
(t, p)v(t, p).(4.11)

This lemma is proved by direct calculations which are given in detail in [21]. Note
that the assumption about the translation τ = t − t0 is sufficient to formulate the
transversality conditions which then allow the transformation into the normal form.
However, this transformation will require more general changes of coordinates in τ .

We now describe the normal forms for fold and cusp points, respectively. The
map σ, respectively, x, has a fold -singularity at (t0, p0) if and only if the vector (0, v0)
does not lie in the tangent space to S1 at p0, (0, v0)/∈T(t0,p0)S1. Equivalently, S1 and

the kernel of ∂x
∂p (t0, p0) are transversal. In the coordinates on D′ this is characterized

by

∂2h

∂ξ2
n

(0, 0) =

(
∂2h

∂τ∂ξn
(0, 0),

∂2h

∂ξ∂ξn
(0, 0)

)
·
(

0
e′n

)
6= 0(4.12)

or by

w0
∂2x

∂p2
(t0, p0)(v0, v0) 6= 0(4.13)

in the original coordinates. It follows from Whitney’s results (see, for instance [20,
Chap. III, Thm. 4.5]) that we can change the last coordinate on R′ so that σ is given
by the normal form

n : (τ, ξ1, . . . , ξn) 7→ (τ, ξ1, . . . , ξn−1, ξ
2
n),(4.14)

i.e., h(τ, ξ) = ξ2
n.

The map σ has a cusp-singularity at (t0, p0) if and only if the eigenvector (0, v0)
lies in the tangent space to S1 at p0, (0, v0) ∈ T(t0,p0)S1, which is equivalent to the

geometric fact that the (one-dimensional) kernel of ∂x
∂p (t0, p0) is tangent to S1. Thus,

∂2h

∂ξ2
n

(0, 0) = w0
∂2x

∂p2
(t0, p0)(v0, v0) = 0.(4.15)

In this case the precise normal form of the function h is determined by the order of
contact between the kernel of ∂x

∂p (t0, p0) and S1. This leads to a further classification
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Fig. 4.1. Simple cusp.

of these singularities of S1 into subclasses S1k , called Morin-singularities. Here we
are interested only in the case when this order of contact is one, the so-called simple
cusp. Even more specifically, we assume that the map σ takes on the singularity
transversely in the following sense:

∂2h

∂τ∂ξn
(0, 0) 6= 0 and

∂3h

∂ξ3
n

(0, 0) 6= 0,(4.16)

i.e.,

0 6= w0
∂2x

∂t∂p
(t0, p0)(v0, v0),(4.17)

0 6= w0

(
∂3x

∂p3
(t0, p0) (v0, v0, v0) + 3

∂2x

∂p2
(t0, p0)

(
∂v

∂p
(t0, p0)v0, v0

))
.(4.18)

Condition (4.17) implies that S1 is an (n−1)-dimensional manifold near (t0, p0), while
(4.18) states that the order of contact between S1 and ker∂x∂p (t0, p0) is one. Here [20,

Chap. VII, Thm. 4.1.] one can change the last coordinate on R′ so that σ is indeed
given by the normal form with function h(τ, ξ) = ξ3

n − τξn :

n : (τ, ξ1, . . . , ξn) 7→ (τ, ξ1, . . . , ξn−1, ξ
3
n − τξn)).(4.19)

Figure 4.1 gives the well-known picture of the simple cusp. It consists of a family
of cubic polynomials in ξn parametrized by τ . These polynomials have only the real
root ξn = 0 for τ < 0, but three real roots for τ > 0 and, correspondingly, a local
minimum and maximum which generate a region where the polynomial is 3:1. Figure
4.1(a) shows the graph of the function h projected into the (τ, ξn, h) subspace while
Figure 4.1(b) identifies the multiplicities of the images in the (ξn, h)-plane. Notice
that the image of the singular set in the (ξn, h)-plane is a cusp which separates a
region where the map is 1:1 from the region where the map is 3:1. On the singular
set itself the map is 2:1.
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5. The fold singularity in optimal control: Conjugate points. We now
describe the structure of the value-function in the state-space for a parametrized flow
of extremals near a fold point and its implications on the structures of optimal trajec-
tories. The shadow price lemma allows us to relate the singularity in the flow of ex-
tremals to a singularity in the value-function for the corresponding parametrized flow.
These considerations are in the sense that we analyze only the given parametrized flow,
but do not analyze possible other flows of extremals which can overlap in the same
region in the state-space. The theoretical considerations here provide what corre-
sponds to small pieces of a puzzle which gives the required local (in a neighborhood
of a reference point) structures which then can be pieced together to effect a regular
synthesis.

We assume that
(A) The matrix ∂x

∂p (t0, p0) has a simple eigenvalue 0 with right-eigen-vector v0 and

left-eigenvector w0 = vT0
∂λ
∂p (t0, p0) 6= 0.

(F) The transversality condition

w0
∂2x

∂p2
(t0, p0)(v0, v0) 6= 0(5.1)

holds.
Theorem 5.1. Suppose conditions (A) and (F) are met at (t0, p0) for a C1,3

parametrized flow of normal extremals. Then there exist (open) neighborhoods D of
(t0, p0) and R of (t0, x0) = (t0, x(t0, p0)) with the following properties:

(a) The singular set S restricted to D is an embedded n-dimensional submanifold
of fold points which splits D into two connected components D+ and D−,
D = D− ∪ S ∪D+.

(b) The map σ : D → R, (t, p) 7−→ (t, x(t, p)), restricted to D+ or D− is a C1,3

diffeomorphism and both restrictions map D+, respectively, D− onto a region
R+ ⊂ R,

σ(D+) = R+ = σ(D−).(5.2)

Thus, away from the singular set the map σ is 2:1 on D.
(c) Let σ−1

± : R+ → D±, denote the inverses to the restriction of σ to D± and
define the corresponding sections of the value-function for the parametrized
flow by

V± : R+ → R, V± = C ◦ σ−1
± .(5.3)

These functions and their gradients can be extended continuously to the fold
F = σ(S). The graphs of V+ and V− are tangent on F but do not intersect
otherwise over R+.

Thus the corresponding graphs of V + and V − over R+ do not intersect near
(t0, x0), x0 = x(t0, p0), other than on the fold-locus. In other words, V + entirely
lies to one side of V −. The structure of the parametrized flow of extremals and the
corresponding value-function is summarized in Figure 5.1.

Theorem 5.1 gives a geometric interpretation for what is essentially a classical
result. For if the flow of the parametrized extremals is a diffeomorphism until the fold
points are encountered, this structure implies the well-known results about strong
local extrema of extremal trajectories and conjugate points. In this case a smooth
solution to the Hamilton–Jacobi–Bellman equation is obtained in the state-space up to
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Fig. 5.1. Value near a fold.

the hypersurface F defined by the image of the fold-locus. Each of the parametrized
extremals is optimal with respect to any other trajectory which lies in the region
covered by the parametrized flow of extremals, hence is a strong local extremum in
the sense of the calculus of variations. At the fold-points optimality ceases. Thus
the fold-points correspond to conjugate points in the sense of the classical results for
strong local optimality. This is exactly the structure as it is already encountered in the
calculus of variations in the problem of minimum surfaces of revolution for smooth
extremals, the catenaries [4]. As discussed in the introduction, in optimal control
numerous formulations of similar results are well known, ranging from engineering
textbooks [8] to modern geometric formulations expressed in terms of symplectic
geometry [1]. Theorem 5.1 is included here for the sake of completeness since it
describes the behavior for the least degenerate singularity and thus the most common
degenerate behavior. Its proof within our framework of parametrized extremals is
elementary, yet cleverly uses direct calculations in normal form. Its proof, which can
be found in [21], is omitted here since the result itself is classical. Instead we illustrate
Theorem 5.1 for a simple but instructive example.

Example. Consider the one-dimensional control problem to minimize

J(u) =
1

2

∫ T

0

u2dt+
1

3
x(T )3,(5.4)

subject to ẋ = u, u ∈ R. The minimum condition implies that u = −λ and thus,
taking p = x(T ), a smoothly parametrized family of extremals is given by

x(t, p) = p+ (T − t)p2, u(t, p) = −p2, λ(t, p) = p2.(5.5)

Hence

S = {(t, p) ∈ [0, T ]× R : 2(T − t)p+ 1 = 0}(5.6)

and all points in S are fold points.

6. The simple cusp singularity in optimal control: Cut-loci. In a regular
synthesis, however, the picture of trajectories which stay optimal up to a surface of



1362 MATTHEW KIEFER AND HEINZ SCHÄTTLER

conjugate points or to a fold-singularity is not a familiar one. The reason lies in
the presence of simple-cusp points which, as will be seen now, determine the local
behavior of optimal trajectories in a neighborhood of the cusp point.

As above, we make the corank 1 singular point assumption (A). In particular, it
follows from the discussions in section 4 that there exists a C1,r time-varying vector
field v defined near (t0, p0) with the property that v is a right-eigenvector to eigenvalue
0 in the singular set. We now assume that
(C) If v0 denotes the value at (t0, p0) of v, then

w0
∂2x

∂p2
(t0, p0)(v0, v0) = 0(6.1)

and the following transversality conditions hold:

0 6= w0
∂2x

∂t∂p
(t0, p0)v0,(6.2)

0 6= w0

(
∂3x

∂p3
(t0, p0)(v0, v0, v0) + 3

∂2x

∂p2
(t0, p0)(

∂v

∂p
(t0, p0)v0, v0)

)
.(6.3)

We first summarize the mapping properties of the map σ near (t0, p0). The notion
of stratifications and compatible maps provides a precise formulation to describe the
multiplicities of the map σ near (t0, p0).

Definition 6.1. Let M be a Cr manifold. A Cr stratification S of M is a locally
finite decomposition of M into pairwise disjoint connected embedded Cr manifolds Si,
i ∈ I, which satisfies the so-called frontier-axiom, i.e., if S is an element of S, then
the frontier of S, FronS = (Clos S)\S, is a union of other elements of S which have
lower dimension. The elements of S are called strata.

Definition 6.2. Let M be a Cr manifold and let N be an embedded Cr subman-
ifold. A Cr stratification S of M is said to be compatible with N if N is a union of
strata.

Definition 6.3. Let M and N be Cr manifold and let F : M → N be a Cr map.
Let S and T be Cr stratifications of M and N , respectively. We say the stratifications
S and T are compatible with the map F if for every S ∈ S there exists a T ∈ T such
that the restriction of F to S is a Cr diffeomorphism onto T .

We summarize the crucial mapping properties of σ near a simple cusp point in
terms of these definitions.

Proposition 6.1. Suppose conditions (A) and (C) hold at (t0, p0) for a C1,4

parametrized flow of normal extremals. Then there exist (open) neighborhoods D of
(t0, p0) and R of (t0, x0) = (t0, x(t0, p0)) such that there exist stratifications D of D
compatible with the singular set S, and R of R which are compatible with the map σ.
Precisely, on D we have that

(a) The singular set S restricted to D is an n-dimensional embedded submanifold
of corank 1 singular points which splits D into two connected components
D0 and D̃1. There exists an (n − 1)-dimensional submanifold S0 embedded
into S which consists of simple cusp points and splits S into two connected
components S± which consist of fold points.

(b) There exists an n-dimensional embedded submanifold T which is tangent to S
at S0 such that S0 splits T into two connected components T+ and T− which

are contained in D̃1. The map σ is 1:1 on the submanifolds S0, S± and T±
with images

σ(S0) =: J0 σ(S±) = σ(T±) =: J±.(6.4)
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Fig. 6.1. Compatible stratification for the simple-cusp.

The submanifold T stratifies D̃1 into three connected components D1, D+,
and D−; σ restricted to each of the open submanifolds D0, D1, D+, and D−
is a C1,4 diffeomorphism with the following images

σ(D+) = σ(D0) = σ(D−) =: R0 σ(D1) =: R1.(6.5)

The sets J0, J±, R0, and R1 define the stratification R of R.
Thus the map σ is 1:1 on D1 and S0 onto R1 and J0, 2:1 on T±∪S± onto J±, and

3:1 from D− ∪D0 ∪D+ onto R0. The structure of the stratifications for the domain
and range for the map σ are illustrated in Figure 6.1.

The mapping properties of σ near a simple-cusp point are well known and hence
the proof is omitted. The nontrivial aspect of the construction lies in relating them
to the mapping properties of the parametrized value-function near the simple-cusp.

Theorem 6.1. Suppose conditions (A) and (C) hold at (t0, p0) for a C1,4

parametrized flow of normal extremals and let D and R, respectively, be the strat-
ifications of the (open) neighborhoods D of (t0, p0) and R of (t0, x0) = (t0, x(t0, p0))
constructed in Proposition 6.1. Let σ−1

κ : R+ → Dκ, κ ∈ {−1, 0, 1}, denote the
inverses to the restriction of σ to Dκ and define the corresponding sections of the
value-function for the parametrized flow by

Vκ : R+ → R, Vκ = C ◦ σ−1
κ .(6.6)

These functions and their gradients can be extended continuously to the fold subman-
ifolds J± in the respective domains and the graphs of V± and V0 are tangent on J±,
but do not intersect otherwise over R+. However, V+ and V− intersect in a cut-locus
Γ which is an n-dimensional embedded submanifold with J0 in its frontier.

The parametrized value-function is shown in Figure 6.2.
Proof: Since the frontier strata J± of R0 consist of fold points, the statements

about continuous extensions of Vκ and the corresponding gradients onto J± follow
from Theorem 5.1. We need to analyze the values Vκ(t, x) for a point (t, x) ∈ R0. Let

(t, x) = σκ(t, pκ), (τ, ξκ) = Φ(t, pκ).(6.7)
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Fig. 6.2. Value near a simple cusp point.

Then, for C ′ = C ◦ σ−1 and i, j ∈ {−1, 0, 1} we have

Vi(t, x)− Vj(t, x) = C(t, pi)− C(t, pj) = C ′(τ, ξi)− C ′(τ, ξj)(6.8)

and we will analyze the cost in normal coordinates. We first establish the values of
the derivatives of x′ = x◦σ−1 and C ′ on the cusp surface S′0. Lemmas 6.1 through 6.3
follow by direct calculations making the necessary change of coordinates into normal
form. We only indicate the proofs. Full details can be found in [21].

Lemma 6.1. For (τ, ξ) ∈ S′ we have

∂x′

∂ξn
(τ, ξ) = 0,

∂t′

∂ξn
(τ, ξ) = 0.(6.9)

On the cusp surface S′0 we have

∂2x′

∂ξ2
n

(τ, ξ) = 0,
∂2t′

∂ξ2
n

(τ, ξ) = 0,(6.10)

∂4x′

∂ξ4
n

(τ, ξ) = 0,
∂4t′

∂ξ4
n

(τ, ξ) = 0,(6.11)

6
∂2x′

∂τ∂ξn
(τ, ξ) +

∂3x′

∂ξ3
n

(τ, ξ) = 0,(6.12)

6
∂2t′

∂τ∂ξn
(τ, ξ) +

∂3t′

∂ξ3
n

(τ, ξ) = 0.(6.13)

Proof. Let σ′ = σ ◦ Φ−1. Then t′ = t(τ, ξ) and Ψ ◦ σ′ = n implies that

DΨ(t, x)

(
∂t′
∂ξn

(τ, ξ)
∂x′
∂ξn

(τ, ξ)

)
=

∂h

∂ξn
(τ, ξ)

(
0
e′n

)
,(6.14)
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which for (τ, ξ) ∈ S′ gives (6.9). The other relations follow by differentiating
(6.14).

In order to evaluate the derivatives of the cost C ′ on S′0 we need to account for
the fact that the change into normal form for the simple-cusp also requires that we
change the time variable as well, τ = τ(t, p). In the new coordinates, the shadow
price lemma transforms as follows.

Lemma 6.2.

∂C ′

∂ξn
(τ, ξ) = λ′(τ, ξ)

∂x′

∂ξn
(τ, ξ)−H ′(τ, ξ) ∂t

′

∂ξn
(τ, ξ),(6.15)

where

H ′(τ, ξ) = H(τ, λ′(τ, ξ), x′(τ, ξ), u′(τ, ξ)).

Proof. Differentiating C ′ = C ◦ Φ−1 we obtain

∂C ′

∂ξn
(τ, ξ) =

∂C

∂t
(t, p)

∂t

∂ξn
(τ, ξ) +

∂C

∂p
(t, p)

∂p

∂ξn
(τ, ξ).(6.16)

Using Lemma 3.1 and the analogous formula for ∂x′
∂ξn

(τ, ξ), (6.15) follows.

Lemma 6.2 allows us to evaluate the derivatives of C ′ on this singular set. By
(6.9) we have

∂C ′

∂ξn
(τ, ξ) = 0 for (τ, ξ) ∈ S′.(6.17)

Lemma 6.3. For (τ, ξ) ∈ S′0 we have

∂2C ′

∂ξ2
n

(τ, ξ) = 0,(6.18)

6
∂2C ′

∂τ∂ξn
(τ, ξ) +

∂3C ′

∂ξ3
n

(τ, ξ) = 0,(6.19)

18
∂3C ′

∂τ∂ξ2
n

(τ, ξ) +
∂4C ′

∂ξ4
n

(τ, ξ) = 0.(6.20)

Proof. These relations follow by differentiating (6.16) and using Lemma 6.2 to
evaluate the derivatives on S′0.

Having these basic relations available, we now evaluate the differences in the cost.
First we blow up coordinates to desingularize the singular set near the cusp point via

Θ : (−1, 1)× (0, δ) → (0, 3δ2)× (−δ, δ),(6.21)

(α, β) 7−→ (τ, ξn) = (3β2, αβ).

In these coordinates h is given by

h̃(α, β) = (αβ)3 − 3β2 · αβ = β3(α3 − 3α)
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and therefore the preimages of a point (t, x) = σ′(τ, ξ) ∈ R0 are given by the solutions
to the cubic polynomial

0 = µ3 − 3β2µ− β3(α3 − 3α).

Using another blow-up µ = βh, we can eliminate β and obtain the reduced equation

0 = h3 − 3h− (α3 − 3α) = (h− α)(h2 + αh+ α2 − 3).(6.22)

The solutions can therefore be analyzed in time-slices τ = const and are given by the
trivial root h0(α) = α corresponding to the preimage in D′0 and the two zeroes

h±(α) = −α
2
±
√

3

√
1−

(α
2

)2

(6.23)

corresponding to roots in D′∓ (note the reversal of signs). The properties of the
solutions hκ, κ ∈ {−1, 0, 1} given in the following lemma follow directly from the
definition or are immediately verified.

Lemma 6.4.

h2
±(α) + αh±(α) + α2 ≡ 3,(6.24)

h2
+(α) + h+(α)h−(α) + h2

−(α) ≡ 3,(6.25)

h+(α) + h−(α) + α = 0.(6.26)

We now compare the values of the functions Vκ, κ ∈ {−1, 0, 1}.
Proposition 6.2. Let (t, x) = σ′0(τ, ξ) and (τ, ξn) = (3β2, αβ). Then

V0(t, x)− V±(t, x) = C ′(3β2, αβ)− C ′(3β2, h±(α)β)(6.27)

=
1

72

∂4C ′

∂ξ4
n

(0, 0) (α− h±(α))
3
, β4 (α+ h±(α) + r±(α, β)) ,

where r±(α, β) is of order o(1) uniformly for all α ∈ [−1, 1], i.e., limβ→0+ r±(α, β) = 0
uniformly in α over [−1, 1].

Proposition 6.3. Let (t, x) = σ′0(τ, ξ) and (τ, ξn) = (3β2, αβ). Then

V+(t, x)− V−(t, x) = C ′(3β2, h+(α)β)− C ′(3β2, h−(α)β)(6.28)

=
1

72

∂4C ′

∂ξ4
n

(0, 0) (h+(α)− h−(α))
3

β4 (h+(α) + h−(α) + r0(α, β))

where r0(α, β) is of order o(1) uniformly for all α ∈ [−1, 1], i.e., limβ→0+ r0(α, β) = 0
uniformly in α over [−1, 1].

The proofs of these propositions are similar and we prove only Proposition 6.3.
Note the symmetry in the formulas which are identical if the roots are interchanged.

Proof. Writing C ′ as integral over its ξn derivative, we obtain

∆0(α, β) = V+(t, x)− V−(t, x) = C ′(3β2, h+(α)β)− C ′(3β2, h−(α)β)

=
1

2

(∫ 1

−1

∂C ′

∂ξn
(3β2, βγ0(α, s))ds

)
(h+(α)− h−(α))β,
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where

γ0(α, s) =
1

2
(1 + s)h+(α) +

1

2
(1− s)h−(α) = −α

2
+ s
√

3

√
1−

(α
2

)2

.

We now expand the integrand around β = 0. Using Lemma 6.3 it follows that

∆0(α, β) =
1

2

∫ 1

−1

{(
3
∂2C ′

∂τ∂ξn
(0, 0) +

1

2

∂3C ′

∂ξ3
n

(0, 0)γ0(α, s)2

)
β2 +

(
3
∂3C ′

∂τ∂ξ2
n

(0, 0)γ0(α, s)

+
1

6

∂4C ′

∂ξ4
n

(0, 0)γ0(α, s)3

)
β3 + o(β3)ds

}
(h+(α)− h−(α))β

=
1

2

∫ 1

−1

{
1

2

∂3C ′

∂ξ3
n

(0, 0)β2
[
γ0(α, s)2 − 1

]
+

1

6

∂4C ′

∂ξ4
n

(0, 0)β3
[−γ0(α, s) + γ0(α, s)3

]
+ o(β3)ds

}
(h+(α)− h−(α))β.

Now∫ 1

−1

(γ0(α, s)2 − 1)ds =

∫ 1

−1

[
1

4
(h+(α) + h−(α) + s(h+(α)− h−(α)))

2 − 1

]
ds

= −2 +
1

2
(h+(α) + h−(α))

2
+

1

6
(h+(α)− h−(α))

2

= −2 +
2

3

(
h+(α)2 + h+(α)h−(α) + h−(α)2

)
= 0

and∫ 1

−1

γ0(α, s)(γ0(α, s)2 − 1)ds =
1

2
(h+(α)− h−(α))

∫ 1

−1

s(γ0(α, s)2 − 1)ds

=
1

2
(h+(α)− h−(α))

2
(h+(α) + h−(α))

∫ 1

−1

1

2
s2ds

=
1

6
(h+(α)− h−(α))

2
(h+(α) + h−(α)) .

Since h+(α)−h−(α) = 2
√

3

√
1− (α2 )2 ≥ 3 for α ∈ [−1, 1], (6.28) follows. This proves

the proposition.
For α ∈ [−1, 1] we have α + h+(α) ∈ [1, 2] and α + h−(α) ∈ [−2,−1]. Since

h−(α) < α < h+(α) on the open interval (−1, 1), it follows that ∆±(α, β) has constant
sign on (−1, 1)× (0, δ) for δ sufficiently small. Since the sign of (α+ h±(α)) is given

by ±1, this sign is given by the nonzero sign of −∂4C′
∂ξ4
n

(0, 0). To see this, note that for

(τ, ξ) ∈ S′0
∂4C ′

∂ξ4
n

(τ, ξ) = 3
∂λ′

∂ξn
(τ, ξ)

∂3x′

∂ξ3
n

(τ, ξ)− 3
∂H ′

∂ξn
(τ, ξ)

∂3t

∂ξ3
n

(τ, ξ)(6.29)

and

∂H ′

∂ξn
(τ, ξ) =

∂λ′

∂ξn
(τ, ξ)

∂H ′

∂λ′
(τ, ξ) +

∂H ′

∂x′
(τ, ξ)

∂x′

∂ξn
(τ, ξ) +

∂H ′

∂u′
(τ, ξ)

∂u′

∂ξn
(τ, ξ).(6.30)
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But for (τ, ξ) ∈ S′

∂H ′

∂u′
(τ, ξ)

∂u′

∂ξn
(τ, ξ) =

∂H

∂u
(t, p)

(
∂u

∂t
(t, p)

∂t

∂ξn
(τ, ξ) +

∂u

∂p
(t, p)

∂p

∂ξn
(τ, ξ)

)
= 0

since ∂t
∂ξn

(τ, ξ) = 0 and in general ∂H
∂u (t, p)∂u∂p (t, p) ≡ 0 by (3.16). In addition, since

∂x′
∂ξn

(τ, ξ) = 0 on S′ we have that

∂H ′

∂ξn
(τ, ξ) =

∂λ′

∂ξn
(τ, ξ)f(τ, x′(τ, ξ), u′(τ, ξ)).(6.31)

Combining this with

∂3x′

∂ξ3
n

(τ, ξ) =
∂x

∂t
(t, p)

∂3t

∂ξ3
n

(τ, ξ) +
∂3x

∂p3
(t, p)

(
∂p

∂ξn
(τ, ξ),

∂p

∂ξn
(τ, ξ),

∂p

∂ξn
(τ, ξ)

)
(6.32)

+ 3
∂2x

∂p2
(t, p)

(
∂p

∂ξn
(τ, ξ),

∂2p

∂ξ2
n

(τ, ξ)

)
+
∂x

∂p
(t, p)

∂3p

∂ξ3
n

(τ, ξ),(6.33)

it follows that for (τ, ξ) ∈ S′0
∂4C ′

∂ξ4
n

(τ, ξ) = 3vT (t, p)
∂λ

∂p
(t, p)

[
∂3x

∂p3
(t, p) · (v(t, p), v(t, p), v(t, p))

+ 3
∂2x

∂p2
(t, p) ·

(
∂v

∂p
(t, p)v(t, p), v(t, p)

)]
,(6.34)

which is nonzero by the transversality condition (6.3).
Proposition 6.2 therefore implies that, away from the submanifolds S±—where

the graphs of V0 and V± are tangent—the graphs of V± lie either below or above the
graph of V0 depending on the sign in the transversality condition (6.3). Proposition
6.3 allows us to compare V+ and V−. It follows from this proposition and the identity
(6.26) that V+ and V− intersect if and only if

δ(α, β) = α− r0(α, β) = 0.(6.35)

Since limβ↘0+ r0(α, β) = 0, it follows that the only solution in the limit β ↘ 0 is
α = 0. Furthermore, limβ↘0+ δ(1, β) = 1 and limβ↘0+ δ(−1, β) = −1 so that we have
for some sufficiently small β0 > 0

δ(1, β) > 0 and δ(−1, β) < 0, 0 < β < β0.(6.36)

Hence, by the mean-value theorem there exists a zero in α ∈ (−1, 1) for all β ∈ (0, β0].
But

∂δ

∂α
(α, β) = 1− ∂r0

∂α
(α, β)(6.37)

and the limiting properties of r0(α, β) extend to ∂r0
∂α (α, β), since r0(α, β) is C4 in α on

[−1, 1]. Thus, ∂δ
∂α (·, β) is positive and hence, δ(·, β) is strictly increasing over [−1, 1].

The unique zero α = A(β) defines the cut-locus in the normal coordinates. By the
implicit function theorem the map β 7→ A(β) is C1 on (0, β0). The curve α = A(β)
separates [−1, 1] × (0, β0) into the open subsets {α < A(β)} and {α > A(β)} and



PARAMETRIZED FAMILIES OF EXTREMALS 1369

on each one of these ∆0(α, β) has a constant sign. The diffeomorphic image of the
n-dimensional embedded submanifold

(β, ξ1, . . . , ξn−1) 7→ (3β2, ξ1, . . . , ξn−1, A(β)β)(6.38)

under the map σ′ = σ ◦ Φ−1 defines the cut-locus Γ in R or (t, x)-space. This proves
Theorem 6.1.

This structure has several interesting and important implications on the structure
of an optimal synthesis near the image (t0, x0) of a simple-cusp point (t0, p0). Tra-
jectories x(·, p) different from x(·, p0) lose optimality in a neighborhood V of (t0, x0)
at the cut-locus prior to reaching the conjugate point at the fold-locus. Even though
these trajectories are strong local extrema until they reach the fold-locus, the portion
after the cut-locus will not be part of any optimal synthesis. These portions are no
longer optimal since there are better trajectories (namely the ones coming from D±
if the original trajectories are from D∓) which, however, are not close to the original
trajectories in the sense of a calculus of variations. This feature and the structure
of optimal trajectories are exactly the same, as it has been developed in [22] and is
described in detail in [32], for the codimension 0 case of time-optimal control to an
equilibrium point in R3.

Also note that it follows from Proposition 6.2 that the graph of V0 lies above the
graphs of V+ and V− if and only if

∂4C ′

∂ξ4
n

(0, 0) < 0,(6.39)

and in this case, the minimizing branches generate a viscosity solution to the Hamilton–

Jacobi–Bellman equation. If ∂4C′
∂ξ4
n

(0, 0) > 0, then this solution will be discontinuous.

However, since we consider only one parametrized flow of extremals and not the op-
timal control problem per se, it is not a priori possible to connect the second case to
the value function of the optimal control problem.

Example (see [10]). Consider the one-dimensional control problem to minimize

J(u) =
1

2

∫ T

0

u2dt+
1

2

(
x(T )4 − x(T )2

)
(6.40)

subject to ẋ = u, u ∈ R. As before, u = −λ, and now with p = x(T ), a smoothly
parametrized family of extremals is given by

x(t, p) = p− (T − t)(p− 2p3), u(t, p) = p− 2p3 = −λ(t, p).(6.41)

Hence,

S = {(t, p) ∈ (−∞, T ]× R : 6(T − t)p2 − (T − t) + 1 = 0}.(6.42)

Here xpp vanishes for p = 0 while xtp and xppp are nonzero at p = 0. Thus the point
(T − 1, 0) is a simple cusp point while all other singular points are fold points.

7. Conclusion. This structure of the parametrized value near a simple-cusp
point is interesting since it confirms that it is the more degenerate singularity, the
simple-cusp, which dominates the local behavior at the point over the less degenerate
fold-points nearby. Indeed the fold points become irrelevant and are not part of an
optimal (regular) synthesis. This, of course, immediately raises the question about
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the roles of even more degenerate singularities. The results of [22, 32] verify, how-
ever, that in dimension three the structure as it was described here is the typical one
(under codimension 0 assumptions on the Lie-brackets) also for time-optimal control
to an equilibrium point for a nonlinear system. This is consistent with the fact that
the fold and simple cusp singularities are the only generic singularities for maps be-
tween two-dimensional manifolds (with time generating the third dimension in the
parametrization). For higher-dimensional systems, however, this suggests that the
more degenerate singularities will play the decisive role. Naturally, the more degen-
erate the singularities are, the more difficult they are to analyze. Still, an analysis
of the Morin-singularities [20, Chap. VII, Thm. 4.1] does not appear to be impossi-
ble and the geometry of some of the more degenerate ones like the swallowtail- or
butterfly-catastrophe seems to be well understood [29]. Furthermore, generically the
most degenerate singularities occur only in isolated points and thus, having the con-
struction of a regular synthesis in mind, it may only be necessary to construct a few
local syntheses near reference points. However, in order to analyze higher-dimensional
systems, one probably needs to come up with the general structure relating singular-
ities in the parametrized flow of extremals to the corresponding local solutions of the
Hamilton–Jacobi–Bellman equation. Looking at the results of this paper, such a re-
lation may indeed exist. Both for the fold and the simple-cusp singularity, the graph
of the parametrized value exhibits the structure of the singular set of the next degen-
erate singularity, i.e., of a cusp for the fold and of a swallow-tail for the simple-cusp.
Whether this is a mere coincidence or part of a general pattern which generally holds
for transversal S1k singularities remains to be seen.

Acknowledgment. We would like to thank two anonymous referees for their
valuable suggestions.
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Abstract. Consider the problem of selecting the member of a parametrized family of curves that
best matches a given curve. This is a key step in determining proper values for adjustable parameters
in low-order plasma etching and deposition models. Level set methods offer several attractive features
for treating such problems. This paper presents a parameter estimation scheme that exploits the
level set formulation. The method is completely geometric; there is no need to introduce an arbitrary
coordinate system for the curves. Analytic results necessary for the application of gradient descent
algorithms are derived, and some preliminary numerical results are presented.

Key words. curve evolution, parameter estimation, level set methods, process modeling, semi-
conductor manufacturing
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1. Introduction. This work is motivated by the need for accurate low-order
phenomenological models of thin film etching and deposition processes. These pro-
cesses are central to the manufacture of microelectronic devices. Phenomenological
models are necessary because of the complexity of the surface chemistry and the
plasma-surface interactions. Typically these models lump together numerous un-
known rate constants into relatively few parameters [8, 14, 20, 21]. Reliable use of
these models for simulation or control then depends on the ability of the user to choose
the values of these parameters correctly. The parameter values may be selected based
on surface evolution data from scanning electron micrographs. To our knowledge, only
one study has investigated methods to optimize this process [8]. That work, while
successful, used a nongeometric cost function that requires the user to select points
in one-to-one correspondence on the actual and estimated surfaces. This selection
introduces an arbitrary component of unknown significance into the procedure and
places an undesirable burden on the user. In the following sections we introduce a
completely coordinate-free cost function that eliminates this arbitrary element.

In a recent series of papers Sethian and Adalsteinsson apply level set methods to
the simulation of feature development in a variety of semiconductor manufacturing
applications [1, 18, 19]. Level set methods provide a flexible framework for surface
evolution problems. String methods are the main alternatives to level set methods.
Here the surface is defined by points, which are advanced according to the surface
velocity. Two problems may occur if corners appear in the surface. First, if the
surface points are allowed to “bunch up” at a corner, the Courant–Friedrichs–Lewy
condition may be violated. Second, points on the surface may move past each other,
necessitating “delooping.” The level set framework is inherently immune to these
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problems. String methods may also become unwieldy when topological transitions
occur, as during merging or splitting of surfaces. Again, these transitions are handled
automatically using level sets. For a detailed discussion and a survey of the litera-
ture see [18]. Both corner formation and topological transition occur in etching and
deposition, making this a promising area for the application of level set methods.

Although we are motivated by plasma etching and deposition applications, as
described above, the problem we address here is more narrow in scope. We describe
a geometric cost function based on level set descriptions of both the curve to be
matched and the parametrized family. We then construct derivatives of the cost func-
tion in terms of the parameters. This allows us to apply the gradient descent class
of minimization methods. A simple example is presented, and the tasks remaining
before the results can be applied to the full problem are discussed. Several important
properties of the cost function are discussed.

Level set methods have been used in identification. Approaches to real-time esti-
mates of evolving features in plasma etching based on level sets have been put forth
in [2, 3, 4, 5]. Santosa devises a level set approach to reconstruct the shape of an
unknown object from a discrete set of measurements [16]. This is somewhat different
from our situation. In this paper we treat the case where the shape of the object is
itself the measurement.

2. Level sets. The approach presented here is general, but in this paper we
restrict our attention to curves in the plane. In the level set formulation, an oriented
curve C is represented by the zero level set (ZLS) of a level set function (LSF) Φ(x),
that is, C = {x ∈ R2 : Φ(x) = 0}. Clearly the choice of Φ is not unique. To remove
this nonuniqueness one may think of C as defining an equivalence class of LSFs on the
plane, where two such functions Φ and Ψ are defined to be equivalent if they have the
same signature, that is, if Φ and Ψ have the same sign (or are simultaneously zero) at
every point in R2. As usual when dealing with equivalence classes, it is convenient to
choose a canonical element. A good choice here is the signed distance function. For
any curve in the plane, and given some choice of norm, the magnitude of the signed
distance function at a point is the shortest distance (as defined by the norm) to the
curve. The signed distance function is negative if the point is inside the curve and
positive if the point is outside the curve. The choice of which component is inside
and which is outside is essentially arbitrary. In situations with physical meaning the
proper choice is generally obvious. Efficient algorithms exist for generating the signed
distance function given an arbitrary LSF, particularly when allowed freedom in the
choice of norms.

The real importance of the level set approach comes when considering evolving
curves. Here C : [0, 1]×[0, tf ]→ R2 is a parametrized curve evolving in time according
to the equation

∂C
∂t

= β̃(s, t, . . .)ν,(1)

where ν is the outward pointing unit normal to C. The speed function β̃ describes
the outward normal velocity of C and may depend on independent variables, on local
properties of the curve, or on global considerations [13]. In (1), β̃ is defined only on
the curve. Now the LSF too is time-dependent. The evolution of the LSF according
to (1) is governed by the following PDE:

Φt + β(x, t, . . .)‖∇Φ‖ = 0.(2)
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This PDE is derived as follows: The curve C(s, t) is represented by the ZLS of a
function Φ : R2 × [0, τ) → R. Assume that Φ is negative in the interior and positive
in the exterior of the zero level set. We consider the zero level set, defined by{

X(t) ∈ R2 : Φ(X, t) = 0
}
.(3)

We have to find an evolution equation of Φ, such that the evolving curve C(t) is given
by the evolving zero level X(t), i.e., C(t) ≡ X(t). By differentiating Φ(X(t), t) = 0
we obtain

∇Φ(X, t) ·Xt + Φt(X, t) = 0.(4)

For any level set, the following relation holds:

∇Φ

‖ ∇Φ ‖ = ν.(5)

Substituting (5) into (1) to eliminate ν, then placing the resulting expression for Ct
into (4), in place of Xt, gives (2). For more detail on the meaning of (2) when the
LSF fails to be differentiable everywhere in space, and for numerical approaches to
solving such cases, see [18] and the references therein.

All LSFs in the equivalence class must satisfy an equation like (2). Here β is a
function defined everywhere in the plane. Different choices for β are possible, but at
any instant they must all coincide on the ZLS itself, and there be equal to β̃. We will
call any β satisfying this condition admissible. To remove the nonuniqueness in the
definition of (2) we again turn to equivalence. Any admissible β will map a member
of the equivalence class of LSFs at time t0 into the proper equivalence class at time t.
The canonical signed distance function can be recovered from any other member of
the class as desired. This process is often referred to as renormalization. Note that
the evolution (2) will not, in general, preserve the signed distance function.

3. A metric for level set functions. The process of parameter identification
will require that we find the parameter values that give, in some sense, the closest
match to an observed evolution. To make this rigorous, we must define a metric for
LSFs that formalizes the idea of “distance.” We turn now to the construction of a
suitable function. Our main objective is to avoid the need to parametrize the curves.
Such parametrizations are intrinsically arbitrary, and place a burden on the experi-
ence and expertise of the end user. This is the motivation for defining a geometric
(by which we mean coordinate-free) cost function. The idea is presented in Figure 3.1.
Figure 3.1(a) shows two closed curves, one consisting of a single connected component,
the other consisting of two connected components. In all cases “inside” is taken to
be the bounded component of the plane defined by the curves. Since the two curves
are not identical, there should be a positive distance between them. We define this
distance to be the area of the region between the two curves. This area is shaded
light gray in Figure 3.1(b). The example shown in Figure 3.1 is abstract. A geometry
that might occur in thin film deposition into a trench or via is shown in Figure 3.2.
Here the points contained inside both curves are shaded dark, the points outside both
curves are unshaded, and the points inside one curve but not the other—that set of
points whose measure defines the distance—are shaded a light gray. That is, given
a pair of simple closed curves, C1 and C2, let the distance from C1 to C2, denoted
ρ(C1, C2), be the total area of points enclosed by either one curve or the other, but
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(a) Two curves. (b) Error area.

Fig. 3.1. Two curves. One (dashed) is a large ellipse. The other (solid) consists of two simply
connected components, a star and a small ellipse. The distance between the curves is found by
summing the areas of the shaded regions.

Fig. 3.2. The estimate (dashed) differs from the measurement (solid). The associated cost is
then the area between the two curves (light gray).

not both. In three dimensions or higher area is replaced by volume, etc. The defini-
tion is extended to any curve defined by a LSF on a compact domain by including
appropriate portions of the boundary.

Formally, let A and B be sets. Define the function ρ(A,B) on sets to be the
Lebesgue outer measure of the symmetric difference: ρ(A,B) = µ∗(S(A,B)), where
S(A,B) := (A \B) ∪ (B \A). The symbol \ denotes the usual set difference. Unfor-
tunately this is not a metric on sets, because sets that differ only by a set of measure
zero will have a distance zero from each other, but are not equal. This problem can
be resolved by defining two sets to be equivalent if ρ is zero. Then ρ is a metric on
the resulting quotient space [15]. This operation is justified physically in our applica-
tion since closed curves containing no area can be neglected, at least in terms of the
gross structure. Whether these curves have some physical significance at a smaller
length scale, or in terms of electrical or mechanical properties of the material, is an
interesting question, but beyond the scope of this paper. Having defined ρ(A,B) to
be a metric on sets in the above sense, we extend it to closed curves as follows: If I1
is the interior of curve C1, and I2 is the interior of curve C2, then ρ(C1, C2) = ρ(I1, I2).
Finally we overload the notation still further, and extend the metric to LSFs, as fol-
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φ2

φ1

0 0

φ1⋅φ2

I1 \ I2 I2 \ I1

I2 ∩ I1

Fig. 3.3. Product method for constructing error area from level sets.

lows: If C1 is the ZLS of Φ and C2 is the ZLS of Ψ, then ρ(Ψ,Φ) = ρ(C1, C2). For the
last extension, it is again necessary to consider a quotient space of the set of all LSFs.
Here the equivalence relation defined earlier is weakened slightly to Φ(x) ∼ Ψ(x) if
sign(Φ) = sign(Ψ) almost everywhere. In the context of this paper these are technical
details, and do not affect the computations. We refer to the metrics thus defined on
plane curves and LSFs as the area metric, and refer to its value as the error area.

The Hausdorff metric is often used to compare curves in the plane. The “asym-
metric Hausdorff metric” between curves C1 and C2 is defined, given some norm, by
placing spheres of radius ε on each point of C1. The infimal value of ε for which
the union of these spheres contains every point of C2 is the asymmetric Hausdorff
metric from C1 to C2. The (symmetric) Hausdorff metric is the larger of the two
asymmetric Hausdorff metrics. This paper is not intended as a comparison of the two
metrics—only the area metric will be considered below. Much of the development can
be accomplished using the Hausdorff metric in place of the area metric. In the context
of the etching and deposition problems that motivate this work, the Hausdorff metric
has advantages and disadvantages. For example, consider a case where the estimated
curve agrees with the measured curve, except for the presence of a tiny bubble far
from the free surface. The error according to the Hausdorff metric will be large, even
though the bubble would most likely have little physical significance. The area metric
would give a small error in this case. On the other hand, given two voids, the area
metric does not distinguish between the situation where they are almost touching,
and the situation where they are far apart. This potentially troublesome behavior
does not occur with the Hausdorff metric.

3.1. The product method. When the estimate and the measurement curve
are both characterized by LSFs, the area metric is easy to calculate. If the two LSFs
are multiplied pointwise, the result is a new LSF, which we call the product LSF. The
ZLS of the product LSF defines a curve, and the area of the interior of this curve
is exactly the desired value. To see this, let C1 be the ZLS of Φ and C2 be the ZLS
of Ψ. Recall that the distance between C1 and C2 is the measure of the symmetric
difference between their interiors. That is, in terms of the LSFs, the measure of the
set of points for which one LSF takes a positive value, while the other takes a negative
value. If we form Γ(x) = ΦΨ, we see that ρ(C1, C2) is just the area of the interior of
the ZLS corresponding to Γ. Figure 3.3 is a graphical depiction of this construction
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in one dimension. To calculate the area we generate C3—the contour corresponding
to the ZLS of Γ(x) (note that the contour is now composed of oriented curves and is
no longer just a set)—and apply Green’s theorem:

ρ =
1

2

∫
C3
〈C3, ν〉 ds,(6)

where 〈·, ·〉 is the vector inner product. Here, as elsewhere in this paper, s stands
for the arc length parameter [9]. Note that it is necessary to assign an LSF to the
measurement.

In the procedure above, generating the contour corresponding to the ZLS of Γ is
a key step. A geometric algorithm to accomplish this has been developed by Siddiqi,
Kimia, and Wang, and is presented in [17].

3.2. The symmetric difference method. In the preceding section the product
LSF was used to define the error area. In this section we present an alternative that
has better numerical properties. Consider the interior of the ZLS as a set, and note
the following relationships between operations on LSFs and set operations on the
interiors.

1. Given a LSF Φ, and denoting the interior of the ZLS of Φ as int(Φ), then
int(−Φ) = int(Φ)c. That is, the interior of the negative of the ZLS is the
complement of the interior of the ZLS.

2. Given two LSFs, Φ and Ψ, then int(max(Φ,Ψ)) = int(Φ) ∩ int(Ψ).
3. Given two LSFs, Φ and Ψ, then int(min(Φ,Ψ)) = int(Φ) ∪ int(Ψ).

The symmetric difference between sets A and B is defined as S(A,B) =
(A∩Bc)∪ (B ∩Ac). It can be shown that S(A,B) = (A∪B)∩ (A∩B)c. Identifying
A with int(Φ) and B with int(Ψ), we define

Θ = max(θ,−θ),(7)

where,

θ = min(Φ,Ψ),(8)

θ = max(Φ,Ψ).(9)

And it is seen that the error area is the Lebesgue measure of the interior of Θ. We
refer to Θ as the symmetric difference LSF.

This formulation is numerically preferable to that of the previous section because
if the gradients of the LSFs are near unity everywhere, then the gradient of the
symmetric difference LSF will be also. In contrast, the gradients of the product LSF
are not preserved. However, even for the symmetric difference method, away from the
ZLS the signed distance function is not preserved. To see this, consider the case of
the two LSFs, Φ(x, y) = x and Ψ(x, y) = y, whose interiors are the left half-plane and
lower half-plane, respectively. These LSFs correspond to the signed distance function
in the 1-norm or 2-norm. The union of their interiors is the interior of the level set
function Θ = min(Φ,Ψ). The gradient of Θ has unity magnitude everywhere on the
ZLS, except at the corner at the origin. To see that the signed distance function is
not preserved, consider the point (−1,−1). Although its distance from the ZLS is 2
(in the 1-norm) or

√
2 (in the 2-norm), the value of Θ at (−1,−1) is −1.
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4. Parametrized level sets. Ultimately we wish to parametrize the speed func-
tion β. In this paper however, we consider the simpler case of a parametrized level set.
For the present we suppress also the time dependence of the curves. Our objective
then is as follows: We are given a measured curve, M, which is the ZLS of Φ(x). We
also have a parametrized family of level set functions, Ψ(x;λ). Let L(λ) be the ZLS
of Ψ(x;λ). We wish to find the value of the parameter vector λ such that L(λ) is
closest to M.

One way to proceed is to treat the metric as a cost function and seek to minimize

J(λ) = ρ(M,L(λ))(10)

or, in terms of Green’s theorem, to minimize

J(λ) =
1

2

∫
E
〈E , ν〉 ds,(11)

where E is the ZLS of

Γ(x;λ) := Φ(x)Ψ(x;λ).(12)

We wish to apply gradient descent methods to accomplish this minimization. To do
this, we need to calculate the gradient ρi, where we denote partial differentiation with
respect to λi by a subscript i.

For the smooth segments of the curve we have

ρi(λ) =

∫
E
〈Ei, ν〉 ds.(13)

Equation (13) is derived as follows: Let θ parametrize the curve and take values from
0 to 2π regardless of the value of λ. Of course, this parameter is, in general, no longer
the arc length. Now, writing E explicitly as (x, y), the tangent vector explicitly as
(xθ, yθ)/

√
x2
θ + y2

θ , the outward normal ν as (−yθ, xθ)/
√
x2
θ + y2

θ , and recalling that

ds =
√
x2
θ + y2

θ dθ,

ρ =
1

2

∫ L(λ)

0

〈E , ν〉 ds(14)

=
1

2

∫ 2π

0

〈E , (−yθ, xθ)〉 dθ.(15)

Differentiating inside the integral, and using the fact that the limits of integration no
longer depend on λ,

ρλ =
1

2

∫
E
〈Eλ, ν〉 ds+

1

2

∫ 2π

0

〈E , (−yθλ, xθλ)〉 dθ.(16)

Differentiation by λ and by θ commute. Integration of the second term by parts gives

1

2

∫ 2π

0

〈E , (−yθλ, xθλ)〉 dθ = 〈E , (−yλ, xλ)〉|2π0 −
1

2

∫ 2π

0

〈Eθ, (−yλ, xλ)〉 dθ.(17)

The leading term in this expression is zero because the curve is closed. To evaluate
the remaining term, write the vectors explicitly.

−1

2

∫ 2π

0

〈Eθ, (−yλ, xλ)〉 dθ = −1

2

∫ 2π

0

〈(xθ, yθ), (−yλ, xλ)〉 dθ(18)
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= −1

2

∫ 2π

0

(−xθyλ + xλyθ) dθ(19)

=
1

2

∫ 2π

0

〈(xλ, yλ), (−yθ, xθ)〉 dθ(20)

=
1

2

∫
E
〈Eλ, ν〉 ds.(21)

Substituting this result into (16) gives (13).
Now consider the change in E corresponding to a change in the ith parameter

λi. We write Γ(X(s;λ);λ) = 0. So, Γi + 〈∇Γ, Ei〉 = 0. In fact, differentiation with
respect to a parameter gives the same form we found when we derived the evolution
equation (2), namely Γi+ 〈Ei, ν〉‖∇Γ‖ = 0. This time, however, we arrange the terms
as follows:

〈Ei, ν〉 = − Γi
‖∇Γ‖ .(22)

Now, substituting (22) into (13), we obtain

ρi = −
∫
E

Γi/‖∇Γ‖ ds.(23)

The derivatives of Γ are replaced by Γi = ΦΨi, and ∇Γ = Φ∇Ψ + Ψ∇Φ. Since Φ = 0
on M and Ψ = 0 on L,

ρi = −
∫
M∪L

ΦΨi/‖(Φ∇Ψ + Ψ∇Φ)‖ ds(24)

= −
∫
L

ΦΨi/‖Φ∇Ψ‖ ds(25)

= −
∫
L

sign(Φ)Ψi/‖∇Ψ‖ ds.(26)

5. Corner effects. The formulas (13) and (26) of the previous section apply
only to the smooth portion of the curves, and the contours will fail to be smooth at
a finite number of corners. If the original curves are smooth, which we assume here
for convenience, then the error contours defined by the ZLS of the product LSF will
have corners only where the original curves intersect. It is now shown that, to first
order, the contribution at each of these corners is zero.

Let M be the measured curve, L be the original estimated curve, corresponding
to some nominal value for the parameter vector, and L′ be the estimated curve at
some new parameter vector, obtained by varying only the element λi by ∆λi. The
change in the curve along the outward normal ν, denoted δi, will be

δi = 〈(∂L/∂λi)∆λi, ν〉(27)

= 〈Li, ν〉∆λi.(28)

We assume that Li is continuous. Now consider some neighborhood of each cor-
ner point, small enough that 〈Li, ν〉 may be treated as approximately constant in-
side that neighborhood and constructed so as to intersect every curve in the family
L + 〈Li, ν〉t, t ∈ [0,∆λi], at a right angle. We also choose the neighborhood suffi-
ciently small that the segments ofM and L contained within it may be approximated
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Fig. 5.1. Close-up of corner effects.

arbitrarily closely by straight lines. Figure 5.1 shows one such neighborhood, which
we denote as Ω. Outside of these neighborhoods (13) holds; we now calculate the
difference in one such neighborhood between ρi as predicted by (13) and the actual
ρi. The sum of all such terms will give the total value required to correct the smooth
approximation to ρi. Denote the length of the curve L that lies in both Ω and the
interior of M by SI , and the length of L in Ω but outside of M by SE . The neigh-
borhood is chosen small enough that 〈Li, ν〉 is approximated arbitrarily well by a
constant value. Hence, inside Ω, (13) becomes

ρsi = (SE − SI)〈Li, ν〉,(29)

where we use the fact that the outward normal to L coincides with the outward
normal to the ZLS of the product LSF on the exterior of M and is opposite to it on
the interior ofM. The superscript s indicates that this is the smooth approximation.
Then

∆ρs = ρsi∆λi = SEδi − SIδi.(30)

Or, in terms of the regions shown in Figure 5.1,

∆ρs = A1 − (A2 +A3 +A4).(31)

However, in terms of the regions shown in Figure 5.1, the actual change in the area
metric is

∆ρa = A1 +A2 − (A3 +A4).(32)

So the corrected expression for ∆ρa is

∆ρa = ∆ρs + 2A2 = ∆ρs + δili.(33)
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Dividing through by ∆λi gives

∆ρa

∆λi
=

∆ρs

∆λi
+ 〈Li, ν〉li.(34)

As ∆λj goes to zero this becomes

∂ρa

∂λi
=
∂ρs

∂λi
+ 〈Li, ν〉li.(35)

So 〈Li, ν〉li is the correction term that must be applied to (13) or (26) to account for
the corner. Writing li in terms of the corner angle, θ, we see that li = δi/ tan θ =
〈Li, ν〉∆λi/ tan θ. Thus, as ∆λi goes to zero, the correction term 〈Li, ν〉2∆λi/ tan θ
vanishes, and so the corners do not affect the calculation of the first derivative. On
the other hand, it is clear that for small angles of intersection, the region for which
a first-order approximation to the area metric is accurate will be very small. There-
fore we anticipate that such geometries will cause significant numerical difficulties in
minimization.

For the case in which the curve itself has corners, the gradients calculated by (26)
will require correction. We will not consider such curves in the present paper. For a
treatment of corners in a related context see [3].

5.1. Gradients by the symmetric difference method. To derive the gra-
dient using the symmetric difference method we replace the product LSF Γ in (12)
with the symmetric difference LSF Θ from (7). This substitution does not affect the
calculation until (23). There we find

Θi =

 Ψi, Ψ = 0,Φ > 0,
−Ψi, Ψ = 0,Φ < 0,

0 otherwise,
(36)

where the case that both Φ and Ψ are zero along a measurable portion of the curve
is neglected. This corresponds to a degenerate LSF, and the numerical scheme will
typically not detect such a segment, since no sign change occurs. To see that (36)
is correct, note that almost everywhere on the ZLS of the symmetric difference LSF
either Φ or Ψ, but not both, is zero. When Φ is zero then the ZLS is locally determined
only by Φ. Since Φ has no dependence on parameters, Φi, and so Θi, is zero. When
Ψ = 0 the ZLS is locally determined only by Ψ. Then

θ = min(Φ,Ψ) =

{
Φ, Φ < 0,
Ψ, Φ > 0.

(37)

θ = max(Φ,Ψ) =

{
Ψ, Φ < 0,
Φ, Φ > 0.

(38)

And so,

Θ = max(θ,−θ)=

{
max(Φ,−Ψ), Φ < 0,
max(Ψ,−Φ), Φ > 0.

(39)

=

{ −Ψ, Φ < 0,
Ψ, Φ > 0.

(40)
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Taking the gradient gives

∇Θ =

{ −∇Ψ, Φ < 0,
∇Ψ, Φ > 0.

(41)

So the final expression for ∂ρ/∂λi becomes

ρi = −
∫
L

sign(Φ)Ψi/‖∇Ψ‖ ds.(42)

That is, the expression for the gradient is the same for both the product LSF and
the symmetric difference LSF. Since the area metric and its gradient are the same
in both methods, it is natural to ask why one differs from the other. The answer is
that the numerical implementation of the contour tracing algorithm will give different
results. In the case where both LSFs are signed-distance functions, the symmetric
difference method results in a LSF whose intersection with any grid line is piecewise
linear. Therefore the interpolation routines used to locate the zeros will give better
results for this case. However the gradient calculation is an integral over the ZLS of
the estimate only. Therefore the method chosen does not affect the computation of
the gradient.

6. Examples. Here we consider two simple examples. In the first, the mea-
sured curve M is a circle of radius R, centered on (x0, y0). Choosing the canonical
LSF to represent the curve, we write Φ(x, y) =

√
(x− x0)2 + (y − y0)2 − R. As a

parametrized LSF we also choose a circle, parametrized by the position of its center,
and its radius:

Ψ(x, y;xc, yc,Π) =
√

(x− xc)2 + (y − yc)2 −Π.(43)

Note that ‖∇Ψ‖ = ‖∇Φ‖ = 1. The derivatives of the estimated LSF with respect to
the parameters are calculated exactly, as follows:

Ψxc = − (x− xc)√
(x− xc)2 + (y − yc)2

,(44)

Ψyc = − (y − yc)√
(x− xc)2 + (y − yc)2

,(45)

ΨΠ = −1.(46)

In the optimal solution the curves match exactly, and the cost function is zero.
For the second example the parametrized level set is unchanged, but the measured

curve is taken as an ellipse, that is, the ZLS of Φ(x, y)=
√

((x−x0)/a)2+((y−y0)/b)2−
1. This leaves the calculations unchanged, but the optimal estimate no longer gives a
perfect match.

6.1. Area metric and derivative computation. The computation of the area
metric and its gradient to parameter variation was checked using five static circular
geometries; see Figure 6.1. In the first, the estimated curve is a circle completely
contained within the measured circle. In this case the area metric is the difference
in the areas, the gradient terms ρxc and ρyc are zero, and ρΠ is the negative of the
circumference. In the second case, the positions are reversed, with the measurement
contained in the estimate. The only difference between this and Case I is the sign of
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Fig. 6.1. Cases for testing area metric and gradient computations.

the gradient term corresponding to the radius. In Cases III–V the estimated circle
lies on the measured circle in such a way that half the boundary of the estimate lies
inside the measured circle and half outside. This should result in ρΠ = 0. In Case
III the center of the estimated circle is displaced from the center of the measurement
only in the x direction, in Case IV, only in the y direction, and in Case V, in both x
and y. The gridsize was 0.5 in both the x and y directions for all calculations. Table
6.1 compares the computed results to the theoretical values. Because the gradient
calculations depend only on the ZLS of the estimated LSF, the gradients are the
same for the two calculation methods. However, the symmetric difference method
appears to be the more accurate way to calculate the cost function itself.
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Table 6.1
Computed cost function and gradient vs. actual values (h = 0.5).

ρ ρxc ρyc ρΠ

Theory 160.221 0 0 –43.982
Case I Product 159.083 0.000 0.000 –43.969

Sym. Diff. 160.216 0.000 0.000 –43.969
Theory 138.230 0 0 75.398

Case II Product 135.274 0.000 0.000 75.390
Sym. Diff. 138.183 0.000 0.000 75.390
Theory 310.457 12 0 0

Case III Product 310.119 11.991 0.000 0.160
Sym. Diff. 310.314 11.991 0.000 0.160
Theory 296.042 0 20 0

Case IV Product 295.496 1.000 19.967 –0.359
Sym. Diff. 295.869 1.000 19.967 –0.359
Theory 259.060 –19.799 –19.799 0

Case V Product 257.962 –19.002 –20.532 –1.091
Sym. Diff. 258.725 –19.002 –20.532 –1.091
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(a) Product method. (xc, yc) = (1.5,

1.5), ρ = 7.143.

(b) Product method. (xc, yc) = (1.8,

1.8), ρ = 0.2456.
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(c) Symmetric difference method.

(xc, yc) = (1.5, 1.5), ρ = 8.588.

(d) Symmetric difference method.

(xc, yc) = (1.8, 1.8), ρ = 0.7756.

Fig. 6.2. Contour tracing using (a, b) the product method and (c, d) the symmetric difference
method. True and estimated curves are dotted. The true curve is a circle of radius 4 centered at
(2, 2). The estimated curve is a circle of radius 4. The centers are as noted. The resulting cost
functions are also given. h = 0.5.
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Fig. 6.3. The cost function ρ = π|R2 −Π2| for R = 5.

6.2. Contour tracing. The error calculation becomes more difficult as the es-
timate approaches the true value. The reason is that the contour defining the error
area becomes difficult to trace accurately. In this section, we examine this behavior
more closely and compare the results from the product method with the results from
the symmetric difference method. The test case is a circle centered at (2,2) with a
radius of 4. Figures 6.2(a) and 6.2(b) show the true curve compared to a series of
progressively closer estimates (both true and estimated curves are dotted) with the
computed contours as calculated by the product method. Figures 6.2(c) and 6.2(d)
show the same test using the symmetric difference method. Again, the gridsize in
both the x and y directions is 0.5. Although both methods struggle with the contour
as the curves become close, the symmetric difference method does a better job—as is
evident from the plots and the computed values of ρ. The contour tracing algorithm
implemented here is crude. Linear interpolation is used to locate zero crossings on
the computational grid, and those points are connected to form contours. No shock
placement logic is currently used. Improving the error calculation further requires
either a smaller gridsize or a higher order interpolation method for contour tracing.

6.3. Numerical properties. The first example, in which both the measured
and estimated curves are circles, gives several useful insights into the numerical proper-
ties of this problem. Consider the case in which the circles are concentric, and the only
free parameter is the estimated radius, Π. Then the cost function is ρ = π|R2 −Π2|,
where R is the true radius. Figure 6.3 shows this cost function. The function is
nonsmooth and is not well approximated by a quadratic at the optimal point. The
gradient is ρΠ = (2π) sign(Π− R) Π. The first derivative is undefined at the optimal
point, and the magnitude of the gradient does not go to zero at the optimum.

Because of the presence of the absolute value in the area metric, we refer to
direct minimization of this cost function as minimizing the 1-norm in the following
discussion. The differentiability problem can be partially addressed by forming the
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cost function

J = 1
2ρ(M,L(λ))2.(47)

We refer to this cost function as the 2-norm. The 2-norm and its derivatives, Ji = ρρi,
are evaluated using the formulas derived above. Using this cost function, the case
shown above becomes differentiable everywhere with zero gradient at the optimal
point; in general we expect the 2-norm to be smoother than the 1-norm, but can-
not guarantee differentiability. Both optimization strategies are illustrated in the ex-
ample.

For either formulation, when the interiors of the two curves are disjoint, the es-
timate will converge to a local minimum. Namely, the estimated curve will simply
decrease in radius until it vanishes (unless the parameter values are constrained).
This observation holds true in general, and care must be taken to avoid either start-
ing the minimization with disjoint interiors, or allowing such a situation during the
minimization process.

In the case of a circular estimated curve, it is easy to prevent the interior of the
initial guess from being disjoint with the interior of the measured curve. To do so
it is sufficient to center the estimate at the origin, and then pick the initial radius
sufficiently large. This may seem to be special to the example, but it is not. Consider
the c-level set, {x ∈ R2 : Ψ(x, t) = c}. If we use the signed distance function for Ψ,
when c is sufficiently large, the measured curve must be contained in the interior of
the estimate. So we replace Ψ(x;λ) by Ψ̃(x; λ̃), where Ψ̃ = Ψ− c, and λ̃ = (λ, c). Of
course, this does not guarantee that subsequent iterations will not cause the interiors
to become disjoint.

6.4. Numerical minimization results. The 2-norm is expected to be smooth-
er than the 1-norm. Reflecting this difference, two different methods were chosen for
the minimization. The 2-norm was minimized using the Broyden–Fletcher–Goldfarb–
Shanno (BFGS) method [10]. This method makes a quadratic approximation to the
cost function. The 1-norm, for which a quadratic approximation is expected to be poor
near the optimum, was minimized using the method of steepest descent. In both cases
the line search used was the one described by Fletcher [10, p. 34], with standard choice
of parameters ρ = 0.01, τ1 = 9, and cubic interpolation. The line search accuracy
parameter σ was set to 0.9 for the BFGS algorithm (inexact line search), and 0.1
for the steepest descent algorithm (exact line search). The specific implementation
of these algorithms was the TOMLAB optimization environment package in Matlab.
For more information see [11, 12].

To get some feel for the effects of discretization, the minimizations were carried
out first with the true curve centered on a grid point (the origin) and concentric with
the initial estimated circle, and next with the center of the true curve not on a grid
point, and with the true curve not concentric with the initial estimated circle. In the
cases where the true curve is circular the actual optimal estimate is obvious; in the
cases where the true curve is elliptical it is necessary to calculate the optimal estimate.
Assuming that the optimal estimate is concentric with the true ellipse, this calculation
is quite easy. Under this assumption only one parameter is free—the radius of the
estimated circle. Then 〈EΠ, ν〉 is unity everywhere on the curve, so (26) reduces to
ρΠ = SI−SE , where SI and SE are the total length of the arcs of the estimated circle
inside and outside the ellipse, respectively. There are two such arcs inside the ellipse,
which by symmetry are of equal length. Likewise there are two arcs of equal length
outside the ellipse. Setting ρΠ = 0 at the optimal point, we see that all four arcs



ON PARAMETER ESTIMATION USING LEVEL SETS 1387

Table 6.2
Numerical minimization results.

Case Method xc? yc? Π? ρ? NI Nf

True 0.0 0.0 8.0 0.0
Centered Circle 1-norm −7.257 · 10−16 −8.844 · 10−16 8.000 0.0 1 8

2-norm −7.257 · 10−16 −8.844 · 10−16 8.000 0.0 1 8
True 4.1 2.4 8.0 0.0

Skewed Circle 1-norm 3.959 2.465 8.065 0.6498 6 67
2-norm 3.775 2.373 7.913 3.642 14 67
True 0.0 0.0 7.071 80.44

Centered Ellipse 1-norm −8.343 · 10−16 −1.017 · 10−16 6.953 78.21 2 25
2-norm −8.343 · 10−16 −1.017 · 10−16 6.953 78.21 2 25
True 2.6 −4.1 7.071 80.44

Skewed Ellipse 1-norm 2.749 −4.108 7.033 78.15 10 105
2-norm 2.448 −4.128 7.110 78.40 11 33

must have the same arc length. Therefore the angle defined by each arc must be π/2.
Writing the equation for the ellipse in polar form r = r(θ), in a coordinate system
with origin on the center point of the ellipse, we see that the optimal radius Π? of
the estimated circle is just given by Π? = r(π/4). For the ellipse (x/a)2 + (y/b)2 = 1
used in the examples, where a = 5

√
5 and b = a/2, that gives Π? = 5

√
2 ≈ 7.071.

Once this value has been obtained, the corresponding error area may be calculated by
direct integration. In the cases considered below the optimal value is approximately
80.44.

All cases used the symmetric difference method to calculate the area metric, and
the gridsize was 0.5 in the x and y directions. That is, the computational grid was 61
by 61 points square. The value of Π was constrained to be greater than the gridsize h.
The first line search presented a problem, as the steps taken were much too large, and
the first estimate often had an interior disjoint with the true curve. This situation
leads to convergence to a nonglobal minimum. The problem was prevented by using
the normalized gradient, rather than the gradient itself, for the first line search only.

Three tests for convergence were applied. Convergence condition 1 is an absolute
change of less than 10−10 in the norm of the difference of sequential estimates of the
parameter vector. Convergence condition 2 is a relative reduction in the cost function
of less than 10−10 in ten consecutive iterations. Convergence condition 3 is that the
calculated cost is less than or equal to a specified lower limit (zero in this case).
Convergence condition 4, used only for the BFGS method, is that the norm of the
gradient is less than 10−1.

In all cases except the first the algorithms stopped because of convergence con-
dition 1. However, this test does not always indicate small search steps. When the
accuracy of the function and gradient computation is not sufficient or when we have
an ill-conditioned problem the convergence may be due to a zero or close-to-zero step
length. The directed derivative is negative but very small and the line search cannot
reduce the objective function. In such cases the optimization algorithm terminates
too early, and a separate analysis is needed to determine how far from the local op-
timum we are. We get these premature stops for our last three test examples, but
as we know the true answer it is clear that the result is acceptable. One reason for
premature termination may be the lost accuracy in the contour tracing algorithm. As
has been previously stated, our implementation is crude and may be improved.

The results are summarized in Table 6.2. There the optimal parameter estimates
are compared with the true values. The number of iterations required for conver-
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(a) Direct minimization of area metric.
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(b) Minimization of J = 1
2
ρ2.

Fig. 6.4. True curve is circle (dashed). Initial estimate (light solid) is circle of radius 15
centered on (0, 0). (a) Steepest descent algorithm converges to final estimate (heavy solid) in 6
iterations (dotted). (b) J = 1

2
ρ2. BFGS algorithm gives final estimate (heavy solid) in 14 iterations

(dotted).

gence, NI , is listed, as are the total number of function evaluations, Nf (which for
our test cases is also the total number of gradient evaluations), and the computed
area metric of the final solution. Note that the computed values can be less than the
true minimum because of errors associated with discretization and contour tracing.

In the case of the centered circle, both the steepest descent minimization of the
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Fig. 6.5. True curve is ellipse (dashed). Initial estimate (light solid) is circle of radius 15 cen-
tered on (0, 0). Both minimization schemes converge to final estimate (heavy solid) in 2 iterations.
Results are identical for the two methods.

1-norm and the BFGS minimization of the 2-norm converge immediately to the op-
timal solution with very little error on the first line search. The results of the two
methods are identical. This is expected, since the gradients are normalized on the first
line search, and these methods are using the same search step in the first iteration.
The true curves, starting curves, final estimate, and intermediate curves for the re-
maining cases are shown in Figures 6.4–6.6. The steepest descent minimization of the
1-norm does fairly well for the skewed circle. The relatively poor performance of the
BFGS minimization of the 2-norm is partly due to the inaccurate line search for the
first normalized gradient step. Away from the optimum the gradient of the 2-norm
is very large. This leads to a very large second step that hits the lower constraint on
Π, overshoots the minimum, and changes the center of the approximating circle too
much. This suggests a two-phase algorithm, with one or more normalized gradient
steps with accurate line search, before switching to the BFGS method. Possibly the
1-norm should be used as the objective function for the first phase and the 2-norm
for the second.

Another possible contribution to errors when using the BFGS method is due to
the extremely small angle (approaching zero as the method converges) between the
estimated and true curves. The BFGS method approximates the Hessian based on
gradient information, and, as shown in section 5, the error in the first-order estimates
may be very large when this angle is small. This conjecture is supported by the results
of the skewed ellipse case. Here the angles at the corner between the estimated
and true curves are much less acute, and the BFGS method produces a result of
comparable accuracy to steepest descent, while converging much more rapidly.

It is not the purpose of this paper to compare the two minimization formulations.
Rather, these computations are intended to show that either of the cost functions
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(a) Direct minimization of area metric.
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(b) Minimization of J = 1
2
ρ2.

Fig. 6.6. True curve is ellipse (dashed). Initial estimate (light solid) is circle of radius 15
centered on (0, 0). (a) Direct minimization of the area metric ρ. Steepest descent algorithm converges
(heavy solid) in 10 iterations (dotted). (b) J = 1

2
ρ2. BFGS algorithm converges (heavy solid) in 11

iterations (dotted).

developed above are feasible choices for the deposition and etching application. We
believe that the results support this conclusion. On the other hand, the results of this
section do suggest that the particular numerical formulation used will be an important
consideration when applying this technique to practical problems. Many modifications
to the numerical formulation are possible—including second-order correction terms at
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the corners, for example—which may significantly improve performance.

7. Parametrized speed functions. This work is motivated by applications to
curve evolution problems. In such cases, the initial curve is assumed known, as is the
measured shape at one or more subsequent times. The cost function corresponding
to the 1-norm is then

J(λ) =
∑
k

ρ(Mk,L(tk;λ)),(48)

and the cost function corresponding to the 2-norm is

J(λ) =
1

2

∑
k

ρ(Mk,L(tk;λ))2,(49)

whereMk is the kth measured curve, tk is the time corresponding to the kth measure-
ment, and L(tk;λ) is the curve obtained by propagating the estimate, with parameter
vector λ, to t = tk. The calculation of ρ and ρi, and so J and Ji, proceeds exactly as
has already been described, with one important difference. The Ψi term that appears
in (26) is no longer given explicitly by the parametrization. Rather, the λ dependence
of Ψ(x;λ) arises from the variation of β with λ in the evolution equation

Ψt + β( · ;λ)‖∇Ψ‖ = 0.(50)

Thus we will need to determine Ψi from βi instead of writing it directly.
One way to accomplish this is to differentiate both sides of (50) with respect to

the ith parameter. The result is a PDE for the gradient, coupled to the original
evolution equation. This type of sensitivity equation approach is described further in
[6, 7]. For the level set evolution equation, assuming only space and time dependence
of the speed function, the result of the differentiation is as follows:

Ψti + βi‖∇Ψ‖+
β

‖∇Ψ‖ (ΨxΨxi + ΨyΨyi) = 0.(51)

Exchanging the order of differentiation gives

Ψit + βi‖∇Ψ‖+
β

‖∇Ψ‖ (ΨxΨxi + ΨyΨyi) = 0.(52)

Finally, denote the appropriate gradient term by S(i) := Ψi and write

S
(i)
t + βi‖∇Ψ‖+

β

‖∇Ψ‖ (ΨxS
(i)
x + ΨyS

(i)
y ) = 0(53)

or

S
(i)
t + β〈ν,∇S(i)〉 = −βi‖∇Ψ‖,(54)

where ν is the outward pointing unit normal to the estimated level set. Once (50)
is solved, ∇Ψ can be computed. Since β is known, and βi can be computed, (54)
is a linear first-order PDE. Initially the various S(i) are everywhere zero, since the
starting curve for the model is exactly the true starting curve and does not depend on
the speed function β. Boundary conditions are not needed as long as the estimated
curve evolves outward everywhere on the boundary. If this is not the case, periodic
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boundary conditions may be applied [18]. Important behavior, such as curvature or
orientation dependence of the speed function, will require additional terms in (54).
Once (54) is solved, the computed value for Ψi (that is, S(i)) is substituted into
(26). Because only the values on the estimated curve are required, it would be highly
desirable to implement a local solution method, such as the narrowband techniques of
Sethian [18]. We note again that in all other ways, computation in the time-dependent
evolutionary case will follow the procedures developed in this paper.
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LACK OF TIME-DELAY ROBUSTNESS FOR STABILIZATION
OF A STRUCTURAL ACOUSTICS MODEL∗
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Abstract. In this paper we consider a natural robustness question for a model for structural
acoustics. This model, which has been of great interest in recent years, is represented by a wave
equation in R2 coupled to a Kelvin–Voigt beam; the coupling is natural physically, and is represented
mathematically by highly unbounded operators. We assume that the observation consists of point
evaluation of the beam position, the beam velocity, and the wave velocity. We are interested in the
effect of arbitrarily small delays in the feedback loop on a controller that uses these observations. We
show that it is not possible to construct a dynamic stabilizer of a very general form—including static
feedback—such that the stabilization is robust with respect to delays in the feedback loop. In order
to do this we need to carefully analyze the input-to-output map. Finally, we relate these results to
already existing numerical results obtained for a Galerkin approximation of the system.

Key words. time delays, robust stabilization, coupled partial differential equations, transfer
functions, dynamic stabilization, structural acoustics

AMS subject classifications. 93C20, 93D09, 93D15, 93D25, 35M10
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1. Introduction. In this paper we consider a natural robustness question for a
model for structural acoustics. This model has been of great interest in recent years
(see Banks et al. [6, 7, 8, 9, 10, 11, 12] and the references therein, Avalos [1], and
Avalos and Lasiecka [2, 3]). In this introduction we roughly describe the problem
and our results, and we leave the precise problem description and technical details for
later sections.

Most of the mathematical analysis of this structural acoustics model has been
done with a two-dimensional approximation; see [6, 7, 12] for details about the mod-
eling for this system. We represent an acoustic cavity by a rectangular region in R2

and we consider one side of the boundary to be a flexible beam and the other three
sides to be hard walls. Sound waves inside the cavity are described by a wave equation.
The displacement of the flexible beam, which we call the active boundary, is described
by a beam equation with Kelvin–Voigt damping. The coupling of these two equations
is natural physically and is represented mathematically by highly unbounded opera-
tors. In the references above the control is formed by using piezoceramic patches on
the active boundary, which produce moment forces when a voltage is applied. The
control goal we consider here is stabilization of the system, in particular the attenu-
ation of the acoustic pressure in the cavity. This attenuation might be described by
exponential stability of an appropriate state space model, or by input-output stability
of an appropriate input-output model.
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In this paper we assume that the full state of the system is not available for use
by the controller and that we have access to the following observations of the system:
point evaluation of the beam displacement at some point or points on the beam,
point evaluation of the beam velocity at some point or points on the beam, and point
evaluation of the acoustic pressure at some points in the cavity. We consider controls
determined by a dynamic compensator that uses these observations as its input.

We are interested in the effect of arbitrarily small delays in the feedback loop
on the stability of the closed-loop system. Roughly speaking, we say that feedback
stabilization of a system is robust with respect to delays if delays introduced into the
feedback loop do not destroy the stability provided that the delays are sufficiently
small. In this paper we answer the following question: Is it possible to construct a
dynamic stabilizer (or a static feedback) for this structural acoustics systems such that
the stabilization is robust with respect to small delays in the feedback loop?

For a large class of dynamic stabilizers and static feedbacks we show that the
answer to this question is negative, since we find that there exists a sequence of
delays {εj} such that εj → 0 and the closed-loop system with delay εj has an unstable
transfer function pole. See section 5 for precise statements of the relevant results. In
Banks, Demetriou, and Smith [8] the effect of delays on an H∞ dynamic compensator
for this system is studied numerically. In particular, in [8] delays are inserted in three
places in the feedback loop, and the robustness with respect to these delays is studied
for a Galerkin approximation of the closed-loop system. In section 6 we adapt our
results to the setup in [8] and give a heuristic explanation for the results in [8] based
on a frequency domain analysis.

The approach we use for these lack-of-robustness results is systems theoretic in
the sense that we first show that our system is in a particular class of systems and
then appeal to theorems about this class. The class in question is the class of regular
systems, which is a very general class whose basic properties were developed by Weiss
in [25] and [26], and for which there is now a substantial amount of control machinery;
see for instance [17, 18, 19, 21, 22, 23, 27, 29]. In order to show that our system is
regular when the observation includes point observations of the beam displacement
and velocity, but does not include point observations of the acoustic pressure, we rely
heavily on results by Avalos and Lasiecka [2] and Avalos [1]. When the observation
includes point evaluation of acoustic pressure, proving regularity involves a careful
analysis of the map from control to observation. This regularity is of interest inde-
pendent of robustness questions, since many other control questions, e.g., adaptive
control [18], stability radii [19], or dynamic stabilization [27], can be studied in the
regular systems framework.

In the case when the observation does not include point evaluation of acoustic
pressure, we have a natural (A,B,C,D) state space realization for the system, and
our results can be stated in terms of exponential stability. In the case where the
observation includes point evaluation of acoustic pressure, the state space that ac-
commodates both the control and observation does not coincide with the basic energy
space—it requires (1/2) more derivatives in the wave variable—so we present our
results in input-output form.

The paper is organized as follows. In section 2 we present the controlled, observed
structural acoustics system. In section 3 we show that when the observation is point
evaluation of acoustic pressure, then the input-to-output map is well posed, that is,
for any T > 0 this map is in L(L2[0, T ;U ], L2[0, T ;Y ]), where U is the control space
and Y is the observation space. In section 4 we prove regularity of the system. In
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section 5 we discuss some results on robustness and lack of robustness with respect to
delays, which can be immediately applied to our system. In section 6 we relate and
compare our results to the numerical studies in [8]. In all the sections except section
3, we allow the acoustic cavity to be either a rectangle or any region in R2 with a
smooth boundary. In section 3 we require the cavity to be a rectangle. In [5] the
results in section 3 are obtained, using very different techniques, when Ω is a region
in R2 or R3 with smooth boundary.

2. The controlled, observed structural acoustics system. In this section
we present and analyze the partial differential equation model. This model is based
on the one in [9, 12], but we will use a scaled, slightly abstracted version. Let Ω be
either a rectangular region in R2 or a region in R2 with Lipschitz boundary Γ. Let Γ0

be a smooth (C2) segment of Γ with endpoints a and b. Let z = z(t, x) for t ∈ [0,∞)
and x ∈ Ω, let v = v(t, ξ) for t ∈ [0,∞) and ξ ∈ Γ0, and let ∂/∂ν denote the outward
normal derivative. Let U = Rr and B ∈ L (U,H−α(Γ0)), where α will be specified
throughout to be

α =
7

4
when Ω is rectangular

and α =
5

3
when Ω has a smooth boundary.

(2.1)

We refer to the following as the structural acoustics model :

ztt = ∆z on [0,∞)× Ω,

∂z

∂ν
= vt on [0,∞)× Γ0,

∂z

∂ν
= 0 on [0,∞)× Γ \ Γ0,(2.2)

vtt = −∆2v −∆2vt − zt +Bu on [0,∞)× Γ0,

v(a, t) = vt(b, t) =
∂v(a, t)

∂x
=
∂v(b, t)

∂x
= 0 ∀ t ∈ [0,∞).

The model discussed in [6, 7, 8, 9, 10, 11, 12], suitably scaled, is a special case of
(2.2): in this case Ω is a rectangular region, Γ0 is the bottom side of the rectangle,
and B is of the form

B =

r∑
i=1

αiδ
′(ηi),

where δ′(ηi) are derivatives of delta functions evaluated at ηi ∈ Γ0 and αi ∈ R. The
physical interpretation for this particular control operator is that its control action is
realized by the strategic placement of piezoelectric ceramic patches on the (flexible)
boundary Γ0; a voltage is subsequently applied through these patches and the resulting
bending moments can be interpreted as derivatives of delta functions.

The observation y(t) considered in [6] and [8] is a vector with components of
the form v(t, ξ0) for ξ0 ∈ Γ0, vt(t, ξ0) for ξ0 ∈ Γ0, and zt(t, x0) for x0 ∈ Ω; these
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observations are chosen because they are likely to be physically observable. The
acoustic pressure is proportional to zt, so we often refer to an observation of zt as an
observation of acoustic pressure.

In [1], [2] the control system (2.2) was put into the following state-space form.
Define the operator A : L2(Ω) ⊃ D(A)→ L2(Ω) by A = −∆ with

D(A) =

{
z ∈ L2(Ω)/R ∩H2(Ω)

∣∣∣∣∂z∂ν = 0 on Γ

}
,

where L2(Ω)/R = {f ∈ L2(Ω) | ∫
Ω
f = 0}; viz, L2(Ω)/R is the orthogonal complement

of the space of constant functions in L2(Ω). A is symmetric positive definite on L2(Ω),
so fractional powers of A are well defined. In particular, from [14] we have

D(Aβ/2) = L2(Ω)/R ∩Hβ(Ω) for β ∈
[
0,

3

2

)
.(2.3)

Define Å : L2(Γ0) ⊃ D(Å)→ L2(Γ0) by Å = ∆2 with

D(Å) = H4(Γ0) ∩H2
0 (Γ0).

Å is symmetric positive definite on L2(Γ0), so its fractional powers are well defined.
In particular, by [14] we have

D
(
Å
β/4
)

= Hβ
0 (Γ0) for β ∈

[
0,

5

2

)
.(2.4)

Since Å is symmetric positive definite on a Hilbert space and the dual space of Hβ
0 is

H−β , we see that

D
(
Å
β/4
)′

= H−β(Γ0) for β ∈
[
0,

5

2

)
.(2.5)

Define

H1 = D(A
1
2 )× L2(Ω) =

(
L2(Ω)/R ∩H1(Ω)

)× L2(Ω)(2.6)

and

H0 = D
(
Å

1
2

)
× L2(Γ0) = H2

0 (Γ0)× L2(Γ0).

Let A1 : H1 ⊃ D(A1)→ H1 and A0 : H0 ⊃ D(A0)→ H0 be defined by

A1 :=

[
0 I
−A 0

]
with

D(A1) = {[z1, z2]T ∈ D(A)×D(A
1
2 )}

and

A0 :=

[
0 I
−Å −Å

]
with

D(A0) =

{
[v1, v2]T ∈

[
D
(
Å

1
2

)]2
3 v1 + v2 ∈ D

(
Å
)}

.
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We define the Neumann map N on Hs(Γ) for s > −1/2 by setting Ng := z for
g ∈ Hs(Γ), where z is the unique solution in L2(Ω)/R of the equation

〈Az, v〉
[D(A

1
2 )]′×D(A

1
2 )

=

∫
Ω

∇z · ∇v = 〈g, v〉Hs(Γ)×[Hs(Γ)]′

for all v ∈ D(A
1
2 ). From [14], we have that

N ∈ L
(
L2(Γ0),D(A

3
4−ε)

)
for arbitrary ε > 0,

and this boundedness further implies that

AN ∈ L
(
L2(Γ0), [D(A

1
4 +ε)]′

)
for arbitrary ε > 0.(2.7)

We also define γ : H1(Ω)→ H
1
2 (Γ0) by γ(z) = z|Γ0

and

C =

[
0 0
0 γ∗

]
,

so C ∈ L(H0, {0}× [D(A
1
2 )]′). Let X = H1 ×H0; we refer to the usual product norm

on X by ‖ · ‖, and other norms will be indicated by an appropriate subscript. Now
define A : D(A) ⊃ X → X by

A :=

[
A1 C
−C∗ A0

]
with

D(A) = {[z1, z2, v1, v2]T ∈ [D(A
1
2 )]2 ×

[
D
(
Å

1
2

)]2
such that

−z1 +Nv2 ∈ D(A) and such that v1 + v2 ∈ D
(
Å
)}

.

Let

X(t) = [z(t), zt(t), v(t), vt(t)]
T .(2.8)

If u(t) ≡ 0, then (2.2) is formally equivalent to

Ẋ(t) = AX(t).(2.9)

It is shown in Theorem 1.1 in [1] that A is the generator of a strongly continuous
semigroup S(t) on X ; see also Banks and Smith [11].

Let R(s,A) = (sI − A)−1. For α ∈ R, let Cα := {s ∈ C | Re(s) > α}. The
system under consideration in this paper differs from the system in [3] in that the
wave equation here has Neumann conditions on Γ \Γ0, while the wave equation in [3]
has Dirichlet conditions. The arguments in [3] can be easily modified to show that
S(t) is not exponentially stable, so Proposition 2 in Prüss [20] implies that

sup
s∈C0

‖R(s,A)‖L(X ) =∞.(2.10)
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The arguments in [3] can also be modified to show that S(t) is strongly stable and
that

σ(A) ∩ iR = ∅,(2.11)

where σ(A) is the spectrum of A. Let s ∈ iR. If {sn} ⊂ C0, s = limn→∞ sn, and
{‖R(sn,A)‖} is unbounded, then s ∈ σ(A), which is in contradiction to (2.11). Hence
the only way (2.10) can be true is if

lim sup
|s|→∞,s∈C0

‖R(s,A)‖L(X ) =∞.(2.12)

Condition (2.12) is important for our lack-of-robustness results.
Let

B = [0, 0, 0, B]T ∈ L (U, {0}3 ×H−α(Γ0)
)
.

Then (2.2) is formally equivalent to

Ẋ(t) = AX(t) + Bu(t),(2.13)

which holds pointwise in time in

X−1 := [D(A∗)]′.(2.14)

S(t) extends to a semigroup on [D(A∗)]′ and (2.2) is also formally equivalent to

ztt = −Az +ANvt,(2.15)

vtt + Åvt + Åv = −N∗Azt +Bu,(2.16)

which holds pointwise in time in [D(A)]′ and [D(Å)]′, respectively.
We now discuss the observations of this system. Let Cη be a point evaluation at

η; we will use the same notation when η ∈ Γ0 or when η ∈ Ω. Let ξ0 ∈ Γ0 and x0 ∈ Ω.
We define the following operators on X by

C1 := [0, 0, Cξ0 , 0], C2 := [0, 0, 0, Cξ0 ], C3 := [0, Cx0
, 0, 0].(2.17)

We are ultimately interested in observations that contain several terms of this type,
but it is most convenient to analyze these separately; in particular, our analysis of C3
necessarily will be much different (and more difficult) than our analysis of C1 or C2.

We wish to show that (2.2) with any of these observations is a regular system.
For a detailed discussion of regular systems, see Weiss [25, 26]. Definition 2.1 given
below for a well-posed, controlled, observed system is not as detailed as that given in
[25], but it is equivalent when the system is given by a boundary-controlled partial
differential equation of the type we are currently considering.

Definition 2.1. Let X , Y , and U be Hilbert spaces. A system with state X(t) ∈
X , input u(t) ∈ U , and observation y(t) ∈ Y is well posed if for some (and hence all)
T > 0,

(1) X(t) = S(t)X(0) for a strongly continuous semigroup S(t) when u(t) ≡ 0;
(2) The map u(·)→ X(T ) is bounded from L2[0, T ;U ] into X ;
(3) The map X(0)→ y(·) is bounded from X into L2[0, T ;Y ] when u(t) ≡ 0;
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(4) The map T : u(·) → y(·) with X(0) = 0 is bounded from L2[0, T ;U ] into
L2[0, T ;Y ].

For many purposes we need only be concerned with the input-output map T .

Definition 2.2. If an input-output map T satisfies condition (4), we say that it
is a well-posed input-output system.

If the controlled system is formally represented by (2.13) and condition (2) of
Definition 2.1 is satisfied, then we say that B is an admissible control (input) operator
for S(t). If the uncontrolled system with observation is formally represented by (2.9)
and

y(t) = CX(t)(2.18)

and condition (3) of Definition 2.1 is satisfied, then we say that C is an admissible
observation (output) operator for S(t). From Proposition 3.2 in [25], condition (4) in
Definition 2.1 implies that if

L2
α[0,∞, U ] :=

{
f ∈ L2

loc[0,∞;U ] |
∫ ∞

0

‖f(t)‖2Ue−2αt dt <∞
}
,

then there exists β ∈ R such that

T ∈ L(L2
β [0,∞;U), L2

β [0,∞;Y )).(2.19)

While the well-posedness of the system with the observation operator C1 follows
from basic Sobolev embeddings and the interior smoothness guaranteed by the state-
space topology, this is not the case for the observation operators C2 and C3. Indeed,
the topology generated by the state space X allows for point evaluation of the v
component, but it does not allow us to define a pointwise evaluation of vt—roughly
speaking, 1/2 + ε derivatives are missing. In order to handle this difficulty in the case
of C2, we shall use “additional” smoothness results developed for structural acoustic
problems in [2], which say that vt has greater smoothness than the state space guaran-
tees; in particular, vt ∈ L2(0, T ;H2(Γ0)). This allows us to use Sobolev’s imbeddings
to obtain the well-posedness with the C2 observation.

In the case of the observation operator C3, the situation is much more delicate.
The state space guarantees L2 smoothness of zt in the cavity. However, in order
to use a Sobolev’s imbedding one would need to have zt ∈ H3/2+ε(Ω), so 3/2 + ε
derivatives are missing. It can be shown (even for the one-dimensional example) that
L2(0, T ;H2(Γ0)) tangential smoothness of the boundary input vt does not produce
sufficient interior smoothness for the variable zt to make Sobolev embeddings useful
for interior-point evaluation. In fact, one could show (with additional nontrivial work)
that the maximal internal smoothness of zt isH1/2(Ω), but even this does not suffice to
take pointwise evaluation in two dimensions. To cope with this difficulty, we resort to
completely different arguments, which are based on microlocal analysis for the general
smooth domains, and on very delicate calculations involving harmonic analysis when
Ω is a rectangle. The rectangular case is dealt with in section 3, while the smooth
domain case is treated in [5].

Proposition 2.3. The system (2.2) with observation y(t) = C1X(t) or observa-
tion y(t) = C2X(t) is well posed.

Proof. Condition (1) in Definition 2.1 has already been established in [2]. Con-
dition (2) follows immediately from Lemma 2.1 in [2]. To verify condition (3), first
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note that C1 is bounded on X , hence is an admissible observation operator for any
semigroup on X . Now let the projections P0 and P1 be defined by

P0[z1, z2, v1, v2]T = [v1, v2]T ,

P1[z1, z2, v1, v2]T = [z1, z2]T .

Theorem 1.1 in [2] shows that for any X0 ∈ X and T > 0,

P0S(·)X0 ∈ L2
(

0, T ;D(Å
1
2 )×D(Å

1
2 )
)
.

Let X0 ∈ X and X(t) = S(t)X0 be of the form (2.8). Using the Sobolev embedding

theorem and the fact that D(Å
1/2

) = H2
0 (Γ0), we see that C2S(·)X0 = vt(·, ξ0) ∈

L2(0, T ). By the principle of uniform boundedness, C2 is an admissible observation
operator for S(t).

To verify condition (4), note that Proposition 2.3 in [2] shows that for any T > 0
and u ∈ L2[0, T ;U ],

P0

∫ ·
0

S(· − τ)Bu(τ) dτ ∈ L2
(

0, T ;D(Å
1
2 )×D(Å

1
2 )
)
.

Using the same reasoning as we used for the admissibility of C1 and C2, we see that
(2.2) with this observation is well posed.

If Z is a Banach space, define H∞α (Z) to be all analytic Z-valued functions H(s)
for which there exists M > 0 such that ‖H(s)‖ < M for all s ∈ Cα. If α = 0 and if Z
is clear from the context, we denote H∞α (Z) by H∞. Let y(t) be the observation of a
system resulting from a given u and zero initial conditions. If we denote the Laplace
transform of y by ŷ and if

ŷ(s) = H(s)û(s),

then we say that H(s) is the transfer function of the system. From Proposition 3.2
in [25], (2.19) is equivalent to H ∈ H∞β (L(U, Y )), leading to the following definition.

Definition 2.4. A transfer function H(s) is well posed if H ∈ H∞β (L(U, Y )) for
some β ∈ R.

Definition 2.5. A transfer function H (or, equivalently, an input-output map
T ) is input-output stable if

H ∈ H∞(L(U, Y )) (or, equivalently, if T ∈ L(L2[0,∞;U), L2[0,∞;Y ))).

Definition 2.6. A system is regular if it is well posed and if the following
condition is satisfied by its transfer function H(s):

(5) lims→∞,s∈RH(s) =: D ∈ L(U, Y ) exists.
In this case we say that D is the feedthrough of the transfer function and of the
system.

Definition 2.7. If an input-output system is well posed and the transfer function
satisfies condition (5), then we say that the input-output system is regular and that
its transfer function is regular.

It is shown in [25] that if a controlled, observed system with semigroup generator
A, input operator B, and observation operator C is regular, it has the following state
space representation, with state space X :

Ẋ(t) = AX(t) + Bu(t),

(2.20)

y(t) = CΛX(t) +Du(t),
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where CΛ is the Lebesgue extension of C; see [25].
Remark 2.8. If a controlled, observed system is well posed but not regular, it

has a state space representation, but the abstract form of the observation (when the
control is present) is much more complicated (and less analogous to finite dimensional
systems) than that in (2.20) (see Salamon [24]).

Since B is an admissible input operator and C1 is a bounded observation operator,
we get the following simple result, which follows immediately from [25].

Proposition 2.9. The system (2.2) with observation C1X(t) is regular.

3. Observation of acoustic pressure. In the case where the observation op-
erator is C3 (given in (2.17)) the well-posedness of the system is a much more delicate
issue than the case treated by Proposition 2.3. This observation is not an admissible
observation for S(t) when the state space is X . However, we will see in Corollary 3.4
that when Ω is a rectangular region, the input-output system is well posed. In The-
orem 4.8 we see that the transfer function for (2.2) with this observation is regular,
i.e., it also satisfies condition (5) in Definition 2.6.

Let T > 0 and let Ω be a rectangular domain in R2 with boundary Γ. Let
[z(t), zt(t)]

T be the solution of the wave equation

ztt(t, x, y) = ∆z(t, x, y) on (0, T )× Ω,

∂z

∂ν
(t, ζ) = µ(t, ζ) on (0, T )× Γ,(3.1)

z(0, x, y) = zt(0, x, y) = 0 on Ω.

With boundary data µ ∈ L2(0, T ;H5/4(Γ)), we already know from Avalos [4] that

[z, zt] ∈ C
(
[0, T ];H1(Ω)× L2(Ω)

)
.

We assume that µ(t, ·) = 0 for t > T . We now prove the following “trace” result,
which allows for pointwise evaluation of the velocity zt at a point in Ω.

Theorem 3.1. For every fixed (x0, y0) ∈ Ω, the mapping µ→ zt(·, x0, y0) is in

L(L2(0, T ;H5/4(Γ)), L2(0, T )).

In particular, there exists M > 0, independent of (x0, y0), such that for every µ ∈
L2(0, T ;H5/4(Γ)),

‖zt(·, x0, y0)‖L2(0,T ) ≤M ‖µ‖L2
(

0,T ;H
5
4 (Γ)

) .(3.2)

Remark 3.2. Note that this result does not follow from a direct application of the
classical Sobolev embedding theorem.

Proof. Without loss of generality, we can set Ω := {(x, y) ∈ R2 | 0 < x, y < π},
and since the mapping of concern here is linear, we can set u ≡ 0 except on the side
{y = 0, 0 ≤ x ≤ π}. Fix (x0, y0) ∈ Ω. Let {λmn,Φmn}∞m,n=1 denote, respectively, the
eigenvalues and orthonormalized eigenfunctions of the operator A defined in section
2. These are given explicitly by

λmn = n2 +m2 for m,n = 1, 2, . . . ,

Φmn(x, y) = 2
π cosnx cosmy for m,n = 1, 2, . . . .
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We can explicitly write out the solution [z, zt] of (3.1)—this is done in [4] and [16]—as

z(t, x, y) =
∞∑

m,n=1

{
1√

n2 +m2

∫ t

0

sin
√
n2 +m2(t− τ)µn(τ)dτ

}
Φmn(x, y);

zt(t, x, y) =
∞∑

m,n=1

{∫ t

0

cos
√
n2 +m2(t− τ)µn(τ)dτ

}
Φmn(x, y),(3.3)

where

µn(t) :=
2

π

∫ π

0

µ(t, ξ) cos(nξ) dξ.

We now need the following proposition.
Proposition 3.3. For arbitrary y0 ∈ [0, π], the map µ→ zt(·, ·, y = y0) is in

L(L2(0, T ;H
5
4 (0, π)), L2(0, T ;H

3
4 (0, π))).

In particular, there exists M > 0, independent of y0 ∈ [0, π], such that for all µ ∈
L2(0, T ;H

5
4 (0, π)),

‖zt(·, ·, y = y0)‖
L2(0,T ;H

3
4 (0,π))

≤M ‖µ‖
L2(0,T ;H

5
4 (0,π))

.

Proof of Proposition 3.3. Define the operator AΠ : L2(0, π)→ L2(0, π) by

AΠ = − d2

dx2
with D(AΠ) =

{
g ∈ H2(0, π)

∣∣∣∣∂g(π)

∂x
=
∂g(0)

∂x
= 0

}
.

AΠ is self-adjoint, positive semidefinite, so its positive fractional powers are well de-
fined. Its respective eigenvalues and orthonormalized eigenvectors {λn,Φn}∞n=0 are
given explicitly by

λn = n2 and Φn(x) =
2

π
cosnx.(3.4)

Then, for g in L2(0, π) and η ≥ 0,

A
η
2

Πg = A
η
2

Π

∞∑
n=1

(g,Φn) Φn =
∞∑
n=1

(g,Φn)nηΦn

with the L2-convergence of the series on the right-hand side occurring if and only

if g ∈ D(A
η
2

Π). Using this equality and the explicit representation of zt in (3.3), we
obtain

A
η
2

Πzt(t, ·, y = y0) =
∞∑

m,n=1

nη
{∫ t

0

cos
√
n2 +m2(t− τ)µn(τ)dτ

}
Φn(·) cosmy0.

(3.5)

Furthermore, from [14], for all g ∈ Hη(0, π), 0 ≤ η < 3/2, we can take

‖g‖2Hη(0,π) =
∥∥∥A η

2

Πg
∥∥∥2

L2(0,π)
.(3.6)
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Using this and the orthonormality of {Φn}, we have that for every g ∈ Hη(0, π),
0 ≤ η ≤ 3/2,

‖g‖2Hη(0,π) =
∞∑
n=1

|(g,Φn)|2 n2η.(3.7)

Extending the boundary input µ by zero outside the interval [0, T ], we take the
Laplace transform in time of both sides of (3.5) with transform variable

λ = γ + iω

to thereby obtain

Â
η
2

Πzt(λ, ·, y = y0) =
∞∑

m,n=1

λnη

λ2 + λmn
µ̂n(λ)Φn(·) cosmy0.(3.8)

Therefore, we can use the generalized Parseval’s relation (see [13, p. 212]), (3.6),
(3.8), and (3.7) to obtain for fixed η ∈ [0, 3/2] and any γ ≥ 0

2π

∫ ∞
0

e−2γt ‖zt(t, ·, y = y0)‖2Hη(0,π) dt = 2π

∫ ∞
0

e−2γt
∥∥∥A η

2

Πzt(t, ·, y = y0)
∥∥∥2

L2(0,π)
dt

=

∫ ∞
−∞

∥∥∥∥Â η
2

Πzt(γ + iω, ·, y = y0)

∥∥∥∥2

L2(0,π)

dω

=

∫ ∞
−∞

∞∑
n=1

∣∣∣∣∣
∞∑
m=1

λ

λ2 + λmn
cosmy0

∣∣∣∣∣
2

|µ̂n(λ)|2 n2ηdω.

(3.9)

We now fix γ > 0 and specify that η ∈ [0, 5/4]. Suppose we can find some θ ∈
[0, 5/4− η] and some positive constant C0 > 0 such that

1

nθ

∣∣∣∣∣
∞∑
m=1

λ

λ2 + λmn
cosmy0

∣∣∣∣∣ < C0,(3.10)

where C0 does not depend on ω ∈ R or n = 1, 2, . . . . Then (3.9) is equal to∫ ∞
−∞

∞∑
n=1

∣∣∣∣∣
∞∑
m=1

λn−θ

λ2 + λmn
cosmy0

∣∣∣∣∣
2

|µ̂n(λ)|2 n2(η+θ)dω

≤ C0

∫ ∞
−∞

∞∑
n=1

|µ̂n(λ)|2 n2(η+θ)dω = C0

∫ ∞
−∞

∥∥∥∥∥̂A η+θ
2

Π µ(γ + iω)

∥∥∥∥∥
2

L2(0,π)

dω

= 2πC0

∫ T

0

e−2γt ‖µ(t)‖2Hη+θ(0,π) dt ≤ 2πC0

∫ T

0

‖µ(t)‖2
H

5
4 (0,π)

dt.(3.11)

Hence, if we can verify (3.10) for some θ ∈ [0, 5/4 − η], then (3.9) and (3.11) imply
that there exists C1 such that∫ T

0

‖zt(t, ·, y = y0)‖2Hη(0,π) dt ≤ C1

∫ T

0

‖µ(t)‖2H5/4(0,π).(3.12)
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To attain the sought-after estimate (3.10), it suffices to ascertain the convergence
of each of the following sums for some value of θ ∈ [0, 5/4− η], with each convergence
being again independent of ω ∈ R and n ∈ N:

(i) 1
nθ

∣∣∣∣∣
∞∑
m=1

2γω2

(γ2 − ω2 +m2 + n2)2 + 4γ2ω2

∣∣∣∣∣ ,
(ii) 1

nθ

∣∣∣∣∣
∞∑
m=1

ω(γ2 − ω2 +m2 + n2)

(γ2 − ω2 +m2 + n2)2 + 4γ2ω2

∣∣∣∣∣ .
In fact, the absolute convergence of these sums, independent of ω and n, has already
been shown in [4] for θ = 1/2 (see in particular equations (3.19), (3.33), (3.55), and
(3.76) in [4]). With the estimate (3.10) being established for θ = 1/2, we see that
(3.12) is true for any η such that θ = 1/2 ∈ [0, 5/4 − η] and so in particular for
η = 3/4.

Conclusion of the proof of Theorem 3.1. Now upon the use of the Sobolev
embedding theorem in one dimension and Proposition 3.3, we have that for any
(x0, y0) ∈ [0, π]× [0, π] , there exists M, M̃ > 0 such that∫ T

0

|zt(t, x = x0, y = y0)|2 dt ≤ M̃
∫ T

0

‖zt(t, ·, y = y0)‖2
H

3
4 (0,π)

dt

≤M ‖µ‖2
L2(0,T ;H

5
4 (0,π))

.

This finishes the proof of Theorem 3.1.
Corollary 3.4. The system (2.2) with observation y(t) = C3X(t) is input-output

well posed.
Proof. The first three equations in (2.2) are of the same form as the wave equation

(3.1) when µ = 0 on Γ \ Γ0 and µ = vt on Γ0. Theorem 1.1 in [2] implies that there
exists M1 > 0 such that

‖vt‖L2(0,T ;H2(Γ0)) ≤M1 ‖u‖L2(0,T ;U) .(3.13)

Combining this with (3.2) and the fact that ‖ · ‖H5/4(Γ0) ≤ ‖ · ‖H2(Γ0), we see that
there exists M2 > 0 such that

‖zt(·, x0, y0)‖L2(0,T ) ≤M2 ‖u‖L2(0,T ;U) ,

so the input-output map from u ∈ L2(0, T ;U) into C3X = zt(·, x0, y0) ∈ L2(0, T ) is
well posed.

4. Regularity results. In this section we show that when the observation is
C2X(t) the system is regular, and when the observation is C3X(t) the system is input-
output regular. Since we have shown that the system is well posed in the former case
and input-output well posed in the latter case, it suffices to show in both of these
cases that the transfer function satisfies condition (5) in Definition 2.6. We first need
a few technical lemmas.

Let α > 0—we will eventually specialize to α as in (2.1), but all the following

lemmas are true for more general α. For s > 0, let T(s) be defined on D(Å
α/4

)′ by

T(s) :=

[
s2

s+ 1
+ Å

]−1

.(4.1)
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Lemma 4.1. For

0 ≤ θ < 4− α,
there exists M > 0 such that for all s > 0,

‖T(s)‖
LD
(
Å
α/4)′

,D
(
Å
θ/4) ≤ M(

1 + s2

s+1

)1− 1
4 (θ+α)

.(4.2)

Proof. For θ in the prescribed range and w ∈ D(Å
α/4

)′, we have

‖T(s)w‖
D
(
Å
θ/4) =

∥∥∥∥∥
[
s2

s+ 1
+ Å

]−1

w

∥∥∥∥∥
D
(
Å
θ/4)

=

∥∥∥∥∥Å θ
4

[
s2

s+ 1
+ Å

]−1

w

∥∥∥∥∥
L2(Γ0)

=

∥∥∥∥∥Å θ
4

[
s2

s+ 1
+ Å

]−1

Å
α
4 Å
−α4 w

∥∥∥∥∥
L2(Γ0)

.

Using Krein [15, Eq. (5.15), p. 115] and (2.4), we see that if s > 0, there exists M > 0
such that

‖T(s)w‖
D
(
Å
θ/4) ≤ M[

1 + s2

s+1

]1− 1
4 (θ+α)

∥∥∥Å−α4 w∥∥∥
L2(Γ0)

=
M[

1 + s2

s+1

]1− 1
4 (θ+α)

‖w‖
D
(
Å
α/4)′ .

Remark 4.2. The same type of estimate could be obtained using the fact that Å
generates an analytic semigroup, but we did not use analyticity here.

Lemma 4.3. For large enough s > 0 the operator

I +
s2

s+ 1
T(s)N∗A(s2 +A)−1AN

is boundedly invertible on L(D(Å
θ/4

)) for θ ∈ [0, 4− α). In particular, there exists
M > 0 such that for large enough s > 0,∥∥∥∥∥

(
I +

s2

s+ 1
T(s)N∗A(s2 +A)−1AN

)−1
∥∥∥∥∥
L
(
D
(
Å
θ/4)) ≤M.(4.3)

Proof. We prove this result by considering the Neumann series for(
I +

s2

s+ 1
T(s)N∗A(s2 +A)−1AN

)−1

;

in particular, we show that

lim
s→∞

∥∥∥∥ s2

s+ 1
T(s)N∗A(s2 +A)−1AN

∥∥∥∥
L
(
D
(
Å
θ/4)) = 0.(4.4)
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Let w ∈ D(Å
θ/4

). From (2.7), N∗A ∈ L(D(A
1
4 +ε), L2(Γ0)), where ε > 0 is

arbitrarily small, so there exists M > 0 such that

∥∥N∗A(s2 +A)−1ANw
∥∥
D
(
Å
α/4)′ ≤ ∥∥N∗A(s2 +A)−1ANw

∥∥
L2(Γ0)

≤M ∥∥(s2 +A)−1ANw
∥∥
D
(
A

1
4

+ε
)

= M
∥∥∥A 1

4 +ε(s2 +A)−1ANw
∥∥∥
L2(Ω)

= M
∥∥∥A 1

2 +2ε(s2 +A)−1A
3
4−εNw

∥∥∥
L2(Ω)

.(4.5)

Using equation (5.15) on page 115 in [15] and (2.7), we see that

(4.5) ≤ M

(1 + s2)
1
2−2ε

∥∥∥A 3
4−εNw

∥∥∥
L2(Ω)

≤ M

(1 + s2)
1
2−2ε

‖w‖L2(Γ0)

and therefore∥∥N∗A(s2 +A)−1ANw
∥∥
D
(
Å
α/4)′ ≤ M

(1 + s2)
1
2−2ε

‖w‖L2(Γ0) .(4.6)

Since θ > 0, using (4.6) with (4.2) yields for large s > 0

s2

s+ 1

∥∥T(s)N∗A(s2 +A)−1ANw
∥∥
L
(
D
(
Å
θ/4)) = O

(
1

s1− 1
4 (θ+α)−4ε

)
.

Since θ+α < 4 by hypothesis, for ε > 0 small enough the equation above implies that
(4.4) is true. Hence∥∥∥∥∥

(
I +

s2

s+ 1
T(s)N∗A(s2 +A)−1AN

)−1
∥∥∥∥∥
L
(
D
(
Å
θ/4))

≤ 1

1− s2

s+1 ‖T(s)N∗A(s2 +A)−1ANw‖
L
(
D
(
Å
θ/4))

for s > 0 large enough, which finishes the proof of Lemma 4.3.
For s > 0, let

H1(s) :=

{
I +

s2

s+ 1
T(s)N∗A(s2 +A)−1AN

}−1
s

s+ 1
T(s)B.(4.7)

Now let α be as in (2.1), and recall that B ∈ L(U,H−α(Γ0)). Since D(Å
η/4

) =

Hη
0(Γ0) for η ∈ [0, 5/2), we see that B ∈ L(U,D(Å

α/4
)′). Combining Lemmas 4.1

and 4.3 we immediately obtain the following result for the operator H1(s).
Lemma 4.4. H1(s) is an element of L(U,Hθ(Γ0)) for s > 0 large enough and

θ ∈ [0, 4− α) and for every θ there exists M > 0 such that∥∥H1(s)
∥∥
L
(
U,D
(
Å
θ/4)) ≤ M[

1 + s2

s+1

]1− 1
4 (θ+α)

.



1408 GEORGE AVALOS, IRENA LASIECKA, AND RICHARD REBARBER

We now use these lemmas to prove the regularity of the system (2.2) with ob-
servation C2X(t). We first need to show that H1 is the transfer function from u to
vt.

Lemma 4.5. Let the solution of (2.2) be of the form (2.8) with u ∈ L2
γ(0,∞;U)

for some γ ∈ R and with X(0) = 0. Then, for sufficiently large s > 0,

v̂t(s) = H1(s)û(s).(4.8)

Proof. Applying the Laplace transform (in time t) to (2.15), (2.16) for s ∈ Cβ ,
we have, formally,

s2ẑ = −Aẑ + sANv̂ ⇐⇒ ẑ = s(s2 +A)−1ANv̂,

s2v̂ + Åv̂ + sÅv̂ = −sN∗Aẑ +Bû.

Substituting the first equation above into the second then yields(
s2 + (s+ 1)Å + s2N∗A(s2 +A)−1AN

)
v̂ = Bû.(4.9)

To deal with this equation, we will use the relation

(s2 + (Ã+ B̃))−1 = [I + (s2 + Ã)−1B̃]−1(s2 + Ã)−1

for any operators Ã and B̃ and scalars s for which all the inverses in the relation exist.
Letting Ã = (s+ 1)Å and B̃ = s2N∗A(s2 +A)−1AN , we obtain formally(

s2 + (s+ 1)Å + s2N∗A(s2 +A)−1AN
)−1

=
(
I +

(
s2 + (s+ 1)Å

)−1
s2N∗A(s2 +A)−1AN

)−1 (
s2 + (s+ 1)Å

)−1

=

(
I +

s2

s+ 1
T(s)N∗A(s2 +A)−1AN

)−1
1

s+ 1
T(s).(4.10)

Using Lemma 4.3, we see that (4.10) is indeed valid for sufficiently large real s. Using
(4.10) in (4.9), we get

v̂(s) =

(
I +

s2

s+ 1
T(s)N∗A(s2 +A)−1AN

)−1
1

s+ 1
T(s)Bû(s)

or

v̂t(s) = sv̂(s) = H1(s)û(s),

which finishes the lemma.
It follows from Lemma 4.5 that for sufficiently large real s the transfer function

from u(t) to y = C2X(t) is

H1(s) := Cξ0H
1(s)

(where we recall that Cξ0 is the point evaluation at ξ0 ∈ Γ0). Since the system (2.2)
with this observation is well posed, there exists β ∈ R such that H1 ∈ H∞β (L(U, Y ));
hence this transfer function can be extended analytically for s ∈ Cβ .
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Theorem 4.6. H1(s) is a regular transfer function with feedthrough 0.
Proof. The theorem is proved if we can show that

lim
s→∞,s∈R

∥∥Cξ0H1(s)
∥∥
L(U,R)

= 0.(4.11)

For 1/2 < θ < 4 − α, Lemma 4.4 and the Sobolev embedding theorem imply that
there exists M > 0 such that∥∥Cξ0H1(s)

∥∥
L(U,R)

≤M ∥∥H1(s)
∥∥
L(U,Hθ(Γ0))

≤ M[
1 + s2

s+1

]1− 1
4 (θ+α)

.

Taking the limit as s→∞ along the real axis finishes the proof of Theorem 4.6.
We now turn to the transfer function H2(s) for (2.2) with the observation C3X(t).

In the previous section it is proved that this transfer function is well posed, so there
exists β ∈ R such that H2 ∈ H∞β (L(U, Y )). We will show that this transfer function
is also regular with feedthrough 0. Let

H2(s) = s(s2 +A)−1ANH1(s).

We first show that H2 is the transfer function from u into the velocity zt of the wave
component.

Lemma 4.7. Let the solution of (2.2) be of the form (2.8) with u ∈ L2
β(0,∞;U)

and X(0) = 0. Then, for sufficiently large real s,

ẑt(s) = H2(s)û(s).(4.12)

Proof. Applying the Laplace transform in time to (2.15), we obtain

s2ẑ(s) = −Aẑs+ANv̂t(s)

or, equivalently, using (4.8),

ẑ = (s2 +A)−1ANv̂t = (s2 +A)−1ANH1(s)û(s);

(4.12) follows immediately from this.
It follows from Lemma 4.7 that for sufficiently large real s the transfer function

from u(t) to y(t) = C3X(t) is

H2(s) := Cx0H
2(s).

Theorem 4.8. H2(s) is a regular transfer function with feedthrough 0.
Proof. Since α/8 < 1/4, we can choose ε ∈ (0, 1/4 − α/8). Using the Sobolev

embedding theorem and (2.3), there exist M1,M2 > 0 such that for s > 0,

‖H2(s)‖L(U,R) =
∥∥Cx0H

2(s)
∥∥
L(U,R)

≤M1

∥∥H2(s)
∥∥
L(U,H1+ε(Ω)∩L2(Ω)/R)

= M2

∥∥H2(s)
∥∥
L(U,D(A(1+ε)/2))

.(4.13)

The right side of (4.13) is equal to

M2s
∥∥∥A 1

2 + ε
2 (s2 +A)−1ANH1(s)

∥∥∥
L(U,L2(Ω))

= M2s
∥∥∥A 3

4 +ε(s2 +A)−1A
3
4− ε2NH1(s)

∥∥∥
L(U,L2(Ω))

≤ sM2

(1 + s2)
1
4−ε

∥∥∥A 3
4− ε2NH1(s)

∥∥∥
L(U,L2(Ω))

≤ sM3

(1 + s2)
1
4−ε

∥∥H1(s)
∥∥
L(U,L2(Γ0))

(4.14)
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for some M3 > 0, where we use equation (5.15) in [15] for the second-to-last inequality
and (2.7) for the last inequality. Using Lemma 4.4 with θ = 0, the right side of (4.14)
is

≤ sM3

(1 + s2)
1
4−ε

(
1 + s2

s+1

)1−α4
.

This shows that

‖H2(s)‖L(U,R) = O
(
s−

1
2 +2ε+α

4

)
.

By our choice of ε, we see that −1/2 + 2ε+ α/4 < 0, so

lim
s→∞,s∈R

‖H2(s)‖L(U,R) = 0.

5. Lack of robustness for dynamic stabilization of regular systems. In
this section we present results from the literature on lack of robustness with respect
to delays. These results can be easily applied to the structural acoustics system in
this paper, or in fact any regular system that satisfies (2.12) and has R(s,A) analytic
on C0 and continuous on C0. We first need to discuss dynamic stabilization in this
setting. In the definitions and theorems in this section we deal with generic regular
systems, and not just the structural acoustics system in section 2.

Let X,Xc, U, and Y be Hilbert spaces, and recall that X−1 is defined as in (2.14).
Let Σp be a regular system represented by

ẋp = Axp +Bup,(5.1)

yp = CΛxp +Dup,(5.2)

where A generates a semigroup on X, B : U → X−1, C : D(A)→ Y, and D : U → Y ,
where we recall that CΛ is the Lebesgue extension of C; see [25]. The subscript p
stands for plant, the system we wish to stabilize. The transfer function for (5.1), (5.2)
is H(s) := CΛR(s,A)B +D.

Let Σc be a regular system represented by

ẋc = Acxc +Bcuc,(5.3)

yc = CcΛxc +Dcuc,(5.4)

where Ac generates a semigroup on the Hilbert space Xc, B
c : Y → (Xc)−1, Cc :

D(Ac) → U , and Dc : Y → U . The subscript c stands for controller. The transfer
function for (5.3), (5.4) is Hc(s) := CcΛR(s,Ac)Bc +Dc.

We can formally form a closed loop of Σp and Σc by letting

up = yc + vp,(5.5)

uc = yp + vc,(5.6)

where we assume that the dimension of up is equal to the dimension of yc and the
dimension of uc is equal to the dimension of yp. This closed loop is illustrated in
Figure 5.1 (when ε = 0).
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6+
h-vp up+

- H(s) -
yp

?
e−εs

?+

+
h�vcuc�Hc(s)�yc

Fig. 5.1. The closed loop of Σp and Σc.

There are several difficulties associated with making the connections (5.5) and
(5.6); these are covered in detail in Weiss and Curtain [27]. Briefly, we assume that
Hc is an admissible feedback transfer function for H, which means that I−Hc(s)H(s)
is invertible for all s in some right half plane, and its inverse is a well posed L(U)-
valued transfer function. This condition guarantees that the parallel connection of
Σp and Σc is a well-posed linear system Σp,c with state [xp, xc]

T ∈ X × Xc, input
[vp, vc]

T ∈ U × Y , and output [yp, yc]
T ∈ Y × U . If we assume in addition that

I − DcD is invertible in L(U), then it is shown in [27] that Σp,c is regular as well,
with generating operator

Ap,c :=

[
A+B(I −DcD)−1DcCΛ B(I −DcD)−1CcΛ

Bc(I −DDc)−1CΛ Ac +Bc(I − CCc)−1DCcΛ

]
(5.7)

on its natural domain.
Definition 5.1. The regular system Σc is a regular stabilizing controller for Σp

if Hc is an admissible feedback transfer function for H, I−DcD is invertible in L(U),
and Ap,c generates an exponentially stable semigroup on X ×Xc.

Remark 5.2. The above definition of a regular stabilizing controller includes
static feedback as a special case, since a regular controller can be of the form y =
Dcu. In this case Ap,c generates an exponentially stable semigroup if and only if
A+B(I −DcD)−1DcCΛ does.

We now consider the effect of a time delay in the plant output. Let ε > 0 and
suppose that (5.6) is replaced by

uc(t) = yp(t− ε) + vc(t),(5.8)

which is illustrated in Figure 5.1. The transfer function for this system is

Fε(H,Hc) :=

[
H(I − e−ε·HcH)−1 HHc(I − e−ε·HHc)−1

e−ε·HcH(I − e−ε·HcH)−1 Hc(I − e−ε·HHc)−1

]
,

that is,

[v̂p, v̂c]
T = Fε[ŷp, ŷc]

T .

Definition 5.3. Suppose F0(H,Hc) is input-output stable (see Definition 2.5).
Then we say that the input-output stability of F0(H,Hc) is robust with respect to
delays if there exists ε∗ > 0 such that Fε(H,Hc) is input-output stable for all ε ∈
[0, ε∗).
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Remark 5.4. In the case where the controller is static, it is easy to show that
Fε(H,Hc) is input-output stable if and only if (I−e−ε·HHc)−1 is input-output stable.
Hence in this case the input-output stability of F0(H,Hc) is robust with respect to
delays if there exists ε∗ > 0 such that (I − e−ε·HDc)−1 is input-output stable for all
ε ∈ [0, ε∗), and we say that the input-output stability of (I −HD)−1 is robust with
respect to delays.

Remark 5.5. If a regular system is exponentially stable (i.e., the semigroup
is exponentially stable), then it is input-output stable; see Weiss [25]. Hence, if
a regular transfer function is not stable, no regular realization of it is going to be
exponentially stable. On the other hand, input-output stability does not necessarily
imply exponential stability of the underlying semigroup generator, or even strong
stability. Hence, even if we do not identify a state space realization for Fε(H,Hc), a
lack of robustness of the input-output stability of F0(H,Hc) with respect to delays
is quite strong.

We now present results about lack of robustness with respect to delays, and apply
these results to our structural acoustics model. These results are simple corollaries of
the following frequency domain theorem from [17].

Theorem 5.6 ([17, Thm. 8.5]). Suppose U and Y are finite dimensional, HHc

is regular, and F0(H,Hc) is input-output stable. If

lim sup
|s|∈C0,s→∞

‖H(s)‖L(U,Y ) =∞,(5.9)

then the input-output stability of F0(H,Hc) is not robust with respect to delays. In
particular, there exist sequences {εn} and {pn} with

εn > 0, εn → 0, pn ∈ C0, |Im(pn)| → ∞,
such that for any n ∈ N, pn is a pole of HHc(I − e−εn·HHc)−1 and hence of the
overall closed-loop transfer function Fe(H,Hc).

The following two corollaries will be useful for the system under consideration in
this paper.

Corollary 5.7. Suppose U and Y are finite dimensional, Σp = (A,B,C) is a
regular system, R(s,A) is analytic on C0 and continuous on C0, and

lim sup
|s|→∞,s∈C0

‖R(s,A)‖L(X) =∞.(5.10)

If there exists a regular stabilizing controller Σc for Σp, then the input-output stability
of F0(H,Hc) is not robust with respect to delays. In particular, the conclusions in
Theorem 5.6 hold.

Proof. In Weiss and Rebarber [28] it is shown that if there exists a regular
stabilizing controller for Σp, then (5.9) holds if and only if (5.10) holds, so we can
apply Theorem 5.6.

As a special case of Corollary 5.7, we consider the static feedback case. We do
not need the analyticity of R(s,A) in C0 here, since we use the results in [21] instead
of the results in [28].

Corollary 5.8. Suppose U and Y are finite dimensional, Σp = (A,B,C) is a
regular system, and (5.10) holds. If there exists K ∈ L(Y, U) such that the closed-loop
generator A + BKCΛ generates an exponentially stable semigroup, then the stability
of (I −HK)−1 is not robust with respect to delays. In particular, the conclusions in
Theorem 5.6 hold for the poles of (I + eεn·HDK)−1.
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We now turn to the structural acoustics model we have analyzed in previous sec-
tions. Since this system satisfies the conditions in Corollary 5.7, we can immediately
apply Corollaries 5.7 and 5.8.

Case 1. Suppose the observation is given by

CX(t) = [v(α1), . . . , v(αj), vt(β1), . . . , vt(βk)]T(5.11)

for {αi}ji=1, {βi}ki=1 ⊂ Γ0. In particular, we assume in this case that the observation
does not include any point evaluations of acoustic pressure. Then, by Proposition 2.3
and Theorem 4.6, the system (2.2) with this observation is a regular system, which
can be represented by (2.20). Since this system satisfies (2.12), Corollary 5.7 applies
to this system, and we obtain the following result.

Theorem 5.9. There is no regular dynamic controller using an observation of
the form (5.11) that stabilizes the structural acoustics model robustly with respect to
delays.

Corollary 5.10. Let A and B be as in sections 2, 3, and 4, and C be any
observation of the form (5.11). Then there does not exist K ∈ L(Y, U) such that
A + BKC generates a C0-semigroup in a way that is robustly stable with respect to
delays.

Remark 5.11. Note that we have not made any claims about whether one can
find an exponentially stabilizing regular dynamic controller in the case where the
observation is only taken along the beam and not inside the cavity. We believe that it
is unlikely that there is such a stabilizing dynamic controller, but proving this might
be difficult: most such lack-of-stabilizability results require either the input operator
or observation operator to be bounded, which is not the case here. However, if the
control design anticipates small but uncertain delays, then this result shows that no
dynamic stabilizer can do the job.

Case 2. Suppose the observation is given by

CX(t) = [v(α1), . . . , v(αj), vt(β1), . . . , vt(βk), zt(xi), . . . , zt(xl)]
T(5.12)

for {αi}ji=1, {βi}ki=1 ⊂ Γ0 and {xi}li=1 ⊂ Ω.
As discussed in section 1, since this observation includes point evaluation of acous-

tic pressure, there is no natural and convenient state space realization; hence we
state our results in terms of transfer functions and input-output stabilization. Since
H(s) = CΛR(s,A)B and (5.10) holds, it is possible that H is unstable, but this is not
guaranteed, since there might be many pole-zero cancellations. We will take the point
of view that if H(s) is stable, then it can be robustly stabilized by the zero feedback,
and focus our attention on the case where H is unstable.

Theorem 5.12. Suppose the transfer function H for the system (2.2) with ob-
servation (5.12) is not stable. Suppose further that Hc is well posed and is such that
F0(H,Hc) is stable (see Definition 2.5). Then the stability of F0(H,Hc) is not robust
with respect to delays. In particular, the conclusions in Theorem 5.6 hold.

Proof. By Theorems 4.6 and 4.8, H is regular with feedthrough 0. Since Hc is
well posed, HHc is regular with feedthrough 0. Since H is analytic in C0, the only
way it can be unstable is if (5.9) is satisfied. The conclusion follows from Theorem
5.6.

Remark 5.13. The above results will still be true if C is replaced by any observa-
tion operator such that the open-loop system is regular. We focus on the particular
observations (5.11) and (5.12) because point observation of the beam displacement,
beam velocity, and acoustic pressure are well motivated physically.
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6. Comparison with numerical results. The feedback control we considered
in the previous section (see Figure 5.1) is not the same as the control discussed in
[8]. In [8] a noise term η(t) and an exogenous forcing function f(t) are included in
the plant, and the feedback compensator includes a tracking term. In that paper nu-
merical studies are done on a (necessarily finite dimensional) Galerkin approximation
to the system and controller. Among these studies is a look at the effect of delays
introduced in three places in the feedback loop for this finite dimensional model. In
this section we give some results about the effect of these delays on the full infinite-
dimensional model for this system. We then give some heuristic explanations for the
numerical results obtained in [8] for the finite dimensional model, using a frequency
domain analysis.

In [8] the fourth equation in (2.2) is replaced by

vtt(ξ, t) = −∆2v(ξ, t)−∆2vt(ξ, t)− zt(ξ, t) +Bu(t) + b(ξ)f(t), ξ ∈ Γ0, t ∈ [0,∞),

(6.1)

where b represents the spatial distribution of the forcing term. In [8] b(ζ) ≡ 1, that
is, the forcing term acts the same on all points of the active boundary. We further
include the noise term Eη(t) in the model, where η(t) ∈ W , a Hilbert space, and
E ∈ L(W,X ). Therefore (2.13) is augmented to

Ẋ(t) = AX(t) + Bu(t) + B1f(t) + Eη(t),(6.2)

where

B1 = [0, 0, 0, b]T ∈ X .

Let C be of the form (5.11) or (5.12), let p be the dimension of the range of C, and let
Y = Rp. The observation for (6.2) will be formally given by

y(t) = CΛX(t) + Eη(t),(6.3)

where E ∈ L(W,Y ). We do not worry here about the admissibility of C for S(t), since
we will be doing our robustness analysis in the frequency domain, and that analysis
is justified by the work in sections 3 and 4. Also, we do not have a feedthrough term
Du(t) in the observation (6.3) because, as shown in section 4, the feedthrough is zero.

If the initial condition is X(0) = X0, the system (6.2), (6.3) can be described in
input-output terms as

ŷ(s) = H(s)û(s) + H1(s)f̂(s) + H2(s)η̂(s) + ν̂(s);(6.4)

here ν is the observation of the system, depending on the initial data X0, but with
u ≡ 0, η ≡ 0, and f ≡ 0. H is the transfer function from u to y (analyzed in detail
in sections 3 and 4), H1 is the transfer function from f to y, and H2 is the transfer
function from η to y. If the observation C does not contain point observations of
acoustic pressure, we can write

ν̂(s) = CΛR(s,A)X0, H(s) = CΛR(s,A)B,(6.5)

H1(s) = CΛR(s,A)B1, H2(s) = CΛR(s,A)E + E.(6.6)



LACK OF ROBUSTNESS FOR A STRUCTURAL ACOUSTICS MODEL 1415

6

ω

+ +

+
- h
Hc

1(s)

?

?

f

?
e−ε3s

? ?

η

-
e−ε2s H(s)

H1(s) H2(s)

Hc(s)

e−ε1s

hh h? ?+
+

+
+

+

+

ν

y
-----

?

?

�

Fig. 6.1. Controller with tracking and delays.

If C does contain point observations of acoustic pressure, results in sections 3 and 4
show that H1 is regular with feedthrough 0. In this case, since C is not even bounded
on D(A), the other transfer functions in (6.5), (6.6) are regular only if X0 and E are
sufficiently smooth. We will assume in this section that this is the case.

We will not be concerned about the exact nature of the feedback here, but we
will insist that the controller be of the following form in the frequency domain:

û(s) = Hc(s)ŷ(s) + Hc
1(s)f̂(s) + ω̂(s),(6.7)

where Hc and Hc
1 are well-posed transfer functions, Hc

1 contains any tracking terms,
and ω̂ contains initial state information for the compensator. The feedback control
in [8] is of this form if the solutions to two algebraic Riccati equations exist and are
of sufficient smoothness; it is also of this form if it is a finite dimensional controller
computed using the Galerkin approximation to the system. The closed-loop system
is shown in Figure 6.1, ignoring the delay blocks.

Solving for ŷ in (6.4) and (6.7), we obtain

ŷ = (I −HHc)−1H2η̂ + (I −HHc)−1(H1 + HHc
1)f̂ + (I −HHc)−1(Hŵ + ν̂).

(6.8)

An obvious design goal for the compensator is to make the transfer function from ω
to y and the transfer function from ν to y stable, so we assume that Hc has been
chosen so that

(I −HHc)−1 ∈ H∞ and (I −HHc)−1H ∈ H∞.(6.9)

As in [8], we consider delays in three places in the feedback loop:
(1) A delay ε1 ≥ 0 in the plant output y(t);
(2) A delay ε2 ≥ 0 in the input voltage u(t); and
(3) A delay ε3 ≥ 0 in the forcing signal f(t).
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These three delays are shown in Figure 6.1. When these delays are taken into account,
(6.8) becomes

ŷ = (I − e−(ε1+ε2)·HHc)−1H2η̂ + (I − e−(ε1+ε2)·HHc)−1(Hŵ + ν̂)

+ (I − e−(ε1+ε2)·HHc)−1(ε−ε3·H1 + ε−ε2·HHc
1)f̂ .(6.10)

In the following results, when we write εn, we assume that it is not ε1, ε2, or ε3 as
defined above.

Proposition 6.1. Suppose (6.9) holds and H is not stable. Then there exist
sequences {εn} and {pn} with

εn > 0, εn → 0, pn ∈ C0, |Im(pn)| → ∞

such that for any n ∈ N, pn is a pole of (I − e−(ε1+ε2)·HHc)−1 when ε1 + ε2 = εn.
Proof. In sections 3 and 4 we showed that H is regular with feedthrough 0. Since

Hc is well posed, HHc is regular with feedthrough 0. We first need to show that

lim sup
s∈C0,|s|→∞

‖H(s)Hc(s)‖L(Y ) =∞.(6.11)

Suppose (6.11) is not true. Then there exist R,M > 0 such that

‖I −H(s)Hc(s)‖L(Y ) ≤M for s ∈ C0 ∩ {|s| > R}.(6.12)

Note that

H = (I −HHc)(I −HHc)−1H,

so (6.12) and the second equation in (6.9) imply that ‖H(s)‖L(U,Y ) is bounded for
s ∈ C0 ∩ {|s| > R}, which contradicts the hypothesis that H is unstable and the fact
that H is analytic in C0. Hence (6.11) must be true. Using Lemma 6.3 in [17], we get

lim sup
s∈C0,|s|→∞

r(H(s)Hc(s)) =∞,

where r denotes the spectral radius. Theorem 5.3 in [17] now implies that there exist
sequences {εn} and {pn} with

εn > 0, εn → 0, pn ∈ C0, |Im(pn)| → ∞,

such that for any n ∈ N, pn is a pole of (I−e−(ε1+ε2)·HHc)−1HHc when ε1 +ε2 = εn.
The proposition now follows from the fact that

(I − e−(ε1+ε2)·HHc)−1 = e−(ε1+ε2)·(I − e−(ε1+ε2)·HHc)−1HHc + I.

In [8], numerical tests imply that the stability of the closed-loop system can
handle small delays ε3 in the forcing function f(t), can tolerate very small delays ε1

in y(t), and becomes unstable for any delays ε2 in u(t). Direct comparison of the
lack-of-robustness results in Proposition 6.1 with the results in [8] is difficult, since
our results are for the full infinite dimensional system and controller, and the results
in [8] are for a finite dimensional approximation of the system and controller, and also
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because the results in [8] are for only one initial state. Nonetheless, we can use our
framework to give heuristic explanations for the results from [8].

Since in the envisioned applications f(t) will be periodic, we cannot necessarily
expect that y(t) defined by (6.10) is in L2[0,∞;Y ], even if the transfer functions are
stable. However, we will assume that the tracking component of the controller is
chosen to minimize the effect of f on y. In particular, we assume that Hc

1, which
contains the tracking component of the controller, is chosen so that the term (H1 +
HHc

1) in (6.8) has relatively small H∞-norm. First suppose that ε3 = 0. Both ε1 and
ε2 effect (I−e−(ε1+ε2)·HHc)−1, and ε2 also effects the term (H1+e−ε2·HHc

1) in (6.10).
Since e−ε2s can be far from 1 when s is on the imaginary axis and |s| is large, small
ε2 could easily counteract the minimizing effect of Hc

1 on ‖H1(s) + e−ε2sH(s)Hc
1(s)‖.

Thus, ε2 should have a stronger destabilizing effect on the closed-loop system than
ε1, which has exactly the same effect on (I − e−(ε1+ε2)·HHc)−1 as ε2 does.

Now suppose that ε1 = ε2 = 0. The delay ε3 only effects the term (e−ε3·H1 +
HHc

1) in (6.10), and can easily counteract the effect of Hc
1 on ‖(e−ε3sH1(s)+H(s)Hc

1(s))‖
for s on the imaginary axis. However, since B1 is quite smooth—for instance, in [8] it is
[0, 0, 0, 1]T—it is possible that H1(s) = CR(s,A)B1 is not large when s is on the imag-
inary axis and |s| is large. This would mitigate the effect of ε3 on (e−ε3·H1 + HHc

1).

7. Conclusions. To obtain the results in this paper, we used a combination of
techniques. As we have seen in sections 5 and 6, the effect of small delays on feedback
control is best handled using a frequency domain approach. In order to use this
approach we first must show that the structural acoustics system under consideration
is in the class of regular systems; we can then readily apply results in [17] about delay
robustness for regular systems. It is often a challenge to show that a given system is
regular. For the structural acoustic model in a rectangular cavity, to prove regularity
we used sharp PDE estimates from [1, 2, 3, 4], C0-semigroup results from [15], and
delicate estimates involving harmonic analysis; for nonrectangular cavities, microlocal
analysis is required (see [5]).

Since there is extensive literature on control design for regular systems, the im-
plications of regularity go beyond the study of robustness with respect to delays. For
instance, it might be possible to use the regular systems framework to study the effect
of additive perturbations on output feedback stabilization [19], to design adaptive con-
trol [18], to give Youla parametrizations for stabilizing controllers [27], or to study the
relationship between input-output stabilization and exponential stabilization [21, 22].
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Abstract. In this paper we study the optimizability of infinite-dimensional systems with ad-
missible control operators. We show that under a weak condition such a system is optimizable if
and only if the system can be split into an exponentially stable subsystem and an unstable subsys-
tem that is exactly controllable in finite time. The state space of the unstable subsystem equals
the span of all unstable (generalized) eigenvectors of the original system. This subsystem can be
infinite-dimensional. Furthermore, the unstable poles satisfy a summability condition. The state
space of the exponentially stable subsystem is given by all vectors for which the action of the original
C0-semigroup is stable.
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1. Introduction. This paper is concerned with the stabilization of infinite-
dimensional systems with a finite-dimensional input space described by the following
abstract differential equation:

ẋ(t) = Ax(t) +Bu(t), t ≥ 0
x(0) = x0,

(1)

where A is the infinitesimal generator of the C0-semigroup T (t) on the separable
Hilbert space H and B is the control operator.

Since the early days of infinite-dimensional systems theory, researchers have tried
to characterize conditions under which (1) is stabilizable; see, e.g., the survey articles
by Pritchard and Zabczyk [23] and by Russell [29]. In the early 1970s Datko [4] found
a characterization in terms of the cost functional

J(x0, u) :=

∫ ∞
0

‖x(t)‖2 + ‖u(t)‖2 dt.(2)

He proved that if B is a bounded operator, then there exists a bounded feedback F
such that A+BF generates an exponentially stable semigroup if and only if for every
x0 ∈ H there exists an input u such that J(x0, u) <∞.

It was only in the mid-1980s that for the class of bounded control operators
other necessary and sufficient conditions were found; see Desch and Schappacher [5],
Jacobson and Nett [17], and Nefedov and Sholokhovich [20]. Independently of each
other, they showed the following result. Here L(X1, X2) denotes the class of linear,
bounded operators from X1 to X2.
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Theorem 1.1. Consider the system (1) with B ∈ L(Cm, H). Then the following
conditions are equivalent.

1. There exists an F ∈ L(H,Cm) such that A+BF generates an exponentially
stable C0-semigroup.

2. It is possible to split the state space as H = Hu ⊕ Hs such that T (t)|Hs is
exponentially stable, Hu is finite-dimensional and the restriction of (1) to Hu

is exactly controllable in finite time.
Looking at the proof of this theorem, we observe that from the fact that B and F

are bounded, finite-rank operators it was obtained that there are only finitely many
unstable eigenvalues. Furthermore, Hu is the span over the eigenspaces corresponding
to these eigenvalues.

In the eighties the first results for unbounded control operators were found. In
general, the class of unbounded control operators consists of those operators B for
which ∫ t1

0

T (t1 − ρ)Bu(ρ) dρ

defines a bounded linear operator from L2(0, t1;Cm) to H. Following Weiss [32],
we call B an admissible control operator for T (t). If B is such an admissible control
operator for T (t), then for every x0 and for every u ∈ Lloc2 (0,∞;Cm), (1) has a unique
solution x(·) which lies in H and is continuous; see Weiss [33].

Flandoli, Lasiecka, and Triggiani [8] extended the result of Datko to the class of
admissible control operators for T (t). Among others, they showed the following.

Theorem 1.2. Consider the system (1), where the operator B is an admissible
control operator for T (t). Then the following conditions are equivalent.

1. System (1) is optimizable; i.e., for every element x0 ∈ H there exists an
input u ∈ L2(0,∞;Cm) such that the cost functional J(x0, u), given by (2),
is finite.

2. There exist an exponentially stable semigroup TF (t) with infinitesimal gener-
ator AF : D(AF )→ H, and an F ∈ L(D(AF ),Cm) such that
(a) FTF (·) : D(AF ) → L2(0,∞;Cm) extends to a bounded linear operator

from H to L2(0,∞;Cm);
(b) For every t > 0 and x0 ∈ H there holds

TF (t)x0 = T (t)x0 +

∫ t

0

T (t− ρ)BFTF (ρ)x0 dρ.(3)

The extension of Theorem 1.1 for the case that B is an admissible control operator
for T (t) and F is a bounded operator can be found in Rebarber [25]. The aim of this
paper is to show that Theorem 1.1 can be extended to admissible control operators for
T (t) and to feedback operators satisfying condition 2 of Theorem 1.2. The implication
part 2 to part 1 is relatively easy, so we will concentrate on the other direction.

Before we summarize our results, we have to introduce some notation. We say that
the generator A of a C0-semigroup satisfies the spectrum decomposition assumption
(SDA) at g, g ∈ R, if there exist real numbers g1 < g < g2 such that there is no
spectrum of A with real part between g1 and g2. In particular, we say that A satisfies
the SDA if A satisfies SDA at 0. Hence the SDA states that the spectrum can be split
into a “stable” and an “unstable” part. The main result that we prove in this paper
is the following.
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Theorem 1.3. Consider the system (1), where the operator B is an admissible
finite-rank control operator for T (t). If the system is optimizable and A satisfies the
SDA, then it is possible to split the state space as H = Hs ⊕Hu, where

Hs = {x0 ∈ H | T (t)x0 ∈ L2(0,∞;H)},
Hu = span

λ∈σ(A)with Re(λ)≥0

PλH.

Here PλH denotes the spectral subspace corresponding to the eigenvalue λ.

Moreover, Hs as well as Hu is a T (t)-invariant subspace, T (t)|Hs is exponentially
stable, T (t)|Hu is a group and the restriction of (1) to Hu is exactly controllable in
finite time.

A result similar to those of Theorem 1.3 holds if the system (A + gI,B) is opti-
mizable and if A+ gI satisfies the SDA. So one sees that the only difference between
bounded and unbounded control operators lies in the fact that Hu may be infinite-
dimensional and that we have to assume the SDA.

One may interpret this theorem as follows. If the system is optimizable and the
spectrum can be split into a stable and unstable part, then the state space can be split
in the corresponding way. Note that for general infinite-dimensional systems such a
splitting of the state space is not always possible, even if one can split the spectrum.
There exist infinitesimal generators whose spectrum lies in the left-half plane and is
bounded away from the imaginary axis, but they generate an unstable semigroup; see,
e.g., Zabczyk [39].

It may seem that the spectrum decomposition assumption is very strong. How-
ever, in Rebarber and Zwart [28, Theorem 2.11] the following result can be found.

Theorem 1.4. Assume that system (1) is optimizable where the operator B is
an admissible finite-rank control operator for T (t). Then there exists an ε > 0 such
that all elements in the spectrum of A with real part larger than −ε are eigenvalues
of A with finite algebraic multiplicity and all accumulation points of the spectrum of
A have real part less than or equal to −ε.

Hence this result gives a necessary condition for the system (1) to be optimizable.
Looking now at the class of systems that satisfies this necessary condition, i.e., in
the closed right-half plane there is only point spectrum, it is much harder to find an
example that does not satisfy the SDA. All delay and partial differential equations
that satisfy the necessary condition on its spectrum also satisfy the SDA at −ε for
some ε > 0.

We construct an example that is optimizable, but it is not possible to split the
state space in a direct sum as given in Theorem 1.3. The generator does not satisfy
the SDA at any negative number.

If A is a Riesz-spectral operator, then we are able to prove Theorem 1.3 without
assuming that A satisfies SDA. The SDA at −ε, for some ε > 0, will automatically
be satisfied if the system is stabilizable by a bounded feedback BF , since then there
can only be finitely many eigenvalues with real part larger than −ε for some ε > 0.

From Rebarber and Zwart [28] we have that the unstable part of the spectrum is
pure point spectrum; see Theorem 1.4. Here we show an extra property concerning
the distribution of this point spectrum.

Theorem 1.5. Assume that system (1) is optimizable where the operator B is an
admissible finite-rank control operator for T (t). Let {λn} denote the set of eigenvalues
with real part greater than 0 and let ma(λn, A) denote the algebraic multiplicity of λn.
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Then we have ∑
n∈N

ma(λn, A)

|λn|2 <∞.

From Theorem 1.3 we obtain some consequences as easy corollaries. For instance,
if the spectrum of A lies in the left-half plane and is bounded away from the imaginary
axis, but A generates an unstable semigroup, then it is never optimizable, for any
admissible finite-rank control operator for T (t). Thus these systems will never be
exactly controllable in finite time either. Examples of such generators can be found
in, e.g., Zabczyk [39] and Greiner, Voigt, and Wolff [11]. This result can be found in
[28] for the case of one-dimensional, not necessarily admissible, input operators.

Another consequence is the following. Suppose that A generates a C0-group.
If (1) is exactly controllable in finite time for some B where B is an admissible
finite-rank control operator for T (t), then the (generalized) eigenfunctions of A must
span H. This follows easily from Theorem 1.3 by using the fact that A + γI is
exactly controllable in finite time for every γ ∈ R. Now choose γ so large that the
corresponding “stable” subspace Hs is empty, which is possible since A generates a
C0-group.

A third consequence is the following. Suppose that A generates a completely
unstable C0-semigroup, that Σ(A,B) is optimizable, and that B is an admissible
finite-rank control operator for T (t). Then A generates a C0-group, and Σ(A,B) is
exactly controllable in finite time. This is an extension of the result found by Russell
in [29]. Reversing the argument gives that the right-shift semigroup on L2(0,∞) will
never be optimizable nor exactly controllable in finite time by a finite-rank admissible
control operator for T (t). The reason is that the right-shift semigroup is completely
unstable, but it is not a C0-group.

The organization of the paper is as follows. In the next two sections we introduce
the necessary background and notation. In section 4, we show that if the state space
can be split into two T (t)-invariant subspaces, then we can write the system (1) into
two corresponding subsystems. Theorem 1.3 will be proved in section 5, apart from
the characterization of Hs and Hu. That will be done in section 7. Theorem 1.5
will be the subject of section 6. Finally, in section 8 we present an example that is
optimizable, but it is not possible to split the state space of this example in a direct
sum as given in Theorem 1.3.

2. System description. In this section, we describe the general class of systems
discussed in this paper. First we need to introduce some notation.

C+
α {z ∈ C : Re(z) > α}, α ∈ R,
C−α {z ∈ C : Re(z) < α}, α ∈ R,
H separable, complex Hilbert space,

σ(A) spectrum of A,

σ+
α (A) σ(A) ∩ C+

α ,

σp(A) point spectrum of A,

ρ(A) resolvent set of A,

ρ∞(A) largest connected subset of ρ(A) that contains

an interval of the form [r,∞),

N(A) {x ∈ D(A) | Ax = 0},
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Im(A) {x ∈ H | ∃y ∈ D(A) : Ay = x},
H∞(C+

α ;H) set of holomorphic and bounded functions

from C+
α to H,

H2(C+
α ;H) set of holomorphic functions f : C+

α → H with

sup
x>α

(∫ ∞
−∞
‖f(x+ iy)‖2dy

)1/2

<∞.

We deal with infinite-dimensional, time-invariant systems of the following kind:

ẋ(t) = Ax(t) +Bu(t).(4)

Here A : D(A)→ H is the generator of a C0-semigroup T (t) on the separable, complex
Hilbert space H, and B will be our (unbounded) control operator. The input function
u is assumed to be in Lloc2 (0,∞;Cm).

In order to define our class of control operators we have to introduce some no-
tation. We define the space H−1 to be the completion of H with respect to the
norm

‖x‖−1 := ‖(βI −A)−1x‖

and the space H1 to be D(A) with the norm

‖x‖1 := ‖(βI −A)x‖,

where β ∈ ρ(A), the resolvent set of A. It is easy to verify that H−1 and H1 do not
depend on β ∈ ρ(A). Moreover, ‖ · ‖1 is equivalent to the graph norm on D(A), so
H1 is complete. In Weiss [33, Remark 3.4] it is shown that T (t) has a restriction to
a C0-semigroup on H1 whose generator is the restriction of A to D(A), and T (t) can
be extended to a C0-semigroup on H−1 whose generator is an extension of A with
domain H. Therefore we get

A ∈ L(H1, H) and A ∈ L(H,H−1).

H−1 equals the dual of D(A∗), where we have equipped D(A∗) with the graph norm
(see [33]). Following [33] we introduce admissible control operators for T (t).

Definition 2.1. Let B ∈ L(Cm, H−1). For t ≥ 0 we define the operator Bt :
L2(0,∞;Cm)→ H−1 by

Btu :=

∫ t

0

T (t− ρ)Bu(ρ) dρ.

Then B is called an admissible control operator for T (t), if for some (and hence any)
t > 0, Bt ∈ L(L2(0,∞;Cm), H).

By a solution of (4) with initial condition x(0) = x0 ∈ H we mean the function
defined by the variation of parameters formula

x(t) = T (t)x0 +

∫ t

0

T (t− ρ)Bu(ρ) dρ, t ≥ 0.

Note that the admissibility of B guarantees x(t) ∈ H for t ≥ 0 and in [33] it is shown
that x is continuous. We will denote system (4) by Σ(A,B).
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In the following the concept of admissible observation operators for T (t) also will
be needed (see also Weiss [34]).

Definition 2.2. Let C ∈ L(H1,Cp). Then C is called an admissible observation
operator for T (t), if for some (and hence any) t > 0, there is some K > 0 such that

‖CT (·)x‖L2(0,t;Cp) ≤ K‖x‖, x ∈ D(A).

If the semigroup T (t) is exponentially stable, then the constantK does not depend
on t ≥ 0 (see Grabowski and Callier [10]). We end this section with some simple
properties of admissible control and observation operators for T (t).

Remark 2.3. B is an admissible control operator for the C0-semigroup Tτ (t)
given by

Tτ (t) := eτtT (t)

where τ ∈ R is arbitrary. Moreover, if the operator C ∈ L(H1,Cp) is an admissible
observation operator for T (t), then C also is an admissible observation operator for
Tτ (t).

3. Optimizability, LQ-stabilizing feedbacks, and exact controllability.
In this section we introduce the notions of optimizability, LQ-stabilizing feedbacks,
and exact controllability. Furthermore, we investigate relationships between these
notions. With the system Σ(A,B) we associate the cost functional

J(x0, u) :=

∫ ∞
0

‖x(t)‖2 + ‖u(t)‖2 dt.(5)

Definition 3.1. We call the system Σ(A,B) g-optimizable, g ∈ R, if for every
x0 ∈ H there exists an input u ∈ Lloc2 (0,∞;Cm) such that

Jg(x0, u) :=

∫ ∞
0

[‖e−gtx(t)‖2 + ‖e−gtu(t)‖2] dt <∞.(6)

In particular, we call the system Σ(A,B) optimizable, if it is 0-optimizable.
Thus the system Σ(A,B) is optimizable if for every x0 ∈ H there exists an input

u ∈ L2(0,∞;Cm) such that the cost functional J(x0, u) is finite. Optimizability is
also known as the finite cost condition. Note further that if the system Σ(A,B) is
g-optimizable for some g ∈ R, then the system is g′-optimizable for every g′ ≥ g.

Definition 3.2. Let F : D(F ) 7→ Cm. We call F an LQ-stabilizing feedback at
g for the system Σ(A,B) if there exists a C0-semigroup TF (t) on H with generator
AF : D(AF ) → H such that F ∈ L(D(AF ),Cm), F is an admissible observation
operator for TF (t),

TF (t)x0 = T (t)x0 +

∫ t

0

T (t− ρ)BFTF (ρ)x0 dρ(7)

for every t ≥ 0 and any x0 ∈ H, and ‖TF (t)‖ ≤ Me(g−δ)t for all t ≥ 0 and some
M, δ > 0. We call the feedback F LQ-stabilizing, if it is LQ-stabilizing at zero.

Since F is assumed to be an admissible observation operator for TF (t), we have
that FTF (·)x ∈ Lloc2 (0,∞;Cm) for all x ∈ H. Thus the integral in (7) is well-defined.

If an operator F is stabilizing in the sense given in Rebarber [26] and Weiss and
Curtain [37], then it is easy to see that it is also an LQ-stabilizing feedback. The
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difference between their definition and our Definition 3.2 is that we do not assume
that F is an admissible observation operator for T (t). Therefore, in general we do
not have the second perturbation equation

TF (t)x = T (t)x+

∫ t

0

TF (t− ρ)BFT (ρ)x dρ, t ≥ 0, x ∈ H,

which holds if F is stabilizing in their sense; see Weiss [36]. At the present it is
unknown whether LQ-stabilizing feedbacks and stabilizing feedbacks in the sense of
Rebarber are equivalent.

The following theorem shows that in our situation the system Σ(A,B) is g-
optimizable if and only if there exists a feedback which is LQ-stabilizing at g. So,
we have equivalence between the boundedness of the LQ-cost functional (5) and our
notion of stability. This inspired us to call our notion “LQ-stabilizing.”

Theorem 3.3. The following statements are equivalent.
(1) The system Σ(A,B) is g-optimizable.
(2) There exists a feedback which is LQ-stabilizing at g for the system Σ(A,B).
Proof . By choosing u(t) = FTF (t)x0 it is easy to see that part (2) implies part

(1). Thus it remains to prove that part (1) implies part (2). For g equals zero,
this implication is proved in Flandoli, Lasiecka, and Triggiani [8, Corollary 4.3 and
Theorem 4.4]; see also Zwart [41]. For general g ∈ R, it is easy to see that the
cost Jg(x0, u) for the system Σ(A,B) equals the cost J(x0, e

−g·u) for the system
Σ(A − gI,B). Hence, the system Σ(A,B) is g-optimizable if and only if the system
Σ(A− gI,B) is optimizable. For the system Σ(A− gI,B) we use the result that we
already have, and thus there exist an exponentially stable C0-semigroup TF (t) and
an admissible observation operator F for TF (t) such that

TF (t)x0 = e−gtT (t)x0 +

∫ t

0

e−g(t−ρ)T (t− ρ)BFTF (ρ) dρ

= e−gt
[
T (t)x0 +

∫ t

0

T (t− ρ)BFegρTF (ρ) dρ

]
.

This proves that F is an LQ-stabilizing feedback at g for the system Σ(A,B).
For a C0-semigroup T (t) we define by gb(T ) the growth bound of T (t), i.e.,

gb(T ) := lim
t→∞

1

t
log ‖T (t)‖.

If the system Σ(A,B) is LQ-stabilizable, then we have the existence of an exponen-
tially stable C0-semigroup TF (t). The growth bound of this semigroup is denoted by
gFb , i.e.,

gFb := gb(TF ).(8)

We call gFb the closed-loop growth bound of the LQ-stabilizing feedback. If the system
is optimizable, then gFb depends on the LQ-stabilizing feedback F . However, gFb will
always be negative, and this is the essential property of the closed-loop growth bound
that we will use in the following.

Proposition 3.4. Assume that F is an LQ-stabilizing feedback for the system
Σ(A,B), and let gFb be the corresponding closed-loop growth bound. Then we have the
following.
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(1) For every ε ∈ [0,−gFb ) the feedback F is LQ-stabilizing for the system Σ(A+
εI,B).

(2) For every ε ∈ [0,−gFb ) the feedback F is LQ-stabilizing at −ε for the system
Σ(A,B).

Proof . Let ε ∈ [0,−gFb ). By Remark 2.3 B is an admissible control operator
for eεtT (t). Let F and TF (t) be as in Definition 3.2. Then Remark 2.3 implies that
F is an admissible observation operator for eεtTF (t). By the definition of gFb , the
C0-semigroup TFε (t) := eεtTF (t) is exponentially stable.

1. From (7) we have that

TFε (t)x0 = eεtTF (t)x0

= eεtT (t)x0 +

∫ t

0

eε(t−ρ)T (t− ρ)BFeερTF (ρ) dρ

= eεtT (t)x0 +

∫ t

0

eε(t−ρ)T (t− ρ)BFTFε (ρ) dρ.

Since A + εI is the infinitesimal generator of the C0-semigroup eεtT (t), we
see that F is LQ-stabilizing for the system Σ(A+ εI,B);

2. For all γ > 0, there exists a Mγ > 0 such that

‖TF (t)‖ ≤Mγe
(gFb +γ)t.

We choose γ > 0 such that gFb +γ < −ε holds, and we define δ := −ε−gFb −γ.
Then δ > 0 and gFb + γ = −ε − δ, and hence by Definition 3.2 the feedback
F is LQ-stabilizing at −ε for the system Σ(A,B).

Next, we show that the spectral subset σ+
gF
b

(A) is of a special form if F is a

LQ-stabilizing feedback.
Proposition 3.5. Assume that F is an LQ-stabilizing feedback for the system

Σ(A,B), and let gFb be the closed-loop growth bound. Then the spectral subset σ+
gF
b

(A)

consists only of point spectrum with finite algebraic multiplicity, and the possible finite
accumulation points of the set σ+

gF
b

(A) must lie on the line with real part equal to gFb .

Proof . Let τ ∈ (gFb , 0) and ε ∈ (−τ,−gFb ). Then Proposition 3.4 and Theorem 3.3
imply that system Σ(A,B) is ε-optimizable. Now Rebarber and Zwart [28, Theorem
2.11] imply that the spectral subset σ+

τ (A) consists only of point spectrum with finite
algebraic multiplicity and contains no finite accumulation point. Since τ ∈ (gFb , 0) is
arbitrary, this implies the statement.

Note that it is possible that the spectrum of A possesses an accumulation point
λ0 with Re(λ0) = gFb .

In the following proposition we rewrite LQ-stabilizability in an equivalent way in
the frequency domain. We show that LQ-stabilizability implies a useful representa-
tion of x0 ∈ H, the so-called (ξ, ω)-representation. This was introduced for finite-
dimensional systems by Hautus [12] and for infinite-dimensional systems by Zwart
[40].

Proposition 3.6.
1. If for every x0 ∈ H there exist ξ ∈ H2(C+

0 ;H) and ω ∈ H2(C+
0 ;Cm) such

that

x0 = (sI −A)ξ(s)−Bω(s), s ∈ C+
0 ,(9)
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then the system Σ(A,B) is optimizable, and hence there exists an LQ-stabiliz-
ing feedback.

2. Assume that there exists an LQ-stabilizing feedback for the system Σ(A,B),
and let gFb be its closed-loop growth bound. Then for every σ ∈ (gFb , 0)
there exists a constant C > 0 such that for every x0 ∈ H there exist ξ ∈
H∞(C+

σ ;H) ∩H2(C+
σ ;H) and ω ∈H∞(C+

σ ;Cm) ∩H2(C+
σ ;Cm) with

x0 = (sI −A)ξ(s)−Bω(s), s ∈ C+
σ ,(10)

and

max{‖ξ‖H∞(C+
σ ;H), ‖ξ‖H2(C+

σ ;H), ‖ω‖H∞(C+
σ ;Cm), ‖ω‖H2(C+

σ ;Cm)} ≤ C‖x0‖H .
Proof . By [33, Remark 3.12] it follows that for every u ∈ L2(0,∞;Cm) the func-

tion Φu(t) :=
∫ t

0
T (t− ρ)Bu(ρ) dρ is Laplace-transformable with Laplace transform

Φ̂u(s) = (sI −A)−1Bω(s), Re(s) ≥ r for some r ∈ R,
where ω is the Laplace transform of u.

1. Let x0 ∈ H be arbitrary. Since ξ ∈ H2(C+
0 ;H) and ω ∈ H2(C+

0 ;Cm), by
the Paley–Wiener theorem (see, e.g., [3, Theorem A.6.21]) there exist unique
u ∈ L2(0,∞;Cm) and x ∈ L2(0,∞;H) such that ω is the Laplace transform
of u and ξ is the Laplace transform of x. Applying Laplace transforms to the
function

T (t)x0 +

∫ t

0

T (t− ρ)Bu(ρ) dρ, t ≥ 0,

we get

(sI −A)−1x0 + (sI −A)−1Bω(s), Re(s) ≥ r for some r ∈ R.
Since ξ(s) = (sI−A)−1x0 +(sI−A)−1Bω(s), Re(s) > max{r, 0}, the unique-
ness of the Laplace transform implies

x(t) = T (t)x0 +

∫ t

0

T (t− ρ)Bu(ρ) dρ.

This proves that x is the state trajectory corresponding to x0 and u and thus
the system Σ(A,B) is optimizable. By Theorem 3.3 we have the existence of
an LQ-stabilizing feedback.

2. Let F be a LQ-stabilizing feedback from Definition 3.2. Taking the Laplace
transform of (7), we get

(sI −AF )−1x0 = (sI −A)−1x0 + (sI −A)−1BF (sI −AF )−1x0.(11)

Since TF (t) has growth bound gFb , it is easy to see that

‖(sI −AF )−1x0‖H∞(C+
σ ;H) ≤ C1‖x0‖H ,

and by using the Paley–Wiener theorem [3, Theorem A.6.21] we get

‖(sI −AF )−1x0‖H2(C+
σ ;H) ≤ C2‖x0‖H .

Since F is an admissible observation operator for TF (t), similar results hold for
F (sI−AF )−1x0. Define ξ(s) := (sI−AF )−1x0 and ω(s) := F (sI−AF )−1x0.
Multiplying (11) with (sI−A) and using the definition of ξ and ω, we obtain
(10).
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We end this section with the definition and some simple properties of exact con-
trollability in finite time.

Definition 3.7. The system Σ(A,B) is called exactly controllable in finite time
if there exists a time t0 ∈ (0,∞) such that for every x ∈ H we can find an input
u ∈ L2(0, t0;Cm) such that

x =

∫ t0

0

T (t0 − ρ)Bu(ρ) dρ.

Lemma 3.8. Assume that the system Σ(A,B) is exactly controllable in finite
time. Then for every τ ∈ R the system Σ(A + τI,B) also is exactly controllable in
finite time.

The following proposition shows that exact controllability in finite time implies
g-optimizability for every g ∈ R.

Proposition 3.9. If the system Σ(A,B) is exactly controllable in finite time,
then it also is g-optimizable for every g ∈ R.

The proof of Lemma 3.8 and Proposition 3.9 is quite easy and left to the reader.
We conclude this section by proving that the spectrum of an exactly controllable
system is of a very special form.

Theorem 3.10. If the system Σ(A,B) is exactly controllable in finite time, then
the spectrum of A is pure point spectrum and it contains no (finite) accumulation
point.

Proof . Let γ ∈ R be arbitrary. Then by Lemma 3.8 we see that the system
Σ(A+γI,B) is exactly controllable in finite time as well. Proposition 3.9 implies that
Σ(A + γI,B) is optimizable. Now from Theorem 3.3 and Proposition 3.5 we obtain
that σ+

0 (A + γI) consists only of point spectrum with no finite accumulation point.
Since σ+

−γ(A) = σ+
0 (A+ γI), and since γ is arbitrary, the assertion follows.

4. Decompositions of C0-semigroups. For the formulation of Theorem 5.3
we need to write our system into two subsystems. Properties of such a decomposition
are given next.

Definition 4.1. We call a closed subspace V of H T (t)-invariant, if T (t)V ⊂ V ,
for all t ≥ 0.

In Kurtz [19] it is shown that a closed subspace V is T (t)-invariant if and only if
(λI −A)−1V ⊂ V for all λ ∈ ρ∞(A); see also Curtain and Zwart [3, Lemma 2.5.6].

Lemma 4.2. Let V be a T (t)-invariant subspace of H and let PV ∈ L(H) be
a projection from H onto V . Define W := N(PV ) and PW := I − PV . Then the
following hold:

1. The operator

TV (t)x := T (t)x, t ≥ 0, x ∈ V,

defines a C0-semigroup on V with its generator AV given by

AV x := Ax, x ∈ D(AV ) := D(A) ∩ V.

Furthermore, ρ∞(A) ⊂ ρ(AV ), and for every v ∈ V and s ∈ ρ∞(A) we have
(sI −AV )−1v = (sI −A)−1v.

2. Let V−1 be the completion of V with respect to the norm ‖(βI − AV )−1 · ‖V .
Then V−1 ⊂ H−1 and ‖v‖V−1

= ‖v‖H−1
for every v ∈ V−1.
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3. The operator

TW (t)x := PWT (t)x, t ≥ 0, x ∈W,
defines a C0-semigroup on W .

Proof .
1. Follows immediately from Pazy [22, page 123] and [19].
2. From the first part it follows that ‖(sI −AV )−1v‖ = ‖(sI −A)−1v‖ for every
v ∈ V . Now the definition of a completion of a normed vector space shows
that V−1 ⊂ H−1 and ‖v‖V−1

= ‖v‖H−1
for every v ∈ V−1.

3. It is easy to see that TW (0) = IW holds. Since V is a T (t)-invariant subspace,
we have PWT (t)PV = 0. Thus, for t, s ≥ 0 and x ∈W we obtain

TW (t)TW (s)x = PWT (t)PWT (s)x = PWT (t)T (s)x− PWT (t)(I − PW )T (s)x

= PWT (t+ s)x− PWT (t)PV T (s)x = TW (s+ t)x.

Since the strong continuity of T (t) immediately implies that TW (t) is strongly
continuous, TW (t) is a C0-semigroup on W .

Lemma 4.3. Let V be a T (t)-invariant subspace of H, and let PV ∈ L(H) be
a projection from H onto V . Define W := N(PV ) and PW := I − PV . Then there
exists a unique admissible control operator BW ∈ L(Cm,W−1) for TW (t) on W , where
TW (t)x := PWT (t)x for t ≥ 0 and x ∈W , with the property that∫ t

0

TW (t− ρ)BWu(ρ) dρ = PW

∫ t

0

T (t− ρ)Bu(ρ) dρ(12)

for every t ≥ 0 and u ∈ L2(0, t;Cm). This unique operator BW is given by

BWu := lim
τ→0

1

τ
PW

∫ τ

0

T (τ − ρ)Budρ, u ∈ Cm,(13)

where the limit is taken in W−1.
Additionally, if Σ(A,B) is exactly controllable in finite time, then Σ(AW , BW )

also is exactly controllable in finite time. Here AW is the generator of the C0-
semigroup TW (t).

Proof . Let Bt ∈ L(L2(0,∞;Cm), H) be the operator as introduced in Definition
2.1. For u, v ∈ L2(0,∞;Cm) we define u �

τ
v as

(u �
τ
v)(t) =

{
u(t), t ∈ [0, τ ],
v(t− τ), t > τ.

The admissibility of B for the C0-semigroup T (t) implies (see [33]) that

Bτ+t(u �
τ
v) = T (t)Bτu+ Btv.

Define BWt ∈ L(L2(0,∞;Cm),W ), t ≥ 0, by

BWt := PWBt.
Since V is a T (t)-invariant subspace of H, we have that PWT (t)PV = 0, t ≥ 0. Thus
for every τ, t ≥ 0 and every u, v ∈ L2(0,∞;Cm) we obtain

BWτ+t(u �
τ
v) = PWBτ+t(u �

τ
v) = PWT (t)Bτu+ PWBtv = PWT (t)Bτu+ BWt v

= PWT (t)PWBτu+ PWT (t)PV Bτu+ BWt v = TW (t)BWτ u+ BWt v.
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Now [33, Theorem 3.9] implies that there exists a unique BW ∈ L(Cm,W−1) such
that

BWt u =

∫ t

0

TW (t− ρ)BWu(ρ) dρ,

for t ≥ 0 and u ∈ L2(0,∞;Cm), and this unique operator BW is given by (13). Thus
BW is an admissible control operator for TW (t) and (12) holds.

If Σ(A,B) is exactly controllable in finite time, then there exists a time t0 > 0
such that for every x ∈W there is an input u ∈ L2(0, t0;Cm) such that

x =

∫ t0

0

T (t0 − ρ)Bu(ρ) dρ.

From (12) it follows directly that the system Σ(AW , BW ) is exactly controllable in
finite time as well.

If P is a projection that commutes with the C0-semigroup T (t), we have H =
N(P )⊕ Im(P ) and both N(P ) and Im(P ) are closed T (t)-invariant subspaces. In the
following we denote by Tu(t) and Ts(t) the restricted C0-semigroups on Hu := N(P )
and Hs := Im(P ), respectively. Moreover, the generators of the C0-semigroups Tu(t)
and Ts(t) are denoted by Au and As. By [Hs]−1 ([Hu]−1) we denote the completion
of Hs (Hu) with respect to the norm ‖(βI −As)−1 · ‖Hs (‖(βI −Au)−1 · ‖Hu).

The existence of such a projection P is very helpful since it reduces the semigroup
into two (possibly simpler) semigroups Ts(t) and Tu(t).

Lemma 4.4. Let T (t) be a C0-semigroup on H and B ∈ L(Cm, H−1) an admissi-
ble control operator for T (t). Moreover, let P ∈ L(H) be a projection that commutes
with T (t), t ≥ 0. Then we have the following.

1. P has a unique continuous extension P̃ in L(H−1) with Im(P̃ ) = [Hs]−1 and
N(P̃ ) = [Hu]−1. Moreover, P̃ is a projection and P̃ commutes with T (t) and
A.

2. P̃B ∈ L(Cm, [Hs]−1) is an admissible control operator for Ts(t) on Hs with
the property∫ t

0

Ts(t− ρ)P̃Bu(ρ) dρ = P

∫ t

0

T (t− ρ)Bu(ρ) dρ,(14)

for t ≥ 0 and u ∈ L2(0, t;Cm).
3. (I − P̃ )B ∈ L(Cm, [Hu]−1) is an admissible control operator for Tu(t) on Hu

with the property∫ t

0

Tu(t− ρ)(I − P̃ )Bu(ρ) dρ = (I − P )

∫ t

0

T (t− ρ)Bu(ρ) dρ,(15)

for t ≥ 0 and u ∈ L2(0, t;Cm).
Proof .
1. Choose β ∈ ρ(A) with Reβ > gb(T ), where gb(T ) is the growth bound of
T (t). Then we have

(βI −A)−1x =

∫ ∞
0

e−βtT (t)x dt.

Thus P commutes with (βI −A)−1, and hence also with A. Now [33, Propo-
sition 3.3] shows that P has a unique continuous extension P̃ in L(H−1) and
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that P̃ commutes with T (t) and A. It is now easy to see that P̃ again is a
projection.

In order to prove Im(P̃ ) = [Hs]−1, we first choose x ∈ [Hs]−1. Then there
exists a sequence {xn}n ⊂ Hs with xn → x, as n→∞, in [Hs]−1. Since P̃ is
continuous, we get P̃ xn → P̃ x. On the other hand, P̃ xn = Pxn = xn → x,
and thus x ∈ Im(P̃ ). Conversely, we choose x ∈ Im(P̃ ). Then there exists
an element z ∈ H−1 with P̃ z = x and a sequence {zn}n ⊂ H with zn → z,
as n → ∞, in H−1. Since Pzn ∈ Hs and Pzn = P̃ zn → P̃ z = x, we get
x ∈ [Hs]−1. This proves Im(P̃ ) = [Hs]−1. Finally, N(P̃ ) = [Hu]−1 can be
proved in a similar manner.

2. By Lemma 4.3 there is a unique admissible control operatorBs ∈ L(Cm, [Hs]−1)
for Ts(t) with the property that∫ t

0

Ts(t− ρ)Bsu(ρ) dρ = P

∫ t

0

T (t− ρ)Bu(ρ) dρ,(16)

for every t ≥ 0 and u ∈ L2(0, t;Cm). Using [33], we see that B is given by

Bu = lim
τ→∞

1

τ

∫ t

0

T (t− ρ)Budρ, u ∈ Cm,

where the limit is taken in H−1. Since P̃ ∈ L(H−1), we get

P̃Bu = lim
τ→∞

1

τ
P

∫ t

0

T (t− ρ)Budρ, u ∈ Cm.

By Lemma 4.2, [Hs]−1 ⊂ H−1 and the norms coincide. Now by Lemma 4.3
we get Bs = P̃B, which completes the proof.

3. The proof for Tu(t) is similar to the proof of part 2.

5. Equivalent conditions for optimizability. In this section, we develop
equivalent conditions for optimizability. We will see that under a weak assumption
the system Σ(A,B) is optimizable if and only if we can split it into a part that is
exponentially stable and a part that is exactly controllable in finite time. This suf-
ficient condition of optimizability was obtained fairly early in 1975 by Triggiani [31]
for infinite-dimensional systems with a bounded control operator, under the extra
assumption of finitely many unstable eigenvalues. We now show that this holds for
admissible control operators for T (t).

Theorem 5.1. Assume that there exists a projection P ∈ L(H) such that
(1) P commutes with the semigroup T (t);
(2) Ts(t) := PT (t) is an exponentially stable C0-semigroup on Hs := Im(P );
(3) Σ(Au, (I−P̃ )B) is exactly controllable in finite time. Here Au is the generator

of the C0-semigroup Tu(t) := (I − P )T (t) on Hu := N(P ).
Then the system Σ(A,B) is optimizable.

Proof . Let x0 ∈ H be arbitrary. Since Σ(Au, (I − P̃ )B) is exactly controllable in
finite time there exist a number t0 > 0 and an input ũ ∈ L2(0, t0;Cm) such that

−Tu(t0)(I − P )x0 =

∫ t0

0

Tu(t0 − ρ)(I − P̃ )Bũ(ρ) dρ.(17)

Define u ∈ L2(0,∞;Cm) by

u(s) :=

{
ũ(s), s ≤ t0,
0, s > t0.
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Then for t ≥ t0 the state trajectory corresponding to the initial state x0 and the input
function u satisfies

x(t) = T (t)x0 +

∫ t

0

T (t− ρ)Bu(ρ) dρ

(14) and (15)
= Tu(t)(I − P )x0 + Ts(t)Px0

+

∫ t

0

Tu(t− ρ)(I − P̃ )Bu(ρ) dρ+

∫ t

0

Ts(t− ρ)P̃Bu(ρ) dρ

= Tu(t− t0)Tu(t0)(I − P )x0 + Ts(t)Px0

+ Tu(t− t0)

∫ t0

0

Tu(t0 − ρ)(I − P̃ )Bũ(ρ) dρ

+ Ts(t− t0)

∫ t0

0

Ts(t0 − ρ)P̃Bũ(ρ) dρ

(17)
= Ts(t)Px0 + Ts(t− t0)

∫ t0

0

Ts(t0 − ρ)P̃Bũ(ρ) dρ.

Now the exponential stability of Ts(t) implies x ∈ L2(0,∞;H), and thus the system
Σ(A,B) is optimizable.

To show that the converse of Theorem 5.1 holds, we need an extra assumption.
Definition 5.2. We say that the operator A satisfies the spectrum decomposition

assumption at g (SDA(g)), if there exist numbers g1 < g < g2 such that

C+
g1
∩ C−g2

⊂ ρ(A).(18)

We say that A satisfies the SDA, if it satisfies SDA(0).
If an operator A satisfies the SDA(g) in the sense given in Curtain and Zwart [3],

then A satisfies the SDA at g in the sense of Definition 5.2. The difference between
their definition and Definition 5.2 is that we do not assume that σ+

g (A) is compact.
The result that we want to prove in this section is the following.
Theorem 5.3. Assume that the system Σ(A,B) is optimizable and that A satis-

fies SDA. Then there exists a projection P such that
(1) P commutes with the semigroup T (t),
(2) Ts(t) := PT (t) is an exponentially stable C0-semigroup on Hs := Im(P ),
(3) Tu(t) := (I − P )T (t) is a C0-group on Hu := N(P ),
(4) −Au generates an exponentially stable C0-semigroup,
(5) Σ(Au, (I − P̃ )B) is exactly controllable in finite time.
Remark 5.4. There are examples of optimizable systems Σ(A,B) for which A

does not satisfy the SDA, but for every g < 0 there exists an ε ∈ (0,−g) such that
A satisfies the SDA at −ε. If this is the case, then using Theorem 3.3, Proposition
3.4, and Theorem 5.3, we get a result similar to that in Theorem 5.3; namely, there
exists a projection P such that 1–3 and 5 of Theorem 5.3 are satisfied and additionally
−Au − εI generates an exponentially stable C0-semigroup.

A projection P ∈ L(H) satisfying properties (1)–(4) of Theorem 5.3 is also known
as dichotomic projection; see [24]. The proof of Theorem 5.3 is given at the end of
this section.

Desch and Schappacher [5], Jacobson and Nett [17] and Nefedov and Sholokhovich
[20] have proved Theorem 5.3 for bounded control operators B, i.e., B ∈ L(Cm, H).
In this situation, for every (LQ)-stabilizing feedback F , the spectral subset σ+

gF
b

(A)
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consists only of finitely many points. Hence, the SDA is satisfied or at least SDA(g)
is satisfied for g arbitrarily close to zero. Example 5.11 shows that the assumptions
made in Theorem 5.1 do not imply that A satisfies the SDA at g for some g ≤ 0.
In the following we will see that the assumption that A satisfies the SDA is not
very restrictive, because there are a lot of situations where this assumption holds
automatically; see Proposition 5.9.

Definition 5.5. We call the C0-semigroup T (t) completely unstable if

{x ∈ H : T (·)x ∈ L2(0,∞;H)} = {0}.

For example, if A generates a C0-group T (t) and −A generates a bounded C0-
semigroup, then T (t) is completely unstable.

As a corollary of Theorem 5.3 we show that under the assumption thatA generates
a completely unstable C0-semigroup, the system Σ(A,B) is optimizable if and only if
the system Σ(A,B) is exactly controllable in finite time.

Corollary 5.6. If A generates a completely unstable C0-semigroup, then the
following statements are equivalent.

(1) The system Σ(A,B) is optimizable.
(2) There exists an LQ-stabilizing feedback for the system Σ(A,B).
(3) The system Σ(A,B) is exactly controllable in finite time.

Moreover, if one of these statements holds, then T (t) is a C0-group on H, and A
satisfies the SDA at any point between the closed-loop growth bound and zero.

Proof . The equivalence between part 1 and part 2 is proved in Theorem 3.3.
Proposition 3.9 shows that part 3 implies part 1. We now prove that part 2 implies
part 3. Let F be an LQ-stabilizing feedback for the system Σ(A,B). Proposition
3.5 implies that the spectral subset σ+

gF
b

(A) consists only of point spectrum. Let us

assume that there is a λ ∈ C+
gF
b

∩C−0 ∩σ(A) and xλ a corresponding eigenvector. In [22,

p. 46] it is shown that eλt is an eigenvalue of T (t) with eigenvector xλ. This implies
that T (·)xλ = eλtxλ ∈ L2(0,∞;H), which is in contradiction with the fact that
T (t) is completely unstable. Thus C+

gF
b

∩ C−0 ⊂ ρ(A) and so A satisfies the SDA(−ε)
for any ε ∈ (0,−gFb ). Remark 5.4 now implies the existence of a projection P such
that 1–3 and 5 of Theorem 5.3 are satisfied. Since Ts(t) = PT (t) = T (t)P , we get
T (·)x ∈ L2(0,∞;H) for every x ∈ Hs. Using the complete instability of our system
this can only happen if Hs = 0. Therefore, Hu = H and T (t) equals Tu(t) which
implies that T (t) is a C0-group and that the system Σ(A,B) is exactly controllable
in finite time.

The result presented in the previous corollary is closely related to Russell’s prin-
ciple on exact controllability. Russell [29] proved exact controllability for a system
governed by the wave equation by showing that the system was stabilizable and back-
wards stabilizable. The definition of stabilizability used in [29] is stronger than the
definition used in this paper. Rebarber and Weiss [27] extended Russell’s result to
our notion of stabilizability. Their result is closely related to the corollary above, but
it is neither a consequence nor a generalization of our result.

Example 5.7. Consider the right-shift semigroup T (t) on L2(0,∞) with genera-
tor A. This semigroup satisfies ‖T (t)x0‖ = ‖x0‖ for every x0 ∈ L2(0,∞). Hence the
right shift semigroup on L2(0,∞) is completely unstable. Since this C0-semigroup is
not a C0-group, Corollary 5.6 implies that there cannot exist an admissible finite-rank
control operator B for T (t) such that the system Σ(A,B) is optimizable.
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Definition 5.8. We call a C0-semigroup T (t) eventually norm continuous if
there exists a constant t′ ≥ 0 such that the function t→ T (t) from (t′,∞) into L(H)
is operator-norm continuous.

Examples for eventually norm continuous C0-semigroups are holomorphic, differ-
entiable, norm continuous, and compact C0-semigroups; see Arendt et al. [1, p. 41].

Proposition 5.9. Assume that F is an LQ-stabilizing feedback for the system
Σ(A,B), and let gFb be its closed-loop growth bound. If the C0-semigroup T (t) is
eventually norm continuous, then for every τ ∈ (gFb , 0), the set σ+

τ (A) contains only
finitely many points, and thus A satisfies SDA(g) for all but finitely many g > gFb .

Proof . By Proposition 3.5 the spectral subset σ+
gF
b

(A) contains no finite accu-

mulation point. Let τ ∈ (gFb , 0). Since by [1, A-II Theorem 1.20] the set {λ ∈
σ(A)|Re(λ) ≥ τ} is bounded, we have that σ+

τ (A) contains only finitely many points.
Thus the assertion follows.

In the special case where A is a Riesz-spectral operator we are able to prove
Theorem 5.3 without the assumption that A satisfies the SDA. For the definition of
a Riesz-spectral operator we refer the reader to [3, Definition 2.3.4].

Theorem 5.10. Assume that F is an LQ-stabilizing feedback for the system
Σ(A,B) and that A is a Riesz-spectral operator. Let g be negative and larger than the
closed-loop growth bound. Then there exists a projection P ∈ L(H) such that 1–3 and
5 of Theorem 5.3 are satisfied and additionally the growth bound of the C0-semigroup
generated by −Au is at most −g.

Proof . By the definition of a Riesz-spectral operator, there exist sequences
(λn)n ⊂ C, (φn)n ⊂ H, and (ψn)n ⊂ H, with 〈φn, ψm〉 = δn,m, such that

Az :=
∑
n∈N

λn〈z, ψn〉φn, z ∈ H,

D(A) :=

{
z ∈ H|

∑
n∈N
|λn|2|〈z, ψn〉|2 <∞

}
.

Let TF (t) and F be the operators given by Definition 3.2. Defining S := {n ∈ N |
Re(λn) ≤ g}, it is easy to see that

Pz :=
∑
n∈S
〈z, ψn〉φn

is a projection operator on H which commutes with A and T (t), t ≥ 0. Moreover, by
[3, Theorem 2.3.5] we get that

(1) Ts(t) := PT (t) is an exponentially stable C0-semigroup on Hs := Im(P ),
(2) Tu(t) := (I − P )T (t) is a C0-group on Hu := N(P ),
(3) ‖Tu(t)x‖ ≤Megt‖x‖ for all x ∈ Hu, t ≤ 0,

where M > 0 is independent of x and t. Lemma 4.4 now shows that (I − P̃ )B is an
admissible control operator for Tu(t). Thus it remains to prove that Σ(Au, (I − P̃ )B)
is exactly controllable in finite time. Since TF−g(t) := e−gtTF (t) is exponentially stable
and Tu(t) satisfies the inequality in outcome (3), the operator Tu(−t)(I−P )TF (t)|Hu ∈
L(Hu) satisfies the estimate

‖Tu(−t)(I − P )TF (t)|Hu‖ = ‖egtTu(−t)(I − P )TF−g(t)|Hu‖ ≤ Ce−τt, t ≥ 0,

for some constants τ > 0 and C > 0, which are independent of t. Using the positivity
of τ , we can choose a t0 > 0 (sufficiently large) such that ‖Tu(−t0)(I−P )TF (t0)|Hu‖ <
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1, and thus the operator I|Hu − Tu(−t0)(I − P )TF (t0)|Hu is invertible in L(Hu). Let
x0 ∈ Hu be arbitrary and define

z0 := [I − Tu(−t0)(I − P )TF (t0)|Hu ]
−1
Tu(−t0)x0,

u(ρ) := −FTF (ρ)z0.

Thus u ∈ L2(0, t0;Cm). By (7) and (15) we get

(I − P )TF (t0)z0 = Tu(t0)z0 − (I − P )

∫ t0

0

T (t0 − ρ)Bu(ρ) dρ

= Tu(t0)z0 −
∫ t0

0

Tu(t0 − ρ)(I − P̃ )Bu(ρ) dρ,

which is equivalent to

Tu(t0) [z0 − Tu(−t0)(I − P )TF (t0)z0] =

∫ t0

0

Tu(t0 − ρ)(I − P̃ )Bu(ρ) dρ

and thus

x0 =

∫ t0

0

Tu(t0 − ρ)(I − P̃ )Bu(ρ) dρ.

Consequently, Σ(Au, (I − P̃ )B) is exactly controllable in finite time.
The following example shows that there exist optimizable systems Σ(A,B) for

which A does not satisfy SDA(g) at any g ≤ 0, but there is a projection P that fulfills
(1)–(3) of Theorem 5.1.

Example 5.11. Let {en}n∈Z∪{fn}n∈Z be an orthonormal basis of `2, {αn}n∈Z =
Q ∩ [−1, 0), {βn}n∈Z = Q ∩ (−∞,−1), µn := αn + in and νn := βn + in, n ∈ Z. We
define A : D(A)→ H by

A :=
∑
n∈Z

µn〈·, en〉en +
∑
n∈Z

νn〈·, fn〉fn,

D(A) := {x ∈ H|
∑
n∈Z
|µn|2|〈x, en〉|2 +

∑
n∈Z
|νn|2|〈x, fn〉|2 <∞}

and B : C→ H−1 by

B :=
∑
n∈Z

en.

Clearly, A is a Riesz-spectral operator, and A does not satisfy SDA(g) for any g ≤ 0.
A is the generator of the C0-semigroup T (t) given by

T (t) :=
∑
n∈Z

eµnt〈·, en〉en +
∑
n∈Z

eνnt〈·, fn〉fn.

Weiss [32] shows that B is an admissible control operator for T (t). It is easy to see
that

Pz :=
∑
n∈Z
〈z, fn〉fn

is a projection operator on H which commutes with A and T (t), t ≥ 0. Moreover, by
[3, Theorem 2.3.5] we get that
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(1) Ts(t) := PT (t) is an exponentially stable C0-semigroup on Hs := Im(P ),
(2) Tu(t) := (I − P )T (t) is a C0-group on Hu := N(P ),
(3) ‖Tu(t)x‖ ≤Me−t‖x‖ for all x ∈ Hu, t ≤ 0,

where M > 0 is independent of x and t. Lemma 4.4 now shows that (I − P̃ )B is an
admissible control operator for Tu(t).

Next we prove that Σ(Au, (I − P̃ )B) is exactly controllable in finite time. By
Young [38, Corollary 2, p. 196] we get that {eµnt}n∈Z forms a Riesz basis of L2(−π, π),
and thus it is easy to show that {eµnt}n∈Z forms a Riesz basis for L2(0, 2π). This
implies that {gn}n∈Z, gn(t) := eµn(2π−t) is a Riesz basis for L2(0, 2π) as well. Let
{hn}n∈Z be the biorthogonal sequence of {gn}n∈Z in L2(0, 2π) [38, p. 29], which again
is a Riesz basis of L2(0, 2π) [38, p. 36]. By definition, the biorthogonality of {gn}n∈Z
and {hn}n∈Z implies that∫ 2π

0

gm(t)hn(t) dt = δnm, n,m ∈ Z.

Thus we get ∫ 2π

0

Tu(2π − ρ)Bhn(ρ) dρ =

∫ 2π

0

∑
m∈Z

eµm(2π−ρ)hn(ρ)em dρ

=
∑
m∈Z

∫ 2π

0

gm(ρ)hn(ρ) dρ em(19)

= en.

Let x ∈ Hu be arbitrary. Then x =
∑
n∈Z〈x, en〉en and {〈x, en〉}n∈Z ∈ `2. Defining

u ∈ L2(0, 2π) by

u :=
∑
n∈Z
〈x, en〉hn,

(19) implies that ∫ 2π

0

T (2π − ρ)Bu(ρ) dρ = x.

This shows that system Σ(Au, (I− P̃ )B) is exactly controllable in finite time. Finally,
Theorem 5.1 implies that system Σ(A,B) is optimizable.

For the proof of Theorem 5.3 we need the following lemma.
Lemma 5.12. Assume that system Σ(A,B) is optimizable. Let (sn)n be a se-

quence in ρ(A) ∩ C+
0 and δ > 0 be a constant such that

{s ∈ C | |s− sn| < δ} ⊂ ρ(A)(20)

for every n ∈ N. Then

sup
n∈N
‖(snI −A)−1B‖ <∞ and sup

n∈N
‖(snI −A)−1‖ <∞.

Proof . First we prove that supn∈N ‖(snI − A)−1B‖ < ∞ holds. Since the sys-
tem is optimizable, there exists an LQ-stabilizing feedback F . Let gFb be the (neg-
ative) closed-loop growth bound, let σ ∈ (gFb , 0), and define τ := 1

2 min{−σ, δ}. If
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supn∈N ‖(snI−A)−1B‖ =∞, then the principle of uniform boundedness implies that
there exist a vector u ∈ Cm and an element y ∈ H such that

sup
n∈N
|〈(snI −A)−1Bu, y〉| =∞.(21)

Since B is an admissible control operator for T (t), there exists a constant γ > τ such
that

(·I −A)−1B ∈H∞(C+
γ ;H)(22)

[35, Proposition 2.3]. Since sn ∈ C+
0 , we get sn + 2γ ∈ C+

γ .
We write B as [b1, . . . , bm]. By Proposition 3.6, for every n ∈ N and all k ∈

{1, . . . ,m} there exist ξsn,k ∈H∞(C+
σ ;H) and ωsn,k ∈H∞(C+

σ ;Cm) such that

((sn + 2γ)I −A)−1bk = (sI −A)ξsn,k(s)−Bωsn,k(s), s ∈ C+
σ .

Moreover, using (22) and Proposition 3.6, the functions ξsn,k and ωsn,k can be chosen
in such a way that there exists a constant M > 0 with

‖ξsn,k‖H∞(C+
σ ;H) ≤M and ‖ωsn,k‖H∞(C+

σ ;Cm) ≤M

for n ∈ N and k ∈ {1, . . . ,m}. Defining Ξsn(s) := [ξsn,1(s), . . . , ξsn,m(s)] and
Ωsn(s) := [ωsn,1(s), . . . , ωsn,m(s)], we obtain

((sn + 2γ)I −A)−1B = (sI −A)Ξsn(s)−BΩsn(s), s ∈ C+
σ .(23)

The functions Ξsn and Ωsn also are holomorphic on C+
σ and there exists a number

M̃ > 0 with

‖Ξsn‖H∞(C+
σ ;Hm) ≤ M̃ and ‖Ωsn‖H∞(C+

σ ;Cm×m) ≤ M̃.(24)

Now for s ∈ C+
σ , we define the functions

Ξ̃sn(s) := Ξsn(sn + s) and Ω̃sn(s) := Ωsn(sn + s).

Since Re(sn) ≥ 0, the functions Ξ̃sn and Ω̃sn also are holomorphic and bounded (with
the same estimates) on C+

σ . Multiplying equation (23) (with sn + s instead of s) by
((sn + s)I −A)−1, |s| < τ , and using the resolvent identity, we get

((sn+ s)I−A)−1B

[
Ω̃sn(s)− I

s− 2γ

]
= Ξ̃sn(s)− 1

s− 2γ
((sn+ 2γ)I−A)−1B.(25)

Note that the existence of ((sn + s)I − A)−1, |s| < τ , is guaranteed by (20). Since

{Ω̃sn}n is a uniformly bounded set in H∞(C+
σ ;Cm×m), there exists a subsequence

{Ω̃snj }j of {Ω̃sn}n which converges uniformly on compact subsets of C+
σ to a holo-

morphic function Ω̃ ∈ H∞(C+
σ ;Cm×m) (see Hille and Phillips [13, Theorem 3.14.2]).

We denote this subsequence again by {Ω̃sn}n.
For β ∈ (0, τ ] we define B(β) := {s ∈ C : |s| ≤ β}. We now prove that there

exists a number τ̃ ∈ (0, τ ] such that

det

(
Ω̃(s)− I

s− 2γ

)
6= 0
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for all s ∈ B(τ̃)\{0}. If it were not true, then there would exist a sequence (δn)n ⊂
B(τ)\{0}, tending to 0 as n tends to ∞, such that

det

(
Ω̃(δn)− I

δn − 2γ

)
= 0, n ∈ N.

Now

det

(
Ω̃(δn)− I

δn − 2γ

)
= det

(
(δn − 2γ)Ω̃(δn)− I

)
det

(
I

δn − 2γ

)
implies that

det
(

(δn − 2γ)Ω̃(δn)− I
)

= 0, n ∈ N.

In other words, det((s − 2γ)Ω̃(s) − I) would have a converging sequence of zeros in

B(τ). By the holomorphicity of Ω̃ on C+
σ and of the determinant on Cm×m, we get

that det((s − 2γ)Ω̃(s) − I) is holomorphic on C+
σ . Since −τ > σ, this would imply

that the function det((s − 2γ)Ω̃(s) − I) would be equal to zero everywhere on C+
σ .

Taking s = 2γ (note that 2γ ∈ C+
σ ), we get a contradiction. Therefore, there exists a

number τ̃ ∈ (0, τ ] such that

det

(
Ω̃(s)− I

s− 2γ

)
6= 0 for all s ∈ B(τ̃)\{0}.(26)

On B(τ̃) we now define the functions

fn(s) := 〈((s+ sn)I −A)−1Bu, y〉, n ∈ N,

where u and y are the vectors from (21). Since τ̃ < δ, we get by (20) that fn is
holomorphic, and so by the maximum principle there exists a number θn ∈ [0, 2π)
such that

|fn(τ̃ eiθn)| ≥ |fn(0)|.(27)

Since (by (21)) supn∈N |fn(0)| =∞, equation (27) implies

sup
n∈N
|fn(τ̃ eiθn)| =∞.(28)

There now exists a subsequence of {θn}∞n=1 which converges to θ ∈ [0, 2π]. Again we
rename the subsequence {θn}∞n=1. By the choice of τ̃ , we have that

det

(
Ω̃(τ̃ eiθ)− I

τ̃eiθ − 2γ

)
6= 0.

The set of invertible matrices is open and Ω̃sn(τ̃ eiθn)− I
τ̃eiθn−2γ

converges to Ω̃(τ̃ eiθ)−
I

τ̃eiθ−2γ
. Thus there exists a number N ∈ N such that

det

(
Ω̃sn(τ̃ eiθn)− I

τ̃eiθn − 2γ

)
6= 0, n ≥ N.
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Multiplying (25) (with s := τ̃ eiθn) by [Ω̃sn(τ̃ eiθn)− I
τ̃eiθn−2γ

]−1u and taking the inner
product with y, we obtain

fn(τ̃ eiθn) =

〈[
Ξ̃sn(τ̃ eiθn)− 1

τ̃ eiθn − 2γ
((sn + 2γ)I −A)−1B

]
·
[
Ω̃sn(τ̃ eiθn)− I

τ̃eiθn − 2γ

]−1

u, y

〉
.(29)

Now [Ω̃sn(τ̃ eiθn) − I
τ̃eiθn−2γ

]−1 converges to [Ω̃(τ̃ eiθ) − I
τ̃eiθ−2γ

]−1. Thus using (22)

and (24), we see that the right-hand side of (29) is bounded. However, this is in
contradiction with (28) and so

sup
n∈N
‖(snI −A)−1B‖ <∞.(30)

It now remains to prove that supn∈N ‖(snI−A)−1‖ <∞. Assume that supn∈N ‖(snI−
A)−1‖ =∞. By the principle of uniform boundedness there exists a z ∈ H such that

sup
n∈N
‖(snI −A)−1z‖ =∞.(31)

By Proposition 3.6 there exist ωz ∈H∞(C+
σ ;Cm) and ξz ∈H∞(C+

σ ;H) such that we
have

ξz(sn) = (snI −A)−1z + (snI −A)−1Bωz(sn), n ∈ N.

Since {‖ξz(sn)‖}n and {‖ωz(sn)‖}n are bounded sets, it follows with (31) that

sup
n∈N
‖(snI −A)−1B‖ =∞

which is in contradiction with (30). This completes the proof.
Corollary 5.13. Assume that Σ(A,B) is optimizable and let A satisfy the SDA.

Then

(·I −A)−1 ∈ L∞(iR;L(H)) and (·I −A)−1B ∈ L∞(iR;L(Cm, H)).

Proof . Since A satisfies the SDA, there exists a δ > 0 such that C+
−δ∩C−δ ⊂ ρ(A).

Now it is easy to see that (·I −A)−1 : iR→ L(H) and (·I −A)−1B : iR→ L(Cm, H)
are continuous. If the statement does not hold, then there exists a sequence (sn)n ∈ iR
such that

lim
n→∞ ‖(snI −A)−1‖ =∞ or lim

n→∞ ‖(snI −A)−1B‖ =∞,

which is in contradiction with Lemma 5.12.
By gσp(A) we denote the bound for the point spectrum of A, i.e.,

gσp(A) := sup{Re(λ) | λ ∈ σp(A)}.

It is easy to see that gσp(A) ≤ gb(T ). The following theorem shows that for an
optimizable system Σ(A,B) we cannot have gσp(A) < 0 ≤ gb(T ). For one-dimensional
control operators this result also can be found in [28].
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Theorem 5.14. Assume that Σ(A,B) is optimizable and that σp(A) ⊂ C−−τ for
some τ > 0. Then T (t) is exponentially stable.

Proof . If T (t) is not exponentially stable, then Huang [14] shows that ‖(sI−A)−1‖
is not bounded in C+

0 . Therefore, there exists a sequence (sn)n ⊂ C+
0 such that

lim
n→∞ ‖(snI −A)−1‖ =∞.(32)

Since Σ(A,B) is optimizable, by Theorem 3.3 there exists an LQ-stabilizing feedback
F . By Proposition 3.5 we get that σ+

gF
b

(A) consists of only point spectrum. Thus, for

−δ := max{−τ, gFb } we obtain σ+
−δ(A) = ∅. From the fact σ+

−δ(A) = ∅, we see that
the sequence (sn)n satisfies equation (20). Hence equation (32) is in contradiction
with the result of Lemma 5.12.

Remark 5.15. There are many cases where a generator satisfies gσp(A) < 0
and gb(T ) ≥ 0. This can happen, for example, when the spectrum consists solely of
eigenvalues, but the multiplicity of the eigenvalues is not bounded (see Zabczyk [39]) or
for certain shift semigroups (see Greiner, Voigt, and Wolff [11] or Curtain and Zwart
[3, Example 5.1.4]). This means that for such generators A there exists no admissible
finite-rank control operator B for T (t) such that the system Σ(A,B) is optimizable.

We are now going to prove the main result of this section.
Proof of Theorem 5.3. Since Σ(A,B) is optimizable, we have from Theorem 3.3

the existence of an LQ-stabilizing feedback F . Let TF (t) be as in Definition 3.2, and
let gFb be the (negative) growth bound of TF (t). By the SDA we have the existence of
g1 < 0 < g2 such that (18) holds. Since (18) remains valid if we increase g1 (g1 must
remain negative), without loss of generality we may assume that gFb < g1 holds. Let
g ∈ (g1, g2) be arbitrary. By Theorem 3.3 and Proposition 3.4 the system Σ(A−gI,B)
is optimizable. The choice of g implies the existence of δ > 0 such that

C+
−δ ∩ C−δ ⊂ ρ(A− gI),

and thus Corollary 5.13 shows

((·+ g)I −A)−1 ∈ L∞(iR;L(H)).

Therefore Prüss [24, Corollary 5] shows that

{λ ∈ C | |λ| = eg} ⊂ ρ(T (1))

holds. Since g ∈ (g1, g2) is arbitrary, this implies

{λ ∈ C | eg1 < |λ| < eg2} ⊂ ρ(T (1)).

Let c ∈ (g1, g2) be arbitrary and define P ∈ L(H) by

P :=

∫
|s|=ec

(sI − T (1))−1 ds.

It is easy to see that P 2 = P holds, i.e., P is a projection, and that P commutes
with the C0-semigroup T (t). Thus part (1) is satisfied. Define Hs := Im(P ) and
Hu := N(P ). Then the spectrum of the C0-semigroup Ts(t) := PT (t) on Hs satisfies

σ(Ts(1)) ⊂ {λ ∈ C | |λ| < eg1},
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and thus we get that the spectral radius of Ts(1) is less than 1. Therefore, Ts(t)
is an exponentially stable C0-semigroup on Hs, which proves part 2. Similarly, the
spectrum of the C0-semigroup Tu(t) := (I − P )T (t) on Hu satisfies

σ(Tu(1)) ⊂ {λ ∈ C | eg2 < |λ|},

and thus 0 /∈ σ(Tu(1)). Then Pazy [22, Theorem 6.5] shows that Tu(t) can be embed-
ded in a C0-group, and so part 3 follows. Since

σ(Tu(−1)) = σ((Tu(1))−1) ⊂ {λ ∈ C | |λ| < e−g2},

we get that the spectral radius of Tu(−1) is less than 1. Thus −Au generates an
exponentially stable C0-semigroup on Hu, and so part 4 follows.

Lemma 4.4 now shows that (I − P̃ )B is an admissible control operator for Tu(t).
Thus it remains to prove that Σ(Au, (I − P̃ )B) is exactly controllable in finite time.
Since TF (t) and Tu(−t) are exponentially stable, the operator Tu(−t)(I−P )TF (t)|Hu
∈ L(Hu) satisfies the estimate

‖Tu(−t)(I − P )TF (t)|Hu‖ ≤ Ce−τt, t ≥ 0,

for some C, τ > 0. The proof that Σ(Au, (I − P̃ )B) is exactly controllable in finite
time now exactly follows the proof of Theorem 5.10.

6. More information on the spectrum of A. In this section, we show that
the spectrum of the generator A has to be of a special form for the system Σ(A,B)
to be optimizable. In Proposition 3.5 we saw already that for any LQ-stabilizing
feedback F , the spectrum of A in the right-half plane C+

gF
b

consists only of point

spectrum with finite multiplicity and contains no finite accumulation point. We now
prove that the eigenvalues cannot go too slowly to infinity if the system Σ(A,B) is
optimizable.

Let λ0 be an isolated point of σ(A) and an eigenvalue of A. Then Pλ0 ∈ L(H),
given by

Pλ0x :=
1

2πi

∫
Γ

(λI −A)−1x dλ,

where Γ is a simple closed contour in C with λ0 the only point of σ(A) in its in-
terior and no points of σ(A) on Γ, is a projection onto the spectral subspace cor-
responding to λ0; see [3, Lemma 2.5.7]. The dimension of Pλ0H is called the alge-
braic multiplicity, denoted by ma(λ0, A), and the geometric multiplicity is given by
mg(λ0, A) := dim(N(λ0I − A)). If there exists a number p(λ0, A) > 0 such that
(A − λ0I)p(λ0,A)−1Pλ0

6= 0, while (A − λ0I)pPλ0
= 0 for all p ≥ p(λ0, A), then the

point λ0 is called pole of (·I −A)−1 of order p(λ0, A). In [1, p. 73] it is shown that

max{mg(λ0, A), p(λ0, A)} ≤ ma(λ0, A) ≤ p(λ0, A)mg(λ0, A)(33)

holds. The main result of this section is the following theorem.
Theorem 6.1. Assume that the system Σ(A,B) is optimizable. Then for any

LQ-stabilizing feedback F , the spectral subset σ+
gF
b

(A) = {λn}n∈N satisfies

mg(λn, A) ≤ m, n ∈ N,
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where m is the dimension of the input space, and for every g > gFb we have

∑
n∈N,Re(λn)>g

ma(λn, A)

|λn − g|2 <∞.(34)

Moreover, the finite-dimensional systems Σ(A |PλnH , P̃λnB) are controllable.
In [7], Fattorini proved a result that is similar to equation (34). He considers sys-

tems Σ(A,B) with bounded control operators and assumes that there exists a nonzero
holomorphic function f , being the Laplace transform of a function with compact sup-
port, such that for every x ∈ Im (f(A)) there exists an input u, which may be a
σ-additive measure with compact support, such that

x =

∫ t

0

T (t− ρ)Bu(dρ).

In this situation Fattorini proved that∑
λ∈σ(A)

ma(λ,A)Re(λ)

1 + |λ|2 <∞.

For the proof of Theorem 6.1 we need the following lemma.
Lemma 6.2. Let λ be an isolated point of σ(A) and an eigenvalue of A. Then

λ is an isolated point of σ(A∗) and an eigenvalue of A∗ with mg(λ,A
∗) = mg(λ,A),

ma(λ,A∗) = ma(λ,A), and p(λ,A∗) = p(λ,A).
Proof . The proof follows directly from Kato [18, Remark III 6.23].
Proof of Theorem 6.1. In Proposition 3.5 it is shown that σ+

gF
b

(A) consists only of

point spectrum with finite multiplicity and contains no finite accumulation point in
σ+
gF
b

(A). Thus we can write σ+
gF
b

(A) as {λn}n∈N. That the finite-dimensional systems

Σ(A |PλnH , P̃λnB) are controllable follows directly from [28].
1. We prove that mg(λn, A) ≤ m for all n ∈ N. Let n ∈ N. By Proposition 3.6,

for every x0 ∈ H there exist a vector ξ ∈ H and ω ∈ Cm such that

x0 = (λnI −A)ξ −Bω.

Since P̃λn commutes with A, this implies

Pλnx0 = (λnI −A)Pλnξ − P̃λnBω

and therefore (λnI −A)PλnH + P̃λnBCm ⊃ PλnH. Thus we have

ma(λn, A) = dim(PλnH)

≤ dim((λnI −A)PλnH) + dim(P̃λnBCm)

≤ ma(λn, A)−mg(λn, A) +m,

which shows mg(λn, A) ≤ m.
2. We prove ∑

n∈N,Re(λn)>g

ma(λn, A)(Re(λn)− g)

1 + |λn − g|2 <∞
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for every g > gFb . Let g > gFb and τ ∈ (gFb , g). Then there exists α ∈ ρ(A)
with Re(α) ∈ (τ, g). We write B as B = [b1, . . . , bm]. By Proposition 3.6, for
every k ∈ {1, . . . ,m} there exist ξk ∈ H∞(C+

τ ;H) and ωk ∈ H∞(C+
τ ;Cm)

such that

(αI −A)−1bk = (sI −A)ξk(s)−Bωk(s), s ∈ C+
τ .

Defining Ξ(s) := [ξ1(s), . . . , ξm(s)] and Ω(s) := [ω1(s), . . . , ωm(s)] we obtain

(αI −A)−1B = (sI −A)Ξ(s)−BΩ(s), s ∈ C+
τ .(35)

The functions Ξ and Ω also are holomorphic and bounded on C+
τ .

Multiplying (35) by (sI −A)−1 and using the resolvent identity, we obtain

1

s− α (αI−A)−1B = Ξ(s)−(sI−A)−1B

[
Ω(s)− 1

s− αI
]
, s ∈ C+

g \σ(A).

Since the term on the left-hand side and the first term of the right-hand
side are holomorphic on C+

g , the function (sI − A)−1B[Ω(s) − 1
s−αI] also is

holomorphic on C+
g . Defining

F (s) :=

[
Ω(s)− 1

s− αI
]
, s ∈ C+

g ,(36)

it is easy to see that F (s)−1 det(F (s)) is holomorphic on C+
g . Thus

G(s) := (sI −A)−1B det(F (s))

= (sI −A)−1B

[
Ω(s)− 1

s− αI
]
· F (s)−1 det(F (s))

is holomorphic on C+
g .

Next we show that every λ ∈ σ+
g (A) is a zero of det(F (s)) with order at least

p(λ,A). Let us assume that this is not true. Then there is one λ0 ∈ σ+
g (A)

such that λ0 is no zero of det(F (s)) or λ0 is a zero of det(F (s)), but the order
of λ0 as zero of det(F (s)) is less than p := p(λ0, A). By f (i) we denote the
ith derivative of f . Let k0 ∈ {0, . . . , p − 1} be such that det(F (λ0))(i) = 0,
i = 0, . . . , k0 − 1, while det(F (λ0))(k0) 6= 0 and let δ > 0 be such that
B(λ0) := {s ∈ C | 0 < |s − λ0| < δ} ⊂ ρ(A). Since P̃λ0 commutes with the
resolvent (·I −A)−1, by Lemma 4.2 we obtain that

Gλ0
(s) := Pλ0

G(s)

= (sI −A|Pλ0
H)−1P̃λ0

B det(F (s))

is holomorphic on C+
g . Since (sI − A|Pλ0

H)−1 = (sI − A)−1 on Pλ0
H (see

Lemma 4.2), we get p = p(λ0, A|Pλ0
H). Expressing (·I − A|Pλ0

H)−1 in its
Laurent series, we obtain

Gλ0(s) = G̃λ0
(s) +

p−1∑
k=0

det(F (s))

(s− λ0)k+1
(λ0I −A|Pλ0

H)kP̃λ0
B, s ∈ B(λ0),
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where G̃λ0
(s) is a holomorphic function on B(λ0) ∪ {λ0}. Since λ0 is a zero

of det(F (s)) with order k0, we get

k0−1∑
k=0

det(F (s))

(s− λ0)k+1
(λ0I −A|Pλ0

H)kP̃λ0
B

is holomorphic at λ0. Since Gλ0(s) is holomorphic at λ0, this would imply
that

p−1∑
k=k0

det(F (s))

(s− λ0)k+1
(λ0I −A|Pλ0

H)kP̃λ0
B

is holomorphic on C+
g . Thus using the definition of a pole, we get that

(λ0I −A|Pλ0
H)p−k0−1

p−1∑
k=k0

det(F (s))

(s− λ0)k+1
(λ0I −A|Pλ0

H)kP̃λ0
B

=
det(F (s))

(s− λ0)k0+1
(λ0I −A|Pλ0

H)p−1P̃λ0
B

is holomorphic at λ0. However, this can only happen if (λ0I−A|Pλ0
H)p−1P̃λ0

B
= 0. By the definition of a pole there is a x ∈ Pλ0

H such that (λ0I −
A|Pλ0

H)p−1x 6= 0. The optimizability of system Σ(A,B) implies that there
are elements y ∈ H and u ∈ Cm such that

x = (λ0I −A)y −Bu.
Since x ∈ Pλ0H, this implies x = (λ0I −A|Pλ0

H)Pλ0y − P̃λ0Bu. Multiplying

both sides with (λ0I −A|Pλ0
H)p−1, we get

0 6= (λ0I−A|Pλ0
H)p−1x = (λ0I−A|Pλ0

H)py− (λ0I−A|Pλ0
H)p−1P̃λ0Bu = 0,

which is a contradiction. Thus

f(s) := det(F (s)), s ∈ C+
g ,(37)

is holomorphic and bounded on C+
g and every λ ∈ C+

g ∩ σ(A) is a zero of f
with order at least p(λ,A).
Next we show that f is not identically zero. Assume that f is identical to
zero on C+

g . Using (36), (37),

f(s) = det ((s− α)Ω(s)− I) det

(
1

s− αI
)
, s ∈ C+

g ,

it would imply that

det ((s− α)Ω(s)− I) = 0, s ∈ C+
g .

Now the holomorphicity of det ((s− α)Ω(s)− I) on C+
τ implies

0 = det ((α− α)Ω(α)− I) = det(I) = 1,
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which is a contradiction. Thus f 6≡ 0 on C+
g .

Applying now Duren [6, Theorem 11.3] to f ∈H∞(C+
g ) shows∑

n∈N,Re(λn)>g

p(λn, A)(Re(λn)− g)

1 + |λn − g|2 <∞.

Therefore, using (33) and mg(λn, A) ≤ m, we get∑
n∈N,Re(λn)>g

ma(λn, A)(Re(λn)− g)

1 + |λn − g|2 <∞.

3. It remains to prove that ∑
n∈N,Re(λn)>g

ma(λn, A)

|λn − g|2 <∞

for every g > gFb . Let kn := ma(λn, A), g > gFb and g̃ ∈ (gFb , g). By part (2),
we have∑
n∈N,Re(λn)>g

kn(Re(λn)− g)

1 + |λn − g|2 <∞ and
∑

n∈N,Re(λn)>g

kn(Re(λn)− g̃)

1 + |λn − g̃|2 <∞.

For any λ ∈ C with |λ− g| ≥ 1 we get

1

1 + |λ− g|2

=
1

1 + |λ− g̃|2
1 + |λ− g̃|2
1 + |λ− g|2 ≤

1

1 + |λ− g̃|2
1 + (|λ− g|+ |g − g̃|)2

1 + |λ− g|2

≤ 1

1 + |λ− g̃|2
1 + |λ− g|2(1 + g − g̃)2

1 + |λ− g|2 =
(1 + g − g̃)2

1 + |λ− g̃|2 .(38)

Let J1 := {n ∈ N | λn ∈ σ+
g (A) and |λn − g| ≥ 1} and J2 := {n ∈ N | λn ∈

σ+
g (A) and |λn − g| < 1}. Since J2 consists only of finitely many points, we

get ∑
n∈J2

kn
|λn − g|2 <∞.

Thus the statement follows directly from the calculation∑
n∈J1

kn
|λn − g|2

≤ 2
∑
n∈J1

kn
1 + |λn − g|2

=
2

g − g̃

[∑
n∈J1

kn
Re(λn − g̃)

1 + |λn − g|2 −
∑
n∈J1

kn
Re(λn − g)

1 + |λn − g|2
]

(38)

≤ 2(1 + g − g̃)2

g − g̃
∑
n∈J1

kn
Re(λn − g̃)

1 + |λn − g̃|2 −
2

g − g̃
∑
n∈J1

kn
Re(λn − g)

1 + |λn − g|2
< ∞.
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The next proposition gives a simple necessary condition for optimizability of a
system Σ(A,B).

Proposition 6.3. Assume that the system Σ(A,B) is optimizable, and let F be
an LQ-stabilizing feedback. Then for every g > gFb there exist constants M1,M2 > 0
such that

M1 ≤ ‖B∗ψ‖ ≤M2

for every ψ ∈ N(λI−A∗) with ‖ψ‖ = 1, where λ is an eigenvalue of A with Re(λ) > g.
Proof . Let g > gFb . Using Proposition 3.6 there exists M ′1 > 0, such that for

every ψ ∈ H with ‖ψ‖ = 1 and every λ ∈ C+
g there is a ξψ ∈ H and ωψ ∈ Cm such

that

ψ = (λI −A)ξψ −Bωψ(39)

and ‖ξψ‖H , ‖ωψ‖ ≤ M ′1. We now choose ψ ∈ N(λI − A∗) with ‖ψ‖ = 1, where λ is
an eigenvalue of A with Re(λ) > g. Note that by Lemma 6.2 there exists such a ψ.
Taking the inner product of (39) with ψ, we obtain

1 = 〈ξψ, (λI −A∗)ψ〉 − 〈Bωψ, ψ〉 = −〈ωψ, B∗ψ〉
and thus

1 ≤M ′1‖B∗ψ‖.
Next we prove that there exists a constant M2 > 0 such that ‖B∗ψ‖ ≤ M2. Since B
is an admissible control operator for T (t), there exist t1 > 0 and M > 0 such that∥∥∥∥∫ t1

0

T (t1 − ρ)Bu(ρ) dρ

∥∥∥∥ ≤M‖u‖L2(0,t1;Cm)

for every u ∈ L2(0, t1;Cm). Let K := supλ∈σ(A) Re(λ) <∞ and define

f(µ) :=

{
1−e−2µt1

2µ , µ ∈ [g,K]\{0},
t1, µ = 0.

By l’Hôspital’s rule, f is continuous on [g,K] and so

sup
µ∈[g,K]

|f(µ)| <∞.

Let ψ ∈ N(λI−A∗) with ‖ψ‖ = 1, where λ is an eigenvalue of A with Re(λ) > g.
We define uλ ∈ L2(0, t1;C) by

uλ(ρ) :=
1

t1
e−λ(t1−ρ), ρ ∈ [0, t1].

This implies

‖B∗ψ‖ = sup
‖u‖=1

|〈u,B∗ψ〉| = sup
‖u‖=1

|〈Bu,ψ〉| = sup
‖u‖=1

∣∣∣∣∫ t1

0

uλ(ρ)eλ(t1−ρ) dρ〈Bu,ψ〉
∣∣∣∣

= sup
‖u‖=1

∣∣∣∣∫ t1

0

〈Buuλ(ρ), eλ(t1−ρ)ψ〉 dρ
∣∣∣∣ = sup

‖u‖=1

∣∣∣∣∫ t1

0

〈Buuλ(ρ), T ∗(t1 − ρ)ψ〉 dρ
∣∣∣∣



STABILIZABILITY OF INFINITE-DIMENSIONAL SYSTEMS 1447

= sup
‖u‖=1

∣∣∣∣∫ t1

0

〈T (t1 − ρ)Buuλ(ρ), ψ〉 dρ
∣∣∣∣ = sup

‖u‖=1

∣∣∣∣〈∫ t1

0

T (t1 − ρ)Buuλ(ρ) dρ, ψ

〉∣∣∣∣
≤ sup
‖u‖=1

∥∥∥∥∫ t1

0

T (t1 − ρ)Buuλ(ρ) dρ

∥∥∥∥ ≤ sup
‖u‖=1

M‖uuλ‖L2(0,t1;Cm)

≤ M

t1
f(Re(λ))1/2 ≤ M

t1
sup

µ∈[g,K]

|f(µ)|1/2 := M2.

7. More information on the spaces Hu and Hs. In Theorem 5.3 we saw
that every optimizable system Σ(A,B) with A satisfying SDA can be split into an
exponentially stable part and an exactly controllable part. We now give a precise
description of the spaces Hu and Hs appearing in Theorem 5.3. Note that by the
definition of Hu and Hs we have H = Hu⊕Hs. The main result of this section is the
following theorem.

Theorem 7.1. Suppose Σ(A,B) is optimizable and let A satisfy the SDA. Then
the spaces Hu and Hs in Theorem 5.3 are given by

Hu = spann∈NPλnH,
Hs = {x ∈ H|T (·)x ∈ L2(0,∞;H)},

where σ(A) ∩ C+
0 = {λn}n∈N (see Theorem 6.1).

In order to prove this theorem we need a series of lemmas.
Lemma 7.2. Suppose that Σ(A,B) is optimizable and let A satisfy the SDA. Then

there exists a constant C > 0 such that

‖(·I −A)−1x‖L2(iR;H) ≤ C‖x‖
for every x ∈ H.

Proof . Let F be an LQ-stabilizing feedback, and choose a negative σ larger than
gFb . Then by Proposition 3.6 there exists a constant C̃ > 0 such that for every x ∈ H
there exist ξx ∈H2(C+

σ , H) and ωx ∈H2(C+
σ ,Cm) such that

(itI −A)−1x = ξx(it)− (itI −A)−1Bωx(it), t ∈ R,(40)

‖ξx‖H2(C+
σ ,H) ≤ C̃‖x‖H and ‖ωx‖H2(C+

σ ,Cm) ≤ C̃‖x‖H . Using Corollary 5.13, we

obtain (·I −A)−1B ∈ L∞(iR;L(Cm, H)) and thus for x ∈ H (40) implies

‖(·I −A)−1x‖L2(iR;H)

≤ ‖ξx(·)‖L2(iR;H) + ‖(·I −A)−1B‖L∞(iR;L(U,H))‖ωx(·)‖L2(iR;Cm)

≤ C‖x‖H
for some C > 0 independent of x.

Lemma 7.3. Suppose that Σ(A,B) is exactly controllable in finite time and that
A generates a C0-group T (t) on H. Then

H = spann∈N PλnH,

where λn are the eigenvalues of A.
Proof . For a C0-group there is a real constant γ such that −A + γI generates

an exponentially stable C0-semigroup. Since the assumptions made in the theorem
also hold for A − γI, we may without loss of generality assume that −A generates
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an exponentially stable C0-semigroup. By Theorem 3.10 we have that the spectrum
of A is purely point spectrum without (finite) accumulation points. We denote this
spectrum by {λn}.

Define V := spann∈NPλnH and W := V ⊥, and assume that W 6= ∅. It is easy
to see that V is T (t)-invariant. By Lemmas 4.2 and 4.3 we obtain that the system
Σ(AW , BW ) is exactly controllable in finite time. The corresponding C0-semigroup
on W is given by

TW (t)x = PWT (t)x, x ∈W.(41)

Since W is the orthogonal complement of V , it follows that W is T (t)∗-invariant, and

TW (t)∗x = T (t)∗x, x ∈W.

The generator of TW (t) is given by A∗W := A∗|W . From the fact that the spectrum of
A consists of only point spectrum with finite multiplicity and without an accumulation
point, it follows that σ(A∗) = {λ̄n}n, and ρ∞(A∗) = ρ(A∗). Using part (1) of Lemma
4.2 and (41), we have that

σ(A∗W ) ⊂ σ(A∗) = {λ̄n}n.

Let ε > 0 be arbitrary. If σ+
−ε(A

∗
W ) 6= ∅, then there exist a x ∈ W and an n ∈ N

such that (·I −A∗W )−1x is not holomorphic at λn [18, p. 174]. Since (sI −A∗W )−1x =
(sI −A∗)−1x, s ∈ ρ(A∗), we get (·I −A∗)−1x is not holomorphic at λn. This implies
that ∫

Γ

(sI −A∗)−1x ds 6= 0,

where Γ is a simple closed contour in C with only one point of σ(A∗) in its interior,
namely λn, and no points of σ(A∗) on Γ. Now there is a y ∈ H such that

〈Pλny, x〉 =

〈
y,

∫
Γ

(sI −A∗)−1x ds

〉
6= 0.

This is in contradiction with Pλny ∈ V and x ∈ W = V ⊥. Thus σ+
−ε(A

∗
W ) = ∅, and

therefore σ+
−ε(AW ) = ∅. Since Σ(AW , BW ) is exactly controllable in finite time it is

LQ-stabilizable as well. Thus Theorem 5.14 shows that there is a constant M > 0
such that

‖TW (t)‖ ≤M, t ≥ 0.

This implies

‖T (−t)‖ ≥ ‖TW (−t)‖ ≥ 1

‖TW (t)‖ ≥M
−1, t ≥ 0,

which is in contradiction with the exponential stability of −A. Thus the assumption
W 6= ∅ does not hold, and so we get H = spann∈N PλnH.

Since H2(C+
0 ;H) is a closed subset of L2(iR;H), we can write

L2(iR;H) = H2(C+
0 ;H)⊕H2(C+

0 ;H)⊥,(42)
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where H2(C+
0 ;H)⊥ is the orthogonal complement in L2(iR;H) of H2(C+

0 ;H). In [3,
Theorem A.6.22] it is shown that

H2(C+
0 ;H)⊥ =

{
f : C−0 → H|f(− ·) ∈H2(C+

0 ;H)
}
.(43)

Proof of Theorem 7.1. By Theorem 5.3 there exists a projection P ∈ L(H) such
that (1)–(5) of Theorem 5.3 are satisfied. Lemma 7.2 shows that (·I − A)−1x ∈
L2(iR;H) for every x ∈ H. If we define

H̃s = {x ∈ H | (·I −A)−1x ∈H2(C+
0 ;H)} and

H̃u = {x ∈ H | (·I −A)−1x ∈H2(C+
0 ;H)⊥},

then (42) shows that

H̃s ∩ H̃u = {0}.

1. We now prove that H̃s and H̃u are closed, linear subspaces of H. We will
prove this result only for H̃s, as the proof for H̃u is very similar. That H̃s is
a linear subspace of H follows immediately from the fact that H2(C+

0 , H) is
a linear vector space. In order to prove the closedness we choose a sequence
{zn}n in H̃s which converges to z ∈ H. By Lemma 7.2 we get

lim
n→∞ ‖(·I −A)−1zn − (·I −A)−1z‖L2(iR,H) ≤ C lim

n→∞ ‖zn − z‖H = 0.

Since H2(C+
0 ;H) is a closed subspace of L2(iR, H), this implies that (·I −

A)−1z ∈H2(C+
0 ;H), and so H̃s is closed.

2. We now prove that Hu ⊂ H̃u. Since σ+
gF
b

(A) consists only of point spectrum

with no (finite) accumulation point, we have that

ρ∞(A) ∩ C+
gF
b

= ρ(A) ∩ C+
gF
b

.

Since the imaginary axis is in the resolvent set, by Lemma 4.2 we have for all
t ∈ R and x ∈ Hu

(itI −A)−1x = (itI −Au)−1.(44)

The operator −Au generates an exponentially stable semigroup on Hu, and
hence for x ∈ Hu we get that (itI − Au)−1x is the Fourier transform of
−Tu(t)x, t ∈ (−∞, 0). This last function is in L2(−∞, 0;H). By the Paley–
Wiener theorem [3, Theorem A.6.21], (43), and (44), this implies that (·I −
A)−1x ∈H2(C+

0 ;H)⊥, and thus x ∈ H̃u.
3. We now prove thatHs ⊂ H̃s. Let x ∈ Hs arbitrary. Then T (·)x ∈ L2(0,∞;H)

and thus the Paley–Wiener theorem [3, Theorem A.6.21] implies that its
Laplace transform (·I −A)−1x is in H2(C+

0 ;H). Thus x ∈ H̃s.
4. We now proveHu = H̃u andHs = H̃s. We prove this result only for H̃s, as the

proof for H̃u is very similar. Assume that Hs = H̃s does not hold. Then there
exists an element x ∈ H̃s\Hs. We can write x as x = xu+xs with xu ∈ Hu and
xs ∈ Hs. Since xu = x−xs ∈ H̃s, we obtain xu ∈ Hu ∩ H̃s ⊂ H̃u ∩ H̃s = {0},
which is in contradiction with x ∈ H̃s\Hs.
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5. We now prove that V ⊂ Hu, where

V := spann∈N PλnH,

and {λn}n = σ(A) ∩ C+
0 . First of all we choose x ∈ PλnH for some n ∈ N.

Then in [3, p. 99] it has been proven that

(itI −A)−1x =

ma(λn,A)∑
j=0

(−1)j
(λnI −A)jx

(it− λn)j+1
, t ∈ R,

where ma(λn, A) is the algebraic multiplicity of the eigenvalue λn. Since
Re(λn) > 0, we have

1

(· − λn)j
∈H2(C+

0 ;H)⊥,

and so we obtain that x ∈ H̃u. Now Hu = H̃u and V are closed, linear
subspaces of H and thus the statement is proved.

6. In order to prove the theorem it now remains to show that V = Hu holds. The
system Σ(Au, (I − P̃ )B) is exactly controllable in finite time. Thus Lemma
7.3 proves V = Hu.

8. An example. We now construct an example that is optimizable, but it is
not possible to split the state space in a direct sum as given in Theorem 1.3. The
generator in this example does not satisfy the SDA at any negative number. For the
construction of this example the following lemmas will be useful. For background
information on Carleson measures we refer to Garnett [9, p. 31].

Lemma 8.1. Let {qn}n∈N = Q ∩ (1
2 ,∞) be chosen such that

q
k+

l(l−1)
2

∈ [k − 1, k], l ∈ N, k ∈ {1, . . . , l},

and define {γn}n∈N ⊂ C+
0 by

γn := qn + in4, n ∈ N.

Then µ :=
∑
n∈NReγnδγn is a Carleson measure.

Proof . In order to prove this we define

S(h, y0) := {z ∈ C+
0 | 0 < Rez < h, y0 < Im z < y0 + h}, h > 0, y0 ∈ R.

Now µ is a Carleson measure if and only if there exists a constant A > 0 such that
µ(S(h, y0)) ≤ Ah for every h > 0 and all y0 ∈ R (see, for example, [9, p. 31]).

Clearly, µ(S(h, y0)) = 0 if h ∈ [0, 1
2 ]. For h > 1

2 and y0 < −h, we have that
µ(S(h, y0)) = 0 as well.

We now consider the situation h > 1
2 and y0 ≥ h2. Then for every n ∈ N with

y0 < n4 < y0 + h, we get

(n+ 1)4 > n4 + n2 > y0 +
√
y0 ≥ y0 + h.

Thus #{{γn}n∈N ∩ S(h, y0)} ≤ 1. Combining this with the fact that if γn ∈ S(h, y0),
then qn is less than h, shows that µ(S(h, y0)) ≤ h.
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Finally, we have to consider the situation h > 1
2 , y0 ∈ (−h, h2). Then

S(h, y0) ⊂ R(h) :=
{
z ∈ C+

0 | 0 < Rez < h, −h < Im z < h2 + h
}
.

Using h > 1
2 , we see that

h2 + h ≤ h2 + 2h2 < 16h2.

From this we get #{{γn}n∈N ∩R(h)} ≤ 2
√
h. We now choose lh ∈ N such that

lh(lh − 1)

2
< 2
√
h <

lh(lh + 1)

2
.

This implies immediately

lh ≤ 1 + 4h1/4 < 6h1/4,

where we have used that h > 1
2 . Thus

µ(S(h, y0)) ≤ µ(R(h)) ≤
[2
√
h]∑

n=1

qn ≤
lh∑
l=1

l∑
k=1

k =
1

6
lh(lh + 1)(lh + 2) ≤ Ah3/4,

where A > 0 is independent of h. Thus µ is a Carleson measure.
Lemma 8.2. Let {qn}n∈N = Q ∩ (1

2 ,∞) be chosen as in Lemma 8.1 and define
{βn}n∈N by

β2n := γn, β2n−1 := γn +
1

n
, n ∈ N.

Moreover, let Θ ∈H∞(C+
0 ) be the Blaschke product corresponding to the zeros {βn},

i.e.,

Θ(s) :=

∞∏
n=1

|1− β2
n|

1− β2
n

s− βn
s+ β̄n

, s ∈ C+
0 .

Then

sup
0<Res<1/4

|Θ−1(s)| <∞.(45)

Proof . For x ∈ (0, 1
4 ), y ∈ R, we get

|Θ(x+ iy)−2| =
∏
n∈N

(x+ Reβn)2 + (y − Imβn)2

(x− Reβn)2 + (y − Imβn)2

=
∏
n∈N

(
1 +

4xReβn
(x− Reβn)2 + (y − Imβn)2

)
.

Thus (45) is equivalent to

sup
x∈(0, 14 )

sup
y∈R

∑
n∈N

ln

(
1 +

4xReβn
(x− Reβn)2 + (y − Imβn)2

)
<∞.(46)
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Using ln(1 + z) ≤ z, z ≥ 0, and

0 ≤ 4xReβn
(x− Reβn)2 + (y − Imβn)2

,

it is easy to see that

sup
x∈(0, 14 )

sup
y∈R

∑
n∈N

xReβn
(x− Reβn)2 + (y − Imβn)2

<∞(47)

implies (46). Thus it remains to prove that

h(x, y) :=
∑
n∈N

xReβn
(x− Reβn)2 + (y − Imβn)2

is uniformly bounded on C+
0 ∩ C−1/4.

Let x+ iy ∈ C+
0 ∩ C−1/4 be arbitrary. Define z := 1

3 − x. From Reβn >
1
2 , we get

h(x, y) =
∑
n∈N

( 1
3 − z)Reβn

( 1
3 − z − Reβn)2 + (y − Imβn)2

≤ 3
∑
n∈N

( 1
3 − z)(Reβn − 1

3 )

( 1
3 − z − Reβn)2 + (y − Imβn)2

≤ 3
∑
n∈N

Reγn|gz,y(γn)|2,

where γn := βn − 1
3 ∈ C+

0 and

gz,y(s) =

√
1
3 − z

s+ z − iy ∈H2(C+
0 ).

By Lemma 8.1
∑
n∈NReβ2nδβ2n is a Carleson measure. Similarly, it can be shown

that
∑
n∈NReβ2n+1δβ2n+1

is a Carleson measure. From this it follows easily that∑
n∈NReγnδγn also is a Carleson measure. Hence, Avdonin and Ivanov [2, p. 56] or

Garnett [9, Theorem 3.9] implies

h(x, y) ≤ C‖gz,y‖2H2(C+
0 )

= C

∥∥∥∥∥e−(z−iy)·
√

1

3
− z
∥∥∥∥∥

2

L2(0,∞)

=
C

2

x
1
3 − x

≤ 3C

2
.

Thus |Θ(s)−1| is uniformly bounded on C+
0 ∩ C−1/4.

The following realization result can be found in Salamon [30] and in Ober and
Wu [21]. The proof in the notation of this paper is documented in Jacob and Zwart
[16].

Lemma 8.3. Let Θ be given as in Lemma 8.2. Then there exist a Hilbert space V ,
an exponentially stable C0-semigroup T (t) on V with generator A, and an admissible
control operator B for T (t) such that the system Σ(A,B) is exactly controllable in
finite time, every −βn, n ∈ N, is an eigenvalue of A, and the function xn(s) := 1

s+βn
is a corresponding eigenvector.
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Example 8.4. We now consider the system Σ(A,B) given as in Lemma 8.3.
Since Σ(A,B) is exactly controllable in finite time, by Lemma 3.8 and Proposition
3.9 the system Σ(A+I,B) is optimizable. Lemma 8.3 shows that {λn}n∈N ⊆ σ(A+I)
holds, where λn := −β̄n + 1, and xλn(s) := 1

s−λn is an eigenvector corresponding to
the eigenvalue λn. Thus the spectrum of A + I does not satisfy the SDA at any
negative number.

Next, we show that it is not possible to decompose the state space V as V =
Vs ⊕ Vu, where

Vs := {x0 ∈ V | e−g·T (·)x0 ∈ L2(0,∞;V )},
Vu := span

λ∈σ(A+I) with Re(λ)≥g
PλV

for some g < 0. Let g < 0 be arbitrary. It is easy to see that xλn ∈ Vu if Re(λn) ≥ g.
Next, we show that xλn ∈ Vs holds if Re(λn) < g. Let n ∈ N with Re(λn) < g be
arbitrary. Since xλn is an eigenvector of A with eigenvalue λn, we have that

T (t)xλn = eλntxλn .

This shows e−g·T (·)xλn ∈ L2(0,∞;V ).
By the construction of the sequence {βn}n∈N there now exist subsequences {µn}n∈N,

{νn}n∈N ⊆ {λn}n∈N such that
(1) Reµn < g < Reνn, n ∈ N,
(2) νn = µn + αn, n ∈ N, with αn > 0 and limn→∞ αn = 0,
(3) limn→∞Reµn = g and limn→∞ Imµn =∞.

Thus xµn ∈ Vs and xνn ∈ Vu for every n ∈ N. It is now easy to see that

‖xνn‖2 =
π

|Reνn| , n ∈ N,

and

lim
n→∞ ‖xµn − xνn‖ = 0.

Let us now assume that V = Vs⊕Vu is satisfied. Then there would exist a projection
P ∈ L(V ) with kerP = Vs and ImP = Vu. Thus

π

|g| = lim
n→∞ ‖xνn‖

2 = lim
n→∞ ‖Pxνn‖

2 = lim
n→∞ ‖P (xνn − xµn)‖2

≤ ‖P‖2 lim
n→∞ ‖xνn − xµn‖

2 = 0,

which is a contradiction. Hence V = Vs ⊕ Vu is not satisfied.

9. Conclusion. For an infinite-dimensional optimizable system with a finite-
rank admissible control operator we showed that the system can be decomposed into
an exponentially stable subsystem and an exactly controllable subsystem. For the
proof we needed the spectrum to be able to be decomposed into a stable and an
unstable part. The example in section 8 shows that without this SDA Theorem 1.3
does not hold. Since this example is very technical, we feel that every optimizable
system encountered in practice satisfies the SDA. Note that Theorem 1.4 already
shows that the unstable part of the spectrum of an optimizable system consists of
isolated points.
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We gave characterizations of the state spaces of the subsystems. The state space
of the unstable part equals the span of all unstable (generalized) eigenvectors and the
state space of the exponentially stable part is given by all vectors for which the action
of the original semigroup is stable.

From our results we derived easy necessary conditions for a system to be optimiz-
able; see, e.g., Example 5.7, Theorem 6.1, and Proposition 6.3 or Jacob and Zwart
[15].
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Abstract. We first derive from abstract results on Feller transition kernels that, under some
mild assumptions, a Markov stochastic algorithm with constant step size ε usually has a tight family
of invariant distributions νε, ε ∈ (0, ε0], whose weak limiting distributions as ε ↓ 0 are all flow-
invariant for its ODE. Then the main part of the paper deals with a kind of converse: what are
the possible limiting distributions among all flow-invariant distributions of the ODE? We first show
that no repulsive invariant (thin) set can belong to their supports. When the ODE is a stochastic
pseudogradient descent, these supports cannot contain saddle or spurious equilibrium points either,
so that they are eventually supported by the set of local minima of their potential. Such results
require only the random perturbation to lie in L2. Various examples are treated, showing that these
results yield some weak convergence results for the νε’s, sometimes toward a saddle point when the
algorithm is not a pseudogradient.
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Introduction. The use of recursive stochastic algorithms is widespread for solv-
ing optimization problems. This is due to the new simulation facilities brought by
modern scientific computation. Stochastic algorithms are especially encountered in
situations where some on-line parameter estimation has to be performed. Such algo-
rithms are recursive, the current estimate being updated at every new observation of
a process according to some time-varying deterministic (or predictable) parameter εt
called step or gain parameter. In most practical situations, this parameter is gradu-
ally decreased so as to finally reach some lower bound ε∞ . Generally ε∞ is nonzero
to prevent any “freezing” of the algorithm at some metastable state or to track some
possible slow change of the target.

Hence, this work addresses constant step algorithms, i.e., εt = ε∞ > 0.
On the other hand, partially because of the recent developments of artificial neu-

ral network procedures, it turns out that many learning algorithms share the same
features: a “gentle” white noise perturbing the “sophisticated” dynamics of a deter-
ministic “average” differential system ODEh ≡ ẋ = −h(x) (known as the ordinary
differential equation of the system) so that it reads

Xt+1 = Xt − εH(Xt, ωt+1), Xt ∈ Rd,
ωt independently and identically distributed (i.i.d.), h(x) := E(H(x, ω1)).

In such a framework, an algorithm proves to be a homogeneous Markov chain
parametrized by its step ε. Under some reasonable conditions, for every small enough
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ε the chain owns (at least) one invariant distribution νε. Let Iε be the set of invari-
ant distributions of the algorithm with step ε. The set ∪ε∈(0,ε0]Iε is tight for small
enough ε0 > 0, i.e., weakly relatively compact. On the other hand, the differential
system ODEh being a (deterministic) homogeneous Markov chain, usually owns some
invariant distribution(s) as well, characterized by a flow-invariance property. Let Ih
be the set of such flow-invariant distributions. Actually, in most practical situations,
Ih is infinite: whenever ODEh has two equilibrium points x∗1 and x∗2, any combina-
tion αδx∗1 + (1 − α)δx∗2 is an invariant distribution. The set Ih can be much more
sophisticated: for instance, an attracting cycle surrounding a repulsive equilibrium,
etc.

It is a rather classical result that the set I0+ := ∩ε→0∪0<η≤εIη of the possible weak
limiting distributions of νε ∈ Iε as ε ↓ 0 is contained in Ih (see [15] in one dimension,
[20], [29] in the case of a unique attracting equilibrium x∗ or, more recently, [18] in the
slightly different framework of perturbed dynamical systems ; see also [9] for similar
results for abstract continuous-time Markov processes).

However, whenever Ih 6= {δx∗}, the inclusion generally does not hold as an equal-
ity: not any flow-invariant distribution ν ∈ Ih is a limiting value of νεp ∈ Iεp as
εp ↓ 0. Thus, it seems quite natural that a repulsive equilibrium of ODEh cannot be
asymptotically weighted by any invariant distribution νε of the algorithm when ε ↓ 0,
provided that there is noise enough at this point to push it away. Indeed, similar
problems have been investigated in the decreasing step setting, see, e.g., [7], [21], or
[28], for repulsive or saddle points leading to the conclusion that such points cannot
be limit points for the algorithm. The question is to state whether or not such results
still hold in the constant step setting.

These problems are deeply connected to the field of randomly perturbed systems
which has been extensively investigated by several authors. Freidlin and Wentzell
[13] deal with an ordinary differential equation perturbed by a vanishing standard
Brownian motion. They show, using large deviations techniques, that such a diffu-
sion converges in probability to some absolute minima of a suitably defined potential
function. Y. Kifer, in several papers and in his book (see, e.g., [18, Chap. 2]), treats
the case of randomly perturbed discrete dynamical systems when the perturbation
fades. He obtains some general results, still based on a large deviation approach, that
prove that the only possible limiting distributions for the invariant distributions νε

as ε ↓ 0 are supported by “quasi-attractors” which turn out to be classical attractors
under some natural assumptions. In fact, these works are more in connection with
algorithms with decreasing step, since in all cases the perturbation fades as time goes
by. In the field of Markov stochastic algorithms with constant step, new results by
large deviation techniques have been obtained by M. Benäım in [3]. This work, car-
ried out independently from ours, was originally motivated by urn processes where
the random perturbation term is naturally bounded.

Our aim in this paper is of the same sort but with different techniques. It con-
sists, still within this Markov framework, of investigating the set I0+ but under some
low moment assumption on the random perturbation term (essentially L2). Thus, a
comparison shows what results are or are not moment dependent. Our methods rely
on the local or global existence of a smooth Lyapunov function for the algorithm.
We show, by twisting this function somewhat, that the distributions in I0+ never
weight the repulsive equilibrium points or the thin invariant repelling sets provided
that they are excited enough by the noise. Furthermore, in the pseudogradient set-
ting, i.e., when there exists a global Lyapunov function V such that (∇V |h) ≥ 0 and
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{(∇V |h) = 0} = {∇V = 0}, the whole set I0+ is supported by the local minima
of V if other critical points are excited enough. The case of spurious points is also
investigated (x∗ is spurious if h(x∗) = 0, whereas ∇V (x∗) 6= 0).

The paper is organized as follows. In section 1 some existence and tightness
results for invariant distributions of Feller homogeneous Markov chains are recalled;
these yield some tractable criteria for constant gain stochastic algorithms. The aim
is to show that our framework is quite realistic from a practical point of view. We
do not care about the possible uniqueness of the invariant distribution for a given
positive step ε as this question seems not to interfere with the asymptotic behavior
of these distributions.

Section 2 is essentially devoted to the flow-invariance theorem and its first appli-
cations. This theorem proves that, under a mild uniform integrability assumption,
I0+ ⊂ Ih. An additional result is provided when the existence of the flow fails, pro-
vided there is some global Lyapunov function. In these two sections, we give only
some very short proofs, along with references for the classical technical points.

Section 3 is the main part of the work. It relies on a second-order Taylor expansion
in ε of the homogeneous Markov transitions P ε(x, dy). First, this yields that no
excited enough repulsive critical point of the average function h can be asymptotically
weighted by the invariant distributions of the algorithm as ε ↓ 0. This result extends
to repulsive thin invariant sets. Two subsections deal with important examples: the
Lemniscate example and the periodic/quasi-cycle example, which illustrate both the
apparent dissimilarity between the constant and the decreasing step versions of the
same stochastic algorithm.

Second, the case of excited enough saddle points of ODEh is investigated. It
is first pointed out that such critical points can be asymptotically weighted when
the algorithm is not a stochastic pseudogradient. The Lemniscate example stresses
this situation: all the mass of the νε concentrates at some saddle point of h. At this
stage, a whole subsection is devoted to stochastic pseudogradient algorithms under the
classical assumption in differential geometry that all saddle points are of Morse type.
Finally, some further types of critical points are eliminated: the spurious equilibrium
points. This latter result solves the case of inflection points in one dimension. Several
examples illustrate these results.

Notation.
• | . | denotes the canonical Euclidean norm on any Rd space unless noted otherwise;
• (.|.) denotes the canonical inner product;
• B(x, r) denotes the Euclidean open ball with center x and radius r > 0;
• C(0; 1) denotes the unit circle;
• u ∈ Rd denotes a row vector and tu denotes its (horizontal) transpose;
• Cb(Rd,R) := {f : Rd −→ R, continuous and bounded};
• C0(Rd,R) := {f : Rd −→ R, continuous subject to (s.t.) lim|x|→+∞ f(x) = 0};
• (T )

=⇒ denotes the weak convergence of probability measures on the topological space
X endowed with the topology T ; when this topology is obvious (e.g., on X = Rd) the

notation
(X)
=⇒ will be preferred;

• The letter ν—with or without superscript—always denotes a probability measure.

1. Background: Existence and tightness of the invariant distributions
of a family of Markov chains.

1.1. General results. Let (P ε(x, dy))x∈Rd , ε ∈ (0, ε0] be a family of Markov
transitions on (Rd,B(Rd)). We propose in Theorem 1.1 below several criteria for the
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existence and tightness of a family of stationary distributions in a Feller setting.
A distribution νε is P ε stationary (or P ε invariant) if it satisfies νεP ε = νε, i.e.,∫

νε(dx)P ε(x,A) = νε(A) for every Borel set A ∈ B(Rd).
A probability transition P (x, dy) is Feller if P (f)(x) :=

∫
f(y)P (x, dy) maps

Cb(Rd,R) into itself.
These criteria are based on the existence of a Lyapunov function. They are

adapted from classical criteria mentioned, e.g., in [9] or [25]. They turn out to be
especially well fitted for stochastic approximation with constant step.

Theorem 1.1. Let (P ε)ε∈(0,ε0] be a family of transitions.
A. Pakes–Has’minskii setting. Assume that (P ε)ε∈(0,ε0] satisfies the Pakes–

Has’minskii assumption

(Hb) ≡ ∃V : Rd → R+, ψ : Rd → R s.t.


(a) ψ ≤ C and lim

|x|→+∞
ψ(x) = −∞,

(b)

{ ∀ ε∈ (0, ε0], ∃λ(ε) > 0, µ(ε) ∈ R
s.t. P εV − V ≤ λ(ε)ψ + µ(ε).

(a) If the transitions P ε(x, dy) are Feller for every ε ∈ (0, ε0], there exists a family
(νε)ε∈(0,ε0] of P ε-invariant distributions.

(b) If supε∈(0,ε0]
µ(ε)
λ(ε) < +∞, then the set of invariant distributions {νε / νεP ε =

νε, ε ∈ (0, ε0]} is tight.
The function V is called a Lyapunov function for the family.
B. Hajek setting. Assume that (P ε)ε∈(0,ε0] satisfies the Hajek assumption

(Hc) ≡ ∃V : Rd → R+, s.t.


(a) lim

|x|→+∞
V (x) = +∞,

(b)

{ ∀ ε ∈ (0, ε0], ∃α(ε) ∈ (0, 1), ∃β(ε) ∈ R+

s.t. P εV ≤ α(ε)V + β(ε).

Then, (Hb) is fulfilled with λ(ε) := 1−α(ε), µ(ε) := β(ε), and ψ := −V . If, moreover,

L := sup
ε∈(0,ε0]

β(ε)

1− α(ε)
< +∞, then sup {νε(V ), νεP ε = νε, ε ∈ (0, ε0]} ≤ L.

Proof (sketch). Setting A is a parametrized version of a classical criterion of
existence of a stationary distribution for Feller–Markov chains (see, e.g., [9, p. 272]).
The boundedness of the νε(V )’s in setting B derives from the following inequalities:

1

n

n−1∑
k=0

P ε, k(V ∧K)(x) ≤
(

1

n

n−1∑
k=0

P ε, k(V )(x)

)
∧K

≤
(

β(ε)

1− α(ε)
+ α(ε)nV (x)

)
∧K.

Then, integrating with respect to νε, letting first n go to +∞ and then K, completes
the proof.

This theorem is well suited for stochastic algorithms with constant step (see sub-
section 1.2 below). It is important for applications to emphasize two features of these
criteria: the tightness conclusion holds for the whole set {νε / νεP ε = νε, ε ∈ (0, ε0]}
• without a uniqueness assumption of the invariant distribution at a given ε (such

a property is not always true and is usually difficult to fulfill even when it holds);
• without a Feller assumption, once the existence of a family (νε)ε∈(0,ε0] is granted.
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Remarks. Note that (Hb) implies that the Lyapunov function V satisfies

lim
|x|→+∞

V (x) = +∞.

Following, e.g., [8], the Hajek setting implies, for every ε ∈ (0, ε0], the stability of
the chain (Xε,t)t∈N in the following sense: for every starting value x ∈ Rd, Px-almost
surely (a.s.), the sequence of empirical distributions ( 1

t

∑
0≤s≤t−1 δXε,s)t≥1 is tight

and all its weak limiting distributions are P ε-invariant.

If P ε(x, dy) = pε(x, y)θ(dy) where θ(dy) denotes a σ-finite nonnegative measure
on (Rd,B(Rd)) and pε(x, y) > 0, θ(dy)-almost everywhere (a.e.) for every x, then
uniqueness of the invariant distributions νε holds (see, e.g., [8]). So, in the Hajek
setting, Px-a.s., the empirical distribution weakly converges to this invariant distribu-
tion νε.

1.2. The case of stochastic algorithms with constant gain. In this paper, a
stochastic algorithm with constant gain parameter is a family of homogeneous Markov
chains, depending on a parameter ε > 0, satisfying the general recursive equation

Xε,t+1 = Xε,t − εH(Xε,t, ωt+1),(1.1)

where H : Rd×E −→ Rd is a Borel function, (ωt)t≥1 is an i.i.d. sequence with common
distribution µ on a measurable space (E,B(E)) and ε is a positive real number.
The transition (P ε(x, dy))x∈Rd is obviously defined on nonnegative or bounded Borel
functions

P ε(f)(x) :=

∫
f (x− εH(x, ω))µ(dω).

The first assumption to be made ensures that the above transitions are Feller:
There exists some ρ ∈ (0, 1] s.t.

(Cµρ ) ≡


(i) ∀x ∈ Rd, y 7→ H(y, ω) is µ(dω)-a.s. continuous at x,

(ii)

 ∀x ∈ R
d, ω 7→ H(x, ω) belongs to L1+ρ(µ) and

x 7→
∫
|H(x, ω)|1+ρµ(dω) is bounded on compact sets.

Note that if (Cµρ ) holds for some ρ ∈ (0, 1], the so-called mean function h(x) :=∫
H(x, ω)µ(dω) of the algorithm is continuous (due to uniform integrability).

Most Lyapunov functions V that will be used further on fulfill the following
smoothness assumption:

(Lρ) ≡ V ∈ C1(Rd,R+) and ∇V is ρ-Hölder with coefficient [∇V ]ρ.

Of course, some nonnegativity assumption on (∇V |h) will be added when necessary
throughout the text. From a practical point of view, finding a function V that sat-
isfies assumption (Lρ) for some ρ ∈ (0, 1), instead of (L1), allows a decrease in the
integrability requirement on the noise.

Theorem 1.1 applied to Markov stochastic algorithms with constant step straight-
forwardly yields the following global existence and tightness result for the P ε-invariant
distributions νε.



ALGORITHM WITH CONSTANT STEP 1461

Proposition 1.2. A. Pakes–Has’minskii setting. Let ρ ∈ (0, 1] and V :
Rd → R+. Assume that

(Has)ρ ≡


(a) the function H satisfies

(Cµρ ) and the function V satisfies (Lρ),
(b) ∃A > 0 s.t.

lim
|x|→+∞

(
(∇V |h)(x)− 1

A

∫
|H(x, ω)|1+ρµ(dω)

)
= +∞;

(1.2)

then assumption (Hb) holds.
B. Hajek setting. Assume that there is some ρ ∈ (0, 1] such that

(Haj)ρ ≡


(a) the function H satisfies Cµρ ,
(b) the function V satisfies (Lρ) and lim

|x|→+∞
V (x) = +∞,

(c) ∃A > 0 s.t.

V (x) +

∫
|H(x, ω)|1+ρµ(dω) ≤ A((∇V |h)(x) + 1).

(1.3)

Then assumption Hc is fulfilled.
B′. Sometimes, rather than the above assumption (Haj)ρ(c), it may be more

convenient to check the slightly more stringent

(H̃aj)ρ ≡


(a), (b),

(c) ∃ Ã > 0,
1

Ã

∫
|H(x, ω)|1+ρµ(dω) ≤ V (x) + 1 ≤ Ã((∇V |h)(x) + 1).

(1.4)

Proof (sketch). Both settings rely on the following inequality, derived from the
bounded increment formula

∀x ∈ Rd, V
(
x− εH(x, ω)

) ≤ V (x)− ε(∇V (x)|H(x, ω)
)

+ ε1+ρ[∇V ]ρ|H(x, ω)|1+ρ.

Hence, V (x− εH(x, ω)) ∈ L1(µ(dω)), and integrating with respect to µ(dω) yields

∀x ∈ Rd, (P εV − V )(x) ≤ −ε (∇V |h) (x) + ε1+ρ[∇V ]ρ

∫
|H(x, ω)|1+ρµ(dω).

A. Pakes–Has’minskii setting. One concludes by setting

ψ(x) :=
1

A

∫
|H(x, ω)|1+ρµ(dω)− (∇V |h)(x), λ(ε) = ε, µ(ε) := 0,

ε0 <
1

(A[∇V ]ρ)
1
ρ

, and C := supx∈Rd ψ(x). (ψ is bounded by (Cµρ ) (ii) and 1.2(b).)

B. Hajek setting. One concludes by setting

α(ε) :=

(
1− 1

A
ε(1− ερA[∇V ]ρ)

)
, β(ε) = ε1+ρ[∇V ]ρA+ (1−α(ε)) sup

(∇V |h)≥ 1
2A

V (x),

and

ε0 < min

(
A,

1

(A[∇V ]ρ)
1
ρ

)
.
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About other natural settings. A simpler setting that is commonly encoun-
tered in applications is the case of compact valued stochastic algorithms like the
Kohonen algorithm (see, e.g., [5] or [6]) and the normalized Benzecri–Oja algorithm
(see [26]). Thus, assume that for ε ∈ (0, ε0] and every x0 lying in a compact set K,
the algorithm defined by (1.1) a.s. lies in K. It is straightforward that, whenever
the algorithm is Feller on K (with an obvious definition), every transition P ε has at
least one invariant distribution and {νε / νεP ε = νε} is tight. Furthermore, all the
results below remain valid for such K-valued Feller algorithms with the straightfor-

ward adaptations: a function V is Lyapunov on K if V ∈ C1(
◦
K), ∇V continuously

extends to K, (∇V |h) ≥ 0, etc. Such an extension will work out for the Benzecri–Oja
algorithm that lives in the unit d-dimensional sphere, or some special cases of the
Kohonen algorithm (uniform stimuli and 0 neighbor setting).

When the algorithm is not Feller, another family of methods based on ergodicity
and recurrence is available (see [22] or [8]) for the existence and tightness of the invari-
ant distributions. Once this point is solved, similar studies to those carried out below
can be done; thus, in [6], after proving the existence of the invariant distributions
νε by a Doeblin recurrence approach for the Kohonen algorithm with 0 neighbor, a
localization of the support of the limiting distribution is carried out. This is done by
specific methods since this algorithm is a stochastic gradient descent whose gradient
function is not even continuous (see also [27]).

2. Asymptotics of νε as ε ↓ 0. This section is devoted to the location of
the support of any weak limiting value of a tight family (νε)ε∈(0,ε0] of P ε-stationary
probability measures. The results mentioned in the first subsection call upon some
functional results on stochastic processes and need some more stringent hypothesis on
the average function h through ODEh ẋ = −h(x). In the second subsection, we give
some applications of the flow-invariance theorem. In the third subsection, we provide
some results and examples requiring less regularity on h in the spirit of section 1.

2.1. A flow-invariance theorem for the νε’s. In this section we deal with
a flow-invariance result for any tight family (νε)ε∈(0,ε0] of P ε-invariant distributions.
This version for Markov stochastic algorithms can appear as the constant step version
of the ODE method developed by Ljung, Kushner, and Clark. It looks like a variant
of the old seminal averaging principle by Has’minskii (see [15] or [18]) for perturbed
deterministic dynamical systems. Let us mention, too, for diffusion approximation,
the work by Norman on limit theorems for stationary sequences (see [24]) and the
synthetic result that can be found in ([9, p. 244]).

The following assumption will hold throughout this section:

HODE ≡


(a) h is continuous,

(b)

 for every x0 ∈ Rd there exists a unique Φ(x0, .) ∈ C1(R+,Rd)

s.t.Φ(x0, u) = x0 −
∫ u

0

h(Φ(x0, v))dv.

Uniqueness is generally provided by a local Lipschitz assumption on h.

Let ε > 0, x0 ∈ Rd. Set

X
(ε,x0)
0 := x0 and X(ε,x0)

u := X(ε,x0),t if u ∈ [tε, (t+ 1)ε),

where (X(ε,x0),t)t∈N denotes the algorithm with constant step ε starting at x0 as
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defined by (1.1). A straightforward computation shows that X
(ε,x0)
u satisfies

∀u ∈ R+, X
(ε,x0)
u = x0 −

∫ u

0

h(X(ε,x0)
v )dv + εMε,x0,[

u
ε ] +

∫ u

ε[uε ]

h(X(ε,x0)
v )dv,(2.1)

where Mε,x0,t =
t−1∑
s=0

h(X(ε,x0),s)−H(X(ε,x0),s, ωs+1), Mε,x0,0 = 0,(2.2)

and u denotes the integral part of u ∈ R+. The sequence (Mε,x0,t)t∈N is a martingale
with respect to its natural filtration under mild integrability assumptions.

Proposition 2.1. (a) For every sequence εp ↓ 0,

∀K > 0, ∀T ∈ R+, sup
u∈[0,T ]

sup
|x0|≤K

|X(εp,x0)
u − Φ(x0, u)| P−→

p→∞ 0.

(b) In particular, for any function f ∈ Cb(Rd,R+) s.t. f(0) = 0,

∀K > 0, ∀u ∈ R+, sup
|x0|≤K

E
(
f
(
X(ε,x0)
u − Φ(x0, u)

))
−→ 0 as ε→ 0.

Item (b) is an obvious corollary of item (a). Item (a) reads as follows in a sequen-
tial form: for any sequences εp ↓ 0, xp0 → x∞0 ,

∀K > 0, ∀T ∈ R+, sup
u∈[0,T ]

|X(εp,x
p
0)

u − Φ(x∞0 , u)| P−→
p→∞ 0.

One easily derives this convergence (in distribution) from some abstract weak func-
tional convergence theorems for semimartingales (see, e.g., [17, Thm. 3.39, p. 510]
for a comprehensive approach). A direct and self-contained proof is available in [10]
(when the function h is not bounded, the proof involves some localization techniques
relying on the Sk-regularity for stopped processes).

Theorem 2.2. Assume that the family (νε)ε∈(0,ε0] of P ε-invariant distributions
is tight and that both HODE and

(UI)loc ≡ ∀K ⊂ Rd, compact set, (|H(x, ω)|)x∈K is µ(dω)-uniformly integrable(2.3)

hold. Then, every limiting distribution ν0 of νε as ε ↓ 0 satisfies

∀u ∈ R+, Φ(ν0, u) = ν0.(2.4)

Consequently, if the flow is uniquely ergodic, i.e., exactly one flow-invariant distribu-
tion ν0 exists, then νε ⇒ ν0 as ε ↓ 0.

Note that as a practical matter, (UI)loc always holds when (H̃aj)1 does.
Proof of Theorem (2.2). Let u ∈ R+ and let f be a bounded Lipschitz function,

with Lipschitz coefficient [f ]. E( . ) will denote the P-expectation on the probability
space (Ω,A,P) on which the innovations ωt are defined. We have∣∣∣∣∫ f(Φ(x0, u))νε(dx0)−

∫
f(x0)νε(dx0)

∣∣∣∣
=

∣∣∣∣∫ (f(Φ(x0, u))− P [uε ]f(x0)
)
νε(dx0)

∣∣∣∣
=

∣∣∣∣∫ (f(Φ(x0, u)
)− E(f(X(ε,x0)

u )
))

νε(dx0)

∣∣∣∣
≤
∫
νε(dx0)E

(∣∣∣f(X(ε,x0)
u )− f(Φ(x0, u))

∣∣∣) .
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Let εp → 0 and η > 0. Since the sequence (νεp)p≥0 is tight, there exists a compact
set Kη such that

νεp(Kη) ≥ 1− η

2‖f‖∞
for every p ≥ 1. Hence, integrating separately on Kη and cKη yields∣∣∣∣∫ f(Φ(x0, u))νεp(dx0)−

∫
f(x0)νεp(dx0)

∣∣∣∣
≤ 2‖f‖∞

2‖f‖∞
η + sup

x0∈Kη
E
(

2‖f‖∞ ∧ ([f ]|X(εp,x0)
u − Φ(x0, u)|)

)
.

Let ϕ(x) := 2‖f‖∞ ∧ ([f ]|x|). ϕ(0) = 0 and ϕ ∈ Cb(Rd,R+). Since the flow Φ(x0, u)
is continuous in x0, Proposition 2.1(b) yields

∀u ∈ R+, ∀η > 0, lim
p

∣∣∣∣∫ f(x(x0, u))νεp(dx0)−
∫
f(x0)νεp(dx0)

∣∣∣∣ ≤ η,
hence

∀u ∈ R+,

∫
f(Φ(x0, u))ν0(dx0) =

∫
f(x0)ν0(dx0)

as νε ⇒ ν0. This completes the proof.
A similar flow-invariance theorem was obtained independently in [3], in the con-

text of urn processes, which, roughly speaking, corresponds to the case where H(x, ω)
is globally bounded.

The first consequence of the flow-invariance theorem above relies on the celebrated
Poincaré recurrence theorem (see, e.g., [19, Thm. 3.1, p. 16]) for invariant distributions
of a dynamical system. In our setting, it reads as follows.

Proposition 2.3. The support of any flow-invariant distribution ν0 of ODEh
is contained in the Birkhoff’s center B(Φ) of Φ (the set B(Φ) is defined as the closure
of
{
x ∈ Rd / ∃un → +∞ with Φ(x, un)→ x

}
).

2.2. Some first consequences and examples. The examples below are illus-
trations of Proposition 2.3.

Proposition 2.4 (Discrete part of ν0). Let ν0
p denote the purely discrete part of

ν0. Then supp(ν0
p) ⊂ {h = 0}.

Proof. Let x∗ ∈ supp(ν0
p). The ν0-invariance of the flow implies that, for every

u > 0, ν0({Φ(x∗, u)}) = ν0({x∗}) > 0. Hence {Φ(x∗, u), u > 0} is a path connected
countable set containing x∗, that is, Φ(x∗, .) ≡ x∗. Subsequently h(x∗) = 0.

Proposition 2.5 (pseudogradient case). If V is differentiable on Rd, and
(∇V |h) ≥ 0, then

supp(ν0) ⊂ {(∇V |h) = 0}.
Proof. For every x0 ∈ Rd, the function u 7→ (∇V |h)(Φ(x0, u)) converges to 0 as

u→ +∞. For every p ∈ N, let ϕp : R+ → R+ be a continuous nondecreasing function
such that

ϕp(x) :=

{
x, if x ∈ [0, p],
p+ 1, if x ≥ p+ 1.
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One readily checks using the flow-invariance theorem that

∀ p ∈ N,
∫
ϕp(V (x0))− ϕp(V (Φ(x0, u)))

u︸ ︷︷ ︸
≥0

ν0(dx0) = 0.

Letting u go to 0, it follows from Fatou’s lemma that
∫
ϕ′p(V )(∇V |h)(x0)ν0(dx0) = 0

for every p ∈ N. Letting p go to infinity completes the proof since ϕ′p → 1.
We will see below that this result admits an extension to the case where the exis-

tence of the flow fails. The next result is a straightforward application of Proposition
2.3.

Proposition 2.6. (a) Converging dynamics. If ODEh has a converging flow,
i.e., any solution of the ODEh converges toward (a connected component of) {h = 0},
then

supp(ν0) ⊂ {h = 0}.
(b) Cascade converging dynamics. Assume that there exists a decreasing sequence

(An)n∈N of closed subset of Rd such that A1 := Rd and that ODEh satisfies

∀ k ∈ N, ∀x0 ∈ Ak, dist(Φ(x0, u), Ak+1)→ 0 as u→ +∞.
Then supp(ν0) ⊂ ∩nAn.

Actually, we do not know any example of an infinite cascade of An in Rd; for
an example of a finite sequence see (2.9) and Proposition 3.5. Several criteria ensure
the convergence of the flow without using a Lyapunov function, like the celebrated
two-dimensional Poincaré–Bendixson theorem or the Bendixson–Dulac criterion for
functions h having a never zero divergence. (See [1] or [11] for some applications
to stochastic approximation.) One must mention, too, the cooperative irreducible
differential systems introduced by Hirsch in [16]: when the equilibrium set {h = 0}
is reduced to a single point, the flow of such differential equations is converging. An
application to the Kohonen algorithm is carried out in [4].

The Lemniscate example. The algorithm defined by (2.5) below is a typical exam-
ple, where the decreasing and the constant step algorithms seem to behave differently.
We will come back to that question further on.

Let L : R2 → R be the Lemniscate function—{L = 0} is a Lemniscate—defined
by

∀x := (x1, x2) ∈ R2, L(x) :=
(x2

1 + x2
2)2

16
− x1x2.

Then, set for every x ∈ R2

V :=
L2

2(1 + L2)
3
4

and θ := H
(

L

(1 + L2)
3
8

) (
H(f) :=

(
∂f
∂y

−∂f∂x

)
is for Hamiltonian

)
,

∇V (x) =
(L2 + 4)

4(1 + L2)
7
4

L(x)

(
x1

x2
1+x2

2

4 − x2

x2
x2

1+x2
2

4 − x1

)
,

and

θ(x) =
L2 + 4

4(1 + L2)
11
8

(x)

(
x2

x2
1+x2

2

4 − x1

−x1
x2

1+x2
2

4 + x2

)
.
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Fig. 1. Trajectories of the stochastic algorithm (2.5): t = 1, . . . , 104 and ε := 1.5 10−3.

The algorithm (see a simulated path in Figure 1) is defined by

h :=∇V + θ, µ(dω) :=
dω

(1 + |ω|)3 ln2(2 + |ω|) ,(2.5)

Xt+1 :=Xt− ε

(I2 + ϕ(ωt+1))h(Xt)+Diag[1, 0.2]ωt+1︸ ︷︷ ︸
:= H(Xt, ωt+1)

 , ωt
L∼ µ,

where ϕ is a µ-square integrable and centered 2×2-matrix valued function. In Figure
1 are plotted trajectories of the stochastic algorithm for t ∈ {1, . . . , 104} and ε :=
1.5× 10−3.

One readily checks that assumption (H̃aj)1 holds; hence, one derives from Propo-
sition 1.2B the existence of a tight family of invariant distributions (νε)ε∈(0,ε0].

Now, since h is locally Lipschitz, (HODE) is fulfilled. So is (UI)loc due to (H̃aj)1.
Then one readily checks the following facts:

• {(∇V |h) = 0} = {∇V = 0} = {L = 0} ∪ {∇L = 0}
= {∇V = 0} = {L = 0} ∪ {(−√2;−√2), (

√
2;
√

2)};
• {L = 0} = {V = 0} is flow-invariant since V ≥ 0 and, for every x ∈ {L = 0},

Φ(x, u)→ (0, 0) as u→ +∞ (set x1 := s, x2 := ts).

Now applying Proposition 2.6(b) yields the (partial) result

supp(ν0) ⊂ {(0; 0), (−
√

2;−
√

2), (
√

2;
√

2)}.
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At this stage, a straightforward computation shows that these critical points are
of different natures: (0; 0) is a saddle point while both (−√2;−√2), (

√
2;
√

2) are
repulsive points as

∇h(0; 0) =

[ −1 0
0 1

]
, ∇h(

√
2;
√

2) = ∇h(−
√

2;−
√

2) =
1

2
11
4

[ −5 2−
3
8

−2−
3
8 −5

]
.

The aim of this paper is to investigate whether such repulsive or saddle points can be
weighted by ν0. The answer will be negative for repulsive critical points.

2.3. Location without the ODE. It is possible to get location results for ν0

even if (HODE) fails, provided that a global Lyapunov function does exist. As in this
paragraph the existence of a tight P ε-invariant family of distributions (νε)ε∈(0,ε0] is
assumed, assumption (Cµρ ) can be relaxed into

(Cµ0+
) ≡

{
(i) ∀x ∈ Rd, y 7→ H(y, ω) is µ(dω)-a.s. continuous at x,
(ii) ∀K ⊂ Rd, compact set, (H(x, ω))x∈K is µ(dω)-uniformly integrable.

Note that

(∃ ρ ∈ (0, 1], (Cµρ )) =⇒ (Cµ0+
) =⇒

{ • P ε is Feller, ε ∈ (0, ε0],
• h is continuous.

Proposition 2.7 (Feller setting). Let V : Rd C1

−→ R+, and let ν0 be a weak
limiting distribution of νε as ε ↓ 0. Assume that the function

(a) V satisfies

{
(i) (∇V |h) ≥ 0,
(ii) ∇V is bounded or lim

|x|→+∞
V (x) = +∞,

(b) H satisfies (Cµ0+
) and

∫
|H(x, ω)|µ(dω) is (νε)ε∈(0,ε0]-uniformly integrable.

(2.6)

Then, supp(ν0) ⊂ {(∇V |h) = 0}.
The proof of this result relies on a first-order Taylor expansion of the transition

P ε(V )(x) (see, e.g., [10]). We provide here no further details since a similar method,
but with a second-order Taylor expansion of P ε(V ), will be used in section 3 to treat
the case of unstable equilibrium points.

Proposition 2.7 yields the corollary below, which is more tractable for applications.
Corollary 2.8. A. Pakes–Has’minskii setting. If H, h, V , and the tight

family of all the P ε-invariant distributions νε, ε ∈ (0, ε0], satisfy, for some ρ ∈ (0, 1],

(Has)ρ ≡ (∇V |h) ≥ 0 and (∇V |h)
1

1+ρ is (νε)ε∈(0,ε0]-uniformly integrable,(2.7)

then any weak limiting value ν0 of νε as ε ↓ 0 satisfies supp(ν0) ⊂ {(∇V |h) = 0}.
B. Hajek setting. If H, h, and V satisfy for some ρ ∈ (0, 1]

(H̃aj)ρ and (∇V |h) ≥ 0,(2.8)

then the same conclusion as in A holds.
The periodic/quasi-cycle example. Consider the linearly perturbed algo-

rithm H(x, ω) := h(x) + ω defined by its vector field

∀x := (x1, x2) ∈ R2, H(x, ω) := h(x) +ω, h(x) :=
|x|2 − 1

|x|2 + 1
x+ϕ(x)

( −x2

x1

)
,(2.9)
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where ϕ is a bounded continuous function and (ωt)t≥1 is a (1 + ρ)-integrable two-
dimensional white noise. One readily checks that this algorithm is a pseudogradient
related to the Lyapunov function

V (x) :=
1

1 + ρ

(|x|1+ρ − 2 ln(1 + |x|1+ρ)
)
.

Furthermore, the Hajek criterion (H̃aj)ρ is fulfilled using V . Hence, it follows from
Proposition 1.2B′ and Corollary 2.8 that the set {νε / νεP ε = νε, ε ∈ (0, ε0]} is tight
for some ε0 > 0 and

supp(ν0) ⊂ {∇V |h) = 0} = C(0; 1) ∪ {(0, 0)},

where C(0; 1) denotes the unit circle.

If no further assumption is made on the function ϕ, the existence of the flow of
ODEh may fail, which prevents the use of the flow-invariance theorem. The second
feature to be noticed is that the origin (0, 0) is a repulsive point for the ODEh as
it is a local maximum of its Lyapunov function V . As in the Lemniscate example,
one expects (0, 0) not to be weighted by a limiting distribution ν0 since the random
perturbation H((0, 0), ω) = ω is nonzero at this point.

The asymptotic behavior of this algorithm will be described in subsection 3.1.5
once the case of repulsive points and sets has been treated.

Proposition 2.7 admits a non-Feller version in which the regularity requirements
on V are slightly strengthened. Namely, assumption (2.6) then becomes

(2.6′) ∃ ρ ∈ (0, 1] such that



(a′)



(i) (∇V |h) ≥ 0 and is lower semi-
continuous,

(ii) ∇V is bounded or
lim

|x|→+∞
V (x) = +∞,

(iii) ∇V is ρ′-Hölder on compact
sets for some ρ′ ≥ ρ,

(b′) the function x 7→
∫
|H(x, ω)|1+ρµ(dω)

is L1(νε)-bounded as ε ↓ 0.

3. About the support of νε as ε ↓ 0 near an unstable equilibrium point
of the ODE. In the previous section the support of any limiting value ν0 of νε as
ε ↓ 0 was located under some reasonable assumptions. For instance, when ODEh
has a converging flow (resp., when there exists a global Lyapunov function V ), it
was shown that supp(ν0) ⊂ {h = 0} (resp., supp(ν0) ⊂ {(∇V |h) = 0}). We know
(see [7], [21]) that under suitable assumptions on the (decreasing) steps and on the
variance function of H(x, ω), the corresponding algorithm a.s. cannot converge toward
an unstable stationary point of ODEh (i.e., to some maximum or saddle point of V ).

The aim of this section is to try to obtain the same type of result. However, we
will see further on that the global dependency of νε with respect to the global behavior
of the solutions of ODEh does not lead to the same results.

The key of this section is a proposition based on a second-order Taylor expansion
of the transition.

Proposition 3.1. Let (νε)ε∈(0,ε0] be a tight family of (P ε)ε∈(0,ε0]-stationary
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distributions and let ν0 be one of its limiting distributions as ε ↓ 0. Assume that

(a) (Cµ1+
) ≡

 (i) ∀x ∈ supp(ν0), y 7→ H(y, ω) is µ(dω)-a.s. continuous at x,

(ii)

{ ∀K⊂ Rd, K compact set, (|H(x, ω)|2)x∈K is
µ(dω)-uniformly integrable,

(b) x 7→
∫
|H(x, ω)|2µ(dω) is (νε)ε∈(0,ε0] uniformly integrable.

Then, for every f ∈ C2(Rd,R) such that f and ∇2f are bounded and for every sequence
νεp ⇒ ν0,

∫
(∇f |h)dν0 = 0 and

lim
p

∫
(∇f |h)

dνεp

εp
=

1

2

∫
ν0(dx)

(∫
µ(dω) tH(x, ω)∇2f(x)H(x, ω)

)
.

Remark. Assumption (Cµ1+
) is fulfilled whenever Cµ1+ρ(i) holds and

sup
x∈K

∫
|H(x, ω)|2+ρµ(dω) < +∞ for every compact set K of Rd.

Proof. Using a second-order Taylor–Lagrange expansion of the bounded C2 func-
tion f between x and x− εH(x, ω) and successively integrating with respect to µ and
νε leads to

Λε :=

∣∣∣∣ε ∫ νε(dx)(∇f |h)(x) − ε2

2

∫
νε(dx)

(∫
µ(dω) tH(x, ω)∇2f(x)H(x, ω)

)∣∣∣∣
≤ ε2

2

∫
νε(dx)G(2)

ε (x),

where G
(2)
ε (x) :=

∫
µ(dω)|H(x, ω)|2 (w(∇2f, x, ε|H(x, ω)|) ∧ ‖∇2f‖∞

)
and w(g, x, .)

denotes the continuity modulus of g at x.

We note that G
(2)
ε (x) is nondecreasing as a function of ε; hence,

∀ η ≥ ε > 0,
Λε
ε2
≤
∫
νε(dx)G(2)

ε (x) ≤
∫
νε(dx)G(2)

η (x).

Assumption (Cµ1+
) ensures that G

(2)
η is νε-uniformly integrable. Assuming without

loss of generality that νε ⇒ ν0, it follows that

∀ η > 0, lim
ε→0

∫
νε(dx)G(2)

η (x) =

∫
ν0(dx)G(2)

η (x).

The Lebesgue-dominated convergence theorem yields limη→0

∫
ν0(dx)G

(2)
η (x) = 0.

This completes the proof of the first equality. The second straightforwardly fol-
lows.

3.1. The case of repulsive equilibrium points of the ODE.

3.1.1. The pointwise result. The next theorem agrees with the intuition that
generally speaking no excited enough repulsive point can be weighted when ε ↓ 0.

Theorem 3.2. Let (νε)ε∈(0,ε0] be a tight family of (P ε)ε∈(0,ε0]-stationary distri-

butions, and let ν0 be one of its limiting distributions. Let x∗ ∈ Rd. Assume that the
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assumptions of Proposition 3.1 hold and that there exists an open neighborhood V∗ of
x∗ and a local Lyapunov function V ∈ C2(V∗,R) such that

(a) ∀x ∈ V∗ \ {x∗}, (∇V |h)(x) > 0 and V (x) < V (x∗) (hence ∇V (x∗) = 0),
(b) there exists u ∈ (Ker∇2V (x∗))⊥, such that

∫
µ(dω)(H(x∗, ω)|u)2 > 0.

(Assertion (b) means that the noise has a positive variance in the direction u). Then,

ν0({x∗}) = 0.

Remark. Assumption (b) is equivalent to
∫
µ(dω)|π(H(x∗, ω))|2 > 0, where π

denotes the orthogonal projection on (Ker∇2V (x∗))⊥. One may assume without
loss of generality that |u| = 1. Then let (e1, . . . , ed) be an orthonormal basis of Rd
such that e1 = u and 〈e1, . . . , ep〉 = (Ker∇2V (x∗))⊥. Then

∫
µ(dω)|π(H(x∗, ω))|2 =∑p

i=1

∫
µ(dω)(H(x∗, ω)|ei)2.

Proof. The idea is to build a function f , whose support is contained in V∗, that
satisfies the assumptions of Proposition 3.1 and for which x∗ is also a local maximum.
Let α > 0 be such that B(x∗, α) ⊂ V∗ and set Kα := sup{V (x), α2 ≤ ‖x− x∗‖ ≤ α}.
Assumption (a) implies V (x∗) > Kα. Let ϕ ∈ C∞(Rd, [0, 1]) such that

∀x ∈ B
(
x∗,

α

2

)
, ϕ(x) := 1 and ∀x ∈ cB(x∗, α), ϕ(x) := 0.

Set for every x ∈ Rd, f(x) := (V (x) − Kα)3
+ϕ(x), where y+ := max(y, 0). The

function f is clearly C2 and nonnegative since y 7→ (y −Kα)3
+ is. Furthermore

∇f(x) = 3(V (x)−Kα)2
+ϕ(x)∇V (x) + (V (x)−Kα)3

+∇ϕ(x)︸ ︷︷ ︸
≡0

.

Consequently ∇f and ∇2f satisfy

(∇f |h)(x) = 3(V (x)−Kα)2
+ϕ(x)(∇V |h)(x)

{ ≥ 0 everywhere,
> 0 on B(x∗, α2 ) \ {x∗}.

∇2f(x) = 6(V (x)−Kα

)
+
ϕ(x)∇V (x) t∇V (x) + 3(V (x)−Kα

)2
+
∇V (x) t∇ϕ(x)︸ ︷︷ ︸
≡0

+3(V (x)−Kα)2
+ϕ(x)∇2V (x)

= 6
(
V (x)−Kα

)
+
ϕ(x)∇V (x)t∇V (x) + 3

(
V (x)−Kα

)2
+
ϕ(x)∇2V (x).

Applying Proposition 3.1 to the above function f first yields∫
ν0(dx)(V (x)−Kα

)2
+
ϕ(x)(∇V |h)(x) = 0.

Hence, supp(ν0) ∩B(x∗, α2 ) ⊂ {x∗}. Consequently,

1

2
ν0({x∗})

∫
µ(dω)tH(x∗, ω)∇2f(x∗)H(x∗, ω) = lim

p

1

εp

∫
(∇f |h)(x)νεp(dx) ≥ 0.

Since ∇V (x∗) = 0 and V (x∗) > Kα, it follows that

ν0({x∗})
∫
µ(dω)tH(x∗, ω)∇2V (x∗)H(x∗, ω) ≥ 0.
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We may assume without loss of generality that the vector u ∈ E− := (Ker∇2V (x∗))⊥

in assumption (b) satisfies |u| = 1. x∗ being a strict local maximum of V , ∇2V (x∗) is
at least nonpositive (i.e., tu∇2V (x∗)u ≤ 0). Set |λ|min := min{|λ|, λ 6= 0, λ eigenvalue
of ∇2V (x∗)}. One gets

tH(x∗, ω)∇2V (x∗)H(x∗, ω) = tπ⊥E−(H(x∗, ω))∇2V (x∗)π⊥E−(H(x∗, ω))

≤ −|λ|min|π⊥E−(H(x∗, ω))|2 ≤ −|λ|min(H(x∗, ω)|u)2,

where π⊥E− denotes the orthogonal projection on E−. In turn these inequalities yield∫
µ(dω)tH(x∗, ω)∇2V (x∗)H(x∗, ω) ≤ −|λ|min

∫
µ(dω)(H(x∗, ω)|u)2 < 0,

implying that ν0({x∗}) = 0.
Remark. The assumptions of Theorem 3.2(a) do not imply that h(x∗) is zero

but only that h(x∗) belongs to Ker∇2V (x∗). However, if h(x∗) 6= 0—and if the
assumptions of the flow-invariance theorem (Theorem 2.2) are fulfilled by h—then
ν0({x∗}) = 0 whatever the noise is: the discrete part of ν0 necessarily lies in {h = 0}
by Proposition 2.4.

A first application. If x∗ ∈ {h = 0}, h is differentiable at x∗, and all eigenvalues
of ∇h(x∗) have negative real part, then ν0({x∗}) = 0.

This follows from the quite classical construction (see, e.g., [1]) of an appropriate

local Lyapunov function defined by V (x) := 1− ∫ +∞
0
|es∇h(x∗)(x− x∗)|2ds.

3.1.2. The case of higher-order strict local maxima. Theorem 3.2 seems
not to be powerful enough to treat the case where the noise exclusively lies in the
direction of (Ker∇2V (x∗))⊥. This is the case, e.g., for a stochastic algorithm having,
near (0, 0), V (x, y) = 1 − (x2 + y4) as a (local) Lyapunov function. Actually, this
question can be solved by simply changing the Lyapunov function.

Definition 3.3. Let V : Rd → R+ be a function having a (strict) local maximum
at x∗ ∈ Rd. The function V has a polynomial local maximum at x∗ of order 2p, p ∈ N∗,
if V is 2p-differentiable at x∗ and

∃α > 0, ∀u ∈ B(0, α) \ {0},
2p∑
k=2

∇kV (x∗)
(k − 1)!

.u(k) < 0.(3.1)

Remark. ∇V (x∗) is necessarily 0 and it is meaningless to stop at some odd order.
For such maxima, it turns out that 1 − |x − x∗|2 is locally a Lyapunov function

around x∗.
Proposition 3.4. Assume that V : Rd → R+ is a local Lyapunov function for h

near x∗. If
(i). x∗ is a strict polynomial local maximum of V whose degree is 2p,
(ii). h(x) − ∇V (x) = |x − x∗|2p−1η(x), limx→x∗ η(x) = 0 (this is fulfilled, e.g.,

when h = ∇V near x∗),
then, x 7→ 1− 1

2 |x− x∗|2 is a Lyapunov function near x∗.
Note that assumption (i) with p = 1 amounts to ∇2V (x∗) being positive.
Combining this result and Theorem 3.2 straightforwardly solves the following

example.

Example. Set H(x, ω) := (− x

1+|x| 52
,−y3(1 +

√|x|) ) + ω and ωt := (0, ωt2), ωt2 ∼
N (0, 1). One readily observes that V (x, y) := 1 − (x2 + y4) is a Lyapunov function
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locally around (0, 0), (0, 0) being a polynomial maximum of degree 4. Moreover, the
noise has its support in Ker∇2V (0, 0) := R(0, 1). So Theorem 3.2 fails when applied
directly but succeeds when passing through Proposition 3.4.

Proof. The Taylor–Young formula applied at x∗ to ∇V reads

∇V (x) =

2p−1∑
k=1

∇k+1V (x∗)
k!

.(x− x∗)(k) + |x− x∗|2p−1ε(x) with lim
x→x∗ ε(x) = 0,

hence

−(x− x∗|h(x)) = −(x− x∗|∇V (x)) + o(|x− x∗|2p)

= −
2p−1∑
k=1

∇k+1V (x∗)
k!

.(x− x∗)(k+1)

︸ ︷︷ ︸
<0 if |x−x∗|≤α

+o(|x− x∗|2p).

Finally, it follows that ∃α∗ ∈ (0, α] and ρ∗ > 0 s.t.

∀x ∈ B(x∗, α∗), −(x− x∗|h(x)) ≥ ρ∗|x− x∗|2p.
Further comments. One must keep in mind that the square Euclidean norm

may be a local Lyapunov function near an obviously nonpolynomial strict local max-
imum of a function V . This is the case, e.g., when (in any dimension d) h(x) =
V (x) := 1 − exp(− 1

|x|2 ). One readily checks that all the derivatives of V at 0 are 0

and that 1− 1
2 |x|2 is a strict Lyapunov function for h near 0.

Conversely, the square Euclidean norm is not always a Lyapunov function! Indeed,
if

V (x) := −
(

1 +
√

2

2
+ sin

1

|x|2
)

exp

(
− 1

|x|2
)

and h := ∇V,

V is a C∞ function whose all derivatives are bounded on Rd, having a local/global
maximum at 0. However,

(h(x)|x) = −
(

1 +
√

2 + 2
√

2 cos

(
1

|x|2 −
π

4

))
|x|−2 exp

(
− 1

|x|2
)

whose sign is obviously not constant near 0. In fact, the only way to make up such
an example is to choose functions V having infinitely many undulations arbitrarily
close to its local maximum.

3.1.3. Extension to thin zero sets. A straightforward generalization of The-
orem 3.2 is obtained by considering a compact connected set χ∗, instead of an isolated
point x∗, provided that χ∗ is thin, i.e., χ∗ = ∂χ∗.

Assume that there exists a neighborhood V∗ of χ∗ and V ∈ C2(V∗,R+) such that

∀x ∈ χ∗, V (x) = v∗ and ∀x ∈ V∗ \ χ∗, (∇V |h)(x) > 0 and V (x) < v∗.

If, for every x∗ ∈ χ∗, there exists u(x∗) such that

u(x∗) ∈ (Ker∇2V (x∗)
)⊥

and

∫
(H(x∗, ω)|u(x∗))2µ(dω) > 0,(3.2)
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then

ν0(χ∗) = 0.

Example. Following the notations of subsection 2.2, let

h(x) = −|x|
2 − 1

|x|2 + 1
ψ(x) + ϕ(x)

( −x2

x1

)
,

where ψ : R2 → R2 is C2, ψ(x) = x + o(|x| − 1) near the unit circle C(0; 1), and
ψ(x) = x + o(|x|) when |x| → +∞. Then C(0; 1) is a repulsive cycle and the above
extension of Theorem 3 applies.

3.1.4. The Lemniscate example: Continuation. It was shown in the former
Lemniscate example (section 2.2) that any weak limiting value ν0 of the invariant
distributions of the algorithm defined by (2.5) satisfies

supp(ν0) ⊂ {(0; 0), (
√

2;
√

2), (−
√

2;−
√

2)},
where the last two points are repulsive stationary points for ODEh ≡ ẋ = −h(x).
Following Theorem 3.2, namely assumption (b)(ii) in Proposition 3.1, one derives that

ϕ ∈ L∞(µ) =⇒ ν0({(
√

2;
√

2), (−
√

2;−
√

2)}) = 0.

Consequently, supp(ν0) = {(0; 0)}, i.e.,

νε
(Rd)
=⇒ δ(0;0) although (0; 0) is an unstable point.(3.3)

This result stresses the fact that the asymptotic behavior of νε near an unstable point
x∗ as ε ↓ 0 depends on the global behavior of the deterministic underlying flow of
the dynamical system and on the local properties of the random perturbation term
H(x∗, ω)− h(x∗) = H(x∗, ω) at x∗.

For instance, in Figure 2 are plotted three histograms of |X(t)| for t ∈ {1, . . . , 2×
105}, with ε := 1.5 × 10−4, ε := 0.75 × 10−4, and ε := 0.3 × 10−4. νε clearly
concentrates at (0; 0).

Comparison with the algorithm with decreasing step. The same algo-
rithm, implemented with a regular decreasing step, will a.s. not converge. As a mat-
ter of fact, following, e.g., [11] or [2], one derives that, a.s., its limiting value set
X∞ makes up a flow-invariant compact connected subset of the Lemniscate {L = 0}
(hence containing (0; 0)). Then calling upon [7] or [21] implies that it cannot converge
to (0; 0) as it is a point at which the noise is not degenerate. So X∞ is one of the two
loops, or the whole Lemniscate {L = 0} depending on the noise structure at (0; 0).

Actually, the constant step algorithm behaves the same way. What the conver-
gence in (3.3) says is that the algorithm spends infinitely more time in any neighbor-
hood of the origin than anywhere else.

3.1.5. The periodic/quasi-cycle example: Continuation. Let us come
back to algorithm (2.9). We saw using the nonfunctional approach that whenever
the function ϕ is continuous and bounded, if E(|ω|1+ρ) < +∞, then supp(ν0) ⊂
C(0; 1) ∪ {(0; 0)}.

If, moreover, 0 < E(|ω|2) < +∞, then Theorem 3.2 implies that ν0((0; 0)) = 0
as (0; 0) is an isolated local maximum of the Lyapunov function V2 whose Hessian is
∇2V2(0; 0) = I2.
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Fig. 2. Histograms of time spent in {5× 10−2k ≤| x |≤ 5× 10−2(k+ 1)}, 0 ≤ k ≤ 59 with time
t ∈ {1, . . . , 2× 105}, and for ε := 1.5× 10−4, ε := 0.75× 10−4, ε := 0.3× 10−4.

Proposition 3.5. Assume that ϕ is continuous and bounded and if 0 < E(|ω|2) <
+∞, then either

(a) if ϕ is never 0 on C(0; 1), then

νε
(Rd)
=⇒ ν0 :=

1
ϕ (eiθ0)∫ 2π

0
1
ϕ (eiθ)dθ

1
[0,2π[

(θ0)dθ0, or

(b) if
∫ 2π

0
1
ϕ (eiθ)dθ = +∞ then supp(ν0) ⊂ {ϕ|C(0;1) = 0}.

Proof. (a) Assumption (UI)loc is obviously fulfilled by the algorithm. On the
other hand, ODEh ≡ ẋ = −h(x) reads in polar coordinates ((x1, x2) := (r cos θ,
r sin θ)):

ṙ = −r r
2 − 1

r2 + 1
and θ̇ = −ϕ(reiθ).

The unit circle C(0; 1) is flow-invariant for ODEh, on which the flow is well defined
since ϕ is never 0 on C(0; 1) and the differential equation ODEθ ≡ θ̇ = −ϕ(eiθ)
is scalar. A straightforward extension of Theorem 2.2 shows that ν0 is still flow-
invariant. Now, it is known that ODEθ is uniquely ergodic with invariant distribution

ν0(dθ0) = 1[0,2π)

1
ϕ (eiθ0)dθ0∫ 2π

0
1
ϕ (eiθ0)dθ0

.
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The proof is reproduced for the reader’s convenience: let T > 0 and v ∈ [0, T ]. The
invariance property yields, for every n ∈ N∗,∫ 2π

0

einθ0ϕ(eiθ0)ν0(dθ0) =

∫ 2π

0

einθ(θ0,v)ϕ(eiθ(θ0,v))ν0(dθ0)

=

∫ 2π

0

1

T

∫ T

0

einθ(θ0,v)ϕ(eiθ(θ0,v))dv ν0(dθ0)

=

∫ 2π

0

1

T

einθ(θ0,T ) − einθ(θ0,0)

−in ν0(dθ0)
T→+∞−→ 0.

The Fourier transform being one to one, ϕ(eiθ0)ν0(dθ0) = cλ|[0,2π)(dθ0), i.e.,

ν0(dθ0) = 1[0,2π)

1
ϕ (eiθ0)dθ0∫ 2π

0
1
ϕ (eiθ0)dθ0

.

Conversely, ν0 actually is flow-invariant.
(b) Since ϕ does have zeros on C(0; 1), the flow Φ(θ, u) of ODEθ is well defined

and it converges to some zero of ϕ. Once again, it is straightforward to show that the
flow invariance of ν0 still holds in the following way: for every Borel set A and every
u ≥ 0, ν0(A) = Φ(ν0, u)(A). As any limiting distribution of Φ(ν0, u) is supported by
{ϕ|C(0;1) = 0}, it follows that ν0(A) = 0, i.e., supp(ν0) ⊂ {ϕ|C(0;1) = 0}.

Remark. If ϕ ≥ 0 does have zeros on C(0; 1) while the integral

Cϕ :=

∫ 2π

0

1

ϕ
(eiθ0)dθ0 < +∞, theprobabilitymeasure 1

Cϕ

1

ϕ(eiθ0)
1[0,2π[(θ0) dθ0

is still an invariant distribution of ODEθ.
Some further investigations can be carried out by studying the nature of the

critical points of {h|C(0;1) = 0}. Furthermore, if the distribution of the white noise
is known and admits moments enough (Gaussian, etc.), one may restrict again the
support (see, e.g., [23] in a continuous time-diffusion setting) using, e.g., some large
deviation methods.

3.2. Saddle points of a stochastic pseudogradient. It was emphasized in
section 3.1.4 that a saddle critical point x∗ of the mean function h can be weighted by
a limiting distribution ν0 even if the random perturbation does not fade at x∗. The
aim of this section is to show that, in many situations, this cannot occur—namely,
when the algorithm is a stochastic pseudogradient with a C2 Lyapunov function V
satisfying {(∇V |h) = 0} = {h = 0} and x∗ is a saddle point of V . Many learn-
ing algorithms issued from neural networks are stochastic pseudogradient descents.
They are often performed with a (small) constant step (Boltzmann machine, back-
propagation algorithm for the multilayer perceptron, and others) precisely to avoid
false convergence phenomena to metastable critical points.

The fact that an algorithm is a stochastic pseudogradient provides the information
about the global behavior of the flow of its ODEh. For the sake of simplicity, we will
assume that there is no spurious equilibrium (see section 3.3). The case of possible
spurious points will be investigated later.

Before getting into the technicalities let us explain the method developed in this
section. Basically, it consists once again in modifying the global Lyapunov function
V near some critical points. Namely, we will flatten V at the local minima and nearly
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pull down to zero the positive part of the spectra of the Hessian of V near the saddle
points. To this end we need to write V locally as a quadratic form up to some C2-
diffeomorphic change of coordinates. The Morse lemma (see, e.g., [14]) will be called
upon to ensure this is possible.

Proposition 3.6 (Morse). Let g ∈ C3(V∗,R), where V∗ is a neighborhood of
x∗. Assume that g(x∗) = 0, ∇g(x∗) = 0, and ∇2g(x∗) is invertible. Then there exist
ε0 > 0 and u ∈ C2(B(x∗, ε0),Rd) such that

u(x∗) = 0, u′(x∗) = Id, and ∀x ∈ B(x∗, ε0), g(x) =
1

2
tu(x)∇2g(x∗)u(x).

Notation. From now on, E±x will denote the vector spaces respectively spanned
by eigenvectors of ∇2V (x) with positive and nonpositive eigenvalue.

Theorem 3.7. Let (νε)ε∈(0,ε0] be a tight family of (P ε)ε∈(0,ε0]-stationary distri-
butions, and let ν0 be one of its limiting distributions as ε ↓ 0.

Assume that H, µ, and the νε’s fulfill assumptions (a) and (b) of Proposition 3.1
and that there exists a global C2 Lyapunov function V : Rd → R+ satisfying

(L) ≡
{

(i) (∇V |h) ≥ 0 and {(∇V |h) = 0} = {∇V = 0},
(ii) ∀K > 0, sup{V≤K} |∇V |2 + ‖∇2V ‖2 + |h|2 < +∞.

(a) Local result. Let x∗0 ∈ {∇V = 0} and v∗0 := V (x∗0). Assume that there is
some η∗0 > 0 such that

(i) the set C∗0 := {∇V = 0} ∩ {V ∈ (v∗0 − η∗0 , v∗0 + η∗0)} is finite;

(ii) for every x∗ ∈ C∗0 , x∗ is
(α) a local maximum of V ,
(β) or a local minimum of V ,

(γ) or


a C3-Morse saddle point (V is locally C3, ∇2V (x∗) is invertible)
satisfying (∇V |h)(x) ≥ c∗|∇V |2(x) for some c∗ > 0

and θ(x) := h(x)− (∇V |h)
|∇V |2 (x)∇V (x) = O(|x− x∗|1+a∗) for some a∗ > 0;

(iii) there is some v ∈ E−x∗0 such that
∫

(H(x∗0, ω)|v)2µ(dω) > 0 (which implies that

x∗0 is not a local minimum);

then, ν0({x∗0}) = 0.

(b) Global result. Assume that {∇V = 0} is V -locally finite (i.e., for every
v > 0, {∇V = 0}∩{V ≤ v} is finite) and that, furthermore, it is made up exclusively
of points of type (α), (β), and (γ). If every local maximum satisfies the assumption
of Theorem 3.2 (possibly with a modified local Lyapunov function) and if the above
assumption (iii) holds at every saddle point, then

supp(ν0) ⊂ {local minima of V }.

Remark. Actually, a fourth category of points could have been added in the above
results (a) or (b) made up of all the points that can be “rejected” by any appropriate
method: this category contains, e.g., the excited thin sets or the spurious points that
satisfy the assumptions of Proposition 3.8 below.

Proof. Step 1 (flattening of the local minima of C∗0 ). Let x∗0 ∈ C∗0 be a local
minimum. Being isolated, there is some δ∗ > 0 such that V (x) > V (x∗) for every
x ∈ B(x∗, δ∗) \ {x∗}.
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Let m∗ := min{V (x), x ∈ ∂B(x∗, δ∗)}, K∗ ∈ (V (x∗),m∗), and let ϕ∗ be a non-
negative increasing C2 function defined on [V (x∗),+∞) satisfying

(ϕ∗)′(V (x∗)) = 0, (ϕ∗)′(v) > 0 if v > V (x∗), and ϕ∗|[K∗,+∞)(v) = v.

Then, we set

V ∗(x) :=

{
ϕ∗(V (x)) if x ∈ B(x∗, δ∗),
V (x) if x /∈ B(x∗, δ∗).

One may assume without loss of generality that this modification is carried out around
every local minimum contained in C∗0 so that the different (closed) balls B(x∗, δ∗)
remain pairwise distinct and meet no other critical point of V. The function V ∗ is
then C2, V ∗ and V have the same critical points and, for every one of them,{ ∇2V ∗(x∗) = (ϕ∗)′(V (x∗))∇2V (x∗) = 0 if x∗ is a local minimum in C∗0 ,

∇2V ∗(x∗) = ∇2V (x∗) either.

Step 2 (lowering of the positive part of the spectrum of Morse saddle points of
C∗0 ). Let x∗ ∈ C∗0 be a Morse saddle point. Set A := ∇2V (x∗), A± := ±πE±

x∗
AπE±

x∗
,

|λ|∗ := max{|λ|, λ eigenvalue of A} = ‖A‖, |λ|∗ := min{|λ|, λ eigenvalue of A}, and
|x|2∗ := (x|(A+ +A−)x). | . |2∗ defines an Euclidean norm.

It follows from the Morse lemma that there is some δ∗ > 0 and a C2-diffeomorph-
ism u: B(x∗, δ∗)→ N0, N0 open neighborhood of 0, such that

∀x ∈ B(x∗, δ∗), V (x) = V (x∗) +
1

2
(Au(x)|u(x)), u(x∗) = 0 and u′(x∗) = Id.(3.4)

Furthermore, by properly lowering δ∗, one may assume that there is some K > 0
satisfying

u′ is K-Lipschitz on B(x∗, δ∗) with Kδ∗ < 1/4,
∀x ∈ B(x∗, δ∗), |x− x∗|/2 ≤ |u(x)|∗ ≤ 2|x− x∗|,
∀x ∈ B(x∗, δ∗), |θ(x)| ≤ K|x− x∗|1+a∗ and (∇V |h)(x) ≥ c∗|∇V |2(x),
assuming without loss of generality that a∗ ∈ (0, 1].

(3.5)

Now, let

γ ∈
0,

(
δ∗
4

)a∗
×

4(1 +Kδ∗)
(

2Kc∗( δ∗4 )1−a∗ + 21+a∗
|λ|∗

)
c∗( 1

2 −Kδ∗)


and ρ∗ : R+ → R+ be a nonincreasing, nonnegative C∞ function satisfying ρ∗(0) :=
1−γ/2
1−γ , ρ(k)(1) = 0, k ∈ N, and

∫ 1

0
ρ∗ = 1. Then, the function ϕ∗ defined by ϕ∗(v) =

γ + (1 − γ)
∫ v

0
ρ∗(u)du satisfies ϕ∗(0) = γ, ϕ∗(1) = 1, ϕ

(k)
∗ (1) = 0, k ≥ 1, and

‖ϕ′∗‖∞ = 1−γ/2
1−γ . Now, we are in the position to modify V ∗ around x∗ by setting

V ∗γ (x)

=

{
V (x∗) + 1

2ϕ∗
( |u(x)|2∗

α2∗

)
(A+u|u)(x)− (A−u|u)(x) if |x− x∗| ≤ δ∗, |u(x)|∗ ≤ α∗,

V ∗(x) if |u(x)|∗ ≥ α∗ or |x− x∗| ≥ δ∗,
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where

α∗ :=

γ c∗( 1
2 −Kδ∗)

4(1 +Kδ∗)
(

2Kc∗( δ∗4 )1−a∗ + 21+a∗
|λ|∗

)
 1

a∗

.

As α∗ ≤ δ∗
4 by construction, it follows that {x / |u(x)|∗ ≤ α∗} ⊂ B(x∗, δ∗/2), which

ensures that the function V ∗γ is well defined as a C2 function. Next point to be checked
is the global Lyapunov property of V ∗γ .

Set for every x ∈ B(x∗, δ∗), M(x) :=t u′(x) − Id. u′ being K-Lipschitz, one
gets ‖M(x)‖ ≤ K|x − x∗|. Then, a little algebra on derivatives yields, still for every
x ∈ B(x∗, δ∗),{ ∇V (x) = (Id +M(x))(A+u(x)−A−u(x)),

∇V ∗γ (x) = (Id +M(x))(a+(x)A+u(x)− a−(x)A−u(x)),
(3.6)

with  a+(x) := ϕ∗
( |u(x)|2∗

α2∗

)
+ (A+u|u)(x)

α2∗
ϕ′∗
( |u(x)|2∗

α2∗

)
,

a−(x) := 1− (A+u|u)(x)
α2∗

ϕ′∗
( |u(x)|2∗

α2∗

)
.

One readily sees that a+(x)+a−(x) ≤ 2, a+(x) ≥ γ, and a−(x) ≥ 1−(1−γ)ρ∗(0) = γ
2 ,

hence min(a+, a−) ≥ γ
2 .

Then, it follows from formula (3.6) and the orthogonality relation (A+u(x)|A−u(x))
= 0 that, whenever |u(x)|∗ ≤ α∗,

(∇V ∗γ |∇V )(x) ≥ |Au(x)|2
(γ

2
(1− 2‖M(x)‖)− 2‖M(x)‖(1 + ‖M(x)‖)

)
≥ |Au(x)|2

(γ
2

(1− 2Kδ∗)− 2K(1 +Kδ∗)|x− x∗|
)

≥ |Au(x)|2
(γ

2
(1− 2Kδ∗)− 4K(1 +Kδ∗)α∗

)
and

|(∇V ∗γ |θ)|(x) ≤ |∇V ∗γ (x)||θ(x)|
≤ (1 + ‖M(x)‖)|a+(x)A+u(x)− a−(x)A−u(x)|K|x− x∗|1+a∗

≤ 4(1 +Kδ∗)|Au(x)|2 K

|λ|∗ (2α∗)a∗ .

Finally, whenever |u(x)|∗ ≤ α∗,
(∇V ∗γ |h)(x)

=
(∇V |h)

|∇V |2 (x)(∇V ∗γ |∇V )(x) + (∇V ∗γ |θ)(x)

≥ |Au(x)|2
(
c∗
(γ

2
(1− 2Kδ∗)− 4K(1 +Kδ∗)α∗

)
− 4(1 +Kδ∗)

(2α∗)a∗

|λ|∗

)
≥ |Au(x)|2

(
c∗
γ

2
(1− 2Kδ∗)− 2(1 +Kδ∗)

(
2Kc∗

(
δ∗
4

)1−a∗
+

21+a∗

|λ|∗

)
αa∗∗

)
≥ |Au(x)|2c∗ γ

4
(1− 2Kδ∗) ≥ 0.
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Hence (∇V ∗γ |h) ≥ 0 everywhere since V ∗ = V ∗γ when |u(x)|∗ > α∗. Furthermore

∇2V ∗γ (x∗) = γA+ −A−.
As for the local minima, one may assume that this modification is made at every
Morse saddle point of C∗0 and that all the closed balls B(x∗, δ∗) provided by these first
two steps have a pairwise empty intersection.

Step 3 (localization). Let ψ : R+ → R+ be a C∞ nondecreasing function whose
derivative has exactly [v∗0 − η∗0 , v∗0 + η∗0 ] as its support. Set W ∗γ := ψ ◦ V ∗γ . Then

∇W ∗γ = ψ′(V ∗γ )∇V ∗γ and ∇2W ∗γ = ψ′′(V ∗γ )(∇V ∗γ ) t(∇V ∗γ ) + ψ′(V ∗γ )∇2V ∗γ .

It follows from assumption (L) that W ∗γ meets the following properties:

(∇W ∗γ |h) is nonnegative and bounded,
∇2W ∗γ is bounded,
{(∇W ∗γ |h) = 0} ∩ {V ∈ (v∗0 − η∗0 , v∗0 + η∗0)} = C∗0 and ∇2W ∗γ = ψ′(V ∗γ )︸ ︷︷ ︸

>0

∇2V ∗γ on C∗0 .

Step 4 (fading). Applying Proposition 3.1 to W ∗γ yields, as νεp ⇒ ν0,∫
Rd
ν0(dx)

[∫
tH(x, u)∇2W ∗γ (x)H(x, u)µ(du)

]
≥ 0.

Since ∇2W ∗γ = 0 outside {V ∈ (v∗0 − η∗0 , v∗0 + η∗0)}, one gets∑
x∗ ∈ C∗0

x∗ local max

ν0(x∗) “nonpositive term”︸ ︷︷ ︸
as ∇2W∗γ≤0

+
∑

x∗ ∈ C∗0
x∗ local min

ν0(x∗)
∫
tH(x∗, u) ∇W ∗γ (x∗)︸ ︷︷ ︸

= 0 by step 1

H(x∗, u)µ(du)

+
∑

x∗ ∈ C∗0
x∗ saddle point

ν0(x∗)ψ′(V (x∗))
(
γ

∫
tH(x∗, u)A+

x∗H(x∗, u)µ(du)

−
∫
tH(x∗, u)A−x∗H(x∗, u)µ(du)

)
≥ 0.

Letting γ go to 0 eventually leads to∑
x∗ ∈ C∗0

x∗ saddle point

ν0(x∗)ψ′(V (x∗))︸ ︷︷ ︸
> 0

∫
tH(x∗, u)A−x∗H(x∗, u)µ(du)︸ ︷︷ ︸
≥ 0 and > 0 if x∗ = x∗0

≤ 0.

This completes the proof of item (a). Item (b) is obvious.

3.3. Spurious zeros of a function h. One may consider the situation where
the mean function h of a stochastic pseudogradient algorithm related to a global
Lyapunov function V has some spurious equilibrium points x∗ in the following sense:

(∇V |h)(x∗) = 0 with ∇V (x∗) 6= 0.
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We will show that, if this spurious equilibrium is excited in the direction of ∇V (x∗),
that is,

(∇V |h)(x∗) = 0 and

∫
µ(dω)|(∇V (x∗)|H(x, ω))|2 > 0,

then x∗ is not in the support of ν0. Let P∗ be the set of spurious excited equilibrium.
Proposition 3.8. Assume that V is a C2 function and that H satisfies the

assumptions of Proposition 3.1. If x∗ is an excited spurious equilibrium point at level
v∗ and if there is η∗ > 0 such that {(∇V |h) = 0}∩{V ∈ [v∗−η∗, v∗+η∗]} ⊂ {V = v∗},
then, for any limiting distribution ν0 of (νε)ε∈(0,ε0], ν

0({x∗}) = 0.
Proof. Let L be a positive real number and let x∗ be an excited spurious equilib-

rium of h. Let ϕ
L

be a nondecreasing function satisfying ϕ
L

(v) := v −L(v − v∗)2 if v
lies in a small enough neighborhood [v∗ −α∗(L), v∗ +α∗(L)] of v∗, ϕ

L
(v∗ ±α∗(L)) =

v∗ ±α∗(L), ϕ
L

is constant on both sides of c[v∗ − η∗, v∗ + η∗], and ϕ′
L

is nonnegative.
Set W

L
:= ϕ

L
(V ). The inner product (∇W

L
|∇V ) is nonnegative and, for every

x ∈ {V = v∗}, ∇2W
L

(x) := −2L∇V t∇V (x)+∇2V (x). Subsequently Proposition 3.1
yields

−2L

∫
P∗∩{V=v∗}

ν0(dx∗)
∫
µ(dω)|(∇V (x)|H(x, ω))|2 + C∗ ≥ 0,

where C∗ is a fixed real number. Consequently, as L goes to infinity,∫
P∗∩{V=v∗}

ν0(dx)

∫
µ(dω)|(∇V (x)|H(x, ω))|2

needs to be 0. A continuity argument yields that ν0(x∗) = 0.
Application to inflection points in one dimension. This a typical example

of an excited spurious equilibrium point. As a matter of fact, assume that the mean
function h satisfies

h(x∗) = 0 and h has constant sign on [x∗ − α∗, x∗ + α∗]

for some α∗ > 0. Then, x∗ is a spurious critical point for any C2 nondecreasing
function V satisfying

V (x) := x− x∗ if x ∈ [x∗ − α∗/2, x∗ + α∗/2], V ′(x) = 0 if x /∈ [x∗ − α∗, x∗ + α∗].

All the results of this section rely on a second-order Taylor expansion of the prob-
ability transition P ε as ε ↓ 0 (see the proof of Proposition 3.1). That is the main
reason why they require a rather low integrability assumption on the noise (2 + ε).
In [3], the noise H(x, ω)− h(x) is bounded in the original urn model that motivated
the work. So, the assumption that the Legendre transform of the noise has a uni-
form quadratic bound is quite natural in that setting. An equivalence between the
chain-transitive relationship and the large deviation zero-cost relationship is estab-
lished under a dimensionality condition (chaining number of unstable attractors less
than 2). Then, some large deviation estimates à la Freidlin–Wentzell of the invari-
ant distribution yield some precise results on the possible supports for the limiting
invariant distributions. Thus, the case of an isolated unstable (saddle) cycle can be
excluded from the possible supports using such methods in a more general context
than that, e.g., proposed in the local result item of Theorem 3.7.
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4. Conclusion. We have seen that the asymptotic behavior of a constant step
stochastic algorithm, when the step goes to 0, is almost the same as that of the corre-
sponding decreasing step stochastic algorithm. They share many properties: concen-
tration near the equilibrium points of ODEh, convergence to the invariant measure in
the case of an attracting limit cycle of ODEh, avoiding of repulsive equilibrium points
or cycles in general and of the saddle points in the case of stochastic pseudogradient
with isolated singular points. Only one difference seems to occur: a saddle point
can be asymptotically weighted when ODEh is not a stochastic pseudogradient with
isolated singular points (see the Lemniscate example) or, more generally, with some
unstable equilibrium points (see the periodic/quasi-cycle example when h does have
zeros on the cycle). This happens when the algorithm is trapped into a quasi-cycle of
singular points. In fact, this dissimilarity is an illusion: the asymptotics of the invari-
ant measures νε essentially take into account the time spent by the algorithm near
some points and there is no contradiction between spending almost all the time at
some place and not converging to it. This is exactly what happens, e.g., in the Lem-
niscate example. By the way, this illuminates the result obtained by several authors
([7], [21], [28]) that states that a stochastic algorithm (Xt)t∈N with decreasing step
cannot converge toward an excited unstable equilibrium point x∗. Actually several
behaviors are hidden under this nonconvergence: when x∗ is a repeller or a saddle
point of a global Lyapunov function, it means that limt|Xt − x∗| > ε0 > 0. When x∗

is a saddle point trapped in a quasi-cycle as in the Lemniscate example, it just means
that limt|Xt − x∗| > ε0 > 0. It is the same for the unstable equilibrium points in
the quasi-cycle example (setting (b) of Proposition 3.5). In this latter example, if the
step is decreasing at the right rate (fast enough indeed), it has been shown by using
some shadowing techniques (see [2]) that the algorithm may still converge to such
unstable equilibrium (which are not saddle points, which makes this result consistent
with those mentioned above). Actually, these results obtained with constant step lead
us to think that it would be more appropriate to describe the behavior of a stochastic
algorithm with decreasing step in terms of time spent near the singular points, even
when the step approaches 0 too slowly to get some a.s. convergence properties. This
can be carried out by studying the weighted empirical measures of the algorithm itself
(see [12]).
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Abstract. In this paper, we study a form of stability for a general family of nondiffusion Markov
processes known in the literature as piecewise-deterministic Markov process (PDMP). By stability
here we mean the existence of an invariant probability measure for the PDMP. It is shown that
the existence of such an invariant probability measure is equivalent to the existence of a σ-finite
invariant measure for a Markov kernel G linked to the resolvent operator U of the PDMP, satisfying
a boundedness condition or, equivalently, a Radon–Nikodým derivative. Here we generalize existing
results of the literature [O. Costa, J. Appl. Prob., 27, (1990), pp. 60–73; M. Davis, Markov Models
and Optimization, Chapman and Hall, 1993] since we do not require any additional assumptions to
establish this equivalence. Moreover, we give sufficient conditions to ensure the existence of such a
σ-finite measure satisfying the boundedness condition. They are mainly based on a modified Foster–
Lyapunov criterion for the case in which the Markov chain generated by G is either recurrent or
weak Feller. To emphasize the relevance of our results, we study three examples and in particular,
we are able to generalize the results obtained by Costa and Davis on the capacity expansion model.
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1. Introduction. Piecewise-deterministic Markov processes (PDMPs) were in-
troduced by Davis [3] as a general family of nondiffusion stochastic models suitable for
formulating many optimization problems in several areas of applications. The motion
of a PDMP {xt} in a state space E depends on three parameters, namely, the flow Φ,
the jump rate λ, and the transition probability measure Q. Starting from a point x
in E, the motion of the process follows the flow Φ(x, t) until the first jump time T1.
This jump time occurs either when the flow hits the boundary of the state space E or
in a Poisson-like fashion with rate λ(Φ(x, t)). The location Z1 of the process at the
jump time T1 is selected by the measure Q(Φ(x, T1), .) and the motion restarts from
this new point Z1 as before. This gives a piecewise-deterministic trajectory for the
PDMP {xt} with jump times {T1, T2, . . .} and postjump location {Z1, Z2, . . .}. By a
suitable choice of the state space E and the parameters Φ, λ, and Q it is possible to
virtually model all nondiffusion processes found in the international literature. The
reader can find in [4] a complete and updated description of the theory of PDMPs as
well as several important applications.

A problem of great importance in the theory of stochastic processes that has been
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in evidence for over the last decades is to obtain conditions for the following problem.

P1. Existence of an invariant probability measure for a stochastic process.

The existence of such a measure corresponds to an important form of stochastic
stability and it is the first step toward an ergodic analysis of the process. For a small
sample of the huge theory available today on this subject, see [9, 8, 11, 12, 15, 13].
In general it is not a simple matter to determine whether a given process in a general
state space has an invariant probability measure and, if so, whether it is unique. For
discrete-time stochastic processes there is available in [14] a rather complete treatment
of this subject.

The main goal of [2] (see also [4]) was to derive conditions for the existence of
an invariant probability measure for a PDMP {xt}. Associated with the PDMP {xt}
there is a Markov chain given by the postjump location {Z1, Z2, . . .} with kernel G
(see (8) for its definition). It is natural to ask then if it is possible to link the invariant
probability measures associated with the Markov chain {Z1, Z2, . . .} and the invari-
ant probability measures associated with the PDMP {xt}. Since the conditions for
existence and uniqueness of an invariant probability measure are more easily stated in
the discrete-time setting, this connection provides a way of analyzing P1 for a PDMP
{xt} without relying on the general continuous-time theory. It was shown in [2] that,
under some technical assumptions, there is a one-to-one mapping between the invari-
ant probability measures for the PDMP {xt} and the invariant probability measures
of the Markov chain {Z1, Z2, . . .}. However, this result is not entirely satisfactory
since the technical assumptions in [2] require that, roughly speaking, the jump rate λ
must be strictly positive and bounded. Important applications presented in [4] show
that if these conditions are violated then there may exist an invariant probability
measure for the PDMP {xt} but not for the associated Markov chain {Z1, Z2, . . .},
and vice versa.

In the first part of this paper the problem P1 for a PDMP {xt} is revisited under
a new approach that removes the assumptions made in [2]. Instead of using the kernel
G associated with the Markov chain {Z1, Z2, . . .}, we introduce a new kernel G (for
its definition, see (4)), related to the resolvent kernel U of the PDMP {xt}, and show
that P1 for a PDMP {xt} is equivalent to the next problem.

P2. Existence of an invariant σ-finite measure for the Markov chain associated
with the kernel G satisfying a boundedness condition.

It is important to stress that this equivalence requires no extra conditions than
those usually imposed on the definition of the PDMP {xt}, being therefore a significant
improvement with respect to those results presented in [2]. Notice that P2 is related
to an invariant σ-finite measure and therefore it is not necessarily finite. As will be
seen in section 3, the boundedness condition in P2 can also be characterized as a
condition in terms of the Radon–Nikodým derivative of the invariant σ-finite measure
for G and a certain probability measure. As in [2], a one-to-one mapping between the
invariant probability measures for the PDMP {xt} and the invariant σ-finite measures
for the Markov chain associated with the kernel G is established. The examples in [4]
are revisited under this new framework and, of course, the problems found in [4] are
eliminated with our approach.

It is well known that P1 is equivalent to the problem of the existence of an
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invariant probability measure for the resolvent kernel associated to the transition
function of the stochastic process (see [1]). It is important to point out that such
a direct approach to our problem is in vain due to the fact that both the transition
function of a general PDMP {xt} as well as its associated resolvent kernel cannot be
explicitly calculated. Here our strategy is to use the special structure of the PDMP
to provide a tractable answer to the problem P1.

In the second part of this paper we give weak sufficient conditions for ensuring
that P2 admits a solution. These conditions are based on a modified Foster–Lyapunov
criterion for the case in which the kernel G is either recurrent or weak Feller and, we
believe, significantly improve previous results presented in [2, 4] for P1 for a PDMP
{xt}. Indeed, an interesting property of the PDMPs is that under weak conditions
(see Proposition 4.9) they generate weak Feller kernels G and U although the PDMPs
themselves are generally not weak Feller Markov processes. Our results are related to
those in Meyn and Tweedie [15, 13], Lin [10], and Foguel [7]. Moreover, it is shown
that an invariant probability measure always exists for the PDMP {xt} when G is
weak Feller and the union of the state space of {xt} and the boundary Γ+ (for its
definition, see section 2) is a compact set. To illustrate the usefulness of our new
conditions, the capacity expansion problem (see [4]) is revisited in a more general
setup. A sufficient condition for the existence of an invariant measure is obtained,
generalizing previous results in the literature.

The paper is organized in the following way. In section 2 we describe the model
and introduce the notation. The equivalence between P1 for PDMP and P2 is es-
tablished in section 3. In section 4 we derive sufficient conditions for checking P2.
Illustrative examples are given in section 5. We conclude the paper in section 6 with
some final remarks.

2. Model of piecewise deterministic Markov processes. Let E0 be an open
subset of Rn and ∂E0 its boundary. As originally defined by Davis [3, 4], a PDMP
is determined by its local characteristics (X, λ,Q), where X, λ, andQ are defined as
follows.

(a) X is a locally Lipschitz continuous vector field in E0 with flow Φ(x, t).
Now define

Γ+ .
= {x ∈ ∂E0 : x = Φ(y, t), y ∈ E0, t > 0}

and

Γ− .
= {x ∈ ∂E0 : x = Φ(y,−t), y ∈ E0, t > 0}.

Γ+ ⊂ ∂E0 represents the boundary points at which the flow exits from E0. Γ− ⊂ ∂E0

is characterized by the fact that the flow starting from a point in Γ− will not leave
E0 immediately. Therefore it is natural to define the state space for the PDMP by

E
.
= E0 ∪ Γ− − Γ− ∩ Γ+.

E will denote the Borel σ-field of E.
Let us denote by t∗(x)

.
= inf{t > 0 : Φ(x, t) ∈ ∂E0} ∀ x in E. If this set is empty,

then t∗(x) =∞.
Assume that the explosion time of the flow Φ is equal to infinity when t∗(x) =∞.
(b) λ : E → R+ is the jump rate. It is assumed that this function is measurable

and (∀x ∈ E) (∃ε > 0) such that
∫ ε

0
λ(Φ(x, s))ds exists.
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(c) Q : E ∪ Γ+ × E → [0, 1] is the transition measure satisfying the following
property: (∀x ∈ E ∪ Γ+) Q(x,E − {x}) = 1.

It is shown in [3, 4] that there exists a probability space (Ω,Ft,F , Px) on which
the motion of the PDMP {xt} is defined as follows. Starting from x, the first jump
time T1 of the process is given by

Px(T1 > t)
.
= I{t<t∗(x)} exp

{
−
∫ t

0

λ(Φ(x, s))ds

}
.

Then

(∀t ∈ [0, T1)) xt = Φ(x, t) and xT1
= Z1,

where Z1 is the random variable having as distributionQ(Φ(x, T1), .). Now the process
follows the path Φ(xT1

, t − T1) up to another jump time T2, where it jumps to the
state xT2 = Z2. The interjump time T2 − T1 and the postjump random variable Z2

are defined similarly.
It will be assumed that (∀(t, x) ∈ R+ × E), Ex[

∑
k I{t≥Tk}] <∞.

For a more general definition of PDMP the reader is referred to Davis [4, section
29]. However, our results are still valid in this setting.

Notation. Let us denote by µLeb the Lebesgue measure on R and R+ = R+∪{∞}.
Let B(E) be the space of real-valued bounded Borel-measurable functions on E.
Cb(E) (Cc(E), respectively) denotes the space of bounded real-valued continuous

functions on E (with compact support, respectively).
∀A ∈ E , Ac

.
= E −A and A is the closure of A.

Let ρ be a metric on E; then ∀ x ∈ E and A ∈ E , d(x,A)
.
= inf y ∈ Aρ(x, y).

Let X be a metric space and B(X) its Borel σ-field.
M(X) (Mb(X), respectively) denotes the set of all σ-finite (finite, respectively)

measures defined on (X,B(X)).
Finally, we recall the following classical notations: let K1 and K2 be two kernels

mapping (E, E) into R+. Then

(∀µ ∈M(E)), (∀A ∈ E), µK1(A)
.
=

∫
E

K1(x,A)µ(dx),

(∀f ∈ B(E)), (∀x ∈ E), K1f(x)
.
=

∫
E

f(y)K1(x, dy),

(∀x ∈ E), (∀A ∈ E), K1K2(x,A)
.
=

∫
E

K2(y,A)K1(x, dy),

provided that the right members exist (see [17, Chapter 1, Definitions 1.2 and 1.5]).

3. Invariant probability measure. The main goal of this section is to show
that P1 for a PDMP is equivalent to P2 (see Theorem 3.5). This new result represents
a significant improvement with respect to those of Costa [2] and Davis [4]. Indeed,
unlike [2, 4] this equivalence is established without any additional conditions. The
key idea is to use a connection between the resolvent kernel U (see (6)) and the kernel
G (see (4)) which comes from Lemma 3.2.

Moreover, in order to provide a complete comparison with the results obtained
by Costa and Davis (see, for example, Proposition (34.36) in [4]), we derive trans-
formations which link the invariant probability measures for {xt} and the stochastic
kernel G (see Corollary 3.6).



STABILITY OF PIECEWISE-DETERMINISTIC PROCESSES 1487

For notational convenience, let us define for x ∈ E and t ∈ [0, t∗(x)[

Λ(x, t)
.
=

∫ t

0

λ(Φ(x, s))ds(1)

and the following kernels mapping (E, E) into [0, 1]:

L(x,A)
.
=

∫ t∗(x)

0

exp−{s+ Λ(x, s)}IA(Φ(x, s))ds,(2)

K(x,A)
.
=

∫ t∗(x)

0

λ(Φ(x, s)) exp−{s+ Λ(x, s)}Q(Φ(x, s), A)ds

+ exp−{t∗(x) + Λ(x, t∗(x))}Q(Φ(x, t∗(x)), A),(3)

G(x,A)
.
= K(x,A) + L(x,A),(4)

Ln(x,A)
.
=
n−1∑
i=0

KiL(x,A),(5)

U(x,A)
.
= Ex

∫ ∞
0

IA(xt) exp{−t}dt,(6)

S(x,A)
.
= L(x,E)IA(x),(7)

G(x,A)
.
=

∫ t∗(x)

0

λ(Φ(x, s)) exp{−Λ(x, s)}Q(Φ(x, s), A)ds

+ exp{−Λ(x, t∗(x))}Q(Φ(x, t∗(x)), A).(8)

In the terminology used by Nummelin [16], the kernels G, U , G are stochastic kernels
because ∀ x ∈ E, G(x,E) = U(x,E) = G(x,E) = 1. G is the stochastic kernel for
the Markov chain {Z1, Z2, . . .}. U is the resolvent kernel associated with {xt}.

Remark 3.1. Note that ∀ x ∈ E, 0 < L(x,E) < 1 and that G is a stochastic
kernel. Indeed, ∀ x ∈ E,

L(x,E) +K(x,E) = 1.(9)

Therefore, we can define the kernel R : E × E −→ R+ such that

R(x,A)
.
=

IA(x)

L(x,E)
·(10)

The following result establishes a connection between the kernels K, L and the resol-
vent U .

Lemma 3.2.

∀x ∈ E, ∀A ∈ E , KU(x,A) + L(x,A) = U(x,A).(11)

Proof. From section 32.2 and Proposition 32.34 in Davis [4] and the definition of
Ln (see (5)), it is easy to obtain

∀x ∈ E, ∀A ∈ E , lim
n→∞ ↑ Ln(x,A) = U(x,A)(12)

and

∀x ∈ E, ∀A ∈ E , KLn(x,A) + L(x,A) = Ln+1(x,A).
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Now using the monotone convergence theorem, the result follows.

Remark 3.3. Let us introduce the kernel J : E × E −→ R+ such that

J(x,A)
.
=

∞∑
j=0

∫
A

L(y,E)Kj(x, dy)·(13)

Using (12) and the definition of J we have that ∀ x ∈ E, J(x,E) = U(x,E) = 1.
Therefore J is a stochastic kernel.

Before presenting the first main result of this section, let us derive the following
technical lemma.

Lemma 3.4. Let α be a σ-finite measure defined on (E, E). Then assertions (i)
and (ii) are equivalent.

(i) α is such that α = cνR, where ν is a probability measure and c a constant in
(0,∞).

(ii) α is such that αS(E) <∞.

Proof. (i) ⇒ (ii). The proof is obvious.

(ii)⇒ (i). Define the probability measure ν
.
= αS

αS(E) . Then clearly α = cνR with

c = αS(E).

The next theorem establishes the connection between P1 and P2.

Theorem 3.5. The following assertions are equivalent.

(i) There exists an invariant probability measure µ for {xt}.
(ii) There exists a probability measure ν such that the positive σ-finite measure

π = νR is invariant for the stochastic kernel G.

(iii) There exists a positive σ-finite measure π invariant for the stochastic kernel
G such that πS(E) <∞.

Proof. (ii) ⇒ (i). Assume that there exists a probability measure ν such that
π

.
= νR is invariant for G and define the measure µ

.
= πL. Note that ∀ A ∈ E ,

µ(A) =
∫
E
L(y,A)
L(y,E)ν(dy). Therefore µ is a probability measure. Since π is a positive

σ-finite measure, there exists a partition {Ei} of E such that π(Ei) < ∞. Recalling
that L = G−K (see (4)) and π = πG we have that ∀ A ∈ E ,

µU(A) =
∑
i

∫
Ei

U(x,A)πL(dx)

=
∑
i

∫
Ei

U(x,A)π(I −K)(dx).

Now, using Lemma 3.2, it follows that

µU(A) =
∑
i

∫
Ei

{U(x,A)−KU(x,A)}π(dx)

=
∑
i

∫
Ei

L(x,A)π(dx)

= µ(A).

Therefore from Lemma 1 in [1], µ is an invariant measure for {xt}.
(i) ⇒ (ii). Let µ be an invariant probability measure for the process {xt}. Then

µU = µ (see [1]). Let us define the measure ν by ν
.
= µJ with J defined in (13). The
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measure so defined is a probability since µJ(E) = µU(E) = µ(E) = 1 (see Remark
3.3). Let us introduce π

.
= νR (see (10)). Then, from (10) and (13) we obtain

π =

∞∑
j=0

µKj .(14)

From (14) and (12) and Lemma 3.2, it is easy to obtain that πL = µ and πK+µ = π.
Consequently πG = π(K + L) = πK + µ = π.
(ii) ⇔ (iii). Using Lemma 3.4 the equivalence is straightforward.
This completes the proof.
As mentioned in the introduction, the condition on the σ-finite invariant measure

π for the Markov chain associated with G can be written in terms of the boundedness
of πS(E) ((iii) in the theorem) or in terms of the Radon–Nikodým derivative L(x,E)−1

of π with respect to a probability measure ν ((ii) in the theorem).
The next result gives explicitly the links between ν and µ using an approach that

differs from Costa [2] and Davis [4]. In particular, we avoid introducing the so-called
boundary measure associated with the invariant probability measure of {xt} (see,
for example, [4, pp. 116–118]). Our approach directly uses the kernels J , L, and
R. Moreover, it is shown that these mappings are one to one, providing a complete
comparison with results known in the literature (see, for example, Proposition (34.36)
in Davis, [4]).

Corollary 3.6. (i). If µ is an invariant probability measure for {xt}, then the
σ-finite measure µJR is invariant for G and µJRL = µ.

(ii). If ν is a probability measure such that νR is invariant for G, then the
probability measure νRL is invariant for {xt} and νRLJ = ν.

Proof. (i) and the first part of (ii) are easy consequences of Theorem 3.5.
In order to show that if ν is a probability measure such that νR is invariant for

G, then νRLJ = ν, let us first note that

∀x ∈ E, ∀A ∈ E , J(x,A)−KJ(x,A) = IA(x)L(x,E).(15)

Since νR is a positive σ-finite measure, there exists a partition {Ei} of E such that
νR(Ei) <∞. Moreover, using the fact that νRK + νRL = νR and (15), we have

νRLJ(A) =
∑
i

∫
Ei

J(x,A)νRL(dx)

=
∑
i

∫
Ei

IA(x)L(x,E)ν(dx)

= ν(A).

This completes the proof.
The following result shows that if λ is bounded, then P1 is equivalent to the

existence of a finite invariant measure for G. In what follows, we set (see [4, sections
24 and 26])

Nt
.
=

∞∑
i=1

I{t≥Ti},

p∗(t) .
=
∞∑
i=1

I{t≥Ti}I{xTi−∈Γ+}.



1490 FRANÇOIS DUFOUR AND OSWALDO L. V. COSTA

Note that {Nt} and {p∗(t)} are counting processes, Nt being the number of jumps of
the process {xt} in the time interval [0, t] and p∗(t) counting the number of jumps
from the boundary up to time t.

Proposition 3.7. Let µ be an invariant probability measure for the process {xt}
with Eµ[Nt] < ∞ ∀ t ∈ R, and define π

.
= µJR. Then the following assertions are

equivalent:
(i) π(E) <∞.
(ii)

∫
E
λ(x)µ(dx) <∞.

Proof. By repeating the same arguments as in Proposition 34.13 and Theorem
34.15 in Davis [4, pp. 116–117] and using the fact that Eµ[Nt] < ∞ ∀ t ∈ R, we
obtain that

Eµ

[ ∫ t

0

exp{−s}dp∗(s)
]

= (1− exp{−t})σ(Γ+),

where σ is a finite measure defined on (Γ+,B(Γ+)) by Theorem 34.15 in Davis (see
[4, p. 117]).

From the monotone convergence theorem, it follows that

Eµ

[∫ ∞
0

exp{−s}dp∗(s)
]

= σ(Γ+).(16)

Consequently, we can define:

Ψn
.
= Eµ

[∫ ∞
0

exp{−s}λn(xs)ds+

∫ ∞
0

exp{−s}dp∗(s)
]
,(17)

where

λn(x)
.
=

{
λ(x) if λ(x) < n,
n otherwise.

Using Fubini’s theorem and the fact that µ is an invariant probability measure for
{xt}, we get that

Eµ

[∫ t

0

exp{−s}λn(xs)ds

]
= (1− exp{−t})

∫
E

λn(x)µ(dx)

and again from the monotone convergence theorem,

Eµ

[∫ ∞
0

exp{−s}λn(xs)ds

]
=

∫
E

λn(x)µ(dx).(18)

Therefore, combining (16), (17), and (18), we have

Ψn =

∫
E

λn(x)µ(dx) + σ(Γ+).

Now using the monotone convergence theorem, we obtain

lim
n→∞Ψn =

∫
E

λ(x)µ(dx) + σ(Γ+).(19)
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On the other hand, it is easy to show from section 32.2 and Proposition 32.34 of
Davis [4] that Ψn can be written as

Ψn = µ

∞∑
i=0

Kiφn,(20)

where

φn =

∫ t∗(x)

0

λn(Φ(x, s)) exp−{s+ Λ(x, s)}ds+ exp−{t∗(x) + Λ(x, t∗(x))}.

Recalling the definition of the stochastic kernel K (see (3)) and from the monotone
convergence theorem, it follows that

lim
n→∞ ↑ φn = K(x,E).

Therefore, using (20), we have

lim
n→∞Ψn = µ

∞∑
i=1

Ki(E).

Now, with (19) and the previous one, it follows that

µ
∞∑
i=0

Ki(E) = 1 + µ
∞∑
i=1

Ki(E) = 1 +

∫
E

λ(x)µ(dx) + σ(Γ+).(21)

However, recalling the definitions of the stochastic kernels J and R (see (13) and
(10)), we have

µJR(E) = µ
∞∑
i=0

Ki(E).

Thus, combining the previous equation with (21), we obtain the result.
Remark 3.8. It is clear that if λ(.) is bounded, then π(E) < ∞. Therefore, if

λ(.) is bounded, there exists an invariant probability measure for {xt} if and only if
there exists an invariant probability measure for the stochastic kernel G. Assuming,
moreover, that G is weak Feller, necessary and sufficient conditions can be given to
ensure that {xt} has an invariant measure (see, for example, [10, 7, 9, 8]). However,
these conditions are difficult to check in practice since they need the limit of the sum
of iterations of G.

4. Sufficient conditions. The aim of this section is to give simple sufficient
conditions to check if P2 (and therefore P1) has a solution. Such test criteria are
based on Foster–Lyapunov inequalities. It has been proven in Meyn and Tweedie [14]
that this test function implies the existence of an invariant probability measure for
a class of Markov chain. In our case the problem is different since we have to find
a σ-finite measure π for G that satisfies the condition πS(E) < ∞. Following the
line of Meyn and Tweedie [14], Lin [10], and Foguel [7], we are able to show that
modified drift criteria ensure such a property for the case in which the Markov chain
generated by G is either recurrent or weak Feller. Moreover, it is shown that an
invariant probability measure always exists for the PDMP {xt} when G is weak Feller
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and the union of the state space of {xt} and the boundary Γ+ (for its definition, see
section 2) is a compact set.

First we recall some classical definitions related to Markov chains. For a complete
exposition on the subject, the reader is referred to the book by Meyn and Tweedie
[14].

Notation. We shall denote by {Yn} the Markov chain generated by the stochastic
kernel G.

Definition 4.1. {Yn} is ϕ-irreducible if there exists a measure ϕ on (E, E)
such that, whenever ϕ(A) > 0, it follows that Px(τA < ∞) > 0 ∀ x ∈ E, where
τA = inf{n ≥ 1 : Yn ∈ A}.

If {Yn} is ϕ-irreducible, then ψ =
∑∞
n=0

(
1
2

)n+1
ϕGn is a maximal irreducibility

measure (see [14, Proposition 4.2.2, p. 88]). In the following, we will use ψ to denote
a maximal irreducibility measure for {Yn}. Associated with a maximal irreducibility
measure for {Yn}, we define

E+ .
= {A ∈ E : ψ(A) > 0}.

Definition 4.2. {Yn} is called recurrent if it is ψ-irreducible and

∞∑
n=1

Gn(x,A) =∞ ∀ x ∈ E and A ∈ E+

.
Definition 4.3. A set C ∈ E is called νa-petite if there exists a nontrivial

measure νa on (E, E) such that

(∀x ∈ C), (∀B ∈ E)
∞∑
n=1

a(n)Gn(x,B) ≥ νa(B),

where the positive sequence {a(n)}, satisfies
∑∞
n=0 a(n) = 1.

Following similar ideas as in Proposition 14.1.1 in the book by Meyn and Tweedie
[14, p. 333], we can now establish a sufficient condition for the existence and unique-
ness of an invariant probability measure for the PDMP {xt} based on the associated
Markov chain {Yn}. Note, however, that, unlike in Proposition 14.1.1 in [14], it can-
not be claimed that the invariant measure for the Markov chain {Yn} is finite, since
L(Yn, E) < 1.

Theorem 4.4. Suppose that {Yn} is recurrent and for a petite set C ∈ E+ we
have

sup
x∈C

Ex

[
τC∑
n=1

L(Yn, E)

]
<∞,(22)

where τC = inf{n ≥ 1 : Yn ∈ C}.
Then there exists a unique invariant probability measure for the PDMP {xt}.
Proof. Since {Yn} is recurrent it admits a unique (up to constant multiples) σ-

finite invariant measure π. From Proposition 10.1.2 in [14, p. 232], it follows that
π(C) <∞. Although here the function L(., E) < 1, the rest of the proof is the same
as in Proposition 14.1.1 in [14, p. 232] and we obtain the result.

The condition given by (22) can be replaced by the following one, which may be
easier to check, and is inspired from condition (V 3) of Meyn and Tweedie [14, p. 337].
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Condition (D). For some set C ∈ E , some constant b < ∞, and an extended
real-valued function V : E → [0,∞], we have

(∀x ∈ E) GV (x)− V (x) ≤ −L(x,E) + bIC(x).

This condition is of the same form as the drift or the Foster–Lyapunov criterion which
is often used in the literature (see [13, 14] and references therein). However, we want
to point out the fact that condition (D) is weaker than conditions (V 2), (V 3) of
the book by Meyn and Tweedie [14] due to the fact that L(., E) < 1. Therefore,
direct application of their results are not straightforward. Note in particular that,
unlike Theorem 11.3.4 in [14, p. 265], condition (D) does not guarantee that Ex[τC ] ≤
V (x) + bIC(x), since L(Yn, E) < 1 (see (23) in the proof of Corollary 4.5). The
next corollary gives the first way to ensure that there exists an invariant probability
measure for {xt}. It will be used in the next section to show that the pathologies
found in the approach of Costa [2] and Davis (see section 34 in [4]) do not exist with
our method.

Corollary 4.5. Suppose that {Yn} is recurrent and that condition (D) is sat-
isfied for a function V bounded in a petite set C ∈ E+. Then there exists a unique
invariant probability measure for the PDMP {xt}.

Proof. Applying Proposition 11.3.3 in [14, p. 264] with Zk = V (Yk), εk(x) =
L(x,E), and c = 1, we obtain that

Ex

[
τC−1∑
n=1

L(Yn, E)

]
≤
{
L(x,E) +GV (x), x ∈ C,
V (x) otherwise.

Recall that ∀ x ∈ C, we have GV (x)− V (x) ≤ −L(x,E) + bIC(x).

Therefore,

(∀x ∈ E) Ex

[
τC∑
n=1

L(Yn, E)

]
≤ Ex

[
τC−1∑
n=0

L(Yn, E)

]
+ 1

≤ V (x) + 1 + bIC(x).(23)

Then, supx∈C Ex[
∑τC
n=1 L(Yn, E)] < ∞ and the result follows by using Theorem

4.4.

In the case where the stochastic kernel G is weak Feller, the next result gives a
sufficient condition to check if {xt} has an invariant measure. Before presenting the
result, we need the following definition of norm-like functions (see [14, p. 214]).

Definition 4.6. A function V is a norm-like function if it is a positive real-valued
function such that limn→∞ infx/∈Kn V (x) =∞, where Kn is an increasing sequence of
compact sets satisfying limn→∞ ↑ Kn = E.

Theorem 4.7. Suppose that the Markov chain {Yn} is weak Feller, L(., E) is
a continuous function, and condition (D) is satisfied with a compact set C and a
positive norm-like function V which is finite at least at one x ∈ E. Then an invariant
probability measure exists for the PDMP {xt}.

Proof. If there exists x ∈ E such that Px(τC < ∞) < 1, then following the last
part of the derivation of Theorem 12.3.3 in [14, p. 296] and using the fact that V
is a norm-like function, there exists an invariant probability measure π for G. So,
πS(E) <∞, and using Theorem 3.5 the result follows.
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Now if Px(τC <∞) = 1 ∀ x ∈ E, then using Proposition 9.1.1 in [14, p. 202], we
have that

(∀x ∈ E)

∞∑
n=0

Gn(x,C) =∞.

Let us define the function g(x) ∈ Cc(E) by

g(x)
.
=

d(x,Oc1)

d(x,Oc1) + d(x,O2)
,

where O1, O2 are open sets with compact closure for which C ⊂ O2 ⊂ O2 ⊂ O1 and
d(., .) is as defined in section 2. Then, we have

(∀x ∈ E)

∞∑
n=0

Gng(x) =∞,

since IC(x) ≤ g(x).
Therefore, applying Theorem 5.1 in [10], there exists an invariant σ-finite measure

π for the stochastic kernel G defined by

(∀f ∈ Cc(E))

∫
E

f(x)π(dx) = bLIM
N

∑N
n=0 ηG

nf∑N
n=0 ηG

ng
,

where η is a positive finite measure on (E, E) and bLIM denotes the Banach limit
[18].

Using the hypothesis, we have

L(x,E) +GV (x) ≤ V (x) + bg(x).

Consequently, ∑N
n=0 ηG

nL(E)∑N
n=0 ηG

ng
≤ b+

V (x)∑N
n=0 ηG

ng
.(24)

By hypothesis, L(., E) ∈ Cb(E), so there exists a sequence {fi} in Cc(E) such that
for all x ∈ E, limn→∞ ↑ fi(x) = L(x,E). Therefore, with (24) we obtain

(∀i ∈ N)

∫
E

fi(y)π(dy) ≤ b.

Now using the monotone convergence theorem, it follows that
∫
E
L(y,E)π(dy) ≤ b.

So πS(E) <∞ and with Theorem 3.5 the result follows.
Remark 4.8. In the proof of Theorem 4.7, we need only that V is a norm-

like function for the case in which Px(τC < ∞) < 1. Therefore, if the condition
Px(τC < ∞) = 1 ∀ x ∈ E can be directly checked, then the norm-like function
assumption can be removed from theorem 4.7.

Let us introduce the following weak assumptions that will be used in Proposition
4.9 to show that the chain {Yn} is weak Feller.

(A1) The function t∗ : E → (0,∞] is continuous.
(A2) For any x in E, λ(Φ(y, t))I{t<t∗(y)} → λ(Φ(x, t))I{t<t∗(x)} when y → x,

µLeb a.s. on (0, t∗(x)).
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(A3) For any x in E, there exists a neighborhood N (x) of x and a function
Bx(.) : R+ → R+ such that ∀ y ∈ N (x), I{t<t∗(y)}λ(Φ(y, t)) ≤ Bx(t), µLeb a.s. on

(0, t∗(x)). If Λ(x, t∗(x)) < ∞, then
∫ t∗(x)

0
Bx(s)ds < ∞, otherwise

∫ t
0
Bx(s)ds <

∞ ∀ t ∈ (0, t∗(x)).
(A4) For any x in E, there exists a neighborhood N (x) of x and a constant

Mx > 0 such that ∀ y ∈ N (x), λ(Φ(y, t)) exp{−Λ(y, t)} < Mx.
(A5) For any open sets A in E and x in E,

Q(Φ(y, t), A)I{t<t∗(y)} → Q(Φ(x, t), A)I{t<t∗(x)}

when y → x, µLeb a.s. on (0, t∗(x)).
(A6) For any open sets A in E and x in E, Q(Φ(y, t∗(y)), A)→ Q(Φ(x, t∗(x)), A),

when y → x.
Proposition 4.9. (i) Suppose (A1)–(A6). Then the stochastic kernel G and U

are weak Feller and L(., E) ∈ Cb(E).
Proof. Let x and t ∈ (0, t∗(x)) be arbitrary fixed. Using assumptions (A2), (A3),

and the bounded convergence theorem, we obtain that∫ t

0

λ(Φ(y, s))I{s<t∗(y)}ds→
∫ t

0

λ(Φ(x, s))I{s<t∗(x)}ds(25)

when y → x. With (A5) it follows that for all open sets A in E ,

I{t<t∗(y)}Q(Φ(y, t), A)λ(Φ(y, t)) exp−{t+ Λ(y, t)}
tends to

I{t<t∗(x)}Q(Φ(x, t), A)λ(Φ(x, t)) exp−{t+ Λ(x, t)}
when y → x, µLeb a.s. on (0, t∗(x)). Combining (A4) and the bounded convergence
theorem, we have that∫ t∗(y)

0

Q(Φ(y, t), A)λ(Φ(y, t)) exp−{t+ Λ(y, t)}dt

tends to ∫ t∗(x)

0

Q(Φ(x, t), A)λ(Φ(x, t)) exp−{t+ Λ(x, t)}dt

when y → x.
If Λ(x, t∗(x)) <∞, it is easy to deduce from (A3) that

Λ(y, t∗(y))→ Λ(x, t∗(x))

when y → x.
Now, if Λ(x, t∗(x)) =∞, and t∗(x) <∞ then

(∀ε > 0), (∃η > 0) such that (∀t ∈ [t∗(x)− η, t∗(x)]) Λ(x, t) >
3ε

2
.(26)

Using (A1), there exists a neighborhood N1(x) of x such that

(∀y ∈ N1(x)) t∗(y) ∈
[
t∗(x)− η

2
, t∗(x) +

η

2

]
.
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Therefore t∗(x)− η < t∗(y).

So from (25), it follows that there exists a neighborhood N2(x) of x such that

(∀y ∈ N2(x)) |Λ(x, t∗(x)− η)− Λ(y, t∗(x)− η)| < ε

2
.(27)

Combining (26) and (27)

(∀ε > 0), (∀y ∈ N1(x) ∩N2(x)), Λ(y, t∗(y)) > ε,

since ∀ x ∈ E, Λ(x, .) is increasing on [0, t∗(x)].
The same result can be obtained for the case where Λ(x, t∗(x)) =∞ and t∗(x) =

∞.
In conclusion,

Λ(y, t∗(y))→ Λ(x, t∗(x))

when y → x.
Using (A6), we obtain that for any open sets A in E and x in E, K(y,A) →

K(x,A) when y → x. Similarly, it can be shown that for any f ∈ Cb(E), Lf(y) →
Lf(x) when y → x.

Consequently, it is straightforward with Proposition 6.1.1 in [14] to conclude that
the stochastic kernel G is weak Feller.

Now using (12) and the result (12.7.7) in [6], it follows that for any positive
function f in Cb(E), Uf is a lower semicontinuous function. Since U is a stochastic
kernel, Uf is continuous. Indeed, let M1 > 0 be such that f(x) < M1. Applying the
previous result it follows that U(M1 − f) is lower semicontinuous. So Uf is upper
semicontinuous and U is weak Feller.

Therefore, the combination of Theorem 4.7 and Proposition 4.9 provides a second
easy way of determining if there exists an invariant probability measure for {xt}, as
it will be shown in Example 1 of the next section.

Remark 4.10. An interesting property of the PDMPs is that under the weak
conditions of Proposition 4.9 they generate weak Feller kernels G and U although the
PDMPs themselves are generally not weak Feller Markov processes.

Indeed, it was shown in [4, Example (27.5)] that the PDMP defined by E = [0, 1[,
Φ(x, t) = x + t, λ(x) = 0, and Q(1, A) = IA(0) is not a weak Feller process but it is
easy to see that G and U are weak Feller kernels.

The results of this section have been developed considering the stochastic kernel G
defined on (E, E). It may be convenient in some applications to consider the extended
state space E ∪ Γ+ instead of E, with the stochastic kernel G extended to include
the points in Γ+. Let us define the kernel H on (E,B(E ∪ Γ+)) (corresponding to an
extension of G) by (∀x ∈ E ∪ Γ+), (∀A ∈ B(E ∪ Γ+)):

H(x,A)
.
= IE(x)G(x,A ∩ E) + IΓ+(x)Q(x,A ∩ E).(28)

It is easy to see that H is a stochastic kernel on (E,B(E ∪Γ+)). Moreover, it has the
following important properties:

(i) if π is a σ-finite invariant measure for H, then π(Γ+) = 0.
(ii) a σ-finite measure is invariant for G if and only if it is invariant for H.
Therefore, all the results of the previous sections remain true if the kernel G is

replaced by H.
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It will be shown in the next section (see Example 1), that it may be useful to use
H instead of G. Another possible illustration of the usefulness for introducing H is
the following result.

Corollary 4.11. Suppose (A1)–(A6) and that E ∪ Γ+ is compact. Then there
exists an invariant probability measure for the PDMP {xt}.

Proof. As in Proposition 4.9, it can be shown that H is a weak Feller kernel.
Now using the fact that E ∪ Γ+ is compact and Theorem 3.1 in [9], it follows that H
has an invariant probability measure. Therefore, using the above properties of H and
Theorem 3.5, we have the result.

5. Examples. In this section we apply the results of sections 3 and 4 to three
examples to emphasize the relevance of our approach. In the first one, we generalize
Proposition (34.46) in [4] and Proposition 8 in [2]. The last two examples are taken
from Davis [4]. They show that the equivalence between P1 and P2 with G replacing
G may fail if some conditions are not satisfied. Due to its generality we are able to
show that this kind of “counterexample” does not exist with our approach.

Example 1. This example is based on the capacity expansion model (see [2,
section 7] and [4, Example (34.45)]. Capacity expansions are general processes of
adding facilities to meet a rising demand. For a complete description of these models,
the reader is referred to [5]. The demand for some utility is modeled as a random
point process, i.e., it increases by one unit at random times. This demand is met
by consecutive construction of expansion projects. Each project meets Ki units of
demand when completed, where i corresponds the present level of excess demand. We
assume that if there is an excess demand of at least p units, then the construction of
a new project is started at a rate ri per unit of time and it is completed after a lead
time of Li units of time. If the excess demand is less than p, then no construction
takes place. New demand occurs with rate λi(u) where u is the time spent by the
current project. This problem can be modelled as a PDMP {xt} with state space

E
.
= {{p−Kp, . . . , p− 1} × {0}} ∪ ∞∪

n=p
{n, [0,Ln[} ,(29)

where p and Ki are integers, Li are strictly positive real numbers, and Np denotes the
set of integers greater than or equal to p. The local characteristics are given by

λ((i, u))
.
= λi(u),(30)

Φ(t, (i, u)) =

{
(i, 0) for i ∈ {p−Kp, . . . , p− 1},
(i, u+ rit) for i ≥ p,(31)

Q((i, u), {(i+ 1, u)}) = 1 and Q((i,Li), {(i−Ki, 0)}) = 1.(32)

Unlike [2, 4], we allow here that the rate ri, Ki, Li can vary according to the excess
demand i and that λi(u) can vary according to the excess demand and to the time
spent to complete the projects.

Using (30)–(32), it is easy to show that for a bounded real-valued function W (.)
defined on E ∪ Γ+ we have for i ≥ p and u ∈ [0,Li]

HW ((i, u)) =

∫ Li−u
ri

0

exp−{s+ Λi(u, s)}λi(u+ ris)W ((1 + i, u+ ris))ds

+

∫ Li−u
ri

0

exp−{s+ Λi(u, s)}W ((i, u+ ris))ds

+ exp−
{Li − u

ri
+ Λi

(
u,
Li − u
ri

)}
W ((i−Ki, 0)),(33)
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where Λi(u, s) =
∫ s

0
λi(u+ riv)dv.

Let us introduce the following assumptions:
(H1) There exists r > 0 such that ∀ i, ri ≥ r.
(H2) For i ≥ p, i−Ki ≥ p−Kp > 0 and limi→∞ i−Ki =∞.

(H3) There exists an integer i0 such that ∀ i ≥ i0, Ki
Li ≤

Ki+1

Li+1
.

(H4) For i ≥ p, λi(u) is a continuous real-valued function on [0,Li].
(H5) For i ∈ {p−Kp, . . . , p− 1}, λi > 0.
(H6) lim supi→∞

Li
Kiri

maxu∈[0,Li] λi(u) < 1.
We have the following result.
Proposition 5.1. Assume (H1)–(H6). Then there exists a unique invariant

probability measure for the PDMP {xt}.
Proof. Let us introduce the real-valued function defined on E ∪ Γ+ by

V ((i, u)) = i− Ki

Li u.

With (H2), it follows that the function V is positive norm-like function. Moreover,
using (H1), (H3), and (H6), we have that there exists ε > 0 and k0 ≥ max{p, i0} such
that

(∀i ≥ k0), (ε+ λi(u))
Li
Kiri

≤ 1.(34)

Using (33) and the previous definition of V (.), we obtain that

HV (i, u)− V (i, u) ≤
∫ Li−u

ri

0

λi(u+ ris) exp−{s+ Λi(u, s)}ds

−riKi

Li

{∫ Li−u
ri

0

s(1 + λi(u+ ris)) exp−{s+ Λi(u, s)}ds

+
Li − u
ri

exp−
{Li − u

ri
+ Λi

(
u,
Li − u
ri

)}}
≤
∫ Li−u

ri

0

(
λi(u+ ris)− riKi

Li

)
exp−{s+ Λi(u, s)}ds.

Using (34) and the fact that for (i, u) in E ∪ Γ+,

L((i, u), E) =

∫ Li−u
ri

0

exp−{s+ Λi(u, s)}ds,

we obtain that there exists a constant b and a compact set

C
.
= {{p−Kp, . . . , p− 1} × {0}} ∪ k0∪

n=p
{n, [0,Ln]}

such that

HV (i, u)− V (i, u) ≤ −εL((i, u), E)) + bIC((i, u)).

It is easy to check that assumptions (A1)–(A6) are satisfied for this process. So,
L(., E) is a continuous function and the stochastic kernel H is weak Feller. Applying
Theorem 4.7, the result follows.
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Remark 5.2. The previous proposition generalizes the result of Costa [2] and
Davis [4] since here Ki, ri, Li, and λi (as functions of i) may be unbounded, or λi(u)
may depend on the time u spent to complete the project.

Example 2 (see [4, Example (34.28)]). This example was designed in [4] to point
out the fact that the PDMP {xt} may have an invariant probability measure but
the associated Markov chain {Z1, Z2, . . .} may not. Indeed, the approach developed
by Costa [2] suffers from the fact that if µ is an invariant probability measure for
{xt}, then the associated Markov chain {Z1, Z2, . . .} will have an invariant probability
measure if the following boundedness condition is satisfied:

∫
E
λ(x)µ(dx) < ∞. Let

us show, however, that in our case there exists a σ-finite invariant measure π for the
stochastic kernel G as claimed in Theorem 3.5 such that πS(E) <∞.

In this case E = Z and ∀ x ∈ E, Φ(x, t) = x, Q(x, {x+ 1}) = Q(x, {x− 1}) = 1
2

with λ(x) satisfying the condition

∞∑
x=−∞

1

λ(x)
<∞.

It was shown in [4] that {xt} has a unique invariant probability measure µ such that

(∀x ∈ Z) µ({x}) =
1

λ(x)

∞∑
y=−∞

1

λ(y)
.

Now it is easy to obtain that

(∀x ∈ Z) G(x, {y}) =


1
2

λ(x)
1+λ(x) for y = x+ 1 or y = x− 1,
1

1+λ(x) for y = x,

0 otherwise.

(35)

It is easy to verify that ∀ x ∈ Z the measure π defined by

(∀x ∈ Z) π({x}) =
1 + λ(x)

λ(x)

∞∑
y=−∞

1

λ(y)

is invariant for G.
Indeed,

∞∑
y=−∞

G(y, {x})π({y}) = G(x− 1, {x})π({x− 1}) +G(x, {x})π({x})

+G(x+ 1, {x})π({x+ 1})
= π({x}).

Moreover, using the fact that S(x,Z) = 1
1+λ(x) , it is easy to prove that πS(Z) < ∞.

Therefore as claimed by Theorem 3.5, if there exists a solution to P1, then there exists
one to P2.

For this example the fact that {xt} has an invariant probability measure had been
established by direct calculation (see [4]). We want now to illustrate the use of the
weak conditions of Theorem 4.5 for a suitable choice of function V (.) and petite set C
and recover this known result. Indeed, it is straightforward to prove that the Markov
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chain {Yn} associated with the kernel G is ϕ-irreducible for ϕ({x}) = 1
2|x| . Then ∀

x ∈ E we have ψ({x}) =
∑∞
n=0

(
1
2

)n+1
ϕGn({x}) > 0. Therefore E = E+.

Let us show that {x} is a petite set for all x ∈ E . Define

ν({y}) =


1

1+λ(x) for y = x,
1
2

λ(x)
1+λ(x) for y = x+ 1 or y = x− 1,

0 otherwise.

So, we have (∀B ∈ E), G(x,B) ≥ ν(B), and the claim follows.
Now let us prove that {Yn} is recurrent. Define the function V1(i) for i ∈ Z by

V1(i) = 2
i∑
l=0

∞∑
j=l

1

(j + 1)2
for i ≥ 0,

V1(i) = 2
−1∑
l=i

l∑
j=−∞

1

(|j|+ 1)2
for i ≤ −1.

Then, for i ≥ 1 and using (35), we have

GV1(i)− V1(i) =
λ(i)

1 + λ(i)

{
1

2
V1(i+ 1) +

1

2
V1(i− 1)− V1(i)

}
=

∞∑
j=i+1

1

(j + 1)2
−
∞∑
j=i

1

(j + 1)2
= − 1

(i+ 1)2
.

Similarly, for i ≤ −2, we obtain

GV1(i)− V1(i) = − 1

(|i|+ 1)2
.

Therefore, the norm-like function V1(.) satisfies condition (D) in [14, p. 190] for C =
{−1, 0}. Moreover, it is clear that this function is unbounded off petite sets and that
C = {−1, 0} is a petite since it is a finite set. Consequently, using Theorem 8.4.3 in
[14, p. 191], we obtain that {Yn} is recurrent.

In order to show that condition (D) is satisfied for the petite set C = {−1, 0}, let
us introduce the function V2(i) for i ∈ Z by

V2(i) = 2

i∑
l=0

∞∑
j=l

1

λ(j)
for i ≥ 0,

V2(i) = 2
−1∑
l=i

l∑
j=−∞

1

λ(j)
for i ≤ −1.

Using (35), we obtain

GV2(i)− V2(i) = − 1

1 + λ(i)

= −L(i,Z)

for i ∈ Z− C.
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Therefore, the function V2(.) satisfies condition (D) for a suitable constant b. From
Corollary 4.5, we conclude that there exists a unique invariant probability measure
for the PDMP {xt}.

Example 3 (see [4, Example (34.33)]). This example shows that the inverse
problem as described in the previous example may happen. Indeed, if there exists
an invariant probability measure (labeled π) for the stochastic kernel G, then an
invariant probability measure for the PDMP {xt} will exist if the following condition

is satisfied:
∫
E

∫ t∗(x)

0
exp{−Λ(x, s)}dsπ(dx) < ∞. Davis studied the following case:

E = N, Φ(x, t) = x, Q(x, {x+1}) = p, Q(x, {x−1}) = q, Q(0, {1}) = p, Q(0, {0}) = q
with q = 1− p, p < 1

2 . λ(x) is bounded. He has shown that there exists an invariant
probability measure for {xt} if and only if

∞∑
y=0

1

λ(y)

(
p

q

)y
<∞.(36)

Therefore, for the choice of λ(x) =
(
p
q

)x
, {xt} has no invariant probability measure

although the birth and death process generated by G has one. However, we show that
there exists an invariant probability measure for the stochastic kernel G if and only
if there exists one for {xt}, according to the fact that λ(.) is bounded and Remark
3.8. By direct calculations, it is easy to show that (∀x ∈ N), G(x, {y}) = 0 if

y /∈ {x − 1, x, x + 1}, and for x ≥ 1, G(x, {x}) = 1
1+λ(x) , G(x, {x + 1}) = pλ(x)

1+λ(x) ,

G(x, {x− 1}) = qλ(x)
1+λ(x) , and G(0, {0}) = 1+qλ(0)

1+λ(0) , G(0, {1}) = pλ(0)
1+λ(0) .

If π is an invariant measure for {xt}, it must satisfy the following equations:
(∀x ≥ 1),

π({x}) = G(x− 1, {x})π({x− 1}) +G(x, {x})π({x}) +G(x+ 1, {x})π({x+ 1})

and

π({0}) = G(0, {0})π({0}) +G(1, {0})π({1}).

Therefore,

(∀x ≥ 1), pc(x− 1) + qc(x+ 1)− c(x) = 0

and

−pc(0) + qc(1) = 0

with c(x)
.
= λ(x)

1+λ(x)π({x}). The unique positive solution of the previous equations is

(∀x ∈ N), c(x) = c(0)

(
p

q

)x
.

So, there exists an invariant probability measure for the stochastic kernel G if and
only if

∞∑
y=0

π({y}) <∞,
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that is, if and only if

∞∑
y=0

1

λ(y)

(
p

q

)y
<∞,

which is the same necessary and sufficient condition for the PDMP (see (36)) in
agreement with Theorem 3.5.

6. Conclusion. In this paper, we have shown that the existence of an invariant
probability measure for a general PDMP is equivalent to the existence of a σ-finite
invariant measure for the stochastic kernel G satisfying a boundedness condition or
equivalently a Radon–Nikodým derivative. Here we generalize existing results of the
literature [2, 4] since we do not require any additional assumptions to establish this
equivalence. Moreover, we give sufficient conditions to ensure the existence of such
a σ-finite measure satisfying the boundedness condition. They are based mainly on
a modified Foster–Lyapunov criterion. To emphasize the relevance of our results, we
studied three examples and in particular, we are able to generalize the results obtained
by Costa and Davis on the capacity expansion model.
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A BACKSTEPPING CONTROLLER FOR A NONLINEAR
PARTIAL DIFFERENTIAL EQUATION MODEL
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Abstract. We prove the existence and uniqueness of solutions in Sobolev spaces for the Moore–
Greitzer nonlinear partial differential equation (PDE) model for compression system instabilities
with mild conditions on the shape of the compressor characteristic and on the throttle control. To
achieve this, the model is reformulated as an evolution equation on a Banach space. Using this new
representation, we design a backstepping control of the model. Global stabilization of any axisym-
metric equilibrium to the right of the peak of the compressor characteristic is achieved. We also prove
that the dynamics can be restricted to the small neighborhood of the point on the left of the peak
of the compressor characteristic. Thus, it is possible to restrict the magnitude of stall to arbitrary
small values. In addition, finite-dimensional Galerkin projections of the partial differential equation
model are studied. It is shown that truncated control laws stabilize truncated models. Numerical
simulations of the model with and without control are presented.

Key words. control of partial differential equations, backstepping control of nonlinear differ-
ential equations, control of stall and surge in aeroengines, existence and uniqueness of solutions of
partial differential equations

AMS subject classifications. 93C10, 93B29, 93B18, 53C65
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1. Introduction. Surge and stall instabilities that occur in compression systems
of jet engines are the topic of much research effort these days for two reasons: effi-
ciency and safety. In particular, jet engines are currently forced to operate in nonopti-
mal conditions (relatively large mass flow) in order to stay clear of the aforementioned
instabilities. Surge is an oscillatory instability of the mean mass flow: upon the onset
of surge the air in the compression system of a jet engine starts oscillating back and
forth, thus severely impairing its performance. Stall is characterized by the appear-
ance of the so-called stall cells—regions of decreased pressure rise and reversed mass
flow—at isolated locations around the rim of the compressor. A simplified model of
these instabilities has been proposed by Moore and Greitzer [15], and it is this model
(sometimes called the full Moore–Greitzer model) that is the topic of the present pa-
per. The model consists of a linear PDE governing the behavior of disturbances in
the inlet region of the compression system, with nonlocal and nonlinear boundary
conditions which describe the coupling of disturbances with the mean flow behavior.
Since such a system is hard to analyze, most of the research has been directed toward
establishing properties of low-order Galerkin truncations (see [15], [11]). The simplest
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approximate model used for bifurcation analysis (see [12]) and control (see [3], [6], [8],
[9], [10], [16], [1]) called MG3 used only the first Fourier mode of the nonaxisymmetric
flow disturbance (stall variable).

The Moore–Greitzer model deals with a simple compression system in which the
air enters the compressor (with one or more rotor/stator stages), goes to a plenum, and
exits through a throttle. Stationary operating points for the compressor correspond
to a constant pressure rise across the compressor and a constant, circumferentially
uniform mass flow through the compressor. The pressure rise versus mass flow curve
representing the stationary operating points is called the compressor characteristic.
For a given throttle opening the mass flow through the throttle is determined by
the pressure drop across the throttle. The corresponding static relationship can be
represented by the curve called the throttle characteristic. In a stationary condition
the pressure rise across the compressor is balanced by the pressure drop across the
throttle and the mass flow through the compressor and through the throttle are equal.
Therefore, the intersection of the compressor characteristic and the throttle charac-
teristic determines the operating point of the compressor. The operating point can be
changed by adjusting the throttle opening.

The dynamic model for compression systems derived by Moore and Greitzer [15]
describes the evolution of the mass flow and the pressure in plenum in a nonstation-
ary condition. When the pressure rise across the compressor is not balanced by the
pressure drop across the throttle, the resulting pressure difference is proportional to
the rate of change of mass flow (i.e., mass acceleration). Similarly, if the mass flow
through the compressor is not balanced by the mass flow through the throttle, the
resulting difference is proportional to the rate of pressure rise in the plenum.

In terms of the dynamic model of a compression system, the stationary operating
points are represented by the axisymmetric equilibria, surge corresponds to a limit
cycle involving pressure rise and mass flow, while rotating stall is represented by a
travelling wave of nonaxisymmetric mass flow around the compressor annulus with a
constant low value of pressure rise.

From the point of view of efficiency, the desired operating points for the compres-
sor should have high value of pressure rise and low mass flow that is uniform around
the compressor annulus. However, the analysis of the dynamic model shows that the
corresponding equilibria of the dynamic model have small domains of attraction that
are shrinking as the pressure rise increases. A small disturbance is likely to force a
transition of the compression system state to either rotating stall or surge.

In the present paper we study stabilization of a given axisymmetric equilibrium
using the throttle opening as a control variable. The throttle opening is considered
to be some function of the state of the system chosen so that the corresponding new
dynamic model has a unique globally stable equilibrium at the prescribed location.
While bounded disturbances would force the state of the system to evolve in some
neighborhood of the desired equilibrium, after they disappear, the state would even-
tually return to an arbitrary small neighborhood of the equilibrium. Physically, the
control would be implemented by varying the throttle opening in the way that pre-
vents transition into rotating stall or surge.

After some manipulation, the dynamic model of compression system will be rep-
resented as an evolution equation in a Banach space. Stabilization of the desired
equilibrium will be achieved by constructing a Lyapunov function for this equilib-
rium. A special pure feedback structure of the evolution equation will allow us to use
backstepping for construction of a Lyapunov function. This technique has been intro-
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duced in [7] and applied to many systems described by nonlinear ordinary differential
equations (ODEs) with pure feedback structure, including a reduced-order model of
compressor dynamics, MG3, in [8] and [1].

Experimental observations of the nonaxisymmetric flow disturbance (stall) behav-
ior indicate that its shape is often far from sinusoidal [2]. Our investigations of the full
Moore–Greitzer model show that the resulting nonlinear behavior of the compressor is
well represented by the model [14]. It is then natural to ask what can be said about the
control of stall and surge using the PDE model. In this paper we show that a global
stabilization of the full Moore–Greitzer model is possible. We present a conceptually
simple but not necessarily optimal way of constructing a globally stabilizing controller
using backstepping control design [7]. To our knowledge, the present paper presents
the first successful attempt to globally stabilize a nonlinear PDE using backstepping.
We concentrate on a specific model here, but the methods that we develop can be
used more broadly. A variety of evolution equation problems with a pure feedback
structure can be treated in a way similar to that presented here. The backstepping
method presents a powerful tool even in the context of PDEs.

The paper is organized as follows. In section 2 we introduce some notation and
represent the full Moore–Greitzer model as an evolution equation in a Banach space,
using an operator that is an infinite-dimensional version of that studied by Mansoux,
Gyrling, Statiawan, and Paduaro in [11]. In section 3 we prove global existence and
uniqueness of solutions of this evolution equation by a simple application of the con-
traction mapping principle. We present some a priori estimates which, together with
the existence of a unique local solution, guarantee the existence of a unique global
solution. In section 4 we design a backstepping controller for the full Moore–Greitzer
model. We show that the peak and any axisymmetric equilibrium to the right of the
peak can be globally asymptotically stabilized.

In the case when the set-point parameter in the controller is such that there is
no stable axisymmetric equilibrium we can still guarantee that the dynamics of the
closed-loop system are confined to a ball, whose radius can be made arbitrarily small
by choosing sufficiently high gains in the controller.

In section 5 we prove that the truncated feedback controller globally stabilizes the
system of 2n + 2 ODEs consisting of the Galerkin projection of the PDE describing
the stall dynamics onto its first n-modes and the two ODEs describing the surge
dynamics. The results are valid for a general compressor characteristic.

2. Preliminaries.

2.1. The Moore–Greitzer model. The full Moore–Greitzer model is described
by the following equations (cf. [15])

lc
dΦ

dξ
= −Ψ(ξ) +

1

2π

∫ 2π

0

Ψc(Φ + φ′η|η=0)dθ,(1)

lc
dΨ

dξ
=

1

4B2
(Φ(ξ)−KT (Ψ, u)),(2)

where φ′ solves Laplace’s equation

φ′ηη + φ′θθ = 0(3)

for (η, θ) ∈ [0, 2π]× (−∞, 0). The boundary conditions are periodic in θ,

∂

∂ξ
(mφ′ +

1

a
φ′η)−

(
Ψc(Φ + φ′η)− 1

2π

∫ 2π

0

Ψc(Φ + φ′η)dθ − 1

2a
φ′θη

)
= 0(4)
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Fig. 1. C′3 compressor characteristic.

at η = 0. At η = −∞ we have

φ′ = 0.(5)

(Note that we try to keep our notation consistent with that of the original paper by
Moore and Greitzer [15]. In particular, following [15] we use ξ to denote a nondimen-
sional time variable and η to denote a nondimensional axial distance variable.) The
state variables of this model are Φ, the nondimensionalized annulus averaged mass
flow coefficient through the compressor; Ψ, the nondimensionalized annulus averaged
pressure rise coefficient across the compressor; and φ′, the disturbance velocity poten-
tial. (Note that the prime symbol in φ′ does not refer to differentiation.) The function
Ψc(φ) is called the compressor characteristic and is found empirically. It gives the
local pressure rise when the local mass flow is φ. For most compressors it has an S
shape as seen in Figure 1. The parameters a, m, lc, and B are determined by the
geometry of the compressor and the throttle parameter KT (Ψ, u) is the fraction of
the throttle opening. Since the throttle parameter can be varied, it will be used as the
control. We assume that we can modify KT (Ψ, u) at will by a choice of the control
function u.

We assume that the compressor characteristic Ψc(Φ) is a general S-shaped curve.
In particular, we assume that the following characteristics hold.

1. The characteristic Ψc(Φ) is twice continuously differentiable.
2. The characteristic has one peak (Φ0,Ψ0) and, to the left of the peak, one well.

The characteristic is strictly decreasing to the right of the peak and to the left of the
well; it is strictly increasing between the well and the peak.

3. The characteristic has exactly one inflection point (Φinfl,Ψinfl) between the
well and the peak. One has Ψ′′c (Φ) < 0 for Φ > Φinfl, and Ψ′′c (Φ) is bounded away
from zero on any interval [Γ,+∞) for Γ > Φinfl.

Figure 1 shows a typical compressor characteristic Ψc(φ).
Let us give here a physical interpretation for the shape of the compressor charac-

teristic. The desired possible stationary operating points of the compressor lie on the
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decreasing part of the characteristic to the right of the peak. The lower the value of
the axial component of the mass flow entering compressor, the more flow turning is
achieved by the blades. Consequently, more work is done on the air by the compressor
blades and the pressure rise is higher. However, there is a limit to the value of pressure
rise that can be achieved. When the axial component of the incoming air velocity is
small relative to the rotor velocity, so that the air is approaching the blade at a high
angle of attack, the flow separates on the suction side of a compressor blade; i.e., the
blade stalls. When a blade stalls, the pressure rise at that blade drops significantly.
The pressure rise of a stalled blade is represented by the part of the characteristic
between the well and the peak. The peak represents the stall inception point: the
maximum pressure rise is obtained by a blade that is just about to stall. When the
flow is reversed, the air at the suction side of the blade is attached again and the
pressure starts to rise. This is represented by the part of the characteristic to the left
of the well, called the back-flow part of the characteristic.

The physical mechanism for rotating stall and surge inception can now be ex-
plained. When a blade stalls, the pressure in the plenum is usually greater than the
local pressure rise produced by the compressor, so that the incoming air at the stalled
blade faces a negative pressure gradient and hence has a negative acceleration. The
mass flow at the stalled blade passage is locally reduced. There are several possible
scenarios of how the situation will evolve. The extreme ones are a transition to a surge
or rotating stall condition.

In surge the pressure in the plenum does not drop fast enough, and all the blades
stall at the same time. The flow eventually reverses, as the only mechanism to bal-
ance the high pressure in the plenum at the stalled blades is for the mass flow to
reach the back-flow part of the characteristic. This transition from the neighborhood
of the stall inception point to the back-flow characteristic is very fast. The pressure
in the plenum is now dropping, as the air escapes from the plenum both through the
throttle and through the compressor. The pressure in the plenum eventually drops
below the value of the pressure rise on the back-flow part of the characteristic and the
pressure gradient becomes positive. The air accelerates slowly until zero mass flow is
reached. The plenum pressure is now below the well value. The compressor starts to
deliver more pressure rise while the pressure in plenum is about the well level, so the
mass flow accelerates fast. Past the value corresponding to the peak the flow at the
blades becomes attached. When the flow through compressor becomes bigger than
the flow through the throttle, the pressure starts to rise and becomes bigger than the
one produced by the compressor. The flow starts to decrease. When the flow reaches
the value corresponding to the peak, pressure in the plenum is about the peak value,
which is the condition of a stall inception. One full surge cycle is now completed and
the next one is about to start.

When rotating stall occurs, one or several blades stall. Locally, the flow is redi-
rected to the neighboring unstalled blades. On one side of the region of stalled blades,
the angle of attack of the air flow will increase, causing more blades to stall. On
the other side the angle of attack will decrease, making the blades on that side less
susceptible to stalling. The air is coming to the blades in the direction of spinning
rotor at high angle of attack. These blades are likely to stall. At the same time the
blades neighboring the stalled ones in the direction opposite to the spinning rotor
accept air at the lower angle of attack than the stalled ones so they are not likely to
stall. More air coming through these blades may lower the angle of attack on the first
stalled blade, which will result in more local pressure rise. If the pressure in plenum
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drops fast enough, the pressure gradient on some of the stalled blades will become
positive and these blades will unstall. A stable rotating stall condition may develop
when some of the blades operate in a stalled condition and the rest are not stalled.
The cells of stalled air travel around the compressor so that each blade periodically
becomes stalled and unstalled. Note that in a rotating stall condition the average
pressure rise delivered by the compressor is low, as the stalled blades barely do any
work on the air. Note also that in a stable rotating stall condition the air mass flow
in the stalled blade passages is reversed, as the stalled blades cannot deliver enough
pressure rise to balance the pressure in the plenum.

At this point the physical mechanism for the stabilization of the operating point
close to the peak of the characteristic by varying the throttle opening can be explained.
In both stall and surge inception the mechanism of instability is the same: a stalled
blade cannot deliver enough pressure rise to balance the high pressure in the plenum
and the resulting negative pressure gradient decelerates and eventually reverses the
flow at some (stall) or all (surge) blade passages. The control action basically amounts
to opening the throttle fast enough so that the pressure in the plenum drops faster
than the pressure at a stalled blade. This produces the positive pressure gradient that
accelerates the flow to the desired value. After this value is reached, the throttle is
closed again.

2.2. Some function spaces. Let L2 be the space of square integrable functions
on the circle [0, 2π] and denote the norm by ‖ · ‖L2 . Let L2, L∞, and Hk, for k =
1, 2, . . . , denote the subspaces of L2 with zero average and norms ‖ · ‖L2 , ‖ · ‖L∞ ,
‖ · ‖Hk . These norms are given by

‖g‖L2 := (
∫ 2π

0
g2dθ)

1
2 = (π

∑∞
p=1Ap(ξ)

2)
1
2 ,

‖g‖Hk := (
∫ 2π

0
(∂

kg
∂θk

)2dθ)
1
2 = (π

∑∞
p=1(pkAp(ξ))

2)
1
2 ,

‖g‖L∞ := esssupθ∈[0,2π]g.

Here, the Ap’s represent the magnitudes of the complex Fourier coefficients of g,

g =
∞∑
p=1

Ap(ξ) sin(pθ + rp(ξ)).

We denote by 〈·, ·〉 the inner product of L2:

〈g1, g2〉 =

∫ 2π

0

g1g2dθ = π

∞∑
p=1

ApBp.

Here, the Ap’s and the Bp’s represent the Fourier coefficients of the functions g1 and
g2, respectively.

Let C0 denote the space of continuous functions on the circle [0, 2π] with zero
average, with the norm

‖g‖C0 := max
θ∈[0,2π]

g.

Note that for g ∈ C0 one has ‖g‖C0 = ‖g‖L∞ . Thus, to avoid using too many symbols
we will use ‖g‖L∞ to denote the norm of C0 functions.

For future reference, we collect here some inequalities in the following lemma.
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Lemma 2.1. One has H1 ↪→ C0 ↪→ L∞ ↪→ L2 and

‖g‖L2 ≤ √
2π‖g‖L∞ ,

‖g‖L∞ ≤
√
π√
6
‖g‖H1 ,

‖g‖L2 ≤ ‖g‖H1 .

Proof. We first prove the inequalities. The first inequality is clear. The second one

follows from ‖g‖L∞ ≤
∑∞
p=1 |Ap(ξ)| ≤ (

∑∞
p=1( 1

p2 ))
1
2 (
∑∞
p=1(pAp(ξ))

2)
1
2 =

√
π√
6
‖g‖H1 .

The third one is the Poincaré inequality. H1 ↪→ C0 is the Sobolev embedding of
H1 into C0 in spatial dimension one. The other embeddings follow from the inequal-
ities.

Assume for now that φ′ can be represented as

φ′ =
∞∑
p=1

epηαp(ξ) sin(pθ + rp(ξ)),(6)

where αp and rp are real functions.
Let g := φ′η|η=0; then

g =
∞∑
p=1

pαp(ξ) sin(pθ + rp(ξ)) =:

∞∑
p=1

Ap(ξ) sin(pθ + rp(ξ)).

Equation (4) can therefore be written as

∂

∂ξ
Kg = a

(
Ψc(Φ + g)− 1

2π

∫ 2π

0

Ψc(Φ + g)dθ − 1

2

∂g

∂θ

)
,(7)

where the operator K is defined as follows:

K

∞∑
p=1

αp(ξ) sin(pθ + rp(ξ)) =

∞∑
p=1

(
1 +

am

p

)
αp(ξ) sin(pθ + rp(ξ)).(8)

The operator K is an infinite-dimensional analogue of the operator introduced in [11]
for a study of finite-dimensional truncations of the full Moore–Greitzer model.

Remark 2.1. Suppose that we can show that the system (1), (2), and (7) has a
unique solution such that g ∈ H1. Then from the Fourier series representation of g
we can calculate the corresponding potential φ′. Since g ∈ H1, it follows that on the
cylinder [0, 2π]×(−∞, 0) the potential φ′ is in the Sobolev space H2([0, 2π]×(−∞, 0)).
In particular, the partial derivatives φ′ηη and φ′θθ are in L2([0, 2π]×(−∞, 0)). Note also
that from (6) it follows that φ′ satisfies the Laplace equation (3) and the boundary
conditions (4) and (5). The existence of solutions of the full Moore–Greitzer model
follows. The uniqueness follows from the uniqueness of g. It therefore suffices to prove
the existence and uniqueness of solutions for the system (1), (2), and (7) to obtain
the existence and uniqueness of solutions of the full Moore–Greitzer model.

The variable g represents the nonaxisymmetric mass flow disturbance, i.e., the
stall. We shall refer to g as the stall variable.

Proposition 2.1. Let Z = L2 or Hk, for k = 1, 2, . . .. K : Z 7→ Z is a bounded,
self-adjoint, positive definite operator with a bounded inverse. One has ‖K‖Z = 1+am,
and ‖K−1‖Z = 1. Moreover, K, ∂

∂ξ , and ∂
∂θ commute.
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Proof. We have ‖Kg‖Z ≤ (1 + am
1 )‖g‖Z so K is bounded with ‖K‖Z = 1 + am.

Similarly, K−1 is bounded with ‖K−1‖Z = 1. Furthermore, 〈g,Kg〉 ≥ ‖g‖Z , so K is
positive definite and bounded away from zero. It is easy to see that K is self-adjoint.

On their domains the operators ∂
∂ξ ,

∂
∂θ , and K all commute. This is clear by letting

them operate termwise on the Fourier series.
For future reference, we note that the inverse of K is

K−1

( ∞∑
p=1

Ap(ξ) sin(pθ + rp(ξ))

)
:=

∞∑
p=1

(
p

p+ am

)
Ap(ξ)(sin(pθ + rp(ξ))).

Using K we can define weighted L2 and Hk norms as follows:

‖g‖L2
K

:=
√〈g,Kg〉,

‖g‖Hk
K

:=
√
〈∂kg
∂θk

,K ∂kg
∂θk
〉.

Note that L2 and Hk norms are equivalent with their weighted counterparts. In
fact, one has Lemma 2.2.

Lemma 2.2. We have that

‖g‖L2 ≤ ‖g‖L2
K
≤ √1 + am‖g‖L2 ,

‖g‖Hk ≤ ‖g‖Hk
K
≤ √1 + am‖g‖Hk .

We define

Ψc :=
1

2π

∫ 2π

0

Ψc(Φ + g(ξ, θ))dθ.

Then we can rewrite the model (4), (1), and (2) as

∂

∂ξ
g(ξ, θ) = K−1

(
a(Ψc(Φ(ξ) + g(ξ, θ))−Ψc)− 1

2

∂g(ξ, θ)

∂θ

)
,(9)

dΦ

dξ
=

1

lc
(Ψc −Ψ(ξ)),(10)

dΨ

dξ
=

1

4lcB2
(Φ(ξ)−KT (Ψ, u)).(11)

We will frequently use a formula for a difference of values of a C1 function at two
points.

Lemma 2.3. Let f be a C1 function. Then

f(x+ ∆x)− f(x) =

(∫ 1

0

f ′(x+ s∆x)ds

)
∆x.

3. Existence and uniqueness of solutions.

3.1. Moore–Greitzer model as an evolution equation on a Banach space.
To prove the existence and uniqueness of solutions of the full Moore–Greitzer model
we represent the model as an evolution equation of the form

dx

dξ
= Ax+ f(x),(12)
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where x belongs to a Banach space X, A is an unbounded operator in X, and f is a
nonlinear operator.

Let X be a Banach space. We define the following two spaces:

C(0, T ;X) := {x(·) : [0, T ]→ X is strongly continuous in ‖ · ‖X norm},

C1(0, T ;X) := {x(·) : [0, T ]→ X is continuously differentiable in ‖ · ‖X norm}

with corresponding norms

‖x‖C(0,T ;X) = sup
ξ∈[0,T ]

‖x(ξ)‖X ,

‖x‖C1(0,T ;X) = sup
ξ∈[0,T ]

‖x(ξ)‖X + sup
ξ∈[0,T ]

‖ d
dξ
x(ξ)‖X .

We are going to use the following corollary from Kato’s theorem [4], [5].

Theorem 3.1. Let X be a Banach space, and let A be a generator of a strongly
continuous semigroup on X. Let Y be the domain of A. Suppose that f(·) satisfies the
conditions

‖f(x)‖Y ≤ Cbdd(‖x‖Y )(13)

and

‖f(x1)− f(x2)‖X ≤ CLip(‖x1‖X , ‖x2‖X , ‖Ax1‖X , ‖Ax2‖X)‖x1 − x2‖X ,(14)

where functions Cbdd and CLip are bounded on bounded sets. Then for all x0 ∈ Y
there exists a unique local strong solution of

dx

dξ
= Ax+ f(x)(15)

such that

x ∈ C(0, δ;Y ) ∩ C1(0, δ;X), x(0) = x0(16)

for some δ > 0.

Proof. See Theorem 10 of [4].

Define, for k = 0, 1, . . ., the spaces

Xk := Hk
K ×R2

(with H0
K := L2

K). The norms on Xk are defined by

‖(g,Φ,Ψ)‖2Xk = ‖g‖2Hk
K

+ |Φ|2 + |Ψ|2.

In this paper we will apply Theorem 3.1 with X = Xk−1 and Y = Xk.
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3.2. Local existence and uniqueness. With suitable conditions on the com-
pressor characteristic, Ψc, the local existence of Xk solutions becomes rather elemen-
tary. In an attempt to appeal to a larger audience, here we will present a detailed
proof of the local existence and uniqueness of X1 solutions. We then state a theorem
which gives local existence and uniqueness in Xk and outline the proof.

We are going to apply Theorem 3.1 with

X = X0 = L2
K ×R2, Y = X1 = H1

K ×R2,

with the norms

‖(g,Φ,Ψ)‖2X1 = ‖g‖2H1
K

+ |Φ|2 + |Ψ|2,

‖(g,Φ,Ψ)‖2X0 = ‖g‖2L2
K

+ |Φ|2 + |Ψ|2.

These spaces are both Hilbert spaces, X1 is continuously embedded in X0, and
X1 is dense in X0. We now define the operator A : X1 → X0 as follows:

A(g,Φ,Ψ) :=

(
−1

2
K−1 ∂g

∂θ
, 0, 0

)
.(17)

This operator is closed and, as we will show, it is an infinitesimal generator of a
strongly continuous unitary semigroup on X0. We define

f(g,Φ,Ψ) := (aK−1(Ψc(Φ + g)− Ψ̄c),
1

lc
(Ψ̄c −Ψ),

1

4lcB2
(Φ−KT (Ψ, u)).(18)

Remark 3.1. Using a square throttle characteristic and constant throttle control
u (cf. [15]) will cause KT not to be Lipschitz on the hyperplane defined by Ψ = 0.
However, if we use a feedback control of the form u = u(g,Φ,Ψ), KT (Ψ, u) (and
hence also f(g,Φ,Ψ)) becomes a function of all the state variables. We assume that
the feedback was chosen such that KT (Ψ, u) is Lipschitz on bounded subsets of R.

Having defined the function spaces, the operator A, and the nonlinear operator f ,
we can prove the local existence and uniqueness of solutions of the full Moore–Greitzer
model. For this, we will show in the following two lemmas that A given by (17) and
f(g,Φ,Ψ) given by (18) satisfy the conditions of Theorem 3.1.

Lemma 3.1. The operator A given by (17) is a generator of a strongly continuous
unitary semigroup on X0.

Proof. Using the fact that K is self-adjoint and integration by parts one can
prove that A∗ = −A; i.e., A is a skew-adjoint operator. Thus, A generates a strongly
continuous unitary semigroup on X0 (cf. Theorem 8 of [4]).

Lemma 3.2. Suppose that Ψc ∈ C1(R). We also assume that KT (Ψ, u) is bounded
from X1 to R and X0-Lipschitz on X1-bounded sets, i.e., for all xi = (gi,Φi,Ψi) ∈
X1, i = 1, 2, KT (Ψ, u) satisfies

|KT (Ψ1, u(x1))−KT (Ψ2, u(x2))| ≤ CK‖x1 − x2‖X0 ,

where CK is a function of X1 norms of xi, i = 1, 2, which is bounded on bounded sets
in X1. Then the function f(g,Φ,Ψ) given by (18) satisfies conditions (13) and (14)
of Theorem 3.1.

Proof. Let M be a bounded subset of X1 and let (g,Φ,Ψ) ∈ M be arbi-
trary. Then, because of embedding H1 ↪→ C0, for every θ, Φ + g(θ) belongs to a
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bounded interval IM ⊂ R. (Note that IM depends only onM.) Thus, |Ψ′c(Φ + g)| ≤
supφ∈IM |Ψ′c(φ)|. Therefore,

‖aK−1(Ψc(Φ + g)− Ψ̄c)‖2H1
K
≤ a2‖K−1‖

∥∥∥∥ ∂∂θΨc(Φ + g)

∥∥∥∥2

L2

≤ a2‖K−1‖ sup
φ∈IM

|Ψ′c(φ)|2‖g‖2H1

≤ a2 sup
φ∈IM

|Ψ′c(φ)|2‖g‖2H1
K
.(19)

We also have

|Ψ̄c| =
∣∣∣∣∫ 2π

0

Ψc(Φ + g)dθ

∣∣∣∣ ≤ sup
φ∈IM

Ψc(φ).(20)

Using (19) and (20), we easily show that f(g,Φ,Ψ) satisfies (13).
To show that f(g,Φ,Ψ) satisfies (14), let x1 = (g1,Φ1,Ψ1) ∈ M and x2 =

(g2,Φ2,Ψ2) ∈ M be arbitrary. To simplify notation, let us denote Fi := Ψc(Φi + gi)
for i = 1, 2. Recall that Fi denotes the average value of Fi. We have

‖f(x1)− f(x2)‖2X0

= a2〈K−1((F1 − F2)− (F1 − F2)), (F1 − F2)− (F1 − F2)〉

+
1

l2c
|(F1 − F2)− (Ψ1 −Ψ2)|2

+
1

(4lcB2)2
|(Φ1 − Φ2)− (KT (Ψ1, u(x1))−KT (Ψ2, u(x2)))|2

≤ a2‖K−1‖L2‖(F1 − F2)− (F1 − F2)‖2L2

+
2

l2c
|(F1 − F2)|2 +

2

l2c
|(Ψ1 −Ψ2)|2

+
2

(4lcB2)2
|(Φ1 − Φ2)|2 +

2C2
K

(4lcB2)2
‖x1 − x2‖2X0 .

Note that ‖K−1‖L2 = 1 and

‖F1 − F2‖2L2 = ‖(F1 − F2)− (F1 − F2)‖2L2 + 2π|(F1 − F2)|2.
Hence,

‖f(x1)− f(x2)‖2X0

≤ C1‖F1 − F2‖2L2 + C2‖x1 − x2‖2X0 ,

where C1 := a2 + 2
l2c

and C2 := 2
l2c

+ 2
(4lcB2)2 +

2C2
K

(4lcB2)2 . We will show that

‖(F1 − F2)‖2L2 ≤ C3‖x1 − x2‖2X0 ,(21)

where C3 is a function of X1 norms of (gi,Φi,Ψi), i = 1, 2, which is bounded on
bounded sets in X1. For this, note that by Lemma 2.3

‖F1−F2‖2L2 = ‖
(∫ 1

0

Ψ′c(Φ2 + g2 + s(Φ1 + g1 − Φ2 − g2))ds

)
(Φ1−Φ2 + g1− g2)‖2L2
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≤ 2 sup
φ∈IM

|Ψ′c(φ)|2(|Φ1 − Φ2|2 + ‖g1 − g2‖2L2
K

)

≤ 2 sup
φ∈IM

|Ψ′c(φ)|2‖x1 − x2‖2X0 .

Therefore, (21) holds with C3 := 2 supφ∈IM |Ψ′c(φ)|2. Note that C3 is bounded on
bounded sets in X1. Thus,

‖f(x1)− f(x2)‖2X0 ≤ C4‖x1 − x2‖2X0 ,

where C4 := C1C3 +C2. Note that C4 is bounded on bounded sets in X1. Therefore,
f(g,Φ,Ψ) satisfies (14).

Therefore, we can state the following result.
Theorem 3.2. Assume that Ψc is a C1 function. Then the Cauchy problem

dx

dξ
= Ax+ f(x, u), x(0) = x0 ∈ X1(22)

has a unique solution x ∈ C(0, δ;X1) ∩ C1(0, δ;X0), such that x(0) = x0, for suffi-
ciently small δ (depending on x0).

We now state a theorem which gives the local existence and uniqueness of Xk

solutions for k = 1, 2, . . ..
Theorem 3.3. Suppose that Ψc ∈ Ck+1(R). We assume that KT (Ψ, u) is bounded

from Xk to R and Xk−1-Lipschitz on XK-bounded sets, i.e., for all xi = (gi,Φi,Ψi) ∈
XK , i = 1, 2, KT (Ψ, u) satisfies

|KT (Ψ1, u(x1))−KT (Ψ2, u(x2))| ≤ CK‖x1 − x2‖Xk−1 ,

where CK is a function of Xk norms of xi, i = 1, 2, which is bounded on bounded sets
in Xk.

Then the Cauchy problem

dx

dξ
= Ax+ f(x, u), x(0) = x0 ∈ Xk

has a unique solution x ∈ C(0, δ;Xk) ∩ C1(0, δ;Xk−1), such that x(0) = x0, for
sufficiently small δ (depending on x0).

Proof. We only outline the proof.
Since Ψc ∈ Ck+1 and the underlying space has only one dimension, it follows

from the Sobolev embedding theorem that for Φ ∈ R we have that the mapping

Ψc(·)−Ψc(·) : Hk → Hk

is C1 for k > 1
2 . (See McOwen, [13, p. 221].) (Here, Hk denotes the usual Sobolev

space on the unit circle.) In particular, this mapping is locally Xk−1-Lipschitz Xk-
bounded sets and because of

‖f(x)‖2Xk ≤ ‖f(0)‖2Xk + ‖f(x)− f(0)‖2Xk ,
≤ ‖f(0)‖2Xk + CL‖x‖2Xk

it is also bounded on bounded sets. The result follows.
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3.3. A priori estimates for X1 solutions. We have Proposition 3.1.
Proposition 3.1. Assume that Ψc is a C2 function. Let X1, X0, f, and A be as

in section 3.2, and let x = (g,Φ,Ψ) ∈ C(0, δ;X1) ∩ C1(0, δ;X0) be a solution to (22)
for some δ > 0. Then

d

dξ

1

2
‖g‖2H1

K
= a

∫ 2π

0

Ψ′c(Φ + g)

(
∂g

∂θ

)2

dθ.(23)

Proof. In the proof we will deal with the expression ∂2g
∂θ2 which is not in L2 for all

X1 functions. Therefore, we first need to prove that (23) holds on a dense subset of

X1 solutions of (22) for which ∂2g
∂θ2 makes sense. For this subset we choose X2 solutions

of (22).
Assume that x = (g,Φ,Ψ) ∈ C(0, δ;X2) ∩ C1(0, δ;X1) is a solution to (22) for

some δ > 0. Then

d

dξ

1

2
‖g‖2H1

K
=

1

2

(〈
d

dξ

∂g

∂θ
,K

∂g

∂θ

〉
+

〈
∂g

∂θ
,
d

dξ
K
∂g

∂θ

〉)
.

Since K is self-adjoint and d
dξ , K, and ∂

∂θ commute, we have

d

dξ

1

2
‖g‖2H1

K
=

〈
∂g

∂θ
,
∂

∂θ
K
d

dξ
g

〉
.

Thus we have by (9),

d

dξ

1

2
‖g‖2H1

K
= a

〈
∂Ψc(Φ + g)

∂θ
,
∂g

∂θ

〉
− a

〈
∂Ψc

∂θ
,
∂g

∂θ

〉
− 1

2

〈
∂2g

∂θ2
,
∂g

∂θ

〉
.

One has ∂Ψc
∂θ = 0. Moreover,

1

2

〈
∂2g

∂θ2
,
∂g

∂θ

〉
=

∫ 2π

0

∂

∂θ

(
∂g

∂θ

)2

dθ = 0.

Thus,

d
dξ

1
2‖g‖2H1

K
= a〈∂Ψc(Φ+g)

∂θ , ∂g∂θ 〉
= a

∫ 2π

0
Ψ′c(Φ + g)(∂g∂θ )2dθ

for x ∈ X2. Since X2 local solutions of (22) are dense in the set of X1 local solutions
of (22), if we can show that the right-hand side of (23) is X1 continuous, then (23)
will hold for all X1 solutions of (22). Let M be a bounded subset of X1 and let
x1 = (g1,Φ1,Ψ1) ∈M and x2 = (g2,Φ2,Ψ2) ∈M be arbitrary. Then, by Lemma 2.1,
for every θ, Φ1+g1(θ) and Φ2+g2(θ) belong to a bounded interval IM ⊂ R. Therefore,
using Lemma 2.3 one obtains

|Ψ′c(Φ1 + g1)−Ψ′c(Φ2 + g2)|
≤ | ∫ 1

0
Ψ′′c (Φ2 + g2 + s(Φ1 − Φ2 + g1 − g2))ds(Φ1 − Φ2 + g1 − g2)|

≤ supφ∈IM |Ψ′′c (φ)|(|Φ1 − Φ2|+ ‖g1 − g2‖L∞)

≤ supφ∈IM |Ψ′′c (φ)|(|Φ1 − Φ2|+
√
π√
6
‖g1 − g2‖H1

K
)

≤ supφ∈IM |Ψ′′c (φ)|‖x1 − x2‖X1 .
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We can now use this to show that the right-hand side of (23) is continuous in X1:∣∣∣∫ 2π

0
Ψ′c(Φ1 + g1)(∂g1

∂θ )2dθ − ∫ 2π

0
Ψ′c(Φ2 + g2)(∂g2

∂θ )2dθ
∣∣∣

≤ ∫ 2π

0

∣∣∣Ψ′c(Φ1 + g1)
(

(∂g1

∂θ )2 − (∂g2

∂θ )2
)∣∣∣+ |Ψ′c(Φ1 + g1)−Ψ′c(Φ2 + g2)| (∂g2

∂θ )2dθ

≤ supφ∈IM |Ψ′c(φ)|(‖g1‖2H1 − ‖g2‖2H1) + supφ∈IM |Ψ′′c (φ)|‖x1 − x2‖X1‖g2‖H1

≤ (supφ∈IM |Ψ′c(φ)|(‖g1‖H1
K

+ ‖g2‖H1
K

) + supφ∈IM |Ψ′′c (φ)|‖g2‖H1
K

)‖x1 − x2‖X1 .

Thus (23) holds for all X1 solutions of (22).
Corollary 3.1. H1

K solutions of (9) grow at most exponentially; i.e., there is
no finite-time blow-up of H1

K solutions of (9). In particular, one has

d

dξ
‖g‖2H1

K
≤ a sup

φ∈R
Ψ′c(φ)‖g‖2H1

K
(24)

and

d

dξ
‖g‖H1

K
≤ a sup

φ∈R
Ψ′c(φ)‖g‖H1

K
.(25)

Proof. Observe that it follows from our assumptions that Ψ′c is bounded from
above. Now, using Proposition 3.1 and Lemma 2.2 one obtains

d

dξ
‖g‖2H1

K
≤ a sup

φ∈R
Ψ′c(φ)‖g‖2H1

K
.

Observe that ∂
∂ξ

1
2‖g‖2H1

K
= ‖g‖H1

K

∂
∂ξ‖g‖H1

K
so upon dividing (24) by ‖g‖H1

K
we get

(25).
By Grönwall’s lemma we get that the solutions grow at most exponentially.

3.4. Global existence and uniqueness of X1 solutions. In section 4 we will
construct a globally stabilizing feedback control u for the system (9), (10), and (11).
As a consequence, the global existence of solutions of the system (9), (10), and (11)
will be established. The main condition on characteristic Ψc is

sup
φ∈R

Ψ′c(φ) < +∞;

i.e., the positive slopes of the characteristic are bounded. Note that this condition
follows from our assumptions about the characteristic stated in the beginning of sec-
tion 2.1.

Theorem 3.4. Assume that X1, X0, f, and A are as before. Assume that

sup
φ∈R

Ψ′c(φ) <∞

and there exist constants N1, N2 such that |KT (Ψ, u(x))| ≤ N1 +N2‖x‖X1 . Then for
any T > 0 the Cauchy problem

dx

dξ
= Ax+ f(x), x(0) = x0 ∈ X1(26)

has a unique solution x ∈ C(0, T ;X1) ∩ C1(0, T ;X0) such that x(0) = x0.
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Proof. Since the derivative of the characteristic is bounded from above, there
exist positive constants L1, L2 such that Ψc(φ) > −L1 − L2|φ| when φ < 0 and
Ψc(φ) < L1 + L2φ for φ > 0. We now get

ΦΨc = 1
2π

∫ 2π

0
ΦΨc(Φ + g)dθ

≤ |Φ|(L1 + L2(|Φ|+ ‖g‖L∞))

≤ L1(1 + |Φ|2) + L2|Φ|2 + L2|Φ|‖g‖L∞
≤ L1(1 + |Φ|2) + L2|Φ|2 + L2

√
π√
6

1
2 (‖g‖2H1 + |Φ|2).

Therefore,

ΦΨc ≤ L1 +

(
L1 + L2

(
1 +

√
π√
6

1

2

))
‖x‖2X1 .(27)

Now by Corollary 3.1 we have

d
dξ

1
2‖x‖2X1 ≤ a supR Ψ′c‖g‖2H1

K
+ Φ d

dξΦ + Ψ d
dξΨ

= a supφ∈R Ψ′c(φ)‖g‖2
H1
K

+ 1
lc

ΦΨc − 1
lc

ΦΨ + 1
4lcB2 ΦΨ

− 1
4lcB2 ΨKT (Ψ, u(x))

≤ a supφ∈R Ψ′c(φ)‖g‖2
H1
K

+ L1 +
(
L1 + L2(1 +

√
π√
6

1
2 )
)
‖x‖2X1

+ ( 1
lc

+ 1
4lcB2 ) 1

2 (|Φ|2 + |Ψ|2) + 1
4lcB2 |ΨKT (Ψ, u(x))|

≤ a supφ∈R Ψ′c(φ)‖g‖2
H1
K

+ L1 +
(
L1 + L2(1 +

√
π√
6

1
2 )
)
‖x‖2X1

+ ( 1
lc

+ 1
4lcB2 ) 1

2 (|Φ|2 + |Ψ|2) + 1
4lcB2 (N1 + (N1 +N2)‖x‖2X1).

Therefore, we obtain

d

dξ

1

2
‖x‖2X1 ≤ C1 + C2‖x‖2X1 .(28)

Here

C1 = 1
4lcB2N1 + L1,

C2 = a supφ∈R Ψ′c(φ) + L1 + L2(1 +
√
π√
6

1
2 ) +

(
1
lc

+ 1
4lcB2

)
1
2 + N1+N2

4lcB2 .

By Grönwall’s lemma we now get

‖x‖2X1(ξ) ≤
(
‖x‖2X1(0) +

C1

C2

)
eC2ξ − C1

C2
.(29)

We therefore see that solutions of (22) are bounded for all finite times and thus we
have a global solution.

Because of the embedding H1 ↪→ L∞, this means that L∞ norms of H1 solutions
do not blow up in finite time either.

Global existence and uniqueness of H1
K solutions of the full Moore–Greitzer model

and the corresponding a priori estimates allow us to construct a controller that globally
stabilizes the peak or any axisymmetric equilibrium to the right of the peak. The
controller will have a similar form to a controller for an MG3 model with the H1

K

norm of the stall variable replacing the magnitude of the first Fourier mode of the
stall cell.
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4. H1 backstepping. We are going to construct a feedback controller stabiliz-
ing the peak or any axisymmetric equilibrium to the right of the peak of the character-
istic for the full Moore–Greitzer model. The feedback is constructed by the following
backstepping procedure. In the first step we define a positive definite function V1(g)

and construct a function Φ̂(‖g‖) such that for Φ = Φ̂(‖g‖) V1(g) is a Lyapunov func-

tion for (9). V1(g) is called a control Lyapunov function and Φ̂(‖g‖) is called a virtual
control for (9). In the second step we define a control Lyapunov function V2(Φ, g)

and a virtual control Ψ = Ψ̂(‖g‖,Φ) for (9) and (10). In the third (and last) step we
construct the control Lyapunov function for the full system (9), (10), and (11) with
the throttle function u being the control variable. We will refer to this procedure as
H1 backstepping. The obtained feedback control law u uses the H1

K norm of a stall
cell and resembles familiar control laws for MG3 (see [3], [8], [9], [10], [16], [1]) with
A1 replaced with the H1

K norm of g. In terms of the Fourier coefficients Ai of g, this

norm is (
∑∞
p=1(1 + am

i )(iAi)
2)

1
2 . To simplify notation, let us from now on denote the

norm ‖ · ‖H1
K

by ‖ · ‖.
4.1. H1 backstepping: Step 1. As a control Lyapunov function for (9) we

will use the H1
K norm of g. Let

V1(g) :=
1

2
‖g‖2.

We will show that d
dξV1(g) can be made negative definite by a virtual control of the

form

Φ = Φ̂(‖g‖) = Γ + cg‖g‖(30)

for Γ ≥ Φ0 and sufficiently large positive cg. (Φ0 denotes the value of the mass flow
coefficient at the peak.) In this paper we assume that cg ≥ 0. We will need the
following result.

Lemma 4.1. For every θ ∈ [0, 2π],(
cg −

√
π√
6

)
‖g‖ ≤ cg‖g‖+ g ≤

(
cg +

√
π√
6

)
‖g‖.

Proof. Note that cg‖g‖ + g ≥ cg‖g‖ − ‖g‖L∞ ≥ (cg −
√
π√
6

)‖g‖ by Lemmas 2.1

and 2.2.
Let

eΦ := Φ− Φ̂(‖g‖) = Φ− Γ− cg‖g‖.
It follows from Proposition 3.1 and Lemma 2.3 that one can represent d

dξV1(g) as

d
dξV1(g) = a

∫ 2π

0
Ψ′c(Φ̂(‖g‖) + g)(∂g∂θ )2dθ

+ a(
∫ 2π

0
(
∫ 1

0
Ψ′′c (Φ̂(‖g‖) + seΦ + g)ds)(∂g∂θ )2dθ)eΦ.

Using Lemma 2.3 again, one obtains

d
dξV1(g) = a

∫ 2π

0
(Ψ′c(Γ) +

∫ 1

0
Ψ′′c (Γ + s(cg‖g‖+ g))ds(cg‖g‖+ g))(∂g∂θ )2dθ

+ a(
∫ 2π

0
(
∫ 1

0
Ψ′′c (Φ̂(‖g‖) + seΦ + g)ds)(∂g∂θ )2dθ)eΦ

= aΨ′c(Γ)‖g‖2H1

+ a
∫ 2π

0
(
∫ 1

0
Ψ′′c (Γ + s(cg‖g‖+ g))ds(cg‖g‖+ g))(∂g∂θ )2dθ

+ a(
∫ 2π

0
(
∫ 1

0
Ψ′′c (Φ̂(‖g‖) + seΦ + g)ds)(∂g∂θ )2dθ)eΦ.
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Note that if Γ > Φinfl then
∫ 1

0
Ψ′′c (Γ + s(cg‖g‖ + g))ds can be bounded from above

by a negative constant that depends only on Γ. Namely,∫ 1

0

Ψ′′c (Γ + s(cg‖g‖+ g))ds ≤ sup
Γ≤φ

Ψ′′c (φ) < 0.(31)

Define

c1 :=
a

1 + am
(cg −

√
π√
6

) sup
Γ≤φ

Ψ′′c (φ),

c2(Φ, ‖g‖) := a sup
min(Φ̂(‖g‖),Φ)−‖g‖L∞≤φ≤max(Φ̂(‖g‖),Φ)+‖g‖L∞

|Ψ′′c (φ)|.

Proposition 4.1. Assume that Γ ≥ Φ0 and cg >
√
π√
6

. Then Ψ′c(Γ) ≤ 0, c1 < 0,

d
dξV1(g) ≤ ( a

1+amΨ′c(Γ) + c1‖g‖)‖g‖2
+ c2(Φ, ‖g‖)‖g‖2|eΦ|,

(32)

and

d
dξ‖g‖ ≤ ( a

1+amΨ′c(Γ) + c1‖g‖)‖g‖
+ c2(Φ, ‖g‖)‖g‖|eΦ|.

(33)

Proof. Note that it follows from Lemma 4.1 that cg‖g‖ + g ≥ (cg −
√
π√
6

)‖g‖.
Moreover, since Γ > Φinfl, (31) holds. Therefore,

d
dξV1(g) ≤ (aΨ′c(Γ) + a(cg −

√
π√
6

) supΓ≤φ Ψ′′c (φ)‖g‖)‖g‖2H1

+ c2(Φ, ‖g‖)‖g‖2H1 |eΦ|.

The first term is nonpositive; the last one is positive. Therefore, the inequality (32)
follows from Lemma 2.2. Now the inequality (33) follows from (32).

Proposition 4.1 is the most important result. It allows us to carry out the back-
stepping procedure for an infinite-dimensional system (9), (10), and (11) without the
necessity of working with its infinite-dimensional part (9). What we have done here
is a replacement of an infinite-dimensional evolution equation (9) with two finite-
dimensional differential inequalities (32) and (33). As we shall see this replacement
makes the next two backsteps quite standard.

In particular, for Φ = Φ̂(‖g‖) one obtains

d

dξ
V1(g) ≤

(
a

1 + am
Ψ′c(Γ) + c1‖g‖

)
‖g‖2.

If Γ ≥ Φ0 then Ψ′c(Γ) ≤ 0, c1 < 0, and hence for Φ = Φ̂(‖g‖) d
dξV1(g) is negative

definite. For ‖g‖ small, if Γ > Φ0 then Ψ′c(Γ) < 0 and d
dξV1(g) depends quadratically

on ‖g‖, whereas for Γ = Φ0 one has Ψ′c(Γ) = 0 and therefore the dependence of
d
dξV1(g) on ‖g‖ is cubic.

Remark 4.1. Note that the essential property of the virtual control (30) that
allows us to make the time derivative of the control Lyapunov function negative
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was the ability of moving the stall cell “over the top,” so that the whole mass flow
Φ̂(‖g‖)+g is to the right of the peak, where the slope of the characteristic is negative.
The Sobolev embedding was used to guarantee that property. A natural question is
why did we not use the L∞ norm of the stall cell or its minimum value instead of
the H1

K norm. The reason is that in the next step of the backstepping procedure we
will need a bound on the time derivative of whatever norm of the stall cell we use in
the first step. We have such information about the time derivative of the H1

K norm,
but we do not yet have the information about the L∞ norm of the stall cell. We are
currently working on the design that uses L∞ norm of the stall cell or its minimum
in the first step of backstepping.

4.2. H1 backstepping: Step 2. As a control Lyapunov function for (9) and
(10) we will use

V2(Φ, g) :=
1

2
‖g‖2 +

1

2
e2

Φ.

We will show that d
dξV2(Φ, g) can be made negative definite by a virtual control of

the form

Ψ = Ψ̂(‖g‖,Φ)

= Ψc(Γ) + cΦ(‖g‖,Φ)eΦ

for sufficiently large cΦ(‖g‖,Φ). (For semiglobal stabilization cΦ(‖g‖,Φ) can be chosen
to be a constant depending on the desired region of operation.)

Let

eΨ := Ψ− Ψ̂(‖g‖,Φ)

= Ψ−Ψc(Γ)− cΦ(‖g‖,Φ)eΦ.

To calculate d
dξV2(Φ, g) we will need to express d

dξ eΦ in terms of eΦ, eΨ, and g. For
this, note that

d
dξ eΦ = d

dξΦ− d
dξ Φ̂(‖g‖)

= 1
lc

(Ψc(Φ + g)−Ψ)− cg ddξ‖g‖.
Applying Lemma 2.3 twice, one obtains

d
dξ eΦ = 1

lc
(Ψc(Γ) +

∫ 2π

0
(
∫ 1

0
Ψ′c(Γ + s(cg‖g‖+ g))ds)(cg‖g‖+ g)dθ

+ (
∫ 2π

0
(
∫ 1

0
Ψ′c(Φ̂(‖g‖) + seΦ + g)ds)dθ)eΦ

− Ψ̂(‖g‖,Φ)− eΨ)− cg ddξ‖g‖
= 1

lc
(
∫ 2π

0
(
∫ 1

0
Ψ′c(Γ + s(cg‖g‖+ g))ds)(cg‖g‖+ g)dθ

+ (
∫ 2π

0
(
∫ 1

0
Ψ′c(Φ̂(‖g‖) + seΦ + g)ds)dθ)eΦ

− cΦ(‖g‖,Φ)eΦ − eΨ)− cg ddξ‖g‖.
To simplify calculations, we introduce the following notation:

c0 := a
1+amΨ′c(Γ),

c3(g) := |(cg + 1)
∫ 2π

0

∫ 1

0
Ψ′c(Γ + s(cg‖g‖+ g))dsdθ|,

c4(Φ, g) :=
∫ 2π

0

∫ 1

0
Ψ′c(Φ̂(‖g‖) + seΦ + g)dsdθ.
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Note that c3(g) and c4(Φ, g) can be bounded by functions of ‖g‖. For clarity, in the
following calculations we use notation ci instead of ci(g), etc.

Lemma 4.2. Assume that Γ ≥ Φ0 and cg >
√
π√
6

. Then

| ddξ eΦ| ≤ 1
lc

(c3‖g‖+ (|c4 − cΦ|)|eΦ|+ |eΨ|)
+ cg(|(c0 + c1‖g‖|)‖g‖+ c2‖g‖|eΦ|).

and
eΦ

d
dξ eΦ ≤ 1

lc
(c3‖g‖|eΦ|+ (c4 − cΦ)e2

Φ + |eΦeΨ|)
+ cg(|(c0 + c1‖g‖)|‖g‖|eΦ|+ c2‖g‖e2

Φ).

Therefore, assuming Γ ≥ Φ0 and cg >
√
π√
6

one has

d
dξV2(Φ, g) = d

dξV1(g) + eΦ
d
dξ eΦ

≤ (c0 + c1‖g‖)‖g‖2 + c2‖g‖2|eΦ|
+ 1

lc
(c3‖g‖|eΦ|+ (c4 − cΦ)e2

Φ + |eΦeΨ|)
+ cg(|(c0 + c1‖g‖)|‖g‖|eΦ|+ c2‖g‖e2

Φ)

≤ (c0 + c1‖g‖)‖g‖2
+ (c2‖g‖+ 1

lc
c3 + cg|(c0 + c1‖g‖)|)‖g‖|eΦ|

+ ( 1
lc

(c4 − cΦ) + cgc2‖g‖)e2
Φ + 1

lc
|eΦeΨ|.

Define

c5 := (cg + 1)|Ψ′c(Γ)|,
c6(g) := (cg + 1)| ∫ 2π

0

∫ 1

0

∫ 1

0
Ψ′′c (Γ + s1s2(cg‖g‖+ g))ds1ds2dθ|.

Note that c6(g) can be bounded by functions of ‖g‖. It follows from Lemma 2.3 that

c3 ≤ c5 + c6‖g‖.
Therefore, one obtains

d
dξV2(Φ, g) ≤ (c0 + c1‖g‖)‖g‖2

+ (c2‖g‖+ 1
lc

(c5 + c6‖g‖) + cg|(c0 + c1‖g‖)|)‖g‖|eΦ|
+ ( 1

lc
c4 + cgc2‖g‖ − 1

lc
cΦ)e2

Φ + 1
lc
|eΦeΨ|.

Hence, we have the following result.

Proposition 4.2. Assume that Γ ≥ Φ0 and cg >
√
π√
6

. Then

d
dξV2(Φ, g) ≤ (c0 + c1‖g‖)‖g‖2

+ (cg|c0|+ 1
lc
c5 + (c2 + 1

lc
c6 + cg|c1|)‖g‖)‖g‖|eΦ|

+ ( 1
lc

(c4 − cΦ) + cgc2‖g‖)e2
Φ + 1

lc
|eΦeΨ|.

Assume that Γ ≥ Φ0 and cg >
√
π√
6

. Observe that if Ψ = Ψ̂(‖g‖,Φ) then

d
dξV2(Φ, g) ≤ (c0 + c1‖g‖)‖g‖2

+ (cg|c0|+ 1
lc
c5 + (c2 + 1

lc
c6 + cg|c1|)‖g‖)‖g‖|eΦ|

+ ( 1
lc

(c4 − cΦ) + cgc2‖g‖)e2
Φ

= c11‖g‖2 + 2c12‖g‖eΦ + c22e
2
Φ,

(34)
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where

c11 := (c0 + c1‖g‖),
c12 := 1

2 (cg|c0|+ 1
lc
c5 + (c2 + 1

lc
c6 + cg|c1|)‖g‖),

c22 := ( 1
lc

(c4 − cΦ) + cgc2‖g‖).

Note that the right-hand side of (34) is a quadratic form in ‖g‖ and eΦ (with coef-
ficients being functions of ‖g‖ and eΦ). This quadratic form can be made negative
definite by choosing sufficiently large cΦ. A sufficient condition for d

dξV2(Φ, g) to be

negative definite for Ψ = Ψ̂(‖g‖,Φ) is

∆1 := c11 < 0,
∆2 := c11c22 − c212 > 0,

which is satisfied if

cΦ ≥ c4 + lccgc2‖g‖+ lc
(cg|c0|+ 1

lc
c5 + (c2 + 1

lc
c6 + cg|c1|)‖g‖)2

4|c0 + c1‖g‖| .(35)

Observe that Γ = Φ0 implies that c0 = 0, so that it may seem that the gain
function cΦ blows up when g = 0. However, this is not the case. Note that Γ = Φ0

also implies that cg|c0| + 1
lc
c5 = 0. Therefore, for Γ = Φ0 the right-hand side of the

inequality (35) becomes

c4 + lccgc2‖g‖+ lc
(c2 + 1

lc
c6 + cg|c1|)2‖g‖2
4|c1|‖g‖ .

For ‖g‖ = 0 this quantity is not defined. However, it has a finite limit c4 at ‖g‖ = 0.
Hence, one can conclude that V2(Φ, g) is a valid control Lyapunov function also for
Γ = Φ0.

4.3. H1 backstepping: Step 3. As a control Lyapunov function for full model
(9), (10), and (11) we will use

V3(Φ,Ψ, g) :=
1

2
‖g‖2 +

1

2
e2

Φ +
4lcB

2

2
e2

Ψ.

We will show that d
dξV3(Φ,Ψ, g) can be made negative definite by a throttle control

of the form

KT (Ψ, u) = Φ + cΨ(‖g‖,Φ)eΨ(36)

for sufficiently large cΨ(‖g‖,Φ). (For semiglobal stabilization cΨ(‖g‖,Φ) can be chosen
to be a constant depending on the desired region of operation.)

To calculate d
dξV3(Φ,Ψ, g) we will need to express d

dξ eΨ in terms of eΦ, eΨ, and g.

(Throughout the paper, for simplicity, we skip the arguments of functions.) One has

d
dξ eΨ = d

dξΨ− d
dξ Ψ̂

= 1
4lcB2 (−cΨeΨ)− eΦ

d
dξ cΦ − cΦ d

dξ eΦ

= 1
4lcB2 (−cΨeΨ)− ∂cΦ

∂‖g‖
d
dξ‖g‖ − ∂cΦ

∂Φ
d
dξΦ− cΦ d

dξ eΦ.
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Thus, using Proposition 4.1 and Lemma 4.2 one obtains

4lcB
2eΨ

d
dξ eΨ ≤ −cΨe2

Ψ

+ 4lcB
2(| ∂cΦ∂‖g‖ |((|(c0 + c1‖g‖)|)‖g‖|eΨ|+ c2‖g‖|eΦeΨ|)

+ |∂cΦ∂Φ |( 1
lc

(c3‖g‖|eΨ|+ |(c4 − cΦ)||eΦeΨ|+ e2
Ψ)

+ cΦ( 1
lc

(c3‖g‖|eΨ|+ (|c4 − cΦ|)|eΦeΨ|+ e2
Ψ)

+ cg(|(c0 + c1‖g‖)|)‖g‖|eΨ|+ c2‖g‖|eΦeΨ|))).

(37)

Hence, using Proposition 4.2 and (37) one obtains

d
dξV3(Φ,Ψ, g) ≤ (c0 + c1‖g‖)‖g‖2

+ (cg|c0|+ 1
lc
c5 + (c2 + 1

lc
c6 + cg|c1|)‖g‖)‖g‖|eΦ|

+ ( 1
lc

(c4 − cΦ) + cgc2‖g‖)e2
Φ + 1

lc
|eΦeΨ|

− cΨe
2
Ψ

+ 4lcB
2(| ∂cΦ∂‖g‖ |((|(c0 + c1‖g‖)|)‖g‖|eΨ|+ c2‖g‖|eΦeΨ|)

+ |∂cΦ∂Φ |( 1
lc

(c3‖g‖|eΨ|+ |(c4 − cΦ)||eΦeΨ|+ e2
Ψ)

+ cΦ( 1
lc

(c3‖g‖|eΨ|+ (|c4 − cΦ|)|eΦeΨ|+ e2
Ψ)

+ cg(|(c0 + c1‖g‖)|)‖g‖|eΨ|+ c2‖g‖|eΦeΨ|)))
= c11‖g‖2 + 2c12‖g‖|eΦ|+ 2c13‖g‖|eΨ|+ c22e

2
Φ + 2c23|eΦ||eΨ|+ c33e

2
Ψ,

(38)

where

c11 = (c0 + c1‖g‖),
c12 = 1

2 (cg|c0|+ 1
lc
c5 + (c2 + 1

lc
c6 + cg|c1|)‖g‖),

c22 = ( 1
lc

(c4 − cΦ) + cgc2‖g‖),
c13 := 1

2 (4lcB
2| ∂cΦ∂‖g‖ |((|(c0 + c1‖g‖)|)

+4B2|∂cΦ∂Φ |c3 + 4B2cΦc3 + 4lcB
2cΦcg(|(c0 + c1‖g‖)|),

c23 := 1
2 ( 1
lc

+ 4lcB
2c2‖g‖+ 4B2|∂cΦ∂Φ ||(c4 − cΦ)|

+4B2cΦ|c4 − cΦ|+ 4lcB
2cΦcgc2‖g‖),

c33 := −cΨ + 4B2|∂cΦ∂Φ |+ 4B2cΦ.

Note that the right-hand side of (38) is a quadratic form in ‖g‖, |eΦ|, and |eΨ|
(with coefficients being functions of g and eΦ that can be bounded by functions

of ‖g‖ and eΦ. Assuming that cg >
√
π√
6

and cΦ satisfies (35), we can make this

quadratic form negative definite by choosing sufficiently large cΨ. Sufficient conditions
for d

dξV3(Φ,Ψ, g) to be negative definite everywhere are

∆1 = c11 < 0,
∆2 = c11c22 − c212 > 0,

∆3 := c33∆2 + 2c12c13c23 − c22c
2
13 − c11c

2
23 < 0.

The condition ∆1 < 0 is obviously satisfied (see Step 1). To enforce the condition
∆2 > 0 one should choose cΦ that satisfies (35) (see Step 2). Finally, once cΦ satisfies
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the inequality (35), to assure that ∆3 < 0, at each point, the gain cΨ should satisfy
the inequality

cΨ > 4B2|∂cΦ∂Φ |+ 4B2cΦ +
2c12c13c23−c22c

2
13−c11c

2
23

∆2
.(39)

If Γ > Φ0 then ∆2 > 0 holds everywhere and hence the right-hand side of the inequal-
ity (39) is defined for everywhere (see Step 2).

However, Γ = Φ0 implies that c0 = 0, and thus ∆2 vanishes if g = 0. Therefore,
it may seem that the gain function cΨ blows up when g = 0. However, this is not
the case. One can show that the quantity 2c12c13c23 − c22c

2
13 − c11c

2
23 also vanishes if

g = 0 and
2c12c13c23−c22c

2
13−c11c

2
23

∆2
has a finite limit as ‖g‖ goes to zero. Hence, one can

conclude that V3(Φ,Ψ, g) is a valid control Lyapunov function also for Γ = Φ0. (See
similar remarks at the end of section 4.2.)

4.4. The case Γ < Φ0. If the position of the peak is unknown or if the charac-
teristic shifts from its nominal position (because of disturbance, etc.), it may happen
that Γ < Φ0. In that case it follows from Proposition 3.1 that (Φ,Ψ, g) = (Γ,Ψc(Γ), 0)
is an unstable equilibrium that cannot be stabilized by the virtual control (30). How-
ever, one can prove that the controller of the form (36) will guarantee that the dy-
namics of the closed-loop system are confined to a ball containing (Γ,Ψc(Γ), 0). The
radius of the ball can be made arbitrarily small if one can use arbitrarily high gains in
the controller. This modification of the gains in the controller in comparison with the
case Γ ≥ Φ0 is to be expected, as the controller gains proposed for the case Γ ≥ Φ0

were not designed to work also in the case Γ < Φ0.
What we present below is a simple, but not necessarily optimal, way of construct-

ing a controller that confines the dynamics to a ball. Our goal was to provide a simple
proof that this is possible, not to actually design a controller that is optimal in any
sense.

Assume that Φinfl < Γ < Φ0. We are going to use notation of the previous
sections. We need to introduce two new symbols:

c0 := aΨ′c(Γ),

c11 := c0 + c1‖g‖.

These quantities will replace c0 and c11, respectively. One can show that

d

dξ
V3(Φ,Ψ, g) ≤ c11‖g‖2 + 2c12‖g‖|eΦ|+ 2c13‖g‖|eΨ|+ c22e

2
Φ + 2c23|eΦ||eΨ|+ c33e

2
Ψ.

Observe that we had to replace c0 and c11 with c0 and c11 since now Ψ′c(Γ) > 0.
It will be also useful to introduce the following notation. Let

DV 2(Φ, g) := c11‖g‖2 + 2c12‖g‖|eΦ|+ c22e
2
Φ.

Then

d

dξ
V3(Φ,Ψ, g) ≤ DV 2(Φ, g) + 2c13‖g‖|eΨ|+ 2c23|eΦ||eΨ|+ c33e

2
Ψ.

Note that c0 > 0 and c1 < 0. Therefore, the upper bound on d
dξV3(Φ,Ψ, g)

cannot be made negative everywhere; as for eΦ = eΨ = 0 and 0 < ‖g‖ < −c0
c1

one has
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c11 > 0. However, we will show that one can arbitrarily reduce the size of the set where
d
dξV3(Φ,Ψ, g) > 0 by using high gains in the controller. This can be accomplished as
follows. First, one can arbitrarily reduce the interval on which c11 > 0 by using a
high gain cg, which makes c1 big negative. Second, one can use high gains cΦ and cΨ,
which make c22 and c33 big negative.

Let ε be an arbitrary positive number. We are going to show that by using suf-
ficiently high gains cg, cΦ, and cΨ one can guarantee that d

dξV3(Φ,Ψ, g) < 0 outside

the set Mε := {(Φ,Ψ, g) : ‖g‖ < ε, |eΦ| < ε, |eΨ| < ε}.
Step 1. Choose cg such that for ‖g‖ ≥ ε one has c11 ≤ −3.

Step 2. Choose cΦ such that the following conditions (2a) and (2b) are satisfied:

(2a) For ‖g‖ ≥ ε one has c22 ≤ c212

c11+2 .

Note that for a fixed ‖g‖, DV 2(Φ, g) can be viewed as a quadratic function of
|eΦ|. One can show using some elementary algebra that our choice of cΦ guarantees
that for ‖g‖ ≥ ε one has DV 2(Φ, g) ≤ −2ε2.

(2b) For ‖g‖ < ε one has −2c12

c22
+
√
| c11

c22
|+
√
| 2
c22
| < 1.

One can show using some elementary algebra that this choice guarantees that for
‖g‖ < ε and |eΦ| ≥ ε one has DV 2(Φ, g) ≤ −2ε2.

Step 3. Choose cΨ so that the following conditions (3a) and (3b) are satisfied:

(3a) For ‖g‖ ≥ ε or |eΦ| ≥ ε one has c33 ≤ (c13‖g‖+c23|eΦ|)2

DV 2(Φ,g)+ε2
.

Note that c33 is bounded, as the choice of cΦ in Step 2 guarantees that for ‖g‖ ≥ ε
or |eΦ| ≥ ε one has DV 2(Φ, g) + ε2 ≤ −ε2.

One can show that this choice of cΨ guarantees that for ‖g‖ ≥ ε or |eΦ| ≥ ε one
has d

dξV3(Φ,Ψ, g) ≤ −ε2.

(3b) For ‖g‖ < ε and |eΦ| < ε one has −2c13−2c23

c33
+
√
|c11|+|c22|+2c12+1

|c33| < 1.

One can show that this choice guarantees that for ‖g‖ < ε and |eΦ| < ε, but for
|eΨ| ≥ ε one has d

dξV3(Φ,Ψ, g) ≤ −ε2.

Therefore, we have the following result.

Proposition 4.3. Let the gains cg, cΦ, and cΨ satisfy the conditions stated in
Steps 1–3 above. Then outside the set Mε = {(Φ,Ψ, g) : ‖g‖ < ε, |eΦ| < ε, |eΨ| < ε}
one has

d

dξ
V3(Φ,Ψ, g) < −ε2.

Therefore, the state of the closed-loop system enters in a finite time the set

Nε :=

{
(Φ,Ψ, g) : V3(Φ,Ψ, g) <

4lcB
2

2(1 + 4lcB2)
ε2
}
.

Note that the high gains of the controller presented in this section are required
if one wants to reduce the size of the dynamics and in particular of the stall cell, not
to stabilize a small stall cell. If one just wants to confine the dynamics to a ball, high
gains are not required.

It is not clear at the moment what are the dynamics of the closed-loop system
inside the absorbing set Nε. This issue is currently under investigation.

5. Controllers for Galerkin projections of the full model. In section 4 we
constructed a feedback controller stabilizing a peak or any axisymmetric equilibrium
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to the right of the peak for the full Moore–Greitzer PDE model. The feedback law is
given by (36) and has a general form

KT (Ψ, u) = KT (‖g‖H1
K
,Φ,Ψ).

In terms of the magnitudes Ap of the Fourier modes of a stall cell g the control
law looks like familiar backstepping control laws for MG3 with A1 replaced with
(
∑∞
p=1(1 + am

p )(pAp)
2)

1
2 . An implementation of this control law would require access

to an infinite number of modes of a stall cell g, which is practically impossible.
Remark 5.1. The following was communicated to the authors by Richard Murray

from Caltech.
The number of accessible modes depends on the number of pressure sensors used

to detect a nonaxisymmetric pressure distribution and their distance from the com-
pressor face. Since it requires 2n+1 sensors to instantaneously detect the first n modes
(by fitting a linear combination of spatial sinusoids), the number of sensors gets some-
what large for higher modes. In addition, with the minimal number of sensors, the
last mode is pretty noisy.

The Caltech compressor rig has six sensors so that a measurement of up to second
mode magnitude is possible. The rig has enough ports to use 16 sensors, which would
make it possible to measure the magnitudes of up to the seventh mode.

Another factor is the distance back from the compressor face. Recall that the
magnitudes of the Fourier modes of a stall cell fall off by e−ηn where η is the nondi-
mensional distance from the compressor face. For the Caltech rig, η is about 0.5, so
beyond the third or fourth mode one would not be able to pick out the signal from
the noise.

Remark 5.2. An alternative to an instantaneous detection of the first n modes by
using 2n+ 1 sensors would be using fewer sensors and an observer to reconstruct the
modes. If the speed of rotation of the stall cell is known, then one can easily verify
that the first few modes are observable (even from a single sensor). The fast decay
of the higher modes because of the distance of the sensors from the compressor face
makes the observability of these modes poor and therefore is still a limiting factor in
the number of detectable modes.

If n modes are accessible, a practical implementation of the controller could use
(
∑n
p=1(1+ am

p )(pAp)
2)

1
2 , i.e., a truncation of the infinite series (

∑∞
p=1(1+ am

p )(pAp)
2)

1
2

representing the H1
K norm of the stall cell g. A natural question arises: what can we

say about the controller of the form (36) that uses first n modes of the stall cell g? In
this section we will show that this controller stabilizes the Galerkin projection of the
full Moore–Greitzer PDE model onto its first n modes.

It is easy to show that the ODEs describing evolution of the pth mode of g are

ȧp =
p

p+ am

(
a

π

∫ 2π

0

Ψc(Φ + g) sin(pθ)dθ +
1

2
pbp

)
,

ḃp =
p

p+ am

(
a

π

∫ 2π

0

Ψc(Φ + g) cos(pθ)dθ − 1

2
pap

)
or, equivalently,

Ȧp =
p

p+ am

(
a

π

∫ 2π

0

Ψc(Φ + g) sin(pθ + rp)dθ

)
,
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ṙp =
p

p+ am

(
−1

2
p+

a

πAp

∫ 2π

0

Ψc(Φ + g) cos(pθ + rp)dθ

)
,

where g is represented as

g =
∞∑
p=1

(ap sin(pθ) + bp cos(pθ)) =
∞∑
p=1

Ap sin(pθ + rp).

A Galerkin projection of the stall PDE with n modes would be the set of 2n
ODEs as above with g replaced with

gn :=
n∑
p=1

Ap sin(pθ + rp).

Hence, an approximate model would consist of equations

Ȧp =
p

p+ am

(
a

π

∫ 2π

0

Ψc(Φ + gn) sin(pθ + rp)dθ

)
,(40)

ṙp =
p

p+ am

(
−1

2
p+

a

πAp

∫ 2π

0

Ψc(Φ + gn) cos(pθ + rp)dθ

)
(41)

for p = 1, . . . , n and (10) and (11).
One can prove the following result.
Theorem 5.1. The controller of the form (36) that uses first n modes of the stall

stabilizes the system of 2n+ 2 ODEs consisting of the Galerkin projection of (9) onto
first n-modes of g and (10) and (11).

Proof. We are going to use a backstepping controller design, almost identical to
the one used for the full model.

Step 1. As a control Lyapunov function for (40) and (41) one uses

V n1 (Φ,Ψ, gn) :=
1

2
‖gn‖2H1

K
=

1

2

n∑
p=1

(
1 +

am

p

)
(pAp)

2.

One has

d

dξ
V n1 (Φ,Ψ, gn) =

n∑
p=1

(
1 +

am

p

)(
p2Ap

d

dξ
Ap

)
,

a

π

∫ 2π

0

(
Ψc(Φ + gn)

n∑
p=1

p2Ap sin(pθ + rp)dθ

)
.

Integrating by parts, one gets

d

dξ
V n1 (Φ,Ψ, gn) =

a

π

∫ 2π

0

(
Ψ′c(Φ + gn)

dgn
dθ

n∑
p=1

pAp cos(pθ + rp)dθ

)

=
a

π

∫ 2π

0

Ψ′c(Φ + gn)

(
dgn
dθ

)2

dθ.

Steps 2 and 3 of the backstepping procedure are exactly the same as in the case of
the full model (with g replaced with gn).
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Simulations. In this section we illustrate the action of a truncated H1-controller
with some simulations. The full Moore–Greitzer model has been simulated using 64
Fourier modes (128 states) to represent the stall cell dynamics. The compressor char-
acteristics are assumed to be a cubic function [15]

Ψc(φ) := ψ0 +H

(
1 +

3

2

(
φ

W
− 1

)
− 1

2

(
φ

W
− 1

)3
)
.

The coefficients ψ0, H, and W represent, respectively, the shut-off pressure rise, semi-
height, and semiwidth of the characteristic. The parameters ψ0, H, W , a, m, lc, and
B determine the compressor model. The Greitzer B parameter determines if the com-
pressor is likely to stall or surge. Stalling compressors are characterized by a low value
of the B parameter, while surging compresssors are characterized by a high value of
the B parameter. We simulated a low B compressor and a high B compressor. We
initialized both models with the initial condition for the surge dynamics near the
peak of the compressor characteristic. The initial shape of the stall cell was a pure
first mode.

Figures 2 and 3 show that, as expected, the state of the uncontrolled low B
compressor settled at a rotating stall condition with a significant pressure drop.

The simulations of uncontrolled dynamics are followed by simulations of the dy-
namics controlled with a truncated H1-controller using first four Fourier modes of the
stall variable and constant gains. The control function was saturated at 0 to avoid us-
ing negative values of the throttle coefficient. We see the state of the low B compressor
after a transient period of growing the stall variable and a drop in pressure settled
at the desired axisymmetric equilibria near the peak of the compressor characteristic.
Figures 4 and 5 show the state evolution.

Figures 6 and 7 show the evolution of the state of the uncontrolled high B com-
pressor. The stall cell initially grows fast, but after the mean mass flow reaches the
reverse flow part of the characteristic, it decays. The state of the system undergoes a
deep surge cycle.

Figures 8 and 9 show the evolution of the state of the controlled high B com-
pressor. The controller opens the throttle and prevents a transition into a deep surge
cycle. Note that the mean flow spends more time in the interval between the well and
the peak than in the uncontrolled case. This causes the stall variable to grow and
stay large. The stall variable starts to decay only after the mean mass flow becomes
bigger than the value corresponding to the peak of the compressor characteristic.
This explains why the stall variable decays faster in the uncontrolled case than in the
controlled one.

Conclusion. We have constructed a feedback controller stabilizing a peak or any
axisymmetric equilibrium to the right of the peak of the compressor characteristic for
the full Moore–Greitzer model. The control law resembles control laws for a one-mode
truncation of the full model. In the case when the set-point parameter in the controller
is such that there is no stable axisymmetric equilibrium we can still guarantee that
the dynamics of the closed-loop system are confined to a ball, whose radius can be
made arbitrarily small by choosing sufficiently high gains in the controller.

A practical implementation of theH1
K-controller would use a finite sum (

∑n
p=1(1+

am
p )(pAp)

2)
1
2 . We proved that this truncated feedback controller actually globally sta-

bilizes the system of 2n+2 ODEs consisting of the Galerkin projection of the PDE de-
scribing the stall onto its first n-modes and two ODEs describing the surge dynamics.
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Simulations: stall and surge dynamics
Low B, uncontrolled.
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Stall cell evolution
Low B, uncontrolled
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Simulations: stall and surge dynamics
Low B, controlled

Fig. 4.
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Stall cell evolution
Low B, controlled
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Simulations: stall and surge dynamics
High B, uncontrolled
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Stall cell evolution
High B, uncontrolled
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Simulations: stall and surge dynamics
High B, controlled

Fig. 8.
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Stall cell evolution
High B, controlled
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While one may argue that the necessity of finding the magnitudes of the Fourier modes
of a stall cell for a feedback requires complicated implementation, let us observe that
such information would be necessary anyway for any feedback law based on a Galerkin
approximation of a Moore–Greitzer PDE model with a finite number of modes.

One feature of the H1-controller is not desirable. Namely, its gain increases for
higher order modes of the stall cell. This does not seem to be necessary (see Re-
mark 4.1). We conjecture that one can replace the H1

K norm of g with the L∞ norm
of g or with the minimum of g in the controller and have the same stabilizability
property without using a higher gain for higher order modes of the stall cell. We are
currently working on the proof of this conjecture.

Although we have concentrated on a specific model here, the methods developed
in this paper can be used, with slight variations, in a variety of problems involving
evolution equations.
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Abstract. The concept of proper rational matrix is strictly connected with the representation of
causal transfer matrices. In the two-dimensional (2D) case there is much freedom in defining proper
rational matrices. This freedom is connected to the fact that past and future in the 2D case can be
determined by a 2D cone. In this way the concept of rational matrix which is proper with respect to
a cone can be introduced. Moreover, an algorithm that checks the properness of a rational matrix
is proposed. Finally, this algorithm is used for determining all possible causal input/output (I/O)
representations of a behavior given by a kernel representation.

Key words. two-dimensional, behavioral approach, input/output representation, proper ratio-
nal matrices, causality, cones
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1. Introduction. In the behavioral approach, a dynamical system is essentially
described through the set of its admissible trajectories, without making any a priori
distinction between input and output variables and without setting any causality
relation between them.

This distinction, which is the characteristic feature of input/output (I/O) models,
can be performed a posteriori, introducing the concept of free variables that are called
in this way because their value can be arbitrarily assigned. As a consequence we have
that, at least for the class of autoregressive (AR) systems, we can extract an I/O
description [12, 9, 15, 13], starting from a behavioral model.

The first question that naturally arises when dealing with I/O descriptions is
how to define causality. In case of discrete two-dimensional (2D) systems, which
is the one we are interested in, the matter is complex, since the plane Z2 lacks a
natural total ordering. As a consequence, the choice of the causality cone C is not as
straightforward as in the one-dimensional (1D) case. In the classical I/O approach
[4], the only admissible causality cone is C = N2, so that causality is synonymous
with quarter plane causality. In this paper we consider an extension of this notion of
causality by assuming that C is an arbitrary cone in Z2.

The characterization of causality of 2D systems is based on the concept of the
2D proper rational matrix. This concept has been introduced and analyzed for a par-
ticular class of cones in [14, 3]. The characterization of 2D proper rational matrices
allowed us to obtain some interesting existence results regarding causal I/O represen-
tations of 2D behavioral systems. The aim of this paper is to investigate the causal
I/O representation of 2D behavioral systems in another direction. More precisely,
starting from the kernel representation of a 2D behavioral system, we want to obtain
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an efficient method for determining all the causal relations between the variables of
the system, given in terms of the set of all causality cones. This result provides a full
characterization of the causality structure of the behavioral system. This problem is
solved by extending the concept of the 2D proper rational matrix to general cones
and by finding a suitable characterization of this class of rational matrices.

2. 1D proper rational matrices. In this section we will recall some basic
definitions and results on proper rational matrices in the 1D case (see [7, 6]).

In this paper we will consider only polynomials having real coefficients. Notice,
however, that all the results we will present hold true for any field. A polynomial
p(z), in which we allow also negative powers of the indeterminates, is called a Laurent
polynomial and can always be written as

p(z) =

N∑
i=n

piz
i,

where n ≤ N are suitable integers. The coefficient p0 is called zero-degree coefficient
of the polynomial p. The set of all the Laurent polynomials has a ring structure
with respect to the usual addition and multiplication and it is denoted by the sym-
bol R[z, z−1]. The rings R[z] and R[z−1] are both subrings of R[z, z−1]. Consider,
moreover, the ring R[[z]] of formal power series

s(z) =
+∞∑
i=0

siz
i,

and define finally the field of rational functions

R(z) :=

{
q(z)

p(z)
: q(z), p(z) ∈ R[z] and p(z) 6= 0

}
,

which is the field of fractions of R[z] (see [1]). It is easy to verify that, up to isomor-
phism, R(z) coincides with the field of fractions of R[z, z−1].

Definition 1. A rational function h ∈ R(z) is said to be proper if there exist
p, q ∈ R[z] such that h = q/p and the zero-degree coefficient of p is nonzero.

Notice, moreover, that in this paper the role of the indeterminates z and z−1 is
inverted with respect to the standard notation used in most system theory books (see
[6]). We prefer to follow the less standard notation proposed in [7, 5], because it is
more convenient in the 2D case as we will see below (see also [4]).

We give now a theorem providing several equivalent characterizations of proper
rational functions. The equivalence of these characterizations is easy to verify (see
the first part of Chapter 2 in [7]).

Theorem 2. Let h ∈ R(z). The following facts are equivalent:
1. h is proper.
2. There exists a unique formal power series y ∈ R[[z]] such that for all p, q ∈

R[z] such that h = q/p we have that

py = q.

3. Let p, q ∈ R[z, z−1] be coprime polynomials such that h = q/p. Then there
exists n ∈ Z such that

(a) p̂ := znp, q̂ := znq ∈ R[z].
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(b) The zero-degree coefficient of p̂ is nonzero.
4. Let p, q ∈ R[z] coprime in R[z] be such that h = q/p. Then the zero-degree

coefficient of p is nonzero.
Remarks. Notice that condition 1, which corresponds to the definition of a proper

rational function, is an existence statement and thus does not give an algorithmic
check of properness. Condition 2 connects proper rational functions with formal power
series and so with causal impulse responses. Conditions 3 and 4 provide algorithmic
checks of properness in the different rings R[z, z−1] and R[z], which in this case are
slightly different. The distinction between these two properties will be useful in the
2D case.

Now we consider the matrix case. A polynomial matrix P can be considered both
as a matrix with polynomial entries and as a polynomial having matrix coefficients.
This is the reason why it makes sense to introduce the concept of the degree-zero
coefficient of a polynomial matrix that is in this case a matrix.

Definition 3. A rational matrix H ∈ R(z)h×m is said to be proper if its entries
are proper rational functions.

We give also in the matrix case a theorem that is similar to the previous one and
that provides several equivalent characterizations of a proper rational matrix. The
characterization of properness for 1D rational matrices is usually given in terms of row
proper matrix fractions (see [6]). The characterization that we will give below is based
on coprime matrix fractions. This characterization is known [7], but it is less classical
and for this reason we will give a brief proof of this result. The convenience of this
characterization compared with the characterization in terms of the row proper matrix
fractions is motivated by the fact that the extension of the concept of the row proper
matrix fraction to the 2D polynomial matrices is rather involved, while the extension
of the concept of coprime matrix fraction to the 2D case is straightforward [8].

Theorem 4. Let H ∈ R(z)h×m. The following facts are equivalent:
1. H is proper.
2. There exist P ∈ R[z]h×h and Q ∈ R[z]h×m such that H = P−1Q and such

that the degree-zero coefficient of P is an invertible square matrix.
3. There exists a unique formal power series Y ∈ R[[z]]h×m such that for all

P ∈ R[z]h×h and Q ∈ R[z]h×m such that H = P−1Q we have that

PY = Q.

4. Let P ∈ R[z]h×h and Q ∈ R[z]h×m be left coprime polynomial matrices such
that H = P−1Q. Then the degree-zero coefficient of P is an invertible square matrix.

Proof. (1 ⇒ 3) By definition and by Theorem 2, condition 2, we know that
if for i = 1, . . . , h and j = 1, . . . ,m the polynomials fij , gij ∈ R[z] are such that
H = [pij/qij ], then there exist yij ∈ R[[z]] such that pijyij = qij . Let p :=

∏
pij and

let Q̄ := [pqij/pij ] ∈ R[z]h×m so that H = Q̄/p. Let P ∈ R[z]h×h and Q ∈ R[z]h×m

be such that H = P−1Q. Then we have that

pQ = PQ̄ = pPY,

which, from the fact that R[[z]] is a domain, implies that Q = PY . We show finally
the uniqueness of Y . Suppose that there exist P̂ ∈ R[z]h×h, Q̂ ∈ R[z]h×m, and
Ŷ ∈ R[[z]]h×m such that P̂ Ŷ = Q̂ and P̂−1Q̂ = H = P−1Q. Since H = Q̄/p, we have
that

P̂ Q̄ = pQ̂ = pP̂ Ŷ .
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Notice, moreover, that Q̄ = pY implies P̂ Q̄ = pP̂Y and so pP̂ Ŷ = pP̂Y . Since P̂ is
nonsingular, this implies that Ŷ = Y .

(3 ⇒ 4) Let P ∈ R[z]h×h and Q ∈ R[z]h×m be left coprime polynomial matrices
such that H = P−1Q. Then by condition 3 there exists Y ∈ R[[z]]h×m such that
PY = Q. Moreover, coprimeness ensures the existence of polynomial matrices A ∈
R[z]h×h and B ∈ R[z]m×h, which satisfy the Bezout identity PA + QB = I. This
implies that P (A+ Y B) = I and hence that the degree-zero coefficient of P must be
an invertible matrix.

(4 ⇒ 2) This is trivial.
(2 ⇒ 1) This follows from the fact that H = adj(P )Q/det(P ) and from the fact

that the degree-zero coefficient of det(P ) is nonzero.
Notice that the only condition that was valid in the scalar case and that is not

valid any more in the matrix case is the one involving the primeness of Laurent poly-
nomials. Condition 4 still provides an algorithmic check of properness in the matrix
case together with condition 1 (the definition), which, translating matrix properness
into scalar properness, shows another way to verify whether a rational matrix is proper
or not.

3. Cones and 2D proper rational matrices. In this section we will extend
the notions of proper rational function and matrix to the 2D case. Some results in
this direction can be found also in [14].

Before giving the definition of properness in the 2D case we need to introduce the
notion of cone and of regular cone in Z2.

Definition 5. A cone C is a subset of Z2 such that there exists a pair of elements
d1, d2 ∈ Z2 satisfying

C = Z2 ∩ {αd1 + βd2 ∈ R2 : α, β ∈ R, α, β ≥ 0},
and such that the matrix D ∈ Z2×2, whose columns coincide with d1 and d2, is
nonsingular, i.e., det(D) 6= 0. A cone C is said to be regular if there exists a pair of
elements d1, d2 ∈ Z2 such that

C = {αd1 + βd2 : α, β ∈ N}
and such that det(D) = ±1, where D is the matrix defined from d1, d2 as above.

It can be shown that a regular cone C is always isomorphic to N2; i.e., it is possible
to perform a change of coordinates in such a way that C coincides with N2. Moreover,
given a cone C, there is always a regular cone Cr containing C. Actually, it is easy to
prove that, up to a change of coordinates, there is no loss of generality not only in
assuming that any cone is contained in N2, but also in supposing that it is specified
as

C = {(i, j) ∈ N2 : j ≤ mi},(1)

where m is a suitable positive rational number.
Given a Laurent polynomial in two indeterminates

p(z1, z2) =
∑

(i,j)∈S
pijz

i
1z
j
2,

where S is a finite subset of Z2, by supp(p) we mean the set of points (i, j) ∈ Z2

corresponding to nonzero coefficients of p(z1, z2)

supp(p) = {(i, j) ∈ Z2 : pij 6= 0}.
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Let C be a cone. With the symbol R[z1, z2, z
−1
1 , z−1

2 ]C we mean the ring of poly-
nomials whose support is contained in C. Similar definitions can be immediately
extended to polynomial matrices and power series. More precisely, with the symbol
R[[z1, z2, z

−1
1 , z−1

2 ]]C we mean the ring of formal power series

s(z1, z2) =
∑

(i,j)∈C
sijz

i
1z
j
2.

Notice that R[z1, z2, z
−1
1 , z−1

2 ]C is always a ring, but unless C is regular, this ring lacks
many of the properties usually possessed by polynomial rings. (It can be seen, for
instance, that it is not, in general, a unique factorization domain.)

For the sake of simplicity, from now on we will denote by z the pair (z1, z2).
Consequently, we will use the following shorthand notations:

R[z, z−1]C := R[z1, z2, z
−1
1 , z−1

2 ]C ,(2)

R[[z, z−1]]C := R[[z1, z2, z
−1
1 , z−1

2 ]]C ,(3)

R(z) := R(z1, z2),(4)

where the last notation denotes the field of rational functions in two indeterminates.

If we think of a polynomial matrix A(z1, z2) ∈ R[z, z−1]h×m as a polynomial with
matrix coefficients, we can write it as

A(z1, z2) =
∑

(i,j)∈S
Aijz

i
1z
j
2,(5)

where Aij ∈ Rh×m and S is a finite subset of Z2. By degree-zero coefficient of A(z1, z2)
we mean the matrix A00.

Definition 6. A 2D rational function h ∈ R(z) is said to be proper with respect
to a cone C if there exist p, q ∈ R[z, z−1]C such that h = q/p and the zero-degree
coefficient of p is nonzero.

Now we give a theorem providing several equivalent characterizations of 2D proper
rational functions. These characterizations provide the extension to the 2D case
of the analogous results valid in the 1D case presented in Theorem 2. Observe,
moreover, that the theorem that follows has already been proved for regular cones in
[14, Lemma 3].

Theorem 7. Let h ∈ R(z) and let C be any cone in Z2. The following facts are
equivalent:

1. h is proper with respect to C.
2. There exists a unique formal power series y ∈ R[[z, z−1]]C such that for all

p, q ∈ R[z, z−1]C such that h = q/p we have that

py = q.

3. Let p, q ∈ R[z, z−1] be coprime polynomials such that h = q/p. Then there
exists n1, n2 ∈ Z such that

(a) p̂ := zn1
1 zn2

2 p, q̂ := zn1
1 zn2

2 q ∈ R[z, z−1]C.
(b) The zero-degree coefficient of p̂ is nonzero.

Proof. (3 ⇒ 1) It is sufficient to notice that h = q̂/p̂, which, by the properties
imposed on p̂ and q̂, implies that h is proper with respect to C.
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(1 ⇒ 2) If h is proper with respect to C, then there exist polynomials

p̂ =
∑

(i,j)∈C
p̂ijz

i
1z
j
2, q̂ =

∑
(i,j)∈C

q̂ijz
i
1z
j
2

such that h = q̂/p̂ and such that p̂00 6= 0. It is not restrictive to assume p̂00 = 1. Let
y ∈ R[[z, z−1]]C be defined recursively as follows:

yhk = −
∑

(i,j)∈C
(i,j)6=(0,0)

p̂ijy(h− i, k − j) + q̂hk.

This equation implies that p̂y = q̂. Now let p, q ∈ R[z, z−1]C be such that h = q/p.
Then we have p̂q = q̂p = p̂py and so, since R[[z, z−1]]C is a domain, we can argue that
py = q.

(2 ⇒ 3) In the proof, we will explicitly suppose our cone to be specified as

C =

{
(i, j) ∈ N2 : j ≤ m1

m2
i

}
,

where m1,m2 are coprime positive integers. This can be done without loss of genera-
lity.

Let p, q ∈ R[z, z−1] be coprime polynomials such that h = q/p. Then there exist
r1, r2 ∈ Z such that p̂ := zr11 z

r2
2 p, q̂ := zr11 z

r2
2 q ∈ R[z] and such that p̂, q̂ are coprime

in R[z]. Using the fact that the thesis is true for regular cones [14, Lemma 3], we can
argue that

p̂y = q̂(6)

and y ∈ R[[z]] imply that the zero-degree coefficient of p̂ is nonzero. We want to show
now that p̂, q̂ ∈ R[z, z−1]C .

Let C̄ be the smallest cone containing both C and the support of p̂ (see Figure 1),
and let m̄1, m̄2 be coprime positive integers such that

C̄ =

{
(i, j) ∈ N2 : j ≤ m̄1

m̄2
i

}
.

If we show that C̄ = C or, equivalently, that (m1,m2) = (m̄1, m̄2), then we are done.
Let C1 and C2 be two regular cones such that

C1 ∩ C2 = C̄.
We can take (see Figure 2) C1 = N2 and C2 = {α(m̄1, m̄2) + β(l̄1, l̄2) : α, β ∈ N},
where l̄1 = l1−km̄1, l̄2 = l2−km̄2 and where l2m̄1− l1m̄2 = −1 and k is a big enough
positive integer. Observe that, since C2 contains the supports of both p̂ and y, C2
contains also the support of q̂.

Perform a change of coordinates transforming C2 into N2. After this change of
coordinates p̂, q̂ are still coprime polynomials in R[z] and y is still in R[[z]]. Since p̂, q̂
are coprime in R[z], there exists [8] a, b ∈ R[z] such that ap̂ + bq̂ = ψ ∈ R[z1]. This
fact together with (6) yields p̂ŷ = ψ, where ŷ := a+ by ∈ R[[z]]. Observe that, if we
consider p̂, a, b, y, ŷ as polynomials or power series in z1 having polynomials or power
series in z2 as coefficients, we have that

ŷ =
∑

ŷh(z2)zh1 =
∑

ah(z2)zh1 +
(∑

yi(z2)zi1

)(∑
bj(z2)zj1

)
,
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Fig. 2

and so we realize that

ŷh(z2) = ah(z2) +
∑

yh−i(z2)bi(z2).

This implies that

(∑
p̂i(z2)zi1

)(∑
ŷj(z2)zj1

)
=

L∑
k=l

ψkz
k
1 ,

where ψk ∈ R and where we can assume that l ∈ N is such that ψl 6= 0. Now, by
observing that p̂0(z2) 6= 0, we can argue that

p̂0(z2)ŷl(z2) = ψl ∈ R \ {0}.(7)

Assume now by contradiction that C̄ 6= C. This has two consequences. On one hand
this implies that the support of p̂0(z2) includes at least two points; on the other hand
we have that all the coefficients yi(z2) of the power series y and consequently also all
the coefficients ŷi(z2) of the power series ŷ are polynomials in z2. These facts are in
contradiction with (7).

Remark. Notice that condition 4 of Theorem 2 does not extend to the 2D case for
general cones in Z2. It can be seen that [14, Lemma 3] this extension holds true when
the cone is regular. Consequently, for general cones we have that condition 3 provides
the only way to check algorithmically the properness of a 2D rational function.

Notice, moreover, that the proof of the previous theorem is more difficult than the
proof of the analogous result for regular cones. The reason is that for regular cones the
ring R[z, z−1]C is isomorphic to the ring R[z] of polynomials in two variables, which
has many nice properties such as a Bezout equation-like condition for coprimeness.
When the cone C is not regular, the ring R[z, z−1]C does not possess such properties
any more. (It is not a unique factorization domain, and even the concept of coprime
polynomials is not well defined.) The key idea in the proof of the previous theorem
is that any cone is the intersection of two regular cones. In this way we can use the
results that are known for regular cones for proving this theorem.

We consider now the matrix case.
Definition 8. A 2D rational matrix H ∈ R(z)h×m is said to be proper with

respect to a cone C if its entries are 2D rational functions that are proper with respect
to C.
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We give also in this case a theorem providing several equivalent characterizations
of a 2D proper rational matrix.

Theorem 9. Let H ∈ R(z)h×m. The following facts are equivalent:
1. H is proper with respect to a cone C.
2. There exist P ∈ R[z, z−1]h×hC and Q ∈ R[z, z−1]h×mC such that H = P−1Q

and such that the degree-zero coefficient of P is an invertible square matrix.
3. There exists a unique formal power series Y ∈ R[[z, z−1]]h×mC such that for

all P ∈ R[z, z−1]h×hC and Q ∈ R[z, z−1]h×mC such that H = P−1Q we have that

PY = Q.

Proof. (2 ⇒ 1 ⇒ 3) These implications can be shown in the same way as we
proved the same implications in Theorem 4. Notice that uniqueness again follows
from the fact that R[z, z−1]C is a domain.

(3 ⇒ 2) Let P ∈ R[z, z−1]h×hC and Q ∈ R[z, z−1]h×mC be such that H = P−1Q.

Then condition 3 ensures the existence of Y ∈ R[[z, z−1]]h×mC such that PY = Q. If
Y = [yij ] and if we denote p := det(P ) and Q̄ := adj(P )Q = [q̄ij ], then we have that
pyij = q̄ij and so, by Theorem 7, we argue that hij = q̄ij/p is proper and hence that
H is proper with respect to C.

The definition of 2D properness, by translating matrix properness into scalar
properness, provides in this case the only way to verify algorithmically whether a
rational matrix is proper or not. An efficient algorithmic check can be done as follows.

Algorithm. Given a rational matrix H ∈ R(z)h×m.
Step 1. Represent it as H = [qij/pij ], where qij , pij ∈ R[z, z−1] are coprime.
Step 2. Let p be the least common multiple of the pij and let q̄ij := qijp/pij so

that H = [q̄ij/p].
Step 3. We have that H is proper with respect to a cone C if and only if there

exists n1, n2 ∈ Z such that
(a) p̂ := zn1

1 zn2
2 p, q̂ij := zn1

1 zn2
2 q̄ij ∈ R[z, z−1]C .

(b) The zero-degree coefficient of p̂ is nonzero.
Proof of the algorithm. One direction of the proof is easy. Suppose conversely

that H is proper. This implies that there exist monomials mij in z1, z2 such that
mijpij ,mijqij ∈ R[z, z−1]C and the zero-degree coefficients of mijpij are nonzero.
This implies that the polynomials pij belong to the set

U := {g ∈ R[z, z−1] : ∃ h1, h2 ∈ Z, zh1
1 zh2

2 g ∈ R[z, z−1]C
and zero-degree coefficient of zh1

1 zh2
2 g is nonzero}.

It is easy to see that this set is a multiplicative set. It is less straightforward to show
that it is saturated so that we have p, q ∈ U if and only if pq ∈ U [1]. This implies
that the least common multiple p of pij is still in U and so there exists n1, n2 ∈ Z
such that p̂ := zn1

1 zn2
2 p and the zero-degree coefficient of p̂ is nonzero. Observe finally

that mijpij divides p̂ and that p̂/mijpij ∈ R[z, z−1]C . This implies that

q̂ij = zn1
1 zn2

1 q̄ij = p̂
qij
pij

= p̂
mijqij
mijpij

∈ R[z, z−1]C .

Remark. In Step 2 we can take as polynomial p any common multiple of the
pij as, for instance, p =

∏
pij . Notice, however, that in general the least common

multiple is more convenient since often it has smaller support and, moreover, it can
be computed efficiently (see [2]).
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4. 2D systems in the behavioral approach. In the remaining part of the
paper we want to use the characterization of 2D proper rational matrices given in the
previous section for the analysis of the causality structure of a 2D behavioral system
given through a kernel representation. We start by giving a short introduction to the
theory of 2D systems in the behavioral approach.

It is known that, given a dynamical system, we can associate with it different
mathematical models, according to the aim the model was constructed for and to
the theoretical approach that has been chosen. When using behavioral models, a
dynamical system is characterized by the set of trajectories that constitute the so-
called behavior of the system. More precisely, in this setup a dynamical system is
described by a triple

Σ = (T,W,B),

where T is the time domain, W is the signal alphabet, and B ⊂ WT , the behavior ,
is the set of admissible trajectories. For 2D systems we assume that T = Z2 and
W = Rq. We refer the interested reader to [9, 10, 11] for a more complete introduction
to 2D behavioral systems theory.

An important subclass of 2D systems is constituted by the so-called AR 2D sys-
tems. They are 2D systems whose behavior is given by the set of solutions w∈(Rq)Z2

(set of all q-dimensional signals defined on Z2) of a linear difference equation of the
following kind: ∑

(i,j)∈S
Rijw(h+ i, k + j) = 0 ∀(h, k) ∈ Z2,(8)

where Rij ∈ Rl×q and S is a finite subset of Z2. Notice that any polynomial matrix

R =
∑

(i,j)∈S
Rijz

i
1z
j
2 ∈ R[z, z−1]l×q

naturally induces a polynomial linear operator

R(σ1, σ2) : (Rq)Z
2 −→ (Rl)Z

2

in the following way:

(R(σ1, σ2)w)(h, k) =
∑

Rijw(h+ i, k + j) ∀(h, k) ∈ Z2.

In this way we have that the behavior B determined by the difference equation (8)
coincides with kerR(σ1, σ2) and that the behavior of an AR system can always be
represented as the kernel of a polynomial linear operator, which is called kernel rep-
resentation.

5. Passing from kernel to I/O representations. Given a behavioral model
of a dynamical system, we could wonder whether an I/O representation of the same
system can be obtained or not. By answering this question we can check whether
there exists a cause-effect relation between the components of the signal.

Roughly speaking, if the constraints imposed by (8) are few with respect to the
number of components of the signal, some of them can be considered as inputs. In
fact, under this assumption, their value is arbitrarily assignable and determines the
value of the remaining components.
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The mathematical translation of this intuitive consideration is a rank condition
on the polynomial matrix R providing the kernel representation of the system. It can
be proved (see [9, 13, 15]) that if

rank R(z1, z2) = h,

then it is possible to split the components of w in m := q − h inputs (free variables)
and h outputs (nonfree variables). More precisely, if S is any permutation matrix
such that

RS = [P | −Q],

where P ∈ R[z, z−1]l×h, Q ∈ R[z, z−1]l×(q−h), and rank P = h, then we say that the
pair of matrices (P,Q) provides an I/O representation of the system because they
satisfy the properties of the following definition.

Definition 10 (see [9, 14]). Given a 2D AR system Σ(Z2,Rq, kerR(σ1, σ2)), the
difference equation

P (σ1, σ2)y = Q(σ1, σ2)u,(9)

where h + m = q, P ∈ R[z, z−1]l×h, Q ∈ R[z, z−1]l×m, and where y ∈ (Rh)Z
2

and

u ∈ (Rm)Z
2

, is an I/O representation of Σ if

1. B = {S[ yu ] : P (σ1, σ2)y = Q(σ1, σ2)u}, where S is a suitable q×q permutation
matrix;

2. u is free, i.e., for all u ∈ (Rm)Z
2

there exists y ∈ (Rh)Z
2

such that (9) holds;
3. no other component in y is free.

We often use the shorthand notation (P,Q) to denote the I/O representation (9).
Observe that, starting from an AR behavioral model, it is possible to extract finitely
many different I/O descriptions. They are obtained by choosing different permutation
matrices S that satisfy only the rank condition. In other words, they are obtained
selecting in different ways the inputs and the outputs among the components of w.

The concept of causality is strictly related to I/O representations. In the 2D case
its definition is more involved than for 1D systems, since there are different possible
ways to order the time domain T = Z2. As a consequence, there is more freedom in
the choice of the causality cone. Given a cone C, by the symbol (Rm)Z

2

C we mean the
set of all m-dimensional signals defined on Z2 and supported in C.

Definition 11. The I/O representation (9) is said to be causal with respect to

the cone C if for any u ∈ (Rm)Z
2

C there exists y ∈ (Rh)Z
2

C such that (9) holds.

Notice that the definition above suggests that the influence of u on y is causal
with respect to C. In can be shown, moreover, [14, Lemma 1] that y in the previous
definition is uniquely determined from u.

6. Characterization of causal I/O representations. In [14], a characteriza-
tion of causal I/O representations with respect to regular cones has been given. Our
aim here is to extend and generalize those results to general cones. Some of these
results can be generalized in a straightforward way. This is the case for Proposition 3
[14], which will be used next. This proposition, stated for regular cones, guarantees
that the causality of an I/O representation

P (σ1, σ2)y = Q(σ1, σ2)u(10)
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depends only on a coprime representation of the polynomial matrices specifying the
system. Thus, if P̄ ∈ R[z, z−1]h×h and Q̄ ∈ R[z, z−1]h×m are coprime polynomial
matrices such that

P = FP̄ , Q = FQ̄,

with F a full column rank polynomial matrix of suitable dimensions, then (10) is
causal with respect to a regular cone Cr if and only if

P̄ (σ1, σ2)y = Q̄(σ1, σ2)u

is causal with respect to it. It is easy to see that the proof still holds if we consider
general cones.

Let (P,Q) be an I/O representation of a 2D AR system that is causal with respect
to a cone C. Define the inputs δ(i), i=1, . . . ,m, as

δ(i)(t) :=

{
ei, t= (0, 0),
0 otherwise,

where ei is the ith vector of the canonical base in Rm. If y(i) ∈ (Rh)Z
2

C is the corre-
sponding output, namely,

P (σ1, σ2)y(i) = Q(σ1, σ2)δ(i),(11)

we define the impulse response of the 2D system to be the matrix-valued sequence

Y := [y(1) . . . y(m)] ∈ (Rh×m)Z
2

C .

It is worth pointing out that, as shown in [14], the causality of an I/O representa-
tion is equivalent to the existence of the impulse response, since the impulse response
determines the way in which the system maps input signals supported in C into output
y by the convolution

y(h, k) :=
∑

(i,j)∈Z2

Y (h− i, k − j)u(i, j).

Notice that, since u and Y are both supported in C, the sum is always finite and,
moreover, also the support of y is included in C.

Now we are in a position to state the following theorem, which allows us to
characterize the causality structure of a 2D AR system.

Theorem 12. Let

P (σ1, σ2)y = Q(σ1, σ2)u,(12)

with P ∈ R[z, z−1]l×h and Q ∈ R[z, z−1]l×m, be an I/O representation of a 2D AR
system. Then (12) is causal with respect to a cone C if and only if the rational matrix
H ∈ R(z)h×m such that Q = PH is proper with respect to the cone −C.

Proof. Let P̄ ∈ R[z, z−1]h×h and Q̄ ∈ R[z, z−1]h×m be coprime polynomial ma-
trices such that P = FP̄ ,Q = FQ̄, where F is a full column rank polynomial matrix
of suitable dimensions, then, as mentioned above, (12) is causal with respect to C if
and only if

P̄ (σ1, σ2)y = Q̄(σ1, σ2)u(13)
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is causal with respect to C. Observe that H = P̄−1Q̄ and that, moreover, it is not
restrictive to assume that P̄ , Q̄ have entries in R[z, z−1]−C . Notice that (13) is causal
with respect to C if and only if there exists the impulse response, which is a matrix-
valued sequence Y ∈ (Rh×m)ZC satisfying the matrix difference equation∑

ij

P̄ijY (h+ i, k + j) = Q̄−h,−k ∀(h, k) ∈ Z2.

If we define the power series Ȳ :=
∑
ij Y (i, j)z−i1 z−j2 ∈ R[[z, z−1]]h×m−C , then we have

that Q̄ = P̄ Ȳ . By Theorem 9 this is equivalent to the fact that H is proper with
respect to −C.

Remarks. Notice that by using Theorem 9 the proof of the previous theorem is
more direct than the proof of the analogous result [14, Theorem 1] for regular cones.
In both cases the main idea is to characterize properness of a rational matrix in terms
of the existence of a power expansion that is supported in the cone. For regular cones
this has been done by using the properties of coprime matrix fraction descriptions of
rational matrices. However, this method works only for regular cones. This difficulty
has been overcome in Theorem 9 simply by using the definition of proper rational
matrices, which is in terms of the properness of its scalar entries. This method, which
obviously works also for regular cones, is simpler and more natural than the technique
used in [14, Theorem 1].

7. Minimal causality cones and parametrization of causal I/O repre-
sentations. Consider an I/O representation (P,Q). The theorem we proved in the
previous section allows us to determine the set of all cones C such that (P,Q) is causal
with respect to C. These cones are called causality cones for the I/O representation.
Notice that, if C is a causality cone and C′ ⊇ C, then also C′ is a causality cone. There-
fore, the set of causality cones is completely determined by its finite subset M(P,Q)
constituted by the minimal causality cones.

In practice the construction of this set reduces to a simple procedure based on the
previous theorem. Let H ∈ R(z)h×m be the rational matrix such that Q = HP and
represent it as H = [qij/pij ], where qij , pij ∈ R[z, z−1] are coprime. Let p be the least
common multiple of pij and q̄ij := qijp/pij so that H = [q̄ij/p]. As suggested in the
algorithmic check of properness proposed above, H is proper with respect to a cone C if
and only if there exist n1, n2 ∈ Z such that p̂ := zn1

1 zn2
2 p, q̂ij := zn1

1 zn2
2 q̄ij ∈ R[z, z−1]C

and the zero-degree coefficient of p̂ is nonzero. For this reason the finite set of minimal
causality cones can be obtained from the polynomials p and q̄ij in the following way:

Step 1. Determine the convex hull of supp (p) and from this the finite set V =
{v1, . . . , vk} of the vertices of this convex hull.

Step 2. For each vi ∈ V consider the following set of cones:

C(vi) =

C : vi − C ⊇ supp (p) ∪
⋃
ij

supp (q̄ij)

 .

Step 3. It is clear that, when the set C(vi) is nonempty, it contains a cone Ĉi that
is smaller than every other cone in C(vi). Then by Theorem 12 the set M(P,Q) of
the minimal causality cones for the I/O representation (P,Q) coincides with the set
of all the cones Ĉi.

It may happen that, for a given I/O representation (P,Q), the set M(P,Q) is
empty. However, there exists a certain freedom in constructing an I/O representation
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from a kernel representation, which corresponds to the freedom that there exists in
the choice of h linearly independent columns in a rank h polynomial matrix R ∈
R[z, z−1]l×q providing the kernel representation of the AR system. The family of the
sets M(P,Q), when (P,Q) varies in the set of all possible I/O representations of the
AR system, provides a complete description of its causality structure. It is important
to notice that, as a direct consequence of [14, Theorem 2], we have that there always
exists an I/O representation (P,Q) such that M(P,Q) is nonempty.

Example 1. Let Σ be a 2D AR system whose behavior is the kernel of the poly-
nomial matrix

R = [z1z2 | − z1 − z2 − z2
1z2 − z1z

2
2 ].

We can consider two I/O representations of Σ. If we let P = z1z2 and Q = z1 + z2 +
z2

1z2 +z1z
2
2 , we have thatM(P,Q) = ∅. If, conversely, we let P = z1 +z2 +z2

1z2 +z1z
2
2

and Q = z1z2, we obtain easily thatM(P,Q) is constituted by four cones as shown in
Figure 3. For convenience in this figure and in the figures relative to the example that
follow the minimal causality cones are translated in such a way that their vertices
coincide with the vertices of the convex hull of p.

Example 2. Let Σ be a 2D AR system whose behavior is the kernel of the poly-
nomial matrix

R = [z1 − z2 | 1].
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This is the same 2D AR system considered in Example 1 in [14]. We can consider
two I/O representations of Σ. If we let P = z1 − z2 and Q = −1, the set M(P,Q)
contains the cones shown in Figure 4, while if we let P = −1 and Q = z1 − z2, we
obtain easily that M(P,Q) is constituted by only one cone as shown in Figure 5.

Example 3. Let Σ be a 2D AR system whose behavior is the kernel of the poly-
nomial matrix

R =

[
z1 − z2

2 0 2z1z2 − 1
1 z1 − z2 1

]
.

This is the same 2D AR system considered in Example 2 in [14]. We can consider
three I/O representations of Σ. If we let

P =

[
z1 − z2

2 0
1 z1 − z2

]
, Q =

[
2z1z2 − 1

1

]
,

then following the algorithm presented above, we obtain that p = z2
1−z1z2−z1z

2
2 +z3

2 ,
q̄11 = −z1 + z2 + 2z2

1z2 − 2z1z
2
2 , and q̄21 = 1 − 2z1z2 + z1 − z2

2 , and so, as shown in
Figure 6, we see that the set M(P,Q) contains two cones.

Finally, if we consider the other two remaining I/O representations, we obtain
the sets of minimal causality cones shown in Figures 7 and 8.
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Abstract. We investigate the properties of a fast-identification style of control algorithm applied
to a class of stochastic dynamical systems in continuous time which are sampled at a constant rate.
The algorithm does not assume that the system dynamics are known and estimates them using a
simple filter. Under a mild smoothness condition on the system dynamics, we show that when the
sampling rate is sufficiently fast, the control algorithm stabilizes the system in the sense that the
sampled closed-loop system becomes an ergodic Markov chain. Moreover, an explicit bound is given
for the expected deviation of the system state from the origin. The result is also adapted for the
case where state-measurement is subject to random noise.

Key words. adaptive, stochastic, control, nonlinear systems
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1. Introduction. Suppose that we have a continuous-time dynamical system
given by

dx(p−1)(t) = f(x(p−1)(t), . . . , ẋ(t), x(t))dt+ u(t)dt+ σdw(t),(1.1)

where x(k) = dk

dtk
x(t), x(t) ∈ R, and w(t) is a standard Brownian motion process.

The real-valued control term u(t) takes constant values on each time interval t ∈
[jδ, (j + 1)δ), j = 0, 1, 2, . . . , and can depend only on observed values of x and its
derivatives at sampling points in time given by {kδ, k = 0, 1, 2, . . . ; kδ ≤ t}, where
δ > 0 is a fixed sampling interval length which is to be specified in advance. Thus the
control can be defined by the sequence {uj} with uj = u(t), jδ ≤ t < (j + 1)δ. The
function f : Rp → R is not known to the controller, but satisfies the global Lipschitz
condition

|f(a)− f(b)| ≤ β‖a− b‖(1.2)

for some β <∞, ‖a‖ = (aaT )1/2 being the Euclidean norm for row vectors a.
Our objective is to make the sequence of vectors

{x(jδ)} := {(x(p−1)(jδ), . . . , ẋ(jδ), x(jδ))}, j = 0, 1, 2, . . . ,

behave in some desired fashion. We do this by choosing the (nonanticipative) control
sequence {uj , j = 0, 1, 2, . . .} so as to make the system mimic as closely as possible a
prespecified reference system. This type of approach is commonly used for adaptive
control problems (see, e.g., [6]). In order to match the system dynamics to those of
the reference system, the controller will need to estimate the values of the unknown
function f(·) on each sampling interval. In fact, it will turn out that as the class
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of possible systems to be controlled becomes larger (i.e., β increases), the sampling
rate required to guarantee closed-loop stability also increases. Further aspects of this
fast-sampling approach will be discussed below.

In this paper, we consider only the regulation problem, i.e., we choose reference
systems which are stable around the origin. However, the results can be adapted for
other types of problems.

There are relatively few results pertaining to the stability of control laws applied
to nonlinear stochastic systems. In fact, to the authors’ knowledge, this is the only
current result which establishes closed-loop stability of a control law applied to an
unknown nonlinear stochastic system. Florchinger [4] has obtained results which apply
in the case where noise intensity vanishes as the system state approaches the origin,
and Meyn and Guo [7] have obtained results on stability of control laws applied to
linear time-varying stochastic systems (see also [2]). In this paper, we consider the case
where the system dynamics are nonlinear and the noise intensity does not necessarily
approach zero as the state approaches the origin.

The discrete-time system

yt := (y
[1]
t , y

[2]
t , . . . , y

[p]
t ) ∈ Rp

which matches the continuous-time system at the sampling points (in the sense that
yt = x(tδ)) is governed by the system of nonlinear equations

y
[1]
t+1 = y

[1]
t + δ(f(yt) + ut) + εt+1 + d

[1]
t+1,(1.3)

y
[2]
t+1 = y

[2]
t + δy

[1]
t + d

[2]
t+1,

· · ·
y

[p]
t+1 = y

[p]
t + δy

[p−1]
t + d

[p]
t+1,

where the noise terms εt are given by

εt = σ(w(tδ)− w((t− 1)δ)),

w(t) being the standard Brownian motion generating the white noise in our original

system, and the terms dt := (d
[1]
t , d

[2]
t , . . . , d

[p]
t ) are “discretization-correction” terms

clearly given by

d
[1]
t+1 =

∫ (t+1)δ

tδ

[f(x(s))− f(x(tδ))] ds,(1.4)

d
[2]
t+1 =

∫ (t+1)δ

tδ

[
x(p−1)(s)− x(p−1)(tδ)

]
ds,

. . .

d
[p]
t+1 =

∫ (t+1)δ

tδ

[ẋ(s)− ẋ(tδ)] ds.

This choice of dt+1 ensures that the discrete-time system does in fact match the
continuous time system at the sampling points. To simplify the expressions which

follow, we will often refer to the quantities y
[1]
t and d

[1]
t simply as yt and dt, respectively.

Note also that {εt} forms a sequence of independent identically distributed normal
random variables, with first absolute moment γ := E [|εt|] = σ

√
2δ/π.

The system (1.3) can be written more concisely in vector notation as

yt+1 = yt(I + δB) + (δf(yt) + δut + εt+1)e1 + dt+1,(1.5)
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where B is the p× p shift matrix

B =


0 1 0 . . . 0
0 0 1 . . . 0
. . . . . . . . . . . . . . . .
0 0 0 . . . 1
0 0 0 . . . 0


and e1 is the row vector (1, 0, . . . , 0).

To control our system, we will use a reference model specified by the linear relation

zt+1 = ztL, L = I + δH,(1.6)

where

H =


h1 1 0 . . . 0
h2 0 1 . . . 0
. . . . . . . . . . . . . . . . . . .
hp−1 0 0 . . . 1
hp 0 0 . . . 0

 .(1.7)

Note that the structure of the reference system (1.6) matches that of the discrete-
time system (1.5), i.e., there always exists some ut ∈ R such that (1.5) is equivalent
to yt+1 = ytL + dt+1. The reference system is in fact an Euler approximation to
the continuous-time linear phase-space system ż = Hz. Clearly, in order for it to
be stable, the continuous-time system must also be stable; i.e., all eigenvalues of H
must have negative real parts. Furthermore, δ must be sufficiently small (so that the
approximation is “reasonably” good). We establish the maximal value of δ for which
stability of (1.6) is guaranteed, along with a bound on the spectral radius of L, as
follows.

Let {λLi } and {λHi } denote the sets of eigenvalues of L and H, respectively. It is
easily seen that λHi is an eigenvalue of H if and only if 1 + δλHi is an eigenvalue of L.
Let

c = min
i

|Re(λHi )|
|λHi |

> 0, δ0 =
c

maxi |λHi |
,(1.8)

and

h = min
i

|λHi |(|λHi | − |Im(λHi )|)
|Re(λHi )| .(1.9)

It can then be shown, using an elementary geometric argument, that for all δ such
that 0 ≤ δ ≤ δ0 and for each eigenvalue λLi = 1 + δλHi ,

|λLi | ≤ ρ := 1− hδ.(1.10)

One possible choice of the quantities {hj} is

hj = −
(
p

j

)
hj , j = 1, . . . , p,

for some h > 0. In this case, a direct computation shows that det(L − λI) = (1 −
δh− λ)p, so that L has a single eigenvalue λ = 1− δh, with multiplicity p.
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Our next step is to choose a control which will match the system dynamics (1.5)
to the reference dynamics (1.6). If these were to be matched exactly, we would need
to choose ut so that

δf(yt) + δut + εt+1 + dt+1 = δh(yt)

or

ut = h(yt)− f(yt)− (εt+1 + dt+1)/δ.(1.11)

Unfortunately, one cannot choose ut in this manner. It must depend only on
current and past observations of the system, and in (1.11) above, f(yt), εt+1, and
dt+1 are unobservable at time t. We therefore use a simple filter to obtain an estimate
of f(yt). Rather than making any assumptions on the form of f(·) and estimating
parameters, we directly estimate the value of f(yt) itself. Taking into account the
fact that E [εt] = 0 and ignoring the presence of the discretization-correction terms
dt, we can obtain from (1.3) an estimate ζt−1 of f(yt−1) of the form

ζt−1 = (yt − yt−1)/δ − ut−1

(recall that yt = y
[1]
t ). Since this filter is operating with a lag, we cannot compute ζt

until time t + 1. Hence, for control purposes, we rely on the continuity of f(·) and
use ζt−1 as an estimate of f(yt).

Substituting our estimate into (1.11), and again replacing the terms εt+1 and dt+1

with 0, we obtain the control law

ut = h(yt)− ζt−1 = h(yt)− (yt − yt−1)/δ + ut−1.(1.12)

In terms of our original process (1.1), this control law takes the form

ut = h(x(tδ))−
[
x(p−1)(tδ)− x(p−1)((t− 1)δ)

]
/δ + ut−1.(1.13)

Since we cannot use this control law at time t = 0, we initialize the system by setting
u0 = 0.

This controller can be thought of as trying to eliminate any “external forces”
(which are specified by the function f(·)) and replacing them with the force which
would be applied by the stable reference system were it at the current point of the
phase space. With this in mind, we hope that the system will tend to “imitate” the
behavior of the reference system. In particular, we could expect it to be stable around
the origin.

The dynamics of our system (using this control law) are now given by the closed-
loop equation (substituting (1.12) back into (1.5))

yt+1 = yt(I + δB) + (δf(yt)− δζt−1)e1 + (δh(yt) + εt+1)e1 + dt+1

= ytL+ δ(f(yt)− f(yt−1))e1 + (εt+1 − εt)e1 + dt+1 − dte1.(1.14)

The sequence {yt} is not a Markov chain. However, it is easily seen (from (1.5)
and (1.12)) that the sequence of vectors

Zt = (yt, ut) = (yt, y
[2]
t , . . . , y

[p]
t , ut)(1.15)

forms a (time-homogeneous) Markov chain.
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2. The main result. Before stating the main result of this paper, we will require
the following definitions.

Suppose that {Xt} is a time-homogeneous Markov chain which takes values on
the space Rq. Let B(Rq) denote the family of Borel sets in Rq. Let P k(z,A) denote
the k-step transition function of the Markov chain {Xt}, P (z,A) = P 1(z,A). The
Markov chain {Xt} on Rq is said to be ergodic if there exists an invariant probability
measure π on B(Rq), that is,

π(A) =

∫
x∈Rq

π(dx)P (x,A) for all A ∈ B(Rq),

such that

lim
n→∞ ‖P

n(x, ·)− π(·)‖TV = 0 for all x ∈ Rq,

where ‖ · ‖TV represents the total variation norm on signed measures on B(Rq).
Our main result is the following theorem.
Theorem 2.1. Assume that the system (1.1) satisfies condition (1.2), and take

any vector (h1, . . ., hp) such that all eigenvalues of the matrix H given by (1.7) have
negative real parts. Suppose that the sampling interval δ is no greater than the quantity
δ0 given by (1.8) and satisfies the inequalities

k1(δ) :=
exp{(β + 1)δ} − 1− (β + 1)δ

(β + 1)δ
< 1(2.1)

and

α := δβ + δ2β‖H‖%+
2%(k4(δ) + k5(δ))

1− k1(δ)
< 1,(2.2)

where the quantities k4(δ), k5(δ), and % are given by

k4(δ) = δk1(δ)(‖H‖+ β), k5(δ) = δk1(δ)β

and

% =
1

δ

(
1

h
+
wh
h2

+ · · ·+ wp−1
h

hp

)
with

wh =
√

2

(
p3 − p

3

)1/4
(
p− 1 +

p∑
i=1

h2
i

)1/2

.(2.3)

Then
(i) the Markov chain {Zt} with control law ut specified by (1.12) is ergodic and
(ii) under this control law, the continuous-time process {x(t)} satisfies

lim sup
t→∞

E [‖x(t)‖] ≤ k7(δ)η + k8(δ),

where

η = (1− α)−1

(
(σ
√

2δ/π + δ|f(0)|)(1 + δ‖H‖%) +
2k6(δ)%

1− k1(δ)

)
,
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k6(δ) = k1(δ)σ
√

2δ/π + k2(δ),

k7(δ) = 1 +
1 + k1(δ)

1− k1(δ)
(δ(‖H‖+ 2β)) ,

k8(δ) = σ
√

8δ/π + k2(δ) +
1 + k1(δ)

1− k1(δ)
(σ
√

2δ/π + k2(δ)),

and

k2(δ) =
√

8/(9π)(β + 1)σδ3/2 exp{(β + 1)δ}.
Remark 1. The first part of Theorem 2.1 states that when the discrete-time

controller (1.12) is applied to the continous-time system (1.1) with sampling interval
δ, the state of the continuous-time system (and the controller) at the sampling times
will approach a limiting distribution as time increases. The second part of the theorem
places bounds on the deviation of the continuous-time system from the origin, thereby
ensuring that the system will not behave “badly” in between the sampling times (this
seems clear intuitively due to the smoothness of f(·)).

Remark 2. The condition (2.1) will be satisfied if

δ(β + 1) < 1.2564.(2.4)

By choosing a sufficiently small sampling interval δ, conditions (2.1) and (2.2) can
always be met. Although this is a fast-sampling approach to control, which has
some inherent disadvantages, the compromise between the level of accuracy of plant-
knowledge and the sampling rate required for stability is an interesting issue which, to
the authors’ knowledge, is not well understood. We will not address this issue in this
paper. However, the results obtained, in particular the required relationship between
δ and β given by (2.4), suggest that this compromise is an issue worthy of further
consideration.

Remark 3. The result can be extended to the case of noisy (but still complete)
state measurements. Suppose that the controller only observes y′t = yt + nt, where
{nt} is a sequence of independently and indentically distributed (i.i.d.) random vari-
ables with covariance matrix Q > 0. Using the same control law (1.12), with yt
replaced by y′t, the sequence {Zt = (yt, ut,nt)} is a Markov chain. If the quantities
η, k6(δ), and k8(δ) are replaced with

η = (1− α)−1
[
(σ
√

2δ/π +
√

tr Q+ δ|f(0)|)(1 + δ‖H‖%)

+
2k6(δ)%

1− k1(δ)
+ δ‖H‖%

√
tr Q

]
,

k6(δ) = k1(δ)σ
√

2δ/π + k2(δ) + (2 + δ‖H‖)k1(δ)
√

tr Q,

and

k8(δ) = σ
√

8δ/π + k2(δ) +
1 + k1(δ)

1− k1(δ)

(
σ
√

2δ/π + k2(δ) + 2
√

tr Q
)
,

then the results of Theorem 2.1 still hold. This means that the conditions for stability
of the closed-loop system remain the same, but the bounds on the first absolute
moment of the Markov chain (and on the first absolute moment of the continuous-
time process) increase.

Remark 4. The result can also be extended to the multidimensional case where
y

[i]
t ∈ Rq, ut ∈ Rq, and w(t) is a q-dimensional Brownian motion.
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3. Proofs. First we bound E [‖dt‖] as a function of δ. Using this bound we will
find a limiting upper bound for ηt := E [‖yt‖]. This is a form of stability in itself.
Then we will show that the Markov chain (1.15) is irreducible and aperiodic and has
the (weak) Feller property. This allows us to use results from [8] to strengthen the
stability result by establishing ergodicity of the chain.

3.1. Bounds on moments. In order to study the behavior of the discretization-
correction terms dt, we establish a bound on the first absolute moment of the difference
between processes v(t) and n(t) (starting at the same point v(0) = n(0)) which satisfy
the equations

dv(t) = G(v(t))dt+ σe1dw(t)(3.1)

and

n(t)− n(0) = G(n(0))t+ σe1w(t),(3.2)

where G(·) satisfies the global Lipschitz condition ‖G(a)−G(b)‖ ≤ κ‖a− b‖ and w(t)
is a standard Brownian motion. We examine the error v(t)−n(t) by integrating (3.1)
and subtracting (3.2) to obtain

v(t)− n(t) =

∫ t

0

(G(v(s))−G(n(s)) +G(n(s))−G(n(0))) ds.

Taking norms and expectations, defining Q(t) = E
[
sup0≤s≤t ‖v(s)− n(s)‖], and

using the Lipschitz property of the function G(·), we obtain

Q(t) ≤ κ
∫ t

0

E

[
sup

0≤u≤s
‖v(s)− n(s)‖

]
ds+ κE

[
sup

0≤u≤t

∫ u

0

‖sG(v(0)) + σe1w(s)‖ds
]

= κ

∫ t

0

Q(s)ds+
κt2

2
‖G(v(0))‖+ κσ

∫ t

0

E [|w(s)|]ds

= κ

∫ t

0

Q(s)ds+
κt2

2
‖G(v(0))‖+

√
8

9π
κσt3/2.

Using the Gronwall–Bellman inequality (see, e.g., [3]), we obtain the bound

Q(t) ≤ κ‖G(v0)‖
(

expκt−1− κt
κ2

)
+

√
8

9π
κσt3/2 exp{κt}.(3.3)

Applying this result to our original process (1.1) and its discretization (1.3) (with
G(yt) = ytB + (f(yt) + ut)e1 so that κ = β + 1), we obtain the bound on the
conditional expectation E [‖dt+1‖ | yt, ut] given by

E [‖dt+1‖ | yt, ut] ≤ k1(δ)δ‖ytB + f(yt)e1 + ute1‖+ k2(δ),(3.4)

where the quantities k1(δ) and k2(δ) are defined in Theorem 2.1. For the sake of
brevity, we will subsequently suppress the explicit reference to δ in the quantities
kj(δ), so that, for instance, when we refer to k1 we really mean k1(δ). Substituting
the control (1.12) into (3.4), we obtain

E [‖dt+1‖ | yt, ut] ≤ δk1‖ytB + (f(yt) + h(yt)− ζt−1)e1‖+ k2

= δk1‖ytH + (f(yt)− f(yt−1) + f(yt−1)− ζt−1)e1‖+ k2

= δk1‖ytH + (f(yt)− f(yt−1))e1‖+ k1‖(εt + dt)e1‖+ k2.
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We now take expectations to get (recall that ηt = E [‖yt‖])
E [‖dt+1‖] ≤ δk1

(‖H‖E [‖yt‖] + βE
[‖yt − yt−1‖

])
+ k1γ + k1E [‖dt‖] + k2

≤ δk1((‖H‖+ β)ηt + βηt−1) + k1γ + k1E [‖dt‖] + k2

≤ k4ηt + k5ηt−1 + k6 + k1E [‖dt‖],(3.5)

where k4, k5, and k6 are the quantities defined in Theorem 2.1 (note their dependence
on δ).

Iterating the inequality (3.5), we find that

E [‖dt+1‖] ≤ kt1E [‖d1‖] +
t−1∑
j=0

kj1[k4ηt−j + k5ηt−j−1 + k6].(3.6)

We now set rt = δf(yt−1)e1 + εte1 and iterate the closed-loop system equa-
tion (1.14) to obtain

yt+1 = y1L
t +

t−1∑
j=0

(rt+1−j − rt−j + dt+1−j − d[1]
t−je1)Lj

=

t−1∑
j=1

rt+1−jLj−1L−
t−1∑
j=1

rt+1−jLj−1


+y1L

t + rt+1 − r1L
t−1 +

t−1∑
j=0

(dt+1−j − d[1]
t−je1)Lj

= y1L
t + rt+1 − r1L

t−1 + δH
t−1∑
j=1

rt+1−jLj−1 +
t−1∑
j=0

(dt+1−j − d[1]
t−je1)Lj .(3.7)

Using the inequality (3.5), we can bound the first absolute moment of the last
sum on the right-hand side of (3.7) as follows (setting η−1 = 0):

E

∥∥∥∥ t−1∑
j=0

(dt+1−j − d[1]
t−je1)Lj

∥∥∥∥
 ≤ t−1∑

j=0

‖Lj‖ (E [‖dt+1−j‖] + E [‖dt−j‖])

≤
t−1−j∑
k=0

kk1 [k4ηt−j−k + (k4 + k5)ηt−j−k−1 + k5ηt−j−k−2 + 2k6]

+

t−1∑
j=0

‖Lj‖
(

(kt−j1 + kt−j−1
1 )E [‖d1‖]

)
.(3.8)

Recall that u0 = 0, so it follows from inequality (3.4) that

E [‖d1‖] ≤ δk1(η0(1 + β) + ω) + k2,(3.9)

where ω = |f(0)|. Taking norms and expectations on both sides of (3.7) and substi-
tuting (3.8) and (3.9), we have

ηt+1 ≤ η1‖Lt‖+ δβηt + (δβη0 + γ + δω)‖Lt−1‖+ γ + δω
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+δ‖H‖
t−1∑
j=0

‖Lj−1‖(δβηt−j + γ + δω)

+
t−1∑
j=0

‖Lj‖(kt−j1 + kt−j−1
1 )(k1δ(η0(1 + β) + ω) + k2)

+
t−1∑
j=0

‖Lj‖
t−1−j∑
k=0

kk1 [k4ηt−j−k + (k4 + k5)ηt−j−k−1 + k5ηt−j−k−2 + 2k6].(3.10)

Now we need to bound the norms of Lk, k = 0, 1, 2, . . . . If the matrix L were
normal (i.e., LL∗ = L∗L, where L∗ is the conjugate-transpose of L), then we would
have ‖Lk‖ ≤ ρk, ρ being the spectral radius (maximum of magnitudes of eigenvalues)
of L bounded by (1.10). Unfortunately, the matrix L = I + δH is not normal, so we
will have to make use of a different bound.

If UTU∗ is a Schur decomposition of L (i.e., T is upper triangular and U is
unitary), then the matrix T can be expressed as the sum of a diagonal matrix and
a strictly upper triangular matrix : T = D + M . Let M be the set of matrices
M obtained from every possible Schur decomposition of L. The quantity ∆(L) =
infM∈M ‖M‖ can be used as a measure of nonnormality of the matrix M . Let ‖A‖ε
denote the Euclidean norm of the matrix A = [ai,j ] defined by

‖A‖ε =

∑
i,j

a2
i,j

1/2

.

Then ∆(L) satisfies (see [5, Theorem 1])

∆(L) ≤
(
p3 − p

12

)1/4√
‖L∗L− LL∗‖ε =

(
p3 − p

12

)1/4√
δ2‖HH∗ −H∗H‖ε

≤
(
p3 − p

12

)1/4

δ
√

2‖H‖2ε =

(
p3 − p

3

)1/4

δ
√

2

(
p− 1 +

p∑
i=1

h2
i

)1/2

≤ δwh,

where wh is defined by (2.3).
As a direct consequence of Theorem 2 of [5], we have the following lemma.
Lemma 3.1. Let m = whδ, with wh defined by (2.3). Then for all integers k ≥ 1,

we have ‖Lk‖ ≤ %k, where

%k = ρk +

(
k

1

)
ρk−1m+ · · ·+

(
k

p− 1

)
ρk−p+1mp−1(3.11)

and ρ is the bound on the spectral radius of L defined by (1.10).
Summing the inequality (3.11), we obtain the bound

∞∑
k=0

‖Lk‖ ≤ % :=
∞∑
k=0

%k =
1

1− ρ +m
d

dρ

(
1

1− ρ
)

+ · · ·+ mp−1

(p− 1)!

dp−1

dρp−1

(
1

1− ρ
)

≤ 1

δh
+

δwh
(δh)2

+ · · ·+ (δwh)p−1

(δh)p
=

1

δ

(
1

h
+
wh
h2

+ · · ·+ wp−1
h

hp

)
.
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In order to bound the behavior of ηt, we will also make use of the following version
of the discrete-time Gronwall–Bellman lemma.

Lemma 3.2. Suppose that {bt, t = 0, 1, . . .}, {αt, t = 0, 1, . . .}, and {gt, t =
0, 1, . . .} are sequences of nonnegative real values such that

bt+1 ≤
t∑

j=0

αjbt−j + gt,(3.12)

with
∑∞
j=0 αj ≤ 1− ε < 1. If {gt} is a bounded sequence and limt→∞ gt = g, then

lim sup
t→∞

bt ≤ g

ε
.

It is easily shown that the inequality (3.10) can be expressed in the form (3.12)
with

gt = (γ + δω) + (δβη0 + γ + δω)‖Lt−1‖+ η1‖Lt‖+ δ‖H‖%(γ + δω) +
2k6%

1− k1

+
t−1∑
j=0

‖Lj‖(kt−j1 + kt−j−1
1 )(k1δ(η0(1 + β) + ω) + k2)

so that

lim
t→∞ gt = g := (γ + δω)(1 + δ‖H‖%) +

2k6%

1− k1
.

We can sum the coefficients {αj , j = 0, 1, . . .} of {ηt−j , j = 0, 1, . . .} in (3.10) to
obtain the bound (using (3.12))

t∑
j=0

αj ≤ δβ + δ2‖H‖β
t−2∑
j=0

‖Lj‖+
t−1∑
j=0

‖Lj‖
t−1−j∑
k=0

kk1 (2k4 + 2k5)

≤ δβ + δ2‖H‖β%+
2%(k4 + k5)

1− k1
= α,(3.13)

where α is defined in the statement of Theorem 2.1.
Applying Lemma 3.2, we have, if α < 1,

E [‖yt‖] ≤ bt,
with

lim sup
t→∞

bt = η :=
g

1− α.(3.14)

In addition, we can rewrite (1.3) to get

ut = δ−1(yt+1 − yt − f(yt)δ − εt+1 − dt+1).

It follows directly from this representation of ut, the Lipschitz property of f(·), and
representation (1.4) that if E [‖yt‖] is bounded, then so is E [‖ut‖]. Consequently, if
α < 1, then E [‖Zt‖] ≤ E [‖yt‖] + E [‖ut‖] is bounded.
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3.2. Bounds for the continuous-time process. In the previous subsection we
established bounds on the first absolute moments of the Markov chain {Zt}. Clearly,
the behavior of the continuous-time process {x(t)} at times other than the sampling
instants {kδ, k = 0, 1, 2, . . .} is also of importance. Intuitively, one might expect that
due to the smoothness of f(·), the process will not be “badly” behaved in these time
intervals. We construct a bound as follows.

Let us consider the process x(t) restricted to the interval Tk := [kδ, (k+ 1)δ). For
all t ∈ Tk, we have the integral representation

x(t) = x(kδ) +

∫ t

kδ

Gk(x(s))ds+ (w(t)− w(kδ))e1

= x(kδ) + (t− kδ)Gk(x(kδ)) + σ(w(t)− w(kδ))e1 + E(t),

where

Gk(x) = xB + (f(x) + uk)e1(3.15)

and E(t) is the correction term. Taking norms, suprema over the interval Tk, and
expectations, we obtain

E

[
sup
t∈Tk
‖x(t)‖

]
≤ E [‖x(kδ)‖] + δE [‖Gk(x(kδ))‖] + σE

[
sup
t∈Tk
|w(t)− w(kδ)|

]
+E

[
sup
t∈Tk
‖E(t)‖

]
.

From (3.3) (with Q(t) = E [sup ‖E(t)‖]) we have

E

[
sup
t∈Tk
‖E(t)‖

]
≤ δk1E [‖Gk(x(kδ))‖] + k2,

and using the standard argument based on the reflection principle, it can be shown
that

E

[
sup
t∈Tk
|w(t)− w(kδ)|

]
≤
√

8δ/π.

Hence,

E

[
sup
t∈Tk
‖x(t)‖

]
≤ E [‖x(kδ)‖] + δE [‖Gk(x(kδ))‖] + σ

√
8δ/π

+δk1E [‖Gk(x(kδ)‖] + k2.(3.16)

Substituting the equation

uk = h(x(kδ))− f(x((k − 1)δ))− (εk + dk)/δ

into (3.15) and using (3.4), we have (recalling that ηk = E [‖x(kδ)‖])
E [‖Gk(x(kδ))‖] = E[‖x(kδ)B + f(x(kδ))e1 − f(x((k − 1)δ))e1

+h(x(kδ))e1 − (εk + dk)e1/δ‖]
≤ ‖H‖ηk + βηk + βηk−1 + σ

√
2/(πδ) + E [|dk|]/δ

≤ (‖H‖+ β)ηk + βηk−1 + σ
√

2/(πδ)

+k1E [‖Gk−1(x((k − 1)δ))‖] + k2/δ.
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Multiplying by δ and taking the limit superior on both sides (using (3.14)), we have

lim sup
k→∞

δE [‖Gk(x(kδ))‖] ≤ (1− k1)−1(δ(‖H‖+ 2β)η + σ
√

2δ/π + k2).

Substituting this expression into (3.16) and again taking limits superior on both sides,
we find that

lim sup
k→∞

E

[
sup
t∈Tk
‖x(t)‖

]
≤ η + σ

√
8δ/π + k2

+
1 + k1

1− k1

(
δ(‖H‖+ 2β)η + σ

√
2δ/π + k2

)
= k7η + k8.

As one might expect, this quantity approaches η (cf. (3.14)) as δ approaches 0.
This is consistent with the intuitive argument that as the sampling intervals shorten,
within each interval the continuous-time process has less time to deviate from the
starting point.

The second part of Theorem 2.1 follows from the fact that

lim sup
t→∞

E [‖x(t)‖] ≤ lim sup
k→∞

sup
t∈Tk

E [‖x(t)‖] ≤ lim sup
k→∞

E

[
sup
t∈Tk
‖x(t)‖

]
.

3.3. Ergodicity. To prove that the chain (1.15) is ergodic, we first need to
establish several further properties of the chain.

It is a well-known fact that solutions of stochastic differential equations for which
the coefficients satisfy the Lipschitz condition (1.2) also satisfy the Feller property
(see, for instance, [9, p. 126]). It is a relatively simple matter to establish the (weak)
Feller property for the chain (1.15), since the first p elements of the chain are simply
successive samplings of the solution of a stochastic differential equation, and the
distribution of the last element (the control term) at time (t+1) depends continuously
on the state of the chain at time t.

We will also show that the chain {Zt} is irreducible with respect to µp+1, the
(p+ 1)-dimensional Lebesgue measure, that is,

µp+1(A) > 0⇒
∞∑
k=1

P k(x,A) > 0 for all x ∈ Rq, for all A ∈ B(Rp+1),(3.17)

and that the chain is aperiodic. The following lemma will assist us in doing this.

Lemma 3.3. Let {Xt, t = 0, 1, 2, . . .} be a time-homogeneous Markov chain
taking values in Rq. Suppose that for some k > 0 and for each initial value X0 ∈ Rq,
Xk has a probability density which is positive everywhere in Rq. Then the chain is
µq-irreducible and aperiodic.

Proof. Relation (3.17) clearly holds for φ = µq since P k(x, ·) has a positive
density. Aperiodicity follows from the observation that, for any y ∈ Rq, P k+1(y, ·)
has the same property due to the Chapman–Kolmogorov equation, and hence P k(y, ·)
and P k+1(y, ·) are equivalent measures, which precludes any periodic behavior.

In order to use this lemma, first note that y1 has a conditional probability density
everywhere-positive in Rp (for each Z0 = (y0, u0)). To see this, recall that y1 = x(δ)
is simply the solution of the stochastic differential equation (1.1) at the fixed time
t = δ. By Girsanov’s theorem (see, e.g., [9]), the distribution of this solution (in the
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space Cp[0, δ] of Rp-valued continuous functions) is equivalent to that of the solution
x̃(t) of the system

dx̃1(t) = σdw(t),

dx̃j(t) = x̃j−1(t)dt, j = 2, . . . , p.

Therefore the distributions of y1 and x̃(δ) are also equivalent, being the projections of
equivalent measures. Furthermore, it can be shown (see, e.g., Lemma 3.2 of [10]) that
x̃(t) has a nondegenerate p-variate Gaussian distribution, and hence has a density
which is positive everywhere. It is then a direct consequence of the Radon–Nikodym
theorem (see, e.g., [1]) that the density of y1 has the same property.

Now we will show that the two-step transition probabilities of the chain (1.15)
have everywhere-positive densities in Rp+1 (in fact the one-step transition functions
are degenerate). From the control law (1.12), we know that given any (y0, u0), u1 is a
linear function of y1. This implies that, given any (y0, u0), the conditional distribution
of (y1, u1) is concentrated on the hyperplane

u = a · y + δ−1e1 · y0 + u0,

a = (h1 − δ−1, h2, . . . , hp)

and has an everywhere-positive density with respect to the respective p-dimensional
volume measure on this hyperplane. Hence the random variable v1 = δ−1e1 · y1 + u1

also has a (conditional) density νy0,u0
which is positive everywhere on the real line.

The same argument shows that the conditional distribution of (y2, u2) given
(y1, u1) is concentrated on the hyperplane u = a · y + v1 and also has a density
on this hyperplane which is everywhere positive. Hence the conditional distribu-
tion of (y2, u2) given v1, being a mixture of such distributions, also has a density
fv1

(y, u) which is positive everywhere on the hyperplane. From this it follows that
the joint conditional distribution of (y2, u2) given the initial state (y0, u0) has a den-
sity (with respect to µp+1) which is proportional to the product fv(y, u)νy0,u0(v),
with v = δ−1e1 · y + u. This density is clearly positive everywhere in Rp+1.

Applying Lemma 3.3 (with k = 2), we see that the chain (1.15) is irreducible and
aperiodic.

In addition, we have already seen that the first absolute moments E [‖Zt‖] are
bounded. It follows then from Chebyshev’s inequality that the chain must be bounded
in probability, that is, its transition probability functions are tight: for any ε > 0 and
any x ∈ Rq, there exists a compact set C such that

lim inf
k→∞

P k(x,C) ≥ 1− ε.

Finally, having established that the chain {Zt} is an irreducible, aperiodic Feller
chain which is bounded in probability, we can apply Theorems 6.0.1 (iii) and 18.0.2 (i)
of [8] to see that the chain is ergodic. This completes the proof of Theorem 2.1.

4. Simulation. To illustrate our results, we simulate the control of a particle
subjected to a force (in one dimension). This force consists of a constant component, a
frictional component which is proportional to velocity, a nonlinearity, and an external
control. More precisely, we consider the second order (p = 2) system specified by

f(x, ẋ) = 2− 0.5ẋ+ 10max(0, (1− |x− 6|)),
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Fig. 4.4. Position vs. time (small-scale).

with noise intensity σ = 0.3 and sampling interval δ = 0.005. The sharp nonlinearity
around the point x = 6 is included so as to test the adaptive behavior of the controller
and to verify stability of the closed-loop system in the presence of such irregularities
(recall that the only information available to the controller is the order of the system
and a Lipschitz constant associated with the function f(·, ·)). We use the reference
system specified by

h(x, ẋ) = −ẋ− x/4,

so that the matrix H has one eigenvalue λH = −1/2 with multiplicity two, and
‖H‖ ' 1.4254. This choice of reference system is arbitrary (subject to its stability, of
course). Clearly, by choosing a reference system with different eigenvalues, our closed-
loop system could be made to exhibit different characteristics, such as a different
rate of convergence to the stable regime, more or less control effort expended, etc.
It is easily verified that the system and reference system satisfy the conditions of
Theorem 2.1, with β = 10, k1(δ) ' 0.3332, δ0 = 2, and h = 1/2. Figures 4.1 and 4.2
display position and velocity as a function of time for a particular realization of the
controlled system. The “settling down” behavior which becomes apparent as time
increases is exactly what Theorem 2.1 leads us to expect.

Figure 4.3 illustrates the control action (specified by (1.12)) used to stabilize the
system. The adaptive action of the controller becomes apparent just after the time
t = 5, when the state enters the region 5 ≤ x ≤ 7. The small-scale plot of position for
37.5 ≤ t ≤ 40 given in Figure 4.4 shows that the controller does indeed restrict the
system to a narrow neighborhood around the origin as time increases.

The result appears to be quite conservative, since the sampling rate requirements
can be relaxed significantly without destabilizing the system. In the example above,
the maximal value of δ which satisfies the condition (2.2) is approximately 0.0056.
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However, simulations indicate that the critical value of δ for which the system becomes
unstable is between 1.5 and 1.6. In part, this could be explained by the fact that
the system only spends a minimal amount of time in the region of the nonlinearity
(5 ≤ x ≤ 7), so the “effective Lipschitz constant” could be much smaller than 10. For
systems in which f(·) varies more around 0, we could expect a smaller discrepancy
between the critical value of δ determined by (2.2) and the critical value indicated by
simulation.

Acknowledgment. The first author is grateful to Kais Hamza for valuable dis-
cussions and guidance during the early stages of this research.
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Abstract. This paper deals with boundary exact controllability for the dynamics governed by
the wave equation with nonconstant coefficients in the principal part, subject to Dirichlet or Neu-
mann boundary controls. The observability inequalities are established by the Riemannian geometry
method under some geometric condition for the Dirichlet problem and for the Neumann problem, re-
spectively. Next, a number of nontrivial examples are presented to verify the observability inequality.
In particular, a counterexample is given without boundary exact controllability, where the control is
exerted on the whole boundary.

Key words. wave equation, exact controllability, Riemannian manifold, Hessian comparison
theorem, geometric optics
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1. Introduction. Let Ω be a bounded domain in Rn with smooth boundary
∂Ω=Γ. It is assumed that Γ consists of two parts: Γ0 and Γ1, Γ0 ∪ Γ1=Γ, with Γ0

nonempty and relatively open in Γ. In the cylinder Ω× (0, T ), we consider the exact
controllability for the mixed problem ytt −

n∑
ij=1

∂

∂xi

(
aij(x)

∂y

∂xj

)
= 0 in Ω× (0, T ),

y(x, 0) = y0(x), yt(x, 0) = y1(x) in Ω,

(1.1)

(1.1a) y = 0 in Γ1 × (0, T ), y = v in Γ0 × (0, T ),

where ytt stands for ∂2y/∂t2, aij = aji are C∞ functions in Rn, and

n∑
ij=1

aij(x)ξiξj ≥ a
n∑
i=1

ξ2
i , x ∈ Ω,(1.2)

for some constant a > 0.
We ask whether there is some constant T0 > 0 such that if T > T0, the fol-

lowing steering property of (1.1) and (1.1a) holds true: for all initial data y0, y1 in
L2(Ω)×H−1(Ω), there exists a suitable control function υ in L2(0, T ;L2(Γ0)), whose
corresponding solution of (1.1), (1.1a) satisfies

y(·, T ) ≡ yt(·, T ) ≡ 0.(1.3)

When the answer is in the affirmative, we then say that the dynamics (1.1) and
(1.1a) is exactly controllable in the interval [0, T ] on L2(Ω) × H−1(Ω) by means of
the Dirichlet control function υ ∈ L2(0, T ;L2(Γ0)).
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1568



EXACT CONTROLLABILITY FOR THE WAVE EQUATION 1569

Exact controllability problems are best handled by duality or transposition, rather
than directly.

Set

Au = −
n∑

ij=1

∂

∂xi

(
aij(x)

∂u

∂xj

)
and consider the corresponding homogeneous problemφtt +Aφ = 0 in Ω× (0, T ),

φ(0) = ϕ0, φt(0) = ϕ1 in Ω,
φ = 0 on Γ× (0, T ).

(1.4)

Given ϕ0 ∈ H1
0 (Ω), ϕ1 ∈ L2(Ω), (1.4) admits a unique solution {φ, φt } ∈ C([0, T ];

H1
0 (Ω)×L2(Ω)) satisfying the trace regularity ∂φ

∂vA
∈ L2(0, T ;L2(Γ)) (Lasiecka, Lions,

and Triggiani [9]); i.e., more precisely, for all T > 0,∫ T

0

∫
Γ0

(
∂φ

∂υA

)2

dσdt ≤ cT
(
‖ϕ0‖2H1

0 (Ω) + ‖ϕ1‖2L2(Ω)

)
,(1.5)

where

∂φ

∂υA
=

n∑
ij=1

aij
∂φ

∂xj
υi

is the conormal derivative, υ = (υ1, υ2, . . . , υn) is the unit normal of Γ pointing
towards the exterior of Ω, and dσ is the Euclidean surface element on Γ.

Let ψ be the solution of the following problem:
ψtt +Aψ = 0 in Ω× (0, T ),
ψ(T ) = ψt(T ) = 0 in Ω,
ψ|Γ1

= 0, 0 < t < T,

ψ|Γ0
=

∂φ

∂υA
, 0 < t < T,

(1.6)

with ∂φ
∂vA

produced by (1.4). Given ϕ0 ∈ H1
0 (Ω) and ϕ1 ∈ L2(Ω), we have defined, in

a unique fashion, Λ : H1
0 (Ω)× L2(Ω) −→ H−1(Ω)× L2(Ω) by

Λ

(
ϕ0

ϕ1

)
=

(
ψt(0)
−ψ(0)

)
.(1.7)

A formal use of Green’s formula gives, after we multiply (1.6) by φ and integrate
by parts, 〈

Λ

(
ϕ0

ϕ1

)
,

(
ϕ0

ϕ1

)〉
=

∫ T

0

∫
Γ0

(
∂φ

∂υA

)2

dσdt,(1.8)

where 〈·, ·〉 denotes the inner product over L2(Ω)× L2(Ω).
By (1.4)–(1.8), getting the exact controllability for (1.1) and (1.1a) over space

L2(Ω)×H−1(Ω) is equivalent to showing that there are constants c, T0 > 0 such that
the following observability inequality holds true for T > T0:∫ T

0

∫
Γ0

(
∂φ

∂υA

)2

dσdt ≥ c
(
‖ϕ0‖2H1

0 (Ω) + ‖ϕ1‖2L2(Ω)

)
(1.9)
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for all ϕ0 ∈ H1
0 (Ω), ϕ1 ∈ L2(Ω), where φ solves problem (1.4).

This problem has received considerable attention in the literature, with numerous
contributions achieved over the past several years. For the constant coefficient case,
see Chen [3], Lagnese [7, 8], Lions [12], and Triggiani [18]. For the variable coefficient
case, the observability inequalities were obtained in Bardos, Lebeau, and Rauch [1]
and in Tataru [15, 16, 17]. In [1], the observability inequality is established subject to
some geometric optics conditions that are almost necessary conditions for the exact
controllability. However, as explicitly recognized by the authors, for aij(x), Ω given,
except for the constant coefficient case, it is not an easy matter to verify the (sharp)
condition that all rays hit Γ0 at a nondiffractive point since rays are solutions of
a system of nonlinear ordinary equations (Hamilton). In Tataru [15, 16, 17], the
observability inequality is obtained by the Carleman estimate, subject to the existence
of a pseudoconvex function. Both works above succeed in handling arbitrary first-
order terms (energy level) as well as time-dependent coefficients.

We note here that nontrivial examples have not been available in the literature
until now.

In the present paper, we consider observability inequality (1.9) by the Riemannian
geometry method, subject to a different geometric condition (1.16), which is motivated
by geometric multiplier identities. Several multiplier identities, which have been built
for constant coefficient wave equation (Lions [12]), are generalized to the variable
coefficient case by some computational techniques in Riemannian geometry so that
observability inequality (1.9) is derived from those identities. The situation here is
very similar to that in the constant coefficient case.

If there is a strictly convex function φ on Ω, then vector field H = Dφ meets
condition (1.16), where D is a connection that will be specified later. At the same
time, since φ− ct2 is pseudoconvex for some constant c, Tataru’s work can be applied
so that some of the examples, given in section 3, can be derived from Tataru’s work.
However, in general, vector field H is not the covariant differential of a function (for
instance, see Example 3.4).

An interesting problem for exact controllability is to give the time T0 that the
control needs. Similar to the case of constant coefficients, our estimates present an
explicit formula for T0. In addition, our approach also works well for the Euler–
Bernoulli equation (Yao [20]) and is available for some nonlinear boundary feedback
problems.

The sufficient and necessary conditions, given by Bardos, Lebeau, and Rauch
[1], show that if Γ0 is “small,” the exact controllability may not hold true. Such a
counterexample is presented by Ralston [13] for the constant coefficient case. It is,
however, well known that in the case of constant coefficients one can always find Γ0

(“large” enough) such that the exact controllability holds true. The situation is very
different in the case of variable coefficients. Indeed, by a combination of Riemannian
geometry and geometric optics, section 4 presents a counterexample without exact
controllability, where the control is exerted on the whole boundary; that is, there
exists a ray that never hits the boundary.

We note that for the case n = 1 the exact controllability always holds true without
geometric condition; that is, the one-dimensional problem (space dependent) fits all
the theories above. We give a sketch of the proof for the case n = 1 in the appendix
at the end of this paper.

Now we are back to our main problem and we focus on observability inequality
(1.9), or equivalently, on the following question, raised by Lions [12]. Set
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FT,Γ0
=

{
(ϕ0, ϕ1) | (ϕ0, ϕ1) ∈ H1

0 (Ω)× L2(Ω),

∫ T

0

∫
Γ0

(
∂φ

∂vA

)2

dxdt <∞
}
.(1.10)

Open question. How can we characterize the Hilbert space FT,Γ0
? Is FT,Γ0

always equal to H1
0 (Ω)× L2(Ω)?

We introduce some notation. Suppose that

n∑
ij=1

aij(x)ξiξj > 0 ∀ x ∈ Rn, ξ = (ξ1, ξ2, . . . , ξn)
τ ∈ Rn, ξ 6= 0.(1.11)

Set

A(x) = (aij(x)) ,(1.12)

G(x) = (gij(x)) = A(x)−1.(1.13)

Let Rn have the usual topology and x = (x1, x2, . . . , xn) be the natural coordinate
system. For each x ∈ Rn, define the inner product and norm over the tangent space
Rnx = Rn by

g (X, Y ) = 〈X, Y 〉g =
n∑

ij=1

gij(x)αiβj ,(1.14)

|X|g = 〈X, X〉1/2g ∀ X =
n∑
i=1

αi
∂

∂xi
, Y =

n∑
i=1

βi
∂

∂xi
∈ Rnx .

It is easily checked from (1.11) that (Rn, g) is a Riemannian manifold with Rie-
mannian metric g. Denote the Levi–Civita connection in metric g by D. Let H be
a vector field on (Rn, g). The covariant differential DH of H determines a bilinear
form on Rnx × Rnx , for each x ∈ Rn, by

DH (X, Y ) = 〈DXH, Y 〉g ∀ X,Y ∈ Rnx ,

where DXH is the covariant derivative of vector field H with respect to X.
For each x ∈ Rn, denote

X · Y =
n∑
i=1

αiβi, |X|0 = (X ·X)
1/2 ∀X =

n∑
i=1

αi
∂

∂xi
, Y =

n∑
i=1

βi
∂

∂xi
∈ Rnx ,

the usual dot product over Rn. For x ∈ Rn, set

A(x)X =

n∑
i=1

 n∑
j=1

aij(x)αj

 ∂

∂xi
∀ X =

n∑
i=1

αi
∂

∂xi
∈ Rnx .(1.15)

Let

X =

n∑
i=1

αi(x)
∂

xi
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be a vector field on Rn. Denote the divergence of X in the Euclidean metric by
div0(X). Then

div0(X) =
n∑
i=1

∂αi(x)

∂xi
.

For f ∈ C1(Ω), denote the gradients of f by ∇0 and ∇g in the Euclidean metric and
in Riemannian metric g, respectively.

Let x0 ∈ Rn. Let r: (0,∞) → Rn be a geodesic with r(0) = x0 parameterized
by arc length in the Riemannian metric g. Denote the distance on (Rn, g) by dg.
For sufficiently small t > 0, we know that dg(r(t), x

0) = t, since the exponential
map expx0 : Rnx0 → Rn is injective on a sufficiently small ball in (Rn, g). We recall
that r(t0) is called the cut point of r with respect to x0, if t0 > 0 is such that
dg(r(t), x

0) = t, 0 ≤ t < t0, and dg(r(t), x
0) < t for all t > t0 (Cheeger and Ebin [2]).

The union of all cut points is called the cut locus of x0 and is denoted by cut(x0). For
anyX ∈ Rnx0 , |X|g = 1, there is at most one cut point on the geodesic expx0 tX (t ≥ 0).
Thus cut(x0) is the image of the exponential map on some closed subset of Sn−1 and
the n-dimensional measure of cut(x0) is zero. Set µ(X) = dg(x

0, r(t0)) if r(t0) is the
cut point of x0 along r(t) = expx0 tX; set µ(X) =∞ when there is no cut point of x0

along r, where X ∈ Sn−1 ⊂ Rnx0 . We define

E =
{
tX | 0 ≤ t < µ(X), X ∈ Sn−1 ⊂ Rnx0

}
.

Then expx0 : E → expx0(E) is a diffeomorphism. It is obvious that expx0(E) is a star
domain and

Rn = expx0(E) ∪ cut(x0).

Now we are in a position to state our main results.
Theorem 1.1. Let H be a vector field on Riemannian manifold (Rn, g) such that

〈DXH, X〉g ≥ a|X|2g ∀X ∈ Rnx , x ∈ Ω,(1.16)

for some constant a > 0. Then there exists T0 > 0 such that for any T > T0,

FT,Γ0
= H1

0 (Ω)× L2(Ω),

where

Γ0 =
{
x
∣∣∣ x ∈ Γ, H(x) · υ(x) > 0

}
,(1.17)

T0 =
2

a
sup
x∈Ω

|H|g(x).(1.18)

Remark 1.1. In the case of constant coefficients, where aij(x) = δij , the above
results were obtained by Lions [12] for the radial field H = x − x0. Komornik [6]
improved the estimate T0.

In general, it is not easy to find a vector field H verifying condition (1.16). In
the following, we relate the existence of such a vector field to sectional curvature by
several corollaries that are useful for the examples in section 3.
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If (Rn, g) is a noncompact complete Riemannian manifold of everywhere positive
sectional curvature, there exists a C∞ strictly convex function h on (Rn, g) by Greene
and Wu [4]. All the eigenvalues of its second covariant differential are everywhere
positive. Take H = Dh, and we have

DH (X, X) = D2h (X, X) > 0 ∀ X ∈ Rnx , x ∈ Rn,
where D2h is the Hessian of h in Riemannian metric g. There is a constant a > 0
such that inequality (1.16) holds true, since Ω is compact.

Corollary 1.1. Let (Rn, g) be noncompact complete and of everywhere positive
sectional curvature. h is a C∞ strictly convex function on (Rn, g). Then vector field
H = Dh meets condition (1.16) for any Ω ⊂ Rn.

For x ∈ Rn, let Π ⊂ Rnx be a two-dimensional subspace. Denote the sectional
curvature by Kx(Π). Let B(x0, γ) be a geodesic ball in (Rn, g) with the center at x0

and the radius γ > 0. Set

kB = sup
x∈B(x0,γ),Π⊂Rnx

Kx(Π).(1.19)

For x0 ∈ Rn, set ρ(x) = dg(x
0, x) ∀x ∈ Rn.

Corollary 1.2. Let x0 ∈ Rn. Let γ > 0 be such that B(x0, γ) ⊂ expx0(E).
If Ω ⊂ B(x0, γ) such that 4γ2kB < π2, then vector field H = ρDρ meets condition
(1.16) with a =

√
kBγcot(

√
kBγ) if kB > 0 and with a = 1 when kB ≤ 0.

Remark 1.2. This corollary is a global result. For any aij , however, we can derive
local boundary exact controllability from it since, for any x0 ∈ Rn, there exists a γ > 0
such that B(x0, γ) ⊂ expx0(E) (Cheeger and Ebin [2]). In addition, if g, defined by
(1.14), is the usual dot product of Rn, it is easily checked that

H = ρDρ = x− x0.

If (Rn, g) is of everywhere nonpositive sectional curvature, then, for all x0 ∈ Rn,
expx0(E) = Rn and kB ≤ 0 (see Spivak [14]). The following corollary is immediate
from Corollary 1.2.

Corollary 1.3. Let (Rn, g) be of nonpositive sectional curvature. For any
x0 ∈ Rn, vector field H = ρDρ satisfies condition (1.16) for any Ω ⊂ Rn where
a = 1.

Corollary 1.4. Assume that

K ≥ sup
x∈Rn, π⊂Rnx

Kx(π) ≥ inf
x∈Rn, π⊂Rnx

Kx(π) > 0.(1.20)

By the Bonnet theorem (Cheeger and Ebin [2]), the completion (Rn∪{∞}, g) of (Rn, g)
is a compact Riemannian manifold.

Set

dg(Ω) = sup
x,y∈Ω

dg(x, y).

If

dg(Ω) <
1

2
min

{
π√
K
,

half the length of the shortest closed geodesic in Rn
}
,(1.21)
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then vector field H = ρDρ meets condition (1.16).
Here we turn to the Neumann action problem and examine problem (1.1) with,

instead of the Dirichlet action in (1.1a), the Neumann action

(1.1b)
∂y

∂υA
= v on Γ× (0, T ).

We say that the dynamic (1.1), (1.1b) is exactly controllable in the interval [0, T ]
by means of control function v with Neumann action if, for ϕ0, ϕ1 in some Hilbert
spaces, one can find v such that the solution of (1.1) and (1.1b) satisfies (1.3).

Theorem 1.2. Let H be a vector field on Riemannian manifold (Rn, g) such that
inequality (1.16) holds true. Let T0 be given by (1.18) and T > T0. Then, for any
ϕ0 ∈ L2(Ω), ϕ1 ∈ (H1(Ω))′, one can find v on Γ × (0, T ) such that the solution of
(1.1) and (1.1b) satisfies (1.3). The control v has the following structure:

v =

{
v0 +

∂v1

∂t
on Γ0 × (0, T ),

v2 on Γ1 × (0, T ),
(1.22)

where

v0, v1 ∈ L2(Γ0 × (0, T )),

v2 ∈ L2(0, T ; (H1(Γ1))′).

Similar to Lions [12], if Ω and H are subject to the geometrical conditions

H(x) · υ(x) ≥ 0 ∀x ∈ Γ,(1.23)

then the control v can be taken in L2(Γ× (0, T )).
Theorem 1.3. Let H be a vector field on Riemannian manifold (Rn, g) such

that conditions (1.16) and (1.23) hold true. Let T0 be given in (1.18) and T > T0.
Then, for any ϕ0 ∈ H1(Ω), ϕ1 ∈ L2(Ω), one can find v ∈ L2(Γ × (0, T )) such that
the solution of (1.1) and (1.1b) satisfies (1.3).

Finally, we consider the exact controllability problem for
ytt +Ay = 0 in Ω× (0, T ),
y(0) = y0, yt(0) = y1,

y = 0 in Γ1,
∂y

∂υA
= v on Γ0.

(1.24)

We have the Dirichlet condition (no action) on Γ1 and a Neumann action on Γ0. Set

H1
Γ1

(Ω) = {u |u ∈ H1(Ω), u|Γ1 = 0 }.
In this case, the preceding approach leads to the following result. For the case

of the Laplace A = −∆, the same result was obtained by Lions [12] and Lasiecka
and Triggiani [10]. It is mentioned that, unlike the Dirichlet case (see (1.5)), the
corresponding regularity inequality does not hold true for dimension Ω ≥ 2.

Theorem 1.4. Let H be a vector field on Riemannian manifold (Rn, g) such
that condition (1.16) holds true. Let T0 be given in (1.18). Then, for any T > T0,
y0 ∈ L2(Ω), y1 ∈ (H1

Γ1
(Ω))′, we can find v such that the solution y of problem (1.24)

satisfies (1.3), where

v = v0 +
∂v1

∂t
, v0, v1 ∈ L2(Γ0 × (0, T )).
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2. The proof of the results.

2.1. Multiplier identities. To estimate the observability inequality (1.9), we
need some multiplier identities which have been built for the classical wave equations,
where aij = δij (Lions [12], Komornik [6], Lasiecka and Triggiani [10]). We now
consider their generalizations in the variable coefficient situations.

With two metrics on Rn in mind, one the Euclidean metric and the other Rie-
mannian metric g, we have to deal with various notations carefully.

We recall that E1, E2, . . . , En is a frame field normal at x (Wu, Shen, and Yu [19])
on Riemannian manifold (Rn, g) if and only if it is a local basis for vector fields with
〈Ei, Ej〉g = δij in some neighborhood of x and with (DEiEj)(x) = 0 for 1 ≤ i, j ≤ n.
Let H be a vector field on Rn and f ∈ C1(Ω). We have the formulae for divergence
in the Euclidean metric

div0 (fH) = fdiv0 (H) +H (f)(2.1)

and ∫
Ω

div0 (H) dx =

∫
Γ

H · v dσ.(2.2)

We shall write (φ, ψ) for
∫

Ω
φψ dx and ‖φ‖ for (φ, φ)1/2.

Lemma 2.1. Let x = (x1, x2, . . . , xn) be the natural coordinate system in Rn, f ,
h ∈ C1(Ω), and H, X vector fields. Then

(1)

〈H(x), A(x)X(x)〉g = H(x) ·X(x), x ∈ Rn;(2.3)

(2)

∇gf(x) =
n∑
i=1

 n∑
j=1

aij(x)
∂f

∂xj

 ∂

∂xi
, x ∈ Rn;(2.4)

(3)

〈∇gf, ∇gh〉g = ∇gf(h) = ∇0f ·A(x)∇0h, x ∈ Rn;(2.5)

(4)

〈∇gf, ∇g (H(f))〉g (x) = DH (∇gf, ∇gf) (x) +
1

2
div0

(|∇gf |2gH) (x)

− 1

2
|∇gf |2g(x)div0(H)(x) ∀x ∈ Rn,(2.6)

where A(x) is given by (1.12).
Proof . Set

H(x) =
n∑
i=1

hi
∂

∂xi
and X(x) =

n∑
i=1

fi
∂

∂xi
.

It follows from (1.15) that

〈H(x), A(x)X(x)〉g =
n∑

ij=1

n∑
k=1

aikfkhjgij =
n∑
k=1

fkhk = H(x) ·X(x),(2.7)
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where

gij =

〈
∂

∂xi
,
∂

∂xj

〉
g

.

Set

∇gxi =
n∑
j=1

xij
∂

∂xj
, 1 ≤ i ≤ n,(2.8)

C(x) = (xij(x)) , x ∈ Rn,(2.9)

an n× n matrix. It follows from (2.8) that

xij = ∇gxi(xj) = 〈∇gxi, ∇gxj〉g =
n∑

k,l=1

gklxikxjl, 1 ≤ i, j ≤ n.(2.10)

Equation (2.10) gives

C(x) = C(x)τG(x)C(x), x ∈ Rn,
where C(x)τ is the transpose of the matrix C(x) and G(x) is defined by (1.13); that
is,

C(x) = G−1(x) = A(x), x ∈ Rn.(2.11)

From (2.8) and (2.11), we obtain

∇gf =
n∑
i=1

∇gf(xi)
∂

∂xi
=

n∑
i=1

∇gxi(f)
∂

∂xi
=

n∑
i=1

 n∑
j=1

aij
∂f

∂xj

 ∂

∂xi
, x ∈ Rn.

This yields

〈∇gf, ∇gh〉g = ∇gf(h) =
n∑

ij=1

aij
∂f

∂xi

∂h

∂xj
= ∇0f(x) ·A(x)∇0h(x), x ∈ Rn.

We now prove part 4. Let x ∈ Rn. Let E1, E2, . . . , En be a frame field normal
at x. There are functions h1, h2, . . . , hn on some neighborhood of x such that H =∑n
i=1 hiEi. In addition, we have

H(f) =

n∑
i=1

hiEi(f),(2.12)

∇gf =
n∑
i=1

Ei(f)Ei, and |∇gf |2g =
n∑
j=1

(Ej(f))
2
,(2.13)

where Ei(f) are the covariant differential of f with regard to Ei in Riemannian metric
g. For the covariant differential of vector field H, we obtain

DH(Ei, Ej)(x) = 〈DEiH(x), Ej(x)〉g

=
n∑
k=1

〈Ei(hk)Ek + hkDEiEk, Ej〉g
= Ei(hj)(x),(2.14)
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since 〈Ek, Ej〉g = δkj and DEiEk(x) = 0. It follows from (2.12)–(2.14) and (2.1) that

〈∇gf, ∇g (H(f))〉g (x) =
n∑
j=1

Ej(f)Ej (H(f))

=

n∑
j=1

Ej(f)

(
n∑
i=1

Ej(hi)Ei(f) +

n∑
i=1

hiEjEi(f)

)

=

n∑
ij=1

Ej(hi)Ei(f)Ej(f) +
n∑
i=1

hi

 n∑
j=1

Ej(f)EiEj(f)


= DH (∇gf, ∇gf) +

1

2
H
(|∇gf |2g)

= DH (∇gf, ∇gf) (x) +
1

2
div0

(|∇gf |2gH) (x)

− 1

2
|∇gf |2g(x)div0(H)(x) ∀x ∈ Rn,

where EiEj(f)(x) = EjEi(f)(x) are the second covariant differential of f .
Proposition 2.1. Let φ solve problem

φtt +Aφ = 0 on Ω× (0, T ).(2.15)

Suppose that H is a vector field on Ω. Then
(1) ∫ T

0

∫
Γ

∂φ

∂υA
H (φ) dσdt+

1

2

∫ T

0

∫
Γ

(
φ2
t − |∇gφ|2g

)
H · ν dσdt

= (φt, H(φ))
∣∣∣T
0

+

∫ T

0

∫
Ω

DH (∇gφ, ∇gφ) dxdt

+
1

2

∫ T

0

∫
Ω

(
φ2
t − |∇gφ|2g

)
div0(H) dxdt.(2.16)

(2) Let P ∈ C2(Ω). Then∫ T

0

∫
Ω

P
(
φ2
t − |∇gφ|2g

)
dxdt

= (φt, φP )
∣∣∣T
0

+
1

2

∫ T

0

∫
Ω

φ2AP dxdt+
1

2

∫ T

0

∫
Γ

φ2∇gP · v dσdt

−
∫ T

0

∫
Γ

∂φ

∂vA
φPdσdt.(2.17)

Proof . (1) We multiply (2.15) by H(φ) and integrate by parts. Using Green’s
formula and Lemma 2.1, parts 2–4, we find that∫

Ω

AφH(φ) dx =

∫
Ω

n∑
ij=1

aij(x)
∂φ

∂xj

∂

xi
(H(φ)) dx−

∫
Γ

∂φ

∂υA
H(φ) dσ

=

∫
Ω

∇gφ (H(φ)) dx−
∫

Γ

∂φ

∂υA
H(φ) dσ
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=

∫
Ω

〈∇gφ, ∇g (H(φ))〉g dx−
∫

Γ

∂φ

∂υA
H(φ) dσ

=

∫ T

0

∫
Ω

DH (∇gφ, ∇gφ) dxdt+
1

2

∫ T

0

∫
Γ

|∇gφ|2gH · υ dσdt

− 1

2

∫ T

0

∫
Ω

|∇gφ|2gdiv0(H) dxdt−
∫

Γ

∂φ

∂υA
H(φ) dσ.(2.18)

On the other hand, we obtain from integration by parts and (2.1)∫ T

0

∫
Ω

φttH(φ) dxdt

=

∫
Ω

φtH(φ)
∣∣∣T
0
dx−

∫
Ω

∫ T

0

φtH(φt) dtdx

= (φt, H(φ))
∣∣∣T
0
−1

2

∫ T

0

∫
Ω

H(φ2
t ) dxdt

= (φt, H(φ))
∣∣∣T
0

+
1

2

∫ T

0

∫
Ω

φ2
tdiv0(H) dxdt− 1

2

∫ T

0

∫
Γ

φ2
tH · υ dσdt.(2.19)

Equations (2.19) and (2.18), together with (2.15), yield (2.16).

(2) Lemma 2.1, part 2, gives

AP = −
n∑

ij=1

∂

∂xi

(
aij(x)

∂P

∂xj

)
= −div0(∇gP ).(2.20)

From (2.20) and formula (2.1), we thus obtain

〈∇gφ, ∇g(Pφ)〉g(x) = P |∇gφ|2g(x) + φ〈∇gφ,∇gP 〉g(x)

= P |∇gφ|2g +
1

2
∇gP (φ2)

= P |∇gφ|2g +
1

2
div0(φ2∇gP ) +

1

2
φ2AP ∀x ∈ Ω.(2.21)

It follows from (2.15), (2.21), (2.2), and Green’s formula that

(φt, φP )
∣∣∣T
0

=

∫ T

0

[(φtt, φP ) + (φt, φtP )] dt

=

∫ T

0

∫
Ω

[
−〈∇gφ, ∇g(φP )〉g + φ2

tP
]
dxdt+

∫ T

0

∫
Γ

∂φ

∂vA
φP dσdt

=

∫ T

0

∫
Ω

P
(
φ2
t − |∇gφ|2g

)
dxdt− 1

2

∫ T

0

∫
Γ

φ2∇gP · v dσdt

− 1

2

∫ T

0

∫
Ω

φ2AP dxdt+

∫ T

0

∫
Γ

∂φ

∂vA
φP dσdt.(2.22)

Equation (2.17) follows from (2.22).

2.2. The proofs of the results. Now we derive some inequalities that will be
used later on.
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Let H be a vector field on (Rn, g) satisfying condition (1.16) and a, which is given
by (1.16). Set

b = sup
x∈Ω

|H|g(x), P = div0H − a,(2.23)

c = sup
x∈Ω

|(div0H)2 − a2 + 2H(P )|.(2.24)

Lemma 2.2. Let φ solve (1.4). Then∣∣∣∣(φt, H(φ) +
1

2
Pφ

)∣∣∣∣ ≤ bE(0) +

√
c

2
‖φt‖‖φ‖,(2.25)

where

E(t) =
1

2

∫
Ω

(φ2
t + |∇gφ|2g) dx = E(0) =

1

2
(‖|∇gϕ0|g‖2 + ‖ϕ1‖2).(2.26)

Proof . We use a technique given in Komornik [6]. Applications of divergence
formulae (2.1) and (2.2) yield∥∥∥∥H(φ) +

1

2
Pφ

∥∥∥∥2

= ‖H(φ)‖2 + (H(φ), Pφ) +
1

4
‖Pφ‖2

= ‖H(φ)‖2 +
1

2

∫
Ω

PH(φ2) dx+
1

4
‖Pφ‖2

= ‖H(φ)‖2 − 1

4

∫
Ω

φ2[(div0H)2 − a2 + 2H(P )] dx

≤ ‖H(φ)‖2 +
c

4
‖φ‖2,(2.27)

since φ|Γ = 0. It follows from (2.27) and (2.26) that∣∣∣∣(φt, H(φ) +
1

2
Pφ

)∣∣∣∣ ≤ ‖φt‖ ∥∥∥∥H(φ) +
1

2
Pφ

∥∥∥∥
≤ ‖φt‖

(
‖H(φ)‖+

√
c

4
‖φ‖

)
≤ bE(0) +

√
c

2
‖φt‖‖φ‖.

Consider the operator A on L2(Ω), given by

D(A) = {u |u ∈ H2(Ω), u|Γ = 0 },

Au = −
n∑

ij=1

∂

∂xi

(
aij(x)

∂u

∂xj

)
, u ∈ D(A).(2.28)

It is well known that the spectrum of positive self-adjoint A consists of eigenvalues

0 < λ1 < λ2 < · · · < λk < · · · ,
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with limk→∞ λk = ∞. Denote by Zk the eigenspaces of A corresponding to λk for
k = 1, 2, . . . .

The crux of the proof of Theorem 1.1 is the following.
Lemma 2.3. Set

ϑ = sup
x∈Γ0

[
(H · υ)/|υA|2g

]
and d = sup

x∈Ω
|A(div0H)|.(2.29)

Then ∫ T

0

∫
Γ0

(
∂φ

∂υA

)2

dσdt ≥ 2

ϑ

[
aT − 2b−

√
c

λm
− d

2λm
T

]
E(0)

∀T > 0, ϕ0 ∈ H1
0 (Ω), ϕ1 ∈ L2(Ω),

ϕ0, ϕ1 ⊥ Zk, 1 ≤ k ≤ m− 1, m = 1, 2, . . . ,
(2.30)

where φ solves (1.4) for initial data (ϕ0, ϕ1).
Proof . First, we deal with the values of |∇gφ|2 and H(φ) on boundary Γ, respec-

tively. Let x ∈ Γ. We decompose ∇gφ into a direct sum in (Rnx , g(x)) :

∇gφ(x) =

〈
∇gφ(x),

υA(x)

|υA|g

〉
g

υA(x)

|υA|g + Y (x),(2.31)

where Y (x) ∈ Rnx with 〈Y (x), υA(x)〉g = 0. Lemma 2.1, part 1, and (2.31) yield

Y (x) · υ(x) = 〈Y (x), υA(x)〉g = 0,(2.32)

that is, Y (x) ∈ Γx, the tangent space of Γ at x. It follows from (2.31) and (2.32) that

|∇gφ|2g = ∇gφ(φ) =
1

|υA(x)|2g
〈∇gφ(x), υA(x)〉2g + Y (φ)

=
1

|υA|2g

(
∂φ

∂υA

)2

,(2.33)

since φ|Γ = 0. Similarly, H can be decomposed into a direct sum

H =

〈
H(x),

υA(x)

|υA(x)|g

〉
g

υA(x)

|υA(x)|g + Z(x),(2.34)

where Z(x) ∈ Γx. Formula (2.34) and Lemma 2.1, part 1, give

H(φ)(x) =
〈H(x), υA(x)〉g
|υA(x)|2g

(
∂φ

∂υA

)
=
H(x) · υ(x)

|υA(x)|2g

(
∂φ

∂υA

)
.(2.35)

By Proposition 2.1, parts 1 and 2, (1.17), (1.16), (2.33), (2.35), and Lemma 2.2,
we find that

ϑ

2

∫ T

0

∫
Γ0

(
∂φ

∂υA

)2

dσdt ≥ 1

2

∫ T

0

∫
Γ

(
∂φ

∂υA

)2
H · υ
|υA|2g

dσdt

= (φt, H(φ))
∣∣∣T
0

+

∫ T

0

∫
Ω

〈D∇gφH, ∇gφ〉g dxdt+
1

2

∫ T

0

∫
Ω

(φ2
t − |∇gφ|2g)div0(H) dxdt
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=
a

2

∫ T

0

∫
Ω

(φ2
t + |∇gφ|2g) dxdt+

∫ T

0

∫
Ω

〈D∇gφH, ∇gφ〉 dxdt

− a
∫ T

0

∫
Ω

|∇gφ|2g dxdt+ (φt, H(φ))
∣∣∣T
0

+
1

2

∫ T

0

∫
Ω

(φ2
t − |∇gφ|2g)P dxdt

≥ aTE(0) +

(
φt, H(φ) +

1

2
Pφ

) ∣∣∣T
0

+
1

4

∫ T

0

∫
Ω

φ2A(div0H) dxdt

≥ aTE(0)− 2bE(0)−√c‖φt‖‖φ‖ − d

4

∫ T

0

‖φ‖2 dt

≥ aTE(0)− 2bE(0)−
√

c

λm
‖φt‖‖|∇gφ|g‖ − d

4λm

∫ T

0

‖|∇gφ|g‖2 dt

≥
[
aT − 2b−

√
c

λm
− d

2λm
T

]
E(0),

where inequalities

‖φ‖2 ≤ 1

λm
‖|∇gφ|g‖2

∀ϕ0 ∈ H1
0 (Ω), ϕ1 ∈ L2(Ω), ϕ0, ϕ1 ⊥ Zk, 1 ≤ k ≤ m− 1

are used. This completes the proof.
Consider the operator A0 on L2(Ω), defined by

D(A0) =

{
u
∣∣∣ u ∈ H2(Ω),

∂u

∂υA

∣∣∣
Γ
= 0

}
,

A0u = −
n∑

ij=1

∂

∂xi

(
aij(x)

∂u

∂xj

)
, u ∈ D(A0).(2.36)

It is well known that A0 is nonnegative, self-adjoint on L2(Ω) and that its spectrum
consists of eigenvalues

0 = γ1 < γ2 < · · · < γk < · · ·

with limk→∞ γk = ∞. Denote by Z0
k the eigenspaces of A0 corresponding to γk for

k = 1, 2, . . . .
Lemma 2.4. Let m ≥ 2 be a positive integer, with P and d as given in (2.23) and

(2.29), respectively. Set

e = sup
x∈Ω
|P |.(2.37)

Suppose that φ solves problem
φtt +Aφ = 0 in Ω× (0, T ),
φ(0) = ϕ0, φt(0) = ϕ1 in Ω,
∂φ

∂υA
= 0 on Γ× (0, T ).

(2.38)
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Then∫ T

0

∫
Γ0

φ2
tH · υ dσdt −

∫ T

0

∫
Γ1

|∇gφ|2gH · υ dσdt−
1

2

∫ T

0

∫
Γ

φ2∇g(div0(H)) · υ dσdt

≥ 2

[
aT − 2b− e√

γm
− Td

2γm

]
E(0) ∀T > 0,(2.39)

for all (ϕ0, ϕ1) ∈ H1(Ω) × L2(Ω) with ϕ0, ϕ1 ⊥ Z0
k , 1 ≤ k ≤ m − 1, for which the

left-hand side of (2.39) is finite, where this time

E(0) =
1

2
(‖ϕ0‖2H1(Ω) + ‖ϕ1‖2).(2.40)

Proof . Since ∂φ
∂υA
|Γ = 0 and H(x) · υ(x) ≤ 0 for x ∈ Γ1, we have, from parts 1

and 2 of Proposition 2.1, that∫ T

0

∫
Γ0

φ2
tH · υ dσdt−

∫ T

0

∫
Γ1

|∇gφ|2gH · υ dσdt−
1

2

∫ T

0

∫
Γ

φ2∇gP · υ dσdt

= 2aTE(0)−
∫ T

0

∫
Γ1

φ2
tH · υ dσdt+

∫ T

0

∫
Γ0

|∇gφ|2gH · υ dσdt+ 2(φt, H(φ))
∣∣∣T
0

+ 2

∫ T

0

∫
Ω

〈D∇gφH, ∇gφ〉g dxdt− 2a

∫ T

0

∫
Ω

|∇gφ|2g dxdt+ (φt, φP )
∣∣∣T
0

+
1

2

∫ T

0

∫
Ω

φ2AP dxdt

≥ 2aTE(0)− 4‖φt‖‖H(φ)‖ − 2‖φt‖‖φP‖ − d

2

∫ T

0

∫
Ω

φ2 dxdt

≥ 2

[
aT − 2b− e√

γm
− Td

2γm

]
E(0) ∀T > 0,

for all (ϕ0, ϕ1) ∈ H1(Ω) × L2(Ω) with ϕ0, ϕ1 ⊥ Z0
k , 1 ≤ k ≤ m − 1, for which the

left-hand side of (2.39) is finite, where inequalities

‖φ‖2 ≤ 1

γm
‖|∇gφ|g‖2 ∀ (ϕ0, ϕ1) ∈ H1(Ω)× L2(Ω),

ϕ0, ϕ1 ⊥ Z0
k , 1 ≤ k ≤ m− 1

are used.
Consider the operator AΓ1 on L2(Ω):

D(AΓ1
) =

{
u
∣∣∣ u ∈ H2(Ω),

∂u

∂vA

∣∣∣
Γ0

= 0, u|Γ1
= 0

}
,

AΓ1
u = −

n∑
ij=1

∂

∂xi

(
aij(x)

∂u

∂xj

)
, u ∈ D(AΓ1

).(2.41)

The spectrum of AΓ1 consists of eigenvalues

0 ≤ β1 < β2 < · · · < βk < · · ·
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with limk→∞ βk =∞. Denote by ZΓ1

k the eigenspaces of AΓ1
corresponding to βk for

k = 1, 2, . . . .
Lemma 2.5. Let m be a positive integer and e, d the same as those in Lemma

2.4. Let φ solve problem
φtt +Aφ = 0 in Ω× (0, T ),
φ(0) = ϕ0, φt(0) = ϕ1 in Ω,
∂φ

∂υA
= 0 on Γ0, φ = 0 on Γ1.

(2.42)

Then ∫ T

0

∫
Γ0

φ2
tH · υ dσdt −

1

2

∫ T

0

∫
Γ0

φ2∇g(div0(H)) · υ dσdt

≥ 2

[
aT − 2b− e√

βm
− Td

2βm

]
E(0) ∀T > 0,(2.43)

for all (ϕ0, ϕ1) ∈ H1
Γ1

(Ω) × L2(Ω) with ϕ0, ϕ1 ⊥ ZΓ1

k , 1 ≤ k ≤ m − 1, for which the
left-hand side of (2.43) is finite, where

E(0) =
1

2
(‖ϕ0‖2H1

Γ1
(Ω) + ‖ϕ1‖2).(2.44)

Proof . Since ∂φ
∂υA
|Γ0

= 0 and φ|Γ1
= 0, we obtain, from (2.33), (2.35), and

Proposition 2.1, parts 1 and 2, that∫ T

0

∫
Γ0

φ2
tH · υ dσdt−

1

2

∫ T

0

∫
Γ0

φ2∇g(div0(H)) · υ dσdt =

∫ T

0

∫
Γ0

|∇gφ|2gH · υ dσdt

−
∫ T

0

∫
Γ1

(
∂φ

υA

)2
H · υ
|υA|2g

dσdt+ 2aTE(0) + 2

∫ T

0

∫
Ω

〈D∇gφH, ∇gφ〉g dσdt

− 2a

∫ T

0

∫
Ω

|∇gφ|2g dσdt+ 2(φt, H(φ))
∣∣∣T
0

+(φt, φP )
∣∣∣T
0

+
1

2

∫ T

0

∫
Ω

φ2AP dxdt

≥ 2aTE(0)− 4‖φt‖‖H(φ)‖ − 2‖φt‖‖φP‖ − d

2

∫ T

0

∫
Ω

φ2 dxdt

≥ 2

[
aT − 2b− e√

βm
− Td

2βm

]
E(0) ∀T > 0,

(2.45)

for all (ϕ0, ϕ1) ∈ H1
Γ1

(Ω)× L2(Ω) with ϕ0, ϕ1 ⊥ ZΓ1

k , 1 ≤ k ≤ m− 1, for which the
left-hand side of (2.45) is finite, where this time inequalities

‖φ‖2 ≤ 1

βm
‖|∇gφ|g‖2 ∀ (ϕ0, ϕ1) ∈ H1

Γ1
(Ω)× L2(Ω),

ϕ0, ϕ1 ⊥ ZΓ1

k , 1 ≤ k ≤ m− 1

are used.
Proof of Theorem 1.1. Let T0 be as defined in (1.18). Let T > T0. Let m be given

large enough such that

T − T0 − 1

a

√
c

λm
− Td

2aλm
> 0.(2.46)
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Lemma 2.3 yields the following inequality:∫ T

0

∫
Γ0

(
∂φ

∂υA

)2

dσdt ≥ c(T )E(0)

∀ϕ0 ∈ H1
0 (Ω), ϕ1 ∈ L2(Ω), ϕ0, ϕ1 ⊥ Zk, 1 ≤ k ≤ m− 1,(2.47)

where φ solves (1.4) for initial data (ϕ0, ϕ1) and

c(T ) =
2

ϑ
a

(
T − T0 − 1

a

√
c

λm
− Td

2aλm

)
> 0.

Inequalities (1.5) and (2.47), together with Komornik [6, Thm. 5.2], give Theorem
1.1.

Proof of Corollary 1.2. We show that vector field H = ρ∇gρ verifies condition
(1.16) under the assumption of Corollary 1.2.

Let M be a space form of constant curvature kB with Riemannian metric 〈·, ·〉M
and let D̃ be the Levi–Civita connection on M . Let p ∈M . Let ρ̃(q) be the distance

function on M from p to q ∈M . For convenience, we introduce a calculation of D̃2ρ̃
which is presented in Wu, Shen, and Yu [19]. Let r̃ : [0, b]→M be a normal geodesic
from p to q such that there is no point conjugate to p on r̃. Then ρ̃(q) = b. Let

X̃ ∈ Mq such that 〈X, r̃′(b)〉M = 0 and |X̃|M = 1. Let J(t) be a proper Jacobi field

along r̃ such that J(0) = 0 and J(b) = X̃. Since M is of constant curvature, J(t) is

an almost parallel field along r̃. Let E(t) be a unit parallel field such that E(b) = X̃.
Then J(t) = f(t)E(t), where f solves problem{

f ′′(t) + kBf(t) = 0, 0 < t < b,
f(0) = 0, f(b) = 1.

(2.48)

Expression (2.48) gives

f(t) =



t

b
, kB = 0,

sin
√
kBt

sin
√
kBb

, kB > 0,

sinh
√−kBt

sinh
√−kBb

, kB < 0.

(2.49)

Denote the unit sphere in Mp by S. Suppose that σ : [0, ε] → S is a curve such that
σ(0) = r̃′(0) and such that the transversal vector field of {r̃s} is J , where r̃s(t) =
expp tσ(s). Let F : [0, b] × [0, ε] → M be defined by F (t, s) = r̃s(t). Set T = dF ( ∂∂t )

and U = dF ( ∂∂s ). Then U(r̃(t)) = J(t) and T (r̃(t)) = r̃′(t) = ∂

∂ρ̃
(r̃(t)). From (2.49),

we then obtain

D̃2ρ̃(q)(X̃, X̃) = UUρ̃− (D̃U )Uρ̃

= U

〈
U,

∂

∂ρ̃

〉
M

−
〈
D̃UU,

∂

∂ρ̃

〉
M

= U〈U, T 〉M − 〈D̃UU, T 〉M
= 〈U, D̃UT 〉M = 〈U, D̃TU〉M = 〈J(b), J ′(b)〉M = f ′(b)

=


1

b
, kB = 0,√
kB cot(

√
kBb), kB > 0,√−kB coth(
√−kBb), kB < 0,

(2.50)
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where UT = TU is used.
Let x ∈ Ω. Let r : [0, b] → B(x0, γ) be a normal minimal geodesic from x0 to

x. Then b = ρ(x). Let X ∈ Rnx such that 〈X, r′(b)〉g = 0. Since Ω ⊂ B(x0, γ) and

B(x0, γ) ⊂ expx(E), ρ(x) = dg(x
0, x) is smooth on Ω/{x0}. We obtain from the

Hessian comparison theorem (Greene and Wu [5]) and (2.50) that

D2ρ(X, X)(x) = |X|2gD2ρ

(
X

|X|g ,
X

|X|g

)
≥ |X|2gD̃2ρ̃(X̃, X̃)

=


1

ρ(x)
|X|2g, kB = 0,

√
kB cot(

√
kBρ(x))|X|2g, kB > 0,√−kB coth(
√−kBρ(x))|X|2g, kB < 0,

≥


1

γ
|X|2g, kB = 0,
√
kB cot(

√
kBγ)|X|2g, kB > 0

1

γ
|X|2g, kB < 0,

∀x ∈ Ω,(2.51)

where inequality√
−kBρ

(
e
√−kBρ + e−

√−kBρ
)
≥ e
√−kBρ − e−

√−kBρ, kB < 0, ρ > 0,

is used.
Set

a =

{
1, KB ≤ 0,√
kBγ cot(

√
kBγ), KB > 0.

(2.52)

It is easily checked that the function t
√
kB cot(

√
kBt) is monotonically decreasing in

t ∈ (0,∞) and

t
√
kB cot(

√
kBt) ≤ 1 ∀ t ∈ (0,∞).(2.53)

We thus obtain from (2.51), (2.52), and (2.53), for any Y ∈ Rnx , that

DH(Y, Y )(x) =ρD2ρ(Y, Y ) + 〈Y, r′(b)〉2g
= ρD2ρ(X, X) + 〈Y, r′(b)〉2g
≥ a

(
|X|2g + 〈Y, r′(b)〉2g

)
= a|Y |2g ∀x ∈ Ω,(2.54)

where H = ρ∇gρ, Y = X + 〈Y, r′(b)〉gr′(b), and 〈X, r′(b)〉g = 0.
Proof of Corollary 1.4. Set

γ0 = min

{
π√
K
,

half the length of the shortest closed geodesic in Rn
}
.

Let x0 ∈ Ω. Then Ω ⊂ B(x0, γ0

2 ) since dg(Ω) < γ0

2 . By the Klingenberg theorem
(Cheeger and Ebin [2, Cor. 5.7]), we have

B
(
x0,

γ0

2

)
⊂ expx0(E).
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Since

4
(γ0

2

)2

K = γ2
0K < π2,

Corollary 1.2 completes our proof.
Proof of Theorem 1.2. It is well known that Γ is a submanifold of Riemannian

manifold (Rn, g) with the induced Riemannian metric gΓ in (Rn, g). Denote gradient,
divergence, and the Laplace operator on (Γ, gΓ) by ∇Γ, divΓ, and ∆Γ, respectively.
Set G(x) = detG(x) for x ∈ Rn. Let ∆g be the Laplace operator on Rn in Riemannian
metric g. Then, in the natural system x = (x1, x2, . . . , xn),

∆gf =
1√G(x)

n∑
ij=1

∂

∂xi

(√
G(x)aij(x)

∂f

∂xj

)
∀ f ∈ C2(Rn), x ∈ Rn.(2.55)

By the formula of divergence in Riemannian metric g and from part 1 of Lemma 2.1,
we have∫

Ω

∆gf dΩg =

∫
Γ

〈
∇gf, υA

|υA|g

〉
g

dσΓ =

∫
Γ

1

|υA|g∇gf · υdσΓ ∀ f ∈ C2(Ω),(2.56)

where Ωg and dσΓ are the metric volume element and the metric surface element in

Riemannian metric g, respectively. It is easily checked that dΩg =
√G(x)dx. We

thus obtain from (2.55) and part 2 of Lemma 2.1 that∫
Ω

∆gf dΩg =

∫
Ω

div0(
√
G(x)∇gf) dx =

∫
Γ

√
G(x)∇gf · υ dσ ∀ f ∈ C2(Ω).(2.57)

Formulae (2.57) and (2.56) give

dσΓ = |υA|g
√
G(x)dσ.(2.58)

In addition, by the Stokes theorem for Riemannian manifold (Γ, gΓ), we have

−
∫

Γ

f∆Γf dσΓ =

∫
Γ

|∇Γf |2g dσΓ(2.59)

for any f ∈ H1(Γ).
In the following, let φ solve problem (2.38) for initial data (ϕ0, ϕ1). Then

|∇gφ|2g =

(
∂φ

∂υA

)2

+ |∇Γφ|2g = |∇Γφ|2g ∀x ∈ Γ,(2.60)

since ∂φ
υA

= 0 on Γ.
We define ψ by

ψtt +Aψ = 0 in Ω× (0, T ),
ψ(T ) = ψt(T ) = 0,
∂ψ

∂υA
=

{
(φtt − φ)|υA|g

√G(x) on Γ0 × (0, T ),

(∆Γφ− φ)|υA|g
√G(x) on Γ1 × (0, T ).

(2.61)

The solution of (2.61) is a weak solution, defined by transposition. Therefore, given
ϕ0, ϕ1, we have defined, in a unique fashion,

Λ1(ϕ0, ϕ1) = (ψt(0), −ψ(0)).(2.62)
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Then, from (2.38), (2.61), (2.60), and (2.58), we obtain, in the sense of distribution,

〈Λ1(ϕ0, ϕ1), (ϕ0, ϕ1)〉 =

∫ T

0

∫
Γ0

(φ2+φ2
t ) dσΓdt+

∫ T

0

∫
Γ1

(φ2+|∇Γφ|2g) dσΓdt.(2.63)

We define on initial data (ϕ0, ϕ
1)

‖(ϕ0, ϕ
1)‖F =

(∫ T

0

∫
Γ0

(φ2 + φ2
t ) dσΓdt+

∫ T

0

∫
Γ1

(φ2 + |∇Γφ|2g) dσΓdt

)1/2

.(2.64)

Set

X (T ) =
{

(ϕ0, ϕ1)
∣∣∣ (ϕ0, ϕ1) ∈ H1(Ω)× L2(Ω), ‖(ϕ0, ϕ1)‖F <∞

}
.(2.65)

Then X (T ) ⊂ F . It is easily checked that ‖ · ‖F is a seminorm on X (T ).
Let T0 be given in (1.18). Let T > T0. Suppose that m is given large enough such

that

T − T0 − e

a
√
γm
− Td

2aγm
> 0.(2.66)

Set

ε = max

(
sup
x∈Γ

|H · v|
|vA|g

√G , sup
x∈Γ

|∇g(div0H) · v|
2|vA|g

√G

)
,(2.67)

cm =
2a

ε

(
T − T0 − e

a
√
γm
− Td

2aγm

)
.(2.68)

Lemma 2.4, (2.58), (2.67), and (2.68) then yield the following:∫ T

0

∫
Γ0

(φ2 + φ2
t ) dσΓdt+

∫ T

0

∫
Γ1

(φ2 + |∇Γφ|2g) dσΓdt ≥ cmE(0)

∀ (ϕ0, ϕ1) ∈ X (T ), ϕ0, ϕ1 ⊥ Z0
k , 1 ≤ k ≤ m− 1.(2.69)

By the compactness-uniqueness argument, we now show that there is a c(T ) > 0
such that

‖(ϕ0, ϕ
1)‖2F ≥ c(T )E(0) ∀ (ϕ0, ϕ1) ∈ X (T ).(2.70)

Suppose that inequality (2.70) does not hold true. There is a sequence {(ϕ0
k, ϕ

1
k)} ⊂

H1(Ω)× L2(Ω) with

Ek(0) =
1

2
(‖ϕ0

k‖2H1(Ω) + ‖ϕ1
k‖2) = 1(2.71)

for all k ≥ 1 such that

‖(ϕ0
k, ϕ

1
k)‖F ≤ 1

k
, k = 1, 2, . . . .(2.72)
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Let H1(Ω)× L2(Ω) be decomposed into a direct sum:

H1(Ω)× L2(Ω) =
(
(⊕m−1

k=1 Z
0
k)× (⊕m−1

k=1 Z
0
k)
)⊕ W̃ .(2.73)

It is easily checked that

dim
(
(⊕m−1

k=1 Z
0
k)× (⊕m−1

k=1 Z
0
k)
)
<∞.(2.74)

Set

(ϕ0
k, ϕ

1
k) = ũk + w̃k, k = 1, 2, . . . ,(2.75)

where ũk ∈ (⊕m−1
k=1 Z

0
k)× (⊕m−1

k=1 Z
0
k) and w̃k ∈ W̃ . From (2.74), we can assume that

ũk → ũ0 ∈ X (T ) in ‖ · ‖F , as k →∞.(2.76)

Since ‖ · ‖F is a seminorm on X (T ), we obtain from (2.40), (2.69), (2.72), and (2.75)
that

√
cm‖w̃k − w̃j‖H1(Ω)×L2(Ω) ≤ ‖w̃k − w̃j‖F ≤

(
1

k
+

1

j

)
+ ‖ũk − ũj‖F ∀ k ≥ 1, j ≥ 1.

This means that by (2.76),

(ϕ0
k, ϕ

1
k)→ (u0, u1) in H1(Ω)× L2(Ω) as k →∞.(2.77)

It follows from (2.71) and (2.77) that

‖(u0, u1)‖H1(Ω)×L2(Ω) = 1.(2.78)

Let φ0 solve problem (2.38) for (ϕ0, ϕ1) = (u0, u1). Then ∂φ0

∂vA
|Γ = 0. In addition,

by the trace theorem of Sobolev spaces, (2.64), and (2.72), we know that there is a
constant β > 0 such that∫ T

0

‖φ0‖2L2(Γ) dt≤
∫ T

0

‖φ0 − φk‖2L2(Γ) dt+

∫ T

0

‖φk‖2L2(Γ) dt

≤ β
∫ T

0

‖φ0 − φk‖2H1(Ω)dt+ ‖(ϕ0
k, ϕ

1
k)‖2F

≤ βT‖(u0, u1)− (ϕ0
k, ϕ

1
k)‖2H1(Ω)×L2(Ω) +

1

k2
,(2.79)

where φk solve problems (2.38) with initial data (ϕ0, ϕ1) = (ϕ0
k, ϕ

1
k) for k = 1, 2, . . . .

Expressions (2.77) and (2.79) give

φ0|Γ = 0.(2.80)

From (2.80), we may apply observability inequality (1.9) to φ0 and obtain

(u0, u1) = 0,

contradicting (2.78).
The inequality in (2.70) gives

F ⊂ H1(Ω)× L2(Ω), T > T0.
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It follows that

(H1(Ω))′ × L2(Ω) ⊂ F ′,
so that, if y0 ∈ L2(Ω), y1 ∈ (H1(Ω))′, we can derive the system in (1.1) and (1.1b) to
rest at T by the control function v given by

v =

{
(−φ+ φtt)|υA|g

√G(x) on Γ0 × (0, T ),

(−φ+ ∆Γφ)|υA|g
√G(x) on Γ1 × (0, T ).

This completes the proof of Theorem 1.2.
Proof of Theorem 1.3. Let T0 be given in (1.18) and T > T0. Since Γ1 = {x |x ∈

Γ, H(x) · υ(x) = 0 }, by starting with Lemma 2.4 and following the proof of Theorem
1.2, we can get the following inequality:∫ T

0

∫
Γ

(φ2 + φ2
t ) dσdt ≥ cTE(0),(2.81)

where cT > 0 is a constant. This time we define a norm on initial data (ϕ0, ϕ1) by

‖(ϕ0, ϕ1)‖F =

(∫ T

0

∫
Γ

φ2 dσdt

)1/2

.

From (2.81), a technical argument similar to Lions [12] gives∫ T

0

∫
Γ

φ2 dσdt ≥ c′TE(0).

This completes our proof.
Proof of Theorem 1.4. Let T0 be given in (1.18) and T > T0. Let φ solve problem

(2.42). From Lemma 2.5 and by following the proof of Theorem 1.3, we can obtain
cT > 0, satisfying ∫ T

0

∫
Γ0

(
φ2 + φ2

t

) ≥ cTE(0)(2.82)

for all (ϕ0, ϕ1) ∈ H1
Γ1

(Ω)× L2(Ω), for which the left-hand side of (2.82) is finite.
On the initial data (ϕ0, ϕ1), we define the norm by

‖(ϕ0, ϕ1)‖F =

(∫ T

0

∫
Γ0

(φ2 + φ2
t ) dσdt

)1/2

.

From (2.82), we have

F ⊂ H1
Γ1

(Ω)× L2(Ω).

Then

F ′ ⊃ (H1
Γ1

(Ω))′ × L2(Ω).

This completes our proof, where we take

v = −φ+ φtt in Γ0.
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3. Examples.
Example 3.1. Let (aij) be a positive, symmetric constant matrix. Consider the

operator A on Rn, given by

Au = −
n∑

ij=1

aij
∂2u

∂xi∂xj
.

It is easily verified that Riemannian manifold (Rn, g) is of zero sectional curvature,
where

g =

n∑
ij

gijdxidxj and (gij) = (aij)
−1.(3.1)

By Corollary 1.2,

a = 1.(3.2)

Let x0 ∈ Rn. The distance function ρ satisfies

ρ2(x) = d2
g(x

0, x) =
n∑

ij=1

gij(xi − x0
i )(xj − x0

j ) ∀ x ∈ Rn.(3.3)

We obtain

∂h

∂xk
=

n∑
j=1

gkj(xj − x0
j ),(3.4)

where h = 1
2ρ

2(x). It follows from (3.4) and part 2 of Lemma 2.1 that

∇gh =

n∑
i=1

(
n∑
k=1

aik
∂h

∂xk

)
∂

∂xi
=

n∑
i=1

(xi − x0
i )

∂

∂xi
.(3.5)

This gives

sup
x∈Ω
|∇gh|g(x) = sup

x∈Ω
ρ(x),(3.6)

so that vector field H = ∇gh meets condition (1.16) with T0 = 2 supx∈Ω ρ(x) for any
Ω ⊂ Rn. This coincides with the result in Komornik [6], where aij = δij .

Lemma 3.1. Let a1, a2, . . . , an be positive numbers and M be the hypersurface of
Rn+1 given by

M =

{
(x1, x2, . . . , xn, xn+1)

∣∣∣ xn+1 =
1

2

n∑
i=1

aix
2
i

}
(3.7)

with the induced Riemannian metric in Rn+1. Then M is of everywhere positive
sectional curvature.

Proof . Let p = (x1, x2, . . . , xn+1) ∈M . Then

Mp =

{
X
∣∣∣ X =

n+1∑
i=1

αi
∂

∂xi
, αn+1 =

n∑
i=1

aixiαi

}
.(3.8)



EXACT CONTROLLABILITY FOR THE WAVE EQUATION 1591

Set

Z =
n∑
i=1

aixi
∂

∂xi
− ∂

∂xn+1
.(3.9)

Then υ(p) = Z
|Z|0 is a unit normal vector field on M . Denote the connection of the

usual flat metric of Rn+1 by D0. Let X, Y be vector fields on M . Then the second
fundamental form of M is

S(X,Y ) = − [(D0
XY ) · υ] υ.(3.10)

Set

Xi =
∂

∂xi
+ aixi

∂

∂xn+1
, i = 1, 2, . . . , n.(3.11)

Then X1, X2, . . . , Xn is a vector field basis of M . Since D0
∂
∂xk

∂
∂xi

= 0 for 1 ≤ k, l ≤
n+ 1, we obtain from (3.11)

D0
XiXj = Xi(ajxj)

∂

∂xn+1
=

∂

∂xi
(ajxj)

∂

∂xn+1
= δijaj

∂

∂xn+1
, 1 ≤ i, j ≤ n.(3.12)

It follows from (3.10) and (3.12) that

S(Xi, Xj) =
δijaj
|Z|0 υ, 1 ≤ i, j ≤ n.(3.13)

Denote the curvature tensor of the Riemannian metric of M by R. Let π ⊂Mp be a
two-dimensional subspace and X, Y be a basis of π, where

X =
n∑
i=1

αiXi and Y =
n∑
i=1

βiXi.

From (3.13) and the Gauss equation (Wu, Shen, and Yu [19]), we have

R(X, Y, X, Y ) = S(X, X) · S(Y, Y )− |S(X, Y )|20
=

1

|Z|0

[(
n∑
i=1

aiα
2
i

)(
n∑
i=1

aiβ
2
i

)
−

n∑
i=1

aiαiβi

]
> 0,(3.14)

since X, Y are linearly independent. Equation (3.14) completes the proof.

Example 3.2. Let ai > 0 be constants, with i = 1, 2, . . . , n. Consider the operator
on Rn:

Au = −
n∑
i=1

∂

∂xi


1 +

n∑
j 6=i

a2
jx

2
j

1 +
n∑
k=1

a2
kx

2
k

∂u

∂xi

+
∑
i6=j

∂

∂xi

 aiajxixj

1 +
n∑
k=1

a2
kx

2
k

∂u

∂xj

 .
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Set

A(x) =
1

1 +
n∑
k=1

a2
kx

2
k



1 +

n∑
i=2

a2
ix

2
i −a1a2x1x2 · · · −a1anx1xn

−a2anx1xn 1 +
∑
i6=2

a2
ix

2
i · · · −a2anx2xn

· · · · · · · · · · · ·
−ana1xnx1 −ana2xnx2 · · · 1 +

n−1∑
i=1

a2
ix

2
i


.(3.15)

Then

G(x) = A−1(x) =


1 + a2

1x
2
1 a1a2x1x2 · · · a1anx1xn

a2anx1xn 1 + a2
2x

2
2 · · · a2anx2xn

· · · · · · · · · · · ·
ana1xnx1 ana2xnx2 · · · 1 + a2

nx
2
n

 .(3.16)

Consider Riemannian manifold (Rn, g), where Riemannian metric g is determined
in the natural coordinate system x = (x1, x2, . . . , xn) by

g =

n∑
i,j=1

(δij + aiajxixj) dxidxj .(3.17)

Then

n∑
i,j=1

(δij + aiajxixj) ξiξj ≥ |ξ|20 ∀x, ξ = (ξ1, ξ2, . . . , ξn) ∈ Rn.(3.18)

It is easily checked from (3.18) that (Rn, g) is a complete noncompact Riemannian
manifold.

Let M be the hypersurface of Rn+1 given by Lemma 3.1 with the induced Rie-
mannian metric in Rn+1. It is easily verified from (3.17) and (3.8) that map Φ : M →
(Rn, g), defined by

Φ(p) = x ∀ p = (x1, x2, . . . , xn+1) ∈M(3.19)

is an isometry. By Lemma 3.1, (Rn, g) is of everywhere positive sectional curvature.
By Corollary 1.1, H = Dh verifies condition (1.16) for any Ω ⊂ Rn, where h is a
strictly convex function over (Rn, g).

Example 3.3. Let A be defined by

Au = − ∂

∂x

(
1 + y6

1 + x2 + y6

∂u

∂x

)
− ∂

∂x

(
xy3

1 + x2 + y6

∂u

∂y

)
− ∂

∂y

(
xy3

1 + x2 + y6

∂u

∂x

)
− ∂

∂y

(
1 + x2

1 + x2 + y6

∂u

∂y

)
.(3.20)

Set

A(x, y) =


1 + y6

1 + x2 + y6

xy3

1 + x2 + y6

xy3

1 + x2 + y6

1 + x2

1 + x2 + y6

 .(3.21)
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Then

G(x, y) = (gij) = A−1(x, y) =

(
1 + x2 −xy3

−xy3 1 + y6

)
.(3.22)

Consider Riemannian manifold (R2, g), where Riemannian metric g is defined in
the natural coordinate system (x, y) by

g = (1 + x2)dxdx− xy3dxdy − xy3dydx+ (1 + y6)dydy.(3.23)

Let surface M in R3 be given by

M =

{
(x, y, z)

∣∣∣ z =
1

2
x2 − 1

4
y4

}
with the induced Riemannian metric in R3. Then the map Φ(x, y, z) = (x, y), for any
(x, y, z) ∈ M , determines an isometry from M to (R2, g). We obtain the Gaussian
curvature of (R2, g) at (x, y):

k(x, y) = the Gaussian curvature of M at (x, y, z)

=
−3y2

(1 + x2 + y6)2
≤ 0 ∀ (x, y) ∈ R2.

Let (x0, y0) ∈ R2. By Corollary 1.3, vector field H = ρDρ satisfies condition (1.16)
for any Ω ⊂ R2 with a = 1, where ρ is the distance function from (x0, y0) to (x, y) in
metric g.

It is not an easy task to calculate the sectional curvature of a Riemannian manifold
in general. For convenience, we give a lemma.

Lemma 3.2. Let R2 have the metric

g = g1dxdx+ g2dydy,

where g1 > 0, g2 > 0 are C∞ functions on R2. Then the Gaussian curvature is

k =
1

4g2
1g

2
2

[
g2
∂g1

∂x

∂g2

∂x
+ g1

∂g1

∂y

∂g2

∂y

+ g1

(
∂g2

∂x

)2

+ g2

(
∂g1

∂y

)2

− 2g1g2

(
∂2g1

∂y2
+
∂2g2

∂x2

)]
.(3.24)

Proof . Set

X =
1√
g1

∂

∂x
, Y =

1√
g2

∂

∂y
.

Then X, Y is an orthonormal frame on (R2, g). We thus have

k = 〈RXYX, Y 〉 =
1

g1g2

〈
R ∂
∂x

∂
∂y

∂

∂x
,
∂

∂y

〉
,(3.25)

where RXYX = −DXDYX+DYDXX+D[X,Y ]X and R is the curvature tensor. Let

Γkij be the coefficients of connection D. Then

Γ1
12 =

1

2g1

∂g1

∂y
, Γ2

11 = − 1

2g2

∂g1

∂y
, Γ2

12 =
1

2g2

∂g2

∂x
.
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From the properties of connection, we have

D ∂
∂x
D ∂

∂y

∂

∂x
= D ∂

∂x

(
Γ1

12

∂

∂x
+ Γ2

12

∂

∂y

)
= (· · ·) ∂

∂x
+ Γ1

12D ∂
∂x

∂

∂x
+
∂Γ2

12

∂x

∂

∂y
+ Γ2

12D ∂
∂x

∂

∂y

= (· · ·) ∂
∂x

+

(
Γ1

12Γ2
11 +

∂Γ2
12

∂x
+ Γ2

12Γ2
12

)
∂

∂y
.(3.26)

Thus 〈
D ∂

∂x
D ∂

∂y

∂

∂x
,
∂

∂y

〉
g

=

(
Γ1

12Γ2
11 +

∂Γ2
12

∂x
+ Γ2

12Γ2
12

)
g2

=
1

2

∂2g2

∂x2
− 1

4g1

(
∂g1

∂y

)2

− 1

4g2

(
∂g2

∂x

)2

,(3.27)

since 〈 ∂∂x , ∂
∂y 〉g = 0. A calculation similar to (3.27) gives〈
D ∂

∂y
D ∂

∂x

∂

∂x
,
∂

∂y

〉
g

= −1

2

∂2g1

∂y2
+

1

4g1

∂g1

∂x

∂g2

∂x
+

1

4g2

∂g1

∂y

∂g2

∂y
.(3.28)

Equations (3.27) and (3.28), together with (3.25), yield (3.24).
Example 3.4. Let A be the operator

Au = − ∂

∂x

(
ex

3+y3 ∂u

∂x

)
− ∂

∂y

(
ex

3+y3 ∂u

∂y

)
.(3.29)

Then Riemannian manifold (R2, g) is with a metric

g = e−x
3−y3

(dx2 + dy2).(3.30)

By Lemma 3.2, we have

k(x, y) = 3(x+ y)ex
3+y3

, (x, y) ∈ R2.(3.31)

By (3.31), we obtain

sup
(x,y)∈R2

K(x, y) =∞.

Take

H = −e−x ∂

∂x
− e−y ∂

∂y
,(3.32)

and we obtain by calculation

〈DXH, X〉g =
2∑

i,j=1

hijXiXj ∀X = X1
∂

∂x
+X2

∂

∂y
,(3.33)

where

(hij) =

he−x +
3

2
(x2he−x + y2he−y)

3

2
(x2e−y − y2e−x)h

3

2
(y2e−x − x2e−y)h he−y +

3

2
(x2he−x + y2he−y)

 ,(3.34)
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h = e−x
3−y3

.

It follows from (3.33) and (3.34) that

〈DXH, X〉g =

[
he−x +

3

2
(x2he−x + y2he−y)

]
X2

1 +

[
he−y +

3

2
(x2he−x + y2he−y)

]
X2

2

≥ ah(X2
1 +X2

2 ) = a|X|2g, X = X1
∂

∂x
+X2

∂

∂y
∈ R2

(x,y), (x, y) ∈ Ω,

where

a = min
x∈Ω

{
e−x +

3

2
(x2e−x + y2e−y), e−y +

3

2
(x2e−x + y2e−y)

}
.

Then vector field H, given by (3.32), meets condition (1.16) for any Ω ⊂ R2.
Moreover, H is not the Hessian of any function on R2 in Riemannian metric g

since matrix (hij), given by (3.34), is not symmetric.
Example 3.5. Let A be given by

Au = − ∂

∂x

(
ex+y ∂u

∂x

)
− ∂

∂y

(
ex+y ∂u

∂y

)
.(3.35)

Riemannian manifold (R2, g) has a metric

g = e−x−ydxdx+ e−x−ydydy.(3.36)

We obtain from Lemma 3.2 that k(x, y) = 0 for any (x, y) ∈ R2; that is, (R2, g) is
of zero curvature. By Corollary 1.3, vector field H = ρDρ is satisfied with condition
(1.16) with a = 1 for any Ω ⊂ R2, where ρ is the distance function over Riemannian
manifold (R2, g).

Example 3.6. Consider the operator

Au = − ∂

∂x

(
ex+y ∂u

∂x

)
− ∂

∂y

(
e−x−y

∂u

∂y

)
.

Riemannian manifold (R2, g) has the metric

g = ex+ydxdx+ e−x−ydydy.

By Lemma 3.2 we obtain k(x, y) = − 1
2 (e−x−y + ex+y) < 0 for any (x, y) ∈ R2. (R2, g)

is of everywhere negative curvature. Corollary 1.3 can be applied.

4. Necessary conditions for exact controllability and counterexamples.
Given the linear partial differential operator P ,

Pu =
∂2u

∂t2
−Au,(4.1)

acting on functions, one sets fα = eiα(x·ζ+tτ) and

p(x, t, ζ, τ) = lim
αo∞

[fαP (fα)](x, t) =
n∑

ij=1

aij(x)ζiζj − τ2.(4.2)

Function p is the principal symbol of P .
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Given (x0, t0, ζ0) ∈ Rn×R×Rn/0, (x(s), t(s), ζ(s), τ(s)) is a null bicharacteristic
curve through (x0, t0, ζ0) if it satisfies the (Hamiltonian) system of ordinary differential
equations

x′ =
1

2

∂p

∂ζ
, t′ =

1

2

∂p

∂τ
, ζ ′ = −1

2

∂p

∂x
, and τ ′ = −1

2

∂p

∂t
(4.3)

with (x(0), t(0), ζ(0)) = (x0, t0, ζ0) and τ(0) chosen so that p(x0, t0, ζ0, τ(0)) = 0. To
abbreviate the terminology, the projection of a bicharacteristic curve is called a ray.

Lemma 4.1. Let x(t) be a geodesic on Riemannian manifold (Rn, g) with x(0) =
x0 parameterized by arc length. Then

(x(t),±t, ζ(t),∓1)(4.4)

are bicharacteristic curves through (x0, 0, ζ0), where

ζ(t) =
n∑
i=1

 n∑
j=1

gij(x(t))x′j(t)

 ∂

∂xi
, ζ0 = ζ(0).(4.5)

Proof . It will suffice to verify (4.3). From (4.5), we obtain

x′i(t) =
n∑
j=1

aij(x(t))ζj(t).(4.6)

It follows from (4.2) and (4.6) that

x′(t) =
1

2

∂p

ζ
.(4.7)

In addition, we obtain

n∑
l=1

∂glp
∂xi

alk = −
n∑
l=1

glp
∂alk
∂xi

,(4.8)

since
∑n
l=1 glpalk = δpk.

Since x(t) is a geodesic, we have

x′′i +

n∑
lp=1

Γilpx
′
lx
′
p = 0,(4.9)

where Γilp are the coefficients of the Levi–Civita connection, given by

Γilp =
1

2

n∑
h=1

aih

(
∂ghl
∂xp

+
∂ghp
∂xl

− ∂glp
∂xh

)
.(4.10)

It follows from (4.5), (4.9), (4.10), and (4.8) that

ζ ′i(t) =

 n∑
j=1

gij(x(t))x′j(t)

′
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=

n∑
kj=1

∂gij
∂xk

x′kx
′
j +

n∑
j=1

gij(x(t))x′′j (t)

=
n∑

kj=1

∂gij
∂xk

x′kx
′
j −

∑
jlp

gijΓ
j
lpx
′
lx
′
p

=
1

2

∑
lp

∂glp
∂xi

x′lx
′
p

=
1

2

∑
lpkj

glp
∂alk
∂xi

apjζkζj = −1

2

∑
kj

∂ajk
∂xi

ζkζj = −1

2

∂p

∂xi
;

that is,

ζ ′(t) = −1

2

∂p

∂x
.

Furthermore, (4.5) and (4.2) yield also

p(x(t),±t, ζ(t),∓1) =
∑
ijkl

aijgikgjlx
′
kx
′
l − 1 =

∑
kl

gklx
′
kx
′
l − 1 = 0,

since x(t) is parameterized by arc length. This completes our proof.
By Lemma 4.1 and Bardos, Lebeau, and Rauch [1, Thm. 3.2], the following result

is immediate.
Theorem 4.1. If there is a closed geodesic that is contained in Ω, then the system

in (1.1), (1.1a) has no exact controllability where Γ0 = Γ; that is, for any T > 0,

FT,Γ 6= H1
0 (Ω)× L2(Ω).

Example 4.1. Consider the operator

Au = − ∂

∂x

(
(1 + x2 + y2)2 ∂u

∂x

)
− ∂

∂y

(
(1 + x2 + y2)2 ∂u

∂y

)
.(4.11)

The Riemannian metric g on R2 is

g =
dxdx+ dydy

(1 + x2 + y2)2
.(4.12)

Set

B1 = { (x, y) |x2 + y2 < 1 }, S = { (x, y) |x2 + y2 = 1 }.
We have the following conclusions:

(1) If Ω ⊂ B1 or Ω ⊂ R2 −B1

⋃
S, then Theorem 1.1 holds true.

(2) If S ⊂ Ω, then the system in (1.1), (1.1a) has no exact controllability; that is
for any T > 0,

FT,Γ 6= H1
0 (Ω)× L2(Ω).

Proof . From Lemma 3.2, we obtain k(x, y) = 4 for any (x, y) ∈ R2. (R2, g) is
then a space form of constant curvature 4. Let M be the sphere of radius 1

2 and center
(0, 0, 1

2 ) in R3, given by

M = { (x1, x2, x3) |x2
1 + x2

2 + x2
3 = x3 }(4.13)



1598 PENG-FEI YAO

with the induced Riemannian metric in R3. Then (R2 ∪ {∞}, g) is isometric to M
with isometry Φ : M → (R2 ∪ {∞}, g) defined by

Φ(x1, x2, x3) =

(
x1

1− x3
,

x2

1− x3

)
∀ (x1, x2, x3) ∈M.(4.14)

It is easily checked that

sup
(x,y)∈R2

dg(0, (x, y)) =
π

2
, sup

x2+y2=1

dg(0, (x, y)) =
π

4
.

This shows that we can obtain a geodesic ball B((x0, y0), γ) in (R2 ∪ {∞}, g) such
that

Ω ⊂ B((x0, y0), γ) and γ <
π

4

when Ω ⊂ B1 or Ω ⊂ R2 −B1

⋃
S. Part 1 then follows from Corollary 1.2.

In order to prove part 2 it will suffice from Theorem 4.1 to prove that the unit
circle S is a closed geodesic on (R2, g). It is well known that the big circle C =
{ (x1, x2,

1
2 ) |x2

1 + x2
2 = 1

4 } is a closed geodesic on the sphere M . In addition, it is
easily checked that

S = Φ(C),

where Φ is given by (4.14). This gives our desired result since Φ is an isometry from
M to (R2, g).

Appendix. A sketch of the proof of Theorem 1.1 for the case n = 1.
Let l > 0 and a(·) ∈ C1[0, 1], a(x) > 0 for any x ∈ [0, l].

For system φtt = (a(x)φx)x, 0 < t < T, 0 < x < l,
φ(t, 0) = φ(t, l) = 0, 0 < t < T,
φ(0, x) = ϕ0(x), φt(0, x) = ϕ1(x), 0 < x < l,

(A.1)

we use multiplier hφx, where h is a function on the interval [0, l], and we obtain

1

2

∫ T

0

∫ l

0

(ahφ2
x)xdxdt = (φt, hφx)

∣∣∣T
0

+
1

2

∫ T

0

∫ l

0

hx(φ2
t + a(x)φ2

x) dxdt

− 1

2

∫ T

0

∫ l

0

axhφ
2
x dxdt.(A.2)

Let h be the solution of the following problem:{
hx =

b

a
h+ 1,

h(0) = 0,
(A.3)

where b(x) = max(ax, 0), e.g.,

h(x) = e

∫ x
0

b
adx

∫ x

0

e
−
∫ s

0

b
adτds, 0 ≤ x ≤ l.(A.4)

We may obtain, when h, defined by (A.4), enters (A.2),

a(l)h(l)

∫ T

0

φ2
x(t, l) dt ≥ 2TE(0) + 2(φt, hφx)

∣∣∣T
0
, T > 0,(A.5)

where E(0) = 1
2

∫ l
0
(φ2
t + aφ2

x) dx. Inequality (A.5) yields our desired result.
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Abstract. We investigate the convergence of the solution set for singularly perturbed differential
inclusions using an averaging technique. The limits of the fast solutions are considered as generalized
solutions (i.e., Radon probability measures) of the degenerate system. Exploiting in addition the
one-sided Lipschitz condition we prove the existence of a limit of the solution set in an appropriate
topology.

Key words. differential inclusion, singular perturbation, one-sided Lipschitz, generalized solu-
tion, averaging method
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1. Introduction. Consider the following singularly perturbed multivalued Cauchy
problem: (

ẋ(t)
εẏ(t)

)
∈ H(t, x(t), y(t)), x(0) = x0, y(0) = y0.(1.1)

The real parameter ε > 0 represents the singular perturbation. Here x ∈ Rn, y ∈ Rm,
while H : I(:= [0, 1]) × Rn × Rm =⇒ Rn+m is a multifunction. The variable x is
commonly called a “slow” variable, while y is called a “fast” variable. The solution
set Z(ε), ε > 0 of (1.1) consists of all absolutely continuous (AC) functions (x, y)
satisfying (1.1) for almost everywhere (a.e.) t ∈ I. For ε = 0+ it is natural to mean
by Z(0) the set of all pairs (x, y) with x-AC and y-integrable on I, satisfying for a.e.
t ∈ I (

ẋ(t)
0

)
∈ H(t, x(t), y(t)), x(0) = x0.(1.2)

The connection between the inclusions (1.1) and (1.2) has been investigated in many
papers [5], [6], [7], [16], [17]. For example, in [6] the upper semicontinuity (USC) of
the map ε → Z(ε) at ε = 0+ in C(I,Rn) × (L2(I,Rm)-weak) topology is shown.
The lower semicontinuity (LSC) is proved first in [16] and afterwards for more general
systems in [4]. However, the question of the continuity (USC plus LSC in one and
the same topology) of Z(ε) at ε = 0+ has no satisfactory answer. The limit of the
solution set is evaluated in some simple cases and is not equal to Z(0) (see [7]) which
also makes the problem so complicated.

Our aim is to find conditions and “reasonable” topology in which Z(ε) has a limit
when ε → 0+. We consider reasonable any topology implying the continuity of an
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integral cost minimized over Z(ε), i.e., the trajectories of (1). Here we combine the
averaging technique elaborated in [14], [12], [9], [10], [11] with the notion of generalized
solutions (Radon probability measures) to obtain the existence of the limit of Z(ε) at
ε = 0+. Let us note that our settings are more general and assumptions are weaker
than those in [11] where a similar problem is investigated.

We consider the next particular case of (1.1):

ẋ(t) ∈ F (t, x, y, u(t)), x(0) = x0,

εẏ(t) ∈ G(x, y, u(t)), y(0) = y0.(1.3)

Here u(t) ∈ U , u(·) is measurable and U is a compact subset of a complete metric
space. We will call all such functions admissible controls.

The choice of the above special form of (1.1) is dictated by the use of averaging
techniques in our proofs. Note also that (1.3) is more general than a system of
two differential inclusions (just fix the measurable function u(·) in (1.3)) and than a
control system as well (in this case F and G are single-valued for every u(·)). These
are the cases studied many times using the method of averaging; see references [9],
[10], [14]. For the general system (1.1) we do not know any relevant results. On the
other hand, (1.3) also covers the case of singularly perturbed control systems with
additional uncertainties or disturbances different than the control.

The fundamental theorem of Tikhonov [15] states that for single-valued H under
appropriate conditions the unique solution of (1.1) converges as ε → 0 to a special
solution of (1.2) in C(I,Rn) × C([δ, 1],Rm), for every 0 < δ < 1. While the LSC
of the solution set of (1.1), (1.2) in Tikhonov’s topology is not difficult to prove, the
USC is. This problem is solved partially in [14], [17] under restrictive assumptions.
Here, we suppose that the y-part of the solution set is embedded in the space of
all Radon probability measures <, i.e., we consider y-variables as additional controls
which are called, in optimal control theory, relaxed. Thus we pay special attention
to the influence of the solutions of (1.1) with rapidly oscillating y-parts on the limit
behavior of the whole solution set. First, we prove for (1.1) that Z(ε) is USC at
ε = 0+ where in y we use the [L1(I, C(K))]∗-weak* topology (K is the compact set
defined after Lemma 3.1 which contains all y-parts of Z(ε)). This topology induces
a convergence which is equivalent to the well-known weak convergence of measures
in <.

This way we follow the ideas of [19] which very recently were developed for systems
of singularly perturbed ODEs and control systems in [2], [18]. The class of measures
considered in the cited papers is narrower, namely measures invariant with respect
to the flow generated by the associated system (see below). Further attempt to apply
the same approach is made in [1], where invariant measures for differential inclusions
are introduced (see next section for details).

As mentioned above, the object we investigate is more general. Moreover, Ex-
ample 1 in this paper tells us that the class of invariant measures still is not narrow
enough to ensure LSC of Z(ε) at ε = 0+. Thus some additional conditions (e.g.,
additional restrictions on the class of measures used) should be imposed to describe
the limit set.

We continue with a brief description of the averaging technique. Fix t ∈ I and
consider the following associated system:

x = const.,

ẏ(τ) ∈ G(x, y(τ), u(τ)), y(0) ∈ Q ⊂ Rm, u(τ) ∈ U, τ ≥ 0.(1.4)
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For given x and t, denote (using Aumann’s integral)

V̄ (t, x, S,Q) = cl

{
1

S

∫ S

0

F (t, x, Y (τ, x, S,Q), u(τ)) dτ : u(τ) ∈ U
}
,

where Y (τ, x, S,Q) is the solution set on the interval [0, S] of (1.4) and cl denotes the
closed hull. In the third section of the paper, following the scheme of [9], we show the
existence of the nondepending on Q limit (in the Hausdorff metric)

V̄ (t, x) = lim
S→∞

V̄ (t, x, S,Q).

Then exploiting further the one-sided Lipschitz property (see section 3) we prove that
the “slow part,” that is, the projection of Z(ε) on Rn, converges in the C-topology
to the solution set of the averaged inclusion

ẋ(t) ∈ V̄ (t, x), x(0) = x0, t ∈ I.(1.5)

The above-mentioned one-sided Lipschitz (OSL) condition plays a central role
in our considerations. Postponing the exact definition until the third section we
would like to illustrate the essential difference between OSL and Lipschitz conditions.
Suppose f(t, ·) (for a.e. t ∈ I) and g(·) are Lipschitz and consider the control system

ẋ(t) = f(t, x, y, u(t)) + φ(x), x(0) = x0,

εẏ(t) = g(x, y, u(t)) + ψ(y), y(0) = y0.

We assume φ(·) and ψ(·) OSL are continuous (for example, φ(x) = − 3
√
x, ψ(y) =

− 3
√
y). Then the right-hand side of the system is OSL but it is not Lipschitz. So,

adding very natural and simple functions to a Lipschitz right-hand side we could
violate the conditions in [9]. Nevertheless we show here that the averaging technique
will still work if the OSL condition is met (as in the system above).

Using the possibility to approximate Z(ε) (for (1.3)) with the solution set of (1.5),
we prove in Theorem 3.3 that Z(ε) has a Kuratowski limit (the definition is given in
the last section). Our proof is not constructive as in [7]. We just benefit from the fact
that the set Z(0) is extended with (generalized) functions equivalent in some sense to
measures.

We finish the introduction with some notations and definitions. For A ⊂ Rn+m,
we denote by Â the projection of A on Rn and by Ã the projection of A on Rm.
Throughout the paper, 〈·, ·〉 is the scalar product, and |.| is the norm. For a set A
denote by σ(x,A) := supy∈A〈x, y〉 its support function and by DH(A,B) the Haus-
dorff distance between the sets A,B. Recall that C(X,Y ), resp., L1(X,Y ), is the
space of all continuous functions, resp., all Lebesgue integrable functions defined on
X (equipped with the Lebesgue measure) with values in Y . The multifunction F from
the topological space X into the topological space Y is said to be USC (resp., LSC)
at x ∈ X when to every open V ⊃ F (x) (V

⋂
F (x) 6= ∅) there exists a neighborhood

W 3 x such that V ⊃ F (y) (V
⋂
F (y) 6= ∅) for y ∈W . When X and Y are metrizable

(metric) spaces and F is compact valued then F is USC iff it admits a compact graph
restricted to a compact subset of X. Furthermore F is LSC at x iff for every xi → x,
z ∈ F (x) there exist zi ∈ F (xi) with zi → z as i→ +∞.

All the concepts not discussed in detail in the following can be found in [3] or
in [19].
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2. Generalized (relaxed) solutions. In this section we consider (1.1), (1.2)
with respect to a topology in which USC at ε = 0+ of Z(ε) is easy to obtain but
the LSC does not hold in general. Nevertheless in the next section we prove that
limε→0+ Z(ε) (in the Kuratowski sense) exists in the considered topology.

First, start with the following assumptions on the right-hand-side H of (1.1).
A1. H has nonempty, convex, compact values and is bounded on bounded sets.

There exist a, b, µ > 0 such that

σ(x, Ĥ(t, x, y)) ≤ a(1 + |x|2 + |y|2),

σ(y, H̃(t, x, y)) ≤ b(1 + |x|2)− µ|y|2.
A2. H(·, ·, ·) is almost continuous, i.e., for every δ > 0 there exists Iδ ⊂ I with

measure greater than 1− δ such that H is continuous on Iδ ×Rn+m.
The following statement is a consequence from a result proved in [4].
Lemma 2.1. Under A1 and A2 the solution set Z(ε) of (1.1) is nonempty, every

solution (x, y) ∈ Z(ε) exists on the whole I, and there exist constants M,N > 0 such
that |x(t)|+ |y(t)| ≤M and |H(t, x(t), y(t))| ≤ N for every t ∈ I and ε > 0.

This result allows us to consider the “fast” y-parts of Z(ε) as measures over the
compact set K = {y ∈ Rm : |y| ≤ M}. To this end let <(K) be the set of all Radon
probability measures on K equipped with the weak convergence topology and define
the set of functions

℘ := {ν : I → <(K) | ν(·) is measurable}.
Then if every point y ∈ K is considered as the Dirac measure δy concentrated at the
point y (i.e., δy({y}) = 1) we can represent every measurable function y : I → K as
ν̄(·) = δy(·) which is an element of ℘.

Definition 2.1. The pair (x, ν) of AC function x and ν ∈ ℘ is said to be a
generalized (relaxed) solution of the degenerate inclusion (1.2) when x(0) = x0 and
for a.e. t ∈ I (

ẋ(t)
0

)
∈
∫
K

H(t, x(t), y)ν(t) (dy),

where dy indicates that the integration is done with respect to y. Denote the set of the
generalized solutions of (1.2) by ZG.

Let Em be the space of all Carathéodory functions f(·, ·) on I ×K with values in
Rm, i.e., f(·, y) is measurable, f(t, ·) is continuous and integrally bounded. Then Em

is isometrically isomorphic to L1(I, C(K,Rm)) (see [19, Theorem I.5.25]). Moreover,
from the Dunford–Pettis theorem ([19, Theorem IV.1.8]) we know that ℘ with the
weak norm topology is isomorphic to the space [L1(I, C(K,Rm))]∗ equipped with the
weak∗ topology. Then νi → ν for νi, ν ∈ ℘ and i = 1, 2, . . . iff∫

I

(∫
K

f(t, y)νi(t) (dy)

)
dt→

∫
I

(∫
K

f(t, y)ν(t) (dy)

)
dt, for every f ∈ Em,

which means that yi(·) ∈ L1(I,Rm) converges to ν(·) in L1(I, C(K,Rm))∗-weak* iff

lim
i→∞

∫
I

f(t, yi(t)) dt =

∫
I

(∫
K

f(t, y)ν(t) (dy)

)
dt(2.1)

for every f ∈ Em.
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From [19, Chapter IV], we know that [L1(I, C(K,Rm))]∗-weak* is separable and
every closed bounded ball is metrizable. Furthermore, the set B = {g ∈ L1(I, C(K,
Rm)) : g(·, ·) is Lipschitz} is a dense subset of L1(I, C(K,Rm)). Therefore to prove
that {yε}ε>0 converges to ν as ε→ 0 it is sufficient to show that {yε}ε>0 is bounded
and that (2.1) holds for any fj , where F = {fj}∞j=1 is dense in B. We will use only
the elements of F to check (2.1) in the proof of Theorem 3.3.

Theorem 2.1. Under the conditions A1 and A2 the map ε → Z(ε) is USC at
ε = 0+ in C(I,Rn)× [(L1(I, C(K,Rm))]∗-weak* topology.

Proof. Suppose εi → 0 and (xi, yi) ∈ Z(εi) for every i = 1, 2, . . . . The se-
quence {xi(·)}∞i=1 is C(I,Rn) precompact due to Lemma 2.1 and to the Arzelà–Ascoli
theorem. We know that {yi(·)}∞i=1 is [L1(I, C(K,Rm))]∗-weak* precompact (Theo-
rem IV.2.1 of [19]). Therefore passing to subsequences if necessary (xi, yi) converges
to (x0, ν0) and (ẋi, εiẏi) converges to (ẋ0, 0) in L1(I,Rm+n)-weak. The second asser-
tion is standard in singular perturbation theory; see, e.g., [6]. Now we will show that
(x0, ν0) ∈ ZG.

Let r ∈ Rn+m be arbitrary and let [s, t] ⊂ I. For every i one has

〈
r, (xi(t)− xi(s), εi(yi(t)− yi(s)))

〉
≤
∫ t

s

σ(r,H(τ, xi(τ), yi(τ))) dτ.

By A2 and Lemma 2.1 we get σ(r,H(·, x, ·)) ∈ E1. Due to Theorem IV.2.9 of [19],

lim
i→∞

∫ t

s

σ(r,H(τ, xi(τ), yi(τ))) dτ =

∫ t

s

{∫
K

σ(r,H(τ, x0(τ), y))ν0(τ) (dy)

}
dτ.

Combining the above two inequalities we obtain〈
r, (x0(t)− x0(s), 0)

〉
≤
∫ t

s

{∫
K

σ(r,H(τ, x0(τ), y))ν0(τ) (dy)

}
dτ

for every t ≥ s ∈ I. Consequently x0(0) = x0 and(
ẋ(t)

0

)
∈
∫
K

H(t, x(t), y)ν0(t) (dy).

Hence ε→ Z(ε) has C(I,Rn)× [L1(I, C(K,Rm))]∗ -weak* compact graph.

Remark 2.1. The result is also valid if instead of almost continuity we suppose
almost USC, i.e., if we replace “continuous” by “USC” in A2.

Using the notion of invariant measures for ordinary differential inclusions intro-
duced recently in [1] and the construction of the cited paper one can prove that
Theorem 2.1 holds true if we restrict ν(t) to be an invariant measure for a.e. t ∈ I of
the associated differential inclusion

ẏ(τ) ∈ H̃(τ, x(t), y), τ ∈ [t,∞).

Artstein defines in [1] invariant measures as limits of convex combinations of the so-
called individual invariant measures. Not entering into details (exact definitions and
the corresponding theory for flows can be found, e.g., in [13]), we will use the last
characterization to show that restricting to invariant measures is still not sufficient to
achieve LSC of Z(ε) in the topology of Theorem 2.1. Consider the following example.
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Example 2.1. The system

ẋ = x+ y + u(t), x(0) = 0,

εẏ = −y + 3
√
y, y(0) = 0, u(t) ∈ [−1, 1], t ∈ I,

satisfies conditions A1 and A2. Rewriting the second equation as dy/dτ = −y +
3
√
y, τ ∈ [0,∞), it is not difficult to see that y = −1 and y = 1 are its stable resting

points. Hence the Dirac measures δ−1 and δ1 concentrated at −1 and 1, respectively,
are individual invariant measures of the associated system. Then ν = (1/3)δ−1 +
(2/3)δ1 is invariant measure of the associated system in the terminology of [1]. But
there is no solution (xε, yε) of the singularly perturbed system such that its “fast”
part yε approaches ν in the topology considered.

3. Approximation of the solution set. In this section we consider the system
(1.3) and show that V̄ (t, x) = limS→∞ V̄ (t, x, S,Q) exists and does not depend on
Q ⊂ P where P = {y ∈ Rm : |y| ≤ M}. The constant M will be determined in
Lemma 3.1. Introduce the main condition.

B1. There exist positive constants A,B,D, µ such that

σ(x1 − x2, F (t, x1, y1, u))− σ(x1 − x2, F (t, x2, y2, u)) ≤ A|x1 − x2|2 +B|y1 − y2|2,
σ(y1 − y2, G(x1, y1, u))− σ(y1 − y2, G(x2, y2, u)) ≤ D|x1 − x2|2 − µ|y1 − y2|2,

uniformly in u ∈ U . F is almost continuous andG is continuous. They have nonempty,
convex, and compact values and are bounded on bounded sets.

Condition B1 is the so-called OSL condition. Here we use the negative constant
−µ in order to introduce some stability requirement on the “fast” variables y. But
even with positive constants the above condition is “viable.” For example, one can
extend Theorem 2.1 of averaging of differential inclusions of [11] for system (1.3)
replacing the Lipschitz condition used there by OSL plus continuity conditions.

Note also that

σ(x, F (t, x, y, u)) ≤ σ(x, F (t, 0, 0, u)) +A|x|2 +B|y|2,
σ(y,G(x, y, u)) ≤ σ(y,G(0, 0, u)) +D|x|2 − µ|y|2,

i.e., if H ≡ (F,G), then A1 and A2 follow from B1. Then we can prove the next
lemma; see [4].

Lemma 3.1. Under B1 the solution set Z(ε) of (1.3) is nonempty, every solution
(x, y) ∈ Z(ε) exists on the whole I, and there exist constants M,N > 0 such that
|x(t)| + |y(t)| ≤ M and |F (t, x(t), y(t), u(t))| + |G(x(t), y(t), u(t))| ≤ N for every
t ∈ I, ε > 0 and u(·)-admissible.

Remark 3.1. Clearly M and N determined in Lemma 2.1 and in the last lemma
are different. However, we do not distinguish them since this causes no confusion.

Lemma 3.2. Given y1, y2 ∈ P , under B1 for every solution y1(·) of (1.4) with
y1(0) = y1 there exists a solution y2(·) of (1.4) with y2(0) = y2 such that |y1(τ) −
y2(τ)| ≤ exp(−µτ)|y1 − y2|, τ ≥ 0.

Proof. Let u(·) correspond to y1(·) in (1.4). Fix u(·) and consider the map

Γ(τ, v) = {w ∈ G(x, v, u(τ)) : 〈y1(τ)− v, ẏ1(τ)− w〉 ≤ −µ|y1(τ)− v|2}.
Using the fashion of the proof of Theorem 1 in [16] (see also Theorem 3.2 in [4]) one
can show that Γ(·, ·) is nonempty, convex, compact valued, and almost USC (for the
last notion, see Remark 2.1). Therefore, there exists a solution y2(·) of

ż(τ) ∈ Γ(τ, z(τ)), z(0) = y2.
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Obviously 〈y1(τ)− y2(τ), ẏ1(τ)− ẏ2(τ)〉 ≤ −µ|y1(τ)− y2(τ)|2 and therefore |y1(τ)−
y2(τ)| ≤ m(τ), where ṁ ≤ −µm, m(0) = |y1 − y2|.

The modulus of continuity of a multifunction is defined as follows.
Definition 3.1. For Γ : I ×Rp =⇒ Rq, A ⊂ I,A compact, and δ, a > 0 we let

ωΓ(δ,A; a) = sup{DH(Γ(t, z1),Γ(s, z2)) : |t− s| ≤ δ, t, s ∈ A,
|z1 − z2| ≤ a, |zi| ≤M}.

Here M is from Lemma 3.1. Clearly if Γ(·, ·) is continuous on A×{z ∈ Rp : |z| ≤M}
then ωΓ(δ,A; a)→ 0 as δ, a→ 0.

In case we want to stress the dependence of the modulus on some parts of the
phase variables we will put additional arguments, e.g., for F (t, x, y, u) we denote the
modulus by ωF (δ,A; a, b, c) for b, c > 0.

B2. Let f(τ) = ωF (0, I; 0,M exp(−µτ), 0) and suppose that∫ ∞
0

f(τ) dτ = L1 <∞.

Remark 3.2. The above condition holds, for example, if F (t, x, ·, u) is Hölderian,
i.e., there exist C and α such that DH(F (t, x, v, u), F (t, x, w, u)) ≤ C(|v − w|α +
|v − w|1+α). It is easy to see that in this case L1 = C(Mα/µα + M1+α/(1 + α)µ).
Furthermore, if g(·, x, ·) ∈ B, then g satisfies B2.

The following statement is an obvious consequence of Lemma 3.2.
Lemma 3.3. Given y1, y2 ∈ P , under B1 and B2 for every solution y1(·) of (1.4)

with y1(0) = y1, there exists a solution y2(·) of (1.4) with y2(0) = y2 such that

1

S

∫ S

0

DH(F (t, x, y1(τ), u(τ)), F (t, x, y2(τ), u(τ))) dτ ≤ L1

S

for every S > 0 and every t ∈ I. Here L1 is the constant from B2.
Repeating with minor modifcations the reasons (not so short) in [8] we can derive

the following.
Theorem 3.1. Under the assumptions B1 and B2 limS→∞ V̄ (t, x, S,Q) = V̄ (t, x)

exists and does not depend on Q ⊂ P , and V̄ (t, x) is closed and convex. Moreover,
DH(V̄ (t, x, S,Q), V̄ (t, x)) ≤ L2/

√
S;L2 = const., for S sufficiently large.

Here we deal with (1.3) under the OSL condition B1 in contrast to [8], [9], [10]
where control systems under Lipschitz conditions are considered. Although B1 is
weaker it enables us to derive more directly the closeness of Z(ε) to the solution set
of (1.5).

Lemma 3.4. V̄ (·, ·) is almost continuous and OSL, i.e., there exists a constant L̃
such that

σ(x1 − x2, V̄ (t, x1))− σ(x1 − x2, V̄ (t, x2)) ≤ L̃|x1 − x2|2.
Proof. The almost continuity of V̄ follows from the almost continuity of F and

the continuity of G. Now, let S > 0 and denote by y(·, x, u) any solution of (1.4)
corresponding to x and admissible control u(·). Then fix one particular y(·, x1, u) and
consider

K = σ

(
x1 − x2,

1

S

∫ S

0

F (t, x1, y(τ, x1, u), u(τ)) dτ

)

−σ
(
x1 − x2,

1

S

∫ S

0

F (t, x2, y(τ, x2, u), u(τ)) dτ

)
,
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where y(·, x2, u) will be chosen later. By virtue of B1 one has

K =
1

S

∫ S

0

{
σ(x1 − x2, F (t, x1, y(τ, x1, u), u(τ)))

−σ(x1 − x2, F (t, x2, y(τ, x2, u), u(τ)))
}
dτ

≤ 1

S

∫ S

0

(
A|x1 − x2|2 +B|y(τ, x1, u)− y(τ, x2, u)|2) dτ

= A|x1 − x2|2 +
B

S

∫ S

0

|y(τ, x1, u)− y(τ, x2, u)|2 dτ.

Consider the map

Γ(τ, v) =
{
w ∈ G(x2, v, u(τ)) : 〈y(τ, x1, u)− v, ẏ(τ, x1, u)− w〉

≤ σ(y(τ, x1, u)− v,G(x1, y(τ, x1, u), u(τ)))− σ(y(τ, x1, u)− v,G(x2, v, u(τ)))
}
.

By B1 we have

〈y(τ, x1, u)− v, ẏ(τ, x1, u)− w〉 ≤ D|x1 − x2|2 − µ|y(τ, x1, u)− v|2.
Then Γ has nonempty, convex, and compact values and is almost USC (see the proof
of Theorem 3.3 in [4]). Therefore the differential inclusion

v̇(τ) ∈ Γ(τ, v(τ)), v(0) = y0,

has a solution y(τ, x2, u) for which

|y(τ, x1, u)− y(τ, x2, u)|2 ≤ r(τ) where ṙ ≤ 2D|x1 − x2|2 − 2µr, r(0) = 0.

Consequently

r(τ) ≤ exp(−2µτ)

∫ τ

0

2D|x1 − x2|2 exp(2µs) ds ≤ D

µ
|x1 − x2|2.(3.1)

Hence K ≤ (A+ BD
µ )|x1 − x2|2. Now it is straightforward to prove that

σ
(
x1 − x2, V̄ (t, x1)

)− σ(x1 − x2, V̄ (t, x2)
) ≤ L̃|x1 − x2|2,

where L̃ = A+BD/µ.
Corollary 3.1. Let x(·) be AC-function such that dist(ẋ(t), V̄ (t, x(t))) = q(t),

t ∈ [0, 1] and x(0) = x0. Then there exists a solution z(·) of (1.5) such that |x(t) −
z(t)| ≤ exp(L̃)

∫ t
0
q(s) ds.

Proof. We can argue as in the proof of Lemma 3.2, introducing the map

Γ̂(t, v) =
{
w ∈ V̄ (t, v) : 〈x(t)− v, ẋ(t)− w〉 ≤ L̃|x(t)− v|2 + |x(t)− v|q(t)}.

The following two lemmas actually are the proof of the theorem of averaging
of (1.3). Their proofs are similar to the corresponding results in [10], [11] but are
modified to reflect the fact that some of our conditions are weaker.

Lemma 3.5. There exists a function α(·) with limε→0 α(ε) = 0 such that for every
solution (xε, yε) of (1.3) there exists a solution zε of (1.5) such that |xε(t)− zε(t)| ≤
α(ε) on [0, 1].
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Proof. Suppose that limε→0 Sε = +∞ and limε→0 εSε = 0. Then substitute
tj = jεSε, τj = jSε, xj = xε(tj) for j = 0, 1, . . . , Nε where Nε = [(εSε)

−1] and [s] is
the integer part of s. Set also tNε+1 = 1.

Define the map

Pε(t, v, w) = {g ∈ G(v, w, uε(t)) :

〈yε(t)− w, εẏε(t)− g〉 ≤ D|xj − v|2 − µ|yε(t)− w|2 + η(t)|yε(t)− w|}.
Here yε, uε correspond to xε in (1.3) and η(t) = dist(εẏε(t), G(xj , yε(t), uε(t))). It is
easy to show using B1 that Pε is nonempty, convex, and compact valued and almost
USC. Define yz(t) as a solution on [tj , tj+1], j = 0, 1, . . . , Nε of the differential inclusion

εẏ(t) ∈ Pε(t, xj , y(t)), y(tj) = yj
def
= lim

t→t−
j

y(t)

and satisfying yz(0) = y0. Obviously ȳz(τ) = yz(ε(τ + τj)) is a solution of the
associated system (1.4) with ȳz(0) = yj on the interval [0, Sε]. It is easy to see that
|yz(t)− yε(t)| ≤ r(t), where

εṙ(t) = −µr(t) + dist(εẏε(t), G(xj , yε(t), uε(t))), r(tj) = |yz(tj)− yε(tj)|.
Thus

r(t) ≤ exp

(
−µt
ε

){
r(tj) +

1

ε

∫ t

tj

exp
(µs
ε

)
dist(εẏε(s), G(xj , yε(s), uε(s))) ds

}
.

Due to Lemma 3.1, xε(·) is N -Lipschitz. Thus |xε(t+ εSε)− xε(t)| ≤ εSεN . Denote
λ(ε) = sup{DH(G(xj , yε(t), uε(t)), G(xε(t), yε(t), uε(t))) : t ∈ [tj , tj+1]}. Then λ(ε)→
0 as ε→ 0 since G is continuous. For t ∈ [tj , tj+1], we have

r(t) ≤ exp

(
−µt
ε

)(
exp

(
µt

ε

)
− exp

(
µtj
ε

))
λ(ε)

µ
+ exp

(
−µt
ε

)
r(tj).

Then

r(t)

≤ λ(ε)

µ
exp

(
−µt
ε

)(j−1∑
i=0

(
exp

(
µt

ε

)
− exp

(
µtj
ε

))
+

(
exp

(
µt

ε

)
− exp

(
µtj
ε

)))

=
λ(ε)

µ

(
1− exp

(
−µt
ε

))
≤ λ(ε)

µ
.

By B1 for δ > 0 there exists a compact set Iδ ⊂ I with measure greater than 1 − δ
such that F is continuous on Iδ ×Rn+m. Let δ > 0 be so small that∫

Aδ

(
sup

|x|+|y|≤M
(|F (t, x, y)|+ |V̄ (t, x)|)

)2

dt ≤ ε

2
,

where Aδ = I \ Iδ and M is the constant from Lemma 3.1. Introduce the function

ρδ(t) =

{
sup|x|+|y|≤M (|F (t, x, y)|+ |V̄ (t, x)|), t ∈ Aδ,

0 elsewhere.
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It is obvious that
∫
I
ρ2
δ(t) dt < ε/2 and

∫
I
ρδ(t) dt < (δε)/2.

For t ∈ [tj , tj+1], j = 0, 1, . . . , Nε, define the following multifunction:

Rε(t, v) = {w ∈ F (tj , xj , yz(t), uε(t)) :
〈
xε(t)− v, ẋε(t)− w

〉 ≤ A|xε(t)− v|2
+B|yε(t)− yz(t)|2 + ρ2

δ(t) + ω2
F (εSε + δ, Iδ; 0)}.

It is not difficult to show that Rε(·, ·) is almost USC with nonempty, convex, and
compact values. Hence there exists AC-function ξ(·) with

ξ̇(t) ∈ Rε(t, ξ(t)), ξ(tj) = lim
t→t−

j

ξ(t),

and ξ(0) = x0. Therefore〈
ξ(t)− xε(t), ξ̇(t)− ẋε(t)

〉 ≤ A|xε(t)− ξ(t)|2 +B|yε(t)− yz(t)|2
+ρ2

δ(t) + ω2
F (εSε + δ, Iδ; 0).

Since |yε(t)− yz(t)| = r(t) ≤ λ(ε)/µ, after some standard calculations we get

|ξ(t)− xε(t)| ≤ C
(
λ̄(ε) +

∫
I

ρ2
δ(t) dt

)
≤ C(λ̄(ε) + ε).(3.2)

Here C is an appropriate constant and λ̄(ε) → 0 as ε → 0. From Theorem 3.1 one
can conclude that there exists vj ∈ V̄ (tj , xj), j = 1, 2, . . . , Nε − 1, such that∣∣∣∣∣ 1

Sε

∫ τj+1

τj

ξ̇(ετ) dτ − vj
∣∣∣∣∣ ≤ L2√

Sε
.

Set ψ(t) = ψ(tj) + vj(t − tj) for t ∈ [tj , tj+1], j = 0, 1, . . . , Nε, where ψ(0) = x0.
Therefore

|ψ(t)− ξ(t)| ≤ L2√
Sε

(3.3)

for every t ∈ [0, 1]. We have that

dist(ψ̇(t), V̄ (t, ψ(t))) ≤ dist(ψ̇(t), V̄ (tj , xj)) +DH(V̄ (tj , xj), V̄ (tj , ψ(tj)))

+DH(V̄ (tj , ψ(tj)), V̄ (tj , ψ(t))) +DH(V̄ (tj , ψ(t)), V̄ (t, ψ(t)))

≤ DH(V̄ (tj , xj), V̄ (tj , ψ(tj))) + ωV̄ (0, Iδ;NεSε)

+ ωV̄ (εSε, Iδ; 0) + 2ρδ(t).

By (3.2) we get |ψ(tj)− xj | ≤ |ψ(tj)− ξ(tj)|+ |ξ(tj)− xε(tj)| ≤ 2MεSε + 2C(λ(ε) +

ρδ(t)). Therefore dist(ψ̇(t), V̄ (t, ψ(t))) ≤ ν(ε) where by Definition 3.1 limε→0 ν(ε) =
0. Thus from Corollary 3.1 there exists a solution zε(·) of (1.5), such that |ψ(t) −
zε(t)| ≤ exp(L̃)ν(ε). Using the triangle inequality, (3.2), and (3.3) we obtain the
proof.

Lemma 3.6. There exists a function α(·) tending to zero as ε→ 0 such that for
every solution z of (1.5) there exists a solution (xε, yε) of (1.3) such that |xε(t)−z(t)| ≤
α(ε) on [0, 1].

Proof. We will use the same partition of I and notations as in the previous proof.
Let z(·) be a solution of (1.5). Then for t ∈ [tj , tj+1], j = 0, 1, . . . , Nε, we have

ż(t) ∈ V̄ (tj , z(tj)) + θ(ε)B1(0),
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where θ(ε, t)
def
= ωV̄ (εSε, Iδ;CεSε)+ρδ(t). By Definition 3.1 and the definition of ρδ(t),

we have
∫
I
θ2(ε, t)d t→ 0 as ε→ 0.

For [tj , tj+1], j = 0, 1, . . . , Nε, define successively the function w(·) and the map

W (t, p) = {v ∈ V̄ (tj , w(tj)) : 〈z(t)− p, ż(t)− v〉 ≤ (L̃+ 1)|z(t)− w(tj)|2 + θ2(ε)},
where L̃ ≤ A+BD/µ is determined in Lemma 3.3. For j = 0 we set w(t0) = w(0) =
x0. Then W (t, p) 6= ∅ thanks to Lemma 3.1 and it is clear that W (·, ·) is compact,
convex valued, and almost USC. Therefore the differential inclusion

ẇ(t) ∈W (t, w), w(tj) = lim
t→t−

j

w(t)

admits a solution w(t) on [tj , tj+1]. Then |w(t)− z(t)|2 ≤ r(t), where

ṙ(t) = (L̃+ 1)r + θ2(ε, t), r(0) = 0,

i.e., r(t) ≤ exp(C(t − tj))
∫
I
θ2(ε, s) ds for t ∈ [tj , tj+1). Here and below C is an

arbitrary and sufficiently large constant.
Let ∆ = εSε and zj be the projection of ∆−1

∫ tj+1

tj
ẇ(t) dt on V̄ (tj , z(tj)), i.e.,

zj ∈ V̄ (tj , z(tj)) and |zj − ∆−1
∫ tj+1

tj
ẇ(t) dt| = dist(∆−1

∫ tj+1

tj
ẇ(t) dt, V̄ (tj , z(tj))).

On the interval (tj , tj+1] we define the control u(t) to satisfy the inequality

dist

(
zj ,

1

∆

∫ tj+1

tj

F (tj , w(tj), yw(t), u(t)) dt

)
≤ 2

Sε
.

Here yw(t) = ỹw(t/ε) where ỹw(τ) is a solution on [τj , τj+1] = [jSε, (j + 1)Sε] of

ẏ(τ) ∈ G(v(τj), y(τ), u(τ)), y(τj) = yε(τj).

Such control exists thanks to Theorem 3.1 and the definition of V̄ . Let (xε(·), yε(·))
be a solution of

ẋ(t) ∈ F̃ (t, x(t), y(t), u(t)), x(0) = x0,

εẏ(t) ∈ G̃(t, x(t), y(t), u(t)), y(0) = y0,

where F̃ and G̃ are defined on [tj , tj+1], j = 0, 1, . . . , Nε, as follows:

F̃ (t, α, β, u(t)) = {p ∈ F (t, α, β, u(t)) :

〈p− zj , α− w(t)〉 ≤ A|α− w(t)|2 +B|β − yw(t)|2 + 4∆2 + |zj − w(t)|2},
G̃(t, α, β, u(t)) = {q ∈ G(α, β, u(t)) : 〈q − εẏw(t), β − yw(t)〉
≤ D|α− w(t)|2 − µ|β − yw(t)|2 + 4∆2 + |zj − w(t)|2}.

Thus |xε(t)− z(t)|2 ≤ m(t), |yε(t)− yv(t)|2 ≤ s(t), where

ṁ(t) ≤ Am+Bs+ 4∆2 + r(t), m(0) = 0,

εṡ(t) ≤ Dm− µs+ 4∆2 + r(t), s(0) = 0.

Therefore, integrating by parts one obtains

s(t) ≤ exp

(
−µt
ε

)∫ t

0

(Dm(λ)+4∆2+r(λ)) exp

(
µλ

ε

)
d

(
λ

ε

)
≤ D

µ
m(t)+

4∆2t

µ
,+

r(t)

µ
,
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since ṁ(t) ≥ 0, ṙ(t) ≥ 0. Consequently

ṁ(t) ≤ Am+
BD

µ
m+ 4

∆2B

µ
+ r(t)

B

µ
+ 4∆2 + r(t).

That is,

m(t) ≤ exp

{(
A+

BD

µ

)
t

}(
4

∆2B

µ
t+

(
B

µ
+ 1

)∫ t

0

r(λ)d λ+ 4∆2t

)
,

where t ∈ [0,∆]. Thus

m(t) ≤ exp(C)

(
4

∆2B

µ
+ 4∆2 + ∆

)
≤ CεSε.

Now the first principal result in this section follows from Lemma 3.5 and Lemma 3.6.
Namely, the projection X(ε) = Ẑ(ε) can be approximated by the solution set of the
averaged inclusion (1.5).

Theorem 3.2. Under the conditions B1 and B2 there exists α(·) such that
limε→0+ α(ε) = 0 and DH(X(ε), X0) = α(ε), where X(ε) is the “slow” part of the
solution set of (1.3) and X0 is the solution set of (1.5).

Now we are able to prove the main result in the paper, namely that the solution
set of (1.3) (denote it again by Z(ε)) possesses a limit in topology T = C(I,Rn) ×
[L1(I, C(K,Rm))]∗-weak*.

Definition 3.2. We will say that Z0 = limε→0+ Z(ε) in T iff
(a) Z0 ⊂ lim infε→0+ Z(ε), i.e., for every (x0, ν0) ∈ Z0 there exists (xε, yε) ∈

Z(ε), ε > 0 such that (xε, yε)→ (x0, y0) in T ;
(b) lim supε→0+ Z(ε) ⊂ Z0, i.e., all cluster points in T of every {(xε, yε)}ε>0 with

(xε, yε) ∈ Z(ε) are contained in Z0.
Since T is metrizable we consider only countable subsequences.
Theorem 3.3. Suppose B1 and B2 are fulfilled. Then there exists the limit

Z0 = limε→0+ Z(ε) ⊂ ZG in C(I,Rn)× [L1(I, C(K,Rm))]∗-weak* topology.
Proof. By Theorem 2.1 it follows that lim supε→0+ Z(ε) 6= ∅ (in T ) and is included

in ZG. To finish the proof we have to show that lim supε→0+ Z(ε) ⊂ lim infε→0+ Z(ε)
(the opposite inclusion is always satisfied).

Let (x0, ν0) ∈ lim supε→0+ Z(ε). Then there are (xε, yε) ∈ Z(ε), ε > 0 such that
(x0, ν0) is a cluster point of {(xε, yε)}ε>0 in T . Denote

wεj (t) =

∫ t

0

fj(s, yε(s)) ds,

w0
j =

∫
I

(∫
K

fj(t, y)ν0(t) (dy)

)
dt, j = 1, 2, . . . ,(3.4)

where fj ∈ F . Recall that the set of Lipschitz functions F = {fj(·, ·)}∞j=1 is dense in

L1(I, C(K,Rm)).
There exist subsequences xi = xεi , yi = yεi , εi → 0, i = 1, 2, . . . , such that

xi → x0 in C(I,Rn),

wij(1) =

∫
I

fj(t, yi(t)) dt→ w0
j for j = 1, 2, . . . .(3.5)
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We have that (xi, wi, yi) = (xi, w
i
1, w

i
2, . . . , w

i
k, yi) is a solution of the following system:

ẋ(t) ∈ F (t, x(t), y(t), u(t)), x(0) = x0,

ẇ1(t) = f1(t, y(t)), w1(0) = 0,

...(3.6)

ẇk(t) = fk(t, y(t)), wk(0) = 0,

εẏ(t) ∈ G(x(t), y(t), u(t)), y(0) = y0,

where ε = εi, i = 1, 2, . . . . On the other hand, (xi, wi) has a cluster point (x0, w̃0) in
C(I,Rn+k) due to Lemma 2.1 and the Arzelà–Ascoli theorem, and by (3.5) wi(1)→
w̃0(1) = (w0

1, w
0
2, . . . , w

0
k).

So (x0, w̃0) ∈ lim supε→0+ S(ε) where S(ε) is the “slow” part of the solution set
of (3.6). Since fj ∈ F , system (3.6) satisfies the conditions of Theorem 3.2, hence
(x0, w̃0) ∈ lim infε→0+ S(ε). This means that for every ε > 0 there is a solution
(x̃ε, w̃ε, ỹε) of (3.6) such that (x̃ε, w̃ε)→ (x0, w̃0) in C(I,Rn+k). Consequently

x̃ε → x0 in C(I,Rn),(3.7) ∫
I

fj(t, ỹε(t)) dt→
∫
I

(∫
K

fj(t, y)ν0(t) (dy)

)
dt for fj ∈ F , j = 1, 2, . . . , k.(3.8)

The second relation follows by w̃ε(1)→ w̃0(1) = (w0
1, w

0
2, . . . , w

0
k) and (3.4).

Fix the natural number k and denote for every ε > 0

Zkε = {(x̃ε, ỹε) ∈ Z(ε) : (3.7) and (3.8) are fulfilled}.

For every 0 < ε < 1 we have that Zk+1
ε ⊂ Zkε 6= ∅ and Zkε is C(I,Rn+m) compact.

Therefore Z∞ε =
⋂∞
k=1 Z

k
ε is not empty. Then if (x̃ε, ỹε) ∈ Z∞ε , ε > 0, relation (3.8)

holds for any fj ∈ F ; consequently (x̃ε, ỹε)→ (x0, ν0) in T .

Corollary 3.2. Consider the optimization problem∫
I

h(t, xε(t), yε(t)) dt→ inf,

where the functional is minimized over the solutions of (1.3). Suppose h(·, x, y) is
measurable on I, h(t, ·, ·) is continuous on Rn+m, and B1, B2 are fulfilled. Denote
by J(ε), ε > 0, the corresponding optimal value. Then limε→0 J(ε) exists.

Proof. In system (3.6) we add the equation

ẇ0(t) = h(t, x(t), y(t)), w0(0) = 0.

All the arguments in the proof of Theorem 3.3 will be valid having in mind that∫
I

h(t, xε(t), yε(t)) dt→
∫
I

(∫
K

h(t, x0(t), y)ν0(t) (dy)

)
dt, ε→ 0

when (xε, yε)→ (y0, ν0) in the considered topology (see [19]).

Acknowledgments. We wish to thank the anonymous referees for their valuable
comments and suggestions, which contributed much to improve the paper.
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FINITE-DIMENSIONAL COMPENSATORS FOR THE H∞-OPTIMAL
CONTROL OF INFINITE-DIMENSIONAL SYSTEMS VIA A

GALERKIN-TYPE APPROXIMATION∗
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Abstract. We study the existence of general finite-dimensional compensators in connection
with the H∞-optimal control of linear time-invariant systems on a Hilbert space with noisy output
feedback. The approach adopted uses a Galerkin-type approximation, where there is no requirement
for the system operator to have a complete set of eigenvectors. We show that if there exists an
infinite-dimensional compensator delivering a specific level of attenuation, then a finite-dimensional
compensator exists and achieves the same level of disturbance attenuation. In this connection, we
provide a complete analysis of the approximation of infinite-dimensional generalized Riccati equations
by a sequence of finite-dimensional Riccati equations. As an illustration of the theory developed here,
we provide a general procedure for constructing finite-dimensional compensators for robust control
of flexible structures.

Key words. H∞-optimal control, finite-dimensional compensators, infinite-dimensional sys-
tems, Riccati equations, flexible structures
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1. Introduction. LetX, U , W be real, separable Hilbert spaces, and let L(X;U),
L(X;W ) be the class of linear bounded operators from, respectively, X to U and X
to W . Consider the uncertain evolution equation on X:

ẋ(t) = Ax(t) +Bu(t) +Dw(t),

x(0) = x0,
(1.1)

where B ∈ L(X;U), D ∈ L(X;W ); u is the control and w is an unknown deterministic
disturbance, with u(t) ∈ U and w(t) ∈ W . The operator A is the infinitesimal
generator of a strongly continuous semigroup T (t) on X, which we will henceforth
refer to as the structure operator for system (1.1). The partial observation (also
called noise-corrupted measurement) is given by

y(t) = Cx(t) + η(t),(1.2)

where C ∈ L(X;Y ), Y being a Hilbert space, called the space of measurements, and
η ∈ W1 being another disturbance, modeling the measurement error. The controller
is allowed to be only a causal function of the observation y. For symmetry purposes,
we write the performance index in terms of a second output

y1(t) = Hx(t) +D12u(t),(1.3)
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where y1 ∈ Y1, with Y1 a real Hilbert space, H ∈ L(X;Y1), and D12 ∈ L(U ;Y1)
satisfying the following standard hypotheses:

D∗12D12 = I, D∗12H = 0.(1.4)

Let the cost function corresponding to the output y1 be

Kx0(u,w) =

∫ ∞
0

‖y1(t)‖2Y1
dt ≡

∫ ∞
0

(‖Hx(t)‖2Y1
+ ‖u(t)‖2U )dt.(1.5)

A natural class of infinite-dimensional compensators for (1.1) and (1.2), charac-
terized by three maps L ∈ L(X;U), M ∈ L(X;X), G ∈ L(Y ;X), is the following
one:

u(t) = Lz(t),

ż(t) = (A+M)z(t) +Gy(t).
(1.6)

Here we do not lump A and M into a single operator, because A is unbounded while
M is bounded. Let w ∈ L2(0,∞;W ) and η ∈ L2(0,∞;W1), where L2(0,∞;W ) is the
Hilbert space of Lebesgue square integrable functions on (0,∞), with values in W .
The H∞-optimal design problem for (1.1), under (1.2) and (1.6), and with the cost
function (1.5) is the following: Given γ > 0, find L, M , and G such that

sup
w,η

K0(u,w)∫ ∞
0

(‖w(t)‖2W + ‖η(t)‖2W1
)dt

< γ2.(1.7)

More precisely, we have the following definition.
Definition 1.1. The γ-attenuation level is attained for system (1.1), with ob-

servation (1.2) and cost function (1.5), if there exist L, M , and G in (1.6) such that
(1.7) holds.

It is well known [1] that in the finite-dimensional case, and when the dimension
of the compensator is the same as the dimension of the state (i.e., dim(z) = dim(x)),
under some stabilizability and detectability conditions an explicit solution can be
obtained for the triple L,M,G, in terms of two Riccati equations coupled through
a spectral radius condition. This result was subsequently generalized to infinite-
dimensional spaces by Bensoussan and Bernhard [3]. Before stating this extension,
let us introduce the two associated infinite-dimensional Riccati equations:

ΠA+A∗Π−Π

(
BB∗ − 1

γ2
DD∗

)
Π +H∗H = 0,

Π = Π∗ ≥ 0,

A−
(
BB∗ − 1

γ2
DD∗

)
Π exponentially stable,

(1.8)

and

ΣA∗ +AΣ− Σ

(
C∗C − 1

γ2
H∗H

)
Σ +DD∗ = 0,

Σ = Σ∗ ≥ 0,

A∗ −
(
C∗C − 1

γ2
H∗H

)
Σ exponentially stable.

(1.9)
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Then we have [3] as follows.

Theorem 1.1 (Bensoussan and Bernhard [3]). Assume that the pair (A,B)
is stabilizable and the pair (A,H) is detectable. Then the γ-attenuation level is at-
tained for system (1.1), with observation (1.2) and under cost function K0(u,w), iff
the Riccati equation (1.8) admits a solution Π, and (1.9) admits a solution Σ, and
furthermore

I − 1

γ2
ΠΣ is invertible, or equivalently Σ

(
I − 1

γ2
ΠΣ

)−1

≥ 0.(1.10)

An infinite-dimensional compensator that achieves the bound γ2 in (1.7) is given by
(1.6) where

L = −B∗Π, M = −
(
BB∗ − 1

γ2
DD∗

)
Π− ΓC∗C, G = ΓC∗(1.11)

and

Γ = Σ

(
I − 1

γ2
ΠΣ

)−1

.

Even though this is a complete solution for the problem at hand, the fact that
the compensator is infinite dimensional renders it impractical. There is therefore a
need to develop a theory that will deliver finite-dimensional stabilizing compensators,
which achieve a given level of disturbance attenuation. We will address this problem
here when the measurement y is finite-dimensional.

The existence of finite-dimensional compensators for infinite-dimensional linear
quadratic regulator (LQR) problems or for linear quadratic Gaussian (LQG) problems
has been established in [8], [25], and [26] provided that the structure operator of the
underlying system has a complete set of generalized eigenvectors; their construction is
based on the eigenvectors of either the structure operator or the closed-loop structure
operator obtained under state feedback. Gibson [12], [13], Gibson and Adamian [14],
and Ito [15] have established the existence of finite-dimensional compensators for LQR
problems by using Galerkin-type approximations in which independent basis elements
were used instead of the complete set of eigenvectors, making it possible for the results
to be applied to general parabolic systems, hereditary differential systems, and flexible
structures.

The existence and design of general finite-dimensional compensators for infinite-
dimensional systems in an H∞ framework was one of the open problems in H∞-
optimal control, as posed by Curtain and Salamon in 1990 [7]. Özbay [20], Özbay and
Tannenbaum [21], [22], and Curtain and Zhou [10] have obtained a number of results
on finite-dimensional H∞ controllers by using frequency domain techniques under ap-
propriate assumptions. Banks, Demetriou, and Smith [2] studied a two-dimensional
structural acoustic model by using H∞ periodic control, which was approximated
by a finite-dimensional compensator: piezoceramic actuators. Ito and Morris [16]
developed an approximation scheme when the full output measurement is available.
However, the problem of finding finite-dimensional H∞ controllers from state-space
approximations in complete generality was an unsolved problem. Thus one of the
objectives of this paper is to fill this gap. In the present paper, we establish a gen-
eral existence result for finite-dimensional H∞-optimal compensators (1.6) for (1.1)
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with finite-dimensional measurement (1.2), such that the γ-attenuation level (1.7) is
achieved. More precisely, we study the evolution system

ẋ(t) = Ax(t) +Bu(t) +Dw(t), x(0) = x0 ∈ X(1.12)

along with the partial observation

y(t) = Cx(t) + η(t)(1.13)

with finite-dimensional compensator

u(t) = Lcz(t),

ż(t) = (Ac +Mc)z(t) +Gcy(t),
(1.14)

where u(t) is an Rm-valued control function, the measurement space is Rp, and C ∈
L(X,Rp), z(t) ∈ Z = Rnc , and Ac,Mc, Gc, Lc are matrices belonging to appropriate
spaces. The cost function is still expressed as

Kx0
(u,w) =

∫ ∞
0

(‖Hx(t)‖2Y1
+ ‖u(t)‖2Rm)dt.(1.15)

We will show that there exists a finite-dimensional compensator (1.14) which stabilizes
the infinite-dimensional system (1.12) with noise measurement output (1.13), and a
γ-attenuation level is achieved, i.e.,

sup
w,η

K0(u,w)∫ ∞
0

(‖w(t)‖2W + ‖η(t)‖2W1
)dt

< γ2(1.16)

provided that this level of attenuation level is achieved under the infinite-dimensional
compensator (1.6).

The rest of this paper is organized as follows. Section 2 provides assumptions
and some preliminary results on asymptotic behavior and approximation of Riccati
equations, proofs of which have been included in Appendix II. Results obtained in
Appendix II can be viewed as independent from the main body of the paper and can
be read as such. The existence of finite-dimensional compensators for the infinite-
dimensional problem is proven in section 3. Section 4 presents an important appli-
cation of this theory to the control of flexible structures. Section 5 includes some
concluding remarks, and Appendix I contains a duality theorem which is needed in
section 3.

2. Assumptions and some preliminaries. Let {XN} be a sequence of finite-
dimensional subspaces of X, and let PN denote the orthogonal projection1 of X onto
XN . Throughout this paper, the following notation and conventions will be adopted,
unless otherwise indicated: 〈·, ·〉 denotes the inner-product on X, L(X) denotes the
space of all bounded linear operators on X, and A∗ denotes the adjoint of the linear
operator A,

Σ(X) =
{
T ∈ L(X) : T is Hermitian

}
Σ+(X) =

{
T ∈ Σ(X) : 〈Tx, x〉 ≥ 0 ∀x ∈ X}.

1Orthogonal projection means that the range and the null spaces of the projection are orthogonal.
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We next introduce a sequence of operators, which will be used in the main body of
the paper. Let AN ∈ L(XN ), BN = PNB ∈ L(U,XN ), DN = PND ∈ L(W,XN ),
and CN and HN represent the restrictions of C and H onto XN , respectively, and
ΠN ,ΣN ∈ L(XN ).

Definition 2.1. A sequence {xN ∈ XN} converges to x ∈ X if

‖PNx− xN‖XN → 0 as N →∞.

Definition 2.2. Let X,Y be two Banach spaces. A sequence of linear operators
AN : XN → Y N converges to an operator A : D(A) ⊂ X → Y if

D = {x : PNx ∈ D(AN ), ANPNx converges in Y N}
and

Ax = lim
N→∞

ANPNx for x ∈ D ∩D(A).

We will denote this type of convergence by AN →→ A.
Definition 2.3. We say that the Riccati equation

ΠA+A∗Π−Π

(
BB∗ − 1

γ2
DD∗

)
Π +H∗H = 0

admits a solution Π, if Π ∈ Σ+(X) and ∀x, y ∈ D(A) the following holds:

〈Πx,Ay〉+ 〈Ax,Πy〉 −
〈

Π

(
BB∗ − 1

γ2
DD∗

)
Πx, y

〉
+ 〈H∗Hx, y〉 = 0.

A similar definition applies to the Riccati equation

ΣA∗ +AΣ− Σ

(
C∗C − 1

γ2
H∗H

)
Σ +DD∗ = 0.

Definition 2.4. The pair (A,B) in (1.1) is stabilizable if there exists an operator
F ∈ L(X,U) such that A+BF is exponentially stable.

Definition 2.5. The pair (A,H) (A in (1.1), H in (1.15)) is detectable if there
exists an operator G ∈ L(Y1, X) such that A+GH is exponentially stable.

Assumptions.

(A1) For every x ∈ X, eA
N tPNx converges strongly to T (t)x, eA

N∗tPNx converges
strongly to T ∗(t)x, and the convergence is uniform in t on bounded intervals
of [0,∞[. Here T (t) is the C0 semigroup generated by A, and PN is the
orthogonal projection of X onto a finite-dimensional space XN .

(A2) For each integer N > 0, AN − (BNBN∗− 1
γ2D

NDN∗)ΠN generates an expo-

nentially stable semigroup on XN , and

‖e(AN−(BNBN∗− 1
γ2D

NDN∗)ΠN )t
PN‖L(X,XN ) ≤M1e

−ω1t, t ∈ [0,∞[,

for some M1 ≥ 1 and ω1 > 0, independent of N .
(A3) For each integer N > 0, AN∗ − (CN∗CN − 1

γ2H
N∗HN )ΣN generates an

exponentially stable C0 semigroup on XN , and

‖e(AN∗−(CN∗CN− 1
γ2H

N∗HN )ΣN )t
PN‖L(X,XN ) ≤M2e

−ω2t, t ∈ [0,∞[,

for some M2 ≥ 1 and ω2 > 0, independent of N .
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(A4) For each N > 0, the operator matrix

ANp =

[
A+ 1

γ2DD
∗Π BLN

GNC AN +MN

]
satisfies the spectrum-determined growth condition,2 where

LN = −BN∗ΠN , GN = ΓNCN
∗
, ΓN = ΣN

(
I − 1

γ2
ΠNΣN

)−1

and

MN = −
(
BNBN

∗ − 1

γ2
DNDN∗

)
ΠN − ΓNCN∗CN .

Remark 1. (1) In (A1), eA
N tPNx converges strongly to T (t)x means that

‖PNT (t)x− eAN tPNx‖XN → 0 as N →∞.

For t = 0, assumption (A1) implies that PNx→ x for each x ∈ X; thus we have the
result that the subspace XN approximates X.

(2) According to (A1) we have for each u ∈ U , BNu → Bu and for each x ∈ X,
CNx → Cx as N → ∞. Moreover, since both B and C are compact operators,
principle of uniform boundedness [27] implies that

BN → B, CN → C as N →∞

where the convergences are in the corresponding operator norms.
(3) From assumption (A2), we know that the resolvent set of matrix

AN −
(
BNBN∗ − 1

γ2
DNDN∗

)
ΠN

contains the ray (ω1,∞) and∥∥∥∥∥
[
λI −

(
AN −

(
BNBN∗ − 1

γ2
DNDN∗

)
ΠN

)]−1
∥∥∥∥∥
L(XN )

≤M1/(λ+ ω1)

for Reλ > −ω1.

A similar corresponding statement follows from assumption (A3).
The proof of the following two lemmas can be found in Appendix II.
Lemma 2.1. Suppose that for a given γ > 0 the Riccati equation

ΠA+A∗Π−Π

(
BB∗ − 1

γ2
DD∗

)
Π +H∗H = 0(2.1)

2Spectrum-determined growth condition means that

sup{Reλ : λ ∈ σ(Ap)} = lim
t→∞

1

t
ln ‖eApt‖,

where σ(A) denotes the spectrum of A.
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admits a solution Π ∈ Σ+(X) such that A−BB∗ − 1
γ2DD

∗Π is exponentially stable,
and for each N

ΠNAN +AN∗ΠN −ΠN

(
BNBN∗ − 1

γ2
DNDN∗

)
ΠN +HN∗HN = 0(2.2)

admits a solution ΠN ∈ Σ+(XN ) which satisfies assumption (A2). Then, under
assumption (A1), we have ΠN →→ Π as N →∞.

Lemma 2.2. Suppose that for a given γ > 0, the Riccati equation

ΣA∗ +AΣ− Σ

(
C∗C − 1

γ2
H∗H

)
Σ +DD∗ = 0(2.3)

admits a solution Σ ∈ Σ+(X) such that A∗−(C∗C− 1
γ2H

∗H)Σ is exponentially stable,
and

ΣNAN∗ +ANΣN − ΣN
(
CN∗CN − 1

γ2
HN∗HN

)
ΣN +DNDN∗ = 0(2.4)

admits a solution ΣN ∈ Σ+(X) which satisfies assumption (A3). Then, under as-
sumption (A1), we have ΣN →→ Σ as N →∞.

The following lemma now provides some properties of Riccati equations provided
that for the given γ > 0, the γ-attenuation level is achieved. The proof can be found
in [3].

Lemma 2.3. Assume that (A,B) is stabilizable and that (A,H) is detectable,
and the γ-attenuation level holds for system (1.12) with measurement (1.13) and cost
function K0. Then, we have

(1) A−BB∗Π is exponentially stable, where Π is a solution of (1.8);
(2) A∗ + 1

γ2 ΠDD∗ − (C∗C − 1
γ2 ΠBB∗Π)Γ is exponentially stable, where

Γ = Σ

(
I − 1

γ2
ΠΣ

)−1

and Σ is the solution of (1.9);
(3) A∗ + 1

γ2 ΠDD∗ − C∗CΓ is exponentially stable;

(4) Γ is the unique solution of the following Riccati equation

Γ

(
A∗ +

1

γ2
ΠDD∗

)
+

(
A+

1

γ2
DD∗Π

)
Γ− Γ

(
C∗C − 1

γ2
ΠBB∗Π

)
Γ +DD∗ = 0;

(2.5)

(5) the system

ẋ =

(
A∗ +

1

γ2
ΠDD∗

)
x+ C∗v + ΠBµ, x(0) = 0,

z = D∗x
(2.6)

with cost function

K0(v, µ) =

∫ ∞
0

(‖z‖2W + ‖v‖2Y )dt(2.7)
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achieves the γ-attenuation level; i.e., there exists v̂ ∈ Y such that

sup
µ

∫ ∞
0

(‖z‖2 + ‖v̂‖2)dt∫ ∞
0

‖µ‖2dt
< γ2.(2.8)

3. Main existence result and its proof.
Main theorem. Consider the uncertain evolution system (1.1) along with finite-

dimensional measurement (1.13) and cost function Kx0
given by (1.15). Assume that

(A,B) is stabilizable and (A,H) is detectable, and there exists an infinite-dimensional
compensator for (1.12) such that the γ-attenuation level is achieved with the measure-
ment (1.13). Then, under assumptions (A1)–(A4), there exists a finite-dimensional
compensator-based controller

u(t) = LNz(t),

ż(t) = (AN +MN )z(t) +GNy(t)

which stabilizes the uncertain system (1.12), and the γ-attenuation level is achieved
under the same measurement (1.13) and cost function (1.15).

We prove the result using a sequence of lemmas and theorems. First let us
introduce

AN :=

[
A BLN

GNC AN +MN

]
where

LN = −BN∗ΠN , GN = ΓNCN
∗
, ΓN = ΣN

(
I − 1

γ2
ΠNΣN

)−1

and

MN = −
(
BNBN

∗ − 1

γ2
DNDN∗

)
ΠN − ΓNCN∗CN .

One goal here is to show that there exists a sufficiently large N such that AN is
exponentially stable on X ×XN .

Lemma 3.1. Assume that assumptions (A1) and (A2) are satisfied. Then for each
N , LN = −BN∗ΠN ∈ L(XN ,Rm) and LNPN converges L = −B∗Π in its operator
norm as N → ∞. Furthermore, there exists an integer N1 such that if N ≥ N1 and
Reλ > −ω3 (

λI −
(
A+

1

γ2
DD∗Π +BLNPN

))−1

∈ L(X)

and

e
(λI−(A+ 1

γ2DD
∗Π+BLNPN ))t → e

(λI−(A+ 1
γ2DD

∗Π+BL))t
as N →∞

where the convergence is uniform on bounded t-intervals.
Proof . Since B is a compact operator, so is B∗. By assumption (A1) we know

that BN∗ → B∗ in norm, and by Lemma 2.1 we have ΠN →→ Π. Thus the first
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conclusion follows. For the second assertion, let SN (t) be the C0 semigroup generated
by the operator A+ 1

γ2DD
∗Π+BLNPN , and let S(t) be the C0 semigroup generated

by the operator A+ 1
γ2DD

∗Π +BL. Since

A+
1

γ2
DD∗Π +BLNPN = A+

1

γ2
DD∗Π +BL+B(LNPN − L),

in view of the “Perturbation Theorem” of [9], we have

SN (t) = S(t) +

∫ t

0

S(t− s)B(LNPN − L)SN (s)ds.(3.1)

Since A+ 1
γ2DD

∗Π +BL is exponentially stable, there exist M3 ≥ 1 and ω ≥ 0 such
that

‖S(t)‖ ≤M3e
−ωt.

Thus we have

‖SN (t)‖ ≤M3e
−ωt +

∫ t

0

M3e
−ω(t−s)‖B‖‖L− LNPN‖‖SN (s)‖ds,(3.2)

and Gronwall’s lemma implies that

‖SN (t)‖ ≤M3e
(−ω+M3‖B‖‖L−LNPN‖)t, t ≥ 0.(3.3)

Since LNPN → L, by the Hille–Yosida theorem (see Theorem 1.5.3 of [24]) we know
that there exists N1 > 0 such that when N > N1, (λI − (A + 1

γ2DD
∗Π + BLN ))−1

is bounded in L(X). This yields the second statement. To conclude the proof, note
that(

λI −
(
A+

1

γ2
DD∗Π +BLNPN

))−1

−
(
λI −

(
A+

1

γ2
DD∗Π +BL

))−1

=

(
λI −

(
A+

1

γ2
DD∗Π +BLNPN

))−1

×B(LNPN − L)

(
λI −

(
A+

1

γ2
DD∗Π +BL

))−1

and LN →→ L, which lead to(
λI −

(
A+

1

γ2
DD∗Π +BLNPN

))−1

→
(
λI −

(
A+

1

γ2
DD∗Π +BL

))−1

as N →∞.
By the Trotter–Kato theorem (see Theorem 3.4.4 of [24]), the proof of Lemma 3.1 is
complete.

Remark 2. Clearly, from (3.3) there exist ω3 ≥ 0 and N3 > 0 such that when
N > N3, we have

‖SN (t)‖ ≤M3e
−ω3t, t ≥ 0,

where both ω3 and M3 are independent of N .
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Lemma 3.2. Let AN , BN , CN , DN , and ΠN satisfy (A1), (A2), and (A3) for
each N > 0. Then for every x ∈ X,

e
(AN−(BNBN∗− 1

γ2D
NDN∗)ΠN )t

PNx→ T1(t)x

uniformly on bounded intervals with respect to t, where T1(t) is the C0 semigroup
generated by A− (BB∗ − 1

γ2DD
∗)Π.

Proof. According to the Trotter–Kato theorem and Remark 1, part 3, we need to
show that [

λI −
(
AN −

(
BNBN∗ − 1

γ2
DNDN∗

)
ΠN

)]−1

PNx

→
[
λI −

(
A−

(
BB∗ − 1

γ2
DD∗

)
Π

)]−1

x

holds for any x ∈ X. Since[
I −

(
AN −

(
BNBN∗ − 1

γ2
DNDN∗

)
ΠN

)]−1

PN − (λI −AN )−1

= −
[
I −

(
AN −

(
BNBN∗ − 1

γ2
DNDN∗

)
ΠN

)]−1

×
[(
BNBN∗ − 1

γ2
DNDN∗

)
ΠN

]
(λI −AN )−1

and[
λI −

(
A−

(
BB∗ − 1

γ2
DD∗

)
Π

)]−1

− (λI −A)−1

= −
[
λI −

(
A−

(
BB∗ − 1

γ2
DD∗

)
Π

)]−1 [(
BB∗ − 1

γ2
DD∗

)
Π

]
(λI −A)−1,

it can then be verified that[
λI −

(
AN −

(
BNBN∗ − 1

γ2
DNDN∗

)
ΠN

)]−1

PN

−
[
λI −

(
A−

(
BB∗ − 1

γ2
DD∗

)
Π

)]−1

=

{[
I −

[
λI −

(
AN −

(
BNBN∗ − 1

γ2
DNDN∗

)
ΠN

)]−1

×
(
BNBN∗ − 1

γ2
DNDN∗

)
ΠNPN

]
[(λI −AN )−1PN − (λI −A)−1]

+

[
λI −

(
AN −

(
BNBN∗ − 1

γ2
DNDN∗

)
ΠN

)]−1

×
[(
BB∗ − 1

γ2
DD∗

)
Π−

(
BNBN∗ − 1

γ2
DNDN∗

)
ΠNPN

]
(λI −A)−1

}
(λI −A)

×
[
λI −

(
A−

(
BB∗ − 1

γ2
DD∗

)
Π

)]−1

.
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According to assumptions (A1), (A2), and Lemma 2.1, we have

(λI−AN )−1 →→ (λI−A)−1,

(
BNBN∗ − 1

γ2
DNDN∗

)
ΠN →→

(
BB∗ − 1

γ2
DD∗

)
Π

as N →∞. Note that[
λI −

(
A−

(
BB∗ − 1

γ2
DD∗

)
Π

)]−1

: X → D(A),

and hence the closed graph theorem implies that the operator

(λI −A)

[
λI −

(
A−

(
BB∗ − 1

γ2
DD∗

)
Π

)]−1

is bounded. Thus we have the desired result.
Theorem 3.3. Let AN , BN , CN , DN , and ΠN satisfy (A1) and (A2), and

introduce

ANp :=

[
A+ 1

γ2DD
∗Π BLN

GNC AN +MN

]
,

where Π is the solution of (1.8). Then, for sufficiently large N , there exists ε > 0
which is independent of N such that

σ(ANp ) ⊆ (−∞,−ε]

where σ(Ap) is the spectrum3 of Ap.
Proof . For a given (h1, h2) ∈ X ×XN , consider the equation

(λI −ANp )

[
v1

v2

]
=

[
h1

h2

]
,(3.4)

which is equivalent to

λv1 −
(
Av1 +

1

γ2
DD∗Πv1 +BLNv2

)
= h1(3.5)

and

λv2 − [GNCv1 + (AN +MN )v2] = h2.(3.6)

What we now show is that for any given (h1, h2) ∈ X ×XN , when N is sufficiently
large, (3.5)–(3.6) admits a solution (v1, v2) which is also in X ×XN .

According to Lemma 3.1, there exists an integer N1 > 0 such that when Reλ >
−ω3, (λI − (A+ 1

γ2DD
∗Π +BLN ))−1 is well defined. Hence, (3.5) can be written as

v1 =

[
λI −

(
A+

1

γ2
DD∗Π +BLN

)]−1

[BLN (v2 − v1) + h1].(3.7)

3The spectrum of an operator consists of three mutually exclusive parts: the point spectrum, the
continuous spectrum, and the residual spectrum; for more details, see Kato [18].
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Similarly, since AN − (BNBN∗ − 1
γ2D

NDN∗)ΠN generates an exponentially stable
semigroup by the hypothesis of the theorem and in view of Lemma 2.1, there exists
λ, with Reλ > −ω1, for which (3.6) becomes

v2 =

[
λI −

(
AN −

(
BNBN∗ − 1

γ2
DNDN∗

))
ΠN

]−1

[GNC(v1 − v2) + h2].(3.8)

Thus, if Reλ > −min(ω1, ω3) and N > N1 we have

v1 − v2 =

[
λI −

(
A+

1

γ2
DD∗Π +BLN

)]−1

[BLN (v2 − v1) + h1]

−
[
λI −

(
AN −

(
BNBN∗ − 1

γ2
DNDN∗

))
ΠN

]−1

[GNC(v1 − v2) + h2].

We next show that the above equation admits a unique solution. By some manipula-
tions, we arrive at

(3.9)

[
λI −

(
AN +

1

γ2
DNDN∗ΠN −GNCN

)]
(v1 − v2)

=

[
λI −

(
AN −

(
BNBN∗ − 1

γ2
DNDN∗

)
ΠN

)]
(v1 − v2) + (BNLN +GNCN )(v1 − v2)

=

[
λI −

(
AN −

(
BNBN∗ − 1

γ2
DNDN∗

)
ΠN

)]
×
(
−
[
λI −

(
A+

1

γ2
DD∗Π +BLN

)]−1

BLN

+

[
λI −

(
AN −

(
BNBN∗ − 1

γ2
DNDN∗

)
ΠN

)]−1

BNLN

)
(v1 − v2)

+

[
λI −

(
AN −

(
BNBN∗ − 1

γ2
DNDN∗

)
ΠN

)]([
λI −

(
A+

1

γ2
DD∗Π +BLN

)]−1

h1

−
[
λI −

(
AN −

(
BNBN∗ − 1

γ2
DNDN∗

)
ΠN

)]−1

PNh1

)
+ PNh1 − h2 +GN (CN − C)(v1 − v2).

By Lemma 2.3, part 3, for all λ such that Reλ > −ω2, the matrix [λI − (AN +
1
γ2D

NDN∗ΠN −GNCN )] is invertible, in view of which the following equality holds:

[
λI −

(
AN +

1

γ2
DNDN∗ΠN −GNCN

)]−1

×
[
λI −

(
AN −

(
BNBN∗ − 1

γ2
DNDN∗

)
ΠN

)]
= I +

[
λI −

(
AN +

1

γ2
DNDN∗ΠN −GNCN

)]−1

(BNBN∗ΠN −GNCN ).
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Thus for Reλ > −min(ω1, ω2, ω3) := −ω and N > N1, (3.9) can be written as

(v1−v2)− ϕNBLN (v1 − v2)

+

[
λI −

(
AN +

1

γ2
DNDN∗ΠN −GNCN

)]−1

GN (C − CN )(v1 − v2)

=

[
λI −

(
AN +

1

γ2
DNDN∗ΠN −GNCN

)]−1

(PNh1 − h2)− ϕNh1,

(3.10)

where ϕN is

ϕN =

{
I +

[
λI −

(
AN +

1

γ2
DNDN∗ΠN −GNCN

)]−1

(BNBN∗ΠN −GNCN )

}

×
{
−
[
λI −

(
A+

1

γ2
DD∗Π +BLN

)]−1

+

[
λI −

(
AN −

(
BNBN∗ − 1

γ2
DNDN∗

))
ΠN

]−1

PN

}
.

We show next that there exists N ′ such that if N > N ′,

∥∥∥∥∥ϕNBLN +

[
λI −

(
AN +

1

γ2
DNDN∗ΠN −GNCN

)]−1

GN (C − CN )

∥∥∥∥∥
L(X)

< 1,

(3.11)

which then says that (3.5), (3.6) are solvable for Reλ ≥ 0 according to (3.7) and (3.8).
Again we denote by SN the C0 semigroup generated by operator A+ 1

γ2DD
∗Π +

BLN . Since both[
λI −

(
A+

1

γ2
DD∗Π +BLN

)]−1

B =

∫ ∞
0

e−λtSN (t)Bdt

and [
λI −

(
AN +

1

γ2
DNDN∗ΠN −BNBN∗ΠN

)]−1

PNB

=

∫ ∞
0

e−λte(AN+ 1
γ2D

NDN∗ΠN−BNBN∗ΠN )t
PNBdt

hold for Reλ ≥ −ω, for any T > 0 we have∥∥∥∥∥
[
λI −

(
A+

1

γ2
DD∗Π +BLN

)]−1

B

−
[
λI −

(
AN +

1

γ2
DNDN∗ΠN −BNBN∗ΠN

)]−1

PNB

∥∥∥∥∥
≤
∫ T

0

e−Reλt‖e(AN+ 1
γ2D

NDN∗ΠN−BNBN∗ΠN )t
PNB − SNB‖dt

+

(
M1

e−(Reλ+ω1)T

Reλ+ ω1
+M3

e−(Reλ+ω3)T

Reλ+ ω3

)
‖B‖.
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By Lemma 2.3, part 3, and the principle of uniform boundedness [27], for Reλ ≥ −ω
there is a constant c > 0 independent of N such that∥∥∥∥∥I +

[
λI −

(
AN +

1

γ2
DNDN∗ΠN −GNCN

)]−1

(BNBN∗PN −GNCN )

∥∥∥∥∥ ≤ c.
Let cL := maxN ‖LN‖ and choose T > 0 such that for Reλ > −ω

cLc

(
M1

e−(Reλ+ω1)T

Reλ+ ω1
+M3

e−(Reλ+ω3)T

Reλ+ ω3

)
‖B‖ ≤ 1

4
.

On the other hand, as N →∞ we have

e
(AN+ 1

γ2D
NDN∗ΠN−BNBN∗ΠN )t

PNB → S(t)B strongly,

SN (t)B →→ S(t)B

uniformly on [0, T ]. Thus there exists N ′′ > 0 such that when N ≥ N ′′, the following
holds: ∫ T

0

e−Reλt‖e(AN+ 1
γ2D

NDN∗ΠN−BNBN∗ΠN )t
PNB − SNB‖dt ≤ 1

4ccL

by noting that B is compact. It then follows that for N ≥ max(N ′, N ′′) := N̂ ,
‖ϕNBLN‖ ≤ 1

2 . Note that CN → C as N → ∞, and there exists N > 0 such that

when N > N∥∥∥∥∥
[
λI −

(
AN +

1

γ2
DNDN∗PN −GNCN

)]−1

GN (C − CN )

∥∥∥∥∥
L(X)

<
1

2
.

Therefore, for N > max(N̂ ,N), (3.11) holds, and (3.5), (3.6) are solvable for suffi-
ciently large N when Reλ ≥ −ω, which yields the conclusion.

Theorem 3.4. Under the assumptions of Theorem 3.3, let ANp be given. Let

A =

[
A+ 1

γ2DD
∗Π −BB∗Π

ΓC∗C A− (BB∗ − 1
γ2DD

∗)Π− ΓC∗C

]
and S(t) be the C0 semigroup generated by A on X ×X with D(A) = D(A)×D(A).
If there exists a λ such that the operator [λI −ANp ]−1 is uniformly bounded for all N ,
then

SN (t)→→ S(t) uniformly on bounded t-intervals as N →∞,
where SN (t) is the C0 semigroup generated by ANp on X ×X with D(ANp ) = D(A)×
XN .

Proof. Introduce

QN =

[ 1
γ2DD

∗Π −BBN∗ΠN

ΓNCN∗C −(BNBN∗ − 1
γ2D

NDN∗)ΠN − ΓNCN∗CN

]
and

Q =

[ 1
γ2DD

∗Π −BB∗Π
ΓC∗C −(BB∗ − 1

γ2DD
∗)Π− ΓC∗C

]
.
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Let A = A1 +Q and ANp = ANp1 +QN . To show SN (t)→→ S(t) for t ≥ 0 is equivalent
to proving that for Reλ > −ω

R(λ : ANp )→→ R(λ : A),(3.12)

i.e.,

R(λ : ANp )P
N
x→ R(λ : A)x ∀x ∈ X,

where P
N

: X ×X → X ×XN is given by

P
N

=

[
I 0
0 PN

]
.

Hence we next claim (3.12). First, it is not difficult to verify that

[λI − (ANp1 +QN )]−1−[λI −ANp1]−1

= [λI − (ANp1 +QN )]−1QN [λI −ANp1]−1

and

[λI − (A1 +Q)]−1 − [λI −A1]−1 = [λI − (A1 +Q)]−1Q[λI −A1]−1.

Hence we have

(3.13)

[λI− (ANp1 +QN )]−1P
N − [λI − (A1 +Q)]−1

= [λI − (ANp1 +QN )]−1QN
(
[λI −ANp1]−1P

N − [λI −A1]−1
)

−[λI − (ANp1 +QN )]−1(P
N
Q−QN )[λI −A1]−1

+
(
[λI − (ANp1 +QN )]−1P

N − [λI −A1 +Q)]−1
)
Q[λI −A1]−1

+[λI −ANp1]−1P
N − [λI −A1]−1.

Reorganizing (3.13) yields(
[λI−(ANp1 +QN )]−1P

N − [λI − (A1 +Q)]−1
)

(I −Q[λI −A1]−1)

=
(
I + [λI − (ANp1 +QN )]−1QN

)(
[λI −ANp1]−1P

N − [λI −A1]−1
)

− [λI − (ANp1 +QN )]−1(P
N
Q−QN )[λI −A1]−1.

Since

[I −Q(λI −A1)−1]−1 = [λI −A1][λI − (A1 +Q)]−1,

we know that [I+Q(λI−A1)−1]−1 is bounded by the closed graph theorem (see [27]).
Therefore, we arrive at

[λI − (ANp1 +QN )]−1P
N − [λI − (A1 +Q)]−1

=
{(
I − [λI − (ANp1 +QN )]−1QN

)(
[λI −ANp1]−1P

N − [λI −A1]−1
)

− [λI − (ANp1 +QN )]−1(P
N
Q−QN )[λI −A1]−1

}
[λI −A1][λI − (A1 +Q)]−1.
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By assumption (A1), we have

[λI −ANp1]−1P
N → [λI −A1]−1, P

N
Q−QN → 0 strongly as N →∞.

Therefore, (3.12) holds as N →∞, thus completing the proof.
Remark 3. One sufficient condition for [λI − ANp ]−1 to be uniformly bounded

in N is assumption (A4). Clearly if A is an analytic C0 semigroup, [λI − ANp ]−1 is
uniformly bounded in N according to Theorem 3.3.

Theorem 3.5. Under the assumptions of Theorem 3.3, let ANp be given. Recall
that

AN =

[
A BLN

GNC AN +MN

]
.

If ANp generates a stable semigroup, then AN also generates a stable semigroup on

X ×XN .
Proof . Step 1. Consider the system

ẋh =

(
A+

1

γ2
DD∗Π

)
xh −BBN∗ΠNpNk +Dw,

˙pNk =

(
AN −

(
BNBN∗ − 1

γ2
DNDN∗

)
ΠN − ΓNCN∗CN

)
pNk

+ ΓNCN∗Cxh + ΓNCN∗η,
xh(0) = h,

pNk (0) = k.

(3.14)

We claim that for a given δ > 0, 0 < δ < γ, there exists Nδ > 0 such that when
N ≥ Nδ the following estimate holds:

(3.15)

∫ ∞
0

(
‖Hxh‖2 + ‖BN∗ΠNpNk ‖2 − γ2

(∥∥∥∥w +
1

γ2
D∗Πxh

∥∥∥∥2

+ ‖η‖2
))

dt

≤ −δ2

∫ ∞
0

(‖w‖2 + ‖η‖2)dt+ C0(‖h‖2 + ‖k‖2),

where C0 is some positive constant. First we denote the solution of (3.14) with initial
condition (0, 0) by (x0, p

N
0 ). It is easy to see that by evaluating d

dt (Πx0, x0) and
integrating from 0 to ∞, we have the following identity:∫ ∞

0

(
‖Hx0‖2 + ‖BN∗ΠNpN0 ‖2 − ‖B∗Πx0 −BN∗ΠNpN0 ‖2

+ γ2

(
‖w‖2 −

∥∥∥∥w +
1

γ2
D∗Πx0

∥∥∥∥2
))

dt = 0.

(3.16)

We then consider the following coupled (optimal) system:

ẋ =

(
A+

1

γ2
DD∗Π

)
x−BB∗Πp+Dw,

ṗ =

(
A−

(
BB∗ − 1

γ2
DD∗

)
Π− ΓC∗C

)
p+ ΓC∗Cx+ ΓC∗η,

x(0) = 0,

p(0) = 0.

(3.17)
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Letting ξ = x− p, we have

ξ̇ =

(
A+

1

γ2
DD∗Π− ΓC∗C

)
ξ +Dw − ΓC∗η, ξ(0) = 0.(3.18)

Note that (3.17) is in fact the dual system of (2.6) in Lemma 2.3, and thus by the
duality theorem (see Appendix I) we have

γ2
1 := sup

w,η

∫∞
0
‖B∗ξ‖2dt∫∞

0
(‖w‖2 + ‖η‖2)dt

= sup
w,η

∫∞
0
‖B∗Π(x(t)− p(t))‖2dt∫∞
0

(‖w‖2 + ‖η‖2)dt
< γ2.

Since (xh, p
N
k ) ∈ L2(0,∞;X)×L2(0,∞;XN ) and (x, p) ∈ L2(0,∞;X)×L2(0,∞;X),

according to Theorem 3.4, letting ε = (γ2−γ2
1)/2, there exists N ′ > 0 such that when

N > N ′∫ ∞
0

‖B∗Πx0 −B∗Πx‖2dt < ε,

∫ ∞
0

‖B∗Πp−BN∗ΠNpN‖2dt < ε,

which implies that when N > N ′,

sup
w,η

∫∞
0
‖B∗Πx0(t)−BN∗ΠNpN0 (t)‖2dt∫∞

0
(‖w‖2 + ‖η‖2)dt

< γ2.

Hence we can find δ < γ and Nδ > N ′ such that for N ≥ Nδ we have

sup
w,η

∫∞
0
‖B∗Πx0(t)−BN∗ΠNpN0 (t)‖2dt∫∞

0
(‖w‖2 + ‖η‖2)dt

≤ γ2 − δ2.(3.19)

Hence (3.15), (3.19) yield

∫ ∞
0

(
‖Hx0‖2 + ‖BN∗ΠNpN0 ‖2 − γ2

(∥∥∥∥∥w +
1

γ2
D∗Πx0

∥∥∥∥∥
2

+ ‖η‖2
))

≤ −δ2

∫ ∞
0

(‖w‖2 + ‖η‖2)dt.

(3.20)

Let x1 := xh − x0, pN1 := pNk − pN0 . Note that (x1, p
N
1 ) depends only on h, k and not

on w, η, and clearly for some positive constants c1 and c2:

‖x1‖ ≤ c1‖h‖, ‖pN1 ‖ ≤ c2‖k‖.

Therefore, replacing (x0, p
N
0 ) by (xh − x1, p

N
k − pN1 ) in (3.20), we arrive at (3.15).

Step 2. Introduce the system

˙̂xh = Ax̂h −BBN∗ΠN p̂Nk ,

˙̂pNk =

(
AN −

(
BNBN∗ − 1

γ2
DNDN∗

)
ΠN − ΓNCN∗CN

)
p̂Nk + ΓNCN∗Cx̂h,

x̂h(0) = h,

p̂Nk (0) = k.

(3.21)
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We shall prove that there exists N1 > 0 such that for N ≥ N1 we have

x̂h, p̂
N
k ∈ L2(0,+∞;X).

For any T > 0, we define

xT (t) =

{
x̂h(t) if t ≤ T,

xx̂T ,p̂NT (t− T ) if t > T

and

pNT (t) =

{
p̂Nk (t) if t ≤ T,

pN
x̂T ,p̂NT

(t− T ) if t > T,

where (xx̂T ,p̂NT , p
N
x̂T ,p̂NT

) is the solution of

ẋ =

(
A+

1

γ2
DD∗Π

)
x−BBN∗ΠNpN ,

˙pN =

(
AN −

(
BNBN∗ − 1

γ2
DNDN∗

)
ΠN − ΓNCN∗CN

)
pN + ΓNCN∗Cx,

x(T ) = x̂h(T ),

pN (T ) = p̂Nk (T ).

(3.22)

If we let

wT (t) =

{−γ−2D∗Πx̂h(t) if t ≤ T,
0 if t > T,

we can see that the pair (xT (·), pNT (·)) is the solution of the system (3.14) correspond-
ing to the perturbation w(·) = wT (·) and η = 0. Hence for N ≥ Nδ, by applying
(3.15) we have∫ ∞

0

(
‖HxT ‖2 + ‖BN∗ΠNpNT ‖2 − γ2

∥∥∥∥∥wT +
1

γ2
D∗ΠxT

∥∥∥∥∥
2)
dt

≤ −δ2

∫ ∞
0

‖w‖2dt+ C0(‖h‖2 + ‖k‖2).

(3.23)

Note that by the definition of wT we have∫ ∞
T

(
‖HxT ‖2 + ‖BN∗ΠNpNT ‖2 − γ2

∥∥∥∥∥wT +
1

γ2
D∗ΠxT

∥∥∥∥∥
2)
dt

=

∫ ∞
T

(
‖Hxx̂T ,p̂NT ‖

2 + ‖BN∗ΠNpNx̂T ,p̂NT
‖2 − γ2

∥∥∥∥∥ 1

γ2
D∗pNx̂T ,p̂NT

∥∥∥∥∥
2)
dt.

On the other hand, making use of Riccati equation (1.8) yields∫ ∞
T

(
‖HxT ‖2+‖BN∗ΠNpNT ‖2 − γ2

∥∥∥∥∥wT +
1

γ2
D∗ΠxT

∥∥∥∥∥
2)
dt

= (Πx̂T , x̂T ) +

∫ ∞
T

‖B∗Πxx̂T ,p̂NT −B
N∗ΠNpNx̂T ,p̂NT

‖2dt.
(3.24)
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Therefore we deduce from (3.23) and (3.24) the estimate∫ ∞
0

(
‖HxT ‖2 + ‖BN∗ΠNpNT ‖2 − γ2

∥∥∥∥∥wT +
1

γ2
D∗ΠxT

∥∥∥∥∥
2)
dt

=

∫ T

0

(‖HxT ‖2 + ‖BN∗ΠNpNT ‖2)dt+ (Πx̂T , x̂T )

+

∫ ∞
T

‖B∗Πxx̂T ,p̂NT −B
N∗ΠNpNx̂T ,p̂NT

‖2dt

< −δ2

∫ ∞
0

‖wT ‖2dt+ C0(‖h‖2 + ‖k‖2),

(3.25)

which yields (with c1 some positive constant):∫ T

0

‖D∗Πx̂h‖2dt ≤ C1(‖h‖2 + ‖k‖2).

By letting T → ∞, we have D∗Πx̂h ∈ L2(0,+∞;W ). Note that (x̂h, p̂
N
k ) appears as

the solution of (3.14) with

w = − 1

γ2
D∗Πx̂h and η = 0.

Thus we have x̂h, p̂
N
k ∈ L2(0,+∞;X), and according to a theorem due to Datko (see

[11]) AN is exponentially stable. This completes the proof of Theorem 3.5.
Corollary 3.6. For any choice of the matrices AN , LN , GN ,MN , if ANp defined

in Theorem 3.3 satisfies the spectrum-determined growth condition, then there exists
N ′ > 0 such that when N > N ′, AN which is defined in Theorem 3.5 generates an
exponentially stable semigroup.

Proof . The proof is quite straightforward. Note that according to Theorem 3.3,
there exists an N ′ > 0 such that when N > N ′ we have

σ(ANp ) ⊆ (−∞,−ε]
for some ε > 0 which is independent of N , and ANp satisfies the spectrum-determined
growth condition. Thus the growth constant ωp,

ωp = lim
t→∞

1

t
ln ‖eANp t‖,

is negative, and hence ANp generates an exponentially stable C0 semigroup. By The-

orem 3.5, we have that when N > N ′, AN is exponentially stable.
Equipped with all the results above, we are now in a position to prove the main

theorem stated at the beginning of this section.
Proof of the main theorem. Let us view the system and its finite-dimensional

compensator together as a coupled system, i.e.,

ẋ = Ax−BBN∗ΠNp+Dw,

ṗN =

(
AN −

(
BNBN∗ − 1

γ2
DNDN∗

)
ΠN − ΓNCN∗CN

)
pN + ΓNCN∗Cx+ ΓNCN∗η,

x(0) = 0,

pN (0) = 0.

(3.26)
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By Corollary 3.6, there exists N1 > 0 such that when N > N1, the matrix operator

AN =

[
A BLN

GNC AN +MN

]
generates an exponentially stable C0 semigroup; thus the coupled system (3.26) is an
exponentially stable system. Let ŵ = w − 1

γ2D
∗Πx, w ∈ L2(0,∞;W ); then there

exists N2 such that (x, pN ) satisfies (3.15) with h = 0, k = 0 for N > N2, i.e.,∫ ∞
0

(
‖Hx‖2 + ‖BN∗ΠNpN‖2 − γ2(‖ŵ‖2 + ‖η‖2)

)
dt

≤ −δ2

∫ ∞
0

(∥∥∥∥∥ŵ +
1

γ2
D∗Πx

∥∥∥∥∥
2

+ ‖η‖2
)
dt,

(3.27)

which is equivalent to

sup
ŵ,η

∫∞
0

(‖Hx‖2 + ‖BN∗ΠNpN‖2)dt∫∞
0

(‖ŵ‖2 + ‖η‖2)dt

≤ γ2 − δ2 inf
ŵ,η

∫∞
0

(‖η‖2 + ‖ŵ + 1
γ2D

∗Πx‖2)dt∫∞
0

(‖ŵ‖2 + ‖η‖2)dt
.

Since ANp is exponentially stable, we immediately have

inf
w,η

∫∞
0

(‖η‖2 + ‖w − 1
γ2D

∗Πx‖2)dt∫∞
0

(‖w‖2 + ‖η‖2)dt
> 0.

Therefore (1.16) holds and the proof is complete.

4. An application: Robust control of flexible structures. As an illustra-
tion of the theory developed in the previous section, we consider here the problem of
robust control of flexible structures and provide a general computational scheme for
a finite-dimensional compensator design, which can be used for numerical implemen-
tation of the full-order controller for particular structures such as the Euler–Bernoulli
beam with the Kelvin–Voigt damping.

A typical class of flexible structures can be generically described by a system of
partial differential equations:

M(ξ)
∂2

∂t2
z(ξ, t) + d0

∂

∂t
z(ξ, t) +A0z(ξ, t) = B0u(ξ, t) +D0w(ξ, t), t > 0,(4.1)

where z(ξ, t) is a vector of displacements of the structure (denoted by Ω) off its equi-
librium position, as a function of space variable ξ and time t; M(ξ) is the mass
density; A0 is a linear, time-invariant, self-adjoint, and positive differential operator;
the domain D(A0) consists of all smooth functions satisfying (4.1) with appropriate
boundary conditions and is dense in L2(Ω); d0 represents the inherent damping oper-
ators; B0u denotes the control forces, while D0w represents the external disturbance
forces on the structure.

In most cases, the operator A0, attributed to stiffness, is assumed to have a
compact resolvent and thus the eigenvalues {λi} form an infinitely increasing sequence
of nonnegative real numbers. This can be expressed as the eigenproblem: A0φi =
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λiφi, where {√λi} are called the vibration mode frequencies, and {φi(ξ)} are the
corresponding vibration mode shapes. Possible disturbances result from atmospheric
effects, meteorite collisions, as well as pumps and motors. The objective of designing
a (finite-dimensional) H∞-optimal compensator for flexible structures is to maintain
the attitude of each mode as close as possible to the desired attitude in the presence
of disturbances acting on the structure (system) and corrupting the measurements.

Under the assumption that M is a bounded, self-adjoint, and coercive linear
operator on L2(Ω), without loss of any generality, (4.1) can be transformed into an
evolution equation on L2(Ω) in the form

z̈(t) + d̃0ż(t) + Ã0z(t) = B̃0u(t) + D̃0w(t), t > 0.

Let H0 = L2(Ω), and let V be the Hilbert space which is the completion of D(Ã0)

with respect to the inner product 〈v1, v2〉V := 〈Ã0v1, v2〉H0 , that is, V = D(Ã
1/2
0 ). In

this case the following embedding holds:

V ⊂ H0 = H ′0 ⊂ V ′

where H ′0 and V ′ represent the dual spaces of H0 and V , respectively, with the
injection from V into H0 and from H0 into V ′ being continuous with dense ranges.
The total energy space is defined as X = V ×H0 with inner product given by

〈[v1, h1], [v2, h2]〉X = 〈v1, v2〉V + 〈h1, h2〉H0
.

The state-space formulation of (4.1) is then

ẋ(t) = Ax(t) +Bu(t) +Dw(t),

where

A =

[
0 I

−Ã0 −d̃0

]
, B =

[
0

B̃0

]
, D =

[
0

D̃0

]
, x =

[
z
ż

]
.

Let V := V × V and H := H0 ×H0. In view of the nature of flexible structures and
the above discussion, we can assume that d̃0 ∈ L(V ) and the operator A ∈ L(V,V ′)
is generated by the bilinear continuous form on V,

〈−Ax, v〉V′×V = a(x, v) for x, v ∈ V,
where a(·, ·) is symmetric, and V -H0 coercive:

∃α > 0, ∃λ ∈ R, a(x, x) + λ‖x‖2V ≥ α‖x‖2H.
Thus A generates an analytic semigroup eAt onH (see Theorem 2.12 of [6]). Moreover,
if 0 ∈ ρ(A), then eAt is a compact C0 semigroup of contraction. Let V N be the span of
N linearly independent vectors ej , which is the orthogonal projection of V by operator
PV N . Furthermore, we define the Hilbert space XN = V N×V N , whose inner product
is the same as X. Let

AN =

[
0 I

−M−NKN −M−N dN∞

]
2N×2N

,

where MN = [〈ei, ej〉H0
]N×N , KN = [〈Ã1/2

0 ei, Ã
1/2
0 ej〉H0

]N×N , dN1 = [〈d0ei, ej〉]N×N .

Then the semigroups eA
N t and eA

N∗t satisfy assumption (A1) of section 2.
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Proposition 4.1. Assume that the projection operator PV N : V → V N is
the V -projection onto V N , which is a sequence of finite-dimensional subspaces, and
vN = PV N v ∈ V N converges to v for any v ∈ V . Let

PN =

[
PV N 0

0 PHN

]
,

where PHN is the H-projection onto V N . Then, we have the following:

(a) eA
N tPN converges strongly to eAt, uniformly in t for t in bounded intervals;

(b) eA
N∗tPN converges strongly to eA

∗t, uniformly in t for t in bounded intervals.
Outline of the proof . Since the embedding V ⊂ H0 is compact, a direct calculation

leads to the result that (λI − AN )−1 strongly converges to (λI − A)−1 when λ > 0.
Then application of the Trotter–Kato theorem yields (a), and the proof of (b) is
similar.

We assume that the control forces are implemented through m actuators. Thus
there exist m vectors bi ∈ H0, 1 ≤ i ≤ m, such that

B̃0u =

m∑
i=1

biui, where u = [u1, u2, . . . , um]T ∈ Rm,

where ui are called the actuator amplitudes and bi are referred to as the actuator
influence functions in H0. The adjoint of B̃0 is thus given by

B̃∗0h = [〈b1, h〉H0, 〈b2, h〉H0
, . . . , 〈bm, h〉H0

]T , where h ∈ H0.

Recall that the performance index is given by (1.15). Here we define Q := H∗H.
Since Q = Q∗ ∈ L(X) and X = V ×H0, Q can be written as

Q =

[
Q11 Q12

Q∗12 Q22

]
,

where Q11 = Q∗11 ∈ L(V ), Q12 ∈ L(H0, V ), and Q22 = Q∗22 ∈ L(H0).
Let the measurement be produced by p sensors

y(t) = C0z(t) + E0ż(t) + η(t),

where C0, E0 ∈ L(H0,Rp), yi(t) = (ci, z)H0 + (vi, ż)H0 + ηi, ci, vi ∈ H0, ηi ∈ W1, i =
1, 2, . . . , p. Functions {ci} are the position sensors, and functions {vi} are the velocity
sensors in H0. If we introduce C = [C0, E0], then the partial observation can be
written as y(t) = Cx(t) + η(t).

Next we let

Q̂N =

[
[〈ei, Q11ej〉]V [〈ei, Q12ej〉]V
[〈ei, Q12ej〉]TV [〈ei, Q22ej〉]H0

]
2N×2N

, CN =

[
[〈ei, cj〉]H0

[〈ei, vj〉]H0

]T
2N×p

,

BN =

[
0

M−NBN
]

2N×m
, dN =

[
0

M−NdN1

]
2N×N

, DN =

[
0

M−NDN
]

2N×1

,

and

BN = [〈ei, bj〉]N×m, DN = [〈ei, PHND·〉H ]N×1.



1636 MINGQING XIAO AND TAMER BAŞAR

Straightforward calculations lead to the following two propositions.
Proposition 4.2. Let PN , BN , CN , and DN be given as above. Then we have

(1) BN =PNB; (2) CN = PNC
∣∣
XN

; (3) DN = PND; (4) QN = PNQ
∣∣
XN

;

(5) DNDN∗ =

[
0 0
0 [〈PHN0 DD∗P ∗HN ei, ej〉H0 ]N×N

]
2N×2N

,

where C
∣∣
XN

represents the restriction of operator C onto XN , and so does Q
∣∣
XN

.

Proposition 4.3. Let GN be the Gramian matrix defined as

GN =

[
[(ei, ej)]V 0

0 [(ei, ej)]H0

]
2N×2N

.

Then we have (1) AN∗ = G−N (AN )TGN ; (2) BN∗ = (BN )TGN ; (3) QN = G−N Q̂N .
Hence we have provided the complete matrix representations of the Riccati equa-

tions:

ΠNAN +AN∗ΠN −ΠN

(
BNBN∗ − 1

γ2
DNDN∗

)
ΠN +QN = 0(4.2)

and

ΣAN∗ +ANΣN − ΣN
(
CN∗CN − 1

γ2
QN
)

ΣN +DNDN∗ = 0(4.3)

through Propositions 4.2 and 4.3. Let γΠ
Nc (respectively, γΣ

Nc) be the optimum attenu-
ation level associated with (4.2) (respectively, (4.3)), that is, for γ > γΠ

Nc (respectively,
γ > γΣ

Nc) (4.2) (respectively, (4.3)) admits a nonnegative solution ΠN (respectively,
ΣN ), which satisfies assumption (A2) (respectively, (A3)), and for γ < γΠ

Nc (respec-
tively, γ < γΣ

Nc) there will be no such solution. We use similar notations γΠ
c and γΣ

c

to represent the optimum attenuation level associated with Riccati equations (1.8),
(1.9), respectively. Now we are interested in the question of whether we can have

γΠ
Nc → γΠ

c , γΣ
Nc → γΣ

c as N →∞
which is equivalent to the question of whether the performance of the system can
be made arbitrarily close to that obtained under the infinite-dimensional controller.
According to [30], γΠ

Nc has a closed-form representation in terms of the norm of an
operator, denoted by SNΠ ∈ L(XN ). That is, γΠ

Nc = ‖SNΠ‖L(XN ), and so does

γΠ
c = ‖SΠ‖L(X). Thus to require γΠ

Nc → γΠ
c is equivalent to requiring

‖SNΠ‖L(XN ) → ‖SΠ‖L(X).(4.4)

However, we generally have only

SNΠ →→ SΠ.

Hence it will be necessary to impose additional restrictions on the system for the
approximation. One can verify that a sufficient condition for (4.4), by the closed-
form of γΠ

c , is that either the semigroup eAt or operator D be compact, since in this
case operator SΠ would be a compact operator. Similar results hold for the Riccati
equation (4.3). Let the matrix ΠN

ΠN =

[
ΠN

11 ΠN
12

ΠN∗
12 ΠN

22

]
2N×2N
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be the solution of (4.2). Then the finite-dimensional compensator in XN can be
constructed as

uc(t) = −B̃∗0 [ΠN∗
11 zN1(t) + ΠN

22ż2N (t)],

żN (t) =

(
AN −

(
BNBN∗ +

1

γ2
DNDN∗

)
ΠN

)
zN (t)

+ ΣN
(
I − 1

γ2
ΠNΣN

)−1

CN∗y(t),

(4.5)

where zN = (zN1, z2N ) ∈ XN . We summarize the above discussion in the following
theorem.

Theorem 4.4. Assume that (A,B) is stabilizable, (A,H) is detectable, and either
0 ∈ ρ(A) or both D and H are compact. If a γ-attenuation level is achieved by an
infinite-dimensional compensator, then

(1) for sufficiently large N , Riccati equation (4.2) admits a nonnegative solution
ΠN ∈ Σ+(XN ) which satisfies assumption (A2);

(2) for sufficiently large N , Riccati equation (4.3) admits a nonnegative solution
ΣN ∈ Σ+(XN ) which satisfies assumption (A3);

(3) the finite-dimensional compensator given in (4.5) achieves the same attenua-
tion level by choosing an appropriate N ; that is, when x0 = 0 we have

sup
w,η

∫ ∞
0

(‖Hx(t)‖2Y1
+ ‖uc(t)‖2Rm)dt∫ ∞

0

(‖w(t)‖2W + ‖η(t)‖2W1
)dt

< γ2.

5. Concluding remarks. In this paper we have established the existence of
finite-dimensional compensators in the H∞-optimal control of infinite-dimensional
systems by using a Galerkin-type approximation. This result readily covers the case
when the system structure operator A has a complete set of generalized eigenvec-
tors, such as A being a Riesz-spectral operator.4 In order to construct such a finite-
dimensional compensator, we required that there exist an infinite-dimensional com-
pensator achieving a γ-attenuation level. This is quite natural because one cannot
expect a finite-dimensional compensator to be able to achieve the γ-attenuation level
if there is no infinite-dimensional compensator to do so. From the proofs we can see
that the finite-dimensional controller in fact converges to the infinite-dimensional con-
troller as its order increases. The order of the finite-dimensional controller depends on
how much error the system can tolerate, which is measured by the difference between
γ and γc, where γc is the optimum level of disturbance attenuation for the system,
which can be defined in a similar way as in the finite-dimensional case (see [30]).

The approach used in this paper can be extended to the case when the finite-
dimensional controller is only allowed to act on the boundary. Such an extension as
well as results of some numerical experiments will be reported elsewhere.

4A is a Riesz-spectral operator means that it has simple eigenvalues and the corresponding
eigenvectors form a Riesz basis: a sequence of vectors {φn, n ≥ 1} in a Hilbert space X such that

(1) span{φn} = X, (2) there exist constants m, M such that for all N

m

N∑
n=1

|αn|2 ≤
∥∥∥∥∥
N∑
n=1

φn

∥∥∥∥∥
2

≤M
N∑
n=1

|αn|2.
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Appendix I. The following theorem is from [3].
Duality theorem. Consider Hilbert spaces X,Y, Z, identified with their duals.

Let A be the infinitesimal generator of a C0 semigroup in X, and B ∈ L(Y,X), C ∈
L(X,Z). With the triple (A,B, C), associate a linear system

ẋ = Ax+ Bu, x(0) = 0

and a corresponding observation Cx. The system dual to this is defined as

ξ̇ = A∗ξ + C∗v, ξ(0) = 0,

with a corresponding observation B∗ξ. Assume that A is exponentially stable. Then
we have

sup
u

∫∞
0
|Cx|2dt∫∞

0
|u|2dt = sup

v

∫∞
0
|B∗ξ|2dt∫∞

0
|v|2dt .

Appendix II. We provide here a proof for Lemma 2.1, which is in the form of
a sequence of propositions.

Proposition A.1. The Riccati equation

ΠA+A∗Π−Π

(
BB∗ − 1

γ2
DD∗

)
Π +H∗H = 0(A2.1)

has at most one solution Π ∈ Σ+(X) such that A−(BB∗− 1
γ2DD

∗)Π is exponentially
stable.

Proof . Let Π1,Π2 ∈ Σ+(X) be two solutions of (A2.1) such that both A−(BB∗−
1
γ2DD

∗)Π1 and A−(BB∗− 1
γ2DD

∗)Π2 are exponentially stable. Consider the system

ẋ = Ax+Bu+Dw, x(0) = x0.

Since Π1,Π2 satisfy (A2.1), we have

d

dt
〈(Π1 −Π2)x, x〉

= γ2

(∥∥∥∥w − 1

γ2
D∗Π2x

∥∥∥∥2

−
∥∥∥∥w − 1

γ2
D∗Π1x

∥∥∥∥2
)

+ ‖u+B∗Π2x‖2 − ‖u+B∗Π1x‖2.

By integrating this between 0 and T , we obtain

〈(Π1 −Π2)x(T ), x(T )〉 − 〈(Π1 −Π2)x0, x0〉

=

∫ T

0

{
γ2

(∥∥∥∥w − 1

γ2
D∗Π1x

∥∥∥∥2

−
∥∥∥∥w − 1

γ2
D∗Π2x

∥∥∥∥2
)

+ ‖u+B∗Π2x‖2 − ‖u+B∗Π1x‖2
}
dt.

Setting u = −B∗(Π1+Π2

2 )x,w = γ−2D∗(Π1+Π2

2 )x, we have

〈(Π1 −Π2)x0, x0〉 = 〈(Π1 −Π2)x(T ), x(T )〉.(A2.2)
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Next we claim that the system

ẋ = Ax−BB∗
(

Π1 + Π2

2

)
x+

1

γ2
DD∗

(
Π1 + Π2

2

)
x, x(0) = x0(A2.3)

is exponentially stable. Let A1 = 1
2 (A−BB∗Π1 + 1

γ2DD
∗Π1),A2 = 1

2 (A−BB∗Π2 +
1
γ2DD

∗Π2). Note that both A1 and A2 are exponentially stable according to the

assumption at the beginning. Thus by the generalized Lyapunov’s theorem [11] there
exist two (unique) self-adjoint, positive definite, bounded operators P1, P2 ∈ L(X)
such that

〈P1A1x, x〉+ 〈x, P1A1x〉 = −〈x, x〉 ∀x ∈ D(A)

and

〈P2A1x, x〉+ 〈x, P2A1x〉 = −〈x, x〉 ∀x ∈ D(A).

It is known that 〈x, y〉e1 := 〈x, P1y〉, 〈x, y〉e2 := 〈x, P2y〉 define two equivalent inner
products on X such that

α1‖x‖2X ≤ ‖x‖2e1 ≤ β1‖x‖2X , α1 > 0,

α2‖x‖2X ≤ ‖x‖2e2 ≤ β2‖x‖2X , α2 > 0.

Thus from (A2.3), for x0 ∈ D(A), we have

d

dt
‖x‖2 = 〈ẋ, x〉+ 〈x, ẋ〉

= 〈A1x, x〉+ 〈x,A1x〉+ 〈A2x, x〉+ 〈x,A2x〉
≤ α−1

1 (〈A1x, x〉e1 + 〈x,A1x〉e1) + α−1
2 (〈A2x, x〉e2 + 〈x,A2x〉e2)

= −(α−1
1 + α−1

2 )〈x, x〉,

which implies that x ∈ L2(0,∞;X). Hence (A2.2) is exponentially stable.

Now in (A2.2), letting T →∞ yields

〈(Π1 −Π2)x0, x0〉 = 0 ∀x0 ∈ X,

which implies Π1 = Π2.

Reasoning similar to that given above leads to the next proposition.

Proposition A.2. The Riccati equation

ΣA∗ +AΣ− Σ

(
C∗C − 1

γ2
H∗H

)
Σ +DD∗ = 0

has at most one positive solution Σ ∈ Σ+(X) such that A∗ − (C∗C − 1
γ2H

∗H)Σ is
exponentially stable.

Proposition A.3. Suppose that the Riccati equation

ΠA+A∗Π−Π

(
BB∗ − 1

γ2
DD∗

)
Π +H∗H = 0(A2.4)
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has a solution Π ∈ Σ+(X) such that A − (BB∗ − 1
γ2DD

∗)Π is exponentially stable

and that (A,H) is detectable. Then, for any tf > 0, the Riccati equation

Π̇(t) + Π(t)A+A∗Π(t)−Π(t)

(
BB∗ − 1

γ2
DD∗

)
Π(t) +H∗H = 0,

Π(tf ) = 0,

(A2.5)

has a unique solution Π(t; tf ) ∈ Σ+(X) on [0, tf ] with the property that Π(t; tf ) ≤ Π
and for all x ∈ X the limit

Πx = lim
tf→∞

Π(t; tf )x

exists.
Proof. Consider the following optimization problem:

ϕ(s, x0) = sup
w

inf
u
Jγ(x0;u,w) = sup

w
inf
u

∫ tf

s

(‖Hx‖2 + ‖Bu‖2 − γ2‖w‖)dt,

where x is subject to

ẋ(s) = Ax(s) +Bu(s) +Dw(s), x(t) = x0.(A2.6)

Note that the conditions of this proposition guarantee that ϕ(t, x0) is finite. According
to Theorem 2.1 of [29], we have that

ϕ(t, x0) = Jγ(x0;u∗, w∗),(A2.7)

where u∗ = B∗p, w∗ = − 1
γ2D

∗p, and p is generated by

ẋ = Ax+BB∗p− 1

γ2
DD∗p, x(t) = x0,

ṗ = −A∗p+H∗Hx, p(tf ) = 0.

(A2.8)

Thus the operator x0 → −p = ∂ϕ(t, x0) is linear and therefore self-adjoint on X (see
example 2 in Chapter 2 of [5]). Moreover,

ϕ(t, x) = 〈P (t)x, x〉 for x ∈ X,P (t) = ∂ϕ(t).(A2.9)

Making use of (A2.6) and (A2.9), we have

d

ds
〈P (s)x(s), x(s)〉 =− 〈H∗Hx(s), x(s)〉 − 〈P (s)BB∗P (s)x(s), x(s)〉

+
1

γ2
〈DD∗P (s)x(s), x(s)〉.

Alternatively, from (A2.8),

d

ds
〈P (s)x(s), x(s)〉

= 〈Ṗ (s)x(s), x(s)〉+ 〈Ax(s), x(s)〉+ 〈A∗x(s), x(s)〉
+ 2〈P (s)BB∗P (s)x(s), x(s)〉 − 2

γ2
〈DD∗P (s)x(s), x(s)〉.
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Therefore, from the last two equalities we obtain

Ṗ (t) + P (t)A+A∗P (t)− P (t)

(
BB∗ − 1

γ2
DD∗

)
P (t) +H∗H = 0,

P (tf ) = 0.

(A2.10)

Thus, P (t) solves (A2.5). Let Π(t; tf ) = P (t). From the above discussion we have

〈Π(t; tf )x0, x0〉 = sup
w

inf
u
J
tf
γ (x0;u,w).

Note that 〈Π(t; tf )x0, x0〉 is monotonically nondecreasing with increasing tf , since the
lower value of the game J tf (x0; ·, ·) defined on [t, tf ] cannot be larger than that of
the one defined on a longer interval, [t, tf ′ ], tf ′ > tf , as the maximizing player can
always play zero control on the subinterval [tf , tf ′ ]. Let ŵ ∈ W be picked to be zero
beyond t = tf . Denoting all admissible feedback controls for (A2.6) by M, we have
the following estimate:

〈Π(t; tf )x0, x0〉 = sup
w

inf
u
J
tf
γ (x0;u,w)

≤ inf
µ∈M

sup
w
J∞γ (x0;u, ŵ)

≤ inf
µ∈M

sup
w
J∞γ (x0;u,w) = 〈Πx0, x0〉.

By the parallelogram law in a Hilbert space, we have that limt→∞〈Π(t; tf )x, y〉 exists
for any x, y ∈ X. Thus we can define R ∈ Σ+(X) such that

lim
t→∞〈Π(t; tf )x, y〉 = 〈Rx, y〉.

It can be verified by employing the standard argument (cf. [6]) that R in fact solves
(A2.4).

Next we claim that R = Π, i.e., Π(t; tf )x → Πx ∀x ∈ X: Since A − (BB∗ −
1
γ2DD

∗)Π := K is exponentially stable, there exist M > 0, β > 0 such that

‖eKt‖ ≤Me−βt.

Set Ξ(t) = Π−Π(t; tf ); then Ξ is the mild solution to the Riccati equation

Ξ̇ +K∗Ξ + ΞK + Ξ

(
BB∗ − 1

γ2
DD∗

)
Ξ = 0,

Ξ(tf ) = Π,

(A2.11)

which is equivalent to the equation

(Π−Π(t; tf ))x =e(tf−t)K∗Πe(tf−t)K

+

∫ tf

t

e(s−t)K∗Ξ(s)

(
BB∗ − 1

γ2
DD∗

)
Ξ(s)e(s−t)Kxds

(A2.12)

for any x ∈ X. Since for any x ∈ X, {Π(t; tf )x} is bounded, there exists a C > 0
such that

‖Π(t; tf )‖ ≤ C for 0 ≤ t ≤ tf ≤ ∞(A2.13)
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by the principle of uniform boundedness. Therefore (A2.12) and (A2.13) give

‖(Π−Π(t; tf ))x‖ ≤M2e−2β(tf−t)‖Π‖‖x‖

+M2

∫ tf

t

e−β(s−t)‖(Π−Π(t; tf ))x‖
∥∥∥∥BB∗ − 1

γ2
DD∗

∥∥∥∥ (‖Π‖+ C)e−β(s−t)ds.

By employing Gronwall’s inequality, we obtain

‖(Π−Π(t; tf ))x‖

≤M2e−2β(tf−t)‖Π‖‖x‖ exp

(
M2

∫ tf

t

∥∥∥∥BB∗ − 1

γ2
DD∗

∥∥∥∥ (‖Π‖+ C)e−β(s−t)ds
)

≤M2e−2β(tf−t)‖Π‖‖x‖ exp

(
M2

∥∥∥∥BB∗ − 1

γ2
DD∗

∥∥∥∥ (‖Π‖+ C)/β

)
,

which completes the proof.
Similarly, we have the following.
Proposition A.4. Suppose that the Riccati equation

ΠNAN +AN∗ΠN −ΠN

(
BNBN∗ − 1

γ2
DNDN∗

)
ΠN +HN∗HN = 0(A2.14)

has a positive definite solution ΠN such that AN −BNBN∗ + 1
γ2D

NDN∗ is exponen-
tially stable. Then, for any tf > 0, the Riccati equation

Π̇N + ΠNAN +AN∗ΠN −ΠN

(
BNBN∗ − 1

γ2
DNDN∗

)
ΠN +HN∗HN = 0,

ΠN (tf ; tf ) = 0,

(A2.15)

has a unique positive definite solution ΠN (t; tf ) with the property that ΠN (t; tf ) ≤ Π
for t ∈ [0,∞), and for all x ∈ X the limit

ΠNx = lim
tf→∞

ΠN (t; tf )x

exists.
Proposition A.5. Suppose that both Riccati equations

ΠNAN +AN∗ΠN −ΠN

(
BNBN∗ − 1

γ2
DNDN∗

)
ΠN +HN∗HN = 0, N = 1, 2, . . . ,

(A2.16)

and

ΠA+A∗Π−Π

(
BB∗ − 1

γ2
DD∗

)
Π +H∗H = 0(A2.17)

have solutions ΠN ∈ Σ+(XN ), Π ∈ Σ+(X), such that AN−(BNBN∗− 1
γ2D

NDN∗)ΠN

and A−(BB∗− 1
γ2DD

∗)Π are both exponentially stable. For any tf > 0, let ΠN (t; tf ),

Π(t; tf ) be the solutions of the Riccati equations

Π̇N (t) + ΠN (t)AN +AN∗ΠN (t)−ΠN (t)

(
BNBN∗ − 1

γ2
DNDN∗

)
ΠN (t)

+HN∗HN = 0,

ΠN (tf ) = 0, N = 1, 2, . . . ,
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and

Π̇(t) + Π(t)A+A∗Π(t)−Π(t)

(
BB∗ − 1

γ2
DD∗

)
Π(t) +H∗H = 0,

Π(tf ) = 0,

respectively, where for convenience we suppress the dependence on the terminal time
tf . Then, for each tf > 0,

ΠN (t; tf )→→ Π(t; tf ) uniformly in t on [0, tf ] as N →∞.
Proof . Consider the optimization problem

sup
w

inf
u
JNγ (xN0 ;u,w) = sup

w
inf
u

∫ tf

τ

(‖HNxN‖2 + ‖u‖2 − γ2‖w‖2)dt,

where xN is subject to

ẋN = ANx+BNu+DNw,

xN (τ) = xN0 ,
(A2.18)

which is equivalent to

xN (t) = eA
N (t−τ)xN0 +

∫ t

τ

eA
N (t−s)(BNu(s) +DNw(s)

)
ds.

Let us denote L2(0, tf ;XN ) by XN , L2(0, tf ;U) by U , and L2(0, tf ;W ) byW. Define
FN ∈ L(XN ,XN ) by

(FNφ)(s) =

∫ t

τ

eA
N (t−s)φ(s)ds, φ ∈ XN .

By identifying XN , U with respective duals, it is easy to verify that

(FN∗φ)(s) =

∫ tf

t

eA
N∗(s−t)φ(s)ds, φ ∈ XN ,

where FN∗ ∈ L(XN ,XN ). Next we write the cost function JNγ as

JNγ (xN0 ;u,w) = ‖HN (eA
N ·xN0 + FN (BNu+DNw))‖2XN + ‖u‖2U − γ2‖w‖2W .

(A2.19)

For arbitrary but fixed w ∈ W, there exists a unique u which minimizes JNγ , which
further is the unique solution of

δuJ
N
γ (xN0 ;u,w)(v) = 0 ∀v ∈ U ,(A2.20)

where δuJ
N
γ (xN0 ;u,w)(v) stands for the Gâteaux derivative of JNγ at u, applied to v.

From (A2.19), we have

δJNγ (xN0 ;u,w)(v)

= 2〈HN∗HN
(
eA

N ·xN0 + F(BNu+DNw)
)
,FBNv〉XN + 2〈u, v〉U

= 2〈TN1 u+ TN2 w + TN∗3 xN0 , v〉,
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where

TN1 = I +BN∗FN∗HN∗HNFNBN ∈ L(U ,U),

TN2 = BN∗FN∗HN∗HNFNDN ∈ L(W,U),

and

TN∗3 = BN∗FN∗HN∗HNeA
N · ∈ L(XN ,U).

According to (A2.20), a necessary and sufficient condition for u to be optimal for a
fixed w is that

uw(t) = −(T−N1 (TN∗3 xN0 + TN2 w)
)
(t) a.e. in [0, tf ],

where we define T−N1 = (TN1 )−1. Hence we have

JNγ (xN0 ;uw, w)

= ‖HN
(
eA

N ·xN0 −FNBNT−N1 TN∗3 xN0 + FN ((−BNT−N1 TN2 +DN )w)
)‖2XN

+ ‖T−N1 (TN∗3 xN0 + TN2 w)‖2U − γ2‖w‖2W .

(A2.21)

We now study the problem of maximizing the expression JNγ (xN0 ;uw, w) for w ∈ W.
Note that although we have a linear quadratic problem, the concavity is not verified
a priori. However, the Riccati equation (A2.16) provides the γ-attenuation level for
system (A2.18) with cost function JNγ , and one can show that w → JNγ (xN0 ;uw, w) is
strictly concave. Thus the maximizer w will satisfy the equation

δwJ
N
γ (xN0 ;uw, w)(m) = 0 ∀m ∈ W.(A2.22)

Direct calculation results in

δwJ
N
γ (xN0 ;uw, w)(m) = 2〈T N1 w + T N2 xN0 ,m〉 ∀m ∈ W,(A2.23)

where T N1 ∈ L(W,W) is given by

T N1 = [FN (−BNT−N1 TN2 +DN )]∗HN∗HN [FN (−BNT−N1 TN2 +DN )]

+ TN∗2 T−N∗1 T−N1 TN2 − γ2I

and T N2 ∈ L(XN ,W) is given by

T N2 = [FN (−BNT−N1 TN2 +DN )]∗HN∗HN (eA
N · −FNBNT−N1 TN∗3 )

+ TN3 T−N∗1 T−N1 TN∗3 .

Recalling the proof of the first part of Proposition A.3, we know that

〈ΠN (τ)xN0 , x
N
0 〉 = sup

w
inf
u
JNγ (xN0 ;u,w).

Thus, letting xN0 = 0, we have

sup
w

inf
u
JNγ (0;u,w) = 0.
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From (A2.21) we have

JNγ (0;uw, w) = 〈T N1 w,w〉.

Since w → JNγ (0;uw, w) is strictly concave, w = 0 is the only maximizer of the

differential game JNγ (0;uw, w), which implies that −T N1 is a positive definite operator
of L(W,W). Thus from (A2.19) we have

w = (−T N1 )−1T2x
N
0 .(A2.24)

Hence by (A2.20), (A2.21), and (A2.24), we have

sup
w
JNγ (xN0 ;uw, w) = 〈(KN∗KN + TN3 T−N∗1 T−N1 TN∗3 + T N∗2 (−T1)−NT N2 )xN0 .x

N
0 〉XN ,

where

KN = HN (eA
N · −FNBNT−N1 TN∗3 ).

In view of this, we obtain

ΠN (τ)xN0 = (KN∗KN + TN3 T−N∗1 T−N1 TN∗3 + T N∗2 (−T1)−NT N2 )xN0 .(A2.25)

Define F , T1, T2, T3 by

(Fφ)(s) =

∫ t

0

eA(t−s)φ(s)ds, φ ∈ X ,
T1 = I +B∗F∗H∗HFB ∈ L(U ,U),

T2 = B∗F∗H∗HFD ∈ L(W,U),

T ∗3 = B∗F∗H∗HeA· ∈ L(X,U)

and T1 ∈ L(W,W) and T2 ∈ L(X ,W), respectively, by

T1 = [F(−BT−1
1 T2 +D)]∗H∗H[F(−BT−1

1 T2 +D)]

+ T ∗2 T
−1∗
1 T−1

1 T2 − γ2I,

T2 = [F(−BT−1
1 T2 +D)]∗H∗H(eA· −FBT−1

1 T ∗3 )

+ T3T
−∗
1 T−1

1 T ∗3 .

Consider the optimization problem

Jγ(x0;u,w) = sup
w

inf
u

∫ tf

τ

(‖x‖2 + ‖u‖2 − γ2‖w‖2)dt,

where x is generated by

ẋ = Ax+Bu+Dw, x(τ) = x0.

Then, following a discussion similar to the one that led to (A2.25),

Π(0)x0 = (K∗K + T3(T−1
1 )∗T−1

1 T ∗3 + T ∗2 (−T1)−1T2)x0,
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where

K = H(eA· −FBT−1
1 T ∗3 ).

By assumptions (A1)–(A4), as N →∞ we have

eA
N t →→ eAt uniformly on [0, tf ],

eA
N∗t →→ eA

∗t uniformly on [0, tf ],

BN → B strongly,

DN → D strongly,

HN → H strongly.

Letting xN0 := PNx0, the above discussion indicates that

ΠN (τ)PNx0 → Π(τ)x0 ∀x0 ∈ X as N →∞,

and this completes the proof of Proposition A.5.
Proof of Lemma 2.1. For each ε > 0 and x ∈ X, according to Propositions A.3

and A.4 there exists tf > 0 such that

‖Π(0; tf )x−Πx‖ < ε,

‖ΠN (0, tf )PN −ΠNPN‖ < ε for each N = 1, 2, . . . .

Note that

‖ΠNPNx−Πx‖ ≤‖ΠNPNx−Π(0; tf )NPNx‖+ ‖Π(0; tf )NPNx−ΠN (0; tf )x‖,
‖ΠN (0; tf )x−Π(0; tf )x‖+ ‖Π(0; tf )x−Πx‖
≤ ε‖x‖+ ‖ΠN (0; tf )‖‖PNx− x‖+ ‖ΠN (0; tf )x−Π(0; tf )x‖+ ε.

Since ‖ΠN (0; tf )‖ is uniformly bounded in N by uniform boundedness theorem, and
ΠN (0; tf )x→ Π(0; tf )x by Proposition A.5, we thus have

ΠN →→ Π as N →∞,

and this completes the proof of Lemma 2.1.
By using the duality theorem, Lemma 2.2 can be proven similarly.
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Abstract. We consider general networks of strings and/or Timoshenko beams. We apply
controls at boundary nodes of the network and want to minimize some cost function along (part
of) the structure. Optimality systems for the entire structure are far too complex to compute in
reasonable time. In particular, in real-time applications one wants to reduce the size of the problem.
Thus, dynamic decomposition into its physical elements appears to be a natural approach. We show
how to iteratively decompose the global optimality system into a system related to a substructure.
Then we interpret the local system as an optimality system corresponding to an optimal control
problem for the substructure and finally we show convergence of the “outer” iteration.

Key words. dynamic domain decomposition, networks of strings and beams, saddle-point
iteration, relaxation
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1. Introduction. We consider a connected network of smooth curves in R3

indexed by i = 1 : ne. The curves are joined together at vertices {vJ , vM , . . . } = V
and are representative of the physical location of strings or of centerlines of beams in
their reference configuration. Each of those curves will undergo deformations which
we describe by ri(x, t) : [0, li]× [0, T ] −→ Rpi . Let vJ be a vertex and dJ the number
of arcs adjacent to vJ , and let EJ be the set of indices corresponding to adjacent arcs
at vJ , i.e., dJ = |EJ |. In particular, we consider directed graphs, such that an edge
with label i joining vertices vJ and vM in the direction vJ → vM is parametrized
in such a way that x = 0 corresponds to the vertex vJ , while x = `i corresponds to
vM . For the sake of convenience, however, we will write ri(vJ , t) instead of ri(0, t) or
ri(σi(0), t), where σi is the mapping from [0, `i] onto the edge ei. With this convention
in mind we define the edge-node incidence relation ε as

εiJ =

 −1 if ei starts at vJ ,
1 if ei ends at vJ ,
0 if ei is not incident at vJ .

At a given vertex vJ the deformation ri(vJ , t) of arc i has pi ∈ N degrees of freedom.
At a given vertex vJ , such that arc i is adjacent to vJ , we suppose that qJ(qJ ≤ pi)
of these variables are geometrically constrained. At simple nodes, where dJ = 1, we
always have qJ = pi (for εiJ 6= 0). At multiple nodes, where dJ > 1, we assume that
we have surjective linear mappings CiJ : Rpi → RqJ (pi ≥ qJ) such that

λJ(t) := CiJri(vJ , t) = CjJrj(vJ , t) ∀ i, j ∈ EJ , t ∈ (0, T ).
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Fig. 1.1. A typical multibay frame.

Note that each arc carries along a local base so that CiJ can be expressed as a
matrix with respect to these bases. This requirement says that some (combinations
of) variables are continuous across the joint vJ . For example, if CiJ = I ∈ Rpi×pi ,
then all displacements are continuous across vJ , which for beams signifies a rigid joint.
In particular, if one considers for simplicity a planar beam network with ui, wi, ψi as
longitudinal, vertical, and shear displacements, then projecting with CiJ onto the first
two variables at vJ describes a pin joint, whereas CiJ = I3×3 describes a rigid joint.
We refer the reader to [14], [15] (see also [27], [28] for “scalar” networks). As CiJ
has rank qJ , there is a right inverse C+

iJ such that CiJC
+
iJ = I. Let ΠiJ denote the

orthogonal projection onto the kernel of CiJ and Π⊥iJ the orthogonal projection onto
(kerCiJ)⊥ = ImCTiJ , i.e., C+

iJCiJ = Π⊥iJ .

A typical situation is shown on a qualitative level in Figure 1.1. The graph shown
there might be regarded as a part of a more complex space structure. Rather than
decompose such a (sub-)structure into each individual element, one would use ho-
mogenization in order to replace the periodic substructures by dynamically equivalent
homogenous elements and apply the decomposition principle to the structure com-
posed of those homogenized structural elements. It is important to note that by this
procedure one can deal with systems having local joint dynamics, where substructures
interfere at common nodes. We might therefore include rigid bodies at those joints,
as well as dry friction. Also it is possible and natural to decompose trusses, that is,
structures with pin joints. Those situations cannot be handled with models obtained
from three-dimensional elasticity by asymptotic analysis. See Saint Jean Paulin and
Vanninathan [34] as an exemplary paper in this direction.

We introduce a mass matrix Mi, a stiffness matrix Ki, structural matrices Ri, Si
such that Mi,Ki, Si are symmetric and positive definite (Si is either positive definite
or equal to zero). All matrices are sufficiently smooth with respect to x along arc i.
With this notation one can define a kinetic and potential energy as well as a work
functional as follows:

K(t) :=
1

2

ne∑
i=1

∫ li

0

Mi(x)ṙi(x, t) · ṙi(x, t) dx,(1.1)
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U(t) :=
1

2

ne∑
i=1

∫ li

0

[Ki(x)(r′i(x, t) +Ri(x)ri(x, t))(1.2)

· (r′i(x, t) +Ri(x)ri(x, t)) + Si(x)ri(x, t) · ri(x, t)] dx,

W(t) :=

ne∑
i=1

∫ li

0

Fi(x, t)ri(x, t) dx+
∑
vJ∈V

fJ(t)λJ(t)(1.3)

(dot and prime represent time and space derivatives, respectively). Fi and fJ are
distributed body and nodal forces, respectively. The Lagrangian then is defined as

L(r) :=

∫ T

0

[K(t) +W(t)− U(t)] dt.(1.4)

Before we proceed to write down the equations of motion as in [14] we would like
to indicate the range of applications of the formulation (1.1)–(1.3). For more details
see [14].

Examples.
1. Three-dimensional string networks. pi = qi = 3, CiJ = I3×3,

Ri = Si = 0, Mi = ρiI, Si = 0,

Ki = Ehi

[(
1− 1

si

)
I3×3 +

1

si
eie

T
i

]
,

where ei is the unit vector along the straight arc i, si > 1 is a stretching
factor, E is Young’s modulus, hi is the thickness, and ρi is the density. The
matrix Ki may also depend on x. This is the case when the original nonlinear
problem is linearized around an equilibrium corresponding to a preloading of
the network.

2. Two-dimensional Timoshenko beam networks. We have ei, e
⊥
i as above and

n (orthogonal to the common ei − e⊥i -plane). Mi = diag(ρi, ρi, ρiIi),

Ki = diag(Ehi, Ghi, EIi), Ri23 = 1, Rij = 0 else, Si = 0.

In this case the potential energy (1.2) reduces to

U(t) =
1

2

ne∑
i=1

[Ehiu
′2
i +Ghi(w

′
i + ψi)

2 + EIiψ
′2
i ] dx,

where we have identified ri = (ui, wi, ψi)
T such that ui, wi denote longitudinal

and vertical displacement, while ψi represents the shear deformation. K(t)
and W(t) are obvious. In addition to the physical quantities introduced
above, EIi denotes the flexural rigidity, Ehi the longitudinal stiffness, Gi
the shear modulus, and Ii the moment of the cross section. The setup is
seen to reproduce exactly the Timoshenko beam theory. For rigid joints
CiJ = (ei, e

⊥
i , n), for pin joints

CiJ = (ei, e
⊥
i )T (ei, e

⊥
i , n) ∈ R2×3.

3. Three-dimensional Timoshenko beam networks. This is analogous to Example
2; see [14].

4. Networks of strings and beams. See [14].
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5. Two-dimensional precurved Timoshenko beam (Bresse beam) networks.
This case is as in (1.2) but with

Ri =

 0 −κi 0
κi 0 1
0 0 0

 ,

where κi(x) is the curvature of arc i in the ei − e⊥i plane.
Once the formulation (1.1)–(1.4) is seen to be sufficiently general, we proceed to
write down the equations of motion, which are derived from (1.1)–(1.4) by standard
variational principles.

Mir̈i = [Ki(r
′
i +Riri)]

′ −RTi Ki(r
′
i +Riri)− Siri + Fi,(1.5)

(x, t) ∈ (0, li)× (0, T ),

ri(vD) = 0, εiD 6= 0, vD ∈ VD, i ∈ ED, t ∈ (0, T ),(1.6)

CiJri(vJ) = CkJrk(vJ) =: λJ , ∀ i, k ∈ EJ , vJ ∈ VM , t ∈ (0, T ),(1.7) ∑
i∈EJ

εiJ(C+
iJ)T [Ki(r

′
i +Riri)](vJ) = fJ −MJ λ̈J ,(1.8)

vJ ∈ VM ∪ VN ∪ VC , t ∈ (0, T ),

εiJΠiJ [Ki(r
′
i +Riri)](vJ) = 0, vJ ∈ VM ∪ VN ∪ VC , t ∈ (0, T ),(1.9)

ri(·, 0) = ri0, ṙi(,̇0) = ri1, x ∈ (0, li).(1.10)

Here we have denoted by VM , VS the sets of multiple and simple nodes such that
V = VM ∪̇VS and VS = VN ∪̇VD∪̇VC (disjoint union) separates into free Neumann
nodes, fully clamped (Dirichlet) nodes, and controlled Neumann nodes. One can of
course also consider partially clamped nodes. The control forces fJ are set to zero for
vJ ∈ VN ∪ VM . The matrix MJ represents mass and rotatory inertia of a rigid body
at node vJ . In this paper, however, we will consider MJ = 0 and return to the more
general case in some remarks below.

It should be noted that one might include nonlinear coupling dynamics in (1.8)
and (1.9) such as dry friction, plasticity, obstacles, Winkler supports, etc. .

The standing assumption throughout the paper is that

(A)


either

(i) every Si is positive definite
or

(ii) VD 6= ∅ and for each node there is a path to a node
in VD along which all joints are rigid.

The standard case is (Aii), which simply states that, in engineering terms, the struc-
ture is not a mechanism; in other words no part can perform rigid rotations, or
the structure is statically determined. Its mathematical significance is revealed after
defining appropriate spaces, as in [14]:

H =

ne∏
i=1

L2(0, li,Rpi),(1.11)

V =

{
r ∈

ne∏
i=1

H1(0, li,Rpi)|ri satisfies (1.6), (1.7)

}
.(1.12)



DECOMPOSITION OF OPTIMAL CONTROL PROBLEMS FOR NETWORKS 1653

We define the inner products

(r, r̂)H =
1

2

ne∑
i=1

∫ li

0

Mirir̂i dx,(1.13)

(r, r̂)V =
1

2

ne∑
i=1

∫ li

0

[Ki(r
′
i +Riri)(r̂

′
i +Rir̂i) + (Si + I)rir̂i] dx.(1.14)

By Lemma 3.1, Chapter IV of [14], we find that under assumption (A) the norm

‖r‖V = (r, r)
1/2
V , even without the term I, is equivalent to

‖r‖ :=

(
ne∑
i=1

∫ li

0

[|ri|2 + |r′i|2] dx

)1/2

.(1.15)

We also cite Theorem 3.1, Chapter IV from [14]. We denote by V∗ the dual of V.
Theorem 1.1. Let (r0, r1) ∈ V × H, f ∈ L2(0, T,H), MJ = 0 ∀j, fJ ∈

L2(0, T,RqJ ), J : vJ ∈ VC . Let (A) be satisfied. Then there exists a unique mild
solution r of (1.5)–(1.10) with regularity r ∈ C(0, T,V)∩C1(0, T,H)∩C2(0, T,V∗).

2. Control problems. In [14] and other related work we asked the question
as to whether networks described by (1.5)–(1.10) are controllable. In particular,
given initial data (r0, r1) ∈ V × H, F ≡ 0, is it possible to find controls fJ ∈
L2(0, T,RqJ ), vJ ∈ VC , such that after time T > 0, reasonably large, the final values
r(·, T ), ṙ(·, T ) are either exactly zero (or prescribed) or in an ε-ball around zero?

The first case is known as exact controllability (reachability), while the second
case for ε > 0 (arbitrary) is referred to as approximate controllability.

We have been able to give affirmative answers only for tree networks with |VD| = 1
and VS = VC . See Theorem 5.1, Chapter IV of [14], and [36]. For string trees with
|VD| = 1, VS ⊃ VC (and possibly joint masses) we have some positive results [18], but
the picture is more complicated. If, however, the network contains circuits and if it is
completely homogenous, then even approximate controllability fails to hold. On the
other side positive results can be expected to hold whenever the individual optical
lengths of the strings are rationally independent, even though this has not yet been
rigorously investigated. All relevant results can be translated as well into the context
of stabilizability.

Given this complex picture, one is tempted to rather look into optimal control
problems related to such networks. Indeed, in many circumstances one does not want
to exactly (approximately) control the entire structure. Rather, one wants to protect
some substructure against vibrational energy. This can be achieved by minimizing
the energy in that subregion or, alternatively, by steering the flux of energy away from
the subregion. In order not to overload the presentation we choose the first case, since
the second case would necessitate a different analysis.

We will consider the cost functional

J(f) :=
1

2

∑
J∈VC

∫ T

0

|fJ |2 dt+
k

2

{‖r(T )− z0‖2V + ‖ṙ(T )− z1‖2H
}
.(2.1)

One might also take the V×H topology induced on the subgraph associated with
a subset C of the edge set. If k grows large in (2.1), one comes close to controllability
problems described above.
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There are other reasonable choices for the cost function. In particular, one can
work in the shifted energy norm and consider

J(f) :=
1

2

∑
J∈VC

∫ T

0

|fJ |2 dt+
k

2

{‖r(T )− z0‖2H + ‖ṙ(T )− z1‖2V∗
}
.(2.2)

One can also include
∫ T

0
‖r‖2H dt,

∫ T
0
‖r‖2V dt, or the total energy integrated over

the time interval [0, T ], and, if the network is known to be exactly controllable, a
general L − Q − R infinite horizon problem would be of interest. The problem we
discuss here is the following:

min
(fJ )J∈VC

J((fJ)) subject to (1.5)–(1.10),(2.3)

with J(·) given by (2.1).

3. Global optimality conditions. It is a matter of applying standard ar-
guments to derive the optimality system corresponding to the optimization prob-
lem (2.3). We introduce an adjoint state p localized to arc i as pi, which then satisfies
the adjoint “backward running” system

Mip̈i = [Ki(p
′
i +Ripi)]

′ −RTi Ki(p
′
i +Ripi)− Sipi,(3.1)

(x, t) ∈ (0, `i)× (0, T ),

pi(vD) = 0, εiD 6= 0, vD ∈ VD, i ∈ ED, t ∈ (0, T ),(3.2)

CiJpi(vJ) = CkJpk(vJ) =: ΘJ ∀ i, k ∈ EJ , vJ ∈ VM , t ∈ (0, T ),(3.3) ∑
i∈EJ

εiJ(C+
iJ)T [Ki(p

′
i +Ripi)](vJ) = 0, vJ ∈ VM ∪ VN ∪ VC , t ∈ (0, T ),(3.4)

εiJΠiJ [Ki(p
′
i +Ripi)](vJ) = 0, vJ ∈ VM ∪ VN ∪ VC , t ∈ (0, T ),(3.5)

p(T ) = k(ṙ(T )− z1), ṗ(T ) = −kA(r(T )− z0),(3.6)

fJ = −piJ , J : vJ ∈ VC , i ∈ EJ t ∈ (0, T ).(3.7)

The operator A in (3.6) is the Riesz isomorphism between V and V∗. It is obvious
from (3.6) that, because of the regularity of r(T ) ∈ V and ṙ(T ) ∈ H, the final values
of p have the regularity p(T ) ∈ H and ṗ(T ) ∈ V∗. However, by the regularity result of
Theorem 1.1, we know that the operator taking L2-in-time Neumann data at external
(simple) nodes into the final values of the solution is bounded with respect to the
total energy. The adjoint of that operator selects the Dirichlet traces of the solutions
of the homogenous problem at those external nodes. Hence, by transposition, the
traces of p at nodes in VC are L2-in-time. The solution p satisfies (3.1)–(3.7) in the
sense of transposition, as in Nicaise [29, Theorem 5.1]. It is also possible to derive the
required regularity of traces directly using “direct” inequalities for the nonharmonic
Fourier series associated with networks. We have the following theorem.

Theorem 3.1. Let the assumptions of Theorem 1.1 be satisfied. Then the opti-
mality system (1.1)–(1.10), (3.1)–(3.7) has a unique solution r, p such that

r ∈ C(0, T,V) ∩ C1(0, T,H) ∩ C2(0, T,V∗),
p ∈ C(0, T,H) ∩ C1(0, T,V∗) ∩ C2(0, T,D(A)∗).

In addition, we have piJ(vJ , )̇ ∈ L2(0, T ) for vJ ∈ VC , i ∈ EJ .
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Remark 3.1. If we consider data (r0, r1), (z0, z1) ∈ D(A)×V, then the adjoint
state satisfies p ∈ C(0, T,V) ∩ C1(0, T,H), too.

This is seen as follows: we start with final data (pT , ṗT ) ∈ V × H. We solve
the adjoint system backward in time and take Dirichlet traces at controlled nodes
which have H1(0, T ; RqJ ) regularity. These traces are used as Neumann inputs to
the forward running system, according to the optimality conditions. These inputs,
together with the assumed regularity of the initial data, produce a solution r that
has C(0, T ; D(A)) ∩ C1(0, T,V) regularity. That regularity is shared by the final
data (r(T ), ṙ(T )). Since we assume the same regularity for the target, we have
(−ṙ(T ), Ar(T )) := Λ(pT , ṗT ) ∈ V × H. Indeed, this process is precisely the one
described in [12], [13]. It amounts to solving Λ(pT , ṗT ) + 1

kM(pT , ṗT ) = (−z1, Az0).
It is plain that the parameter k serves as a Tychonov regularization of the Hilbert
uniqueness method (HUM) operator Λ. The last equation can be uniquely solved in
the finite energy space.

The main point of the paper is to provide an iterative procedure in order to
solve (1.5)–(1.10), (3.1)–(3.7) based on decoupled subproblems. The reason for this is
that the system (1.5)–(1.10), (3.1)–(3.7) is extremely large if the network is complex
and the states are discretized by finite difference (FD), finite element (FEM) methods
or wavelet approximations. Another important reason is that one arc might represent
a string while another one represents a beam, so that different numerical approxima-
tions apply. It would, therefore, be extremely useful to be able to restrict calculations
to a single element (arc), perform those in parallel , and communicate mutual results
after the iteration step is completed.

For homogenous planar two-dimensional problems such a procedure has been de-
rived by Benamou [1], [2], [3], and [4]. The procedure was inspired by Lions [25],
who discussed an iterative nonoverlapping Schwarz decomposition for a static (ellip-
tic) problem. It is straightforward to apply that technique to dynamic, parabolic, or
hyperbolic problems and it was then realized by Benamou that the resulting dynamic
domain decomposition (d3m) method could be applied to optimality systems. How-
ever, it was by no means clear how to obtain such decoupling in the case of networks
as discussed above.

In this respect, an observation made by Glowinski and Le Tallec [11] turned out
to be very useful. Namely, they showed that Lions’s method was equivalent to an
augmented Lagrangian approach combined with a standard saddle-point iteration.
We used the latter approach to derive dynamic domain decomposition methods for
both simulation purposes and, more important for this paper, for optimal control
problems for planar networks of strings and Euler–Bernoulli beams (with constant
coefficients) [19], [23]. While in the case of string networks we worked with the cost
analogous to (2.1), and we used the entire state throughout (0, T ) for Euler–Bernoulli
beams. Note that the full state cost is easier to handle. Full state cost is the one
used throughout in [1], [2], [3]. We have also looked into another possibility based on
so-called Dirichlet–Neumann iterations as in [8] and [35]; see [18].

4. Dynamic domain decomposition. Instead of (1.7), (1.8) and (3.3), (3.4)
we consider, at multiple nodes vJ , the following mixed Robin-type boundary condi-
tions for rn+1

i , pn+1
i , where n is the iteration index:

εiJ(C+
iJ)T [Ki((r

n+1
i )′ +Rir

n+1
i )](vJ) + βCiJp

n+1
i (vJ)

= β

(
2

dJ

∑
j∈EJ

CjJp
n
j (vJ)− CiJpni (vJ)

)
(4.1)
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−
(

2

dJ

∑
j∈EJ

εjJ(C+
jJ)T [Kj(r

n
j
′
+Rjr

n
j )](vJ)

− εiJ(C+
iJ)T [Ki(r

n
i
′ +Rir

n
i )](vJ)

)
=: λniJ ,

εiJ(C+
iJ)T [Ki((p

n+1
i )

′
+Rip

n+1
i )](vJ)− βCiJrn+1

i (vJ)

= −β
(

2

dJ

∑
j∈EJ

CjJr
n
j (vJ)− CiJrni (vJ)

)
(4.2)

−
(

2

dJ

∑
j∈EJ

εjJ(C+
jJ)

T
[Kj(p

n
j
′ +Rjp

n
j )](vJ)

− εiJ(C+
iJ)T [Ki(p

n
i
′ +Rip

n
i )](vJ)

)
=: µniJ

for all vJ ∈ VM , t ∈ (0, T ). The parameter β > 0, which can be interpreted as an
additional stiffness at the vertex vJ , turns out to be useful in the numerical simula-
tions. Tuning β allows us to vary essentially between Dirichlet conditions (β → ∞)
and Neumann conditions (β → 0).

The other conditions (1.5), (1.6), (1.8) at nodes in VN ∪ VC , (1.9), (1.10) and
(3.1), (3.2), (3.4) at nodes in VN ∪ VC (3.5)–(3.7) are kept unchanged.

Let us assume for a moment that the sequence (rni , p
n
i ) starting at some given

(r0
i , p

0
i ) converges. We would like to check whether (4.1), (4.2) lead to the transmission

conditions (1.6), (1.7), (1.8) and (3.2), (3.3), (3.4). Indeed, (4.1), (4.2) with the index
n dropped amount to

0 = 2β

(
1

dJ

∑
j∈EJ

CjJpj(vJ)− CiJpi(vJ)

)
(4.3)

− 2

dJ

∑
j∈EJ

εjJ(C+
jJ)T [Kj(rj

′
+Rjrj)](vJ),

0 = −2β

(
1

dJ

∑
j∈EJ

CjJrj(vJ)− CiJri(vJ)

)
(4.4)

− 2

dJ

∑
j∈EJ

εjJ(C+
jJ)T [Kj(pj

′
+Rjpj)](vJ).

Upon summing (4.3), (4.4) over all arcs incident at vJ , we obtain

∑
j∈EJ

εiJ(C+
jJ)T [Ki(ri

′
+Riri)](vJ) = 0,∑

j∈EJ
εiJ(C+

iJ)T [Ki(pi
′
+Ripi)](vJ) = 0,

(4.5)
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which is (1.8), (3.4) at vJ ∈ VM . If we now use (4.5) in (4.3), (4.4) we arrive at

CiJpi(vJ) =
1

dJ

∑
j∈EJ

CjJpj(vJ),

CiJri(vJ) =
1

dJ

∑
j∈EJ

CjJrj(vJ)
(4.6)

at vJ and for all i ∈ EJ . But that implies

CiJpi(vJ), CiJri(vJ) are independent of i ∈ EJ .(4.7)

We thus see that, once the sequence (rni , p
n
i ) converges, the limiting (r, p) satisfies all

boundary and transmission conditions in addition to the local balance equations (1.5)
and (3.1). That is, in the limit, the global optimality conditions are satisfied. Note
that this argument is independent of the choice of β.

We also consider some variants of the domain decomposition below:
• Instead of (4.1), (4.2) we can take into account the knowledge of those new

iterates that have already been computed. While (4.1), (4.2) can be regarded
as a Jacobi-type iteration, the latter strategy would be more in the spirit of
a Gauss–Seidel-type iteration. One expects, and actually numerically con-
firms, faster convergence. However, with the latter strategy one sacrifices the
inherent parallelism to some extent.
• A second extension utilizes another standard technique, namely, relaxation.

This means that we reuse the old information on the actual edge with an
underrelaxation parameter λ ∈ [0, 1) as follows:

εiJ(C+
iJ)T [Ki((r

n+1
i )′ +Rir

n+1
i )](vJ) + βCiJp

n+1
i (vJ)

= (1− λ)

(
β

(
2

dJ

∑
j∈EJ

CjJp
n
j (vJ)− CiJpni (vJ)

)
(4.8)

−
(

2

dJ

∑
j∈EJ

εjJ(C+
jJ)T [Kj(r

n
j
′
+Rjr

n
j )](vJ)

− εiJ(C+
iJ)T [Ki(r

n
i
′ +Rir

n
i )](vJ)

))

+ λ

(
εiJ(C+

iJ)T [Ki((r
n
i )′ +Rir

n
i )](vJ) + CiJp

n
i (vJ)

)
,

εiJ(C+
iJ)T [Ki((p

n+1
i )

′
+Rip

n+1
i )](vJ)− βCiJrn+1

i (vJ)

= (1− λ)

(
− β

(
2

dJ

∑
j∈EJ

CjJr
n
j (vJ)− CiJrni (vJ)

)
(4.9)

−
(

2

dJ

∑
j∈EJ

εjJ(C+
jJ)

T
[Kj(p

n
j
′ +Rjp

n
j )](vJ)

− εiJ(C+
iJ)T [Ki(p

n
i
′ +Rip

n
i )](vJ)

))

+ λ

(
εiJ(C+

iJ)T [Ki((p
n
i )
′
+Rip

n
i )](vJ)− CiJrni (vJ)

)
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for all vJ ∈ VM , t ∈ (0, T ).
• A third variant, which is the extension to networks of an algorithm described

by Deng [6] for planar elliptic problems, can be written as follows:

εiJ(C+
iJ)T [Ki((r

n+1
i )′ +Rir

n+1
i )](vJ) + βCiJp

n+1
i (vJ) =: gn+1

iJ

= 2β

(
2

dJ

∑
j∈EJ

CjJp
n
j (vJ)− CiJpni (vJ)

)
(4.10)

−
(

2

dJ

∑
j∈EJ

gnjJ − gniJ
)
,

εiJ(C+
iJ)T [Ki((p

n+1
i )

′
+Rip

n+1
i )](vJ)− βCiJrn+1

i (vJ) =: hn+1
iJ

= −2β

(
2

dJ

∑
j∈EJ

CjJr
n
j (vJ)− CiJrni (vJ)

)
(4.11)

−
(

2

dJ

∑
j∈EJ

hnjJ − hniJ
)

for all vJ ∈ VM , t ∈ (0, T ). Reducing the iteration index in the defining equations
(4.10), (4.11) to n and summing over all incident edges, it is easy to see that this
variant is equivalent to the original conditions (4.1), (4.2). One can then also introduce
a relaxation parameter into this variant. We conclude this discussion of alternative
constructions with the remark that the last approach, even though equivalent to the
first, is easier to implement, as no derivatives have to be computed for the update.

Let us, for the sake of easier reference, collect the conditions for the decoupled
system (rn+1

i , pn+1
i )

Mir̈
n+1
i = [Ki((r

n+1
i )′ +Rir

n+1
i )]′ − RTi Ki(r

n+1
i
′ +Rir

n+1
i )− Sirn+1

i ,

Mip̈
n+1
i = [Ki((p

n+1
i )′ +Rip

n+1
i )]′ − RTi Ki(p

n+1
i
′ +Rip

n+1
i )− Sipn+1

i ,

(x, t) ∈ (0, `i)× (0, T ),

(4.12)

ri(vD) = 0, pi(vD) = 0, εiD 6= 0, vD ∈ VD, t ∈ (0, T ),(4.13) {
εiC [Ki((r

n+1
i )′ +Rir

n+1
i )](vC) = −pn+1

i (vC),

εiC [Ki((p
n+1
i )′ +Rip

n+1
i )](vC) = 0, vC ∈ VC , t ∈ (0, T ),

(4.14) {
εiN [Ki((r

n+1
i )′ +Rir

n+1
i )](vN ) = 0,

εiN [Ki((p
n+1
i )′ +Rip

n+1
i )](vN ) = 0, vN ∈ VN , t ∈ (0, T ),

(4.15) {
εiJΠiJ [Ki((r

n+1
i )′ +Rir

n+1
i )](vJ) = 0,

εiJΠiJ [Ki((p
n+1
i )′ +Rip

n+1
i )](vJ) = 0, vJ ∈ VM , t ∈ (0, T ),

(4.16)

rn+1
i , pn+1

i satisfies (4.1), (4.2) (or (4.8), (4.9)) at vJ ∈ VM , t ∈ (0, T ),(4.17) 
rn+1(·, 0) = r0, ṙ

n+1(·, 0) = r1,

pn+1(·, T ) = k(ṙn+1(·, T )− z1),

ṗn+1(·, T ) = −kA(rn+1(·, T )− z0), x ∈ (0, li).

(4.18)
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In order to discuss problems (4.12)–(4.18) for each individual i = 1 : ne, we have to
distinguish four cases:

(i) εiC , εiJ 6= 0 for vC ∈ VC , vJ ∈ VM ,

(ii) εiJ , εiM 6= 0 for vJ , vM ∈ VM ,

(iii) εiD, εiD 6= 0 for vD ∈ VD, vJ ∈ VM ,

(iv) εiN , εiJ 6= 0 for vN ∈ VN , vJ ∈ VM .
The single edge network εiD, εiB 6= 0 vD, vB ∈ VS is trivial. The most complicated
case is (i), which we will consider below. The other cases then follow similarly. Now,
as (4.1), (4.2) are known boundary inputs λniJ and µniJ , respectively, one can look at
the system (4.12)–(4.18) as an optimality system corresponding to an optimal control
problem on the individual arc i as follows:

min
fJ ,fC

k

2

{
‖rn+1
i (T )− z0

i ‖2H1(0,`i)pi
+ ‖ṙn+1

i (T )− z1
i ‖2L2(0,`i)pi

}
+

1

2

∫ T

0

{
1

β
|fJ |2 + |fC |2

}
dt(4.19)

+
β

2

∫ T

0

∣∣∣∣∣CiJrn+1
i (vJ) +

1

β
µniJ

∣∣∣∣∣
2

dt,

Mir̈
n+1
i = [Ki((r

n+1
i )′ +Rir

n+1
i )]′ −RTi Ki((r

n+1
i )′ +Rir

n+1
i )− Sirn+1

i ,

(x, t) ∈ (0, li)× (0, T ),

εiC [Ki((r
n+1
i )′ +Rir

n+1
i )](vC) = fC , t ∈ (0, T ),

εiJ(C+
iJ)T [Ki((r

n+1
i )′ +Rir

n+1
i )](vJ) = fJ + λniJ , t ∈ (0, T ),(4.20)

εiJΠiJ [Ki((r
n+1
i )′ +Rir

n+1
i )](vJ) = 0, t ∈ (0, T ),

rn+1
i (0) = ri0, ṙ

n+1
i (0) = ri1, x ∈ (0, `i).

The proof that (4.19), (4.20) is actually the corresponding optimal control problem is
done by standard variational arguments. Now, regularity theory in [14, Chapter IV]
yields Theorem 4.1.

Theorem 4.1. Let (ri0, ri1) ∈ H1(0, li)×L2(0, li), λ
n
iJ , µ

n
iJ ∈ L2(0, T,RqJ ). Then

problem (4.19), (4.20) has unique minimizers fC ∈ L2(0, T,Rpi), fJ ∈ L2(0, T,RqJ ).
The necessary optimality conditions are given by (4.12)–(4.18).

Note that a similar result holds for the relaxed algorithm, where the λniJ , µ
n
iJ now

depend on the relaxation parameter λ as in (4.8), (4.9).

Remark 4.1. The same arguments as in Remark 3.1 apply to the local optimality
system. Hence, working with the local regularity H2(0, `i)×H1(0, `i) for initial and
target data, and assuming in addition λniJ ,∈ H1(0, T,RqJ ), then the adjoint system
has local finite-energy regularity.

5. Convergence of the algorithm. Let us denote the unique solution of (4.12)–
(4.18) by (r̂i, p̂i) and by (ri, pi) the local restrictions of the solution (r, p) of the global
optimality system (1.5)–(1.10) (with Fi,MJ = 0), (3.1)–(3.7). We then introduce the
errors r̃ni := ri − r̂ni , p̃ni := pi − p̂ni . Now, observe that pi, ri also satisfy (4.1), (4.2),
and, of course also the other conditions (4.12)–(4.16), (4.18) for the decoupled system.
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This shows that r̃n+1
i , p̃n+1

i satisfy (4.12)–(4.18), where (4.18) is changed to
r̃n+1
i (0) = 0, ˙̃r

n+1

i (0) = 0,

p̃n+1
i (T ) = k ˙̃r

n+1

i (T ),

˙̃p
n+1

i (T ) = −kAir̃n+1
i (T ),

(5.1)

and Ai, defined by (Ar)i =: Airi, is the restriction of A to the edge with index i. The
same is true for all other cases (ii)–(iv). We proceed to show that the errors r̃ni , p̃ni
converge to zero in a natural energy sense.

The main work involves the condition (4.1), (4.2). For the sake of simplicity, we
take β = 1, the arguments being valid for general β > 0. We multiply (4.1), (4.2) by
CiJ p̃

n+1
i (vJ), CiJ r̃

n+1
i (vJ), respectively, and then sum over all incident arcs.∑

i∈EJ
εiJ(C+

iJ)
T

[Ki((r̃
n+1
i )′ +Rir̃

n+1
i )](vJ) · CiJ p̃n+1

i (vJ) +
∑
i∈EJ
|CiJ p̃n+1(vJ)|2

=
2

dJ

∑
j∈EJ

CjJ p̃
n
j (vJ)

∑
i∈EJ

CiJ p̃
n+1
i (vJ)−

∑
i∈EJ

CiJ p̃
n
i (vJ)CiJ p̃

n+1
i (vJ)(5.2)

−
(

2

dJ

∑
j∈EJ

εjJ(C+
jJ)T [Kj(r̃

n
j

′
+Rj r̃

n
j )](vJ)

∑
i∈EJ

CiJ p̃
n+1
i (vJ)

−
∑
i∈EJ

εiJ(C+
iJ)T [Ki(r̃

n
i

′
+Rir̃

n
i )](vJ) · CiJ p̃n+1

i (vJ)

)
,

∑
i∈EJ

εiJ(C+
iJ)

T
[Ki((p̃

n+1
i )′ +Rip̃

n+1
i )](vJ)CiJ r̃

n+1
i (vJ)−

∑
i∈EJ
|CiJ r̃n+1

i (vJ)|2

= −
(

2

dJ

∑
j∈EJ

CjJ r̃
n
j (vJ)

∑
i∈EJ

CiJ r̃
n+1
i (vJ)−

∑
i∈EJ

CiJ r̃
n
i (vJ)CiJ r̃

n+1
i (vJ)

)
(5.3)

−
(

2

dJ

∑
j∈EJ

εjJ(C+
jJ)T [Kj(p̃

n
j
′ +Rj p̃

n
j )](vJ)

∑
i∈EJ

CiJ r̃
n+1
i (vJ)

−
∑
i∈EJ

εiJC
+
iJ [Ki(p̃

n
i
′ +Rip̃

n
i )](vJ)CiJ r̃

n+1
i (vJ)

)
.

On the other hand, taking squares in (4.1), (4.2) we obtain

|(C+
iJ)T [Ki((r̃

n+1
i )′ +Rir̃

n+1
i )](vJ)|2 = |CiJ p̃n+1

i (vJ)|2
+ |(C+

iJ)T [Ki(r̃
n
i
′ +Rir̃

n
i )](vJ)|2

− 2CiJ p̃
n+1
i (vJ)

(
2

dJ

∑
j∈EJ

CjJ p̃
n
j (vJ)− CiJ p̃ni (vJ)

)
(5.4)

−
(

2

dJ

∑
j∈EJ

εjJ(C+
jJ)T [Kj(r̃

n
j
′ +Rj r̃

n
j )](vJ)

− εiJ(C+
iJ)T [Ki(r̃

n
i
′ +Rir̃

n
i )](vJ)

)
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+
4

d2
J

∣∣∣∣∣∣
∑
j∈EJ

CjJ p̃
n
j (vJ)

∣∣∣∣∣∣
2

+
∣∣CiJ p̃ni (vJ)

∣∣2
− 4

dJ

∑
j∈EJ

CjJ p̃
n
j (vJ)CiJ p̃

n
i (vJ)

+
4

d2
J

∣∣ ∑
j∈EJ

εjJ(C+
jJ)T [Kj(r̃

n
j
′ +Rj r̃

n
j )](vJ)

∣∣2
− 4

d2
J

∑
j∈EJ

εjJ(C+
jJ)T [Kj(r̃

n
j
′ +Rj r̃j)](vJ)

− εiJ(C+
iJ)T [Ki(r̃

n
i
′ +Rir̃

n
i )](vJ)

− 2

(
2

dJ

∑
j∈EJ

CjJ p̃
n
j (vJ)− p̃ni (vJ)

)

−
(

2

dJ

∑
j∈EJ

εjJ(C+
jJ)T [Kj(r̃

n
j
′ +Rj r̃

n
j )](vJ)

− εiJ(C+
iJ)T [Ki(r̃

n
i
′ +Rir̃

n
i )](vJ)

)
.

A similar expression holds for the p̃ni -variable. We sum (5.4) over incident edges and
obtain∑
i∈EJ
|(C+

iJ)
T

[Ki((r̃
n+1
i )′ +Rir̃

n+1
i )](vJ)|2

=
∑
i∈EJ
|CiJ p̃n+1

i (vJ)|2 +
∑
i∈EJ
|CiJ p̃ni (vJ)|2

+
∑
i∈EJ
|(C+

iJ)T [Ki(r̃
n
i
′ +Rir̃

n
i (vJ))]|2

+ 2

[
−
∑
i∈EJ

CiJ p̃
n+1
i (vJ)

2

dJ

∑
j∈EJ

CjJ p̃
n
j (vJ)

+
∑
i∈EJ

CiJ p̃
n+1
i (vJ)CiJ p̃

n
i (vJ)

+
2

dJ

∑
i∈EJ

CiJ p̃
n+1
i (vJ)

∑
j∈EJ

εjJ(C+
jJ)T [Kj(r̃

n
j
′ +Rj r̃

n
j )](vJ)(5.5)

+
∑
i∈EJ

εiJ(C+
iJ)T [Ki(r̃

n
i
′ +Rir̃

n
i )](vJ)CiJ p̃

n+1
i (vJ)

]

− 2
∑
i∈EJ

(
2

dJ

∑
j∈EJ

CjJ p̃
n
j (vJ)− CiJ p̃ni (vJ)

)

−
(

2

dJ

∑
j∈EJ

εjJ(C+
jJ)T [Kj(r̃

n
j
′ +Rir̃

n
j )](vJ)− εiJ(C+

iJ)T [Ki(r̃
n
i
′ +Rir̃

n
i )](vJ)

)
.

Again, a similar expression can be derived for the adjoint variable. Factoring the last



1662 G. LEUGERING

term in (5.5), we see that it reduces to

−2
∑
i∈EJ

{
εiJ(C+

jJ)T [Ki(r̃
n
i
′ +Rir̃

n
i )](vJ)CiJ p̃

n
i (vJ)

}
.

Furthermore, the bracketed term in (5.5) is minus the right-hand side of (5.2). There-
fore, we arrive at∑

i∈EJ
|(C+

iJ)
T

[Ki((r̃
n+1
i )′ +Rir̃

n+1
i )](vJ)|2 +

∑
i∈EJ
|CiJ p̃n+1

i (vJ)|2

= −2
∑
i∈EJ

εiJ(C+
iJ)T [Ki((r̃

n+1
i )′ +Rir̃

n+1
i )](vJ)CiJ p̃

n+1
i (vJ)(5.6)

−2
∑
i∈EJ

εiJ(C+
iJ)T [Ki(r̃

n
i
′ +Rir̃

n
i )](vJ)CiJ p̃

n
i (vJ)

+
∑
i∈EJ

∣∣(C+
iJ)T [Ki(r̃

n
i
′ +Rir̃

n
i )](vJ)

∣∣2 +
∑
i∈EJ

∣∣CiJ p̃ni (vJ)|2.

An analogous relation holds for the adjoint variable, but with the opposite signs at
the mixed terms. We sum up (5.6) and its counterpart and integrate with respect to
time. We obtain for vJ ∈ VM ,

Ẽn+1
J :=

∫ T

0

∑
i∈EJ

{
|(C+

iJ)
T

[Ki((r̃
n+1
i )′ +Rir̃

n+1
i )](vJ)|2

+ |(C+
iJ)T [Ki((p̃

n+1
i )′ +Rip̃

n+1
i )](vJ)|2

+ |CiJ r̃n+1
i (vJ)|2 + |CiJ p̃n+1

i (vJ)|2
}
dt = ẼnJ(5.7)

+2

∫ T

0

∑
i∈EJ

[
εiJ(C+

iJ)T [Ki((p̃
n+1
i )′ +Rip̃

n+1
i )](vJ)CiJ r̃

n+1
i (vJ)

− εiJ(C+
iJ)T [Ki((r̃

n+1
i )′ +Rir̃

n+1
i )](vJ)CiJ p̃

n+1
i (vJ)

]
dt

+ 2

∫ T

0

∑
i∈EJ

[
εiJ(C+

iJ)T [Ki(p̃
n
i
′ +Rip̃

n+1
i )](vJ)CiJ r̃

n
i (vJ)

− εiJ(C+
iJ)T [Ki(r̃

n
i
′ +Rir̃

n
i )](vJ)CiJ p̃

n
i (vJ)

]
dt.

We first note that C+
iJ (C+

iJ)T is symmetric and positive definite, and so is Ki. Hence,

ẼnJ is equivalent to the “energy trace” at vJ

EnJ :=

∫ T

0

∑
i∈EJ

{
Ki(r̃

n
i
′ +Rir̃i)(vJ) · (r̃ni ′ +Rir̃

n
i )(vJ)

+Ki(p̃
n
i
′ +Rip̃

n
i )(vJ) · (p̃ni ′ +Rip̃

n
i )(vJ)(5.8)

+ |CiJ r̃ni (vJ)|2 + |CiJ p̃ni (vJ)|2
}
dt.
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Let us now recall that the total energy associated with (1.1), (1.2) is

E(r, t) :=
1

2

ne∑
i=1

∫ li

0

[Miṙi · ṙi +Ki(r
′
i +Riri) · (r′i +Riri) + Siri · ri] dx(5.9)

=:

ne∑
i=1

Ei(ri, t) .

Now, according to [14, Lemma 3.2, Chapter IV], there is a constant C such that∫ T

0

[Miṙi · ṙi +Ki(r
′
i +Riri) · (r′i +Riri) + Siri · ri](vJ) dt(5.10)

≤ C
{∫ t

0

E(ri, s)ds+ Ei(ri, 0) + Ei(ri, t)
}

for sufficiently regular solutions of (1.5). Moreover, for solutions ri of (1.5) satisfying
(1.9) and with the understanding that CiJ = I for vJ ∈ VS (εiJ 6= 0),

d

dt
E(r, t) =

∑
J

∑
i∈EJ

εiJ(C+
iJ)T [Ki(r

′
i +Riri)](vJ)CiJ ṙi(vJ)(5.11)

≤
∑
J

∑
i∈EJ

{
1

4ε
|(C+

iJ)T [Ki(r
′
i +Riri)](vJ)|2 + ε|CiJ ṙi(vJ)|2

}
.

Upon integration, (5.11) leads to

E(r, t) ≤ E(r, 0) +

∫ t

0

∑
J

∑
i∈EJ

{
1

4ε
|(C+

iJ)T [Ki(r
′
i +Riri)](vJ)|2

+ε|CiJ ṙi(vJ)|2
}
ds,

which by (5.10) yields

E(r, t) ≤ E(r, 0) +
1

4ε

∫ t

0

∑
J

∑
i∈EJ
|(C+

iJ)T [Ki(r
′
i +Riri)](vJ)|2 dt(5.12)

+εC

{∫ t

0

E(r, s) ds+ E(r, 0) + E(r, t)

}
.

Now, absorbing εC E(r, t) into the left side of (5.12) and using Gronwall’s inequality
we obtain

E(r, t) ≤ C
{
E(r, 0) +

∫ t

0

∑
J

∑
i∈EJ
|(C+

iJ)T [Ki(r
′
i +Riri)](vJ)|2 dt

}
(5.13)

with a generic constant C > 0. We may apply the energy estimate to our local
solutions r̃ni , p̃

n
i , as no coupling conditions have been used to derive (5.13). Even

though, by Remark 4.1, we can achieve energy-space regularity for the local adjoint
system, if we assume H1(0, T )-regularity of λiJ , we want to derive energy estimates
in the shifted energy space, as we want to deal with λ′s being in L2. The application
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of estimate (5.13) to p̃ni is done as follows. Assuming, as always, L2-regularity of
the data µniJ (see (5.21) below for the justification), and using the fact that r̃ni (vJ)
is also L2-in-time, we have a Neumann-type problem for p̃ni with L2-boundary inputs
and final data in the shifted energy space. By transposition, we obtain the estimate
(5.13) with E(r, t) and E(r, 0) replaced by E∗(p, t) and E∗(p, T ), respectively. However,

because ‖v‖V∗ = ‖A−1v‖V we have that E∗(p̃n, T ) := ‖p̃n(T )‖H + ‖ ˙̃p
n
(T )‖V∗ and

k2E(r̃n, T ) are equivalent. Since E(r̃n, 0) = 0, we therefore obtain

E∗(p̃n, t) ≤ C
∫ T

0

∑
J

∑
i∈EJ

{
|(C+

iJ)T [Ki(p̃
n
i
′ +Rip̃

n
i )](vJ)|2(5.14)

+|(C+
iJ)T [Ki(r̃

n
i
′ +Rir̃

n
i )](vJ)|2

}
dt ,

whenever the right-hand side is defined. Note that the summation is taken over all
joint indices J such that vJ ∈ VM ∪ VN ∪ VC . Therefore, (5.14) can be rewritten as

E∗(p̃n, t) ≤ C
∫ T

0

∑
vJ∈VM

∑
i∈EJ

{
|(C+

iJ)T [Ki(p̃
n
i
′ +Rip̃

n
i )](vJ)|2

+ |(C+
iJ)T [Ki(r̃

n
i
′ +Rir̃

n
i )](vJ)|2

}
dt(5.15)

+ C

∫ T

0

∑
vC∈VC

|(p̃niC (vC))|2 dt (EC = {iC}).

By applying the same argument to (r̃ni ) and denoting Ẽn =
∑
J Ẽ

n
J , J : vJ ∈ VM , we

obtain

E(r̃n, t) + E∗(p̃n, t) ≤ C
(
Ẽn +

∫ T

0

∑
vC∈VC

|p̃niC (vC)|2 dt
)
.(5.16)

Again, this estimate holds as long as the right-hand side is finite. This will turn out
to be true in the following.

We go back to (5.7) and evaluate the mixed terms on the right-hand side:

0 =

∫ T

0

∫ li

0

[Mi
¨̃p
n

i − (Ki((p̃
n
i )′ +Rip̃

n))′ +RTi (Ki(p̃
n
i
′ +Rip̃

n
i ))

+Sip̃
n
i ]r̃ni dx dt

=

∫ li

0

(Mi
˙̃p
n

i r̃
n
i −Mip̃

n
i

˙̃r
n

i )|T0 dx

+

∫ T

0

∫ li

0

p̃niMi
¨̃r
n

i dx dt−
∑
J

∫ T

0

εiJKi(p̃
n
i
′ +Rip̃

n
i )(vJ)r̃ni (vJ) dt

+

∫ T

0

∫ li

0

(p̃ni
′ +Rip̃

n
i )Kir̃

n
i
′ dx dt
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+
∑
J

εiJ

∫ T

0

p̃ni (vJ)(KiRir̃
n
i )(vJ) dt−

∫ T

0

∫ li

0

p̃ni (KiRir̃
n)′ dx dt(5.17)

+

∫ T

0

∫ li

0

p̃ni (RTi KiRir̃
n
i + Sir̃

n
i ) dx dt

=

∫ T

0

∑
J

εiJ [Ki(r̃
n
i
′ +Rir̃

n
i )](vJ)p̃ni (vJ) dt

−
∫ T

0

∑
J

εiJ [Ki(p̃
n
i
′ +Rip̃

n
i )](vJ)r̃ni (vJ) dt

−k‖r̃ni (T )‖2Vi
− k‖ ˙̃r

n

i (T )‖2Hi
,

where Vi := H1(0, `i)
pi and Hi := L2(0, `i)

pi . As (Ar)i =: Airi, Ai is the Riesz
isomorphism between Vi and V ∗i with respect to the norm

‖ri‖2Vi
=

∫ li

0

[Ki(r
′
i +Riri)(r

′
i +Riri) + (Si + I)riri] dx.

Now

p̃ni (vJ) = Π⊥iJ p̃
n
i (vJ) + ΠiJ p̃

n
i (vJ)

= C+
iJCiJ p̃

n
i (vJ) + ΠiJ p̃

n
i (vJ),

and hence, by (1.9)

εiJ [Ki(r̃
n
i
′ +Rir̃

n
i )](vJ)p̃ni (vJ)

= εiJ(C+
iJ)T [Ki(r̃

n
i
′ +Rir̃

n
i )](vJ)CiJ p̃

n
i (vJ)(5.18)

+εiJΠiJ [Ki(r̃
n
i
′ +Rir̃

n
i )](vJ)p̃ni (vJ)

= εiJ(C+
iJ)T [Ki(r̃

n
i
′ +Rir̃

n
i )](vJ)CiJ p̃

n
i (vJ).

The same holds for the other terms in (5.17). We thus have by (5.17), (5.18)∫ T

0

∑
vJ∈VM

εiJ(C+
iJ)T [Ki(r̃

n
i
′ +Rir̃

n
i )](vJ)CiJ p̃

n
i (vJ) dt

−
∫ T

0

∑
vJ∈VM

εiJ(C+
iJ)T [Ki(p̃

n
i
′ +Rip̃

n
i )](vJ)CiJ r̃

n
i (vJ) dt(5.19)

= k
{‖r̃ni (T )‖2Vi

+ ‖r̃ni (T )‖2Hi

}
+
∑

vC∈VC

∫ T

0

|p̃niC (vC)|2 dt.

Upon using (5.19) in (5.7) we obtain

Ẽn+1 = Ẽn − 2k
{‖r̃n(T )‖2V + ‖ ˙̃r

n
(T )‖2H

+‖r̃n+1(T )‖2V + ‖ ˙̃r
n+1

(T )‖2H
}

− 2

{∫ T

0

∑
VC∈VC

|p̃niC (vC)|2 dt(5.20)

+

∫ T

0

∑
VC∈VC

|p̃n+1
iC

(vC)|2 dt
}
.
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Taking the initial data to be zero, we iterate the recursion (5.20) down to the index
zero:

Ẽn+1 = Ẽ0 − 4k
n+1∑
k=0

′{‖r̃k(T )‖2V + ‖ ˙̃r
k
(T )‖2H

}
(5.21)

− 4k

n+1∑
k=0

′ ∑
vC∈VC

∫ T

0

|p̃kiC (vC)|2 dt,

where
∑n
i=0
′ai := 1

2a0 + 1
2an +

∑n−1
j=1 aj . Letting n tend to infinity we conclude

∞∑
k=0

{‖r̃k(T )‖2V + ‖ ˙̃r
k
(T )‖2H

}
<∞,

∞∑
k=0

∑
vC∈VC

∫ T

0

|p̃kiC (vC)|2 dt <∞,

Ẽn bounded,

(5.22)

whenever E0 is finite. This can be achieved by properly choosing the initial guess for
the iterates r̂0

i , p̂
0
i and taking initial and target data of the global system to be in

D(A)×V.
Going back to (4.10), (4.11) (with β = 1 for simplicity) it is easily seen that the

recursion (5.20) takes the equivalent form:∫ T

0

∑
J∈VM ,i∈EJ

‖(g̃n+1
ij , h̃n+1

iJ )‖2dt =

∫ T

0

∑
J∈VM ,i∈EJ

‖(g̃nij , h̃niJ)‖2dt(5.23)

−2k
{‖r̃n(T )‖2V + ‖ ˙̃r

n
(T )‖2H + ‖r̃n+1(T )‖2V + ‖ ˙̃r

n+1
(T )‖2H

}
− 2

{∫ T

0

∑
VC∈VC

|p̃niC (vC)|2 dt+

∫ T

0

∑
VC∈VC

|p̃n+1
iC

(vC)|2 dt
}
.

Of course, the analogue of (5.21) and the conclusion that the L2(0, T )-norm of
(g̃, h̃)J∈VM ,i∈EJ remains bounded also hold.

We conclude from (5.22) that

(r̃n(T ), ˙̃r
n
(T )) −→ 0 in V ×H,

p̃niC (vC) −→ 0 in L2(0, T ).
(5.24)

But, as Ẽn is bounded in n by (5.22), we obtain from (5.24) and (5.16) that

Ei(r̃ni , t), E∗i (p̃ni , t) ≤ C ∀ i, n, t.(5.25)

Thus, on subsequences{
(r̃ni , ˙̃r

n

i ) −→ (ηi, η̇i), w − ?− in L∞(0, T,Vi ×Hi),

(p̃ni , ˙̃p
n

i ) −→ (µi, µ̇i), w − ?− in L∞(0, T,Hi ×V∗i ),
(5.26) 

CiJ r̃
n
i (vJ) −→ αiJ , CiJ p̃

n
ij(vJ) −→ γiJ ,

(C+
iJ)T [Ki(r̃

n
i
′ +Rir̃

n
i )](vJ) −→ βiJ ,

(C+
iJ)T [Ki(p̃

n
i
′ +Rip̃

n
i )](vJ) −→ δiJ , w − in L2(0, T ).

(5.27)
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However, as only a subsequence is involved, we cannot use (4.1), (4.2) directly in
order to conclude convergence to the global solutions. We therefore resort to a result
given by Opial [33] as follows.

We consider the map taking (g̃iJ , h̃iJ) of (4.10) and (4.11) into the right-hand
sides of those equations (for the errors), where we delete the iteration index n. That is,
given (g̃iJ , h̃iJ) we solve the local error system with mixed Robin conditions (4.10),
(4.11) and inhomogeneities (g̃iJ , h̃iJ) for r̃j , p̃j , and then compute all the traces
appearing in (4.10), (4.11) on the right-hand side (again with the iteration index n
deleted). To be precise, we introduce a map SJ by

(SJ(z))i :=
2

dJ

∑
j∈EJ

zjJ − ziJ .

Note that this map satisfies S2
J = I. We identify network quantities, such as CiJ r̃i(VJ),

with r̃iJ . With this notation, (4.10), (4.11) can be written briefly as

(g̃n+1
iJ , h̃n+1

iJ ) = ((SJ(2p̃n − g̃n))i, SJ(−2r̃n − h̃n)i).

In an obvious way we can collect all the components into single vectors g̃, h̃, p̃, r̃. We
extend the map SJ to all multiple nodes and denote it by S. Now, we define the map
T by

T (g̃, h̃) := S(2(p̃,−r̃)− (g̃, h̃)).(5.28)

Speaking in terms of our iteration (involving either (4.1), (4.2) or (4.10), (4.11) (with
β = 1)), the new boundary terms g̃n+1

iJ , h̃n+1
iJ are obtained from the previous ones by

applying T ; i.e., with x := (g̃, h̃) we have a fixed point iteration

xn+1 = T (xn).(5.29)

If β > 0 we have instead T (g̃, h̃) := S(2β(p̃,−r̃)− (g̃, h̃)).

Now, the existence of a fixed-point is guaranteed by the existence (and in fact
uniqueness) of solutions to the global optimality system. It is apparent from (5.23)
(or equivalently (5.20)) that the mapping T is nonexpansive, i.e., ‖T (x)‖ ≤ ‖x‖. We
are going to show that the map T is asymptotically regular in the sense of Opial [33],
i.e., T n+1x − T nx = T n(T − I)x → 0. Then, according to Opial [33, Theorem 2],
the sequence defined by (5.29) converges weakly to a (in fact the unique) fixed point.

Now, with (¯̃g,
¯̃
h) := T (g̃, h̃) we obtain by (5.23)

‖(¯̃g, ¯̃h)‖2L2(0,T ;Rne×#VM ) = ‖(T (g̃, h̃))‖2L2(5.30)

= ‖(g̃, h̃)‖2L2 − 2k
{‖r̃(T )‖2V + ‖ ˙̃r(T )‖2H

+ ‖¯̃r(T )‖2V + ‖ ˙̃̄r(T )‖2H
}

− 2

{∫ T

0

∑
VC∈VC

|p̃iC (vC)|2 dt+

∫ T

0

∑
VC∈VC

|¯̃piC (vC)|2 dt
}
.



1668 G. LEUGERING

Assume that λ is an eigenvalue of T corresponding to the eigenpair (g, h). Then

‖T (g̃, h̃)‖2 = |λ|2‖(g̃, h̃)‖2(5.31)

= ‖(g̃, h̃)‖2 − 2k
{‖r̃(T )‖2V + ‖ ˙̃r(T )‖2H

+ ‖¯̃r(T )‖2V + ‖ ˙̃̄r(T )‖2H
}

− 2

{∫ T

0

∑
VC∈VC

|p̃iC (vC)|2 dt

+

∫ T

0

∑
VC∈VC

|¯̃piC (vC)|2 dt
}
.

Dividing by ‖(g̃, h̃)‖2 6= 0, we see that |λ| ≤ 1. Assume now that λ = 1. Then equality
(5.31) immediately gives

r̃(T ) = ˙̃r(T ) = ¯̃r(T ) = ˙̃̄r(T ) = 0, p̃iC (vC) = ¯̃piC (vC) = 0.

As shown above this implies that r̃ = p̃ = ¯̃r = ¯̃p = 0. Hence, all eigenvalues of T have
modulus less than 1. We recall the structure of T given by (5.28). Up to the isomor-
phism S this map is the identity shifted by a map that takes appropriate traces of r̃, p̃
at all multiple nodes. Now, by our “energy inequalities” (5.20), (5.21), we know that
even the Neumann traces at those nodes are L2 in time. However, r̃, p̃ solve hyperbolic
equations on each edge. Interchanging the space and time variables (as usual in one-
dimensional problems) one obtains the same regularity for the velocities at multiple
nodes. Therefore, picking Dirichlet data is a compact operation. Hence, the map T
is—up to an isomorphism—the identity plus a compact operator K. Therefore, K
and hence the entire map T is completely determined by its point spectrum and the
essential spectrum at λ = 1. In terms of asymptotic regularity, the worst that can
happen is that x = limk→∞ xk, where xk is the eigenelement (= (g̃k, h̃k)) correspond-
ing to λk → 1. On this sequence we have ‖T n(T − I)xk‖ = |λnk (λk − 1)| → 0. Thus,
T is asymptotically regular and Opial’s result applies.

We conclude by the same argument as in (4.3)–(4.6) that, in a weak-L2 sense,
all boundary and transmission conditions are satisfied in the limit. In fact, as seen
above, the convergence of traces at multiple nodes takes place in the strong sense, and
going back to the original iteration, we infer strong convergence of Neumann traces
there. Therefore, we have strong convergence of the solutions r̃ni in C(0, T ;H1(0, `i))∩
C1(0, T ;L2(0, `i)), and p̃ni in C(0, T ;L2(0, `i)) ∩ C1(0, T ; (H1(0, `i))

∗). On the other
hand by (5.24) all global and, hence, local final conditions for the adjoint system
strongly tend to zero, and so do the traces at controlled nodes. The strong limits r̃i
and p̃i of the local solutions thus correspond to zero initial and final data, respectively.
Also, in the limit the global transmission conditions are satisfied in the strong sense.
By uniqueness, the limits have to be equal to zero. We obtain Theorem 5.1.

Theorem 5.1. Let (r0, r1), (z0, z1) ∈ D(A)×V and assumption (A) be satisfied.
Then the sequence (rni , p

n
i )i, i = 1 : ne, n ∈ N0, defined by the solution to (4.12)–(4.18)

(or (4.19), (4.20)) converges to (ri, pi), i = 1 : ne in C(0, T ;V ×H)∩C1(0, T ;H×V ∗),
where (r, p) = (ri, pi)

ne
i=1 solves the global optimality system (1.5)–(1.10), (3.1)–(3.7).

This result can be extended to the relaxed version (4.8), (4.9) of (4.1), (4.2) as
well as to the relaxed version of (4.10), (4.11). The point is that by underrelaxation
the iteration mapping Tλ := λI + (1 − λ)T has the same set of fixed points as the
original map T , and, according to Opial [33, Theorem 3], the map Tλ is asymptotically
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regular. Hence for each λ ∈ (0, 1) and for any initial data, the fixed point sequence
converges weakly in L2 to the unique fixed point of T . Therefore, independently of λ,
the transmission conditions are satisfied in the weak limit and, by the argument given
above, also in the strong limit. Now, in order to conclude convergence of the relaxed
scheme, one needs to extend the basic recursion relation (5.20) to the relaxed scheme,
as one has to use the fact that the final values and the traces at controlled nodes
tend to zero also for the sequence generated by the relaxed scheme. This extension is
tedious but nevertheless possible.

6. Remarks on other cost functionals. One might consider functions differ-
ent from (2.1). In particular, we might want to optimize the flux of energy, rather
than to dissipate energy. This is of interest in real-time applications where one wants
to protect certain subregions from perturbations. Without going into details, we men-
tion that in the string case the flux at a given vertex vJ in the direction ei of edge i
is given by

−εiJKir
′
i(vJ)ṙi(vJ)

=
1

4

{|εiJKir
′
i(vJ)− ṙi(vJ)|2 − |εiJKir

′
i(vJ) + ṙi(vJ)|2} ,

so that maximizing the flux of energy at vJ in that direction comes down to minimizing
the quadratic cost

k

2

∫ T

0

|εiJKir
′
i(vJ) + ṙi(vJ)|2 dt.

It is apparent that upon letting k grow large the optimal control would have the
tendency to install an absorbing condition at vJ . More on this issue can be found
in [17]. The complete analysis of the corresponding domain decomposition is yet to
be done. Similar cost criteria apply also to the Timoshenko beam case.

Another cost function, which is much simpler and more classical, is provided by
the full-state cost

J(f) =
1

2

∑
vJ∈VC

∫ T

0

|fJ |2 dt+
1

2

∫ T

0

ne∑
i=1

|ri|2 dx dt.(6.1)

This is the kind of cost function that has been frequently used by Benamou [1], [2],
etc. . The point is that recursions similar to (5.21) involve the error with respect to
the entire state, so that convergence follows without the necessity of applying energy
estimates. In our present situation, we are able to show that in the case of (6.1), (5.21)
changes to

Ẽn+1 = Ẽ0 − 4
n+1∑
k=0

′ ne∑
i=1

∫ T

0

∫ li

0

|r̃ki |2 dx dt(6.2)

−4

n+1∑
k=0

′ ∑
vC∈VC

∫ T

0

|p̃kiCC(vC)|2 dt.

In this case it is obvious that we obtain convergence in L2(0, T,H) of the correspond-
ing errors directly. We note that, by standard arguments, the coupling in the local
and global optimality systems is much simpler then, as the full state ri appears as
distributed input in the adjoint equation.
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As for cost function (2.2), we remark that results similar to those corresponding
to cost function (2.1) can be shown. We refer the reader to Lagnese and Leuger-
ing [16], where transmission problems in higher dimensions are discussed. See also
Leugering [19] for a discussion of this problem in the context of networks of strings.

We also remark that it is possible to show similar results—in the case of full state
cost—for networks of Rayleigh beams. This can be done by letting the shear stiffness
of each member tend to infinity; see Example 2. The analysis, however, goes beyond
the scope of this paper. We shall consider this problem in a forthcoming publication.

7. Numerical simulations. We consider only networks of strings. For Timo-
shenko beams the simulations are very similar. As an example we take a tripod (divin-
ing rod) consisting of one-dimensional elastic material. We put Neumann boundary
controls at the south node and the northwest node, whereas the northeast node is
clamped. This system is known to be exactly controllable in T ≥ 4 time units in
general, that is, for general initial conditions [14]. We have picked T = 3 as final
time because this particular example shows that controls can be applied successfully
in a shorter time interval for a particular choice of the initial data. However, as is
obvious, a control time of one time unit is not sufficient to steer the system to rest.
This is verified numerically in Figure 7.1. Figures 7.2 and 7.3 show a rectangular
tripod with the south vertex controlled in the Neumann condition. In Figure 7.2 the
west node is clamped, while the east node is subjected to a free Neumann condition.
That system is also known to be controllable [18]. Here it really takes 4 time units (a
shorter time duration is not sufficient in this configuration; we have only one control)
to control the configuration to rest. In Figure 7.3, however, the east and west nodes
are clamped. This situation is known to be uncontrollable [18] in any time interval by
Neumann controls at the south node. The underlying phenomenon is exactly as in the
midspan control case for a string clamped at its boundaries. Figure 7.4 clearly shows
that the upright element does not absorb any energy from the horizontal members,
simply because a zero node deflection occurs at the multiple node. The initial data
are chosen as eigenelements in an obvious way. There is no longitudinal component in
the initial data; therefore, the upright element performs no vertical deflection, which
is in complete agreement with the theory.

The final experiment concerns the problem of controlling networks with circuits.
It has been shown in [14] that homogenous networks of strings, i.e., the network
contains a circuit and all physical constants are equal, are not even approximately
controllable. It was further demonstrated in [14] that upon using completely absorb-
ing boundary controls at simple nodes, a residual motion settles in such a circuit that
has zero displacements (and velocities) at the nodes constituting the closed path. Fur-
thermore, it has also been remarked in [14] that exact controllability is obtained for
string networks, once the prestretching factors (which in turn determine the “optical
length” of an individual string) are rational independent. However, rational indepen-
dence is a matter that is hard to realize (with finitely many machine numbers). We
take a square with two strings attached to it. The simple nodes of the string network
are controlled in the Neumann conditions. Instead of taking an eigenmode on the
square with zero nodal values that would give a picture similar to Figure 7.4, we
decided to produce a canonical short range input (bump) as before; see Figure 7.5.
The pictures clearly show that only very minor (literally “invisible”) oscillations are
left after the canonical timespan.

The numerical experiments were done using a Newmark-(1/2,1/4) scheme for
the forward and backward wave equations appearing in the optimality conditions.
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Fig. 7.1. Control time sufficiently large.
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Fig. 7.2. Control time too small.
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Fig. 7.3. Control at one simple node only.
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Fig. 7.4. Lack of controllability due to rational dependence.
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Fig. 7.5. Optimal control of a simple network containing a circuit.

We worked out also the discrete optimality conditions for the discretized problem
and implemented the corresponding scheme, which is slightly different from the one
obtained by first deriving the optimality condition on the partial differential equation
level and then discretizing. In fact, this is an important and well-known observation:
control and discretization do not commute in general.

The physical constants are always put to unity for easier reference. We used 20
discretization points in space for each member. The outer iterations were terminated
usually after 10 iterations to yield 10−4 accuracy. In order to be close to controllability
phenomena, we have chosen the penalty parameter k to be in the range of 104.

We applied several variations of the algorithms and also different discretizations of
the equations and costs; however, we do not have the space to dwell on this and refer
to a forthcoming publication where the numerical part will be made more explicit.

Acknowledgment. We gratefully acknowledge Ralf Hundhammer’s work on the
implementation.
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Abstract. Necessary conditions are derived for stochastic partially observed control problems
when the control enters the drift coefficient and correlation between signal and observation noise is al-
lowed. The problem is formulated as one of complete information, but instead of considering directly
the equation satisfied by the unnormalized conditional density of nonlinear filtering, measure-valued
decompositions are used to decompose it into two processes. The minimum principle and the stochas-
tic partial differential equation satisfied by the adjoint process are then derived, and the optimality
conditions are shown to be the exact necessary conditions derived by Bensoussan [Maximum prin-
ciple and dynamic programming approaches of the optimal control of partially observed diffusions,
Stochastics, 9 (1983), pp. 169–222; Stochastic Control of Partially Observable Systems, Cambridge
University Press, Cambridge, UK, 1992] when the correlation is zero.

Key words. stochastic control, minimum principle, partially observable diffusions, nonlinear
filtering, measure-valued decompositions
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1. Introduction. The stochastic control problem under consideration is

min{J(u);u ∈ Uad},(1.1)

J(u) = Eu

{∫ T

0

π(t, xt, ut)dt+ κ(xT )

}
,(1.2)

dxt = f(t, xt, ut)dt+ σ(t, xt)dwt, x0 = x,(1.3)

dyt = h(t, xt)dt+ g(t)dwt + ĝ(t)dbt, y0 = 0,(1.4)

where, assuming {ws; 0 ≤ s ≤ t}, {bs; 0 ≤ s ≤ t} are uncorrelated Wiener processes,
the correlation between the signal process and the observation process is

〈x, y〉t =

∫ t

0

σ(s, xs)g(s)T ds.(1.5)

The set of all admissible controls, denoted by Uad, may depend on the observations
{ys; 0 ≤ s ≤ t}, thereby describing a strict-sense control problem (output feedback)
rather than a wide-sense one which requires additional dependence of Uad on the
previous controls (see, for example, Fleming and Nisio [3]). Recent approaches ad-
dressing this problem with output feedback when the correlation between the signal
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process and the observation process is zero (i.e., g = 0) are based on strong and weak
variations, and can be found in Bensoussan [1, 2], Haussmann [4], Baras, Elliott, and
Kohlmann [5], and Elliott and Yang [6]. A stochastic partial differential equation
satisfied by the adjoint process is given by Bensoussan [1, 2] when g = 0 and σ(t, x)
is degenerate, whereas the other authors above provide an explicit representation for
the adjoint process in terms of a conditional expectation. The derivations found in
Bensoussan [1] and Haussmann [4] are based on the robust version of the unnormal-
ized conditional density equation which does not exist when the correlation considered
here is present (due to hi, hj being noncommutative). Bensoussan [2] introduced a
new approach in solving the problem by applying the variational methods of partial
differential equations, weak control variations, and using Galerkin’s approximations
for Sobolev spaces to approximate the adjoint process through a finite-dimensional
basis.

Here, for the stochastic control problem (1.1)–(1.4), we shall derive optimality
conditions that are generalizations of the optimality conditions derived in Bensoussan
[1, 2]. The main idea of our methodology is the use of measure-valued decompositions
as discussed by Kunita [7, 8], whereby the unnormalized conditional density ρt is writ-
ten as a composition of two measure-valued processes such that ρt = νtµt. In Kunita
[7, 8], this decomposition is used to obtain necessary and sufficient conditions for the
smoothness of ρt. Here we recognize that νt satisfies a parabolic partial differential
equation containing the Kolmogorov operator, and hence the explicit dependence on
the control, while µt satisfies a stochastic partial differential equation containing the
observations and, therefore, has no explicit dependence on the control. Therefore, in
the control situation, this decomposition serves as a separation argument similar to
the separation principle given by Wonham [9] because any control variation affects
explicitly only the measure-valued process νt. A similar approach in deriving nec-
essary conditions of optimization for state-valued processes satisfying the separation
principle of Wonham [9] is given by Bensoussan [10].

In section 2, we state our main assumptions and give a summary of the results
from filtering theory and Kunita’s [7, 8] decomposition which will be used throughout.
In section 3, we formulate the stochastic control problem by expressing the perfor-
mance index in terms of the measure-valued processes νt, µt. In addition, we present
our separation argument and relate the perturbed process ρBt of Bensoussan [1, 2] to
our perturbed processes zt which are, respectively, the byproducts of applying weak
variations to the equations satisfied by ρt, νt. In section 4, we derive the minimum
principle using the interplay between Euclidean variational methods and variational
methods for measure-valued processes. We also derive the stochastic partial differen-
tial equation satisfied by the adjoint process using a generalization of the martingale
representation theorem. In section 5, we show that the minimum principle estab-
lished by Bensoussan [1, 2] is a special case of Theorem 4.3, and that the stochastic
partial differential equation satisfied by the adjoint process found in Bensoussan [1,
equation (2.66)] is related to the adjoint process equation given by (4.10) (in fact,
Bensoussan’s adjoint process equation is again a special case of the adjoint process
given by (4.10)).

2. Problem formulation. The control parameter u will take values in a com-
pact, convex subset U of some Euclidean space Rk. We shall make the following
assumptions.

2.1. Assumptions.
(A1) f : [0, T ] × Rn × U → Rn, bounded continuous in t, continuous in u, C∞ in
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x, with bounded derivatives of any order in x, bounded first derivatives in u,
with a constant k1 such that

|f(t, x, u)− f(t, z, u)| ≤ k1|x− z|;

(A2) σ : [0, T ]×Rn → Rn⊗Rm, bounded continuous in t, C∞ in x, with bounded
derivatives of any order in x, and a constant k2 such that

||σ(t, x)− σ(t, z)|| ≤ k2|x− z|;

(A3) h : [0, T ] × Rn → Rd, bounded continuous in t, C∞ in x, with bounded
derivatives of any order in x;

(A4) g : [0, T ] → Rd ⊗ Rm, ĝ : [0, T ] → Rd ⊗ Rd, continuous, with constants
β1, β2 > 0, such that

g(t)g(t)T + ĝ(t)ĝ(t)T ≥ β1Id, ĝ(t)ĝ(t)T ≥ β2Id,

where Id denotes the d× d identity matrix;
(A5) π : [0, T ]×Rn ×U → R, bounded, with bounded L2-norm independent of u,

continuous in u, and satisfying

π(., ., u) ∈ L2([0, T ]×Rn),

∣∣∣∣ ∂∂uπ(t, x, u)

∣∣∣∣ ≤ γ(x), γ(·) ∈ L2(Rn);

(A6) κ : Rn → R, Borel bounded with κ(·) ∈ L2(Rn);
(A7) x0 = x is assumed to be known. If x0 is random, then p0 ∈ L2(Rn) is the

density of x0 and is assumed to be independent of {ws, bs; 0 ≤ s ≤ t}.
2.2. Evolution of unnormalized conditional density equation. We start

with a reference probability space (Ω,F ,P) with a complete filtration {Ft; t ∈ [0, T ]},
two adapted Wiener processes, {w(t); t ∈ [0, T ]}, {b(t); t ∈ [0, T ]}, and an F0 measur-
able random variable x0 such that

w : [0, T ]× Ω→ Rn is a standard Wiener process independent of b(·),
b : [0, T ]× Ω→ Rd is a standard Wiener process independent of w(·),
x(0) : Ω→ Rn is a random variable independent of w(·), b(·).
Furthermore, suppose an observation process y(·) is given by

dyt = g(t)dwt + ĝ(t)dbt, y0 = 0.(2.1)

We write {Fyt ; t ∈ [0, T ]} for the complete filtration generated by the observation
σ-algebra σ{ys; 0 ≤ s ≤ t ≤ T}, and we denote by Eu (resp., E) the expectation with
respect to measure Pu (resp., P).

Definition 2.1. Denote by L2
y([0, T ];Rk) the set of square integrable stochastic

processes adapted to {Fyt ; t ∈ [0, T ]} with values in Rk. The set of admissible controls,
denoted by Uad, is defined as

Uad
4
= {u(·) ∈ L2

y([0, T ];Rk)u(t, y) ∈ U, (a.e. on [0, T ]),P a.s.}.

Given the system (Ω,F ,P;Ft) and a u ∈ Uad, consider the diffusion process x(·)
satisfying the Ito equation

dxt = f(t, xt, ut)dt− σ(t, xt)g(t)T k(t, xt)dt+ σ(t, xt)dwt, x0 ∈ Rn,(2.2)
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where the d× 1 vector k(t, xt) is defined by

k(t, xt)
4
= (g(t)g(t)T + ĝ(t)ĝ(t)T )−1h(t, xt).(2.3)

By assumptions (A3) and (A4), k(t, x) is a well-defined bounded vector. Furthermore,
by assumptions (A1)–(A3) and (A7), there exists a unique solution (see Bensoussan
[2]) such that

x(.) ∈ L2(Ω,FT ,P;C([0, T ];Rn)).

Define the martingale {mt; t ∈ [0, T ]} with respect to ({Ft; t ∈ [0, T ]},P) by

mT
4
=

∫ T

0

k(s, xs)
T (g(s)dws + ĝ(s)dbs),

and introduce a new probability measure through the likelihood-ratio ΛuT defined as

ΛuT
4
= E

[
dPu
dP |FT

]
= exp

{
mT − 1

2
〈m,m〉T

}
.(2.4)

On this new probability measure Pu (and after incorporating the martingale transla-
tion theorem) the processes {xs, ys; 0 ≤ s ≤ t} become for the system (Ω,Ft,Pu), t ∈
[0, T ], the weak solutions of (1.3), (1.4), which are unique in probability law.

Given any f̃ ∈ C∞b (Rn) (space of continuous, real-valued, infinitely continuously
differentiable functions with bounded derivatives), we obtain from Bayes formula (see
Bensoussan [2] and Kunita [11], assuming existence of a conditional distribution which
is also absolutely continuous with respect to Lebesque measure)

(2.5)

Eu[f̃(xt)|Fyt ] =
E[f̃(xt)Λ

u
t |Fyt ]

E[Λut |Fyt ]
=

∫
Rn

f̃(z)ρt(dz)∫
Rn

ρt(dz)
=
ρt(f̃)

ρt(1)
=
〈f̃(z), ρt(z)〉
〈1, ρt(z)〉 ,

where ρt is the unnormalized conditional density of xt given the information Fyt .
Theorem 2.2. For any f̃ ∈ C∞b (Rn), ρt(f̃) is the solution of

ρt(f̃) = p0(f̃) +

∫ t

0

ρs(A
u(s)f̃)ds+

∫ t

0

ρs(M(s)f̃)dỹs,(2.6)

where p0 is a delta measure δx and

Au(t) =
n∑
i=1

f i(t, x, u)
∂

∂xi
+

1

2

n∑
i,j=1

aij(t, x)
∂2

∂xi∂xj
, a(t, x) = σ(t, x)σ(t, x)T ,(2.7)

Mk(t) =
d∑
i=1

(k̃(t)−1/2)ikhi(t, x) +
n∑
i=1

(σ(t, x)g(t)T k̃(t)−1/2)ik
∂

∂xi
, 1 ≤ k ≤ d,(2.8)

k̃(t) = g(t)g(t)T + ĝ(t)ĝ(t)T ,(2.9)

with (·)i,j the (i, j)th component of a matrix, (·)i the ith component of a vector, and
{ỹs; 0 ≤ s ≤ t} a standard Wiener process.



1680 CHARALAMBOS D. CHARALAMBOUS AND JOSEPH L. HIBEY

Proof. See Pardoux [12].
Remark 2.1. Notice that (2.6) is a degenerate version of the equation presented

by Pardoux [12, equation (4.3), pp. 206–216] in the case when no control is present,
g(t) ∈ Rd ⊗ Rn, σ(t, x) ∈ Rn ⊗ Rn, and k̃(t) = Id. A similar equation is derived
by Kunita [8, pp. 154–167] using the interplay between Kushner’s equation for the
normalized conditional density and the unnormalized conditional density when no
control is present, ĝ = Id, g = 0, and a martingale g̃(t)dbt is added to the right side
of (1.3). Different proofs of (2.6), when σ(t, x) ∈ Rn ⊗ Rn and g(t) ∈ Rd ⊗ Rn, are
also found in Bensoussan [2]. It is important to note that the case when g depends
on x still remains open. For reasons of simplicity, and without loss of generality, we
shall assume that k̃(t) = Id so that {ys; 0 ≤ s ≤ t} is the standard Wiener process
described by (2.1).

2.3. Decomposition and representations of unnormalized conditional
density. Suppose the operators Au(t),Mk(t) are defined by

Au(t)
4
=

1

2

m∑
j=1

Xj(t)
2 +Xu

0 (t); Mk(t)
4
= hk(t) + Yk(t), 1 ≤ k ≤ d,(2.10)

where

Xu
0 (t)

4
= X0(t, x, u) =

n∑
i=1

(
f i(t, x, u)− 1

2

m∑
k=1

n∑
j=1

σjk(t, x)
∂

∂xj
σik(t, x)

)
∂

∂xi
,

Xj(t)
4
= Xj(t, x) =

n∑
i=1

σij(t, x)
∂

∂xi
, 1 ≤ j ≤ m,

Yk(t)
4
= Yk(t, x) =

m∑
j=1

γ(t)kjXj(t), hk(t) = hk(t, x), 1 ≤ k ≤ d,

and γij are components of g(t). Writing the stochastic integral of (2.6) in terms of
the Stratonovich integral and defining

Lu(t)
4
= Au(t)− 1

2

d∑
k=1

Mk(t)2 =
1

2

m∑
j=1

X̃j(t)
2 + X̃u

0 (t) + h̃0(t),(2.11)

then (2.6) is equivalent to

ρt(f̃) = p0(f̃) +

∫ t

0

ρr(L
u(r)f̃)dr +

d∑
k=1

∫ t

0

ρr(Mk(r)f̃) ◦ dykr .(2.12)

Here, “◦” denotes the Stratonovich integral. Furthermore,

X̃u
0 (t)

4
= X̃u(t, x) = Xu

0 (t)−
d∑
k=1

hk(t)Yk(t), X̃j(t)
4
= X̃j(t, x) =

m∑
k=1

θik(t)Xk(t), 1 ≤ j ≤ m,
(2.13)
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Mk(t) = hk(t) + Yk(t), h̃0(t) = −1

2

d∑
k=1

(hk(t)2 + Yk(t)hk(t)),(2.14)

and θij(t) are the components of the positive definite matrix θ(t), satisfying θ(t)T θ(t) =
Im(t)− g(t)T g(t).

At this point, we invoke the representation results of stochastic partial differential
equations given by Kunita [8, 7]. Write the space (Ω,FT ,P) as a product of two
probability spaces as follows:

Ω = Ωy ⊗ Ωw = C([0, T ];Rd)⊗ C([0, T ];Rm),

FT = FyT ⊗FwT , P(dy, dw) = Py(dy)⊗ Pw(dw),

where FyT ,FwT are the Borel σ-algebras on C([0, T ];Rd), C([0, T ];Rm) (spaces of con-
tinuous functions), respectively. Here Py,Pw denote the Wiener measures µdw(dy), µmw (dw)
on C([0, T ];Rd), C([0, T ];Rm), respectively. For u ∈ Uad consider the process ξ0,t =
ξ0,t(x, y, w) starting at ξ0,0 = x and described by the stochastic differential equation

(Ωy ⊗ Ωw,Fyt ⊗Fwt ,Py ⊗ Pw) :

dξ0,t = X̃u(t, ξ0,t)dt+
m∑
j=1

X̃j(t, ξ0,t) ◦ dwjt +
d∑
k=1

Yk(t, ξ0,t) ◦ dykt .(2.15)

Since the coefficients of (2.15) are of C∞-class and their derivatives are bounded,
by Kunita [13, Theorem 2.3], the solution map ξ0,t(·, y, w) : Rn → Rn is a.s., for
each y ∈ C([0, T ];Rd) (which specifies the control function at a fixed time t), a

C∞-diffeomorphism in x for any t. Define φ0,t
4
= φ0,t(x, y, w) by

φ0,t
4
= exp

{
d∑
k=1

∫ t

0

hk(r, ξ0,r(x)) ◦ dykr +

∫ t

0

h̃0(r, ξ0,r)(x)dr

}
.(2.16)

Then (see Kunita [8, 7]) the solution of (2.12) can be represented by

ρt(f̃)(x, y) = EPw [f̃(ξ0,t(x, y, ·))φ0,t(x, y, ·)].(2.17)

Also, since u(t, .) is measurable with respect to t and {ys; 0 ≤ s ≤ t}, the results of
Kunita [14] extend easily and show that ρt(f̃) of (2.12) satisfies EP |ρt(f̃)(x)|2 < ∞
for all t and x.

Remark 2.2. Notice that if the initial state x = x0 is random, then (2.19) is given
by

ρt(f̃)(w̃) =

∫
Rn

EPw [f̃(ξ0,t(x, w̃, .))φ0,t(x, w̃, .)]p0(dx);

thus an additional integration with respect to p0 is required, which is also consistent
with the derivation of (2.6), where x0 = x is assumed to be deterministic; see Kunita
[8, 11].

A different representation describing the solution of (2.12), which also constitutes
our main tool in deriving the stochastic minimum principle, is given in Kunita [8] by
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treating the second term on the right side of (2.12) as the principal part and the last
term as the perturbation part. Using this approach, which also holds in the controlled
case as well, the solution to (2.12) can be expressed as ρt = νtµt, where

dµt(f̃)(x, y) =
d∑
k=1

µt(Mk(t)f̃)(x, y) ◦ dykt , lim
t↓0

µt(f̃) = f̃(x),(2.18)

∂

∂t
νt(f̃)(x, y) = νt(µtL

u(t)µ−1
t f̃)(x, y), lim

t↓0
νt(f̃) = f̃(x),(2.19)

with µtL
u(t)µ−1

t a second-order differential operator of parabolic type (see Kunita
[8], [11, Chapter 6]). In fact, if we let n0,t(x, y) correspond to the solution of

dn0,t =
d∑
k=1

Yk(t, n0,t) ◦ dykt , n0,0 = x,(2.20)

which is also the solution to (2.15) when X̃j(t) = 0, 0 ≤ j ≤ m, then the solution to
(2.18) can be represented as

µt(f̃)(x, y) = f̃(n0,t(x, y)) exp

{
d∑
k=1

∫ t

0

hk(r, n0,r(x, y)) ◦ dykr
}
.(2.21)

By the assumptions on Y1, . . . , Yd the solution map n0,t(., y) : Rn → Rd is, a.s., one-
to-one, onto, and C∞ in x for each t. The representation (2.21) can be shown easily
by an application of Ito’s formula. Similarly, a representation for νt(f̃)(x, y) is given
in Kunita [7, 13].

Remark 2.3. For the uncontrolled case, and assuming L(t) is hypoelliptic, it
was shown by Kunita [7] that the solution measure ρt(x, y, dz) of (2.6) has C∞-
density function for almost all y ∈ C([0, T ];Rd) by first showing that the solution
measure νt(x, y, dz) of (2.19) has a C∞-density function (because ρt = νtµt and
µt(., y) ∈ C∞b (Rn) is a one-to-one and onto map). Also, since for each t, u(t, .)
depends on {ys; 0 ≤ s ≤ t}, the result of Kunita [7] can be applied to our problem by
assuming that the Lie algebra generated by the vector fields of the diffusion coefficient
of (1.3) is, a.s., of dimension n for all t ∈ [0, T ], x ∈ Rd.

Remark 2.4. Notice that the measure-valued process µt satisfying (2.18) does not
explicitly depend on the control u, as is easily seen in (2.14); only the measure-valued
process νt satisfying (2.19) depends on u. This is the separation argument we shall
concentrate on in our analysis.

2.4. Variational methods applied to the information state. Introduce
the Hilbert space H(Rn) = L2(Rn) with scalar product denoted by (·, ·). Define the
Sobolev space

H1(Rn)
4
=

{
∧
u∈ L2(Rn),

∂
∧
u

∂xi
∈ L2(Rn), 1 ≤ i ≤ n

}
.

Let H−1(Rn) be the dual of H1(Rn). The norm in H(Rn) is denoted by | · | while
the norm in H1(Rn) is denoted by || · ||, that is,

|| ∧u ||2 = | ∧u |2 +
n∑
i=1

∣∣∣∣ ∂∂xi ∧u
∣∣∣∣2 .
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The norm in H−1(Rn) is denoted by ||·||∗. The pairing between H1(Rn) and H−1(Rn)
is denoted by 〈·, ·〉. Define

L2
y((0, T );H1)

4
=

{∧u∈ L2(Ωy,Fyt ,Py;L2((0, T );H1)); a.e. on [0,T],
∧
u (t) ∈ L2(Ωy,Fyt ,Py;H1)}.

Integrating (2.19) by parts, we get the equation

∂

∂t
νt = Luwy (t)∗νt, ν0 = δx(2.22)

written in strong form, where Luwy (t)∗ is the formal adjoint of Luwy (t) = µtL
u(t)µ−1

t ,
which can be represented by

Luwy (t) =
1

2

n∑
i,j=1

αijwy (t, x)
∂2

∂xi∂xj
+

n∑
i

biwy (t, x, u)
∂

∂xi
+ dwy (t, x, u).

Lemma 2.3. Suppose u ∈ Uad, (A1)–(A7) hold, and (A8) wt ∈ Rn,∃β3 > 0 such
that

σ(t, x)σT (t, x) ≥ β3In > 0 ∀t ≥ 0,∀x ∈ Rn.
Then

−Au(·), Au(·)∗ ∈ L∞((0, T );L(H1(Rn);H−1(Rn))),

M(·),M(·)∗ ∈ L∞((0, T );L(H1(Rn);Hd(Rn))),

the coercivity condition associated with the strong form of (2.6) holds, that is, for some
λ1, λ2 > 0,

−2〈Au(t),
∧
u,
∧
u〉+ λ1| ∧u |2 ≥ λ2|| ∧u ||2 +

d∑
k=1

|Mk(t)∗
∧
u |2

and for each y(·) ∈ C([0, T ];Rd), there exists a unique solution of (2.22) in the space

ν(·) ∈ L2
y((0, T );H1(Rn)),

∂

∂t
ν(·) ∈ L2

y((0, T );H−1(Rn)).

Proof. The coercivity condition is a direct consequence of (A1)–(A4) and (A8)
(see Bensoussan [2]). For each u ∈ Uad, define

Auwy (t)f
4
= µt(A

u(t)µ−1
t )f = µt

([
Lu(t) +

1

2

d∑
k=1

Mk(t)2

]
µ−1
t

)
f.

The operators Luwy (t) and Auwy are for almost all wy ∈ Ωy second-order linear parabolic
partial differential operators. By assumptions (A1)–(A4) and (A8), the random
functions αi,jwy , b

i
wy , dwy are a.s. smooth and bounded. Therefore, for any wy ∈

C([0, T ];Rd), (2.22) can be viewed as a deterministic partial differential equation.
Using the standard theory of these equations, there is one and only one solution of
(2.22) as specified.
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Next, consider the strong form of (2.6):

ρt = p0 +

∫ t

0

Au(s)ρsds+
d∑
i=1

∫ t

0

Mk(s)ρsdy
i
s.(2.23)

The previous lemma enables us to obtain the following results.
Theorem 2.4. Suppose u ∈ Uad and (A1)–(A8) hold. Then there exists one and

only one solution to (2.23) in the space

ρ(·) ∈ L2
y((0, T );H1(Rn)) ∩ L2(Ωy,Fyt ,Py;C((0, T );H)).

Proof. This follows from Lemma 2.3 and the representation ρt = νtµt. Alterna-
tively, we can employ the energy equality

|ρt|2 = |p0|2 + 2

∫ t

0

〈Au(r)ρr, ρr〉dr+
d∑
k=1

∫ t

0

|Mk(r)ρr|2dr+ 2
d∑
k=1

∫ t

0

(Mk(r)ρr, ρr)dy
k
r

and the coercivity condition of Lemma 2.3, and then proceed as in Bensoussan
[2].

3. Decomposed control problem. With the aid of (2.4), the expected cost
(1.2) can be written as

J(u) = E

{
ΛT

[
κ(xT ) +

∫ T

0

π(r, xr, ur)dr

]}
.

In addition, by (2.5), the above cost is equivalent to

J(u) = EP

{
〈κ, ρT 〉+

∫ T

0

〈π(r, ., ur), ρr〉dr
}
.(3.1)

Since ρt = νtµt, we also have the representation

J(u) = EP

{
νTµT (κ) +

∫ T

0

νrµr(π
u(r))dr

}
,(3.2)

where πu(t)
4
= π(t, x, u).

Suppose u∗ ∈ Uad is an optimal control. For any other control u ∈ Uad and for
ε ∈ [0, 1], we know that

uεt = u∗t + ε(ut − u∗t ) ∈ U

and

J(uε) ≥ J(u∗).

In addition, if the Gâteaux derivative of J(u) as a functional on the Hilbert space
L2
y((0, T );Rk) is well defined, then by differentiating with respect to ε we obtain

d

dε
J(uε)|ε=0 ≥ 0 ∀u ∈ Uad.
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In the following, we assume for convenience that u ∈ Uad is such that

uδ = u∗ + δu ∈ Uad, δ ∈ [0, α].

As a result of the decomposition (2.18) and (2.19), any control variation uδ ∈ Uad
would affect only the measure-valued process νt. Indeed, it is clear that the right side
of (2.18) does not contain the control variable because Mk(t), 1 ≤ k ≤ d, as defined
by (2.14), is independent of u. Thus the solution measure µt of (2.18) is not affected
by control variations (see Kunita [13, 15] and Bensoussan [2]).

Let us now introduce the equation

(3.3)

ρBt (f̃) =

∫ t

0

ρr

(
∂

∂u
Lu
∗
(r)urf̃

)
dr +

∫ t

0

ρBr (Lu
∗
(r)f̃)dr +

d∑
k=1

∫ t

0

ρBr (Mk(r)f̃) ◦ dykr ,

which is obtained by formally considering weak control variations of (2.12). Next, we
shall show that the solution ρBt of (3.3) can also be represented by the composition
ρBt = ztµt, where z is given by (3.4).

Lemma 3.1. Let µ−1
t (·)(x, y) be the inverse operator of µt(·)(x, y). Then ρBt is

the solution to (3.3) if and only if

zt(f̃) = ρBt (µ−1
t (f̃))

is the solution of

∂

∂t
zt(f̃) = zt(µtL

u∗(t)µ−1
t f̃) + νt

(
µt

∂

∂u
Lu
∗
(t)utµ

−1
t f̃

)
, lim

t↓0
zt = 0.(3.4)

Proof. Suppose ρBt is the solution to (3.3). We shall show that zt(f̃) = ρBt (µ−1
t (f̃))

is a solution to (3.4). By (2.21), the inverse operator µ−1
s,t is given by

µ−1
s,t (f̃) = f̃(n−1

s,t (x)) exp

{
−

d∑
k=1

∫ t

s

hk(r, n−1
r,t (x))◦ ∧d ykr

}
,(3.5)

where n−1
s,t (which is one-to-one and onto, and C∞(Rn) a.s. for each t) is the inverse

process of ns,t which is the solution of (2.20) starting at ns,s = x. Let-
ting ñs,t, s ∈ [0, t], be the solution of the backward stochastic differential equation

dñs,t =
d∑
k=1

Yk(s, ñs,t)◦
∧
d y

k
s , ñt,t = x,

from Kunita [13, 15] we have n−1
s,t = ñs,t. Applying the Ito differential rule to

f̃(ñs,t(x))φ−1
s,t (x), which is the right side of (3.5), it follows that

f̃(ñs,t(x))φ−1
s,t (x) = f̃(x)−

d∑
k=1

∫ t

s

Yk(r)f̃(ñr,t(x))φ−1
r,t (x)◦ ∧dykr

−
d∑
k=1

∫ t

s

hk(r)f̃(ñr,t(x))φ−1
r,t (x)◦ ∧dykr .



1686 CHARALAMBOS D. CHARALAMBOUS AND JOSEPH L. HIBEY

Interchanging the forward and backward variables of integration (see Kunita [8, Part
II]) and setting s = 0, ñt = ñ0,t we arrive at

µ−1
t (f̃) = f̃(x)−

d∑
k=1

∫ t

0

Mk(r)µ−1
r (f̃) ◦ dykr .(3.6)

Applying the result of Kunita [11, Lemma 6.2.7, Theorem 6.2.8, pp. 312–313] to
z̃t(f̃) = ρBt (µ−1

t (f̃)), we have

dz̃t(f̃) = d[ρBt (µ−1
t (f̃))]

= ρt

(
∂

∂u
Lu
∗
(t)utµ

−1
t f̃

)
dt+ ρBt (Lu

∗
(t)µ−1

t f̃)dt

+

d∑
k=1

ρBt (Mk(t)µ−1
t f̃) ◦ dykt −

d∑
k=1

ρBt (Mk(t)µ−1
t f̃) ◦ dykt

= νtµt

(
∂

∂u
Lu
∗
(t)utµ

−1
t f̃

)
dt+ z̃t(µtL

u∗(t)µ−1
t f̃)dt,

where the second equality follows by substituting νtµt for ρt and using the fact that
µt is a one-to-one and onto map. The sufficiency can be shown similarly by letting
zt(f̃) be the solution of (3.4) and applying Ito’s extended formula to the composition
ρ̃Bt = ztµt(f̃), where µt(f̃) is the solution to (2.18).

Write (3.4) in the strong form (by integrating by parts):

∂

∂t
zt = Lu

∗
wy (t)∗zt +

∂

∂u
Lu
∗
wy (t)∗νtut, lim

t↓0
zt = 0.(3.7)

From (2.10), (2.11) we obtain

∂

∂u
Lu(t)∗f̃ = −

n∑
i=1

∂

∂xi

(
∂

∂u
f i(t, x, u)f̃

)
.

Since ∂
∂uf

i(t, x, u) is bounded and continuous in u, then for f̃ ∈ H(Rn) we have

∂

∂u
Lu(t)∗f̃ ∈ L(Rk;L(H(Rn);H−1(Rn))).

In addition, since U is compact, we also have

∂

∂u
Lu(t)∗ρtut ∈ Ly((0, T );H−1(Rn)).

Recall that Luwy (t) can be represented by

Luwy (t) =
1

2

n∑
i,j=1

αi,jwy (t, x)
∂2

∂xi∂xj
+

n∑
i=1

biwy (t, x, u)
∂

∂xi
+ dwy (t, x, u),

where the coefficients are a.s. smooth and bounded. Consequently,

∂

∂u
Luwy (t)f̃ =

∂

∂u

(
n∑
i=1

biwy (t, x, u)
∂

∂xi
+ dwy (t, x, u)

)
f̃ ,
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and by Lemma 2.3 we deduce that for any wy,

∂

∂u
Lu
∗
wy (t)∗νtut ∈ L2((0, T );H−1(Rn)).

Thus, by Lemma 2.3, we conclude that for each wy there exists one and only one
solution to (3.7) in the space

z(·) ∈ L2
y((0, T );H1(Rn)),

∂

∂t
z(·) ∈ L2

y((0, T );H−1(Rn)).

In view of Lemma 3.1 we also conclude existence and uniqueness of solutions ρBt
corresponding to (3.3).

Lemma 3.2. Suppose u∗, u are admissible. Then there exists one and only one
solution of (3.3) (in the strong sense) in the space

ρB ∈ L2
y((0, T );H1(Rn)) ∩ L2(Ωy,Fyt ,Py;C((0, T );H(Rn))).

Proof. The proof follows from the above construction and Lemma 3.1, or by
applying the variational methods to (3.3) using the compactness of U .

Lemma 3.3. Suppose νδt denotes the solution to (2.19) when control uδ is used
and νt denotes its solution when control u∗ is used. Then

sup
0≤t≤T

EPy
∣∣∣∣νδt − νtδ

− zt
∣∣∣∣2 → 0 as δ → 0.

Proof. Set ν̃δt =
νδt−νt
δ − zt, where νδt , νt, zt are solutions of the corresponding

equations expressed in strong form. Clearly, the proof is complete if we can show that

sup
0≤t≤T

EPy |ν̃δt |2 → 0 as δ → 0,

and thus it is sufficient to show that

sup
0≤t≤T

EPy |ν̃δt µt|2 → 0 as δ → 0.

From the above definition of ν̃δt we also have

ν̃δt (f̃) =
νδt (f̃)− νt(f̃)

δ
− zt(f̃),

and, as a direct consequence, we obtain

ν̃δt (f̃) =

∫ t

0

ν̃δr (µrL
u∗+δu(r)µ−1

r f̃)dr +

∫ t

0

zr(µr[L
u∗+δu(r)− Lu∗(r)]µ−1

r f̃)dr

+ δ

∫ t

0

νr

(
µr

[
Lu
∗+δu(r)− Lu∗(r)− δ ∂

∂u
Lu
∗
(r)ur

]
µ−1
r f̃

)
dr.

Integration by parts yields

ν̃δt (f̃) =

∫ t

0

ν̃δr (µrL
u∗+δu(r)µ−1

r f̃)dr

+

∫ t

0

∫ 1

0

dλνr

(
µr

[
∂

∂u
Lu
∗+λδu(r)− ∂

∂u
Lu
∗
(r)

]
µ−1
t f̃

)
urdr

+ δ

∫ t

0

∫ 1

0

dλzr

(
µr

∂

∂u
Lu
∗+λδu(r)µ−1

r f̃

)
urdr.
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Denote by ρδt (f̃) the solution to (2.12) corresponding to control uδ ∈ Uad. From
section 2.3 and Lemma 3.1, we now have

ρδt = νδt µt, ρ̃
δ
t = ν̃δt µt, ν̃

δ
t µt =

νδt µt − νtµt
δ

− ztµt.

Thus

ρ̃δt (f̃) =

∫
Rn

f̃(z)ρ̃δt (x, z)dz =

∫
Rn

ν̃δt (x, z)f̃(n0,t(z))φ0,t(z)dz,

where φ0,t is the exponential term in (2.21). It is now a matter of simple algebra to
show that

dρ̃δt = Lu
∗+δu(t)∗ρ̃δtdt+

∫ 1

0

dλ

[
∂

∂u
Lu
∗+λδu(t)∗ − ∂

∂u
Lu
∗
(t)∗

]
ρtutdt

+ δ

∫ 1

0

dλ
∂

∂u
Lu
∗+λδu(t)∗ρBt utdt+

d∑
k=1

Mk(t)∗ρ̃δt ◦ dykt .

Rewriting the Stratonovich stochastic integral in terms of the Ito stochastic integral
and using the equality

∂

∂u
Lu
∗+λδu(t) =

∂

∂u

(
Au
∗+λδu(t)− 1

2
Mk(t)2

)
=

∂

∂u
Au
∗+λδu(t),

we now obtain

dρ̃δt = Au
∗+δu(t)∗ρ̃δtdt+

∫ 1

0

dλ

[
∂

∂u
Au
∗+λδu(t)∗ − ∂

∂u
Au
∗
(t)∗

]
ρtutdt

+ δ

∫ 1

0

dλ
∂

∂u
Au
∗+λδu(t)∗ρBt utdt+

d∑
k=1

Mk(t)∗ρ̃δtdy
k
t .

Applying the Ito differential rule to |ρ̃δt |2 we deduce the energy equation

|ρ̃δt |2 = 2

∫ t

0

〈Au∗+δu(r)ρ̃δr, ρ̃
δ
r〉dr

+ 2

∫ t

0

〈
ρ̃δr,

∫ 1

0

dλ

[
∂

∂u
Au
∗+λδu(r)∗ − ∂

∂u
Au
∗
(r)∗

]
ρr

〉
urdr

+ 2δ

∫ t

0

〈
ρ̃δr,

∫ 1

0

dλ
∂

∂u
Au
∗+λδu(r)∗ρBr

〉
urdr

+
d∑
k=1

∫ t

0

|Mk(r)∗ρ̃δr|2dr +

d∑
k=1

∫ t

0

(ρ̃δr,Mk(r)∗ρ̃δr)dy
k
r .

Using the coercivity condition (assumption (A8)) in the above equation and proceed-
ing as in Bensoussan [2, Lemma 8.2.1], we deduce the estimate

sup
0≤t≤T

EPy |ρ̃δt |2 → 0 as δ → 0.

Finally, since ρ̃δt = ν̃δt µt, we have the desired results.
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The next step is to establish the differentiability of J(u) as a function on the
Hilbert space L2

y([0, T ];Rk).
Lemma 3.4. The cost function J(u) is Gâteaux differentiable and

Ju
δ 4

=
d

dδ
J(u∗ + δu)|δ=0(3.8)

= EPy

{
zTµT (κ(x)) +

∫ T

0

[
zrµr(π

u∗(r)) + νrµr

(
∂

∂u
πu
∗
(r)ur

)]
dr

}
.

Proof. Suppose we set
∧
J to be equal to the right side of (3.8), and νδt = δν̃δt +

δzt + νt; then

1

δ
{J(u∗ + δu)− J(u∗)} = EPy

∫ T

0

{
ν̃δrµr

(
πu
∗+δu(r)− πu∗(r)− δ ∂

∂u
πu
∗
(r)u(r)

)}
dr

+ EPy
∫ T

0

{zrµr(πu∗+δu(r)− πu∗(r))}dr

+ EPy
∫ T

0

ν̃δrµr(π
u∗+δu(r))dr.

Letting δ tend to zero, we notice that the first and second terms of the right side
of the previous expression tend to zero due to assumption (A5). The last term also
tends to zero by Lemma 3.3.

4. Necessary conditions. The perturbed process zt satisfying (3.4) and the
variational cost (3.8) can be viewed as the analogue of the deterministic variational
problem given by Fleming and Rishel [16, Theorem 10.2, p. 38 and Theorem
11.1, p. 41] as follows. Suppose we introduce the new equation

∂

∂t
Pt(x) = −(µtL

u∗(t)µ−1
t )Pt(x)− µt(πu∗(t))(x), lim

t↑T
Pt(x) = µT (κ)(x),(4.1)

where µt(π
u∗(t)) corresponds to the integral cost and µT (κ) corresponds to the ter-

minal cost.
Lemma 4.1. Let µ−1

t (·)(x, y) be the inverse operator of µt(·)(x, y). Then q̃t =
µ−1
t Pt is a solution of

dq̃t = −Lu∗(t)q̃tdt− πu∗(t)dt−
d∑
k=1

Mk(t)q̃t ◦ dykt , lim
t↑T

q̃t = κ.

Moreover, there exists one and only one solution

q̃t(·) ∈ L2
y((0, T );H1(Rn)) ∩ L2(Ω,F0,t,P;C((0, T );H))

such that the preceding equation holds.
Proof. The first part is obtained as in Lemma 3.1, using (3.6). The second part

follows from the variational methods of section 2.4.
If πu

∗
(t) is set to zero, the evaluation of zT (PT ), using (4.1) and the homogeneous

part of (3.4) (e.g., with the second term on the right side of (3.4) set to zero), yields
zTµT (κ) (see Kunita [11, Lemma 6.2.7, p. 312]). Comparing (3.4) and (4.1), we have



1690 CHARALAMBOS D. CHARALAMBOUS AND JOSEPH L. HIBEY

the following result by an application of Kunita [11, Lemma 6.2.7, Theorem 6.2.8,
pp. 312–313].

Lemma 4.2. The variational cost of Lemma 3.4 is given by

Ju
δ

= EPy


k∑
j=1

∫ T

0

ujt

∫
Rn

[
∂

∂uj
Lu
∗
(t)P̃t(x) +

∂

∂uj
πu
∗
(t)

]
ρt(x)dxdt

 ,(4.2)

where P̃t(x)
4
= µ−1

t Pt(x).
Proof. Applying the Ito formula given by Kunita [11, Lemma 6.2.7, Theorem 6.2.8,

pp. 312–313] to zt(Pt) gives

zT (PT ) = z0(P0) +

∫ T

0

zt(µtL
u∗(t)µ−1

t Pt)dt+

∫ T

0

νt

(
µt

∂

∂u
Lu
∗
(t)utµ

−1
t Pt

)
dt

−
∫ T

0

zt(µtL
u∗(t)µ−1

t Pt)dt−
∫ T

0

zt(µtπ
u∗(t))dt(4.3)

=

∫ T

0

[
νtµt

(
∂

∂u
Lu
∗
(t)utµ

−1
t Pt

)
− zt(µtπu∗(t))

]
dt.

Substituting (4.3) into the variational cost of Lemma 3.4 (using zT (PT ) = zT (µTκ(x)))
gives

Ju
δ

= EPy

{∫ T

0

[
νt

(
µt

∂

∂u
Lu
∗
(t)utµ

−1
t Pt

)
+ νtµt

(
∂

∂u
πu
∗
(t)ut

)]
dt

}
.

Replacing νtµt by ρt, and setting P̃t = µ−1
t Pt, we recover (4.2) (since for each t ∈

[0, T ], ut is Fyt -measurable).
We now have the following necessary conditions of optimality.
Theorem 4.3. Suppose u∗t is optimal for the control problem with cost function

(3.1) and state ρt satisfying (2.12). Then there exists a process
∧
Pt (x) such that the

condition

k∑
j=1

(ujt − u∗jt )

{∫
Rn

[
∂

∂uj
π(t, x, u∗t ) +

∂

∂uj
Lu
∗
(t)

∧
Pt (x)

]
ρt(x)dx

}
≥ 0(4.4)

holds for all u ∈ Uad a.e., on t ∈ [0, T ] a.s., where
∧
Pt (x) = µ−1

t EPw(Pt(x)). The

Hamiltonian Ht(ρt,
∧
Pt, ut) is given by

∂

∂u
Ht(ρt,

∧
Pt, ut) =

∂

∂u

∫
Rn

[π(t, x, ut) + X̃u(t)
∧
Pt (x)]ρt(x)dx.

Proof. We start by using the conditional optimality given by Striebel [17, Chap-
ter 4] which states that whenever u ∈ Uad is conditionally optimal, it is also optimal;
see Bensoussan and van Schuppen [18, Definition 2.1]. Thus, by Lemma 4.2,

Ju
δ

= EPy

{∫ T

0

∫
Rn

[
∂

∂u
Lu
∗
(t)µ−1

t Pt(x) +
∂

∂u
πu
∗
(t)

]
ρt(x)dxutdt

}
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and, by reconditioning on Fyt ,

Ju
δ

= EPy

{
EPw

∫ T

0

∫
Rn

[
∂

∂u
Lu
∗
(t)µ−1

t Pt(x) +
∂

∂u
πu
∗
(t, x)

]
ρt(x)dxutdt

}
,

where EPw is nothing more than the conditional expectation E(·|Fyt ). However, since
ρt and µ−1

t are Fyt -adapted, we apply the result in Kunita [7, Lemma 4] twice and
obtain

Ju
δ

= EPy

{∫ T

0

∫
Rn

[
∂

∂u
Lu
∗
(t)µ−1

t EPw(Pt(x)) +
∂

∂u
πu
∗
(t)

]
ρt(x)dxutdt

}
.

Since u∗ is optimal and admissible for any other control u ∈ Uad and ε ∈ [0, 1], we
have u∗t + ε(ut − u∗t ) ∈ U (i.e., admissible) and, therefore,

J(u∗ + ε(u− u∗)) ≥ J(u∗).

Thus, by the Gâteaux differentiability of J(u) (as a function on the Hilbert space
L2
y([0, T ];Rk)),

d

dε
J(u∗ + ε(u− u∗))|ε=0

= EPy


d∑
j=1

∫ T

0

(ujt − u∗jt )

∫
Rn

[
∂

∂uj
Lu
∗
(t)µ−1

t EPw(Pt(x)) +
∂

∂uj
πu
∗
(t)

]
ρt(x)dxdt

 .

Following the derivations presented in Fleming and Rishel [16, Theorem 11.2, p. 41],
Bensoussan [10, Chapter VI, Theorem 1.2, pp. 232–234], or Bensoussan [1, Theorem
2.1], we deduce (4.4).

Remark 4.1. Notice that the necessary condition of optimality established in
Theorem 4.3 has as a special case the one given by Bensoussan [1, Theorem 2.1,
equation (2.22)] or [2, Theorem 8.2.1, p. 279].

The next step is to determine a stochastic partial differential equation satisfied

by the costate process
∧
Pt (x) identified in Theorem 4.3. To do so, we appeal to the

martingale representation results of Bensoussan [1, Lemma 2.6]. Therefore, taking
the expectation of (4.1) with respect to measure Pw, we obtain

EPw
∂

∂t
Pt(x) = EPw{−(µtL

u∗(t)µ−1
t )Pt(x)− µt(πu∗(t))}.

But EPw [µt(π
u∗(t))] is just µt(π

u∗(t)), which follows from the representation

µtπ
u∗(t) = π(t, n0,t(x), u∗t ) exp

{
d∑
k=1

∫ t

0

hk(r, n0,r(x)) ◦ dykr
}
,

because nt(x) is the solution to (2.20) and is Fy0,t measurable. Hence, one deduces

EPw
∂

∂t
Pt(x) = −(µtL

u∗(t)µ−1
t )EPwPt(x)− µt(πu∗(t)).(4.5)
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Define P̄t(x) = EPw(Pt(x)); from the martingale representation theorem given in
Bensoussan [1, Lemma 2.6],

dP̄t(x) = [−(µtL
u∗(t)µ−1

t )P̄t(x)− µt(πu∗(t))]dt−
d∑
k=1

rkt dy
k
t ,(4.6)

where {rks , 0 ≤ s ≤ t}, 1 ≤ k ≤ d, is a square integrable Fyt -adapted process. However,

since µt is a one-to-one and onto map, we can define a new process r̃kt
4
= µ−1

t rkt , 1 ≤
k ≤ d, so that the martingale term in (4.6) can be written as

d∑
k=1

rkt dy
k
t =

d∑
k=1

µt(r̃
k
t )dykt .

Suppose r̃kt is in the domain of Mk(t), 1 ≤ k ≤ d, and that r̃kt is absolutely continuous
with respect to t, 1 ≤ k ≤ d. Then we can represent the Ito stochastic integral in
terms of the Stratonovich stochastic integral

d∑
k=1

µt(r̃
k
t )dykt =

d∑
k=1

µt(r̃
k
t ) ◦ dykt −

1

2

d∑
k=1

µt(Mk(t)r̃kt )dt.

Therefore, (4.6) becomes

dP̄t(x) = −(µtL
u∗(t)µ−1

t )P̄t(x)dt−µt(πu∗(t))dt+1

2

d∑
k=1

µt(Mk(t)r̃kt )dt−
d∑
k=1

µt(r̃
k
t )◦dykt .

(4.7)
Lemma 4.4. Suppose r̃kt is in the domain of Mk(t), 1 ≤ k ≤ d, and that r̃kt is

absolutely continuous with respect to t, 1 ≤ k ≤ d. (
∧
Pt (x), {r̃kt }dk=1) is a solution to

d
∧
Pt (x) = −Lu∗(t)

∧
Pt (x)dt− πu∗(t)dt−

d∑
k=1

r̃kt ◦ dykt +
1

2

d∑
k=1

Mk(t)r̃kt dt

−
d∑
k=1

Mk(t)
∧
Pt (x) ◦ dyt,(4.8)

lim
t↑T

∧
Pt (x) = κ(x),(4.9)

if and only if P̄ ′t (x) = µt
∧
Pt (x) is a solution of (4.7).

Proof. Here we shall follow the proof given by Kunita [11, Lemma 6.2.3, p. 307].

First set P̄ ′t = µt
∧
Pt, where

∧
Pt is the solution to (4.8). From (2.18),

P̄ ′t (x) =
∧
Pt (n0,t(x))φ0,t(x), φ0,t(x) = exp

{
d∑
k=1

∫ t

0

hk(r, n0,r(x)) ◦ dykr
}
,

where nt is the solution to (2.20). By the Stratonovich version of the extended Ito
formula

d[
∧
Pt (n0,t(x))φ0,t(x)] =

{
− Lu∗(t)

∧
Pt (n0,t(x))dt− πu∗(t, n0,t(x))dt
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−
d∑
k=1

r̃kt (n0,t(x)) ◦ dykt

+
1

2

d∑
k=1

Mk(t)r̃kt (n0,t(x))dt−
d∑
k=1

Mk(t)
∧
Pt (n0,t(x)) ◦ dykt

+
n∑
i=1

∂

∂xi

∧
Pt (n0,t(x)) ◦ dni0,t(x)

+
∧
Pt (n0,t(x))

d∑
k=1

hk(t, n0,t(x)) ◦ dykt
}
φ0,t(x).

Substituting

n∑
i=1

∂

∂xi

∧
Pt (n0,t(x)) ◦ dni0,t(x) =

d∑
k=1

n∑
i=1

Y ik (t, n0,t(x))
∂

∂xi

∧
Pt (n0,t(x)) ◦ dykt

into the previous equation, the fifth term cancels the sixth and seventh terms. As a
consequence,

d[
∧
Pt (n0,t(x))φ0,t(x)] = dP̄ ′t (x)

=

{
− Lu∗(t)

∧
Pt (n0,t(x))dt− πu∗(t, n0,t(x))dt

−
d∑
k=1

r̃kt (n0,t(x)) ◦ dykt +
1

2

d∑
k=1

Mk(t)r̃kt (n0,t(x))dt

}
φ0,t(x)

= −(µtL
u∗(t)µ−1

t )P̄ ′t (x)dt− µ(πu
∗
(t))dt

−
d∑
k=1

µt(r̃
k
t ) ◦ dykt +

1

2

d∑
k=1

µt(Mk(t)r̃kt )dt.

Therefore, P̄ ′t (x) satisfies (4.7). Conversely, suppose P̄ ′t (x) is a solution to (4.7). We
can show similarly that

d[µ−1
t (P̄ ′t )] = −

d∑
k=1

Mk(t)µ−1
t (P̄ ′t ) ◦ dykt − Lu

∗
(t)µ−1

t (P̄ ′t )dt− πu
∗
(t)dt

+
1

2

d∑
k=1

Mk(t)r̃kt dt−
d∑
k=1

r̃kt ◦ dykt ,

and so µ−1
t P̄ ′t (x) satisfies (4.8).

We shall next derive the equation satisfied by the costate process
∧
Pt (x) when the

stochastic integral is expressed in terms of an Ito stochastic integral, starting with
(4.6), avoiding the transformation of Ito integrals to Stratonovich integrals, and using
the assumptions of Lemma 4.4.

Theorem 4.5. The pair (
∧
Pt (x), {r̃kt }dk=1) describes the costate process which is

a solution of the Ito equation

d
∧
Pt (x) = −Au∗(t)

∧
Pt (x)dt+

d∑
k=1

Mk(t)2
∧
Pt (x)dt− πu∗(t)dt+

d∑
k=1

Mk(t)r̃kt dt
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−
d∑
k=1

Mk(t)
∧
Pt (x)dykt −

d∑
k=1

r̃kt dy
k
t , lim

t↑T

∧
Pt (x) = κ(x).(4.10)

Furthermore, there exists one and only one pair

∧
P (·) ∈ L2

y((0, T );H1(Rn)) ∩ L2(Ω,F0,t,Py;C((0, T );H)),

r̃t ∈ (L2
y((0, T );H−1(Rn)))d,

such that (4.10) holds.

Proof. Using the definition of the adjoint process as given in Theorem 4.3, one way
to show the validity of (4.10) is to apply the extended Ito formula to the composition

µt
∧
Pt (x), where

∧
Pt (x) satisfies (4.10), to show that (4.6) is recovered. Since the

correlated case requires substantial algebra, let us first consider the uncorrelated case.
Thus

µt
∧
Pt (x) = exp

{
d∑
k=1

∫ t

0

hk(s)dyks

}
∧
Pt (x),

where
∧
Pt is the solution to (4.10) when Mk is replaced by hk. But the differential rule

yields

d(µt
∧
Pt)(x) =

{[
−Lu∗(t)

∧
Pt (x) +

1

2

d∑
k=1

hk(t)2
∧
Pt (x)− πu∗(t) +

d∑
k=1

hk(t)r̃kt

]
dt

−
d∑
k=1

hk(t)
∧
Pt dy

k
t −

d∑
k=1

r̃kt dy
k
t

+

[
d∑
k=1

hk(t)dykt
∧
Pt (x) +

1

2

d∑
k=1

hk(t)2
∧
Pt (x)

]

+

[
−

d∑
k=1

hk(t)2
∧
Pt (x)−

d∑
k=1

r̃kt hk(t)

]}
µt

and, after cancellations, we obtain

d(µt
∧
Pt)(x) = −µt(Lu∗(t)

∧
Pt (x)− πu∗(t))dt−

d∑
k=1

µtr̃
k
t dy

k
t .

Replacing
∧
Pt by µ−1

t Pt and using r̃kt = µ−1
t rkt we recover (4.6).

For the correlated case, notice also that µt satisfies the stochastic partial differ-
ential equation

dµt(f̃) =
d∑
k=1

µt(Mk(t)f̃)dykt +
1

2

d∑
k=1

µt(Mk(t)2f̃)dt, lim
t↓0

µt(f̃) = f̃(x),
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which is the Ito form of (2.18). The solution of the above equation can be repre-
sented as

µt(f̃) = f̃(n0,t(x)) exp

{
d∑
k=1

∫ t

0

hk(r, n0,r(x))dykr +
1

2

d∑
k=1

∫ t

0

Yk(r)hk(r, n0,r(x))dr

}
= f̃(n0,t(x))φ0,t,

where n0,t corresponds to the solution of

dnt =
d∑
k=1

Yk(t)dykt +
d∑
k=1

n∑
i=1

Y ik (t)
∂

∂xi
Yk(t)dt, n0 = x.

Therefore,

d[µt
∧
Pt (x)] = d[

∧
Pt (n0,t(x))φ0,t]

= d
∧
Pt (n0,t(x))φ0,t+

∧
Pt (n0,t(x))dφ0,t + d〈 ∧P (n(x)), φ〉t

=

{
−Au∗(t)

∧
Pt (n0,t(x))dt+

d∑
k=1

Mk(t)2
∧
Pt (n0,t(x))dt− πu∗(t, n0,t(x))dt

+

d∑
k=1

Mk(t)r̃kt (n0,t(x))dt−
d∑
k=1

Mk(t)
∧
Pt (n0,t(x))dykt

−
d∑
k=1

r̃kt (n0,t(x))dykt +
n∑
i=1

∂

∂xi

∧
Pt (n0,t(x))dni0,t(x)

+
1

2

n∑
i,j=1

∂2

∂xi∂xj

∧
Pt (n0,t(x))d〈ni(x), nj(x)〉t

+
n∑
j=1

d

〈
∂

∂xj
∧
P (n(x)), nj(x)

〉φ0,t

+

{
d∑
k=1

hk(t)
∧
Pt (n0,t(x))dykt +

1

2

d∑
k=1

hk(t)2
∧
Pt (n0,t(x))dt

+
1

2

d∑
k=1

Yk(t)hk(t)
∧
Pt (n0,t(x))dt

}
φ0,t + d〈 ∧P (n(x)), φ〉t.

Furthermore,

Au
∗
(t) = Lu

∗
(t) +

1

2

d∑
k=1

Mk(t)2, Mk(t)2 = Yk(t)2 +hk(t)2 +Yk(t)hk(t) + 2hk(t)Yk(t),

n∑
i=1

∂

∂xi

∧
Pt (n0,t(x))dni0,t(x)

=

d∑
k=1

Yk(t)
∧
Pt (n0,t(x))dykt +

1

2

n∑
i,j=1

Y ik (t)
∂

∂xi

∧
Pt (n0,t(x))

∂

∂xj
Y jk (t)dt

 ,
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1

2

n∑
i,j=1

∂2

∂xi∂xj

∧
Pt (n0,t(x))d〈ni(x), nj(x)〉t

=
1

2

d∑
k=1

n∑
i,j=1

Y ik (t)Y jk (t)
∂2

∂xi∂xj

∧
Pt (n0,t(x))dt,

n∑
j=1

d

〈
∂

∂xj
∧
P (n(x)), nj(x)

〉
t

= −
d∑
k=1

Yk(t)r̃kt (n0,t(x))dt

−
d∑
k=1

(Yk(t)2 + hk(t)Yk(t) + Yk(t)hk(t))
∧
Pt (n0,t(x))dt,

φ−1
0,td〈

∧
P (n(x)), φ〉t = −

d∑
k=1

hk(t)Mk(t)
∧
Pt (n0,t(x))dt

−
d∑
k=1

hk(t)r̃kt (n0,t(x))dt+
d∑
k=1

hk(t)Yk(t)
∧
Pt (n0,t(x))dt,

and, after some cancellations, we obtain

d[
∧
Pt (n0,t(x))φ0,t] =

{
− Lu∗(t)

∧
Pt (n0,t(x))dt− πu∗(t, n0,t(x))dt

−
d∑
k=1

r̃kt (n0,t(x))dykt

}
φ0,t

= −(µtL
u∗(t)µ−1

t )P̄t(x)dt− µtπu∗(t)dt−
d∑
k=1

µt(r̃
k
t )dykt .

Finally, by the definition of r̃kt , µtr̃
k
t = µtµ

−1
t rkt = rkt , we arrive at (4.6) as desired.

Uniqueness of the processes
∧
Pt and r̃kt , 1 ≤ k ≤ d, follows if, with the help of the inner

product 〈
∧
Pt, ρ

B
t 〉, the variational cost of Lemma 3.4 can be expressed as in (4.4); for

a proof, see Bensoussan [2, Theorem 8.2.3].
Remark 4.2. Notice that the minimum principle given in Theorem 4.3 and the

stochastic partial differential equation given in Theorem 4.5 ((4.10), costate equa-
tion) can be obtained through a more simplified approach that does not require the
conditional optimality of Striebel [17, Chapter 20] and the martingale representation
results of Bensoussan [1, Lemma 2.6]. To see this, suppose the process defined in (4.1)
is replaced by qt satisfying

dqt(x) = −(µtL
u∗(t)µ−1

t )qt(x)dt−µt(πu∗(t))dt−
d∑
k=1

µt(r̃
k
t )dykt , lim

t↑T
qt(κ(x)) = µTκ(x),

(4.11)



NECESSARY CONDITIONS OF OPTIMIZATION 1697

where, as before, r̄kt , 1 ≤ k ≤ d, is an Fyt -adapted process. Similarly, as in (4.7), we
can rewrite (4.11) in terms of the Stratonovich integral, which in differential form
becomes

dqt(x) = (µtL
u∗(t)µ−1

t )qt(x)dt− µt(πu∗(t))dt−
d∑
k=1

µt(r̄
k
t ) ◦ dykt(4.12)

+
1

2

d∑
k=1

µt(Mk(t)r̄kt )dt

and is the same as (4.7). Therefore, if we define
∧
qt (x)

4
= µ−1

t (qt)(x), then
∧
qt (x)

satisfies (4.8). It remains to show that if
∧
qt (x) rather than

∧
Pt (x) is used in (4.4),

the minimum principle of Theorem 4.3 can be established, thus implying that
∧
qt (x)

is the costate process. By the Ito formula,

zT (qT (x)) = zTµT (κ(x))

=

∫ T

0

[
νtµt

(
∂

∂u
Lu
∗
(t)utµ

−1
t qt

)
dt− ztµtπu∗(t)dt−

d∑
k=1

ztµt(r̄
k
t ) ◦ dykt

+
1

2

d∑
k=1

ztµt(Mk(t)r̄kt )dt

]
,

and by substituting the above expression into the variational cost of Lemma 3.4, we
obtain

Ju
δ

= EPy

{∫ T

0

[
νtµt

(
∂

∂u
Lu
∗
(t)utµ

−1
t qt

)
+ νtµt

(
∂

∂u
πu
∗
(t)ut

)]
dt

+
d∑
k=1

∫ T

0

[
−ztµt(r̄kt ) ◦ dykt +

1

2

d∑
k=1

ztµt(Mk(t)r̄kt )dt

]}
.

Since ρBt = ztµt, then, by (3.3), the last two components of the right side of the

previous expression correspond to an Ito integral; hence, using
∧
qt (x)

4
= µ−1

t qt(x) and
ρt = νtµt,

Ju
δ

= EPy

{∫ T

0

[
ρt

(
∂

∂u
Lu
∗
(t)ut

∧
qt

)
+ ρt

(
∂

∂u
πu
∗
(t)ut

)]
dt−

d∑
k=1

∫ T

0

ρBt (r̄kt )dykt

}
.

But the martingale term of Ju
δ

has zero expectation with respect to measure Py;
therefore,

Ju
δ

= EPy

{∫ T

0

[〈
∂

∂u
Lu
∗
(t)
∧
qt (x), ρt(x)

〉
+

〈
∂

∂u
πu
∗
(t), ρt(x)

〉]
utdt

}
.(4.13)

However, from (4.12), the optimality condition (4.4) can be established, and the
relation between r̄kt and rkt is given by r̄kt = r̃kt = µ−1

t rkt , 1 ≤ k ≤ d.
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5. Relation to previous work. Let us consider the stochastic control problem
investigated by Bensoussan [1, 2], where σ(x) ∈ Rn ⊗ Rn,Mk = hk, 1 ≤ k ≤ d; that
is, no correlation between the observation process and state process is allowed. Thus,
the stochastic equation describing the unnormalized conditional density of nonlinear
filtering becomes

dρt +A0ρtdt = Bu
∗
ρtdt+

d∑
k=1

ρthkdy
k
t ,(5.1)

where

A0f̃ =
1

2

n∑
i,j=1

∂

∂xi

(
aij(x)

∂f̃

∂xj

)
,

Bu
∗
f̃ =

n∑
i=1

∂

∂xi
(αi(x, u∗)f̃), αi(x, u∗) = −f i(x, u∗) +

1

2

n∑
j=1

∂

∂xj
aij(x).

It is easily seen that

Lu
∗,∗f̃ = Bu

∗
f̃ −A0f̃ − 1

2

d∑
k=1

h2
kf̃

and 〈 ∧
Pt (x),

∂

∂u
Lu
∗,∗ρt(x)

〉
=

〈
∧
Pt (x),−

n∑
i=1

∂

∂xi

(
∂

∂u
f i(x, u∗)ρt

)〉

=

〈
n∑
i=1

∂

∂xi

∧
Pt (x)

∂

∂u
f i(x, u∗), ρt(x)

〉
,(5.2)

which implies the following.
Theorem 5.1. If the unnormalized conditional density of nonlinear filtering

satisfies (5.1), then the minimum principle of Theorem 4.3 is given by

k∑
j=1

(ujt − u∗jt )

{∫
Rn

[
∂

∂uj
π(x, u∗t ) +

n∑
i=1

∂

∂xi

∧
Pt (x)

∂

∂uj
f i(x, u∗t )

]
ρt(x)dx

}
≥ 0,

which is exactly the minimum principle presented in Bensoussan [1, Theorem 2.1];
[2, Theorem 8.2.1, p. 279].

Proof. The proof follows from (5.1), (5.2), and the result of Theorem 4.3.
There is also a connection between the costate process of (4.10) and the costate

process given in Bensoussan [1, Theorem 2.2], which is recognized as follows. Suppose

we set r̃kt = − exp{−∑d
j=1 y

j
thj}r̂kt ; then by Lemma 4.4, we have the following.

Theorem 5.2. If the unnormalized conditional density of nonlinear filtering
satisfies (5.1), then the costate process identified in Theorem 4.3 satisfies (4.10) and
solves

d
∧
Pt (x) = A0

∧
PT (x)dt+

n∑
i=1

ai(x, u∗)
∂

∂xi

∧
Pt (x)dt− πu∗dt+

d∑
k=1

h2
k

∧
Pt (x)dt
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+ exp

−
d∑
j=1

yjthj

 r̂kt hkdt−
d∑
k=1

hk
∧
Pt (x)dykt

+
d∑
k=1

exp

−
d∑
j=1

yjthj

 r̂kt dy
k
t , lim

t↑T

∧
Pt (x) = k(x),

which is exactly the equation satisfied by the costate process established in Bensoussan
[1, Theorem 2.2].

Proof. Using (5.2) and substituting r̃kt = − exp{−∑d
j=1 y

j
thj}r̂kt , 1 ≤ k ≤ d, in

the costate equation of Lemma 4.4, the result follows.

6. Conclusion. In this paper we have presented a new approach based on
measure-valued decompositions to derive necessary conditions of optimality for par-
tially observed stochastic control problems when correlation between the state process
and observation process is present. Let us also note that our approach can be applied
to the case when the correlation is zero, but the control appears in both the drift
and the diffusion coefficients of the state process. However, in this case, the validity
of Lemma 3.3 and Lemma 3.4 must be established. The approach discussed in this
paper was first published in [19].
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SIMULTANEOUS STABILIZATION OF LINEAR AND NONLINEAR
SYSTEMS BY MEANS OF NONLINEAR STATE FEEDBACK∗
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Abstract. The simultaneous stabilization (resp., asymptotic stabilization) of a countable family
of control systems consists of finding a control which stabilizes (resp., asymptotically stabilizes) all
the systems in the family. In this paper, we introduce a new method which enables us to show that,
given any countable family of stabilizable nonlinear systems, there exists a continuous state feedback
law which simultaneously stabilizes (not asymptotically) the family. Then, by enriching this method,
we prove that any finite family of stabilizable linear time invariant (LTI) systems can be simulta-
neously exponentially stabilized by means of nonlinear time-varying state feedback. We also derive
sufficient conditions for the simultaneous asymptotic stabilizability of countably infinite families of
LTI systems. Finally, sufficient conditions for the simultaneous asymptotic stabilizability of finite
families of nonlinear systems are provided and used for the simultaneous asymptotic stabilization of
certain pairs of nonlinear homogeneous systems.

Key words. simultaneous stabilization, linear systems, nonlinear systems, continuous state
feedback, time-varying state feedback

AMS subject classifications. 93C05, 93C10, 93C60, 93D09

PII. S0363012997315610

1. Introduction. To the best of our knowledge, the simultaneous asymptotic
stabilization of countably infinite families of systems and of families of nonlinear sys-
tems has never been directly addressed in the literature. Actually, finite families of
linear time invariant (LTI) systems have been the main focus of the literature related
to simultaneous stabilization.

Although the simultaneous asymptotic stabilization of two LTI systems by means
of LTI feedback has been completely solved for almost 15 years [13, 14], the simulta-
neous asymptotic stabilization of more than two LTI systems by LTI feedback laws
remains a challenging issue. Indeed, necessary and sufficient conditions for the si-
multaneous asymptotic stabilizability of three LTI systems are provided in Blondel
et al. [3], Ghosh and Byrnes [4], and Vidyasagar and Viswanadham [14], but none of
them yields an algorithm to decide whether three LTI systems can be simultaneously
stabilized by means of LTI feedback. It is therefore not clear whether the simulta-
neous stabilizability of more than two LTI systems by means of LTI feedback can be
computationally decided, and investigation on this matter continues [1, 2].

To overcome the limitations of LTI controllers, the use of time-varying feedback
laws and merely continuous feedback laws for simultaneous stabilization has been
investigated: Kabamba and Yang [9] established the simultaneous asymptotic sta-
bilizability of finite families of LTI systems by means of time-varying feedback laws
which involve both the sampled output of the system and a periodic function of time.
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On the other hand, Zhang and Blondel [16] obtained sufficient conditions for the
simultaneous asymptotic stabilizability of such families by controllers based on LTI
feedback laws combined with zeroth order hold functions and samplers. While both
of these design procedures are based on some discretization strategy, Khargonekar,
Pascoal, and Ravi [10] introduced a method that does not involve any discretization
scheme and proved that any finite family of stabilizable LTI systems can be simultane-
ously asymptotically stabilized by a periodic linear time-varying feedback law which
is piecewise continuous. Finally, Petersen [11] derived a necessary and sufficient con-
dition for the simultaneous quadratic asymptotic stabilizability of single-input LTI
systems by means of continuous nonlinear feedback.

We stress that to the best of our knowledge, there do not exist any published
results on the simultaneous stabilization of nonlinear systems, and our goal in this
paper is to address this issue. In order to achieve this goal, we are led to solve several
intermediate problems.

First, by introducing a new method to interpolate feedback laws, we prove that
given any countable family of general nonlinear systems, there exists a merely continu-
ous state feedback law which simultaneously stabilizes (not asymptotically) the family
if each system of the family is asymptotically stabilizable by means of continuous state
feedback. We actually find two feedback laws that solve the simultaneous stabiliza-
tion problem. Although the first law cannot really be used in practical problems, it
yields more insight into the construction than the second; however, the second law is
more explicit and is used to prove further results. We then show that if each system
of the family is globally asymptotically stabilizable, then there exists a continuous
state feedback law which not only simultaneously stabilizes the family but also yields
boundedness of all the solutions of the corresponding closed-loop systems. Finally, if
the systems of the family are LTI and asymptotically stabilizable by means of LTI
feedback, we provide a simple procedure to construct a simultaneous stabilizer.

Next, we introduce time-varying state feedback laws and we modify the construc-
tion used to derive the previous results. We then prove that given any finite family of
LTI systems that are individually stabilizable by means of LTI state feedback, there
exists a nonlinear time-varying state feedback law which is continuous and which si-
multaneously globally exponentially stabilizes the family. Because our approach does
not involve any discretization strategy as in [9, 16], it should be compared to that of
Khargonekar, Pascoal, and Ravi [10]. Our approach is actually very different from
that of Khargonekar, Pascoal, and Ravi, and the controller that we derive is nonlinear
and continuous, while theirs is linear and piecewise continuous. We also provide suf-
ficient conditions for the simultaneous asymptotic stabilizability of countably infinite
families of LTI systems.

Finally, by extending the previous approach to the nonlinear setting, we are able
to derive sufficient conditions for the simultaneous local and global asymptotic stabi-
lizability of finite families of nonlinear systems by means of continuous time-varying
state feedback laws. We then use these conditions in order to establish the simul-
taneous asymptotic stabilizability of certain pairs of homogeneous nonlinear control
systems.

The paper is organized as follows. In section 2, we review some definitions. We
discuss the simultaneous stabilization of countable families of nonlinear systems in
section 3. The simultaneous asymptotic stabilization of LTI systems is then discussed
in section 4. We provide, in section 5, some sufficient conditions for the simultaneous
asymptotic stabilization of nonlinear systems. These sufficient conditions are used in
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section 6 for the simultaneous asymptotic stabilization of certain pairs of homogeneous
systems in Rn. Finally, section 7 contains our conclusions.

2. Definitions. Before introducing our results, we need some definitions and
notation. Let X be a subset of Rn containing the origin, and let k be a positive
integer. A mapping u : X → Rm is said to be almost Ck on X, if it is Ck on X\{0}.
Further, ‖ · ‖ denotes the Euclidean norm on Rk, and for r positive Br(0) denotes

the set Br(0)
∆
= {x ∈ Rk, ‖x‖ < r}. Let S denote an autonomous (resp., a time-

varying) system ẋ = f(x) (resp., ẋ = f(t, x)), where x lies in Rn. We let x(·, x0)
(resp., x(·, x0, t0)) denote any one of the solutions of S that starts at x0 (resp., at x0

at time t0), for each x0 in Rn and each t0 ≥ 0. We will adopt the usual convention
that the infimum of a real-valued mapping over the empty set is +∞. Finally, for
a given symmetric positive definite matrix P , we let λmin(P ) and λmax(P ) denote,
resp., the smallest and largest eigenvalues of P .

Definition 2.1 (stability of time-varying systems). Let f : [0,∞)×Rn → Rn be
a continuous mapping such that f(t, 0) = 0 for each t ≥ 0. The system S : ẋ = f(t, x)
is

(i) stable, if for each ε > 0 and each t0 ≥ 0, there exists δ(ε, t0) > 0 such that we
have ‖x(t, x0, t0)‖ < ε for each t ≥ t0 and each x0 in Bδ(ε,t0)(0);

(ii) locally asymptotically stable if it is stable according to case (i) and for each
t0 ≥ 0, there exists δ̄(t0) > 0 such that limt→+∞ x(t, x0, t0) = 0, for each x0

in Bδ̄(t0)(0);

(iii) locally exponentially stable if there exist some positive reals γ, δ̄, and L such
that

‖x(t, x0, t0)‖ ≤ L‖x0‖e−γ(t−t0), t ≥ t0, t0 ≥ 0, x0 ∈ Bδ̄(0);

(iv) locally uniformly stable with exponential (uniform in t0) convergence if there
exist some positive reals γ and δ̄, and a mapping h : (0,∞) → (0,∞) such
that limr→0+ h(r) = 0 and

‖x(t, x0, t0)‖ ≤ h(‖x0‖)e−γ(t−t0), t ≥ t0, t0 ≥ 0, x0 ∈ Bδ̄(0).

Note that whenever the mapping f does not explicitly depend on t, the positive reals
δ and δ̄ that appear in cases (i) and (ii) are independent of t0.

Definition 2.1, case (iv) is more general than that of exponential stability but
reduces to this concept if the mapping h satisfies h(r) ≤ αr for some constant α > 0
and for each r > 0 close to 0. Although we allow general mappings h, the fundamental
idea of uniform (in t0) exponential convergence is preserved. Furthermore, it is plain
that the requirement limr→0+ h(r) = 0 yields uniform stability.

Throughout this paper, the words stable and stabilize are used in the basic sense
and refer to the concept of stability as given in Definition 2.1, case (i), while in
the control theory literature they usually refer to the concept of asymptotic stability
according to Definition 2.1, case (ii). Further, we will often omit the term locally and
unless otherwise stated asymptotically stable will mean locally asymptotically stable.

Finally, a feedback law simultaneously stabilizes (resp., asymptotically stabilizes)
a countable family of control systems if it stabilizes (resp., asymptotically stabilizes)
all the systems in the family.

Definition 2.2. Let D be a neighborhood of the origin in Rn, and let f : D → Rn
be continuous. A positive definite mapping V : D → [0,∞) is a Lyapunov function
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for the system ẋ = f(x) if V is C0 on D, C1 on D\{0}, and

∇V (x)f(x) ≡
[
∂V (x)

∂x1
, · · · , ∂V (x)

∂xn

]
f(x) < 0, x ∈ D\{0}.

Definition 2.3. Let {xm}m∈Z be a sequence of positive integers. Further, for
each i = 1, . . . , xn and each n in Z, let Qni belong to a given class of mathematical
objects. Then, {Qni , i = 1, . . . , xn}∞n=1, {Qni , i = 1, . . . , xn}−n=−1∞, and {Qni , i =
1, . . . , xn}n∈Z denote, resp., the three sequences

{Q1
1, . . . , Q

1
x1
, Q2

1, . . . , Q
2
x2
, Q3

1, . . .},
{. . . , Q−3

x−3
, Q−2

1 , . . . , Q−2
x−2

, Q−1
1 , . . . , Q−1

x−1
},

{. . . , Q−1
1 , . . . , Q−1

x−1
, Q0

1, . . . , Q
0
x0
, Q1

1, . . . , Q
1
x1
, . . .}.

3. Simultaneous stabilization. Throughout this section, we consider a count-
able family {Si, i ∈ I} of systems

Si : ẋ = fi(x, u), i ∈ I,(1)

where the set I contains more than one element, the state x lies in Rn, the input u
belongs to Rm, and for each i in I the mapping fi : Rn ×Rm → Rn is continuous on
a neighborhood of the origin with fi(0, 0) = 0.

Under these assumptions, we show that if each system Si can be asymptotically
stabilized then there exists a continuous feedback law which simultaneously stabilizes
(not asymptotically) the family {Si, i ∈ I}.

3.1. Main result. In this subsection, we establish the following theorem.
Theorem 3.1. Let k be in {0, 1, . . .}. Assume that for each i in I, there exists a

state feedback law ui : Rn → Rm such that ui(0) = 0, ui is continuous and almost Ck

on some neighborhood of the origin, and ui locally asymptotically stabilizes the system
Si. Then, there exists a state feedback law v : Rn → Rm, such that v(0) = 0, v is
continuous and almost Ck on some neighborhood of the origin, and v simultaneously
stabilizes (not asymptotically) the family {Si, i ∈ I}.

We prove the theorem in the case where the set I is countably infinite. Thus,
we may assume that I = {1, 2, . . .}. The result for finite families of systems will
clearly follow from the fact that simultaneous stabilizability of the countable family
{S1, S2, . . .} yields simultaneous stabilizability of any finite family {S1, . . . , Sn}.

The main lines of the proof are as follows: For each i = 1, 2, . . . , we let Vi
denote a Lyapunov function for the system ẋ = fi(x, ui(x)). We define a sequence
of neighborhoods of the origin {Uni , i = 1, 2, . . .}∞n=i such that for each i = 1, 2, . . .
the boundaries of the sets Uni , n = i, i+ 1, . . . , are level sets of Vi. We then design a
continuous feedback law v which is equal to ui on the boundaries of the sets Uni , n =
i, i + 1, . . . , for each i = 1, 2, . . . . It follows that for each i = 1, 2, . . . and each n =
1, 2, . . . , the set U

n

i is invariant with respect to the system ẋ = fi(x, v(x)). We
conclude that for each i = 1, 2, . . . , the feedback law v stabilizes Si upon noting that
the family {Uni }∞n=i is a topological base at the origin.

Proof. Throughout the proof, we assume that the set I is equal to {1, 2, . . .}. For
each i = 1, 2, . . . , we let Di be a bounded neighborhood of the origin and Vi : Di →
[0,∞) be a Lyapunov function such that the mappings ui and fi(·, ui(·)) are continuous
on Di, the mapping ui is almost Ck on Di, and

∇Vi(x) fi(x, ui(x)) < 0, x ∈ Di\{0}.(2)
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For each i = 1, 2, . . . , we let W β
i denote the set W β

i
∆
= {x ∈ Di : Vi(x) < β} for each

β > 0, and we define the mapping ūi : D1 → Rm by setting

ūi(x) =

{
ui(x), x ∈ D1 ∩Di,
0, x ∈ D1\Di.

Let θ > 0. Using the continuity of the mapping ui on Di and the fact that ui(0) = 0
for each i = 1, 2, . . . , it is not hard to construct a sequence of positive reals {βni , i =
1, . . . , n}∞n=1 [5, Lemma 3.3, p. 51] such that

βnn < inf
x∈∂Dn

Vn(x), n = 1, 2, . . . ,

βni → 0 as n→∞, i = 1, 2, . . . ,(3)

Dn ⊃ W
βn−1
n−1

n−1 ⊃ W
βn1
1 , n = 2, 3, . . . ,(4)

W
βni−1

i−1 ⊃ W
βni
i , i = 2, . . . , n, n = 2, 3, . . . ,(5)

and

‖uk(x)‖ < θ

n
, x ∈ Dk ∩W βnn

n , k = 1, . . . , n+ 2, n = 1, 2, . . . .(6)

Next, we set Uni
∆
= W

βni
i for each i = 1, . . . , n and each n = 1, 2, . . .. From the

inequality β1
1 < infx∈∂D1 V1(x), we get the inclusion D1 ⊃ U1

1 . Thus, (4) and (5)
yield a sequence of nested neighborhoods

D1 ⊃ U1
1 ⊃

U2
1 ⊃ U2

2 ⊃
U3

1 ⊃ U3
2 ⊃ U3

3 ⊃
U4

1 ⊃ . . . . . . . . .
...

...
...

(7)

such that each neighborhood contains the closure of the neighborhood that follows.

For each n = 1, 2, . . . and each i = 1, . . . , n, we define the sets ∆n
i by setting

∆1
1

∆
= D1\U2

1, with ∆n
1

∆
= Un−1

n−1 \U
n

2 , n = 2, 3, . . . ,

∆n
i

∆
= Uni−1\U

n

i+1, i = 2, . . . , n− 1, n = 3, 4, . . . ,

∆n
n

∆
= Unn−1\U

n+1

1 , n = 2, 3, . . . .

Because the family {Uni , i = 1, . . . , n}∞n=1 is a topological base at the origin (this
follows from (3)), we obtain from (7) that the family {∆n

i , i = 1, . . . , n}∞n=1 is an open
cover of D1\{0}. We let {qni , i = 1, . . . , n}∞n=1 be a partition of unity subordinate
to {∆n

i , i = 1, . . . , n}∞n=1, such that the support of qni is included in ∆n
i for each

i = 1, . . . , n and each n = 1, 2, . . . [15, p. 10]. Finally, we define the feedback law
v : D1 → Rm by setting

v(x) =


0, x = 0,
∞∑
n=1

n∑
i=1

ūi(x) qni (x) , x ∈ D1\{0}.



1706 BERTINA HO-MOCK-QAI AND WIJESURIYA P. DAYAWANSA

The mapping v is almost Ck. Let x be in D1\{0} and let r be in (0, ‖x‖) with
Br(0) ⊂ D1. Because {Uni , i = 1, . . . , n}∞n=1 is a topological base at the origin
composed of nested neighborhoods, there exists an integer N such that

UNN ∪ {Uni , i = 1, . . . , n}∞n=N+1 ⊂ Br(0).

This and the fact that the support of each mapping qni is included in ∆n
i yield

v(y) =
N∑
n=1

n∑
i=1

ūi(y)qni (y), y ∈ D1\Br(0).(8)

We now show that v is Ck on the neighborhood D1\Br(0) of x by proving that the
mapping ūi q

n
i : D1\{0} → Rm is Ck on D1\{0} for each i = 1, . . . , n and each

n = 1, 2, . . . .
We fix n = 2, 3, . . . and i = 1, . . . , n. By definition of ūi we have ūi = ui on Di,

so that

ūi(y) qni (y) = ui(y) qni (y), y ∈ (D1 ∩Di) \{0}.(9)

Further, as the support of qni is included in ∆n
i , we get

ūi(y) qni (y) = 0, y ∈
(
D1\∆n

i

)
\{0}.(10)

Because qni is smooth on D1\{0} and ui is Ck on Di\{0}, it follows from (9) and (10)
that ūi q

n
i is Ck on ((

D1\∆n

i

)
∪ (D1 ∩Di)

)
\{0}.(11)

Next, by combining the definition of the sets ∆n
i with (4) and (7), we obtain for each

n = 2, 3, . . . the inclusions

∆
n

1 ⊂ U
n−1

n−1 ⊂ D1,

∆
n

i ⊂ U
n

i−1 ⊂ Un−1
i ⊂ Di, i = 1, . . . , n− 1 ,

∆
n

n ⊂ U
n

n−1 ⊂ Dn (follows from (4)),

and because we also have ∆
n

i ⊂ D1\{0}, we get ∆
n

i ⊂ (D1 ∩Di)\{0}. This implies
that the set in (11) is equal to D1\{0}, and it follows that the mapping ūi q

n
i is Ck on

D1\{0}. Furthermore, the mapping ū1q
1
1 is Ck on D1\{0}, since by definition of ū1 we

have ū1q
1
1 = u1q

1
1 on D1\{0}. In view of (8), we conclude that for each x in D1\{0},

there exists a neighborhood Ux of x included in D1\{0} such that the mapping v is
Ck on Ux. In short, the mapping v is Ck on D1\{0}.

Continuity of v. We fix n = 2, 3, . . . . From the definition of the sets ∆m
j , it is

easily checked that for each m = n+ 2, n+ 3, . . . , we have(
Un−1
n−1 \U

n+1

n+1

)
∩∆m

j = ∅, j = 1, . . . ,m ,

and because the support of each function qmj is included in ∆m
j , we get

v(x) =

n+1∑
m=1

m∑
j=1

ūj(x) qmj (x), x ∈ Un−1
n−1 \U

n+1

n+1.
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As the functions of {qni , i = 1, . . . , n}∞n=1 sum up to 1, the previous equality implies
that

‖v(x)‖ ≤ max(‖ū1(x)‖, . . . , ‖ūn+1(x)‖), x ∈ Un−1
n−1 \U

n+1

n+1,

so that (6) combined with the definition of the mappings ūi, i = 1, 2, . . . , yield

‖v(x)‖ <
θ

n− 1
, x ∈ Un−1

n−1 \U
n+1

n+1.(12)

Further, upon noting that the family {U ll }∞l=1 is a topological base at the origin
composed of nested neighborhoods such that each neighborhood contains the closure
of the neighborhood that follows, we deduce that

U l−1
l−1 \{0} =

∞⋃
n=l

(
Un−1
n−1 \U

n+1

n+1

)
, l = 2, 3, . . . ,

and (12) implies that

‖v(x)‖ ≤ θ

l − 1
, x ∈ U l−1

l−1 \{0}, l = 2, 3, . . . .

Because θ
l − 1

→ 0 as l → ∞, continuity of v at the origin follows.

Simultaneous stability. From the definitions of the sets Uni and ∆n
i , it is not hard

to see that for each i = 1, 2, . . . and each n = 1, 2, . . . , the boundary ∂Uni is included
in ∆n

i and does not intersect with any other set ∆m
j . Thus, because the support of

the mapping qni is included in ∆n
i for each i = 1, 2, . . . and each n = 1, 2, . . . , it follows

from the definition of v that

v(x) = ui(x), x ∈ ∂Uni , i = 1, . . . , I, n = 1, 2, . . . .

This, together with (2) and the fact that the sets U
n

i are included in D, yields

∇Vi(x) fi(x, v(x)) < 0, x ∈ ∂Uni , i = 1, . . . , I, n = 1, 2, . . . .(13)

For each i = 1, . . . , I and each n = 1, 2, . . . , by combining (13) with Lemma 8.1
applied with D, V = Vi, f(·, ·) = fi(·, v(·)), and b(·) ≡ βni , we obtain that the set U

n

i

is invariant with respect to the system ẋ = fi(x, v(x)). Thus, for each i = 1, . . . , I, the
family {Uni }∞n=1 is a topological base at the origin such that U

n

i is positively invariant
with respect to the system ẋ = fi(x, v(x)) for each n = 1, 2, . . . . It follows that v
stabilizes (not asymptotically) the system Si for each i = 1, . . . , I.

3.2. A more explicit simultaneous stabilizer. In this subsection, we show
that we can circumvent the computation of the partition of unity that appears in
the expression of the previous simultaneous stabilizer, and we provide a more explicit
simultaneous stabilizer which can actually be used in practical problems. Although
this simultaneous stabilizer is more explicit than the one presented in the previous
subsection, it somehow yields less insight into the construction. Furthermore, we will
use this more explicit stabilizer, in this paper, to prove further results.

For the sake of simplicity, we assume throughout this subsection that the set I is
finite and equal to {1, . . . , I} (with I ≥ 2). However, the construction that we provide
can be easily transposed to the case of a countably infinite family of systems (see [5,
p. 40] for further details).
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In that case, a simpler proof of Theorem 3.1 may be given (we refer the inter-
ested reader to [8] for a proof). The main difference between this proof and the
one presented in the previous subsection lies in the structure of the topological base
that is considered. We actually define a sequence of neighborhoods of the origin
{Uni , i = 1, . . . , I}∞n=1 such that for each i = 1, . . . , I the boundaries of the sets
Uni , n = 1, 2, . . . are level sets of Vi. Using a partition of unity {qni , i = 1, . . . , n}∞n=1

subordinate to {Uni , i = 1, . . . , I}∞n=1, we then design a continuous feedback law
v which is equal to ui on the boundaries of the sets Uni , n = 1, 2, . . . , for each
i = 1, 2, . . . . By using an argument similar to that used in the proof of Theorem
3.1, we obtain that v stabilizes the system Si for each i = 1, . . . , I.

We now show that we can circumvent the computation of the partition of unity
{qni , i = 1, . . . , I}∞n=1 that appears in the expression of the obtained simultaneous
stabilizer.

Derivation of a more explicit simultaneous stabilizer. Under the enforced assump-
tions, there exist a bounded neighborhood of the origin D and a Ck (where k ≥ 0 is
an integer) Lyapunov function Vi : D → [0,∞) such that

∇Vi(x) fi(x, ui(x)) < 0, x ∈ D\{0},(14)

for each i = 1, . . . , I. Without loss of generality, we may assume that for each i =
1, . . . , I, the mappings fi(·, ui(·)) and ui are continuous on D with ui almost Ck on
D.

For each i = 1, . . . , I, and each β > 0, we set W β
i

∆
= D ∩ V −1

i ( [0, β) ). It is
not hard to obtain [5, Lemma 2.5, p. 32] three sequences of positive reals {αni , i =
1, . . . , I}∞n=1, {βni , i = 1, . . . , I}∞n=1, and {γni , i = 1, . . . , I}∞n=1 converging to the
origin, such that for each n = 1, 2, . . . , we have

inf
x∈∂D

Vi(x) > γni > βni > αni , i = 1, . . . , I,(15)

W
αnI
I ⊃ W

γn+1
1

1 and W
αni−1

i−1 ⊃ W
γni
i , i = 2, . . . , I.(16)

For each i = 1, . . . , I and each n = 1, 2, . . . , we define the mappings qni : D → [0, 1]
by setting

qni (x) =


e

(Vi(x)−βn
i )

2

(Vi(x)−βn
i )

2−(βni −αni )
2

if Vi(x) ∈ (αni , β
n
i ),

e

(Vi(x)−βn
i

)2

(Vi(x)−βn
i )

2−(γni −βni )
2

if Vi(x) ∈ [βni , γ
n
i ),

0 otherwise

(17)

for each x in D. It can be checked [5, Lemma B.6, p. 159] that the mapping qni is Ck

on D for each i = 1, . . . , I and each n = 1, 2, . . . . Finally, we let v̄ : D → Rm be given
by

v̄(x) =

∞∑
n=1

I∑
i=1

qni (x)ui(x), x ∈ D.(18)

Proposition 3.2. The state feedback law v̄ as given in (18) is continuous and
almost Ck on D and simultaneously stabilizes (not asymptotically) the family {Si, i =
1, . . . , I}.
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Proof. First, we note that (15) combined with (16) yields a sequence of nested
neighborhoods

D ⊃ W
γ1

1
1 ⊃ W

β1
1

1 ⊃ W
α1

1
1 ⊃ W

γ1
2

2 ⊃ · · · ⊃ W
α1
I

I ⊃ W
γ2

1
1 ⊃ · · ·

(19)
such that each neighborhood contains the closure of the neighborhood that follows.
It is not hard to see from the definition of the mappings qni that

{x ∈ D : qni (x) 6= 0} = W
γni
i \W

αni
i , i = 1, . . . , I, n = 1, 2, . . . ,(20)

so that these sets are disjoint. Now, let x be in D\{0} and let r be in (0, ‖x‖)
such that Br(0) ⊂ D. Further, let the integer nr be such that W

γn1
1 ⊂ Br(0), n =

nr + 1, nr + 2, . . . . It follows from the definition of v̄, together with (20), that

v̄(y) =

nr∑
n=1

I∑
i=1

ui(y)qni (y), y ∈ D\Br(0).(21)

Because the mappings ui and qni are Ck on D\{0} for each i = 1, . . . , I and each
n = 1, 2, . . . (see [5, Lemma B.6, p. 159] for further details), we easily obtain from
(21) that v̄ is Ck on D\{0}. Furthermore, (20) implies that

‖v̄(x)‖ ≤ max (‖u1(x)‖, . . . , ‖uI(x)‖), x ∈ D,
and continuity of v̄ at the origin follows from that of the mappings ui, i = 1, . . . , I.

Simultaneous stability. From (20) and the definition of the mappings qni , we
deduce that for each i = 1, . . . , I and each n = 1, 2, . . . , we have

qni (x) = 1 with qmj (x) = 0, x ∈ ∂W βni
i , (j,m) 6= (i, n),

and the definition of v̄ yields v̄(x) = ui(x), x ∈ ∂W βni
i . By an argument similar to

that used in the proof of Theorem 3.1 to establish simultaneous stability, it follows
from (14) and Lemma 8.1 that for each i = 1, . . . , I the mapping v̄ stabilizes Si, which
completes the proof.

We now assume that there exists a continuous and almost Ck feedback law ui :
Rn → Rm which globally asymptotically stabilizes Si and that the mapping fi(·, ui(·))
is continuous on Rn for each i = 1, . . . , I. In that case, the previous construction can
be slightly modified in order to yield a feedback law v̂ that simultaneously stabilizes
the family {Si, i = 1, . . . , I} and in such a way that all the solutions of the closed-loop
system ẋ = fi(x, v̂(x)) are bounded for each i = 1, . . . , I.

Indeed, we may assume that the Lyapunov function Vi is radially unbounded for
all i = 1, . . . , I. It can easily be seen [5, Lemma 2.2, p. 28] that there exist some
two-sided sequences of positive reals {αni , i = 1, . . . , I}n∈Z, {βni , i = 1, . . . , I}n∈Z,
and {γni , i = 1, . . . , I}n∈Z converging to 0 and +∞ as n tends to +∞ and −∞, resp.,
and satisfying

W
αnI
I ⊃ W

γn+1
1

1 and W
αni−1

i−1 ⊃ W
γni
i , i = 2, . . . , I, n ∈ Z.(22)

For each i = 1, . . . , I and each n in Z, we let the mapping q̄ni : Rn → [0, 1] be given
by the formula (17) with αni , βni , and γni as defined here, and we let the mapping
v̂ : Rn → Rm be given by

v̂(x) =
∑
n∈Z

I∑
i=1

qni (x)ui(x), x ∈ Rn.(23)
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By arguments similar to those used in the proof of Proposition 3.2, it can be shown
that v̂ is continuous on Rn, Ck on Rn\{0}, and that for each i = 1, . . . , I and each n

in Z, the solutions of ẋ = fi(x, v̂(x)) starting in W
βni
i remain in this set forever. As

{W βni
i }n∈Z covers Rn for each i = 1, . . . , I, we obtain the following proposition.
Proposition 3.3. The state feedback law v̂ as given in (23) is continuous and

almost Ck on Rn and simultaneously stabilizes (not asymptotically) the family {Si, i =
1, . . . , I}. Further, the solutions of the system ẋ = fi(x, v̂(x)), starting at x0, are
bounded for each x0 in Rn and each i = 1, . . . , I.

In order to obtain three sequences {γni , i = 1, . . . , I}n∈Z, {βni , i = 1, . . . , I}n∈Z,
and {αni , i = 1, . . . , I}n∈Z, one actually needs to find a condition on the two positive
reals α and β that yields the inclusion D ∩ V −1

i−1([0, α)) ⊃ D ∩ V −1
i ([0, β]), for each

i = 2, . . . , I, as well as a condition for the inclusion D∩V −1
I ([0, α)) ⊃ D∩V −1

1 ([0, β])
to be satisfied. In the case where the system Si and the feedback law ui are linear
for all i = 1, . . . , I, these conditions are well known and we provide, in the following
paragraph, a simple procedure that yields the desired sequences of reals. We will then
use these sequences in section 4.

3.3. Application to families of linear systems. We now consider a countable
family {Si, i ∈ I} of LTI systems

Si : ẋ = Aix + Biu, i ∈ I,(24)

where the state x lies in Rn, the input u is in Rm, and for each i ∈ I, the matrices Ai
and Bi belong to Rn×n and Rn×m, respectively. Finally, for each i ∈ I, we assume
that there exists Ki in Rn×m such that the linear feedback law ui : Rn → Rm given
by ui(x) = Kix, x ∈ Rn, asymptotically stabilizes Si.

For the sake of simplicity, we assume that I is finite and equal to {1, . . . , I}
where I ≥ 2 is an integer. However, the construction that we provide below can
be transposed easily to the case of countably infinite families of LTI systems (see [5,
Chapter 3] for further details).

We now let Vi : Rn → [0,∞) be a Lyapunov function for the system ẋ =
fi(x, ui(x)) given by Vi(x) = xt Pi x, x ∈ Rn, where Pi is a positive definite ma-
trix. As ui globally asymptotically stabilizes the system Si for each i = 1, . . . , I, a
simultaneous stabilizer for the family {Si, i = 1, . . . , I} may be given by the for-
mula (23). In this particular case, the sequences of real {αni , i = 1, . . . , I}n∈Z,
{βni , i = 1, . . . , I}n∈Z, and {γni , i = 1, . . . , I}n∈Z, used in the expression of the
mappings qni , can be defined as follows: We let π1 be in (0, λmin(P1)/λmax(PI)) and
πi be in (0, λmin(Pi)/λmax(Pi−1)) for each i = 2, . . . , I. Further, we let θi in (0, 1) for
each i = 1, . . . , I be such that

(π1 · · ·πI) (θ2
1 · · · θ2

I ) < 1,(25)

and we let γ̂0
1 be an arbitrary positive real. Finally, we let the sequences of positive

reals {αni , i = 1, . . . , I}n∈Z, {βni , i = 1, . . . , I}n∈Z, and {γni , i = 1, . . . , I}n∈Z be
defined by setting, on one hand,

γ0
1 = γ̂0

1 , βni = θiγ
n
i , αni = θiβ

n
i , i = 1, . . . , I, n = 0, 1, . . .(26)

with

γn+1
1 = π1α

n
I and γni = πiα

n
i−1, i = 2, . . . , I, n = 0, 1, . . . ,(27)
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and, on the other hand,

αnI =
γn+1

1

π1
and αni =

γni+1

πi+1
, i = I − 1, . . . , 1, n = −1,−2, . . .(28)

with

βni =
αni
θi

and γni =
βni
θi
, i = I, . . . , 1, n = −1,−2, . . . .(29)

It is plain that the obtained sequences of reals converge to 0 (resp., +∞) as n tends to
+∞ (resp., −∞), and satisfy (22) for each n in Z. Thus, these sequences can be used
in the expression of the mappings qni as given in (17) in order to produce a feedback
law v̂ [given by (23)] which simultaneously stabilizes {Si, i = 1, . . . , I}.

4. Simultaneous asymptotic stabilization of LTI systems. The results of
the previous section are primarily derived using a stability criterion based on the pos-
itive invariance of sets. In order to construct feedback laws which achieve asymptotic
stability, we now enrich this criterion and introduce time-varying feedback laws. We
obtain an invariance criterion for time-varying sets that we use for the simultaneous
asymptotic stabilization of families of LTI systems.

Throughout this section, we consider a countable family {Si, i ∈ I} of LTI
systems as defined in (24). Further, for each i in I, we assume that there exists Ki

in Rn×m such that the linear feedback law ui : Rn → Rm given by ui(x) = Kix
asymptotically stabilizes Si.

Further, for each i in I, we let Vi : Rn → [0,∞) denote a Lyapunov function for
the system ẋ = (Ai + BiKi)x given by Vi(x) = xt Pi x for each x in Rn, where Pi is
a positive definite matrix in Rn×n. Finally, we let Qi be the positive definite matrix
defined by

∇Vi(x) ((Ai +BiKi)x) = − xtQix, x ∈ Rn, i ∈ I.
The main result of this section is the following theorem.

Theorem 4.1. Assume that, in addition to the enforced assumptions, the set I is
finite with I = {1, . . . , I} and I ≥ 2. Then, there exists a time-varying state feedback
law v : [0,∞)×Rn → Rm, continuous on [0,∞)×Rn and C∞ on [0,∞)× (Rn\{0}),
which simultaneously globally exponentially stabilizes the family {Si, i = 1, . . . , I}.

The general lines of the proof of this theorem are as follows: We introduce a se-
quence {bni (·), i = 1, . . . , I}n∈Z of mappings defined from [0,∞) into (0,+∞), decreas-
ing to 0 as t tends to +∞, and such that for each t ≥ 0, the sequence of neighborhoods
{V −1

i ([0, bni (t)))}n∈Z is a topological base at the origin. We then design a time-varying
feedback law v(t, x) such that for each t ≥ 0, each i = 1, . . . , I, and each n in Z, we
have v(t, x) = ui(x) for all x in V −1

i (bni (t)). Finally, we show that for each t0 ≥ 0,
each i = 1, . . . , I, and each n in Z, each solution of the system ẋ = fi(x, v(t, x)), which
starts in the set V −1

i ([0, bni (t0)]) at time t0, remains in the set V −1
i ([0, bni (t)]) for all

t ≥ t0. For each i = 1, . . . , I, we conclude that v asymptotically stabilizes the system
Si, upon noting that the mapping bni converges to 0 as t tends to +∞ for each n in Z.

Proof. For each i = 1, . . . , I and each β > 0, we let W β
i denote the set W β

i
∆
=

V −1
i ( [0, β) ). We then define three sequences of positive reals {αni , i = 1, . . . , I}n∈Z,
{βni , i = 1, . . . , I}n∈Z, and {γni , i = 1, . . . , I}n∈Z exactly as we did in subsec-
tion 3.3. In other words, we let π1 be in (0, λmin(P1)/λmax(PI)) and πi be in
(0, λmin(Pi)/λmax(Pi−1)) for each i = 2, . . . , I. Further, we let γ̂0

1 be an arbitrary
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positive real, and we let θi in (0, 1) for each i = 1, . . . , I be such that (25) holds.
Finally, we apply the formulas (26), (27), (28), and (29).

Construction of the simultaneous stabilizer. We now seek a C1 mapping h :
[0,∞)→ (0,∞) such that the mapping bni : [0,∞)→ (0,∞), given by

bni (t) = βni h(t), t ≥ 0,

satisfies

∇Vi(x) (Aix+Biui(x) ) < ḃni (t), x ∈ V −1
i (bni (t)), t ≥ 0,(30)

or, equivalently,

−xtQi x < ḃni (t), x ∈ V −1
i (bni (t)), t ≥ 0,(31)

for each i = 1, . . . , I and each n in Z. In what follows, we fix i = 1, . . . , I, n in Z,
and t ≥ 0. Let x be such that xtPi x = bni (t). Then, by elementary linear algebra, we
get −xtx ≤ −bni (t)/λmax(Pi), and because we also have −xtQi x ≤ −λmin(Qi)x

tx,
inequality (31) will be satisfied if

−λmin(Qi)

λmax(Pi)
bni (t) < ḃni (t).(32)

Because we require that h(t) > 0 and bni (t) = βni h(t), inequality (32) will hold if

ḣ(t)

h(t)
> − λmin(Qi)

λmax(Pi)
.(33)

We now set ρ
∆
= mini=1,...,I (λmin(Qi)/λmax(Pi)) and we deduce from (33) that the

desired assertion (30) will be satisfied for each i = 1, . . . , I and each n in Z, if

ḣ(t)

h(t)
> − ρ, t ≥ 0.(34)

Let η be a fixed constant in (1,∞), and let the mapping h : [0,∞)→ (0,∞) be given
by

h(t) = e−
ρ
η t, t ≥ 0.

It is plain that h satisfies (34) so that for each i = 1, . . . , I and each n in Z, the
mapping bni : [0,∞)→ (0,∞) given by

bni (t) = βni h(t) = βni e
− ρη t, t ≥ 0,

satisfies the desired assertion (30).
Next, for each i = 1, . . . , I and each n in Z, we define the mappings ani , c

n
i :

[0,∞)→ (0,∞) by setting

cni (t) = γni h(t) and ani (t) = αni h(t), t ≥ 0.

Because we have

bni (t) = θic
n
i (t) with ani (t) = θib

n
i (t), t ≥ 0, i = 1, . . . , I, n ∈ Z,
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and

cn+1
1 (t) = π1a

n
I (t) with cni (t) = πia

n
i−1(t), t ≥ 0, i = 2, . . . , I, n ∈ Z,

it follows from the definition of θi and πi for each i = 1, . . . , I that for each t ≥ 0, we
have a two-sided sequence of neighborhoods

...
...

W
c−1
1 (t)

1 ⊃ . . . W
a−1
I

(t)

I ⊃
W

c01(t)
1 ⊃ W

b01(t)
1 ⊃ W

a0
1(t)

1 ⊃ W
c02(t)
2 ⊃ . . . ⊃ W

a0
I(t)

I ⊃
W

c11(t)
1 ⊃ W

b11(t)
1 ⊃ W

a1
1(t)

1 ⊃ W
c12(t)
2 ⊃ . . . ⊃ W

a1
I(t)

I ⊃
...

...
...

(35)

such that each neighborhood contains the closure of the neighborhood that follows.
Next, for each i = 1, . . . , I and each n in Z, we define the mapping qni : [0,∞)×Rn →
[0, 1] by setting

qni (t, x) =


e

(Vi(x)−bn
i

(t))2

(Vi(x)−bn
i

(t))
2−(bni (t)−an

i
(t))

2

if Vi(x) ∈ (ani (t), bni (t)],

e

(Vi(x)−bn
i

(t))
2

(Vi(x)−bn
i

(t))
2−(cn

i
(t)−bn

i
(t))2 if Vi(x) ∈ (bni (t), cni (t)),

0 otherwise

(36)

for each (t, x) in [0,∞)×Rn, and we let the mapping v : [0,∞)×Rn → Rm be given
by

v(t, x) =

I∑
i=1

∑
n∈Z

ui(x)qni (t, x), (t, x) ∈ [0,∞)× Rn.

The feedback law v is continuous on [0,∞)× Rn and C∞ on [0,∞)× (Rn\{0}).
Let (t, x) be in [0,∞) × Rn\{0}. It is easily checked from (35) combined with the
continuity of the mappings Vj , a

m
j , and cmj for each (j,m) in {1, . . . , I}×Z that there

exist a neighborhood U of (t, x) in [0,∞)×(Rn\{0}) and a pair (i, n) in {1, . . . , I}×Z
such that

v(τ, y) = ui(y) qni (τ, y), (τ, y) ∈ U.(37)

Because qni is C∞ on [0,∞)×Rn [5, Lemma B.6, p. 159] and ui is C∞ on Rn for each
i = 1, . . . , I and each n in Z, the equality (37) implies that v is C∞ on [0,∞)×Rn\{0}.
Further, because the mappings qni take values in [0, 1], the equality (37) yields

‖v(t, x)‖ ≤ max (‖u1(x)‖, . . . , ‖uI(x)‖), (t, x) ∈ [0,∞)× Rn,
and continuity of ui for each i = 1, . . . , I combined with the fact that v(t, 0) = 0, t ≥ 0
implies that v is continuous at each point (t, 0), t ≥ 0. Therefore, v is continuous on
[0,∞)× Rn.

Global exponential stability. Throughout the rest of the proof, we fix i = 1, . . . , I.
From the definition of v, it is not hard to see that

v(t, x) = ui(x), t ≥ 0, x ∈ V −1
i ( bni (t) ), n ∈ Z.
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Therefore, from (30) we get

∇Vi(x) (Ai x+Biv(t, x)) < ḃni (t), x ∈ V −1
i (bni (t)), t ≥ 0, n ∈ Z,

and because we have ∂W β
i = V −1

i (β) and W
β

i = V −1
i ([0, β]) for each β > 0, Lemma

8.1 implies that for each t0 ≥ 0 and each n in Z, the solution x(·, x0, t0) of ẋ =
Aix+Biv(t, x) starting from x0 at time t0 satisfies

Vi(x(t, x0, t0)) ≤ bni (t), t ≥ t0, x0 ∈W bni (t0)

i .(38)

From the definition of the sequence {βni }n∈Z, it is easily seen that we have

βn+k
i = (π1 · · ·πI θ2

1 · · · θ2
I )
kβni , n ∈ Z, k = 0, 1, . . . .

Upon setting T
∆
= −ηρ log(π1 . . . πI θ

2
1 . . . θ

2
I ), the previous equality translates to

βni e
− ρη kT = βn+k

i , n ∈ Z, k = 0, 1, . . . ,(39)

which in turn easily yields

bni (t+ kT ) = bn+k
i (t), t ≥ 0, n ∈ Z, k = 0, 1, . . . .(40)

Let x0 be in Rn. As the sequence {bni (0) = βni }n∈Z is strictly decreasing and
converges to 0 and +∞ as n tends to +∞ and −∞, resp., there exists an integer n̄
such that

bn̄+1
i (0) < Vi(x0) ≤ bn̄i (0).(41)

Fix t0 ≥ 0, and let the integer k and t′0 in [0, T ) be such that t0 = kT + t′0. By
combining (40) with the fact that the mapping bni is decreasing for each n in Z, we
get

bn̄i (0) = bn̄−k−1
i ((k + 1)T ) ≤ bn̄−k−1

i (t0),

so that (41) yields x0 ∈ V −1
i ( [0, bn̄−k−1

i (t0)] ). Thus, the inequality (38) implies that

Vi(x(t, x0, t0)) ≤ bn̄−k−1
i (t), t ≥ t0,

and from the expression of bn̄−k−1
i (t) we obtain that

Vi(x(t, x0, t0)) ≤ βn̄−k−1
i e−

ρ
η (t−t0+t′0+kT ), t ≥ t0.(42)

Next, by combining (39) with the fact that t′0 ≥ 0, we obtain from (42) that

Vi(x(t, x0, t0)) ≤ βn̄−1
i e−

ρ
η (t−t0+t′0) ≤ βn̄−1

i e−
ρ
η (t−t0), t ≥ t0.(43)

The identity (39) yields βn̄−1
i = e

2ρ
η Tβn̄+1

i , so that the inequality βn̄−1
i < e

2ρ
η TVi(x0)

follows from (41). Thus, (43) implies that√
Vi(x(t, x0, t0)) ≤ e

ρ
ηT
√
Vi(x0) e−

ρ
2η (t−t0), t ≥ t0.

Because e
ρ
ηT is a constant and the mapping x 7→√

Vi(x) is a norm on Rn, we obtain
from the equivalence of all norms on Rn that v globally exponentially stabilizes Si
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with the rate of convergence ρ
2η . The proof of the theorem is complete upon noting

that the previous argument holds for each i = 1, . . . , I.
In case the set I is countably infinite, we obtain the following sufficient conditions

for simultaneous asymptotic stabilizability.
Theorem 4.2. Assume that, in addition to the enforced assumptions, the set I

is countably infinite and equal to {1, 2, . . .} and that the following statements hold.
(i) There exists a positive real M such that ‖Ki‖ ≤M, i = 1, 2, . . . .

(ii) The real ρ
∆
= infi=1,2,... (

λmin(Qi)
λmax(Pi)

) is strictly positive.

Then, there exists a time-varying state feedback law v : [0,∞) × Rn → Rm,
continuous on [0,∞)×Rn and C∞ on [0,∞)×(Rn\{0}), which simultaneously globally
asymptotically stabilizes the family {Si, i = 1, 2, . . .}.

We omit the proof of this theorem as it is based on arguments similar to those
used for Theorem 4.1 (we refer the interested reader to [5, p. 65] or [7] for a proof).

5. Simultaneous asymptotic stabilization of nonlinear systems. Because
the asymptotic criterion introduced in the previous section is nonlinear we are now
able to use it for the simultaneous stabilization of nonlinear systems. We actually
obtain the following sufficient conditions for simultaneous stabilizability.

Theorem 5.1. Let k ≥ 0 and k′ ≥ 1 be two integers and set k′′ ∆
= min (k, k′).

Let D be a neighborhood of the origin, and assume that there exists a continuous and
almost Ck state feedback law ui : D → Rm which locally asymptotically stabilizes
Si for each i = 1, . . . , I. Further, assume that for each i = 1, . . . , I, the mapping
fi(·, ui(·)) is continuous on D and let Vi : D → [0,∞) be a Ck

′
Lyapunov function,

satisfying

∇Vi(x) fi(x, ui(x)) < 0, x ∈ D\{0}.

(a) Assume that there exists a sequence {bni , i = 1, . . . , I}∞n=1 of Ck
′

mappings
bni : [0,∞)→ (0,∞), such that the following assertions hold.

(i) supt≥t0b
n
i (t) → 0 as n → ∞, i = 1, . . . , I, t0 ≥ 0.

(ii) bni (t) < infx∈∂DVi(x), t ≥ 0, i = 1, . . . , I, n = 1, 2, . . . .
(iii) bni (t) → 0 as t → ∞, i = 1, . . . , I, n = 1, 2, . . . .
(iv) For each n = 1, 2, . . . , we have

D ∩ V −1
I ( [0, bnI (t)) ) ⊃ D ∩ V −1

1 ( [0, bn+1
1 (t)] ), t ≥ 0,(44)

and for each n = 1, 2, . . . and each i = 1, . . . , I − 1 we have

D ∩ V −1
i ( [0, bni (t)] ) ⊃ D ∩ V −1

i+1( [0, bni+1(t)) ), t ≥ 0.(45)

(v) For each n = 1, 2, . . . and each i = 1, . . . , I, we have

∇Vi(x) fi(x, ui(x)) < ḃni (t), x ∈ D ∩ V −1
i (bni (t)), t ≥ 0.

Then, there exists a time-varying state feedback law v : [0,∞)×D → Rm, continuous
on [0,∞)×D and Ck

′′
on [0,∞)× (D\{0}), which simultaneously locally asymptoti-

cally stabilizes the family {Si, i = 1, . . . , I}.
(b) Now, assume that for each i = 1, . . . , I, the feedback law ui globally asymptot-

ically stabilizes Si and that Vi is a radially unbounded Lyapunov function, so that we

may set D
∆
= Rn. Further, assume that there exists a sequence {bni , i = 1, . . . , I}n∈Z
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of Ck
′

mappings bni : [0,∞)→ (0,∞), such that on one hand, assertion (i) holds and,
on the other hand, assertions (ii), (iii), (iv), and (v) hold for each n in Z. Finally,
assume that we have

bni (t0) → +∞ as n → −∞, i = 1, . . . , I, t0 ≥ 0.(46)

Then there exists a time-varying state feedback law v : [0,∞) × Rn → Rm, contin-
uous on [0,∞) × Rn and Ck

′′
on [0,∞) × (Rn\{0}), which simultaneously globally

asymptotically stabilizes the family {Si, i = 1, . . . , I}.
Proof. As the proof of assumption (b) is similar to that of assumption (a), we

prove only (a) (see [5, p. 83] for further details). Further, because the main lines of
the proof of assumption (a) are similar to those of the proof of Theorem 4.1, we will
merely outline the main differences between these two proofs. For each i = 1, . . . , I

and each β > 0, we set W β
i

∆
= {x ∈ D : Vi(x) < β}.

We first construct two sequences {ani , i = 1, . . . , I}∞n=1 and {cni , i = 1, . . . , I}∞n=1

of mappings ani , b
n
i : [0,∞)→ (0,∞), satisfying for each n = 1, 2, . . .

inf
x∈∂D

Vi(x) > cni (t) > bni (t) > ani (t) > 0, t ≥ 0, i = 1, . . . , I,(47)

with

W
anI (t)
I ⊃ W

cn+1
1 (t)

1 , and W
ani (t)
i ⊃ W

cni+1(t)

i+1 , i = 1, . . . , I − 1,(48)

for each t ≥ 0 as follows: We define c11 : [0,∞)→ (0,∞) by setting

c11(t) =
b11(t) + inf

x∈∂D
V1(x)

2
, t ≥ 0.

Then, for each n = 1, 2, . . . and each i = 1, . . . , I − 1, we define two C∞ mappings
ani , c

n
i+1 : [0,∞) → (0,∞) from bni and bni+1 by applying Lemma 8.2 with b1 = bni ,

b2 = bni+1, and (45). Finally, for each n = 1, 2, . . . , we define two C∞ mappings

anI , c
n+1
1 : [0,∞) → (0,∞) by applying Lemma 8.2 with b1 = bnI , b2 = bn+1

1 , and the
inequality (44).

Next, for each n = 1, 2, . . . and each i = 1, . . . , I, we define the mapping qni :
[0,∞) × D → [0, 1] by applying the formula (36) for each (t, x) in [0,∞) × D (with
Vi, a

n
i , b

n
i , c

n
i as defined here). Finally, we define the feedback law v : [0,∞)×D →

Rm by setting

v(t, x) =
∞∑
n=1

I∑
i=1

ui(x)qni (t, x), (t, x) ∈ [0,∞)×D.(49)

Using an argument similar to that used in the proof of Theorem 4.1, it is not hard to
check that v is continuous on [0,∞)×D and Ck

′′
on [0,∞)× (D\{0}).

We now fix i = 1, . . . , I and n = 1, 2, . . . . Because ∂W
bni (t)
i = D ∩ V −1

i (bni (t)) and
qni (t, x) = 1 for each x in V −1

i (bni (t)) and each t ≥ 0, we obtain that v(t, x) = ui(x)

for each x in ∂W
bni (t)
i and each t ≥ 0. It follows from the assumption v that

∇Vi(x) fi(x, v(t, x)) = ∇Vi(x) fi(x, ui(x)) < ḃni (t), x ∈ ∂W bni (t)
i , t ≥ 0.

Thus, by an argument similar to that used in the proof of Theorem 4.2 to prove
asymptotic stability, it can be shown that v simultaneously asymptotically stabilizes
the family {Si, i = 1, . . . , I}.

We are now going to use these sufficient conditions for the simultaneous stabiliza-
tion of certain homogeneous systems.
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6. Simultaneous asymptotic stabilization of homogeneous systems. In
this section, we consider a pair of control systems,

S1 : ẋ = f(x)− g(x)u and S2 : ẋ = f(x) + g(x)u,(50)

where the state x lies in Rn and the input u lies in Rm. We assume that the mappings
f : Rn → Rn and g : Rn → Rn×m are continuous with f(0) = 0 and that there exists a
continuous state feedback law u : Rn → Rm which locally asymptotically stabilizes S2,
so that −u locally asymptotically stabilizes S1. We define the mapping F : Rn → Rn
by setting

F (x) = f(x) + g(x)u(x), x ∈ Rn,(51)

and we assume that F is homogeneous, i.e., there exists s in R and (r1, . . . , rn) in
(0,+∞)n such that for each x in Rn\{0} and each λ > 0, we have

F (λr1x1, . . . , λ
rnxn) =

 λs+r1F1(x)
...
λs+rnFn(x)

 ,(52)

where Fi is the ith coordinate mapping of F for each i = 1, . . . , n (note that this
assumption clearly holds if the control system S1 and the feedback law u are homo-
geneous). As we shall see in the following proposition, it turns out that there always
exists a time-varying state feedback law which simultaneously stabilizes S1 and S2.

Proposition 6.1. Let the systems S1 and S2 and the mapping F : Rn → Rn
satisfy the assumptions (50), (51), and (52). Then, the following hold.

(i) If s = 0, then there exists a continuous time-varying state feedback law v :
[0,∞) × Rn → Rm which simultaneously globally uniformly asymptotically stabilizes
S1 and S2, with uniform exponential convergence of the corresponding closed-loop
systems (according to Definition 2.1 (iv)).

(ii) If s > 0, then there exists a continuous time-varying state feedback law v :
[0,∞)× Rn → Rm which simultaneously globally asymptotically stabilizes S1 and S2.

(iii) If s < 0, then there exists a continuous time-varying state feedback law v :
[0,∞)× Rn → Rm which simultaneously locally asymptotically stabilizes S1 and S2.

Proof. The main idea of the proof is to construct some sequences of mappings
bni satisfying the assumptions of Theorem 5.1. To this end, we first define a mapping
hβ : [0,∞)→ (0,∞) for each β in some subset of (0,∞) as follows.

We let p = 1 and we choose k satisfying

k ≥ max
i=1,...,n

(ri) and 1 +
s

k
> 0.

By Theorem 2 in Rosier [12], there exists a C1 radially unbounded homogeneous
Lyapunov function V : Rn → [0,∞) such that

∇V (x)F (x) < 0, x ∈ Rn\{0},(53)

and

V (λr1x1, . . . , λ
rnxn) = λkV (x), x ∈ Rn\{0},(54)
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for each λ > 0. We stress that (53) implies that the system ẋ = F (x) is globally
asymptotically stable. Further, as mentioned in [12, p. 470], the identities (52) and
(54) yield

∇V (λr1x1, . . . , λ
rnxn)F (λr1x1, . . . , λ

rnxn) = λs+k∇V (x)F (x)

for all x in Rn\{0} and all λ > 0. Furthermore, from the homogeneity of V and F it
can be checked [5, Lemma 5.1, p. 87] that there exists θ > 0 such that we have

∇V (x)F (x) < − θρ1+ s
k , x ∈ V −1(ρ), ρ > 0.(55)

If s = 0, then for each β > 0 we define hβ : [0,∞)→ (0,∞) by setting

hβ(t) = βe−θt, t ≥ 0.(56)

If s > 0, then for each β > 0 we let hβ : [0,∞)→ (0,∞) be given by

hβ(t) =
1(

β−
s
k +

s

k
θt
) k
s

, t ≥ 0.(57)

Finally, if s < 0, we set

β̄
∆
=

[
θ

(−s
2k

) 1
2

e
1
2

]− ks
(58)

and for each β in (0, β̄] we define hβ : [0,∞)→ (0,∞) by setting

hβ(t) =


β, t ≤ β

−s
k

θ ,

βe
−
(
t− β

−s
k

θ

)2

, t > β
−s
k

θ .

(59)

It is not hard to check [5, Lemma B.13, p. 164] that for each β in (0, β̄] (resp., β > 0)
the mapping hβ as defined in (59) (resp., (56) or (57)), satisfies hβ(0) = β together
with

−θhβ(t)1+ s
k ≤ ḣβ(t), t ≥ 0.(60)

If s < 0 (resp., s ≥ 0), we fix β in (0, β̄] (resp., in (0,∞)). Because the mapping hβ
given by the formula (59) (resp., (56) or (57)) satisfies the inequality (60), it follows
from (55) that

∇V (x)F (x) < ḣβ(t), x ∈ V −1(hβ(t)), t ≥ 0.(61)

Furthermore, it is plain that for each β in (0, β̄] (resp., in (0,∞)), the mapping hβ is
nonincreasing and converges to 0 as t tends to +∞. Finally, for each β and each γ in
(0, β̄] (resp., in (0,∞)) with β < γ, we have hβ(t) < hγ(t) for all t ≥ 0.

Simultaneous asymptotic stabilization in the case s ≥ 0.
Throughout this paragraph, we assume s ≥ 0. We fix β̂ in (0, 1), and we define

the sequence of positive reals {βni , i = 1, 2}n∈Z by setting

βn1
∆
= (β̂)2n−1 and βn2

∆
= (β̂)2n, n ∈ Z.



NONLINEAR SIMULTANEOUS STABILIZATION 1719

Next, we choose the sequences of positive reals {αni , i = 1, 2, }n∈Z and {βni , i =
1, 2}n∈Z such that we have

γn1 > βn1 > αn1 > γn2 > βn2 > αn2 > γn+1
1 , n ∈ Z,

and we define the mappings ani , b
n
i , c

n
i : [0,∞)→ (0,∞) by setting

ani (t) = hαn
i
(t), bni (t) = hβn

i
(t), cni (t) = hγn

i
(t)

for each t ≥ 0, with hβ given by (56) if s = 0 and (57) if s > 0. Because hβ satisfies
(61), it follows that

∇V (x)F (x) < ḃni (t), x ∈ V −1(bni (t)), t ≥ 0,(62)

for each i = 1, 2 and each n in Z. For each i = 1, 2, and each n in Z, we let the
mapping qni : [0,∞) × Rn → [0, 1] be given by the formula (36) for each (t, x) in
[0,∞) × Rn, after substituting V for Vi, with ani , bni , and cni as given here. It can
be checked that the sequence of mappings {bni , i = 1, 2, }n∈Z satisfies each one of the
assumptions of Theorem 5.1(b), and from the proof of this theorem we see that the
mapping v : [0,∞)× Rn → Rm given by

v(t, x) = −
∑
n∈Z

u(x) qn1 (t, x) +
∑
n∈Z

u(x) qn2 (t, x), (t, x) ∈ [0,∞)× Rn,(63)

simultaneously globally asymptotically stabilizes S1 and S2. In the case s = 0 we now
show that the feedback law v uniformly stabilizes with exponential convergence both
S1 and S2.

Exponential convergence in the cases = 0. Throughout this paragraph, we assume
that s = 0, so that we have

bn1 (t) = (β̂)2n−1 e−θt, and bn2 (t) = (β̂)2n e−θt, t ≥ 0, n ∈ Z.

Upon setting T
∆
= − 1

θ ln(β2), these definitions yield

bni (t+ kT ) = bn+k
i (t), t ≥ 0, i = 1, 2, n ∈ Z, k = 0, 1, . . . .(64)

We now fix i = 1, 2 and we let x0 be in Rn. Because the sequence {bni (0)}n∈Z is
strictly decreasing and converges to +∞ and 0 as n tends to −∞ and +∞, resp., there
exists n̄(x0) in Z (for the sake of brevity, we will let n̄ denote n̄(x0)) such that

bn̄+1
i (0) < V (x0) ≤ bn̄i (0).(65)

We fix t0 ≥ 0 and let the integer k and the real t′0 in [0, T ) be such that t0 = kT+t′0.
By combining (64) with the fact that the mapping bni is decreasing for each n in Z,
we get

bn̄i (0) = bn̄−k−1
i ((k + 1)T ) ≤ bn̄−k−1

i (t0),

so that (65) yields V (x0) ≤ bn̄−k−1
i (t0). Therefore, Lemma 8.1 combined with (62)

implies that

V (x(t, x0, t0)) ≤ bn̄−k−1
i (t), t ≥ t0.(66)
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Next, for x in Rn, Lemma 1 in [12] yields the existence of (λx) > 0 and y in

Sn−1 ∆
= {x ∈ Rn : ‖x‖ = 1} satisfying x = ( (λx)r1y1, . . . , (λx)rnyn ), and upon

setting mV = miny∈Sn−1 V (y), we get

V (x) = (λx)k V (y) ≥ mV (λx)k.(67)

We now define r and R by setting r
∆
= mini=1,...,n ri and R

∆
= maxi=1,...,n ri, and we

obtain

‖x‖2 = (λx)2r1y2
1 + · · ·+ (λx)2rny2

n ≤
{

(λx)2R if (λx) ≥ 1,
(λx)2r if (λx) < 1.

Thus, for each t ≥ t0, the inequalities (66) and (67) together with the expression of
bn̄−k−1
i (t) yield

‖x(t, x0, t0)‖ kR ≤ βn̄−1−k
i

mV
e−θt if (λx(t,x0,t0)) ≥ 1,

‖x(t, x0, t0)‖ kr ≤ βn̄−1−k
i

mV
e−θt if (λx(t,x0,t0)) < 1.

Because t0 = kT + t′0 with t′0 ≥ 0, it is easily seen from (64) that we have

‖x(t, x0, t0)‖ ≤
(
βn̄−1
i

mV

)R
k

e−θ
R
k (t−t0) if (λx(t,x0,t0)) ≥ 1,

‖x(t, x0, t0)‖ ≤
(
βn̄−1
i

mV

) r
k

e−θ
r
k (t−t0) if (λx(t,x0,t0)) < 1

for each t ≥ t0. Thus, we get

‖x(t, x0, t0)‖ ≤ max

(βn̄−1
i

mV

)R
k

,

(
βn̄−1
i

mV

) r
k

 e−θ rk (t−t0), t ≥ t0.

We note that the real

max

(βn̄−1
i

mV

)R
k

,

(
βn̄−1
i

mV

) r
k


depends solely on ‖x0‖ (uniformly in t0). Further, by definition, the integer n̄(x0)
converges to +∞ as ‖x0‖ tends to 0, so that βn̄i converges to 0 as ‖x0‖ tends to 0. We
therefore obtain that v globally uniformly asymptotically stabilizes with exponential
convergence the systems S1 and S2 (according to Definition 2.1 (iv)).

Simultaneous local asymptotic stabilization in the case s < 0.
We let

βn1
∆
=

β̄

2n− 1
and βn2

∆
=

β̄

2n
, n = 1, 2, . . . ,

with β̄ as given in (58), and we define bni : [0,∞)→ (0,∞) by setting bni (t) = hβn
i

(t) for
each t ≥ 0, each i = 1, 2, and each n = 1, 2, . . . , with hβ as given in (59). It can easily
be checked that the mappings bni satisfy the assumptions of Theorem 5.1(a). Thus,
there exists a continuous time-varying state feedback law v : [0,∞)×V −1( [0, β̄+1) )→
Rm which simultaneously locally asymptotically stabilizes S1 and S2.
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7. Conclusion. In this paper, merely continuous and time-varying nonlinear
state feedback have proved very useful for simultaneous stabilization of countable
families of linear and nonlinear systems. We believe that the use of such feedback
for robust stabilization of uncountable families of systems also should yield interesting
results; we continue our investigation in that direction [6].

8. Appendix. The following lemma is the key argument in establishing the
results of this paper. It is either implicitly or explicitly used in the proofs of all the
theorems and propositions of this paper.

Lemma 8.1. Let D be a bounded neighborhood of the origin in Rn (resp., D = Rn)
and let V : D → (0,∞) be a Lyapunov function (resp., a radially unbounded Lyapunov
function). Further, let the mapping f : [0,∞) × D → Rn be continuous and let the

mapping b : [0,∞) → (0, infx∈∂D V (x)) be C1. Finally, set W β ∆
= {x ∈ D : V (x) <

β} for each β > 0, and assume that

∇V (x) f(t, x) < ḃ(t), x ∈ ∂W b(t), t ≥ 0.(68)

Then, for each t0 ≥ 0 and each x0 in W
b(t0)

, each solution x(·, x0, t0) of ẋ = f(t, x)
satisfies

x(t, x0, t0) ∈ W
b(t)

, t ≥ t0.

Proof. Fix t0 ≥ 0 and x0 in W
b(t0)

and let x(·, x0, t0) denote the solution of
ẋ = f(t, x) that starts from x0 at time t0. In order to prove the lemma, the next two
claims will be needed.

Claim 1. Let t3 > t0 be such that x(t, x0, t0) lies in D for each t in [t0, t3). Then
we have the inequality V (x(t, x0, t0)) ≤ b(t), t ∈ [t0, t3).

Assume that Claim 1 does not hold. Then there exists t2 in [t0, t3) such that we
have V (x(t2, x0, t0)) > b(t2). Because we have V (x(t0, x0, t0))− b(t0) ≤ 0, continuity
of the mapping V (x(·, x0, t0)) − b(·) yields the existence of t1 in [t0, t2) and h1 in
(0, t3 − t1) such that

V (x(t1, x0, t0))− b(t1) = 0,(69)

and

V (x(t1 + h, x0, t0))− b(t1 + h) > 0, h ∈ (0, h1).(70)

By assumption x(t1, x0, t0) belongs to D, and we obtain from (69) that x(t1, x0, t0)
lies in ∂W b(t1). Thus, assumption (68) yields

d

dt
|t=t1V (x(t, x0, t0)) = ∇V (x(t1, x0, t0)) f( t1, x(t1, x0, t0) ) < ḃ(t1),

and from the continuity of the mappings ∇V (·), f(·, ·), and ḃ(·), combined with (69)
we get

V (x(t1 + h, x0, t0)) < b(t1 + h) for h > 0 small enough,

which is a contradiction of (70). The proof of Claim 1 is thus complete.
Claim 2. x(t, x0, t0) lies in D for each t ≥ t0.
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Since Claim 2 clearly holds if D = Rn, we assume that D is bounded. Suppose
that the claim does not hold. Because x0 belongs to D, it is easily seen [5, Lemma
B.2.iii, p. 152] that there exists t1 > t0 such that

x(t1, x0, t0) ∈ ∂D, and x(t, x0, t0) ∈ D, t ∈ [t0, t1).(71)

Thus, Claim 1 yields

V (x(t, x0, t0)) ≤ b(t), t ∈ [t0, t1).(72)

Further, from (71) combined with the definition of b, we obtain

V (x(t1, x0, t0)) ≥ inf
x∈∂D

V (x) > b(t1),

and continuity of the mapping V (x(·, x0, t0))− b(·) at t1 yields the existence of h1 in
(0, t1 − t0) satisfying

V (x(t1 − h, x0, t0)) > b(t1 − h), h ∈ (0, h1),

which contradicts (72). Hence, we have Claim 2.
We now let t3 > t0. By Claim 2, the point x(t, x0, t0) lies in D for each t ≥ t0, so

that Claim 1 applied with t3 yields

V (x(t, x0, t0)) ≤ b(t), t ∈ [t0, t3).

The proof of the lemma is completed upon noting that this last argument holds for

all t3 > t0, all x0 in W
b(t0)

, and all t0 ≥ 0.
The following lemma is used in the proof of Theorem 5.1 in order to establish

robust asymptotic stabilizability of certain families of nonlinear systems.
Lemma 8.2. Let D1 and D2 be two bounded neighborhoods of the origin (resp.,

Let D1 = D2 = Rn), and let V1 : D1 → [0,∞) and V2 : D2 → [0,∞) be two
Lyapunov functions (resp., two radially unbounded Lyapunov functions). Further,
let b1 and b2 be two continuous mappings from [0,∞) into (0, infx∈∂D1

V1(x)) and
(0, infx∈∂D2 V2(x)), resp., such that

D1 ∩ V −1
1 ([0, b1(t))) ⊃ D2 ∩ V −1

2 ( [0, b2(t)]), t ≥ 0.(73)

Then, there exist two C∞ mappings a1 : [0,∞) → (0, infx∈∂D1
V1(x) ) and c2 :

[0,∞)→ (0, infx∈∂D2
V2(x) ) such that for each t ≥ 0 we have

b1(t) > a1(t) and c2(t) > b2(t),(74)

together with

D1 ∩ V −1
1 ( [0, a1(t)) ) ⊃ D2 ∩ V −1

2 ( [0, c2(t)]).(75)

Proof. For each t ≥ 0 and each δt, either in (0, t) if t > 0 or in (0,∞) if t = 0, we
set

I(t, δt)
∆
=

{
(t− δt, t+ δt) if t > 0,
[0, δt) if t = 0.

As usual, I(t, δt) denotes the closure of I(t, δt). We first construct a mapping a1 :
[0,∞)→ (0, infx∈∂D1 V1(x)) such that b1(t) > a1(t) for each t ≥ 0 and

D1 ∩ V −1
1 ( [0, a1(t)) ) ⊃ D2 ∩ V −1

2 ( [0, b2(t)]), t ≥ 0.(76)
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Construction of a1. Fix t in [0,∞). The continuity of the mapping b1 and b2
combined with (73) yields the existence of δt > 0 (with δt in (0, t) if t > 0) [5, Lemma
B.12, p. 163] such that

D1 ∩ V −1
1

([
0, min
τ∈I(t,δt)

b1(τ)

))
⊃ D2 ∩ V −1

2

([
0, max
τ∈I(t,δt)

b2(τ)

])
.

It is easily seen that there exists αt satisfying

αt ∈
(

0, min
τ∈I(t,δt)

b1(τ)

)
(77)

and

D1 ∩ V −1
1 ( [0, αt)) ⊃ D2 ∩ V −1

2

([
0, max
τ∈I(t,δt)

b2(τ)

])
.(78)

We now extract from the family {I(t, δt)}t∈[0,∞) a countable subcover {I(tk, δtk)}∞k=0

such that tk < tk+1 for all k = 0, 1, . . . . We let δ′tk and δ′′tk in (0, δtk ] be such that the
sets

I0
∆
= [0, δ0) and Ik

∆
= (tk − δ′tk , tk + δ′′tk), k = 1, 2, . . . ,

form an open cover of [0,∞) and any t in [0,∞) lies in at most two successive sets
Ik and Ik+1. We let {p̄k}∞k=0 be a partition of unity subordinate to {Ik}∞k=0\{0} such
that for each k = 1, 2, . . . , the support of p̄k is included in Ik and the support of p̄0

is included in (0, δt0) [15, p. 10]. For each k = 0, 1, . . . , we define the C∞ mapping
pk : [0,∞)→ [0, 1] by setting

pk(t) = p̄k(t), t > 0, k = 0, 1, . . . ,

p0(0) = 1 and pk(0) = 0, k = 1, 2, . . . .

Next, we let the mapping a1 : [0,∞)→ (0,∞) be given by

a1(t) =

∞∑
k=0

αtk pk(t), t ≥ 0.

Let t be in [0,∞). Then, there exists an open neighborhood Ut of t in [0,∞) that
intersects with at most two sets Ik and Ik+1 of the family {Ik}∞k=0. It follows that
we have a1(τ) = αtkpk(τ) +αtk+1

pk+1(τ) for each τ in Ut. Thus, a1 is C∞ on [0,∞).
Further, in view of (77), we get that 0 < a1(t) < b1(t) for each t ≥ 0.

We now show that (76) holds. Let t be in [0,∞). If t lies in a unique set Ik, we
get a1(t) = αtk , so that the inclusion (76) follows from (78). On the other hand, if t
lies in two sets Ik and Ik+1, we get

a1(t) = αtk pk(t) + αtk+1
pk+1(t).(79)

As (78) yields

D1 ∩ V −1
1 ( [0, αtj ) ) ⊃ D2 ∩ V −1

2 ( [0, b2(t)] ), j = k, k + 1,

and since we have a1(t) ≥ min (αtk , αtk+1
) (this follows from (79)), we obtain (76).
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Construction of c2. The construction of a mapping c2 satisfying (74) and (75) is
similar to that of a1. From the continuity of the mappings a1 and b2, we obtain from
(76) a real δt > 0 [5, Lemma B.12, p. 163] such that

D1 ∩ V −1
1

([
0, min
τ∈I(t,δt)

a1(τ)

))
⊃ D2 ∩ V −1

2

([
0, max
τ∈I(t,δt)

b2(τ)

])
.

Thus, there exists γt [5, Lemma B.11, p. 162] satisfying

γt ∈
(

max
τ∈I(t,δt)

b2(τ), inf
x∈∂D2

V2(x)

)
and

D1 ∩ V −1
1

([
0, min
τ∈I(t,δt)

a(τ)

))
⊃ D2 ∩ V −1

2 ([0, γt]).

From the new family {I(t, δt)}t≥0, we construct some sequences of sets {I(tk, δtk)}∞k=0

and {Ik}∞k=0, and a family of mappings {pk}∞k=0 exactly as we did in the construction
of a1. Next, we let the mapping c2 : [0,∞)→ (0,∞) be given by

c2(t) =
∞∑
k=0

γtk pk(t), t ≥ 0.

Using arguments similar to those used for a1, it can be shown that c2 is C∞ on [0,∞),
and that both (74) and (75) hold. Hence, we have the lemma.
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is classical in the case of polyhedric control constraints. Our theory of optimization problems with
partially polyhedric constraints allows to extend these results to the case when the control constraints
are polyhedric, in the presence of state constraints satisfying some specific hypotheses. The analysis is
based on the assumption that some strict semilinearized qualification condition is satisfied. We apply
the theory to some optimal control problems of elliptic equations with state and control constraints.
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1. Introduction. This paper discusses a class of optimal control problems that
have local control constraints and a finite number of state constraints. The problem
was considered recently in [15], where second-order necessary optimality conditions
were obtained. The aim of this paper is to generalize this type of result to more
general optimal control problems that have two types of constraints, the first of them
being polyhedric. We also prove that this type of second-order condition allows us to
state second-order sufficient conditions, and in fact that they allow us to characterize
quadratic growth. Our basic tools are the second-order necessary conditions based on
second-order tangent sets and polyhedricity theory.

The approach of second-order necessary conditions based on second-order tangent
sets was renewed in [22], where the computation of the contribution of the curvature
of the feasible set to second-order necessary conditions was done in the case of non-
negative continuous functions of time. This approach was extended in [16, 20, 21, 31]
for abstract optimization problems and more recently in [29, 30] for optimal control
problems.

Polyhedricity theory for convex sets is a classical tool for obtaining formulas for
the directional derivative of the projection over a convex set [18, 28], was applied
to nonlinear control problems [36, 26], and has been linked to the recent work on
sensitivity analysis for abstract optimization problems [6, 8, 10].

The paper is organized as follows. Section 2 presents a theory of second-order
necessary or sufficient optimality conditions for abstract optimization problems that
satisfy the strict semilinearized qualification condition. In the case corresponding to
an optimal control problem with polyhedric control constraints and a finite number
of additional inequality constraints, the theory is complete in the sense that there is
no gap between the necessary and sufficient conditions. More precisely, we obtain a
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characterization of the quadratic growth condition.
In section 3, assuming a weak second-order sufficient condition and the strict

semilinearized qualification condition, we provide a formula for computing the direc-
tional derivative of the optimal control (as well as a second-order expansion of the
value function) with respect to a perturbation.

Section 4 discusses the application of the previous results to some optimal control
problems of elliptic equations. We consider the case of nonnegative control subject to
a finite number of state constraints.

Notations. Let (P) be an optimization problem. By F (P), ε-S(P), and val(P),
we denote the feasible set, set of ε solutions, and value of problem (P), respectively.

2. Second-order abstract optimality conditions. In this section we discuss
the theory of second-order optimality conditions for optimization problems of the
following type:

(AP) Minxf(x); x ∈ KX ; G(x) ∈ KY .

Here X and Y are Banach spaces, KX and KY are closed convex subsets of X and
Y , respectively, and f and G are twice continuously differentiable mappings from X
into R and Y . We note that, if K is a convex subset of a Banach space X and x ∈ K,
then the tangent and normal cones TK and NK and the cone of feasible directions RK
are defined as

TK(x) := {y ∈ X ; ∃ x(σ) = x+ σy + o(σ) ∈ K, σ ≥ 0},
NK(x) := {x∗ ∈ X ∗; 〈x∗, y〉 ≤ 0,∀y ∈ TK(x)},
RK(x) := {y ∈ X ; ∃ t > 0; x+ ty ∈ K},

with the convention that these sets are empty if x 6∈ K. An interesting case is when
KX is polyhedric in the following sense [28, 18].

Definition 2.1. Let x0 ∈ KX and x∗ ∈ NKX (x0). We say that KX is polyhedric
at x0 for the direction x∗ if

TKX (x0) ∩ (x∗)⊥ = RKX (x0) ∩ (x∗)⊥.(2.1)

If KX is polyhedric at each x0 ∈ KX ∀ x∗ ∈ NKX (x0), we say that KX is polyhedric.
By setting

K := KX ×KY , Y := X × Y, G(x) := (x,G(x)),

we can write the abstract optimization problem (AP) under the form

(AP2) Minxf(x)(such that)G(x) ∈ K,
with G(x), twice continuously differentiable mapping from X into Y, and K closed
convex subset of Y. We will use the relationship between the two formats several
times, in order to use the results that were derived for problem (AP2). For instance,
the standard constraint qualification condition for x0 ∈ F (AP2), due to Robinson
[32], is as follows:

0 ∈ int{DG(x0)X − (K − G(x0))}.(2.2)

Lemma 2.2 (Robinson [32]). Let x0 ∈ F (AP2) satisfy (2.2). Then the following
metric regularity property holds. There exist ε > 0 and α > 0 such that ∀ x ∈ B(x0, ε)
∃ x̂ ∈ G−1(K) satisfying

‖x̂− x‖ ≤ αdist(G(x),K).
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It is easy to show (e.g., [10]) that the qualification condition for a problem of the
form (AP) (after it has been put under the form (AP2)) is equivalent to

0 ∈ int{DG(x0)(KX − x0)− (KY −G(x0))}.(2.3)

The critical cone at x0 ∈ F (AP) is defined as the set of directions of nonincrease
of the cost function that are tangent to the feasible set. More precisely,

C(x0) := {h ∈ TKX (x0);Df(x0)h ≤ 0; DG(x0)h ∈ TKY [G(x0)]}.
The Lagrangian function and the set of Lagrange multipliers are defined as

L(x, λ) := f(x) + 〈λ,G(x)〉,
Λ(x) := {(q, λ) ∈ NKX (x)×NKY [G(x)]; DxL(x, λ) + q = 0}.

Lemma 2.3 (Zowe and Kurcyusz [37]). Let x0 be a local solution of (AP) satis-
fying the qualification hypothesis (2.3). Then with x0 is associated a nonempty and
bounded set of Lagrange multipliers.

It is convenient to use the following well-known characterization of the critical
cone.

Lemma 2.4. Let Λ(x) 6= ∅, say contains (q, λ). Then Df(x)h = 0 whenever
h ∈ C(x), and

C(x) = {h ∈ TKX (x) ∩ q⊥; DG(x)h ∈ TKY [G(x)] ∩ λ⊥}.(2.4)

Proof. Let h ∈ X be tangent to the feasible set of (AP), in the sense that
h ∈ TKX (x) and DG(x)h ∈ TKY [G(x)]. By definition of Λ(x), we have

0 = 〈DxL(x, λ) + q, h〉 = Df(x)h+ 〈λ,DG(x)h〉+ 〈q, h〉.
Since the last two terms are nonpositive, we have Df(x)h ≥ 0, and Df(x)h ≤ 0 iff
the last two terms are zero. The result follows.

Let x ∈ F (AP). Using the above lemma, we may view the critical cone as a
linearization of the following set:

A(q, λ) := {h ∈ (KX − x) ∩ q⊥; DG(x)h ∈ TKY [G(x)] ∩ λ⊥}.(2.5)

Note that in this expression we chose to “linearize” the constraint G(x) ∈ KY but
not the relation x ∈ KX . The set A(q, λ) is the inverse image, through the linear
continuous mapping h→ (h,DG(x)h), of the closed convex set(

(KX − x) ∩ q⊥)× (TKY [G(x)] ∩ λ⊥) .
We will use the associated qualification condition which we will call the strict semilin-
earized qualification condition (we justify this terminology below). From the above
discussion, it follows that the expression of the strict semilinearized qualification con-
dition is

(CQA) 0 ∈ int
{
DG(x)

(
(KX − x) ∩ q⊥)− TKY [G(x)] ∩ λ⊥} .

We may compare this condition to the more classical strict qualification condition,
introduced in [34] (see also [4]), whose expression for problem (AP) is

0 ∈ int
{
DG(x)

(
(KX − x) ∩ q⊥)− (KY −G(x)) ∩ λ⊥} .(2.6)
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Lemma 2.5. (i) Condition (2.6) implies (CQA), and both conditions are equiva-
lent if KY is a polyhedron in the Banach space Y .

(ii) Assume that the standard constraint qualification (2.3) holds. Then condition
(CQA) implies existence and uniqueness of the Lagrange multiplier.

Proof. (i) Since (KY −G(x)) ⊂ TKY (G(x)), we obviously have that (2.6) implies
(CQA). Assume now that KY is a polyhedron in Y and that (CQA) holds. Since
R+(KY − G(x)) = RKY (x) is equal to TKY (G(x)), conditions (CQA) and (2.6) are
obviously equivalent.

(ii) It is known that the strict qualification condition (2.6) implies existence and
uniqueness of the Lagrange multiplier, see [34]. Since (CQA) is nothing but the strict
qualification condition after linearization of the second constraint (that leaves invari-
ant the set of Lagrange multipliers), we obtain that the set of Lagrange multipliers
that by (2.2) is nonempty is in fact a singleton.

It is possible to express a second-order necessary optimality condition for problem
(AP), using the result of [16], in terms of the second-order tangent set to KY ⊂ Y at
y ∈ KY in direction z ∈ TKY (y) that is defined as

T 2
KY (y, z) :=

{
w ∈ Y ; y + tz +

t2

2
w + o(t2) ∈ KY , t ≥ 0

}
.

Let x0 be a local minimum of (AP) satisfying (2.3). Set

T (h) := T 2
KY [G(x0), DG(x0)h].

In all that follows, we shall use this definition of a support function.
Definition 2.6. Let K a subset of a Banach space X , and let x∗ be in X ∗. The

support function of K at x∗ is σ(x∗,K) := sup{〈x∗, x〉 : x ∈ K}.
The following theorem is obtained by combining the result of [16] with some

polyhedricity properties. Note that if T (h) = ∅, then σ(·, T (h)) is identically equal
to −∞; therefore, in that case, the conclusion of case (i) of Lemma 2.5 is trivially
satisfied.

Theorem 2.7. Assume that KX is polyhedric. Let x0 be a local minimum of (AP)
satisfying (2.3) and the strict semilinearized qualification condition (CQA). Then

(i) C(x0) ∩RKX (x0) is a dense subset of C(x0), and each h ∈ C(x0) ∩RKX (x0)
satisfies

D2
x2L(x0, λ)(h, h)− σ(λ, T (h)) ≥ 0,(2.7)

where λ is the Lagrange multiplier.
(ii) If in addition h→ σ(λ, T (h)) is lower semicontinuous over C(x0), then (2.7)

holds for all critical direction h.
(iii) If KY is a polyhedron, then for all critical direction h we have

D2
x2L(x0, λ)(h, h) ≥ 0.(2.8)

Proof. (i), step a. We claim that C(x0) ∩ RKX (x0) is a dense subset of C(x0).

Let h ∈ C(x0), and fix ε > 0. Since KX is polyhedric, ∃ ĥε ∈ RKX (x0)∩q⊥ such that

‖ĥε − h‖ ≤ ε. Let tε > 0 be such that x0 + tεĥε ∈ KX . We use the metric regularity
property that, by Lemma 2.2, follows from (CQA):

∃ γ > 0 and α > 0 such that, if ŵ ∈ X, and ‖ŵ‖ ≤ γ,
then ∃ w ∈ (KX − x0) ∩ q⊥ such that

DG(x0)w ∈ TKY [G(x0)] ∩ λ⊥, and

‖w − ŵ‖ ≤ α[dist(ŵ, (KX − x0) ∩ q⊥) + dist(DG(x0)ŵ, TKY [G(x0)] ∩ λ⊥)].
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Reducing tε if necessary, we have that ŵε := tεĥε is such that ‖ŵε‖ ≤ γ and ŵε ∈
(KX − x0) ∩ q⊥. Since

dist(DG(x0)ŵε, TKY [G(x0)] ∩ λ⊥) = O(εtε),

it follows that ∃ wε ∈ (KX − x0) ∩ q⊥ such that

DG(x)wε ∈ TKY [G(x0)] ∩ λ⊥,
‖wε − ŵε‖ = α dist(DG(x0)ŵε, TKY [G(x0)] ∩ λ⊥) = O(tεε).

Set hε := t−1
ε wε. Then hε ∈ C(x0)∩RKX (x0), and ‖hε− h‖ = O(ε). This proves our

claim.
(i), step b. Since x0 is a qualified local solution of (AP) and the Lagrange mul-

tiplier is unique, by [16, Thm. 4.2] the following second-order necessary condition
holds. For any critical direction h, we have

D2
x2L(x0, λ)(h, h)− σ(q, T 2

KX (x0, h))− σ(λ, T (h)) ≥ 0.(2.9)

Note that we have used here the fact that the support function of a set in product
form is the sum of the corresponding support function.

On the other hand, since q ∈ NKX (x0), we have σ(q, T 2
KX

(x0, h)) ≤ 0 [16, Sect.
4]. If h ∈ RKX (x0), then 0 ∈ T 2

KX
(x0, h), so that σ(q, T 2

KX
(x0, h)) = 0. Point (i)

follows.
(ii) Let h ∈ C(x0). By (i) ∃ hk → h, hk ∈ C(x0) ∩RKX (x0), and

D2
x2L(x0, λ)(hk, hk) ≥ σ(λ, T (hk)).

Since the right-hand side is lower semicontinuous (l.s.c.) by hypothesis, andD2
x2L(x0, λ)(·, ·)

is a continuous function, we may pass to the limit in this inequality. Point (ii) follows.
(iii) If KY is a polyhedron, then it is well known that 0 ∈ T (h) (e.g., [10]), whence

σ(λ, T (h)) = 0 for all critical direction h. The result then follows from (ii).
In order to formulate second-order sufficient conditions, we need the following

concept.
Definition 2.8 (see, e.g., [19]). We say that a quadratic form Q on a Hilbert

space X is a Legendre form if Q is weakly l.s.c. and, whenever a sequence {xk} ⊂ X
satisfies xk

w→ x and Q(xk)→ Q(x), then xk → x.
The function x→ ‖x‖2 is the simplest example of a Legendre form. More gener-

ally, if N > 0 and Q is a weakly continuous quadratic form, it is easy to check that
x→ N‖x‖2 +Q(x) is a Legendre form; see, e.g., [11].

Definition 2.9. We say that x0 is a local solution of (AP) satisfying the
quadratic growth condition if

∃α > 0; f(x) ≥ f(x0) + α‖x− x0‖2 + o(‖x− x0‖2) ∀x ∈ F (AP),(2.10)

where F (AP) is the feasible set of the problem (AP).
Theorem 2.10. Assume that KX is a polyhedric subset of the Hilbert space X.

Let x0 be a qualified local minimum of (AP) satisfying the strict semilinearized qualifi-
cation condition (CQA), and let (q0, λ0) be the unique associated Lagrange multiplier.
If Q0(h) := D2

x2L(x0, λ0)(h, h) is a Legendre form and KY is a polyhedron, then the
following condition is necessary and sufficient for quadratic growth:

D2
x2L(x0, λ0)(h, h) > 0 ∀ h ∈ C(x0)\{0}.(2.11)
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Proof. Let x0 satisfy the quadratic growth condition. Then ∃ α > 0 such that x0

is a local solution of the problem

(APα) Minxf(x)− α

2
‖x− x0‖2; x ∈ KX ; G(x) ∈ KY .

Since KY is a polyhedron, and therefore σ(λ, T (h)) = 0, (2.11) follows from Theorem
2.7.

Conversely, assume that (2.11) holds, while the quadratic growth condition is not
satisfied. Then ∃ xk → x0 such that

f(xk) ≤ f(x0) + o(‖xk − x0‖2).(2.12)

Set tk := ‖xk − x0‖. Extracting a subsequence if necessary, we may assume that

xk = x0 + tkhk, ‖hk‖ = 1, and hk
w→ h̄. Also h̄ ∈ TKX (x0) since hk ∈ RKX (x0),

(2.12) implies that Df(x0)h̄ ≤ 0, and from G(xk) ∈ KY we deduce that DG(x0)h̄ ∈
TKY (G(x0)). It follows that h̄ is a critical direction.

By the first-order optimality condition we have

〈q0, xk − x0〉 ≤ 0 and 〈λ0, G(xk)−G(x0)〉 ≤ 0.

Combining with DxL(x0, λ0) + q0 = 0, we deduce that

f(xk)− f(x0) ≥ L(xk, λ0)− L(x0, λ0) + 〈q0, xk − x0〉
=
t2k
2
Q0(hk) + o(t2k).

Combining with (2.12), it follows that Q0(hk) ≤ o(1). Since Q0(·) is l.s.c., we have
Q0(h̄) ≤ 0. Since h̄ is critical, with (2.11) this implies that h̄ = 0. It follows that
Q0(hk) → Q0(h̄). Due to ‖hk‖ = 1 and h̄ = 0, this contradicts the fact that Q0(hk)
is a Legendre form.

3. Abstract sensitivity analysis. This section is devoted to the study of the
family of perturbed optimization problems

(APu) Minxf(x, u) s.t. x ∈ KX ; G(x, u) ∈ KY .

Here u belongs to a Banach space U , KX is a closed convex subset of the Hilbert space
X, KY is a polyhedron included in the finite dimensional space Y , so that (CQA) is
equivalent to the strict qualification condition (2.6), f and G are twice continuously
differentiable mappings from X×U into R and Y . The Lagrangian of this problem is

L(x, λ, u) := f(x, u) + 〈λ,G(x, u)〉.
We perform a sensitivity analysis along a path of perturbation variables of the

form

u(t) := u0 + tu1 +
t2

2
u2 + o(t2) with ui(t) ∈ U, i = 0, 1, 2.

Let x0 be a local solution of (APu0
). The following problems may be interpreted as

the linearization and the second-order expansion of problem (APu) at (x0, u0) along
the path u(t), respectively:

(LP)
Minh∈XDf(x0, u0)(h, u1) s.t. h ∈ TKX (x0);

DG(x0, u0)(h, u1) ∈ TKY [G(x0, u0)],
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and, (q0, λ0) being the Lagrange multiplier associated with x0:

(SP) Minh∈S(LP )DuL(x0, λ0, u0)u2 +D2
(x,u)2L(x0, λ0, u0)((h, u1), (h, u1)).

Lemma 3.1. Let x0 satisfy (CQA). Then
(i) S(LP) is nonempty, and

val (LP) = DuL(x0, λ0, u0)u1,(3.1)

where (q0, λ0) is the unique Lagrange multiplier associated with x0,
(ii) The set S(LP) ∩RKX (x0) is a dense subset of S(LP).
Proof. (i) The dual, in the sense of convex analysis, to the linearized problem

(LP), is known to be (e.g., [8])

(LD) Max(q,λ)DuL(x0, λ, u0)u1; (q, λ) ∈ Λ(x0).

By Lemma 2.5, we know that there exists a unique Lagrange multiplier (q0, λ0), and
that the primal and dual values are equal. This proves (3.1). It follows that h ∈ X is
a solution of (LP) iff h ∈ F (LP) and the complementarity conditions

〈q0, h〉 = 〈λ0, DG(x0, u0)(h, u1)〉 = 0

are satisfied. In other words, h ∈ S(LP) iff

h ∈ TKX (x0) ∩ (q0)⊥; DG(x0, u0)(h, u1) ∈ TKY [G(x0, u0)] ∩ (λ0)⊥.

By (CQA) the set of such h is not empty; hence S(LP) is not empty.
(ii) This is a consequence of Theorem 2.7(i) applied to problem (LP), once we

have checked that problem (LP) itself satisfies the strict semilinearized qualification
condition. The expression of the latter (for problem (LP)) is

0 ∈ int
{
DG(x)[(TKX(x0) − h) ∩ q⊥0 ]− (TTKY [G(x0)]DG(x0)h) ∩ λ⊥0

}
.

Since (KX − x0) ⊂ TKX(x0) − h and TKY [G(x0)] ⊂ TTKY [G(x0)]DG(x0)h, this is an

obvious consequence of (CQA).
Theorem 3.2. Assume that
(i) For small enough t > 0, ∃ x(t), o(t2)-solution of (APu(t)) such that x(t)→ x0.
(ii) The point x0 is the unique solution of (APu0

) and satisfies (CQA) and the
second-order sufficient optimality condition (2.11),

(iii) The Hessian Q0(h) := D2
x2L(x0, λ0, u0)(h, h) is a Legendre form over the

Hilbert space X.
Then
(a) The following expansion for the value function of (APu(t)) holds:

val (APu(t)) = val (APu0
) + tval (LP) +

t2

2
val (SP) + o(t2).(3.2)

(b) One has x(t) = x0 +O(t). Any weak limit-point of t−1(x(t)− x0) is a strong
limit-point and is a solution of (SP). In particular, if (SP) has a unique solution h̄,
then x(t) = x0 + th̄+ o(t).

Proof. (a) Let Qu1
(h) := D2

x2L(x0, λ0)((h, u1), (h, u1)). (Note that this notation
is coherent with the definition of Q0(·) given before.) Consider the subproblem

(SPσ) Minh∈S(LP)DuL(x0, λ, u0)u2 +Qu1
(h)− σ(q0, T

2
KX

(x0, h)).
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Since KY is a polyhedron, we have σ(λ0, T
2
KY

[G(x0, u0), DG(x0, u0)(h, u1)]) = 0. It
follows from [8, Prop. 2.1] that

val(APu(t)) ≤ val(APu0) + tval(LP) +
t2

2
val(SPσ) + o(t2),

while [8, Prop. 4.3] implies that the right-hand side of (3.2) is a lower estimate of
val(APu(t)). We now prove (3.2) by checking that val(SP) ≥ val(SPσ). By Lemma
3.1, the set S(LP) ∩RKX (x0) is a dense subset of S(LP). Also on S(LP) ∩RKX (x0)
the cost functions of (SP) and (SPσ) coincide. Since σ(q0, T

2
KX

(x0, h)) ≤ 0, it follows
that

val(SP) = inf
h∈S(LP)∩RKX (x0)

{DuL(x0, λ0, u0)u2 +Qu1
(h)}

= inf
h∈S(LP)∩RKX (x0)

{DuL(x0, λ0, u0)u2 +Qu1
(h)− σ(q0, T

2
KX (x0, h))}

≥ val(SPσ),

as was to be proved.
(b) By [8, Prop 5.3], we have x(t) = x0 + O(t). Let us prove that any weak

limit-point of t−1(x(t) − x0) is a strong limit-point. Let tk → 0+, xk := x(tk), and

hk := t−1
k (xk − x0) be such that hk

w→ h̄. By [8, Prop. 5.3], we know that

Qu1
(hk)→ Qu1

(h̄).

Since Q0(·) is a Legendre form, we have hk → h̄, as was to be proved. Finally if (SP)
has a unique solution h̄, it follows that t−1(x(t)− x0) converges to h̄. The conclusion
follows.

4. Application to state constrained optimal control problems.

4.1. General results. In this section we apply the results of the previous sec-
tions to some optimal control problems for semilinear elliptic equations. In the rest
of this paper, we denote by Ω a bounded open subset of Rn (n ≤ 3) with Lips-
chitz boundary Γ. Given a function u ∈ L2(Ω) (we take in this section the standard
notations for optimal control problems), we consider the following boundary value
problem:

−∆y + φ(x, y) = u in Ω, y(x) = 0 on Γ,(4.1)

where φ : Ω × R −→ R is a continuous function which is of class C2 and such that
φ′y(x, ·) ≥ 0 ∀ x ∈ Ω.

From now on, the weak solution of (4.1) associated with u will be denoted yu.
Under the above assumption, we can prove the existence and uniqueness of a solution
of (4.1).

Theorem 4.1. For every u ∈ L2(Ω), (4.1) admits a unique weak solution yu in
H1

0 (Ω) ∩ C(Ω), which is Hölder continuous, and we have

‖yu‖C(Ω) ≤ C1(1 + ‖u‖L2(Ω))

where C1 = C1(Ω) is independent of u. Moreover, if we denote by A : L2(Ω) −→ C(Ω)
the mapping which associates with every control u the weak solution yu of (4.1), then
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A is twice continuously Fréchet differentiable, and for every u, h ∈ L2(Ω), if we denote
yu = A(u) and zh = A′(u)h, then zh is the weak solution of

−∆zh + φ′y(x, yu)zh = h in Ω, zh = 0 on Γ.(4.2)

Proof. The above theorem is a collection of known results for semilinear elliptic
equations (see [7, 6, 15] and the general references [1, 2, 5]).

Consider the following control constraints:

L2
+(Ω) := {u ∈ L2(Ω) | u(x) ≥ 0 almost everywhere (a.e.) on x ∈ Ω}.

Let us also consider a family of functions Gj of class C2 : L2(Ω)→ R for 1 ≤ j ≤ m.
We consider the following optimal control problem:

(P) Min{F (u) | u ∈ L2
+(Ω), Gj(u) ≤ 0 for 1 ≤ j ≤ m}

where

F (u) :=
1

2

∫
Ω

(yu(x)− yd(x))2 dx+
N

2

∫
Ω

u(x)2 dx,(4.3)

with yd is a given function in L2(Ω), and N > 0. The adjoint state p0
u associated with

u is defined as the unique solution in H2(Ω) of the system

−∆p0
u + φ′y(x, yu)p0

u = yu − yd in Ω, p0
u = 0 on Γ.

It is known that u→ F (u) is a C2 mapping with derivative

DF (u) = Nu+ p0
u.

We will detail later the cases when Gj(u) are some punctual or integral functions
of the state.

Let ū be an optimal solution of problem (P). Set

J+ = {j ∈ {1, . . . ,m} | Gj(ū) < 0},
J0 = {j ∈ {1, . . . ,m} | Gj(ū) = 0},
J− = {j ∈ {1, . . . ,m} | Gj(ū) = 0, λ̄j > 0}.

Then J0 ∪ J− ∪ J+ = {1, . . . ,m}. Problem (P) can be written as

Min{F (u) | u ∈ L2
+(Ω), G(u) ∈ Rm−}.

In addition (see, e.g., [10, 3]), Robinson’s constraint qualification assumption is equiv-
alent to

∃v ∈ L2
+(Ω), Gj(ū) +DGj(ū)(v − ū) < 0.(4.4)

Therefore we obtain the following (classical) expression of the first order optimality
system.

Theorem 4.2. Assume that ū is a local solution of (P) satisfying (4.4). Denote
by ȳ and p̄ the state and adjoint state associated with ū. Then there exist Lagrange
multipliers (q̄, λ̄) ∈ L2(Ω)× Rm such that

λ̄j ≥ 0, 1 ≤ j ≤ m, and λ̄j = 0 if Gj(ū) < 0,(4.5)

Nū+ p̄+
m∑
j=1

λ̄jDGj(ū) + q̄ = 0; 〈q̄, u− ū〉 ≤ 0 ∀u ∈ L2
+(Ω).(4.6)
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Since L2
+(Ω) is polyhedric in L2(Ω) (see, e.g., [18, 28]), (P) is of the form (AP) with

X = L2(Ω), Y = Rm, KX = L2
+(Ω), KY = Rm− .

We now discuss the strict semilinearized qualification condition (CQA). We need
a notation for the contact set of ū and its complement (defined up to a null measure
set):

Ω−(ū) := {x ∈ Ω; q̄(x) < 0}, Ω0(ū) := {x ∈ Ω; ū(x) = 0},

Ω+(ū) := {x ∈ Ω; ū(x) > 0}.
Since Ω−(ū) ⊂ Ω0(ū), we have

TL2
+

(Ω)(ū) ∩ q̄⊥ =
{
h ∈ L2(Ω); h ≥ 0 on Ω0(ū); h = 0 on Ω−(ū)

}
.

Therefore, the strict qualification condition is identical to the qualification condition
of the problem

Min{F (u) | u ∈ L2(Ω), u = 0 on Ω−(ū), Gj(u) = 0 for j ∈ J−}.
Lemma 4.3. Let ū ∈ F (P), with associated Lagrange multiplier (q̄, λ̄). Then the

three conditions below are equivalent:
(i) The strict semilinearized qualification condition (CQA) is satisfied.
(ii) The following conditions hold:{

(a) {DGi(ū)h; i ∈ J−; h ∈ (TL2
+

(Ω)(ū) ∩ q̄⊥)} is onto,

(b) ∃h ∈ (RL2
+

(Ω)(ū) ∩ q̄⊥); DGi(ū)h = 0, i ∈ J−; DGi(ū)h < 0, i ∈ J0\J−.
(4.7)

(iii) There exists no (q̃, λ̃) ∈ L2(Ω) × Rm with λ̃ 6= 0, satisfying the following
relations: 

(a) λ̃i = 0, i ∈ J+; λ̃i ≥ 0, i ∈ J0\J−,
(b) q̃(x) = 0 on Ω+(ū), q̃(x) ≤ 0 on Ω0(ū)\Ω−(ū);

(c) q̃ +
∑

1≤i≤m λ̃iDGi(ū) = 0.
(4.8)

Proof. By the definition, (CQA) holds iff for any z ∈ Rm close enough to 0, ∃
h ∈ (L2

+(Ω)− ū) ∩ q̄⊥ satisfying the following relations:

(i) DGi(ū)h = zi, i ∈ J−; (ii) DGi(ū)h ≤ zi, i ∈ J0\J−.(4.9)

It follows from (4.9(i)) that the set

{DGi(ū)h; i ∈ J−; h ∈ (RL2
+

(Ω)(ū) ∩ q̄⊥)} is onto.

This implies that (4.7(i)) is a necessary condition for (CQA). Then taking zi = 0,
i ∈ J−, and zi < 0, i ∈ J0\J−, we deduce that (4.7) is a necessary condition for
(CQA), i.e., (CQA)⇒ (4.7). We end the proof by showing that (4.7)⇒(4.8)⇒(CQA).

Assume that (CQA) does not hold. Then the convex cone

E :=
{
DG(ū)h− z; h ∈ RL2

+
(Ω)(ū) ∩ q̄⊥; zi ≤ 0, i ∈ J0; zi = 0, i ∈ J−

}
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is not equal to Rm. Since the latter is a finite dimensional space, the closure of E is
not equal to Rm. By the Hahn–Banach theorem, since E is a cone, ∃ λ̃ ∈ Rm, λ̃ 6= 0,
such that 〈λ̃, y〉 ≥ 0 ∀y ∈ E. It follows that (4.8(i)) holds, while q̃ defined by (4.8(iii))
is such that

−〈λ̃, DG(ū)h〉 =

∫
Ω

q̃(x)h(x)dx ≤ 0 ∀h ∈ (L2
+(Ω)− ū) ∩ q̄⊥.(4.10)

Since the polar of the intersection of two closed convex cones is the closure of the sum
of their polar cones, we have that

q̃ ∈ ((L2
+(Ω)− ū) ∩ q̄⊥)− = (L2

+(Ω)− ū)− + Rq̄.

Relation (4.8(ii)) follows.
Finally, suppose that (4.7) holds, but (4.8) does not hold. Let (q̃, λ̃) satisfy (4.8).

Then (4.10) holds. It follows that for each h ∈ RL2
+

(Ω)(ū) ∩ q̄⊥,

0 ≤ −
∫

Ω

q̃(x)h(x)dx =
∑

1≤i≤m
λ̃iDGi(ū)h.

This and (4.7(ii)) imply λ̃i = 0 ∀i ∈ J0\J−. Then, since L2
+(Ω) is polyhedric, with

(4.7(i)) we obtain λ̃i = 0 ∀i ∈ J−, in contradiction with the fact that λ̃ 6= 0.
Denote by L2(Ω+(ū)) the Hilbert space of functions of L2(Ω) that are a.e. null

outside Ω+(ū). From the above lemma, we deduce the following corollary, similar to
[15, Thm. 5.2].

Corollary 4.4. A sufficient condition for (CQA) is that the restriction of
DG(ū) to L2(Ω+(ū)), with image space Rm, is onto.

We now discuss second-order optimality conditions. Since Q0(·) is a Legendre
form, we have the following result which is an immediate consequence of Theorem
2.10. Note that the assumption, that the Hessians D2G(ū) are weakly continuous, is
typically satisfied if G represents state constraints, as will be the case in the examples
to be seen later. The expression of the Lagrangian for problem (P) is

L(u, λ) := F (u) +

m∑
i=1

λiGi(u).

Theorem 4.5. Let ū be an optimal solution of (P), with associated Lagrange
multiplier (q̄, λ̄), satisfying condition (CQA). Assume that the Hessians D2Gi(ū) (for
i = 1, . . . ,m) are weakly continuous. Then ū satisfies the quadratic growth condition
iff

D2
uuL(ū, λ̄)(h, h) > 0 ∀h ∈ C(ū), h 6= 0.

4.2. Problems with finitely many punctual state constraints. We con-
sider in this subsection the case when the functions Gj , 1 ≤ j ≤ m, are defined
by

Gj(u) = yu(xj)− bj .
Here b ∈ Rm and xj ∈ Ω, 1 ≤ j ≤ m, are given. We denote ȳ := yū. A simple
consequence of Lemma 4.3 follows.
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Lemma 4.6. Assume that Ω+(ū) has a nonempty interior. Then the strict semi-
linearized qualification condition (CQA) is satisfied.

Proof. If the conclusion does not hold, then by Lemma 4.3, ∃ (q̃, λ̃) ∈ L2(Ω)×Rm
with λ̃ 6= 0, satisfying (4.8). It is a classical result (see, e.g., [12]) that q̃ ∈ L2(Ω) ∩
W 1,s(Ω), ∀ s < n/(n− 1) and is the unique solution in W 1,1(Ω) of

−∆q̃ + φ′y(x, ȳ)q̃ = −∑1≤i≤m λiδ(xi) in Ω, q̃ = 0 on Γ.(4.11)

Here δ(xi) stands for the Dirac measure at point xi. Since q̃ = 0 on the interior of
Ω+, and the latter is nonempty, we have by the unique extension theorem [35] that
q̃ = 0 over Ω except perhaps at the points xj . But this implies λ̃ = 0, in contradiction
to the hypothesis.

We now state the characterization of quadratic growth. By zh we denote the
solution of the linearized equation (4.2) with yu = ȳ and right-hand side h. As a
consequence of Theorem 4.5, we have the following.

Theorem 4.7. Let ū be a feasible point of (P), with associated Lagrange mul-
tiplier (q̄, λ̄), and assume that the interior of Ω+ is nonempty. Then ū satisfies the
quadratic growth condition iff ∃ p̄ ∈W 1,s(Ω) ∀ s < n/(n− 1), such that

λ̄j ≥ 0, 1 ≤ j ≤ m, and λ̄j = 0 if Gj(ū) < 0,(4.12)

−∆p̄+ φ′y(x, ȳ)p̄ = ȳ − yd +
m∑
j=1

λ̄jδ(xj) in Ω, p̄ = 0 on Γ,(4.13) ∫
Ω

(Nū(x) + p̄(x))(u(x)− ū(x)) dx ≥ 0 ∀u ∈ L2
+(Ω),(4.14)

and such that, ∀ h ∈ C(ū), h 6= 0, and zh solution of (4.2) (in which ȳ = yū),∫
Ω

(Nh(x)2 + z2
h(x)2 − p̄(x)φ′′y(x, ȳ)zh(x)2) dx > 0.(4.15)

We now discuss sensitivity of the solution of the optimal control problem with
respect to the target yd. Therefore we denote

F (u, yd) :=
1

2

∫
Ω

(yu(x)− yd(x))2 dx+
N

2

∫
Ω

u(x)2 dx.

Consider a target path, where t ≥ 0,

yd(t) = yd0 + tyd1 +
t2

2
yd2 + o(t2).

Note that

DydF (u, yd0)yd1 = −
∫

Ω

(ȳ − yd0)(x)yd1(x)dx.

The subproblems to be considered here, corresponding to (LP) and (SP), are

(LP)
Minh∈L2(Ω)

∫
Ω

(Nū+ p̄)(x)h(x)dx−
∫

Ω

(ȳ − yd0)(x)yd1(x)dx

s.t. h ≥ 0 on Ω0(ū); zh(xi) ≤ 0, i ∈ J0,
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and, denoting by zh the solution of (4.2) (in which yu = ȳ),

(SP) Minh∈S(LP)D
2F (ū, yd0)((h, yd1), (h, yd1))−

∫
Ω

(ȳ − yd0)(x)yd2(x)dx.

(An expression of the Hessian of F in term of p̄ and zh is given in [6].)
Theorem 4.8. Assume that ū is the unique solution of (AP) and satisfies (CQA)

as well as the second-order sufficient optimality condition (4.15). Then
(a) The following expansion for the value function of (APu(t)) holds:

val (APu(t)) = val (APū) + tval (LP) +
t2

2
val (SP) + o(t2).(4.16)

(b) Let u(t) be a path of o(t2)-solutions. Then one has u(t) = ū + O(t). Any
weak limit-point of t−1(u(t)− ū) is a strong limit-point and is a solution of (SP). In
particular, if (SP) has a unique solution h̄, then u(t) = ū+ th̄+ o(t).

Proof. It is easy to check that the solutions of the perturbed problem are uniformly
bounded and that they strongly converge in L2(Ω) to ū; see, e.g., [6]. In addition the
Hessian of the Lagrangian, which is equal to the Hessian of the cost, is a Legendre
form. Therefore the conclusion is a consequence of Theorem 3.2.

4.3. Problems with integral state constraints. We consider in this subsec-
tion the case when the functions Gj(u), 1 ≤ j ≤ m, are defined by

Gj(u) =

∫
Ω

gj(yu(x), x) dx.

The functions gj(u) are assumed to be twice continuously differentiable functions
R × Ω̄ → R. Then G(·) is itself a C2 mapping. We know that the derivative of
u→ Gj(u), viewed as a function L2(Ω)→ R, is pj(u) ∈ H2(Ω) solution of

−∆pj + φ′y(x, yu)pj = Dygj(yu(x), x) in Ω, pj = 0 on Γ.

A simple consequence of Lemma 4.3 follows.
Lemma 4.9. The strict qualification condition (CQA) is satisfied iff the following

system has no solution (q̃, λ̃) ∈W 1,s(Ω)× Rm:

−∆q̃ + φ′y(x, ȳ)q̃ = −∑1≤i≤m λiDygj(ȳ(x), x) in Ω, q̃ = 0 on Γ,

q̃(x) = 0 on Ω+(ū), q̃(x) ≥ 0 on Ω0(ū)\Ω−(ū),
λ 6= 0; λi = 0, i ∈ J+, λi ≥ 0, i ∈ J0\J−.

(4.17)

Let us give an example of such integral constraints for which condition (CQA)
can be checked. Let b ∈ Rm and aj ∈ C(Ω) for 1 ≤ j ≤ m, with aj(x) of constant sign
over its support Ωj := supp(aj). Assume that these supports satisfy the following
geometric relation:

Ωi ∩ Ωj = ∅ for i 6= j; Ω \ (∪1≤j≤mΩj) is connected.(4.18)

We consider the case when

gj(u) :=

∫
Ω

aj(x)yu(x)dx− bj .
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We also assume the following:

∃ Ω∗, open subset of Ω+(u), s.t. Ω∗ ∩ Ωj = ∅, 1 ≤ j ≤ m.(4.19)

Lemma 4.10. Under the above hypotheses, the strict qualification condition
(CQA) is satisfied.

Proof. If the conclusion does not hold, then ∃ (q̃, λ̃) satisfying the condition of
Lemma 4.9, and in particular

−∆q̃ + φ′y(x, ȳ)q̃ = −
∑

j∈J0∪J−
λ̃jaj in Ω, q̃ = 0 on Γ,(4.20)

as well as q̃ = 0 on Ω∗. Set A := Ω \ (∪1≤j≤mΩj). Then A is a connected open set
that contains Ω∗. Since Ω∗ is open, and q̃ = 0 on A, by the unique extension theorem
[35] we obtain q̃ = 0 on A, hence on ∂Ωj , ∀ 1 ≤ j ≤ m. Let j be such that λ̃j 6= 0.
Let Aj be the interior of Ωj , 1 ≤ j ≤ m, and let

Bj := {x ∈ Ω; dist(x,Aj) ≤ ε}.
Take ε > 0 so small that Bj\Aj does not intersect Ωi for i 6= j. Then q̃ satisfies

−∆q̃ + φ′y(x, yu)q̃ = −λ̃jaj in Bj , q̃ = 0 on ∂Bj .

This equation has a unique solution in H1
0 (Bj). Since aj is of constant sign, q̃ is

nonzero over the interior of Bj . But this is impossible, since the latter contains a
nonempty open set included in A.

Whenever (CQA) holds, we can state a characterization of quadratic growth. We
omit the statement since it is similar to Theorem 4.2.

5. Conclusion and possible extensions. Our theoretical results extend those
in [6], which discuss problems with polyhedric control constraints only. We were able
to give an application of these results for control and state constrained optimal control
problems when the number of state constraints is finite.

For technical reasons we discussed only the case when the space dimension n is
less than or equal to 3. Extension of these results in the case n > 3 seems possible
by combining the technique of this paper with the two norms approach [6, 25]. The
latter would also allow our results to extend to the case of boundary control or to
problems with a parabolic state equation.

It seems also possible to extend our results to the case when KY is not a poly-
hedron, taking advantage of the results in [9]. For instance, the set of semi definite
positive matrices is a closed convex set that satisfies hypothesis (ii) of Theorem 2.7.
On the other hand, the case of a punctual state constraint at every point of the do-
main Ω seems out of reach, since the strict qualification condition is probably not
satisfied in that case.
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Abstract. In this paper, methods are presented for calculating the maximal parameter pertur-
bation bounds underH2 performance constraints for a family of uncertain systems and for calculating
the average H2 performance under such parameter variations. The uncertain systems are described
by state space models with nonlinear (polynomial) dependencies on real uncertain parameters. All
results obtained are based on necessary and sufficient conditions. As a special virtue of the approach,
the proposed algorithms for stability analysis and for performance analysis turn out to have exactly
the same algebraic structure. An example illustrates the results and the algorithms.
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1. Introduction. Robust performance analysis for uncertain control systems,
which is now receiving a great deal of attention (see [4, 9] and references therein), is
a relatively new area in comparison with robust stability analysis. For linear time-
invariant systems, the H2 performance metric arises naturally in a number of different
physically meaningful situations; see [4, 6, 3]. The H2 performance of a linear time-
invariant system is measured via the H2 norm of its transfer matrix. As long as this
H2 norm is less than a given upper bound, the design can stop, and there is usually no
need to seek the minimal norm and/or this might not be advisable due to robustness
considerations.

Suppose now that the H2 norm of a nominal (stable) system is less than a given
upper bound. Then the question is whether the norm is still less than this upper bound
after suffering a parameter perturbation, or alternatively, how to find the maximal
domain for perturbation parameters under stability and H2 norm constraints.

This paper will consider the latter problem and calculate the maximal perturba-
tion interval or radius in perturbation parameter space. The results obtained are not
only sufficient but also necessary. The paper is different from most previously pub-
lished papers which deal with a fixed parameter domain and affine perturbations. One
of our motivations comes from [4], which computed the supremum of the H2 norm
in the case of an affine perturbation with perturbation parameter q ∈ [0, 1]. Also in
similarity with that paper we shall compute not only the maximal perturbation radii
subject to stability and performance constraints but also the average performance
over a fixed perturbation set.
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The notation used throughout the paper is as follows. Denote the real number set
by R and the complex plane (the complex open left half plane) by C (C−). Let cs:
Rm×n → Rmn be the column stacking operator on a matrix and ⊕: Rn×n×Rm×m →
Rmn×mn be the standard matrix Kronecker sum defined in [2]. Finally, let λk(·) be
the kth eigenvalue of a square matrix.

2. Problem formulation. Consider a linear time-invariant system

ẋ(t) = A(q)x(t) +B(q)w(t),
z(t) = C(q)x(t),

(2.1)

where x ∈ Rn, w ∈ Rm, and z ∈ Rp are state, disturbance, and performance vectors,
respectively; A(q), B(q), and C(q) are (of compatible dimension) continuous matrix
functions of the perturbation parameter vector q = [q1, q2, . . . , ql]

T ∈ Rl. The transfer
function matrix from w to z can be expressed as T (s, q) = C(q)(sI − A(q))−1B(q).
A square constant matrix is called stable if all of its eigenvalues lie in C−. The
corresponding transfer function T (s, q) is said to be stable for a given q if A(q) is
stable and its H2 norm is defined by

‖T (s, q)‖2 .
=

{
1

2π

∫ +∞

−∞
trace [T (jω, q)T ∗(jω, q)] dω

}1/2

,(2.2)

where T ∗(s, q) .
= T ′(−s, q) and (·)′ denotes transpose.

We shall make the following standing assumptions on the nominal system—given
by (A(0), B(0), C(0))—and on the parameter dependence:

AS1. A(0) is stable.
AS2. ‖T (s, 0)‖22 < γ.
AS3. The system matrices may be parameterized as

A(q)
.
= A0 + qA1 + · · ·+ qm1Am1 ,

B(q)
.
= B0 + qB1 + · · ·+ qm2Bm2 ,

C(q)
.
= C0 + qC1 + · · ·+ qm3Cm3 ,

where all of Ak, Bk, and Ck are given constant matrices.
Here, γ is a given positive constant which reflects the tolerance of the system as
measured by the H2 performance (for instance, an acceptable output variance of (2.1)
to a white noise signal w). The goal is to find the “maximal domain” in Rl so that
‖T (s, q)‖22 < γ for every q in the domain. A prerequisite for doing this is that A(q)
must be stable for all q in this domain. This means that the robust stability analysis
must be completed first (see relevant results in [1, 5, 7, 8]).

The relevant problems will in this paper only be considered for the single pa-
rameter case, i.e., l = 1. The two parameter case, l = 2, can at least in principle
be handled by the approach described below applying a line search. However, for
medium or large scale problems, computational issues will limit the practical use of
this.

To formulate the problem of determining the maximal perturbation radius, first
define

r−s
.
= inf{r < 0 : A(q) is stable ∀q ∈ (r, 0)},(2.3)

r+
s
.
= sup{r > 0 : A(q) is stable ∀q ∈ (0, r)},(2.4)

r−2
.
= inf{r < 0 : A(q) is stable and ‖T (s, q)‖22 < γ ∀q ∈ (r, 0)},(2.5)

r+
2
.
= sup{r > 0 : A(q) is stable and ‖T (s, q)‖22 < γ ∀q ∈ (0, r)}.(2.6)
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Then (r−s , r
+
s ) is the maximal perturbation interval of q while keeping the sta-

bility of A(q), and (r−2 , r
+
2 ) is the maximal perturbation interval of q while keeping

‖T (s, q)‖22 < γ.
Problem 2.1. Suppose that system (2.1) satisfies AS1, AS2, and AS3.
(a) Find r−s and r+

s .
(b) Find r−2 and r+

2 .
Remark 2.2. Obviously, (r−2 , r

+
2 ) ⊂ (r−s , r

+
s ).

The notion of average performance can be defined in terms of the following prob-
lem.

Problem 2.3. Suppose that system (2.1) satisfies AS1, AS2, and AS3 and that
two numbers q and q are given, where r−s < q < q < r+

s .

Find
1

q − q
∫ q
q
‖T (s, q)‖22 dq.

This definition follows the convention in [4]. It can be argued that an alternative
problem formulation similar to Problem 2.3 but without the square would be inter-
esting as well. That problem also admits a solution but not one which is as easy to
interpret in terms of the problem parameters as the one given for Problem 2.3 below.

Remark 2.4. The integral boundaries of Problem 2.3 have been chosen to be
strictly inside the stability interval (not on the closure). This is because, usually, the
integral would become unbounded on the stability boundary.

3. Preliminaries. The main idea in this paper is to transform functions that are
rational in the independent variable (the uncertain parameter) into a matrix version
of the companion form, utilizing the fact that the “denominator” is based on a matrix
valued polynomial map. In what follows, we shall provide a matrix result which will
prove useful in this respect.

Let M(r) = M0 + rM1 + · · ·+ rmMm, where all of the Mk’s are n × n constant
matrices, and |M0| 6= 0 (| · | denotes the determinant). Let

r− .
= sup{r < 0 : |M(r)| = 0},(3.1)

r+ .
= inf{r > 0 : |M(r)| = 0}(3.2)

be the maximal perturbation bounds for nonsingularity of matrices. By simple oper-
ations on the matrix and its determinant (see [8]), it can be shown that

r− =
1

λ−min(M)
,(3.3)

r+ =
1

λ+
max(M)

,(3.4)

where M is an mn×mn matrix given by

M
.
= −


O −I O · · · O
O O −I · · · O
...

...
...

. . .
...

O O O · · · −I
M−1

0 Mm M−1
0 Mm−1 M−1

0 Mm−2 · · · M−1
0 M1

 ,(3.5)

λ−min(·) stands for the minimal value of the negative real eigenvalues (let λ−min(·) = 0−

if there exist no negative real eigenvalues) and λ+
max(·) stands for the maximal value
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of the positive real eigenvalues (let λ+
max(·) = 0+ if no positive real eigenvalues),

respectively.
Formulae (3.3) and (3.4) suggest the following algorithm.
Algorithm 3.1 (the maximal perturbation bounds for nonsingularity of matri-

ces).
Step 1. Input Mk, k = 0, 1, . . . ,m, where |M0| 6= 0;
Step 2. Define M as in (3.5);
Step 3. Calculate all the eigenvalues of M;
Step 4. Find r− and r+ based on (3.3) and (3.4), then output.

Algorithm 3.1 will be one of the cornerstones below in solving Problems 2.1 and
2.3. Algorithm 3.1 is conceptually clear and easy to implement, although, admittedly,
the numerical aspects can be quite involved for large scale problems, since the relevant
matrices will be of very high order. Hence, the main applications for the results below
will be in terms of small or medium scale problems.

The following lemma helps us to transform Problem 2.1(a) into that of the max-
imal perturbation bounds for the nonsingularity of matrices.

Lemma 3.2. Suppose that
(1) Q is a singly connected domain in Rl, and 0 ∈ Q,
(2) A(0) is stable.

Then A(q) are stable ∀q ∈ Q if and only if |A(q)⊕A(q)| 6= 0∀q ∈ Q.
Proof. Recall the continuity of A(q), B(q), C(q) in q and that

λk(A(q)⊕A(q)) = λi(A(q)) + λj(A(q)),

k = 1, . . . , n2; i, j = 1, . . . , n.

From this observation the lemma becomes obvious.
By using Lemma 3.2 it follows that

r−s = sup{q < 0 : |A(q)⊕A(q)| = 0} (scalar case),(3.6)

r+
s = inf{q > 0 : |A(q)⊕A(q)| = 0} (scalar case),(3.7)

rs = inf{r : |A(q)⊕A(q)| = 0 for some q, ‖q‖ ≤ r}(3.8)

(multiparameter case).

Instead of (2.2) in the frequency domain, use the state space approach to compute

‖T (s, q)‖22 = trace{C ′(q)C(q)Q(q)},
where Q(q) = Q(q)′ satisfies

A(q)Q(q) +Q(q)A(q)′ +B(q)B(q)′ = 0.

It is easy to show the following compact formula (or see [4]):

‖T (s, q)‖22 = −cs[C ′(q)C(q)]′ · [A(q)⊕A(q)]−1 · cs[B(q)B′(q)].(3.9)

Going one step from (3.9), the following result is obtained, which helps transform
Problem 2.1(b) into that of the maximal perturbation bounds for nonsingularity of
matrices.

Lemma 3.3. Suppose that
(1) Q is a singly connected domain in Rl, and 0 ∈ Q,
(2) A(q) are stable ∀q ∈ Q,
(3) ‖T (s, 0)‖22 < γ.
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Then ‖T (s, q)‖22 < γ ∀ q ∈ Q if and only if |Mγ(q)| 6= 0∀q ∈ Q, where

Mγ(q)
.
= A(q)⊕A(q) +

1

γ
cs[B(q)B′(q)] · cs[(C ′(q)C(q)]′.(3.10)

Proof. ‖T (s, q)‖22 < γ ∀q ∈ Q
⇔ γ + cs[C ′(q)C(q)]′ · [A(q)⊕A(q)]−1 · cs[B(q)B′(q)] > 0 ∀q ∈ Q (from (3.9));
⇔ |γI + [A(q) ⊕ A(q)]−1 · cs[B(q)B′(q)] · cs[C ′(q)C(q)]′| > 0 ∀q ∈ Q (use equality
|γI +XY | = |γI + Y X|);
⇔ |γ[A(q)⊕A(q)]−1| · |Mγ(q)| > 0 ∀q ∈ Q (from (3.10));
⇔ |Mγ(q)| 6= 0∀q ∈ Q (due to the continuity ofA(q), B(q), C(q) to q, and Lemma 3.2).

The rest of the proof is trivial and thus omitted.
By using Lemma 3.3 we obtain the following formulae:

r−2 = sup{q ∈ (r−s , 0) : |Mγ(q)| = 0} (scalar case),(3.11)

r+
2 = inf{q ∈ (0, r+

s ) : |Mγ(q)| = 0} (scalar case),(3.12)

r2 = inf{r : r ≤ rs and |Mγ(q)| = 0 for some q, ‖q‖ ≤ r}(3.13)

(multiparameter case).

In section 2 we presented two types of problems. One is the maximal perturbation
bounds for system stability; the other is the maximal perturbation bounds for system
performance. Lemmas 3.2 and 3.3 help us to transform these two into the maximal
perturbation bounds for nonsingularity of matrices. This means that the resulting
algorithms will be similar in spirit.

4. Maximal stability and performance radii. This section will describe the
main formulae and algorithms.

By using matrix multiplication and the expressions of A(q), B(q), C(q) in Prob-
lem 2.1, it can be seen that

A(q)⊕A(q) = A0 + qA1 + · · ·+ qm1Am1 ,(4.1)

cs[B(q)B′(q)] = b0 + qb1 + · · ·+ q2m2b2m2
,(4.2)

cs[C ′(q)C(q)] = c0 + qc1 + · · ·+ q2m3c2m3
,(4.3)

where

Ak = Ak ⊕Ak, k = 0, 1, . . . ,m1,

b0 = cs [B0B
′
0] , . . . ,bk = cs

 ∑
i+j=k

BiB
′
j

 , . . . ,b2m2
= cs

[
Bm2

B′m2

]
,

c0 = cs [C ′0C0] , . . . , ck = cs

 ∑
i+j=k

C ′iCj

 , . . . , c2m3
= cs

[
C ′m3

Cm3

]
.

Substituting the above expressions for A(q), B(q), and C(q) in (3.10), it can be written
then as

Mγ(q) = M0γ + qM1γ + · · ·+ qmMmγ ,(4.4)

where m = max{m1, 2(m2 +m3)} and

M0γ = (A0 ⊕A0) +
1

γ
cs [B0B

′
0] · cs [C ′0C0]

′
,(4.5)
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and all of other Mkγ (the detailed expressions are omitted) depend on Ai, bj , and ck
in a similar fashion.

By recalling Algorithm 3.1 and using (3.6), (3.7), and (4.1), the following result
is obtained.

Theorem 4.1. Assume that the system (2.1) satisfies AS1, AS2, and AS3. Then
the following two statements are equivalent:

(1) system (2.1) is stable ∀ |q| < δ,
(2) min {−r−s , r+

s } > δ.
To compute the maximal perturbation stability bounds, we can devise the follow-

ing algorithm from the above results.
Algorithm 4.2 (the maximal perturbation bounds for Problem 2.1(a)).

Step 1. Input Ak, k = 0, 1, . . . ,m, where A0 must be stable;
Step 2. Calculate Ak, k = 0, 1, . . . ,m1;
Step 3. Let Mk = Ak, recall Algorithm 3.1, then compute r− and r+;
Step 4. Let r−s = r− and r+

s = r+, and output.
From AS2, Lemma 3.3, and (4.5), it can be shown that |M0γ | 6= 0. By recalling

Algorithm 3.1 and using (3.11), (3.12), and (4.4), the following result is obtained.
Theorem 4.3. Assume that the system (2.1) satisfies AS1, AS2, and AS3. Then

the following two statements are equivalent:
(1) ‖T (s, q)‖2 < γ ∀ |q| < δ,
(2) min {−r−s , r+

s } > δ.
Similarly, to compute the maximal perturbation performance bounds, we can

devise the following algorithm from the above results.
Algorithm 4.4 (the maximal perturbation bounds for Problem 2.1(b)).

Step 1. Input Ai, Bj, and Ck, where we must have AS1 and AS2;
Step 2. Calculate Ai, bj, and Ck, and also m;
Step 3. Calculate Mkγ ;
Step 4. Let Mk = Mkγ , and recall Algorithm 3.1 to get r− and r+;
Step 5. Output r−2 = max{r−s , r−}, r+

2 = min{r+
s , r

+}.
Remark 4.5. Algorithms 4.2 and 4.4 do not need any iteration.
Reference [5] gave the maximal perturbation bounds for Problem 2.1(a) in the

simplest case (affinely linear perturbation of a single parameter).

5. Average H2 performance. To compute the average performance we follow
the line of approach of [4]. In similarity with that approach we shall further assume
thatB(q) and C(q) are fixed matrices, i.e., we have the following uncertainty structure.
AS4. The system matrices may be parameterized as

A(q)
.
= A0 + qA1 + · · ·+ qm1Am1 ,

B(q)
.
= B0,

C(q)
.
= C0.

This assumption can be lifted at the cost of more complicated expressions. These,
though, can be obtained easily for a specific application, for instance, by the use of
a symbolic algebra package, and the more general result is straightforward, following
the idea below.
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We define the following matrix:

A
.
=


O −I O · · · O
O O −I · · · O
...

...
...

. . .
...

O O O · · · −I
A−1

0 Am1
A−1

0 Am1−1 A−1
0 Am1−2 · · · A−1

0 A1

 ,

where, as above, Ak = Ak ⊕ Ak, k = 0, 1, . . . ,m1. Note that A0 is invertible due to
assumption AS1. Also define

B
.
=

 0
...
A−1

0 cs(B0B
′
0)

 .

Finally, we need

C
.
=
(

0 . . . 0 cs (C ′0C0)
′ ) .

With these definitions, we can obtain the following result for the average H2 perfor-
mance of the parameter dependent system.

Theorem 5.1. Assume A(q), B(q), and C(q) are as described in AS4 with A(0)
stable. Let q and q be two real numbers satisfying r−s < q < q < r+

s , where r−s and r+
s

are as defined in (2.3) and (2.4). Then

1

q − q
∫ q

q

‖T (s, q)‖22 dq = − 1

q − qCA−1
(
log(I + qA)− log(I + qA)

)
B,

where log(·) denotes the matrix logarithm, i.e., the inverse of the matrix exponential.
Proof. It is straightforward using (3.9) to show that

‖T (s, q)‖22 = −C(I + qA)−1B.

Hence,∫
‖T (s, q)‖22 dq = −C

(∫
(I + qA)−1 dq

)
B = −C

(
A−1 log(I + qA)

)
B.(5.1)

The last equality holds whenever the argument of the logarithm is a nonsingular
matrix. This condition, however, is fulfilled in any open subset of (r−s , r

+
s ) due to (3.6)

and (3.7).
In certain nongeneric cases (where controllability or observability is lost), it might

make sense to extend the calculation of average performance to the boundaries of
stability. In that case, the integral in (5.1) becomes more involved. Indeed, let T be
a nonsingular matrix, such that

T−1AT =

[
Ã 0
0 A0

]
,

where Ã is nonsingular and A0 is nilpotent of order k. (One possibility is to compose
Ã and A0 by Jordan blocks and to choose the columns of T as the corresponding
generalized eigenvectors.)

Then it is easy to show that∫
‖T (s, q)‖22 dq = −CT

[
Ã−1 log(I + qÃ) 0

0 qI +
∑k−1
i=1 (−1)i q

i+1

i+1 Ai
0

]
T−1B.
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6. Example. An example with a single perturbation parameter is cited below.
Let

A(q) =

[ −2 1
0 −1.5

]
+ q

[
0 1
0 0

]
+ q2

[
0 0
1 0

]
+ q3

[
1 1
1 0

]
,

B(q) =

[
1 0
0 1

]
+ q

[
1 0
1 2

]
, C(q) =

[
1 1

]
.

It is easy to show that

A0 =

[ −2 1
0 −1.5

]
is stable, that

T (s, 0) =
[

1
s+2

s+3
(s+2)(s+1.5)

]
,

and that ‖T (s, 0)‖22 ≈ 0.8214 < 1 = γ. In this example it may be shown that

A(q)⊕A(q) =


−4 1 1 0
0 −3.5 0 1
0 0 −3.5 1
0 0 0 −3

+ q


0 1 1 0
0 0 0 1
0 0 0 1
0 0 0 0



+ q2


0 0 0 0
1 0 0 0
1 0 0 0
0 1 1 0

+ q3


2 1 1 0
1 1 0 1
1 0 1 1
0 1 1 0

 ,

cs[B(q)B′(q)] =


1
0
0
1

+ q


2
1
1
4

+ q2


1
1
1
5

 ,
and

cs[C ′(q)C(q)] =


1
1
1
1

 .
Furthermore,

Mγ(q) =


−3 2 2 1
0 −3.5 0 1
0 0 −3.5 1
1 1 1 −2

 + q


2 3 3 2
1 1 1 2
1 1 1 2
4 4 4 4



+ q2


1 1 1 1
2 1 1 1
2 1 1 1
5 6 6 5

 + q3


2 1 1 0
1 1 0 1
1 0 1 1
0 1 1 0

 .
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Finally, (r−s , r
+
s ) = (−1.6710, 0.7683) can be calculated, which shows that the fam-

ily A(q) is stable ∀ q ∈ (−1.6710, 0.7683), and (r−2 , r
+
2 ) = (−1.5670, 0.0442), meaning

that ‖T (s, q)‖22 < 1 ∀ q ∈ (−1.5670, 0.0442). These two intervals are furthermore the
largest intervals with these properties.

If now, in compliance with Assumption AS4, we fix the input matrix

B(q) ≡
[

1 0
0 1

]
,

we obtain a larger performance interval:
(
r−2 , r

+
2

)
= (−1.6668, 0.3182), where the H2

norm is bounded by 1. Moreover, in that interval, the average performance can be
expressed in terms of√√√√∫ r+

2

r−2

‖T (s, q)‖22 dq =

√
− 1

r+
2 − r−2

CA−1
(
log(I + r+

2 A)− log(I + r−2 A)
)
B,

≈ 0.7428

which for this case is in fact better than the nominal performance, ‖T (s, 0)‖2 ≈
0.9063 !

7. Conclusions. Methods for calculating the maximal parameter-perturbation
bounds under H2 performance constraints for a family of systems described by state
space models, with nonlinear dependence on real uncertain parameters, have been
presented. The results are not conservative as the information of the system structure
is used completely. The algorithms as presented here, for robust performance radii and
for stability radii, are algebraically similar in nature. Finally, an explicit expression
for average H2 performance for an uncertainty interval also has been presented.
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1. Introduction. The classical Lyapunov theorem on the range of vector-valued
measures, as established in [Ce, Chap. 16], has proved, in the absence of any general
theory, to be a very important tool in the study of nonconvex minimization problems
within the framework of optimal control [Ne], [Ce], [S1], [R1], [R2], [R3], and [R4]
and calculus of variations [Ar], [Ce], [C-Co], [Cr], [Cr-M], [Mar], [C-F], [Ma], [Am-
C], [Am-Ma], and [F1]. The setting on which the Lyapunov theorem works is as
follows. We start by considering an auxiliary minimization problem (P∗∗) associated
to the original one (P). Problem (P∗∗) is such that, if J and J∗∗ are the functionals
associated to problems (P) and (P∗∗), respectively, then

J∗∗(u) ≤ J(u) ∀ u and min
u

J∗∗(u) = J∗∗(ũ) ∈ R.

Then, an application of the Lyapunov theorem shows the existence of a function ū
satisfying J(ū) = J∗∗(ũ) = minu J∗∗(u), showing that ū is a solution to (P). As
a consequence, we could also have min (P∗∗) = min (P). This equality suggests
we consider J∗∗ as the relaxed functional, defined as the greatest sequentially weakly
lower semicontinuous functional majorized by J (e.g., [DM]). However, we actually call
(P∗∗) the convexified problem since the relaxation procedure requires some additional
assumptions on the integrands which are not necessarily imposed in this paper.

The integral functionals treated under this setting have special structure, namely,
they can be split into the sum of two integrals: one depending on the derivative of
higher order (e.g., gradient, Laplacian, etc.), and the other depending on the state
function itself. The former is the nonconvex part.

A multidimensional version of the Lyapunov theorem has been proven in [Br],
although a similar result was already published in [A-L]. This version permits us
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to deal with nonconvex minimum problems involving some hyperbolic equations on
rectangular domains with Darboux conditions on the entire boundary, as shown in
[Br-F].

This paper is organized as follows. In section 2, a new Lyapunov-type theorem
suitable for our purpose is established. This result involves a “unilateral” condition
(see (ii) in Lemma 2.3) and is not valid if the set-valued map considered is not constant,
as shown in Remark 2.6. In section 3, we present new classes of nonconvex integrals
having minima. In such integrals we consider a monotonicity condition with respect to
the state variable which replaces the concavity condition imposed in [Br-F]. Moreover,
since our functionals involve a hyperbolic differential operator with Darboux boundary
conditions on three sides of the rectangle, we also consider problems with obstacles
(Corollary 3.4), unlike [Br-F], where the conditions are given on the entire boundary.
The integrands we propose here give rise to integrals that are nondifferentiable and
lower semicontinuous only along some special minimizing sequences. In section 4,
we also apply the previously mentioned Lyapunov-type result to treat a bang-bang
problem for the controlled equation zxy = u(x, y) (Theorems 4.4 and 4.6).

2. A Lyapunov-type result. Before establishing our Lyapunov-type result, we
recall some basic definitions from set-valued analysis. We refer to the book [Au-Fr,
Chapter VIII]. In particular, a set-valued map T : Y ⊂ Rm → Rn is a map from Y
to the subsets of Rn. In what follows measurability is with respect to a Lebesgue
measure.

Definition 2.1. Given a measurable set Y ⊂ Rm, the set-valued map T : Y →
Rn is called measurable if the inverse image of each open set is a measurable set. In
other words, if for every open set V ⊂ Rn, we have that

T−1(V )
.
=
{
y ∈ Y : T (y) ∩ V 6= ∅

}
is measurable.

The next proposition will be useful in the proof of our main lemma.

Proposition 2.2. Let Y ⊂ Rm be a closed set, F : Y → Rn be a measurable
set-valued map with closed and nonempty values, and ψ : Rn × Y → R be a function
such that the map x 7→ ψ(x, y) is continuous ∀y ∈ Y , y 7→ ψ(x, y) is measurable on
Y ∀x ∈ Rn. Then, the set-valued map T : Y → Rn,

T (y) =
{
x ∈ F (y) : ψ(x, y) = 0

}
,

which is supposed to take nonempty values, is measurable with closed values.

Proof. That T (y) is closed follows from the continuity of ψ(·, y) and the closedness
of F (y). By virtue of Theorem 8.1.4 in [Au-Fr], we need only verify that the graph
of T is measurable. It is defined by Graph T

.
= {(x, y) : x ∈ T (y)}. The conclusion

is then implied by the equality Graph T = Graph F ∩ ψ−1(0), which is trivially
satisfied.

In the following, the pair (x, y) with y = (x2, x3, . . . , xm) denotes a vector in
Rm, Q denotes the closed cube in Rm defined by Q

.
=
∏m
i=1[ai, bi], and Q′ denotes

the closed cube in Rm−1 corresponding to the last m − 1 components of Q, i.e.,
Q′ .=

∏m
i=2[ai, bi] ⊂ Rm−1. Given a convex set K ⊂ Rn, we denote by extr K the set

of extreme points of K, that is, the set of such x ∈ K such that K\{x} is convex as
well, and by 〈·, ·〉 we denote the scalar product in Rn.
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The next result is a variant of Lemma 2.2 in [Am-Ma], suitable for our purpose.
We refer to section 4 for a further extension of this result. Applications of it to
variational problems arising in economics will appear elsewhere; see [F2] and [F-R].

Lemma 2.3. Let S ⊂ Rn be a k-dimensional relative open simplex with vertices
c0, c1, . . . , ck, E ⊂ Q ⊂ Rm be a measurable set, and v : E → S be a measurable
function. Then, there exists a measurable function w : E → extr S such that

(i)
∫ b1
a1
w(x, y)χE(x, y)dx =

∫ b1
a1
v(x, y)χE(x, y)dx for almost all y ∈ Q′;

(ii) for every x ∈ [a1, b1], every ν ∈ C+, we have∫ x

a1

〈w(r, y), ν〉χE(r, y)dr ≥
∫ x

a1

〈v(r, y), ν〉χE(r, y)dr for almost all y ∈ Q′.

Here, C+
.
= {ν : 〈ci − ci+1, ν〉 ≥ 0 ∀ i = 0, 1, . . . , k − 1}.

Proof. A measurable selection theorem allows us to write v(x, y) =
∑k

0 pi(x, y)ci
for suitable measurable functions pi : E → [0, 1] satisfying

∑k
0 pi ≡ 1. For any ν ∈ C+,

we set αi = 〈ci, ν〉 for i = 0, · · · , k. Thus, α0 ≥ α1 ≥ · · · ≥ αk.
We claim that there exist measurable functions δi : Q′ → [a1, b1], i = 1, . . . , k,

such that δi(y) ≤ δi+1(y) and, by putting δ0 ≡ a1, δk+1 ≡ b1, one has

(2.1)

∫ δi+1(y)

δi(y)

χE(x, y)dx =

∫ b1

a1

pi(x, y)χE(x, y)dx for almost all y ∈ Q′.

To prove (2.1), we proceed recursively as follows. Assuming δi is known for i =
0, . . . , j, we will define δj+1. Let us consider the function

ψ(x, y) =

∫ x

a1

χE(r, y)dr −
∫ b1

a1

j∑
i=0

pi(r, y)χE(r, y)dr.

This function is such that x 7→ ψ(x, y) is continuous for almost every (a.e.) y; y 7→
ψ(x, y) is measurable for every x; ψ(b1, y) ≥ 0 since

∑k
0 pi ≡ 1; and

ψ(δj(y), y) =

∫ δj(y)

a1

χE(r, y)dr −
j∑
i=0

∫ b1

a1

pi(r, y)χE(r, y)dr

= −
∫ b1

a1

pj(r, y)χE(r, y)dr ≤ 0.

Thus, by the previous proposition, the set-valued map T (y) = {x ∈ [δj(y), b1] :
ψ(x, y) = 0}, y ∈ Q′, is measurable and then admits at least a measurable selection
δj+1 : Q′ → [a1, b1] (see Theorem 8.1.3 in [Au-Fr], for instance). In particular, we
have δj+1(y) ≥ δj(y) and∫ δj+1(y)

δj(y)

χE(x, y)dx =

∫ b1

a1

pj(x, y)χE(x, y)dx for almost all y ∈ Q′.

This proves claim (2.1). A desired function satisfying the requirements of the lemma
is given by

w(x, y) =

k∑
i=0

ciχEi(y)∩E(x, y) =
k∑
i=0

ciχEi∩E(x, y),
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where Ei(y) = [δi(y), δi+1(y)[×Q′ for i = 0, . . . , k − 1 and Ek(y) = [δk(y), b1] × Q′.
On the other hand, Ei = hyp δi+1 \ hyp δi for i = 0, . . . , k. Here hyp δi means the
hypograph of the function δi defined by hyp δi

.
= {(y, t) ∈ Q′ × [a1, b1] : δi(y) ≥ t}.

Let us now prove part (i).

∫ b1

a1

w(x, y)χE(x, y)dx =

∫ b1

a1

k∑
i=0

ciχEi(y)∩E(x, y)dx =
k∑
i=0

ci

∫ δi+1(y)

δi(y)

χE(x, y)dx

=

k∑
i=0

ci

∫ b1

a1

pi(x, y)χE(x, y)dx =

∫ b1

a1

v(x, y)χE(x, y)dx.

It remains only to prove part (ii). Fix any y ∈ Q′ and x such that δj(y) ≤ x ≤ δj+1(y)
for j = 0, . . . , k. Then∫ x

a1

〈w(r, y), ν〉χE(r, y)dr =

∫ x

a1

k∑
i=0

αiχEi(y)∩E(r, y)dr

=

j−1∑
i=0

αi

∫ δi+1(y)

δi(y)

χE(r, y)dr +

∫ x

δj(y)

αjχE(r, y)dr

=

j−1∑
i=0

αi

∫ b1

a1

pi(r, y)χE(r, y)dr +

∫ x

δj(y)

αjχE(r, y)dr

=

j−1∑
i=0

αi

∫ x

a1

pi(r, y)χE(r, y)dr +

j−1∑
i=0

αi

∫ b1

x

pi(r, y)χE(r, y)dr

+

∫ x

δj(y)

αjχE(r, y)dr

≥
j−1∑
i=0

αi

∫ x

a1

pi(r, y)χE(r, y)dr + αj

∫ b1

x

1−
k∑
i=j

pi(r, y)

χE(r, y)dr

+

∫ x

δj(y)

αjχE(r, y)dr

=

j−1∑
i=0

αi

∫ x

a1

pi(r, y)χE(r, y)dr + αj

∫ b1

δj(y)

χE(r, y)dr

− αj
∫ b1

x

k∑
i=j

pi(r, y)χE(r, y)dr

=

j−1∑
i=0

αi

∫ x

a1

pi(r, y)χE(r, y)dr +
k∑
i=j

αj

∫ x

a1

pi(r, y)χE(r, y)dr

≥
∫ x

a1

j−1∑
i=0

αipi(r, y)χE(r, y)dr +

∫ x

a1

k∑
i=j

αipi(r, y)χE(r, y)dr

=

∫ x

a1

k∑
i=0

αipi(r, y)χE(r, y)dr =

∫ x

a1

〈v(r, y), ν〉χE(r, y)dr.
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The latter proves (ii) and the proof of the lemma is concluded.
Remark 2.4. Under the same assumptions of Lemma 2.3, one can also obtain the

existence of another function w satisfying (i) and
For every x ∈ [a1, b1], every ν ∈ C−, we have∫ x

a1

〈w(r, y), ν〉χE(r, y)dr ≤
∫ x

a1

〈v(r, y), ν〉χE(r, y)dr ∀y ∈ Q′.

Here, C−
.
= {ν : 〈ci − ci+1, ν〉 ≤ 0 ∀ i = 0, 1, . . . , k − 1}.

Remark 2.5. One cannot expect that, in addition to (i) and (ii) in Lemma 2.3,
also holds an equality like (i) but integrated with respect to another variable. In
other words, assume for simplicity that n = 1, m = 2, a1 = a2 = 0, b1 = b2 = 1,
E = Q ⊂ R2, and ν = 1. Then one cannot expect that besides satisfying (i) and (ii)
in Lemma 2.3, there is also

(iii)
∫ 1

0
w(x, y)dy =

∫ 1

0
v(x, y)dy for almost all x ∈ [0, 1].

In fact, by integrating (iii) and using the Tonelli–Fubini theorem, one obtains∫ 1

0

[ ∫ x

0

w(r, y)dr −
∫ x

0

v(r, y)dr
]
dy = 0 ∀x ∈ [0, 1].

Setting u(x, y) =
∫ x

0
(w(r, y) − v(r, y))dr, the above equality becomes

∫ 1

0
u(x, y)dy =

0 ∀x ∈ [0, 1] and, because of (ii), u(x, y) ≥ 0 ∀x ∈ [0, 1], for a.e. y ∈ [0, 1]. Thus, for
every x ∈ [0, 1] there exists a null set N(x) ⊂ [0, 1] such that u(x, y) = 0 ∀ y ∈ [0, 1] \
N(x). It turns out that u(x, y) = 0 ∀ x ∈ Q1, ∀ y ∈ [0, 1] \N with N =

⋃
x∈Q1

N(x)
(independent of x), being a null set, where Q1 is the set of rational numbers in [0, 1].
Since u(·, y) is continuous, the latter implies that u(x, y) = 0 ∀x ∈ [0, 1], a.e. y ∈ [0, 1].
It follows that ∫

B

[w(r, s)− v(r, s)]dsdr = 0 ∀ Borel set B ⊂ Q.

Hence, w(r, s) = v(r, s) for almost all (r, s) in Q. The latter gives a contradiction
since v takes values in the open simplex S and w takes values only on its extreme
points. In other words, we have shown that one cannot obtain, in Lemma 2.3, an
equality like (i) where the integral is respect to one variable and an inequality like (ii)
integrated with respect to another variable.

Remark 2.6. The result in Lemma 2.3 is not valid if one considers a set-valued
map depending on x. In fact, simply take n = 2, m = 2, E = Q = [0, 1]2, ν = (1, 0),
the set-valued map Φ(x, y) = {λ(1, x) : λ ∈ [0, 1]} (instead of Φ(x, y) ≡ S), and
v(x, y) = 1

2 (1, x). Then, it is not difficult to show that there exists no function w
taking values in {(0, 0), (1, x)} such that (i) and (ii) continues to be valid (compare
with the example in [Am-Ma]).

3. Nonconvex minimum problems involving a hyperbolic equation. We
shall consider, on the rectangle Q = [a, b] × [c, d] ⊂ R2, Darboux-type boundary
conditions for the equation

zxy(x, y) = u(x, y),(3.1)

z(x, y) = ψ(x, y), (x, y) ∈ ∂+Q,(3.2)

where ∂+Q = {a}× [c, d]∪ [a, b]×{c} ∪ {b}× [c, d] and ψ is a continuous function on
∂+Q such that the restriction of ψ to each one of the three sides of ∂+Q is absolutely
continuous with derivative in Lp for p ∈ ]1,+∞[.
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We denote by W ∗,p(Q,Rn) the space of all functions z : Q → Rn in Lp whose
distributional derivatives zx, zy, zxy are in Lp. This space becomes a Banach space
with the norm ‖z‖∗ = ‖z‖p + ‖zx‖p + ‖zy‖p + ‖zxy‖p as shown in [S2]. It is easy to
see that the following integral representation for z ∈W ∗,p is valid:

z(x, y) = z(x, c) + z(a, y)− z(a, c) +

∫ x

a

∫ y

c

zxy(r, s)dsdr.

In particular, given any u ∈ Lp, every solution to (3.1) and (3.2) is in W ∗,p(Q,Rn)
and satisfies

(3.3) z(x, y) = ψ(x, c) + ψ(a, y)− ψ(a, c) +

∫ x

a

∫ y

c

u(r, s)dsdr.

In the following L⊗Bk will denote the product of the Lebesgue σ-algebra on Q with
the Borel σ-algebra on Rk. We recall that a function f : Q×Rk → R∪{+∞} is called
L⊗Bk-measurable or simply measurable if the inverse image under f of every closed
subset of R is in L⊗Bk. By h∗∗, we denote the biconjugate (bipolar) function defined
as the greatest convex lower semicontinuous function not greater than h. Whenever
ξ ∈ Rn, |ξ| stands, unless otherwise specified, for the Euclidean norm in Rn.

For fixed ν ∈ Rn, on the functional J1 : W ∗,p(Q,Rn)→ R ∪ {+∞}

J1(z) =

∫ b

a

∫ d

c

h(zxy)dydx+

∫ b

a

∫ d

c

g(x, y, 〈z, ν〉)dydx+

∫ b

a

∫ d

c

f(x, y, 〈zy, ν〉)dydx,

to be minimized, we assume the following hypothesis.
Hypothesis H1. We assume 1 < p < +∞. The function f : Q × R → R is such

that
(f1) f is L ⊗ B1-measurable;
(f2) the map ρ 7→ f(x, y, ρ) is convex and nonincreasing for a.e. (x, y) ∈ Q;
(f3) there exists a constant α1 ≥ 0 and a function β1 ∈ L1 such that

f(x, y, ρ) ≥ −α1|ρ|p − β1(x, y).

The function g : Q× R→ R is such that
(g1) g is L ⊗ B1-measurable;
(g2) the map η 7→ g(x, y, η) is lower semicontinuous and nonincreasing for a.e. (x, y) ∈

Q;
(g3) there exists a constant α2 ≥ 0 and a function β2 ∈ L1 such that

g(x, y, η) ≥ −α2|η|p − β2(x, y).

The function h : Rn → R ∪ {+∞} is such that
(h1) h is lower semicontinuous;
(h2) there exist some constants α3 > 0, β3 ∈ R such that

h(ξ) ≥ α3|ξ|p − β3;

(h3) setting K = {ξ ∈ Rn : h∗∗(ξ) < h(ξ)}, we require that K ⊂ ⋃i∈I Si where
I is a countable set and each Si is a relative open simplex in Rn such that h∗∗ = h
on extr Si and h∗∗ is affine on every Si. Here the sets Si are supposed to be disjoint.
There is no assumption if n = 1.
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In addition, for fixed ν ∈ Rn, we assume

(3.4) α3 − (α2(d− c)p2p−1 + α1)2p−1(b− a)p|ν|p > 0.

We are interested in the following minimization problem:

(P1) min
z∈Z

J1(z),

where

Z =
{
z ∈W ∗,p(Q,Rn) : z satisfies (3.2)

}
.

We are now in a position to state the first main result.
Theorem 3.1. Let f , g, h satisfy Hypothesis H1 above. Assume the functional

J1 is finite at some z ∈ Z. Then problem (P1) admits at least a solution.
Proof. (a) We first consider the convexified problem associated with (P1):

(P ∗∗1 ) min
z∈Z

J∗∗1 (z),

where J∗∗1 is obtained from J by replacing h by h∗∗. Because of the assumptions
on the integrands, λ

.
= inf J∗∗1 (z) is finite. Take any minimizing sequence (zk) in Z.

Then, by the condition on (3.4), we obtain ‖zkxy‖p ≤ B for some positive constant

B. Therefore, there exists a subsequence, still indexed by k, such that zkxy ⇀ ξ in

Lp(Q,Rn). This implies that
∫ x
a

∫ y
c
zkxy(r, s)dsdr → ∫ x

a

∫ y
c
ξ(r, s)dsdr for (x, y) ∈ Q.

Therefore, zk(x, y)→ z̃(x, y) for (x, y) ∈ Q, where

z̃(x, y) = ψ(x, c) + ψ(a, y)− ψ(a, c) +

∫ x

a

∫ y

c

ξ(r, s)dsdr.

This implies that z̃ ∈ W ∗,p(Q,Rn). Since Q is a compact set and zk and z̃ are
continuous, zk → z̃ uniformly. Thus z̃ ∈ Z. On the other hand, it is not difficult to
prove that zky ⇀ z̃y in Lp and zkx ⇀ z̃x in Lp. Hence z̃ is a minimizer for J∗∗1 since
h∗∗ and f(x, y, ·) are convex functions.

(b) Let z̃ ∈ Z be any solution to problem (P∗∗1 ). We set for every i ∈ I, Ei =
{(x, y) ∈ Q : z̃xy(x, y) ∈ Si}, and apply Lemma 2.3 to obtain a measurable function
wi taking values in extr Si on Ei, such that, for every i ∈ I,

(i)
∫ b
a
wi(x, y)χEi(x, y)dx =

∫ b
a
z̃xy(x, y)χEi(x, y)dx for a.e. y ∈ [c, d], and

(ii) for every x ∈ [a, b], we have∫ x

a

〈wi(r, y), ν〉χEi(r, y)dr ≥
∫ x

a

〈z̃xy(r, y), ν〉χEi(r, y)dr for a.e. y ∈ [c, d].

Put E0 = Q \⋃iEi, and define w : Q→ Rn by

w(x, y) = z̃xy(x, y)χE0
(x, y) +

∑
i∈I

wi(x, y)χEi(x, y).

Clearly, this function is measurable and, because of the growth condition (h2) and
(h3)—h∗∗ is affine in Si—w is in Lp since the integral

∫ ∫
h∗∗(z̃xy(x, y))dydx is finite.

Moreover, by Vitali’s convergence theorem, it follows that

(3.5)

∫ b

a

w(x, y)dx =

∫ b

a

z̃xy(x, y)dx for a.e. y ∈ [c, d]



1758 FABIÁN FLORES-BAZÁN AND STEFANIA PERROTTA

and for every x ∈ [a, b]

(3.6)

∫ x

a

〈w(r, y), ν〉dr ≥
∫ x

a

〈z̃xy(r, y), ν〉dr for a.e. y ∈ [c, d].

Thus, the function z : Q→ Rn given by

(3.7) z(x, y) = ψ(x, c) + ψ(a, y)− ψ(a, c) +

∫ x

a

∫ y

c

w(r, s)dsdr

is in W ∗,p(Q,Rn) and satisfies the boundary condition (3.2). The latter follows from
(3.5) and the integral representation for z and z̃.

On the other hand, since h∗∗ is affine on each Si, (3.5) implies
(3.8)∫ b

a

∫ d

c

h(zxy(x, y))dydx =

∫ b

a

∫ d

c

h∗∗(zxy(x, y))dydx

=

∫ b

a

∫ d

c

h∗∗(z̃xy(x, y))dydx.

It follows from (3.6) that for every x ∈ [a, b], we have∫ x

a

〈zxy(r, y), ν〉dr ≥
∫ x

a

〈z̃xy(r, y), ν〉dr for a.e. y ∈ [c, d].

As a consequence,

(3.9) 〈zy(x, y), ν〉 ≥ 〈z̃y(x, y), ν〉 and 〈z(x, y), ν〉 ≥ 〈z̃(x, y), ν〉
for a.e. (x, y) ∈ Q, which obviously implies

(3.10)

∫ b

a

∫ d

c

f(x, y, 〈zy(x, y), ν〉)dydx ≤
∫ b

a

∫ d

c

f(x, y, 〈z̃y(x, y), ν〉)dydx,

(3.11)

∫ b

a

∫ d

c

g(x, y, 〈z(x, y), ν〉)dydx ≤
∫ b

a

∫ d

c

g(x, y, 〈z̃(x, y), ν〉)dydx.

Hence, (3.8), together with (3.10) and (3.11), implies that z is a solution to problem
(P1) since z̃ is a solution to (P∗∗1 ) and h∗∗ ≤ h.

Remark 3.2. The assumption K ⊂ ⋃i∈I Si, (h3) in Hypothesis H1, is imposed
(instead of an equality) in order to include some cases in which, for instance, the
integrand h has rotational symmetry; that is, h is of the form h(ξ) = h̄(|ξ|). This
fact is exhibited in the following example. Let us fix 0 < t1 < t2 and consider an
even function h̄ such that, besides satisfying the superlinear growth condition (h2),
we also assume, for i = 1, 2, that h̄(t) = h̄(ti) = h̄∗∗(ti) if 0 ≤ t ≤ t1, h̄(t1) < h̄(t) if
t1 < t < t2, and h̄(t) = h̄∗∗(t) ∀t > t2 with h̄∗∗′+ (t2) > 0. Setting h(ξ) = h̄(|ξ|), we
have h∗∗(ξ) = h̄∗∗(|ξ|) and

K
.
=
{
ξ ∈ Rn : h̄∗∗(|ξ|) < h̄(|ξ|)

}
=
{
ξ ∈ Rn : t1 < |ξ| < t2

}
.

Thus, K is not a countable union of simplices but satisfies the inclusion assumption
(see Lemma 4.3 later) as required in (h3) and then the theorem can be applied.
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Motivated by the fact that (h3) is a consequence of (h2) if h : R → R ∪ {+∞},
we will establish another existence result whose proof follows the reasoning of the
preceding theorem componentwise. Before proceeding, we give some notation. By
z̃ � z we mean z̃i ≤ zi ∀i = 1, . . . , n and a function g : Rn → R is said to be
nondecreasing (nonincreasing) if z̃ � z implies g(z̃) ≤ g(z) (≥). For fixed p > 1,

|ξ| = [
∑n
j=1 |ξj |p]

1
p whenever ξ = (ξ1, . . . , ξn). Thus, if z ∈ Lp(Q,Rn), then ‖z‖p =

[
∑n
j=1

∫
Q
|zj(x, y)|pdxdy]

1
p .

Hypothesis H2. We assume 1 < p < +∞. The function f : Q × Rn → R is such
that

(f1) f is L ⊗ Bn-measurable;
(f2) the map ρ 7→ f(x, y, ρ) is convex and nonincreasing for a.e. (x, y) ∈ Q;
(f3) there exists a constant α1 ≥ 0 and a function β1 ∈ L1 such that

f(x, y, ρ) ≥ −α1|ρ|p − β1(x, y).

The function g : Q× Rn → R is such that
(g1) g is L ⊗ Bn-measurable;
(g2) the map η 7→ g(x, y, η) is lower semicontinuous and nonincreasing for a.e. (x, y) ∈

Q; (g3) there exists a constant α2 ≥ 0 and a function β2 ∈ L1 such that

g(x, y, η) ≥ −α2|η|p − β2(x, y).

The function hj : R→ R ∪ {+∞}, j = 1, . . . , n, is such that
(h1) hj is lower semicontinuous;
(h2) there exist some constants α3 > 0, β3 ∈ R such that

hj(ξ) ≥ α3|ξ|p − β3.

In addition, we assume

(3.12) α3 − (α2(d− c)p2p−1 + α1)2p−1(b− a)p > 0.

Now, our purpose is to consider the following minimization problem:

(P2) min
z∈Z

J2(z),

where J2 : Z → R ∪ {+∞} is given by

J2(z) =

∫ b

a

∫ d

c

n∑
j=1

hj(z
j
xy)dydx+

∫ b

a

∫ d

c

g(x, y, z)dydx+

∫ b

a

∫ d

c

f(x, y, zy)dydx

and

Z =
{
z ∈W ∗,p(Q,Rn) : z satisfies (3.2)

}
.

We have the second main theorem.
Theorem 3.3. Let f , g, hj satisfy Hypothesis H2 above. Assume the functional

J2 is finite at some z ∈ Z. Then problem (P2) admits at least a solution.
Proof. We start by considering the convexified problem

(P∗∗2 ) min
z∈Z

J∗∗2 (z),
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where J∗∗2 is obtained from J2 by replacing each hj with h∗∗j . We proceed as in the
proof (part (a)) of the previous theorem to conclude that problem (P∗∗2 ) has at least
a solution, say z̃ = (z̃1, . . . , z̃n). On the other hand, it is well known that under
assumption (h2) in Hypothesis H2, one has{

ξ ∈ R : h∗∗j (ξ) < hj(ξ)
}

=
⋃
i∈Ij

]aji , b
j
i [,

where the intervals ]aji , b
j
i [ are disjoint and finite with Ij being a countable set. In

this situation each ]aji , b
j
i [ plays the role of the simplex Si in Assumption H1. We now

reason as in part (b) in the proof of Theorem 3.3. That is, setting

Eji =
{

(x, y) ∈ Q : z̃jxy(x, y) ∈ ]aji , b
j
i [
}

for every j = 1, . . . , n and every i ∈ Ij , we apply Lemma 2.3 (with ]aji , b
j
i [ instead of

S, Eji instead of E and ν = 1) to obtain a measurable function wji taking values in

{aji , bji} on Eji , such that

(i)
∫ b
a
wji (x, y)χEj

i
(x, y)dx =

∫ b
a
z̃ji,xy(x, y)χEj

i
(x, y)dx for a.e. y ∈ [c, d] and

(ii) for every x ∈ [a, b], we have∫ x

a

wji (r, y)χEj
i
(r, y)dr ≥

∫ x

a

z̃ji,xy(r, y)χEj
i
(r, y)dr for a.e. y ∈ [c, d].

Put Ej0 = Q \⋃i∈Ij Eji , and define zj : Q→ R by

zjxy(x, y) = z̃jxy(x, y)χEj0
(x, y) +

∑
i∈Ij

wji (x, y)χEj
i
(x, y),

zj(a, y) = ψj(a, y), zj(x, c) = ψj(x, c).

Exactly as in the proof of the previous theorem, it can be proven that z̃j ∈W ∗,p(Q,R)
satisfies the boundary condition (3.2),∫ b

a

∫ d

c

hj(z
j
xy(x, y))dydx=

∫ b

a

∫ d

c

h∗∗j (zjxy(x, y))dydx=

∫ b

a

∫ d

c

h∗∗j (z̃jxy(x, y))dydx,

and zjy(x, y) ≥ z̃jy(x, y), zj(x, y) ≥ z̃j(x, y) for a.e. (x, y) in Q. Consequently, by
setting z = (z1, . . . , zn), we obtain∫ b

a

∫ d

c

n∑
j=1

hj(z
j
xy(x, y))dydx=

∫ b

a

∫ d

c

n∑
j=1

h∗∗j (z̃jxy(x, y))dydx,

and by the monotonicity assumption on f and g,∫ b

a

∫ d

c

f(x, y, zy(x, y))dydx ≤
∫ b

a

∫ d

c

f(x, y, z̃y(x, y))dydx

and ∫ b

a

∫ d

c

g(x, y, z(x, y))dydx ≤
∫ b

a

∫ d

c

g(x, y, z̃(x, y))dydx.
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These facts show that z is a solution to problem (P2), since z̃ is a solution to problem
(P∗∗2 ) and h∗∗j ≤ hj .

The application of Lemma 2.3 in the proof of Theorems 3.1 and 3.3 allows us to
construct a function z from z̃ satisfying

(3.13) 〈z(x, y), ν〉 ≥ 〈z̃(x, y), ν〉 and z̃(x, y) � z(x, y),

respectively. Therefore, setting

Z1 =
{
z ∈W ∗,p(Q,Rn) : z satisfies (3.2), 〈z, ν〉 ≥ ϕ1 in Q

}
,

Z2 =
{
z ∈W ∗,p(Q,Rn) : z satisfies (3.2), ϕ2 � z in Q

}
,

for given measurable functions ϕ1 : Q → R and ϕ2 : Q → Rn, we also obtain the
following corollary.

Corollary 3.4. Assume, in addition to Hypothesis H1 or H2, that some mea-
surable constraints, as above, are given. Then the problems

min
z∈Z1

J1(z) and min
z∈Z2

J2(z)

admit at least a solution.
Remark 3.5. (i) By Remark 2.4, Theorems 3.1 and 3.3 continue to be valid in case

f(x, y, ·) and g(x, y, ·) are nondecreasing functions. Moreover, under this assumption,
the previous corollary also holds with the reverse inequality appearing in the definition
of Z1 and Z2. In fact, Remark 2.4 asserts the existence (similar to (3.13)) of a function
z satisfying

〈z(x, y), ν〉 ≤ 〈z̃(x, y), ν〉 or z(x, y) � z̃(x, y)

according to whether we are dealing with problem Z1 or Z2, both with the reverse
inequalities. Thus, if 〈z̃(x, y), ν〉 ≤ ϕ1(x, y) (respectively, z̃ � ϕ2), then 〈z(x, y), ν〉 ≤
ϕ1(x, y) (respectively, z � ϕ2), and hence the conclusion follows since f(x, y, ·) and
g(x, y, ·) are nondecreasing functions.

(ii) As a consequence of the monotonicity of f(x, y, ·) and g(x, y, ·), together with
the fact that z is also a solution to (P∗∗1 ) (respectively, (P∗∗2 )), one can conclude that
for almost all (x, y) in Q,{

f(x, y, 〈zy(x, y), ν〉) = f(x, y, 〈z̃y(x, y), ν〉),
g(x, y, 〈z(x, y), ν〉) = g(x, y, 〈z̃(x, y), ν〉)

(respectively, {
f(x, y, zy(x, y)) = f(x, y, z̃y(x, y)),

g(x, y, z(x, y)) = g(x, y, z̃(x, y))).

The last part of the preceding remark yields the following corollary.
Corollary 3.6. Assume, in addition to the hypothesis of Theorems 3.1 or 3.3,

that n = 1 and for almost all (x, y) ∈ Q one of the functions f(x, y, ·) or g(x, y, ·) is
strictly decreasing in R and ν = 1. Then every solution to the convexified problem
(P∗∗i ) (i = 1, 2) is a solution to the original (nonconvex) problem (Pi) (i = 1, 2).
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Notice that the previous corollary admits the following variant. Instead of assum-
ing that f(x, y, ·), g(x, y, ·) are strictly decreasing, one can impose that both functions
satisfy f(x, y, ρ) = f1(x, y)f2(ρ), g(x, y, η) = g1(x, y)g2(η) with suitable assumptions
on fi, gi. Here, f2, g2 might be piecewise monotone.

Example 3.7. In what follows IK will denote the indicator function of the set K,
i.e., IK(ξ) = 0 if ξ ∈ K and IK(ξ) = +∞ otherwise. For fixed p ≥ 1, let us consider
the problem of minimizing

J1(z) =

∫ 1

0

∫ 1

0

I{−1,+1}(zxy(x, y))dydx

among those functions z in W ∗,p([0, 1] × [0, 1],R) satisfying z(0, y) = z(x, 0) =
z(1, y) = 0 for x ∈ [0, 1], y ∈ [0, 1]. We denote this space by Z. Clearly, this
problem admits infinitely many solutions. In fact, for every k ∈ N, it is not difficult
to check that the function zk defined by

zk(x, y) =


−
(
x− 2i− 2

2k

)
y if

2i− 2

2k
≤ x ≤ 2i− 1

2k
,[

− 1

2k
+
(
x− 2i− 1

2k

)]
y if

2i− 1

2k
≤ x ≤ 2i

2k

(i = 1, 2, . . . , 2k−1) is a minimizer for J1 in Z. Notice that zk → 0 uniformly. We now
consider the functional J2,

J2(z) =

∫ 1

0

∫ 1

0

I{−1,+1}(zxy(x, y))dydx+

∫ 1

0

∫ 1

0

|z(x, y)|pdydx,

defined on the same space as J1. One can easily prove that the sequence defined
above is minimizing for J2, i.e., limk J2(zk) = inf J2(z) = 0. However, since every
function in W ∗,p is continuous, the minimum value of J2 is not attained. Notice that
the monotonicity assumption (g2) in Hypothesis H1 or H2 is not satisfied. The same
conclusion also is reached if we consider the functional J3 : Z → R,

J3(z) = J1(z) +

∫ 1

0

∫ 1

0

|zy(x, y)|pdydx,

since the sequence, as above, continues to be minimizing for J3 and zky → 0 uniformly.

Observe that zkx ⇀ 0 in Lp.
Remark 3.8. Certainly, because of the analogy of the results in Lemma 2.3, we

also obtain existence results for the functional J1 (or J2) depending on zx in place
of zy, but in this case the boundary data have to be given on ∂−Q = [a, b] × {c} ∪
{a} × [c, d] ∪ [a, b]× {d}. On the other hand, due to the last part of Remark 2.5, our
approach cannot be applied to a functional depending on zx and zy simultaneously.
However, we believe that such a result, in general, is not true even if we were unable
to find a concrete example.

4. Some bang-bang theorems for the simplest hyperbolic equation.
This section is devoted to prove a weak bang-bang theorem for the hyperbolic in-
clusion

(4.1) zxy(x, y) ∈ C for a.e. (x, y) ∈ Q
where C is a compact convex subset of Rn, z ∈ W ∗,∞(Q,Rn), and all the notations
are those introduced in section 3. Some of the topological concepts to be used here
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have been introduced in section 2. Recall that, given a set E, co E and aff(E) stand
for the convex hull of E and for the smallest affine space containing E, respectively
([Roc]). Moreover, if C is a convex subset of Rn, a face F of C is said to be exposed
if it is the intersection of C and a supporting hyperplane of C. The normal cone to
C at a point x ∈ Rn is defined by

NC(x) = {ξ ∈ Rn : 〈ξ, x− y〉 ≥ 0 ∀y ∈ C}

and the tangent cone

TC(x) = {ζ ∈ Rn : 〈ζ, ξ〉 ≤ 0 ∀ξ ∈ NC(x)} .

Definition 4.1. Let C be a convex set and e be a point such that e /∈ C. We say
that the supporting hyperplane H to C strictly separates C and e if C is contained in
a closed half-space associated with H and e belongs to the opposite open half-space.

First we prove the following technical proposition.
Proposition 4.2. Let P ⊂ Rn be an n-dimensional convex polytope (see [Roc])

and e and x, e ∈ Rn\P and x ∈ ∂P , be such that ]x, e]∩P is empty. Then there exists
an (n − 1)-dimensional face F of P such that x ∈ F and aff(F ) strictly separates P
and e.

Proof. Let Fi, i = 1, . . . , k, be the (n − 1)-dimensional faces of P and Fi, i =
1, . . . , kx, be those which contain x. For every i = 1, . . . , k denote by νi the exterior
normal vector at the face Fi and by πi the supporting half-space to P at every point
of Fi. Thus, for every point y ∈ ∂πi, the tangent and the normal cones to πi at y are
given by Tπi(y) = πi−y and Nπi(y) = R+

0 νi, respectively. Recalling that P = ∩ki=1πi,
by Corollary 23.8.1 in [Roc] (see also [Au-Fr, p. 141]) the normal cone to P at x is

given by NP (x) =
∑k
i=1Nπi(x) =

∑kx
i=1Nπi(x); hence

NP (x) =

{
kx∑
i=1

λiνi : λi ≥ 0, i = 1, . . . kx

}
.

As a consequence, the tangent cone to P at x is given by

TP (x) =

kx⋂
i=1

Tπi(x) =

kx⋂
i=1

(πi − x).

Taking into account that every face of P is exposed, from ]x, e] ∩ P = ∅ it follows
that (e− x) /∈ TP (x). Therefore there exists i ∈ {1, . . . , kx} such that e /∈ πi, and the
conclusion follows.

The following result is a sharper version of Lemma 2.3 in [Am-Ma]. We prove
that every n-dimensional compact convex set C can be written, up to the boundary,
as a union of a countable family of n-dimensional simplices (with pairwise disjoint
interior) having their vertices in the set of extreme points of C.

Lemma 4.3. Let C be an n-dimensional compact convex subset of Rn. Then there
exists a countable family S of n-dimensional simplices such that

(i) int C ⊂ ∪{S : S ∈ S};
(ii) int S ∩ int S′ = ∅ if S, S′ ∈ S and S 6= S′;
(iii) extr S ⊆ extr C for every S ∈ S.
Proof. If C has only a finite number of extreme points, then it is a polytope and

the proof is trivial. Otherwise, let E be a countable dense subset of extr C and set
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E = {ei : i ∈ N} such that e0, e1, . . . , en are affinely independent. We are going to
construct the family S by a recursive argument.

At the first step set S1
1 = co{e0, . . . , en}, C1 = S1

1 , and n1 = 1. Obviously, S1
1

is an n-dimensional simplex. At the second step, consider the point en+1 ∈ E and
denote by F 1

k , k = 1, . . . , n2, the (n − 1)-dimensional faces of C1 that satisfy the
following property: for every k = 1, . . . , n2 the hyperplane aff(F 1

k ) generated by F 1
k

strictly separates C1 and en+1. By Proposition 4.2 the set {F 1
k : k = 1, . . . , n2} is

not empty. For every k = 1, . . . , n2 denote by S2
k the n-dimensional simplex given by

S2
k = co(F 1

k ∪ {en+1}). The finite family {S1
1 , S

2
k : k = 1, . . . , n2} fulfills properties

(ii) and (iii) in the statement. Finally, set C2 = C1 ∪ {S2
k : k = 1, . . . , n2}. We claim

that C2 = co{e0, . . . , en+1}.
Obviously C2 ⊆ co{e0, . . . , en+1}. In order to prove the opposite inclusion con-

sider x =
∑n+1
i=0 λiei, 0 ≤ λi ≤ 1,

∑n+1
i=0 λi = 1. If λn+1 = 0, then x ∈ S1

1 ⊂ C2. If
λn+1 = 1, then x = en+1 ∈ C2. Otherwise, if 0 < λn+1 < 1, set x̄ =

∑n
i=0 λi/(1 −

λn+1)ei. Then x̄ ∈ S1
1 and x = (1 − λn+1)x̄ + λn+1en+1. Let x̃ be the last point

in [x̄, en+1] ∩ ∂C1. By Proposition 4.2 there exists an (n − 1)-dimensional face F of
C1 such that x̃ ∈ F and aff(F ) strictly separates C1 and en+1. The definition of
the simplices S2

k implies that the segment whose extreme points are x̃ and en+1 is
included in C2. Hence, the segment [x̄, en+1] is also included in C2 and the claim is
proven.

Suppose now we have defined m− 1 finite families{
Shk : k = 1, . . . , nh

}
, h = 1, . . . ,m− 1,

of simplices whose interior points are mutually disjoint and whose extreme points are
in {e0, . . . , en+m−2}, and m− 1 convex sets

Ch = Ch−1 ∪
(
nh⋃
k=1

Shk

)
= co{e0, . . . , en+h−1}, h = 1, . . . ,m− 1 (C0 = ∅).

In particular Cm−1 = ∪m−1
h=1 ∪nhk=1 S

h
k = co{e0, . . . , en+m−2}. Following the same ideas

of the second step, denote by {Fm−1
k : k = 1, . . . nm} the family of all (n − 1)-

dimensional faces of Cm−1 such that aff(Fm−1
k ) strictly separates Cm−1 and en+m−1.

By Proposition 4.2 this family is not empty. For every k ∈ {1, . . . , nm}, define the
simplex Smk = co(Fm−1

k ∪ {en+m−1}). Clearly, the family {Shk : h = 1, . . . ,m, k =
1, . . . , nh} satisfies items (ii) and (iii) of the statement. Moreover, setting Cm =
Cm−1∪(∪nmk=1S

m
k ), one can prove, as in the previous step, that Cm = co{e0, . . . , en+m−1}.

Recursively, one obtains the countable family of simplices S = {Shk : h ∈ N+, k =
1, . . . , nh} satisfying (ii) and (iii) and such that, for every m ≥ 1, ∪mh=1 ∪nhk=1 S

h
k =

co{e0, . . . , en+m−1} = Cm. Hence also (i) is fulfilled,

int C ⊂ co E =
⋃
m≥1

Cm =
⋃{

S : S ∈ S
}
,

and the lemma is proven.
We are now in a position to establish our first bang-bang theorem for the inclusion

(4.1).
Theorem 4.4. Let C be a convex compact subset in Rn, let z̃ be a solution

of the inclusion (4.1). Then, for every vector ν ∈ Rn there exists a function z ∈
W ∗,∞(Q,Rn) such that
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(i) zxy(x, y) ∈ ∂rC (the relative boundary of C) for a.e. (x, y) ∈ Q;

(ii) z(x, y) = z̃(x, y) for every (x, y) ∈ ∂+Q;

(iii)〈z(x, y), ν〉 ≥ 〈z̃(x, y), ν〉 for every (x, y) ∈ Q.

Proof. It is not restrictive to assume that C has dimension n. By Lemma 4.3, the
interior of C is the union of countably many relative open pairwise disjoint simplices
(the faces of the n-dimensional simplices in S). Denote this family by {Sk : k ∈ N}.
Then Q can be partitioned as a union of countably many measurable sets, Q =
F ∪ (∪k∈NEk), where

F =
{

(x, y) ∈ Q : z̃xy(x, y) ∈ ∂C
}
,

Ek =
{

(x, y) ∈ Q : z̃xy(x, y) ∈ Sk
}
, k ∈ N.

For every k in N, let wk be the function obtained by applying Lemma 2.3 for E = Ek,
S = Sk, and v = z̃xy. Let w be the function defined by w = z̃xyχF +

∑
k∈N χEk .

Arguing as in the proof of Theorem 3.1, one can prove that the function z : Q→ Rn
given by

z(x, y) = z̃(x, c) + z̃(a, y)− z̃(a, c) +

∫ x

a

∫ y

c

w(r, s)dsdr

is in W ∗,∞(Q) and satisfies (i), (ii), and (iii).

Remark 4.5. Notice that, if in the previous theorem z̃ is such that z̃xy ∈ ri C
(the relative interior of C) a.e. in Q, we obtain that zxy ∈ extr C a.e. in Q. Thus,
the previous result allows us to generalize Lemma 2.3 to the case when S is a convex
relative open bounded subset of Rn, and also Theorem 3.1 by substituting Si, in Hy-
pothesis H1, with a convex relative open bounded subset of Rn. Others assumptions
on Si remain valid.

In case n = 2 we obtain the following bang-bang theorem in the strong form.

Theorem 4.6. Let z̃ be a solution of the inclusion (4.1) where C is a compact
and convex subset of R2. Then, for every vector ν ∈ R2 there exists a function
z ∈W ∗,∞(Q,R2) such that

(i) zxy(x, y) ∈ extr C for a.e. (x, y) ∈ Q;

(ii) z(x, y) = z̃(x, y) for every (x, y) ∈ ∂+Q;

(iii) 〈z(x, y), ν〉 ≥ 〈z̃(x, y), ν〉 for every (x, y) ∈ Q.

Proof. For n = 2 the boundary of C is the union of its extreme points and of its
one-dimensional faces. Notice that, since the one-dimensional Hausdorff measure of
∂C is finite, the one-dimensional faces of C are at most countable. Hence, the proof
is similar to that of the previous theorem, where we add to the family {Sk : k ∈ N}
the relative interior of the one-dimensional faces of C and we call F the set

F =
{

(x, y) ∈ Q : z̃xy(x, y) ∈ extr C
}
.
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STABILIZATION OF HIGH EIGENFREQUENCIES OF A BEAM
EQUATION WITH GENERALIZED VISCOUS DAMPING∗
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Abstract. In this paper, using the one-dimensional vibrating beam equation with generalized
viscous damping as a model of vibration of flexible robot arms, it is shown that for such a system
the high eigenmodes decay at a uniform rate. The proof is obtained by perturbation theory of
linear operators [Y. H. Luo, Acta Math. Sinica, 32 (1991), pp. 556–563] and asymptotic estimates of
eigenvectors based on an earlier work of G. B. Birkhoff and M. H. Stone. Feedback control for this
class of system is investigated, and a finite-dimensional controller is presented for an exponentially
stable closed-loop system. Our method may be used to study nondissipative systems.

Key words. generalized viscous damping, eigenfrequencies, feedback control, exponential decay

AMS subject classifications. 35B35, 35B37, 93B50
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1. Introduction. In recent years there has been much interest in the topic of
control and stabilization of vibrating equations. For example, see [6], [13], [14], and
[16] for serially connected beams, [12], [20], [21], [22], [23] for vibrating strings or sec-
ond order wave equations, and [1], [5], [18] for beam equations with locally distributed
damping.

In this article, we consider the beam equation
∂2

∂t2
u(x, t) +

∂4

∂x4
u(x, t) + b(x)

∂

∂t
u(x, t) = 0, 0 < x < `, t > 0,

u(0, t) =
∂

∂x
u(0, t) =

∂2

∂x2
u(`.t) =

∂3

∂x3
u(`, t) = 0, t ≥ 0,

u(x, 0) = u0(x), ∂
∂tu(x, 0) = u2(x), 0 ≤ x ≤ `,

(1.1)

where the viscous damping b(x) is a continuous real function satisfying the hypothesis.
Such a perturbing term takes place due to medium impurities, distributed and/or
boundary friction, small viscous effects, etc.

It is well known that the analysis of damping is important in the understanding of
vibrating system behavior. In [1] and [5], Chen et al. have considered the asymptotic
average decay rate for the wave equation with variable coefficient viscous damping
based on an earlier work of Birkhoff and Langer. For second order wave equations,
a rigorous treatment of the asymptotics of the eigenvalues is given in [21], one of the
conjectures in [1] is proven to be wrong in general, and the results in [20] are extended
to allow sign-change damping terms, and a sufficient condition for stability in that
case is given in [23]. Unfortunately, for the beam equation (1.1) the Birkhoff–Langer
technique cannot be applied; information about the asymptotic average decay rate
of this equation is still unknown. Whether it is valid or not is an open question [1],

∗Received by the editors June 9, 1997; accepted for publication (in revised form) June 30, 1998;
published electronically October 4, 1999. This research was supported by NSFC and the Science
Foundation of Shanxi under project 69674011.
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[5]. In this paper, we prove that all high eigenmodes decay at a uniform rate. This
result answers the conjecture [1] in the generalized case: there exists an n1 > 0, such
that Reλnj < − δ02 + ε for n > n1, j = 1, 2, where ε : 0 < ε < δ0

2 and λnj ∈ σ0(A)
(the spectrum of A). Finally, in order to stabilize the system exponentially, a finite-
dimensional controller is presented. The main difference between the work of this
paper and that of [1], [5], and others is that our condition on b(x) is not necessarily
dissipative but only “more positive than negative [5].” Our method may be used to
study nondissipative systems.

In order to study (1.1), we define the differential operator A0 as follows:{
A0φ(x) = d4

dx4φ(x), φ(x) ∈ D(A0),
D(A0) = {φ;φ ∈ H4(0, `), and φ(0) = φ′(0) = φ′′(`) = φ′′′(`) = 0}.

Obviously A0 is positive in L2(0, `). By the equivalent transformation y1(t) = u(t),
y2(t) = d

dtu(t), (1.1) becomes
d

dt

(
y1(t)

y2(t)

)
= A

(
y1(t)

y2(t)

)
, t > 0,(

y1(0)

y2(0)

)
=

(
u1

u2

)
,

(1.2)

where A =
(

0 I
−A0 −b(x)

)
and D(A) = D(A0) × D(A

1
2
0 ). The energy inner product

is defined on D(A) by (( u1
u2

) , ( v1
v2

)) = (A
1
2
0 u1, A

1
2
0 v1) + (u2, v2) for u1, v1 ∈ D(A

1
2
0 ),

u2, v2 ∈ D(A0), and the Hilbert space H is defined as the closure of D(A) in this
energy inner product.

Hypothesis. We assume that b(x) ∈ C[0, `] and satisfies∫ l

0

b(x)|φnj(x)|2dx ≥ δ0 > 0, j = 1, 2, n > n0,(1.3)

where δ0 > 0 is a constant, n0 is a positive integer, and φnj , j = 1, 2, n = 1, 2, . . . ,
are the orthonormalized eigenfunctions of the eigenequation

∂2

∂t2
u(x, t) +

∂4

∂x4
u(x, t) = 0, 0 < x < `, t > 0,

u(0, t) =
∂

∂x
u(0, t) =

∂2

∂x2
u(`, t) =

∂3

∂x3
u(`, t) = 0, t ≥ 0.

(1.1′)

The assumptions on the damping coefficient b(x) are very weak; the value of b(x)
can even be negative on some small parts of the interval [0, `].

The organization of this paper is as follows. In section 2 we obtain the asymptotic
formula for the eigenvectors of A. In section 3 we get the stronger result that the

operator A =
(

0 I
−A0 −b(x)

)
generates a C0-semigroup and all generalized eigenvec-

tors of A form an unconditional basis of H. In section 4 we prove that, for a given
ε : 0 < ε < δ0

2 , there exists an n1 > n0 such that Reλnj < − δ02 + ε for n > n1, where
λnj ∈ σ(A). In section 5, a finite-dimensional controller is presented for exponentially
stable closed-loop system.
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2. Asymptotic estimations of the eigenvectors of A. In this section, we
will estimate the eigenvectors of A. For convenience, we suppose that ` = 1. The
following is obvious.

Lemma 2.1. The eigenequation of (1.1) is equivalent to the eigenequation of (1.2).
That is, a complex λ satisfies the eigenequation{

λ2φ(x) + λb(x)φ(x) + φ(4)(x) = 0, x ∈ (0, 1),
φ(0) = φ′(0) = φ′′(1) = φ′′′(1) = 0,

(2.1)

if and only if λ satisfies the eigenequation

λ

(
φ1

φ2

)
= A

(
φ1

φ2

)
.

We only need to estimate those of the quadratic eigenfunction (2.1). For conve-
nience, we divide the complex plane into

Sn =

{
ρ ;

nπ

8
≤ argρ ≤ n+ 1

8
π

}
, n = 0, 1, 2, 3, 4, 5, 6, 7.

Then, for every sector Sn, we can arrange ω1, ω2, ω3, ω4(the roots of ω4 = −1), such
that

Re(ρω1) ≤ Re(ρω2) ≤ Re(ρω3) ≤ Re(ρω4) for ρ ∈ Sn.(2.2)

In fact, for S0, we choose ω1 = e
3π
4 i , ω2 = e

5π
4 i , ω3 = e

π
4 i , ω4 = e−

π
4 i . We can verify

that (2.2) is true for ρ ∈ S0. Similarly, we can see that (2.2) holds for Sn, 1 ≤ n ≤ 7.
Let λ = ρ2. For (2.1), we have a general result.

Lemma 2.2. The equation

φ(4)(x) + ρ2b(x)φ(x) + ρ4φ(x) = 0, x ∈ [0, 1], ρ ∈ Sn, |ρ| > b0, 0 ≤ n ≤ 7,(2.3)

has four linearly independent solutions, φk, k = 1, 2, 3, 4, which satisfy

dj

dxj
φk(x, ρ) = ρjeρωkx

[
ωjk +O

(
1

ρ

)]
, j = 0, 1, 2, 3,(2.4)

where b0 = max|b(x)| and ωk, k = 1, 2, 3, 4, are the four roots of the equation ω4 = −1
satisfying (2.2). If b(x) = 0, then O( 1

ρ ) = 0.
Proof. Because eρωjx, j = 1, 2, 3, 4, are the basic solutions of the equation

φ(4) + λ2φ = 0, by the method of variation of constants, the solution of (2.3) can
be represented as

y(x, ρ) =

4∑
j=1

cje
ρωjx +

1

4ρ

∫ x

0

 4∑
j=1

ωje
ρωj(x−ξ)

 b(ξ)y(ξ)dξ,(2.5)

where cj , j = 1, 2, 3, 4, are arbitrary constants. For a fixed k, we set

c′j = cj , 1 ≤ j ≤ k,
c′j = cj + 1

4ρ

∫ 1

0
ωje
−ρωjξb(ξ)y(ξ)dξ, k + 1 ≤ j ≤ 4.

(2.6)
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Then (2.5) can be rewritten as

y(x, ρ) =
4∑
j=1

c′je
ρωjx + 1

4ρ

∫ x

0

 k∑
j=1

ωje
ρωj(x−ξ)

 b(ξ)y(ξ)dξ

− 1

4ρ

∫ 1

x

 4∑
j=k+1

ωje
ρωj(x−ξ)

 b(ξ)y(ξ)dξ.

(2.7)

Taking c′k = 1, c′n = 0, n 6= k, we get

yk(x, ρ) = eρωkx +
1

4ρ

∫ x

0

 k∑
j=1

ωje
ρωj(x−ξ)

 b(ξ)yk(ξ)dξ

− 1

4ρ

∫ 1

x

 4∑
j=k+1

ωje
ρωj(x−ξ)

 b(ξ)yk(ξ)dξ , k = 1, 2, 3, 4.

(2.8)

If yk(x, ρ), 1 ≤ k ≤ 4, are solutions of (2.2), differentiating yk with respect to x, we
get

dj

dxj
yk(x, ρ) = (ρωk)jeρωkx +

1

4ρ

∫ x

0

(
k∑
ν=1

ωj+1
ν ρjeρων(x−ξ)

)
b(ξ)yk(ξ)dξ

− 1

4ρ

∫ 1

x

(
4∑

ν=k+1

ωj+1
ν ρjeρων(x−ξ)

)
b(ξ)yk(ξ)dξ,

k = 1, 2, 3, 4, j = 0, 1, 2, 3.

(2.9)

Let

dj

dxj
yk(x, ρ) = ρjeρωkxzkj(x, ρ) , k = 1, 2, 3, 4, j = 0, 1, 2, 3;(2.10)

we get

zkj(x, ρ) = ωjk +
1

4ρ

∫ x

0

(
k∑
ν=1

ωj+1
ν eρ(ων−ωk)(x−ξ)

)
b(ξ)zk0(ξ, ρ)dξ,

− 1

4ρ

∫ 1

x

(
4∑

ν=k+1

ωj+1
ν eρ(ωk−ων)(ξ−x)

)
b(ξ)zk0(ξ, ρ)dξ,

k = 1, 2, 3, 4, j = 0, 1, 2, 3.

(2.11)

Let

Kkj0(x, ξ, ρ) =


1

4

(
k∑
ν=1

ωj+1
ν eρ(ων−ωk)(x−ξ)

)
b(ξ) , ξ < x,

− 1

4

(
4∑

ν=k+1

ωj+1
ν eρ(ωk−ων)(ξ−x)

)
b(ξ) , ξ > x,

k = 1, 2, 3, 4, j = 0, 1, 2, 3.

(2.12)
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From (2.12), (2.11) can be rewritten as

zkj(x, ρ) = ωjk +
1

ρ

∫ 1

0

Kkj0(x, ξ, ρ)zk0(ξ, ρ)dξ , k = 1, 2, 3, 4, j = 0, 1, 2, 3.(2.13)

From inequality (2.2), we have

|e−ρ(ωk−ων)(x−ξ)| = e(x−ξ)Re(ρων−ρωk) ≤ 1 for ν ≤ k, ξ < x, ρ ∈ Sn,

and

|e−ρ(ωk−ων)(x−ξ)| = e(x−ξ)Re(ρων−ρωk) ≤ 1 for ν > k, ξ > x, ρ ∈ Sn.

So

|Kkj0(x, ξ, ρ)| ≤ max0≤ξ≤1|b(ξ)| = b0.(2.14)

By Picard’s iteration, we see that (2.12) has a unique solution

zkj(x, ρ) for ρ ∈ Sn and |ρ| > b0,

satisfying

zkj(x, ξ) = ωjk +O

(
1

ρ

)
as ρ −→∞.(2.15)

From (2.15), we get (2.4).
Finally, we prove that (2.8) is the solution of (2.3) for |ρ| large enough. For this, in

the following, we prove (2.7) is a solution of (2.3) for every (c′1, c
′
2, c
′
3, c
′
4) and |ρ| > b0.

Because (2.6) is a linear mapping from (c1, c2, c3, c4) to (c′1, c
′
2, c
′
3, c
′
4) , we prove only

that mapping (2.6) is invertible for |ρ| > b0. Supposing (2.6) had a solution cj 6= 0
for c′j = 0, the equation

y(x, ρ) =
1

4ρ

∫ x

0

(
k∑
ν=1

ωνe
ρων(x−ξ)

)
b(ξ)y(ξ, ρ)dξ

− 1

4ρ

∫ x

0

(
4∑

ν=k+1

ωνe
ρων(x−ξ)

)
b(ξ)y(ξ, ρ)dξ

(2.16)

has a nonzero solution. Differentiating (2.16), we get

dj

dxj
y(x, ρ) = ρjeρωkxzj(x, ρ) , j = 0, 1, 2, 3,(2.17)

where zj satisfy

zj(x, ρ) =
1

4ρ

∫ x

0

(
k∑
ν=1

ωνe
−ρ(ωk−ων)(x−ξ)

)
b(ξ)z0(ξ, ρ)dξ

− 1

4ρ

∫ x

0

(
4∑

ν=k+1

ωνe
ρ(ων−ωk)(x−ξ)

)
b(ξ)z0(ξ, ρ)dξ, j = 0, 1, 2, 3.

(2.18)
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Let M(ρ) = max0≤x≤1|zj(x, ρ)| , j = 0, 1, 2, 3. We get

|zj(x, ρ)| ≤
[
b0k

4|ρ| +
b0(4− k)

4|ρ|
]
M(ρ) , j = 0, 1, 2, 3.(2.19)

That is,

M(ρ) ≤ b0
|ρ|M(ρ).(2.20)

From (2.20), we see that M(ρ) = 0, and zj(x, ρ) = 0 (j = 0, 1, 2, 3) for |ρ| > b0. Then
y(x, ρ) = eρωkxz0(x, ρ) = 0 for |ρ| > b0. This is a contradiction with y(x, ρ) 6= 0.
Therefore mapping (2.7) is the solution of (2.3). The proof is complete.

In order to get an asymptotic formula for eigenfunctions of (2.1), we first estimate
the eigenvalues of (2.1).

Lemma 2.3. The eigenvalues of (2.1) are the following sequences:

λn1 =

(
−n+

1

2

)2

π2

[
i+O

(
1

n2

)]
, n = 1, 2, . . . ,

λn2 =

(
n+

1

2

)2

π2

[
i+O

(
1

n2

)]
, n = 1, 2, . . . .

(2.21)

Proof. Let ρ4 = λ2 and S0 = {ρ ; −π4 ≤ argρ ≤ 0}. Taking ω1 = e
5πi
4 ,

ω2 = e
3πi
4 , ω3 = e

7πi
4 , ω4 = e

πi
4 , then Reω1ρ ≤ Reω2ρ ≤ Reω3ρ ≤ Reω4ρ for ρ ∈ S0,

and eω1ρ → 0, eω4ρ → ∞ (ρ → ∞, ρ ∈ S0) exponentially. By Lemma 2.2 for ρ ∈ S0

(2.2) has four independent solutions φ1, φ2, φ3, φ4, which satisfy (2.4). By (2.4), we
get

φk(0) = 1 +O

(
1

ρ

)
, φ′k(0) = ρωk

[
1 +O

(
1

ρ

)]
,

φ′′k(1) = ρ2ω2
ke
ρωk

[
1 +O

(
1

ρ

)]
, φ′′′k (1) = ρ3ω3

ke
ρωk

[
1 +O

(
1

ρ

)]
,

k = 1, 2, 3, 4.

(2.22)

From this estimation, the eigendeterminant ∆(λ) = 0 can be represented as∣∣∣∣∣∣∣∣
ω1[1] ω2[1] ω3[1] ω4[1]
[1] [1] [1] [1]

(ω1)3eω1ρ[1] (ω2)3eω2ρ[1] (ω3)3eω3ρ[1] (ω4)3eω4ρ[1]
(ω1)2eω1ρ[1] (ω2)2eω2ρ[1] (ω1)2eω3ρ[1] (ω4)2eω4ρ[1]

∣∣∣∣∣∣∣∣ ,(2.23)

where [1] = 1 +O( 1
ρ ). By computing, we get

∆(λ) = −2(eρω3 + eρω2) + eρω3O

(
1

ρ

)
.(2.24)

Noting that ω1 = −ω4, ω2 = −ω3, (2.24) becomes

eρω2∆(λ) = −2(e2ρω2 + 1) +O

(
1

ρ

)
.(2.25)
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Because equations e2ρω2 + 1 = 0 have roots

ρn1 = ω−1
2

(
n+

1

2

)
πi, n = 0, 1, 2, 3, . . . ,(2.26)

by Rouche’s theorem, we can see that the equation ∆(λ) = 0 has a sequence of simple
roots represented as

ρ̂n1 = ρn1 +O

(
1

n

)
, n = 1, 2, 3, . . . .(2.27)

From (2.27), we get the second representation of (2.21).

Taking S1 = {ρ ; 0 ≤ argρ ≤ π
4 }, ω1 = e

3πi
4 , ω2 = e

5πi
4 , ω3 = e

πi
4 , ω4 = e−

πi
4

and using the above method, we can prove the other sequence in (2.21). The proof is
complete.

Corollary 2.4. The eigenvalues of (1.1′) satisfy the following asymptotic for-
mula

λn1 = (−n+ 1
2 )2π2[i+O1( 1

n2 )], n = 1, 2, . . . ,
λn2 = (n+ 1

2 )2π2[i+O2( 1
n2 )], n = 1, 2, . . . .

(2.22′)

By Lemmas 2.2 and 2.3, we can get the asymptotic estimate of the eigenvectors
of (2.1).

Lemma 2.5. There exist eigenvectors of (2.1) satisfying the following asymptotic
formula:

yn1(x) = −√2e(−n+ 1
2 )πix − i√2e(n− 1

2 )iπx +O( 1
n ),

yn2(x) =
√

2e−(n+ 1
2 )πix + i

√
2e(n+ 1

2 )πix +O( 1
n ),

n = 1, 2, 3, . . . , x ∈ [a, b] ⊂ (0, 1),

(2.28)

where a and b are two arbitrary constants which satisfy 0 < a < b < 1.
Furthermore, there exists a constant M > 0 such that |ynj(x)| ≤M for x ∈ [0, 1]

and j = 1, 2, n = 1, 2, . . . .
Proof. Let ρ4 = λ2, ω1 = e

3πi
4 , ω2 = e

5πi
4 , ω3 = e

πi
4 , ω4 = e

7πi
4 . We con-

sider Lemma 2.4 on the sector S0 = {ρ ; 0 ≤ argρ ≤ π
4 }. Because φj(x, λ) =

eρωjx[1 + O( 1
ρ )], j = 1, 2, 3, 4, are the basic solutions of the equation φ(4)(x) +

λb(x)φ(x) + λ2φ(x) = 0, the eigenvectors corresponding to the eigenvalue λnk, k =

1, 2, n = 1, 2, . . . , are ynk(x) = y(x, λnk) =
∑4
j=1 cjφj(x, λnk), and cj (j = 1, 2, 3, 4)

satisfy the following equations:
φ′1(0, λnk)c1 + φ′2(0, λnk)c2 + φ′3(0, λnk)c3 + φ′4(0, λnk)c4 = 0,
φ1(0, λnk)c1 + φ2(0, λnk)c2 + φ3(0, λnk)c3 + φ4(0, λnk)c4 = 0,
φ′′′1 (1, λnk)c1 + φ′′′2 (1, λnk)c2 + φ′′′3 (1, λnk)c3 + φ′′′4 (1, λnk)c4 = 0,
φ′′1(1, λnk)c1 + φ′′2(1, λnk)c2 + φ′′3(1, λnk)c3 + φ′′4(1, λnk)c4 = 0 .

(2.29)

By the theory of linear algebra, we obtain

ynk(x) =

∣∣∣∣∣∣∣∣
φ1(x, λnk) φ2(x, λnk) φ3(x, λnk) φ4(x, λnk)
φ1(0, λnk) φ2(0, λnk) φ3(0, λnk) φ4(0, λnk)
φ′′′1 (1, λnk) φ′′′2 (1, λnk) φ′′′3 (1, λnk) φ′′′4 (1, λnk)
φ′′1(1, λnk) φ′′2(1, λnk) φ′′3(1, λnk) φ′′4(1, λnk)

∣∣∣∣∣∣∣∣ .(2.30)



1774 S. LI, J. YU, Z. LIANG, AND G. ZHU

By the representation of φnk(x) for x ∈ [a, b], ynk(x) can be rewritten as

ynk(x) =

∣∣∣∣∣∣∣∣
eω1ρnkx[1] eω2ρnkx[1] e−ω2ρnkx[1] eω4ρnk(x−1)[1]
1 +O( 1

n ) 1 +O( 1
n ) 1 +O( 1

n ) O( 1
n )

(ω1)3eω1ρnk [1] (ω2)3eω2ρnk [1] (ω3)3eω3ρnk [1] (ω4)3[1]
(ω1)2eω1ρnk [1] (ω2)2eω2ρnk [1] (ω1)2eω3ρnk [1] (ω4)2[1]

∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣
eω1ρnkx eω2ρnkx e−ω2ρnkx 0

1 1 1 0
0 (ω2)3eω2ρnk (ω3)3eω3ρnk (ω4)3

0 (ω2)2eω2ρnk (ω3)2eω3ρnk (ω4)2

∣∣∣∣∣∣∣∣+O

(
1

n

)

= eω1ρnkx

[∣∣∣∣ ω3 ω4

1 1

∣∣∣∣ω2
3ω

2
4e
ω3ρnk −

∣∣∣∣ ω2 ω4

1 1

∣∣∣∣ω2
2ω

2
4e
ω2ρnk

]
+ eω2ρnke−ω2ρnkx

∣∣∣∣ ω2 ω4

1 1

∣∣∣∣ω2
2ω

2
4 − e−ω2ρnkeω2ρnkx

∣∣∣∣ ω3 ω4

1 1

∣∣∣∣ω2
3ω

2
4

+ O

(
1

n

)
.

(2.31)

Taking k = 1, n = 1, 2, . . . , in (2.31) we get

yn1(x) = (i+ 1)
√

2eω1ω
−1
2 (−n+ 1

2 )πix −√2e(−n+ 1
2 )πix − i√2e(n− 1

2 )πix +O

(
1

n

)
.

(2.32)

Taking ω1 = e
5πi
4 , ω2 = e

3πi
4 , ω3 = e

7πi
4 , ω4 = e

1πi
4 , we consider Lemma 2.5 on

the sector S0 = {ρ ; −π4 ≤ argρ ≤ 0}. By the above method, we can get

yn2(x) = −(i+ 1)
√

2eω1ω
−1
2 (n+ 1

2 )πix +
√

2e−(n+ 1
2 )πix + i

√
2e(n+ 1

2 )πix +O

(
1

n

)
.

(2.33)

The proof is complete.
By Lemma 2.2 and (2.30), we get the following corollary.
Corollary 2.6. The eigenfunctions of (1.1′) satisfy the following asymptotic

formula:

yn1(x) = −√2e(−n+ 1
2 )πix − i√2e(n− 1

2 )iπx +O1( 1
n ),

yn2(x) =
√

2e−(n+ 1
2 )πix + i

√
2e−(n+ 1

2 )πix +O2( 1
n ),

n = 1, 2, 3, . . . , x ∈ [a, b] ⊂ (0, 1),

(2.34)

where a and b are two arbitrary constants: 0 < a < b < 1.
Furthermore, there exists a constant M > 0 such that |ynj(x)| ≤M for x ∈ [0, 1]

and j = 1, 2, n = 1, 2, . . . .

3. Properties of operator A. In this section, we discuss some properties of
A. Let {Ψnj}, j = 1, 2, n = 1, 2, . . . , be the set of all generalized eigenvectors of A.
We have the following result.

Theorem 3.1. A is a generator of a C0-semigroup T (t), and all of the eigenvec-
tors {Ψnj} (j = 1, 2, n = 1, 2, . . . ) of A form an unconditional basis of H.
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Proof. Obviously A generates a C0-semigroup T (t). By Corollary 2.4, µnj =

( 1
2 +(−1)jn)2[i+O1( 1

n )], j = 1, 2, n = 1, 2, . . . , are the eigenvalues of A1 = ( 0 I
−A0 0 ),

and the eigenvectors ( φn
µnjφn

) of A1 corresponding to µnj , j = 1, 2, n = 1, 2, . . . , form

an orthogonal basis of H. Then A1 is a (D)-operator [3]; that is, A1 has a discrete

spectrum and its eigenvectors ( φn
µnφn

) form a basis of H. Because∥∥∥∥( 0 0
0 −b(x)

)
Φ

∥∥∥∥ ≤ b0‖φ2‖ = b0‖A0
1‖‖Φ‖, Φ ∈ D(A1),(3.1)

where A0
1 = I, Φ = (φ1, φ2)T , b0 = maxx∈[0,1] |b(x)|, by Corollary 11 [2], A is also a

(D)-operator. That is, A has also a discrete spectrum and its generalized eigenvectors
{Ψnj} (j = 1, 2, n = 1, 2, . . . ) form a basis of H.

4. The estimate for the real parts of the eigenvalues of A. We now
estimate the real parts of the eigenvalues of A.

Lemma 4.1. Let σ(A) = {µnj ; j = 1, 2, n = 1, 2, 3, . . . }. There exists a constant
n0 such that Reµnj < − δ02 + ε for n > n0, where 0 < ε < δ0

2 .

Proof. Let ( φ1nj

φ2nj
), j = 1, 2, n = 1, 2, . . . , be the eigenvector of A corresponding

to the eigenvalue µnj . By Lemma 2.1, φ2nj = µnjφ1nj and φ1nj satisfies the equation{
φ

(4)
1nj(x) + µnjb(x)φ1nj(x) + µ2

njφ1nj(x) = 0,

φ1nj(0) = φ′1nj(0) = φ′′1nj(1) = φ′′′1nj(1) = 0 .
(4.1)

Forming the inner product of (4.1) with φ1nj , we obtain

µ2
nj‖φ1nj‖2 + µnj

∫ 1

0

b(x)|φ1nj(x)|2dx+ ‖φ′′1nj‖2 = 0.(4.2)

Equation (4.2) is equivalent to

2(Reµnj)(Imµnj)‖φ1nj‖2 + (Imµnj)

∫ 1

0

b(x)|φ1nj(x)|2dx = 0(4.3)

and

((Reµnj)
2 − (Imµnj)

2)‖φ1nj‖2 + (Reµnj)

∫ 1

0

b(x)|φ1nj |2dx+ ‖φ′′1nj‖2 = 0.(4.4)

For convenience, we let ‖φ1nj‖ = 1. From (4.3) and (4.4) we get

Reµnj = −1
2

∫ 1

0
b(x)|φ1nj |2dx

± 1
2

√
(
∫ 1

0
b(x)|φ1nj(x)|2dx)2 − 4‖φ′′1nj‖2‖φ1nj‖2, if Imµnj = 0,

Reµnj = −1
2

∫ 1

0
b(x)|φ1nj(x)|2dx, if Imµnj 6= 0.

(4.5)

Because |µnj | → ∞, by (4.5), (2.25), the above corollaries, and the hypothesis, we see
that there exists a constant n0 such that Reµnj < − δ02 + ε, for n ≥ n0. Therefore the
proof is complete.

From Lemma 4.1, we can get the following decomposition result.
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Theorem 4.2. The system (1.2) can be decomposed into

d
dtYn1(t) = An1Yn1(t), Yn1 = Pn1Y0, t > 0,(4.6)

d

dt
Yr(t) = ArYr(t), Yr = PrY0 , t > 0,(4.7)

where Pn1
is a projection; Pr = I − Pn1

, Yn1
= Pn1

Y, Yr = PrY , An1
= Pn1

APn1
,

and Ar = PrAPr. In addition, Ar generates a semigroup Tr(t) = PrT (t)Pr with the
growth property

Tr(t) ≤Mr(ε)e
−(δ1−ε)t, t ≥ 0, 0 < ε < δ1 =

δ0
2
,(4.8)

where Mr(ε) ≥ 1 is a constant with respect to Pr, ε, and δ0.
Proof. According to Lemma 4.1, there are only 2n1 eigenvalues, µnj ∈ σ(A),

such that Reµnj > −δ1 + ε. We assume that they are µ11, µ12, . . . , µn11, µn12. Let

Pn1
= (2iπ)−1

∑n1

n=1

∑2
j=1

∮
Cnj

R(λ;A)dλ, where Cnj , j = 1, 2, n = 1, 2, . . . , n0, is

a circle, centered at µnj , such that no other µnj belongs to its interior. Obviously,
Pr =

∑
µnj∈σ0(A)(2iπ)−1

∮
Vnj

R(λ;A)dλ, where σ0(A) = σ(A)\{µnj , j = 1, 2; n =

1, 2, . . . , n1}, Vnj is a small circle defined similarly to Cnj . Let Yn1
= Pn1

Y, Yr =
PrY, An1

= Pn1
APn1

, Ar = PrAPr; we can obtain (4.6) and (4.7). We now prove
(4.8). By the definition of Pn1

and Pr, we know that H = (Pn1
H)
⊕

(PrH) and
PrH is an invariant subspace of the semigroup T(t). On PrH, Tr(t) = PrT (t)Pr is a
C0-semigroup with generator Ar = PrAPr. Obviously, Ar is a (D)-operator in PrH
because A is a (D)-operator in H. Therefore, for any Yr ∈ PrH,

Tr(t)Yr(t) =

N0∑
n=n1+1

2∑
j=1

eµnjt
n(j)∑
k=0

αknjφknj +
2∑
j=1

∞∑
n=N0+1

αnje
µnjtφnj ,(4.9)

where {φknj} are the generalized unit eigenvectors of Ar, N0 > 0 is a constant, and

‖Tr(t)Yr‖ ≤M0

 2∑
j=1

N0∑
n=n1+1

e2Reµnjt
n(j)∑
k=0

|αknj |2 +
2∑
j=1

∞∑
n=N0+1

|αnj |2e2Reµnjt

 1
2

≤M0Mr(ε)e
−(δ1−ε)t

 N0∑
n=n1+1

2∑
j=1

n(j)∑
k=0

|αknj |2 +
2∑
j=1

∞∑
k=n1+1

|αnj |2
 1

2

≤M0Mr(ε)M1e
−δ1t‖Yr‖,(4.10)

where M0 and M1 are constants relative to the unconditional bases [3]. The proof of
(4.8) is complete.

5. Finite-dimensional state feedback controller. In this section, we design
a finite-dimensional state feedback controller such that system (1.1) is stable.

Theorem 5.1. For a given ε : 0 < ε < δ1, let there be no eigenvalue of A on
the line {λ| Reλ = −(δ1 − ε)}. Then, there exists a bounded linear operator Ĉε such
that A+ Ĉε generates an exponentially stable C0-semigroup Tε(t); that is, there exists
a constant Mε ≥ 1 such that

‖Tε(t)‖ ≤Mεe
−(δ1−ε)t, t ≥ 0.(5.1)
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Proof. From Theorem 4.2, we know that A = An1
+ Ar, where An1

is invariant
on H1 = Pn1

H, and Ar is invariant on H2 = PrH. Because H1 is a finite-dimensional
subspace spanned by the generalized eigenfunctions of An1 , An1 is equivalent to a
finite matrix A1. By the theory of lumped parameter systems, we can find a matrix
C1 such that (A1, C1) is controllable. Then there exists a matrix K1 such that all
eigenvalues of A1 + C1K1 are assigned to the half plane {λ | Reλ < −(δ1 − ε)} and
σ(A1 + C1K1) ∩ σ(Ar) = ∅. Let Cε be the operator on H1 corresponding to C1K1.
Let Ĉε = CεPn0

. By the finite state feedback Ĉε, we get a new system:
d

dt
Y (t) = (A+ Ĉε)Y (t),

Y (0) = Y0 ∈ H .
(5.2)

By the definition of Ĉε, we see that A + Ĉε generates a C0 semigroup Tε(t), t ≥ 0 on
H, and there exists a constant Mε ≥ 1 such that ‖Tε(t)‖ ≤ Mεe

−(δ1−ε)t , t ≥ 0. The
proof is complete.

Because system (5.2) is not equivalent to (1.2), the stability result of system (5.2)
does not directly imply that of system (1.1). So we will find a control for system (1.1)
such that the closed loop system of (1.1) is stable.

For convenience, we write Ĉε in the form of a matrix:

Ĉε =

(
C11 C12

C21 C22

)
.(5.3)

Lemma 5.2. Let u(x,t), ∂u(x,t)
∂t , ∂u(x,t)

∂x , and ∂2u(x,t)
∂x2 be continuous. Then the

system 
y1 = u+

∫ t

0

(1, 0)

(
C11 C12

C21 C22

)(
y1(s)
y2(s)

)
ds,

y2 =
du

dt

(5.4)

has a unique solution.
By the theory of Volterra integral equations, the proof of Lemma 5.2 is simple.
For system (1.1), we take the following control:

f(t) = (0, 1)

(
C11 C12

C21 C22

)(
y1(t)
y2(t)

)
−A0

∫ t
0
(1, 0)

(
C11 C12

C21 C22

)(
y1(s)
y2(s)

)
ds,(5.5)

where y1 and y2 are defined by (5.4). Then system (1.1) controlled by f(t) can be
written as 

d2u(t)

dt2
+B

d

dt
u(t) +A0u(t) = f(t) , t > 0,

u(0) = u0 ,
d

dt
u(0) = u1 , u0, u1 ∈ L2[0, l],

(5.6)

where B = b(x). By the transformation
y1 = u+

∫ t
0
(1, 0)

(
C11 C12

C21 C22

)(
y1(s)
y2(s)

)
ds,

y2 =
du

dt
,

(5.7)
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system (5.6) becomes 
d

dt
Y (t) = (A+ Cε)Y (t) , t > 0

Y (0) =

(
y1(0)
y2(0)

)
=

(
u0

u1

)
,

(5.8)

where Y (t) = (y1(y), y2(t))T . By Theorem 5.1, system (5.7) generates an exponentially
stable C0-semigroup.

Theorem 5.3. The solution u(x, t) of closed-loop system (5.6) converges expo-
nentially fast to

−
∫ ∞

0

(1, 0)Ĉε
(
y1(s)
y2(s)

)
ds,

where y = (y1, y2)T , the solution of (5.8).

Proof. Because u(x, t2)− u(x, t1) =
∫ t2
t1

∂u(x,t)
∂t dt =

∫ t2
t1
y2(t)dt and

‖u(x, t2)− u(x, t1)‖ ≤
∫ t2

t1

‖y2(t)‖dt ≤
∫ t2

t1

Me−δ0tdt,

we get

lim
t→∞u(x, t) = u(x,∞) ∈ H2(0, l).

Because

y1(t) = u(x, t) +

∫ t

0

(1, 0)Ĉε
(
y1(s)
y2(s)

)
ds

and

‖u(x, t) +

∫ t

0

(1, 0)Ĉ
(
y1(s)
y2(s)

)
ds‖ = ‖y1(t)‖ ≤ ‖Y (0)‖Me−δ0t → 0,

we have

lim
t→∞

∫ t

0

(1, 0)Ĉε
(
y1(s)
y2(s)

)
ds =

∫ ∞
0

(1, 0)Ĉε
(
y1(s)
y2(s)

)
ds.

Remark. For system (1.1), it is still not clear how many eigenvalues have non-
negative real parts.
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ADMISSION CONTROL FOR COMBINED GUARANTEED
PERFORMANCE AND BEST EFFORT COMMUNICATIONS

SYSTEMS UNDER HEAVY TRAFFIC∗
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Abstract. Communications systems often have many types of users. Since the users share the
same resource, there is a conflict in their needs. This conflict leads to the imposition of controls
on admission or elsewhere. In this paper, there are two types of customers, GP (Guaranteed Per-
formance) and BE (Best Effort). We consider an admission control of GP customer which has two
roles. First, to guarantee the performance of the existing GP customers, and second, to regulate the
congestion for the BE users. The optimal control problem for the actual physical system is difficult.
A heavy traffic approximation is used, with optimal or nearly optimal controls. It is shown that the
optimal values for the physical system converge to that for the limit system and that good controls
for the limit system are also good for the physical system. This is done for both the discounted
and average cost per unit time cost criteria. Additionally, asymptotically, the pathwise average (not
mean) costs for the physical system are nearly minimal when good nearly optimal controls for the
limit system are used. Numerical data show that the heavy traffic optimal control approach can lead
to substantial reductions in waiting time for BE with only quite moderate rejections of GP, under
heavy traffic. It also shows that the controls are often linear in the state variables. The approach has
many advantages. It is robust, simplifies the analysis (both analytical and numerical), and allows a
more convenient study of the parametric dependencies. Even if optimal control is not wanted, the
approach is very convenient for a systematic exploration of the possible tradeoffs among the various
cost components. This is done by numerically solving a series of problems with different weights on
the costs. We can then get the best tradeoffs and the control policies which give them.

Key words. admission control, control of communications systems, control of queueing net-
works, heavy traffic limits, ergodic control, singular control, weak convergence
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1. Introduction. Broadband-ISDN (integrated services data network) high speed
networks allow the possibility of integrating different services into one single telecom-
munications network. In particular, they handle applications that require guaranteed
quality of service (QoS), such as bounded delays, bounded cell loss rates, and a guar-
antee on the throughput. Such a service is called Guaranteed Performance (GP). On
the other hand, they also support more flexible applications, such as data transfer,
that are less sensitive to instantaneous variations in available bandwidth, delays, jit-
ter, etc., and which do not require guarantees on throughputs or delays. We call
the latter “Best Effort” (BE) traffic. In the context of Asynchronous Transfer Mode
(ATM), this corresponds to the Available Bit Rate (ABR) service category [1], which
can adapt to the bandwidth unused by the GP service classes. In the context of the
Internet, the BE traffic are the TCP/IP connections, which use a congestion avoidance
mechanism [17] so as to adapt to the available bandwidth, in contrast with real-time
applications that use UDP (UDP is a protocol which does not adapt its transmission
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rate to the current congestion state of the system) such as the phone over the Internet
[5]. In particular, we suppose that the BE users share the remaining bandwidth, as
for example, in the standard Internet. (Note that, unlike ATM, the Internet does not
provide performance guarantees for real-time applications. However, in practice, the
TCP/IP connections do adapt their transmission rate to the available bandwidth left
over after the UDP sessions; see [3].)

Since GP and BE share the same resources of the network, there is a conflict
in needs, and the question of admission control arises. The purpose of this paper is
to analyze the impact that Connection Admission Control (CAC) performed on GP
traffic has on the BE traffic, in order to properly allocate resources in a dynamic
manner as well as guarantee QoS.

In ATM networks, a large part of the architecture has been standardized [1].
Implementation of the CAC, however, is not standardized and is left to the network
manager. This has motivated much research and a large literature has emerged.
Several approaches have been used in designing CACs. The first approach is based
on characterizing the input traffic of a source by some simple parameters, such as the
effective bandwidth; basically it estimates the bandwidth that should be given to a
source to guarantee that the cell loss rate does not exceed (in some asymptotic sense)
some small number. Examples of this approach are [10, 15, 13, 18, 19, 31, 32, 37]. A
diffusion-based statistical CAC was proposed in [12].

A recent approach to admission control estimates (on-line) the consequence of
possible admission, using real-time measures of the network activity [14, 35, 36].
An optimal-control approach for call admission, using a Markov Decision Processes
approach, has been used in a number of papers [11, 16, 34]. All the cited papers focus
on the impact of admission control on GP traffic. To the best of our knowledge, our
paper is the first to consider the optimal design of the CAC for the GP sessions in
terms of the performance of both the BE and the GP sessions.

The CAC was not intended to be performed on BE traffic, since BE traffic is
sufficiently flexible so as not to deteriorate QoS that is required by GP connections.
In particular, the ATM forum has decided [1] that ABR sessions will not be subject
to CAC (unless they require from the network a guarantee on minimum cell rate). We
shall therefore assume that BE sessions are always admitted into the network, unless
some very large limit is reached. This limit might represent the number of sessions
that can be handled simultaneously by the switches. This limit will not depend on
the available bandwidth.

Quite often, CACs are designed taking into account only the performance re-
quirements of GP sessions. However, as already noted in [2, 4], under appropriate
operating conditions in the network (in particular, the heavy-traffic conditions, which
correspond to an efficient utilization of the resources) it is possible to improve sub-
stantially the performance (delays and throughputs) of the BE sessions by modifying
slightly the CAC for the GP sessions.

References [2, 4] contain analysis of the performance of GP and BE sessions for
given CACs (performed on GP sessions) that take into account also the performance
of BE sessions. In this paper, we go one further step and provide a design based on
an optimization approach. We consider the optimal admission control arising when
the number of sessions and the available bandwidth are taken to be large and scaled
in an appropriate way so as to perform in the desirable heavy traffic region.

The approach taken is that of optimal control in the heavy traffic regime. In
this regime, the system has little spare bandwidth over what is needed to handle
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the “average load.” It is shown that the physical system can be well approximated
by a controlled (reflected) diffusion process, and that good controls for this diffusion
process are good for the physical system under heavy traffic. The resulting controls
are easily implementable (and are often simply linear in the state variables) and
can give a significant improvement of the performance of the BE sessions by only
a small rejection of GP sessions. The work is a continuation of the past work on
the control of communications and queueing systems under heavy traffic conditions
[29, 27, 26, 22, 30, 25, 28, 23].

The extensive numerical results in [25] illustrate the power of such an approach.
Excellent controls, system performance, and very useful information which would
not otherwise be available were obtained. The paper [30], concerned with trunk line
problems, also shows the power of the heavy traffic approach for modeling, simplifying
and controlling very complex systems.

The control problem for the actual physical model is quite hard, if not impossible
to solve. The system is not always Markovian. Even in the Markovian case, the
number of states can be extremely large. Additionally, even for an uncontrolled
Markovian system, the computation of the steady state overflows (losses) and delays
is difficult. The heavy traffic approach provides much analytical and computational
simplification. The optimally controlled costs for the physical problem converge to the
optimally controlled cost for the limit problem, and a nearly optimal control for the
limit problem is also nearly optimal for the physical problem if the traffic is “heavy.”

In applications, the traffic is not always heavy. But this regime is one of the
crucial ones for design, analogous to the case of the trunk line problem for long
distance teletraffic. The analysis illustrates efficient use of resources. In any large
system, there are many alternative uses of the resources and continuous tradeoffs
among them. Here we can see, for example, the effect of marginal reallocations of
bandwidth within a control context. Of course, serious control problems do exist
even outside of the heavy traffic regime; for example, even if the system is heavily
overbuilt from the heavy traffic perspective, the structure of the burstiness in arrivals
can lead to important control problems. In this regard, it is worth noting that, in
the numerical study in [25] of controlled multiplexers in the heavy traffic regime, the
buffer is empty or nearly empty most of the time, and it is the burstiness of the input
which yields the losses and the control problem.

There are many other advantages to the combined heavy traffic and optimal
control approach. Under broad conditions, it yields the appropriate dimensioning
of the system and shows that good performance can often be achieved with only
modestly extra bandwidth (over average requirements). The “limit” variables can be
interpreted as “aggregated” states. The analysis takes advantage of the laws of large
numbers and central limit theorems that come into play as the size of the system
grows. The “limit” or aggregate equations can be used to compute nearly optimal
controls for the physical system, and to get good estimates of various measures of
performance. The relative simplicity of the form of the heavy traffic limit process
facilitates understanding the parametric dependencies. As in [25], we can obtain both
qualitative and quantitative information which is often very hard to get. To do so
otherwise, one would need to study many particular cases of systems with different
parameters and sizes whose relationships would remain obscure. The reference [33]
contains examples of other types of applications.

The method allows convenient numerical approximations (see [24, 25]) whose
complexity is much less than that of even the physical Markov systems. In fact, the
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basic Markov chain approximation method of [24] has been coded for problems of this
type and is publicly available.1 The format is robust: bursty data, priorities, time
dependence, dependence of arrivals on the system state, and other useful extensions
can be readily handled.

An important question concerns the tradeoff between gains in QoS for BE versus
losses for GP. The heavy traffic formulation allows a systematic exploration of this.
One solves the optimization problem with various weights for the associated losses
and costs and computes the values of the individual components of the cost under
the optimal controls. This yields the set of possible tradeoffs under good operating
policies. One can then choose the control which gets the best performance for one
component with a constraint on the others. Usually, optimization for its own sake
is not the main interest. But the use of optimizing or optimal control methods for
exploration of possibilities is of greater interest and provides a powerful design tool.
The value of this approach was amply demonstrated in [25], and the large gains due
to the use of feedback control were demonstrated. This is equally valid for the present
problem. Indeed, numerical data shows that substantial reductions (say, 30% or even
much more) in BE delays can be obtained with only very modest levels of rejection
of GP customers. The percent rejected depends on the system parameters and the
arrival rates, and it goes to zero as the system grows, for any fixed percentage gain
in delay.

The “state space” collapse phenomenon illustrated in section 5, when there are
many GP and BE subclasses, allows one to explore the effects on performance and
control of complex customer requirements. One can do the numerics for aggregations
of several classes as well as for the original problem to get insights into robustness
of the model and performance under varying conditions. This would be very hard
under any current alternative approach. Indeed, the limit allocations to the different
classes are consistent with the (ad hoc) weighted fair-shares for different types of
BE customers which were defined by the ATM forum for sharing bandwidth (see [1,
section I.3]).

The model in section 4 can be used to study the effects of finite bandwidth con-
straints on individual users. The multicast problem of section 6 shows how seemingly
complex forms of the problem can be put into the context of a general theory.

The structure of the paper is as follows. The basic model is presented in section
2, and the input-output equation is written in a way that is convenient for the heavy
traffic analysis. In the basic model, the BE customers share the available bandwidth
equally, whatever it is. The general methods used for the analysis of this case also
apply with little modification to the subsequent cases. Section 3 deals with the weak
convergence of the heavy traffic approximations and the discounted cost function
as the traffic intensity approaches unity. Many of the ideas have been used in the
references in various ways, despite the difference in the problems considered. Because
of this and to save space, we provide detailed outlines with references where possible.
There is a new problem with “tightness” of the set of the (singular) controls, but we
show that they can be approximated such that they are tight.

Section 4 considers the case where there is an upper limit to the bandwidth that
any one of the BE customers can use. This changes the dynamics and the scaling,
but the previous analysis can be carried over. In order to illustrate the power and

1See the home page of the Lefschetz Center for Dynamical Systems, Brown University Dept. of
Applied Mathematics home page http://www.dam.brown.edu/lcds.html. Select the software link to
get the documentation and codes.
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versatility of the approach, in section 5 we consider extensions where there are several
classes of BE customers, which might be allocated bandwidth in class dependent ways.
There is a surprising degeneracy, which can be exploited to simplify the analysis and
subsequent numerical work.

Section 6 extends the basic model to a multicast case. Here there are two channels
(any number could be used), each with its own class of GP customers and its own
control. But the BE customers must be transmitted simultaneously on each of the
channels. Many variations of the format are possible. The ergodic cost problem is
dealt with in section 7. In section 7 we impose a constraint on the rate at which GP
arrivals can be rejected, so that previous results on the ergodic cost problem can be
exploited. The form of the heavy traffic limit equations implies that this constraint
is not very restrictive and this is borne out by numerical data. But in section 8 we
show that it is not a restriction.

The optimal mean cost per unit time for the physical system converges to the
optimal “ergodic” value for the limit system as the size of the system and time go
to infinity in any way at all. Furthermore, the limit of the pathwise (not mean)
average costs per unit time cannot be better than the optimal ergodic value for the
limit system. The pathwise average costs for the physical system can be made to
be arbitrarily close to this ideal limit by using a nice nearly optimal (for the limit
system) control on the physical system, under heavy traffic. The pathwise results
are important, since in any single application, we have just one sample path, and
the mean values are less important than the pathwise values. Furthermore, a “nice”
nearly optimal control for the limit system provides nearly optimal values for the
physical system, under heavy traffic, in both a mean and pathwise sense.

Some of the development is similar to that in recent works on control under heavy
traffic (e.g., [29, 22, 25, 23]), although the exact form of the adaptation is not entirely
obvious for the present problem. This is particularly true of the derivation of the basic
setup in the first part of section 3. Because of this, we have referred to the literature
whenever possible. There remain many new methodological features apart from the
novelty of an important application in a broad context: The approximation of the
singular controls, both for the discounted and the ergodic problem, the degeneration
(or state space collapse) for the multi BE/GP class problem, the adaptation of the
formulation to multicast, and other extensions, with state dependent dynamics.

2. Problem 1: The basic setup. In this section, we set up the notation and
evolution equations for the basic problem. The development for the more complex
problem classes is similar. There are two classes of users, which we refer to as class
0 and class 1. Class 0 refers to the BE traffic and class 1 the GP traffic. As usual in
the analysis of systems under conditions of heavy traffic, the mean service capacity is
slightly greater than the mean demand. The system is parameterized by a parameter
N . Both the system capacity, excess capacity (over what is required for the average
demands), and demand grow as N → ∞, with the relative excess capacity going to
zero. This will be formalized below. A consequence of the heavy traffic analysis is
that these relationships represent good design in that very good performance can be
obtained. A well designed heavy traffic operating regime implies that the system is
not overbuilt and can handle the demands placed on it.

In this and in the next section, the bandwidth is normalized so that each member
of class 1 requires one unit of bandwidth. The members of class 0 share whatever
bandwidth is left. An applications paradigm is that each arrival is the work for a
“session,” whose work arrives essentially at once, and is buffered on arrival. This
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models well the more general situation in which the input rate of packets within
a session is not less than the transmission rate, so that when we allocate a given
bandwidth to a session then this bandwidth is indeed used by it. In section 4 we shall
relax this assumption. The channel is time shared, with a guaranteed time going to
the class 1 customers, and the time remaining to the class 0 customers. Thus, there
is no limitation on the rate at which work can be done on the set of class 0 customers
except for the available capacity.

Let αi,Nl , l = 1, . . . , denote the interarrival times for the members of class i, and

set Eαi,Nl = ᾱi,N . For a given N , {αi,Nl }l=1,...,i=0,1 are assumed to be mutually
independent. To conform with standard usage we also define the normalized mean
“rates” λi,N = 1/Nᾱi,N . The service times for the members of class 1 are exponentially
distributed with constant rate µ1,N . Class 1 can be controlled in that any requested
admission can be denied by the controller. The system is a “loss” system in that any
customer denied admission disappears from the system. For analytic convenience we
suppose further that there is a constant B0

+ > 0 such that no class 0 customers are
admitted to the system if the current number of class 0 customers in the system is
greater than

√
NB0

+. It follows from the heavy traffic limit theorems (and from the
numerical data) that this is inconsequential for large enough B0

+. In fact, the condition
is useful only to simplify some of the analytic details for the ergodic cost criterion, and
B0

+ can be set equal to infinity for the discounted cost function. But we include the

finite upper bound here to unify the development. Let F 0,N (t) denote 1/
√
N times

the number of class 0 customers not admitted by time t.
The time requirements for the members of class 0 are also exponentially dis-

tributed. But the rate at which a customer of class 0 departs from the system depends
on the (random) resources available to it while it is in the system. The “conditional
mean instantaneous departure rate” for a class 0 customer at time t is defined to be
µ0,N times the bandwidth available to that customer at that time; i.e., if at time t,
B(t) is the total bandwidth unused by members of class 1, and there are A(t) mem-
bers of class 0 in the system, then the probability (conditioned on the data up to
that time) of a single departure of a member of class 0 in the time interval [t, t+ δ) is
µ0,NB(t)δ/A(t)+o(δ), and the probability of more than one departure in that interval
is o(δ). The set of interarrival times and the service times for class 1 are assumed
to be mutually independent. This independence of the interarrival times is a good
description of reality, since we are working at the session level, where this property
has often been observed.2 Long range dependence in the arrival process is not relevant
as it might be at the packet level.

We assume that there is b (parameterizing the “excess capacity,” which might be
negative) such that the channel capacity is

(2.1) CN = N

[
λ0,N

µ0,N
+
λ1,N

µ1,N

]
+ b
√
N.

Suppose that λi,N → λi and µi,N → µi, all positive. Thus, the mean arrival rates and
the channel capacity are all O(N), and the channel capacity is O(

√
N) greater than

the mean requirements. For appropriate b, this will be seen to be sufficient for good

2See, e.g., Liu (INRIA, Sophia Antipolis, France), Measurements over the Web, private commu-
nication, to be submitted.
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behavior. We also make the innocuous assumption that

(2.2)

{∣∣∣αi,Nl /ᾱi,N
∣∣∣2 ; l, i, N

}
is uniformly integrable,

and that there are σ2
i such that

(2.3) E

[
1− αi,Nl

ᾱi,N

]2

→ σ2
i .

In common cases, the arrival processes are assumed to be Poisson. Then all moments
of the terms in (2.2) are uniformly (in i, l, n) bounded. If the interarrival intervals
for class i are constant, then σ2

i = 0. If the arrival stream for class i is Poisson, then
σ2
i = 1. Define the scaled mean arrival process

Si,N (t) =
1

N
[# of class i arrivals by time t]

and the normalized and centered sum

W i,N (t) =
1√
N

[Nt]∑
l=1

[
1− αi,Nl

ᾱi,N

]
,

where [Nt] denotes the integer part.
As usual in heavy traffic scaling, all of the basic system variables are scaled by

1/
√
N . Define X0,N (t) to be 1/

√
N times the number of members of class 0 in the

system at time t, and set

X1,N (t) =
1√
N

[
# of class 1 in system at time t−N λ1,N

µ1,N

]
.

Thus X1,N (t) is the scaled number of class 1 customers centered about the mean, if
there are no rejections and an infinite channel capacity. Define Ai,N (t) (resp., Di,N (t))
to be 1/

√
N times the number of arrivals (resp., departures) of class i by time t, and

F 1,N (t) denotes 1/
√
N times the number of arrivals of class 1 up to time t which the

controller did not admit. Thus, Ai,N (t) =
√
NSi,N (t). The (nondecreasing) control

process F 1,N (·) is assumed to be admissible in that it is (ω, t) measurable and its
value at time t depends only on the data which is available up to time t.

The system balance equations are

(2.4a) X0,N (t) = X0,N (0) +A0,N (t)−D0,N (t)− F 0,N (t),

(2.4b) X1,N (t) = X1,N (0) +A1,N (t)−D1,N (t)− F 1,N (t)− U1,N (t),

where U1,N (t) is 1/
√
N times the number of class 1 customers that could not be

admitted due the entire channel being occupied by class 1 customers. This last term
will disappear in the limit. We will suppose that the set

(2.5)
{
X1,N (0), N

}
is tight (bounded in probability).

If this set is not tight, then there will be a long delay before the heavy traffic regime
is entered. The set {X0,N (0)} is always tight, since B0

+ <∞. It is also supposed that
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the initial condition is independent of the subsequent arrival times and service times
for class 1.

In order to simplify the convergence proofs, one needs to put the input and output
processes into a more convenient form.

Representation of the input processes. Following a common practice in weak
convergence analysis, we decompose the arrival process as

(2.6a)

Ai,N (t) =
1√
N

NSi,N (t)∑
l=1

1

=
1√
N

NSi,N (t)∑
l=1

[
1− αi,Nl

ᾱi,N

]
+

1√
N

NSi,N (t)∑
l=1

αi,Nl
ᾱi,N

.

Note that

NSi,N (t)∑
l=1

αi,Nl

equals t minus the time since the last arrival before or at t. Thus, by (2.6a),

(2.6b) Ai,N (t) = W i,N (Si,N (t)) + tλi,N
√
N − ρi,N (t)√

N
,

where ρi,N (t) is the time since the last arrival before or at t, divided by the mean
interarrival interval. The sequence of processes ρi,N (·)/√N converges weakly to the
“zero” process. It does not affect any of the subsequent calculations and for the sake
of notational simplicity, it will be omitted in all of the subsequent system equations
after (2.11).

Representation of the output processes. Because of the exponential distribution
of the service time for the class 1 customers, D1,N (·) can be decomposed into the sum
of the integral of the instantaneous conditional mean rate at which D1,N (·) increases,
and a martingale process D̃i,N (·). To do this, first note that the conditional mean
instantaneous rate of increase of D1,N (·) at t is µ1,N/

√
N times the number of class

1 customers in the system at t.
We have the decomposition

(2.7) D1,N (t) = µ1,N

∫ t

0

[
X1,N (s) +

√
N
λ1,N

µ1,N

]
ds+ D̃1,N (t).

The Doob–Meyer increasing process associated with the martingale is just 1/
√
N

times the integral in (2.7); namely,

(2.8) 〈D̃1,N 〉(t) =
µ1,N

√
N

∫ t

0

[
X1,N (s) +

√
N
λ1,N

µ1,N

]
ds.

The factor 1/
√
N appears due to the definition of Di,N (t) as 1/

√
N times the number

of departures by time t. Similar decompositions were used in [22, 27].
Let I0,N (t) denote the indicator function of the event that there are class 0 cus-

tomers in the system at t. The departure process for class 0 is similarly decomposed
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into the integral of the conditional mean instantaneous rate at which D0,N (·) in-
creases and a martingale D̃0,N (·). In preparation for this, first note that the available
bandwidth per class 0 customer at time t is

CN −
[√

NX1,N (t) +Nλ1,N/µ1,N
]

√
NX0,N (t)

I0,N (t),

which equals

Nλ0,N/µ0,N + b
√
N −√NX1,N (t)√

NX0,N (t)
I0,N (t).

Thus the conditional mean instantaneous rate at which D0,N (·) increases at t is[√
N
λ0,N

µ0,N
+ b−X1,N (t)

]
I0,N (t).

Hence,

(2.9a) D0,N (t) = µ0,N

∫ t

0

[√
N
λ0,N

µ0,N
+ b−X1,N (s)

]
I0,N (t)ds+ D̃0,N (t),

which we rewrite as

(2.9b) D0,N (t) = µ0,N

∫ t

0

[√
N
λ0,N

µ0,N
+ b−X1,N (s)

]
ds+ D̃0,N (t)− Y 0,N (t).

The term Y 0,N (·) is a reflection term; it compensates for the difference in the integrals
in (2.9a) and (2.9b), and it can increase only when X0,N (t) = 0. The Doob–Meyer
increasing process associated with D̃0,N (·) is

〈D̃0,N 〉(t) =
µ0,N

√
N

∫ t

0

[√
N
λ0,N

µ0,N
+ b−X1,N (s)

]
I0,N (s)ds,

which is written more conveniently as

(2.10) µ0,N

∫ t

0

[
λ0,N

µ0,N
+

b√
N
− X1,N (s)√

N

]
I0,N (s)ds.

Now, putting all of the above representations together and canceling the ±√Nλi,N
terms yields the forms:

(2.11a)
X0,N (t) = X0,N (0) +W 0,N (S0,N (t))− µ0,N

∫ t

0

g0(XN (s))ds

− D̃0,N (t)− F 0,N (t) + Y 0,N (t)− ρ0,N (t)√
N

,

(2.11b)
X1,N (t) = X1,N (0) +W 1,N (S1,N (t))− µ1,N

∫ t

0

X1,N (s)ds

− D̃1,N (t)− F 1,N (t)− U1,N (t)− ρ1,N (t)√
N

,
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where we define

(2.12) g0(x) = b− x1,

and the Y 0,N (t) term compensates for the fact that there are no departures of class
0 customers at time t if X0,N (t) = 0. It assures that X0,N (t) will stay nonnegative.

Comments on weak convergence. The path space for all of the random processes
is Dk[0,∞), the space of functions which are right continuous, have left hand limits,
and take values in Euclidean k-space for appropriate integers k. The Skorohod topol-
ogy is used [6, 9]. This is the most common and convenient choice in heavy traffic
analysis. The following is a convenient criterion for tightness in this space. It will be
used implicitly. Let {Y n(·)} be a sequence of processes with paths in D[0,∞), with
probability one. Let T n(t) denote the stopping times with respect to the filtration
engendered by Y n(·) and which are no larger than t. If

(2.13) lim
δ→0

sup
n

sup
τ∈T n(t)

E (1 ∧ |Y n(τ + δ)− Y n(τ)|) = 0,

for each t, and

(2.14) {Y n(t) : n, t} is tight,

then {Y n(·)} is tight [9].

3. Discounted cost function and weak convergence. The convergence the-
orem implies that only a bandwidth excess of order O(

√
N) is needed for good per-

formance.
Although the set of applications is new, the setup so far is similar to that of

many other problems of control of queues under heavy traffic. See, for example,
[29, 22, 25, 23]. The main new questions concern the control functions F 1,N (·). We
will be concerned with two types of cost functions: the discounted and the average cost
per unit time (to be called the ergodic cost function). Until section 7, we concentrate
on the discounted problem. Much of the analysis carries over to the ergodic case with
little change. Also, analogous procedures are used for the convergence proofs for all
of the problem formulations in the following sections.

Let β > 0, ci > 0, where β can be as small as we wish, and let k(·) be a nonnegative
continuous function with k(0) = 0. The discounted cost function is defined by

(3.1) CNβ (x, F 1,N ) = E

∫ ∞
0

e−βsk(X0,N (s))ds+ E

∫ ∞
0

e−βs
∑
i

cidF
i,N (s).

The second term penalizes the rejections. We do not penalize the loss U1,N (·), since
it is zero in the limit as N → ∞ no matter what the controls are. The first term
can be quite general. If k(·) is linear, then it simply penalizes the waiting time for
class 0 customers. More generally, it can be nonlinear. For example, it might be
zero for small values of the argument (if the delays at small values are considered to
be unimportant), or it might increase superlinearly to discourage long delays. The
allowed generality of the cost function is one of the advantages of the approach. Define
V Nβ (x) = infF 1,N CNβ (x, F 1.N ), where the inf is over the admissible controls.

The basic structure of the convergence proofs is similar to those in the cited
references to controlled queues in heavy traffic, except for the questions of tightness
and approximation of the control functions. After stating the convergence theorems,
the proofs will be outlined and references given for many of the details.
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Define Bi,N (·) = W i,N (Si,N (·))− D̃i,N (·).
Theorem 3.1. Let ε > 0 be small but arbitrary, and let F 1,N (·) be ε-optimal

controls. Suppose that {F 1,N (·), N} is tight.3 Then the set{
Xi,N (·), Bi,N (·), F i,N (·), i = 1, 2;Y 0,N (·), N}

is tight. The weak sense limit of any weakly convergent subsequence satisfies

(3.2a) X0(t) = X0(0)− µ0

∫ t

0

g0(X(s))ds+B0(t) + Y 0(t)− F 0(t),

(3.2b) X1(t) = X1(0)− µ1

∫ t

0

X1(s)ds+B1(t)− F 1(t),

where the Bi(·) are mutually independent Wiener processes with variance parameters
λi(1 + σ2

i ). 0 ≤ X0(t) ≤ B0
+, and Y 0(·) is the reflection term at zero. F 0(·) is the

reflection term at the upper bound. The other processes are nonanticipative4 with
respect to the Wiener processes.

Comments on the proof. Details for similar results are in [22, 23, 25, 29, 27], and
we will only outline the sequence of ideas. First, by the renewal theorem, Si,N (·) con-
verges weakly to the deterministic (limit scaled mean arrival rate) process with values
λit. By Donsker’s Theorem [6, 9], W i,N (·) converges weakly to mutually independent
Wiener processes with variance parameters σ2

i . Hence the W i,N (Si,N (·)) converges
to mutually independent Wiener processes W̃ i(·) with variance parameters λiσ

2
i .

The set of martingales {D̃i,N (·); i,N} can readily be proved to be tight via the
criterion (2.14), (2.15). This is done by a direct computation using the fact that
their associated Doob–Meyer increasing processes (2.8) and (2.10) are bounded by a
constant times t. The fact that the scaled discontinuities go to zero as N →∞ implies
that their weak sense limits have continuous paths with probability one.

With the above tightness results available on the “driving terms” W i,N (Si,N (·)),
D̃i,N (·), and the tightness assumption on the control terms, the tightness of {X1,N (·),
U1,N (·), N} can be readily proved if the X1,N in (2.11b) is replaced by some bounded
functions. For the general case, the tightness follows by a standard truncation argu-
ment [21]. This tightness implies that the sequence U1,N (·) has “zero” weak sense
limits, since the “upper boundary” for X1,N gets pushed to infinity as N →∞. The
tightness of {X1,N (·)} also implies the tightness of {X0,N (·), Y 0,N (·), F 0,N (·), N}.
In fact, the tightness of the {F 0,N (·)} can be shown even without tightness of the
controls, since the controls only decrease X1,N (·) (hence X0,N (·)) and F 0,N (·) is a
reflection process at an upper boundary. Indeed, one can show that F 0,N (·) is asymp-
totically continuous with probability one. If it were not asymptotically continuous,
then the asymptotic discontinuity and the properties of the other driving terms for
X0,N (·) would imply that asymptotically there is a jump to the interior of [0, B0

+]
from the upper boundary, which is impossible, since the individual steps go to zero as
N →∞ and F 0,N (·) can increase only on the boundary. The tightness of {Y 0,N (·), N}
implies that I0,N (·) can be nonzero only on set whose Lebesgue measure goes to zero
as N →∞. Hence, I0,N (·) has no asymptotic influence on the Doob–Meyer increasing
process associated with the martingale D̃0,N (·).

3By Theorem 3.3, this tightness assumption entails no loss of generality.
4The associated filtration here and in subsequent uses of “nonanticipative” is that generated by

all of the processes (Xi(·), Bi(·), F i(·), Y i(·), i = 0, 1).
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Now, given the tightness, extract a weakly convergent subsequence, with the weak
sense limits being denoted by Xi(·), etc. It can be shown that the weak sense limits
D̃i(·) are mutually independent Wiener processes which are independent of the W̃ i(·),
and have the variance parameters λi. The Wiener property of the limits of the D̃i,N (·)
is proved as in [22, Theorem 3.1]. The mutual independence is a consequence of the
independence conditions and the definition of “conditional mean instantaneous rate”
via a conditional expectation, and an analogous computation is in [22, Theorem 3.1].
The fact that (3.2) holds follows from the weak convergence. The nonanticipativenss
properties are proved by standard “martingale” means as in [29, Theorem 5.1], [22,
Theorem 3.1], or [23, Theorem 2.1]

Definition. The discounted cost function for (3.2) is

(3.3) Cβ(x, F 1) = E

∫ ∞
0

e−βsk(X0(s))ds+ E

∫ ∞
0

e−βs
∑
i

cidF
i(s).

Define an admissible control F 1(·) for (3.2) to be a nondecreasing process which
is nonanticipative with respect to the Wiener processes. If F 1(·) is absolutely con-
tinuous, with derivative u(·), then we say that u(·) is admissible if it is nonnegative,
measurable, and nonanticipative. Define Vβ(x) = infF 1 CNβ (x, F 1), where the inf is

over the admissible controls. We say that F 1,N (·) has a derivative which is bounded
by R if for each t and s > 0, F 1,N (t+ s)− F 1,N (t) ≤ Rs+ 1/

√
N . The 1/

√
N term

is needed since F 1,N (·) is piecewise constant with jumps 1/
√
N .

Theorem 3.2 (weak convergence). Let XN (0)⇒ X(0) Then

(3.4) V Nβ (XN (0))→ Vβ(X(0)).

Discussion of the proof. By Theorem 3.3, it can be assumed without loss of
generality that for each fixed ε > 0, there is some set of ε-optimal controls for (2.11),
(3.2), with uniformly bounded derivatives; hence the set is tight. As a result of the
discounting, as noted in the proof of Theorem 3.3, we can suppose that there is Tε <∞
such that the F 1,N (·) do not change after time Tε. It is sufficient to work with this
set below.

Given ε > 0, let F 1,N (·) be a sequence of ε-optimal controls. Let XN (0) →
X(0). By Theorem 3.1, {X0,N (·), X1,N (·), F 1,N (·)} is tight. Let Nk index a weakly
convergent subsequence with weak sense limits (X0(·), X1(·), F 1(·)). Then, by the
weak convergence and Fatou’s Lemma

lim inf
k

V Nkβ (XNk(0)) ≥ Vβ(X(0)).

This and the ε-optimality of F 1,N (·) for each N implies that

(3.5)
ε+ lim inf

N
V Nβ (XN (0)) ≥ lim inf

N
CNβ (XN (0), F 1,N )

≥ Cβ(X(0), F 1) ≥ Vβ(X(0)).

Since ε is arbitrary, (3.5) implies that

(3.6) lim inf
N

V Nβ (XN (0)) ≥ Vβ(X(0)).

Now we prove the reverse inequality to (3.5); namely,

(3.7) lim sup
N

V Nβ (XN (0)) ≤ Vβ(X(0)).
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To do this we apply the following widely useful approach. Note that, for each initial
condition, the distribution of the limit process X(·) depends on the pair (F 1(·), B(·)).
For each fixed ε > 0, we first find an ε-optimal pair (F ε,1(·), Bε(·)) for the limit
process with the property that there is a sequence of admissible controls F ε,1,N (·) for
(2.11) such that (defining Bε,N (·) as BN (·) was defined but under control F ε,1,N (·))
{XN (0), F ε,1,N (·), Bε,N (·))} converges weakly to (X(0), F ε,1(·), B(·)) and also that

(3.8) CNβ (XN (0), F ε,1,N )→ Cβ(X(0), F ε,1) ≤ Vβ(X(0)) + ε.

For any ε > 0, there is an F ε,1(·) and a sequence of admissible controls {F ε,1,N (·)}
satisfying the requirement (3.8). See, e.g., [28, section 5]. The sequence of controls
given by the reference is admissible and the F ε,1,N (Tε) are uniformly bounded. It
does not necessarily have a bounded derivative, and might not even be tight in the
Skorohod topology. (A time transformation method was used in the reference to
circumvent the tightness problem. But the method used here is simpler in the current
case, since Theorem 3.3 shows how to alter the control sequence (without loss of
generality) so that we have bounded derivatives (hence tightness) with (3.8) holding
(with perhaps ε replaced by 2ε).)

Now, (3.8) and the fact that (due to the nonoptimality of F ε,1,N (·))

V Nβ (XN (0)) ≤ CNβ (XN (0), F ε,1,N )

yields (3.4).
Comment on the optimal controls. The comments on the form of the optimal

control in section 7 also hold for the discounted cost problem. In particular, numerical
data show that there is a piecewise linear or nearly linear switching curve such that
the optimal control is to reject above and accept below, with any decision allowed
when on the curve. For large N , this control will be nearly optimal for the physical
system. These comments on the shape of the switching curves are based on (very
consistent) numerical computations, but not on proofs.

Comment on tightness. An ε-optimal sequence {F 1,N (·), N} need not be tight
in general. Let X1,N (t0) > 0. Consider the example of a control which rejects until
X1,N (t) reaches the value zero, and then stops. Since the required time for X1,N (·)
to reach zero is of the order of X1,N (t0)/

√
N , the control clearly converges to a step

function in an obvious way. But, owing to the fact that it increases in small steps
(of size 1/

√
N), the sequence is not tight in the Skorohod topology. There are many

ways of dealing with this problem. We can adapt the time transformation method of
[26, 24]. But, because of the relative simplicity of the dynamics and cost function,
there is a simpler way, which avoids the extra notation and concepts.

Theorem 3.3. It can be supposed that the controls in Theorems 3.1 and 3.2 are
tight. In fact, it can be supposed that they have uniformly bounded derivatives for each
ε > 0.

Proof. Fix ε > 0. Since B0
+ < ∞, {k(X0,N (t)), k(X0(t));N, t} is uniformly

bounded.5 Thus, due to the discounting, there is Tε < ∞ and a sequence of ε/2-
optimal controls which do not change after time Tε. Note that the control which is
identically zero has uniformly (in N) bounded costs.

5Even if B0
+ = ∞, by imposing a growth rate k(x0) = O(|x0|1+δ) for large x0, 0 ≤ δ < 1, and

assuming that supN E|X0,N (0)|2 < ∞, Ek(X0,N (t)) is at most O(t2) for large t, uniformly in the
control (and analogously for the limit system).
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The existence of Tε < ∞ can be seen from the following argument. From any
time T on, and with no control after that time, the limit cost is

E

∫ ∞
T

e−βtk(X0(t))dt+ E

∫ ∞
T

e−βtc0dF 0(t).

The first term obviously goes to zero as T → ∞, uniformly in the past values of the
control. The same thing can be said of the second term, owing to the properties of
the solution to (3.2a). A similar argument applies to the physical system and controls
F 1,N (·). We need only work with controls for which the sequence of costs is uniformly
bounded.

For large enough K <∞, the sequence defined by F 1,N
K (·) = F 1,N (·) ∧K will be

3ε/4-optimal, and similarly for F 1
K(·) = F 1(·) ∧K. To see this, note that whatever

the controls in the previous paragraph are, the boundedness of the costs imply that

(3.9) sup
N
EF 1,N (Tε) <∞, EF 1(Tε) <∞.

Furthermore,

(3.10)
lim
K

sup
N
P
{[
F 1,N (Tε)− F 1,N (Tε) ∧K

] 6= 0
}

= 0,

limK P
{[
F 1(Tε)− F 1(Tε) ∧K

] 6= 0
}

= 0.

(3.9) and (3.10) and a straightforward analysis using Fatou’s Lemma implies that the
costs and systems associated with the use of F i,N (·)∧K (resp., F i(·)∧K for the limit
system) are asymptotically (as K →∞) no worse (uniformly in N) than the costs for
the original untruncated controls.

Now that we know that there are 3ε/4-optimal controls F 1,N (·), F 1(·) which do
not increase after Tε and that are uniformly bounded, we can show that we can
bound the derivative as well: More precisely, we can show that there are R <∞ and
ε-optimal controls which satisfy:

(3.11) F 1
R(t+ s)− F 1

R(t) ≤ Rs,

(3.12) F 1,N
R (t+ s)− F 1,N

R (t) ≤ Rs+ 1/
√
N,

for all t, s > 0. In particular, let F 1
R(·) denote the largest control which satisfies

(3.11), but is no greater than F 1(·), and let F 1,N
R (·) be the largest control which

satisfies (3.12) and which is no greater than F 1,N (·).
Since K <∞ and R is as large as desired, any jump in F 1,N (·) can be reached by

F 1,N
R (·) in an arbitrarily short (uniformly in N and in the realization) time afterwards.

Thus, excluding a set of measure which goes to zero (uniformly in N) as R → ∞,
F 1,N (t)−F 1,N

R (t) goes to zero (uniformly in N) as R→∞. This and the boundedness

of the F functions imply that X1,N (t) − X1,N
R (t) is bounded and (excluding sets of

arbitrarily small measure) converges to zero uniformly in N . Similar remarks hold for

F 1,N (·), F 1,N
R (·). These results imply that the costs converge as well.

The 1/
√
N term appears in (3.12) since F 1,N (·) is piecewise constant with an

increment of 1/
√
N at each rejection.
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4. Upper limit to the bandwidth for the BE sharing customers. In
the model of the previous two sections, the class 0 customers shared the available
bandwidth, whatever it was, and used all of it. In general, it might not be possible
for all of the available bandwidth to be used. For example, there might be local
restrictions on the rate at which data can enter the channel buffer (e.g., bounded
modem speed, etc.). This possibility changes the problem a little, and we will indicate
the few required adjustments. Such examples are further illustrations of the versatility
of the approach.

Suppose that the maximum bandwidth that any single class 0 customer can use is
C0. The main difference in the development concerns the departure process for class
0 customers and the structure of the appropriate cost function. We now redefine

X0,N (t) =
# of class 0 customers at time t−Nλ0,N/(C0µ

0,N )√
N

.

Note that now X0,N (t) is centered around a mean value, assuming that each class
0 customer uses exactly C0 units of bandwidth. In sections 2 and 3, the number
of class 0 customers in the system was O(

√
N), and X0,N (t) measured that actual

number, scaled by 1/
√
N . Now, the number in the system will be O(N), and X0,N (t)

measures the deviation from the mean number, scaled by 1/
√
N . We suppose that

class 0 customers are rejected if X0,N (t) ≥ B0
+, where B0

+ < ∞. Theoretical and
numerical results show that this will have negligible effect if B0

+ is large.
The martingale decomposition (2.9) remains valid, but the instantaneous con-

ditional mean departure rate is different, being determined by whether or not the
available capacity per class 0 customer is greater than C0. The conditional mean
instantaneous rate at which D0,N (·) increases at time t is

µ0,N

√
N

[# of class 0 in system at t]×min

[
available BW at t

# of class 0 in system at t
, C0

]
I0,N (t),

which equals

(4.1)

I0,N (t)
µ0,N

√
N
×min [available BW at t, C0(# of class 0 in system at t)]

= I0,N (t)
µ0,N

√
N
×

min

[
Nλ0,N

µ0,N
+ b
√
N −

√
NX1,N (t), C0

(
λ0,NN

C0µ0,N
+
√
NX0,N (t)

)]
= I0,N (t)λ0,N

√
N + I0,N (t)µ0,Ng1(XN (t)),

where we define

(4.2) g1(x) = min
[
b− x1, C0x

0
]
.

Now, analogously to what was done in section 2, we can write the decomposition
as

D0,N (t) = λ0,N
√
Nt+

∫ t

0

µ0,Ng1(XN (s))ds+ D̃0,N (t)− Y 0,N (t),

where the Doob–Meyer increasing process associated with the martingale D̃0,N (·) is

〈D̃0,N 〉(t) =

∫ t

0

[
λ0,N +

1√
N
µ0,Ng1(XN (s))

]
I0,N (s)ds.
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The dynamical equation is (2.11) with (2.11a) replaced by

(4.3)
X0,N (t) = X0,N (0) +W 0,N (S0,N (t))

− µ0,N

∫ t

0

g1(XN (s))ds− D̃0,N (t)− F 0,N (t) + Y 0,N (t),

and the limit equation is (3.2) with (3.2a) replaced by

(4.4) X0(t) = X0(0)− µ0

∫ t

0

g1(X(s))ds+B0(t)− F 0(t).

In the cost function (3.1), the function k(·) was assumed to be nonnegative. This
made sense since X0,N (t) was nonnegative. Now, since X0,N (t) can take any sign,
we suppose that k(x0) takes the sign of x0 and is zero if x0 = 0. Note that for large
negative x0, the departure rate is essentially limited by the C0 limitation, and the
control has little effect. Also, suppose that

(4.5) |k(x0)| = O(|x0|), sup
N
E
∣∣X0,N (0)

∣∣2 <∞.
Under the given conditions Theorems 3.1 to 3.3 hold.
The savings in waiting time for the class 0 customers (for the controlled problem)

are of the order of that of the model in sections 2 and 3. But, since there are many
more customers in the system at any time, the savings per customer is less. We are
essentially concerned with “marginal” savings, at a “marginal” cost.

Comments on the proofs. The proofs outlined in section 3 work here as well,
with essentially the same details. The only differences are due to the fact that in
the present case the X0,N (t) are not bounded below. But in the proofs, the second
moment bound

(4.6) sup
N,t,F 1,N

E
∣∣X0,N (t)

∣∣2 <∞
is used in lieu of the zero lower bound. (4.6) is proved by use of a dominating system.
The second moments are bounded by a constant plus the second moments of the
following system, which is defined on the interval (−∞, 0], and the reflection term
F 0,N (·) now acts at the origin, and keeps the state nonpositive:

(4.7) X0,N (t) = X0,N (0)+W 0,N (S0,N (t))−µ0,N

∫ t

0

X0,N (s)ds−D̃0,N (t)−F 0,N (t).

The proof of (4.6) for the model (4.7) is done by a Liapunov function technique and
can be found in [22, p. 771]

5. Extension. Several BE and GP subclasses. The developments in the
previous sections can be extended to the case where there are multiple subclasses
of any of the classes (and similarly for the models in the subsequent sections). We
will illustrate only one of the many possibilities, working with the setup in sections 2
and 3. Suppose that there are now two types of BE (class 0) customers, called class
01 and class 02, with parameters λ0i,N , µ0i,N , i = 1, 2. We suppose that the natural
analogs of the conditions in sections 2 and 3 hold. There is a surprisng and very useful
degeneracy, which simplifies both the analytical problem and the numerical analysis.
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Analogous to (2.1), we let the channel capacity be

(5.1) CN = N

[∑
i

λ0i,N

µ0i,N
+
λ1,N

µ1,N

]
+
√
Nb.

The bandwidth available at time t for both subclasses 01 and 02 is∑
i

N
λ0i,N

µ0i,N
−
√
NX1,N (t) +

√
Nb, b > 0.

The processes are defined analogously to what was done in section 2; e.g., D0i,N (·) is
the number of departures of subclass 0i by time t, divided by

√
N .

Until otherwise noted, let us assume that the available bandwidth is shared equally
among all class 0 customers, irrespective of the subclass. Then the total conditional
mean instantaneous rate at which D0i,N (·) increases at t is (following the idea used
in section 2 and assuming that there are class 0 customers in the system)

µ0i,N

√
N

[# of subclass 0i in system at t]
avail BW at t

total # of class 0 in system at t
,

which equals

(5.2) µ0i,NX0i,N (t)

∑
j

N
λ0j,N

µ0j,N
−
√
NX1,N (t) +

√
Nb

√
N
∑
j X

0j,N (t)
.

Define

(5.3) āN =
λ01,N/µ01,N∑
j λ

0j,N/µ0j,N
, ā = lim

N
āN .

The system is degenerate in that if the costs are bounded in N , then the ratios
X01,N (t)/(X01,N (t) +X02,N (t)) converge to ā as N →∞. Thus we need only analyze
the system with class 1 and one of the subclasses 0i. Only an informal argument will
be given. We note in passing that this convergence relation is an example of what
is called state space collapse in the heavy traffic analysis of queueing systems. It is
not the usual type, which is concerned with multiclass queues under the workload
formulation.

Let us examine the mean rates of increase of A0i,N (·) and D0i,N (·). The “mean
rate” at which A0i,N (·) increases is

√
Nλ0i,N . Define BN =

∑
i[λ

0i,N/µ0i,N ]. Set

aN (t) =
X01,N (t)

X01,N (t) +X02,N (t)
.

Using the fact that the available bandwidth is partitioned equally among all the class
0 customers, the conditional mean instantaneous rates at which D0i,N (·), i = 1, 2,
resp., increase at t are, resp.,[√

NBN −X1,N (t) + b
]
µ01,NaN (t),

[√
NBN −X1,N (t) + b

]
µ02,N

(
1− aN (t)

)
.
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The differences of the dominant arrival and departure terms for the two subclasses
are, resp.,

(5.4a)
√
N
[
λ01,N −BNµ01,NaN (t)

]
,

(5.4b)
√
N
[
λ02,N −BNµ02,N

(
1− aN (t)

)]
.

For the case of section 2, the analogs of these terms have the value zero.
Let ε > 0 be small. If for large N , aN (t) 6∈ [ā− ε, ā+ ε], then (5.4a) implies that

there is a large force (of the order of
√
N) returning it to this interval. Similarly,

(5.4b) implies that (1−αN (t)) must be very close to (1− ā). The contribution of the
nondominant terms is relatively small in comparison.

The degeneracy situation is similar if there are more than two subclasses.
Many interesting variations of the multiple subclass problem can be analyzed.

For example, we might wish to alter the above formulation to allow each of the 0i
subclasses a different fraction of the available bandwidth. More concretely, suppose
that there are positive numbers ki such that for each unit of bandwidth allocated to
a customer of subclass 01, we allocate k2/k1 units of bandwidth to each customer of
subclass 02. Then the dominant term in the conditional mean instantaneous rate at
which D0i,N (·) increases at t is

(5.5) µ0i,NkiX
0i,N (t)

BNN√
N (k1X01,N (t) + k2X02,N (t))

.

Redefine aN (t):

(5.6) aN (t) =
k1X

01,N (t)∑
j kiX

0i,N (t)
.

Then, the difference between the dominant input and output terms is (5.4), but with
the new value of aN (t) used. Thus, we see that the new value of aN (t) is very close
to ā for large N .

Note that the weighted fair-share for different types of BE customers in the above
equations is the one defined by the ATM forum for sharing bandwidth among ABR
users (see [1, Section I.3]).

6. Multicast: The limit dynamical equations and the discounted cost
function. Now consider the case where there are two channels. There are three
classes of customers. Class 0 is as in section 2, but must be transmitted simultaneously
and with the same instantaneous rate on both channels. Class i, i = 1, 2, is to be
transmitted on channel i only. We make the natural analogs of the assumptions of
sections 2 and 3, defining Ai,N (·), Di,N (·), Xi,N (·), i = 0, 1, 2, etc., analogously to
what was done there. Analogous to (2.1), the capacity of channel i is assumed to be

(6.1) CiN = N
∑
i

λi,N

µi,N
+ bi
√
N, bi > 0.

Any number of channels and 0 subclasses could also be used, with an arbitrary as-
signment of the subclasses to the channels.

At time t, the bandwidth available for class 0 customers on channel i is

N
λ0,N

µ0,N
+ bi
√
N −Xi,N (t)

√
N.
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Thus, the conditional mean instantaneous rate at which D0,N (·) increases at t is
determined by the channel with the largest available bandwidth and (analogous to
what was done in section 2) is

(6.2)

µ0,N
√
NX0,N (t)√
N

×min

N
λ0,N

µ0,N
+ b1
√
N −X1,N (t)

√
N

√
NX0,N (t)

,

N
λ0,N

µ0,N
+ b2
√
N −X2,N (t)

√
N

√
NX0,N (t)

 I0,N (t).

This equals

(6.3)
[√

Nλ0,N + µ0,Ng2(XN (t))
]
I0,N (t),

where we define

(6.4) g2(x) = min
[
b1 −X1,N (t), b2 −X2,N (t)

]
.

Thus analogous to what was done in section 2, we can write

D0,N (t) = λ0,N
√
Nt+

∫ t

0

g2(XN (s))ds+ D̃0,N (t)− Y 0,N (t),

where the Doob–Meyer increasing process associated with the martingale is

〈D̃0,N 〉(t) =

∫ t

0

[
λ0,N +

µ0,N

√
N
g2(XN (s))

]
I0,N (s)ds.

The analog of (2.11) is

(6.6a)
X0,N (t) = X0,N (0) +W 0,N (S0,N (t))− µ0,N

∫ t

0

g2(XN (s))ds

− D̃0,N (t) + Y 0,N (t)− F 0,N (t),

and for i = 1, 2,

(6.6b)
Xi,N (t) = Xi,N (0) +W i,N (Si,N (t))− µi,N

∫ t

0

Xi,N (s)ds

− D̃i,N (t)− F i,N (t)− U i,N (t),

where the Y 0,N (t) term compensates for the fact that there are no departures of class
0 customers at time t if X0,N (t) = 0, and U i,N (t) compensates for the class i arrivals
lost due to a full system (when the entire channel is occupied by class i customers).

The discounted cost function is still (3.1), but now the sum has three terms. The
analysis given in section 3 holds here in the same way and the limit equations are

(6.7a) X0(t) = X0(0)− µ0

∫ t

0

g2(X(s))ds+B0(t) + Y 0(t)− F 0(t),

(6.7b) Xi(t) = Xi(0)− µi
∫ t

0

Xi(s)ds+Bi(t)− F i(t), i = 1, 2,
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where the Bi(·) are mutually independent Wiener processes with variance parameters
λi(σ

2
i + 1). The associated cost function is (3.3), and we still have

(6.8) V Nβ (XN (0))→ Vβ(X(0)),

if XN (0)⇒ X(0).
The model of section 4. Now, suppose that each class 0 customer can use at

most a bandwidth C0. Then define X0,N (t) as in section 4, and let B0
+ < ∞. The

development is a combination of those of sections 3 and 4. Now, the conditional mean
instantaneous rate at which D0,N (·) increases at t is obtained as the minimum of three
terms, depending on whether the available capacities in channels 1, 2, or C0 are the
limiting factor. It is

(6.9)

µ0,N

√
N

[# of class 0 in system at t]

min

[
avail BW in ch 1 at t

# of class 0 in system at t
,

avail BW in ch 2 at t

# of class 0 in system at t
, C0

]
I0,N (t).

Define

(6.10) g3(x) = min
[
b1 − x1, b2 − x2, C0x

0
]
.

Then (6.9) can be written as[√
Nλ0,N + µ0,Ng3(XN (t))

]
I0,N (t).

All of the previous results continue to hold with g3(·) replacing g2(·).
7. The ergodic cost function: The basic model: Bounded control rate.

For concreteness, we work with the system model and assumptions of sections 2 and
3, although all of the results hold for all of the other models. In this section, we
will suppose that the controls F 1,N (·) and F 1(·) (for the limit system) have bounded
derivatives in the sense used in Theorem 3.3, as follows: There is a constant R,
which can be as large as we wish, such that Ḟ 1(t) ≤ R for all t, and for all t, s > 0,
F 1,N (t+s)−F 1,N (t) ≤ Rs+1/

√
N. Thus, the maximum “rate” of refusing admission

to class 1 customers is bounded by
√
NR.

The reasonableness of the bounded derivative assumption is also seen from the
form of the limit equation (3.2), which (informally) suggests that one loses very little
by bounding the derivative of F 1(·). Furthermore, it is completely borne out by our
numerical data. The next section shows that we can make this assumption in the
proofs with no loss of generality.

Although useful in applications, the mathematical reason for the assumption of
bounded control “derivatives” concerns the mathematics of the ergodic cost problem.
Little is known about the ergodic cost problem for the limit system when the control
functions are arbitrary right continuous functions. But a great deal is known when
they have uniformly bounded derivatives. In that case, for the current nondegenerate
model (3.2), there is an optimal feedback control which is time independent and the
optimal value γ̄R(x) (defined below) does not depend on x. More importantly, for our
purposes, for any ε > 0, there is an ε-optimal time independent feedback control uε(·)
such that uε(·) = Ḟ ε,1(·) is arbitrarily smooth, and under which there is a unique
stationary measure. The F ε,1(·) plays the role of the F 1,ε(·) in Theorem 3.2. The
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basic convergence results are quite technical. They are in [20] for the unconstrained
(no reflecting boundaries) problem, with extensions to the constrained problem being
in [22, 23]. Indeed, under our basic setup, the needed convergence results can be
obtained from [23] by appropriate identification of terms.

Define the cost functions

CN (XN (0), T, F 1,N ) =

∫ T

0

k(X0,N (s))ds+
∑
i

ciF
i,N (T ),

γ̄NR (XN (0), T ) = inf
F 1,N

ECN (XN (0), T, F 1,N )/T,

γ̄NR (XN (0)) = lim sup
T

γ̄NR (XN (0), T ).

For the limit system, define the analogous quantities, with the N dropped. If there is
no rate R restriction, we drop the subscript R. We also suppose that (with little loss
of generality)

(7.1) sup
N
E|X1,N (0)|2 <∞.

In section 3 it was shown that, for the discounted cost problem and large enough
R, we can get as close to optimality as we wish. The proof in Theorem 3.3 used the
fact that the discounting implied that we need concern ourselves only with a finite
time interval. The proof is more subtle for the ergodic cost problem and is given in
the next section.

The results in [23] will apply if we have tightness of the doubly indexed (both t
and N are indices now) set of processes

(7.2)
{
XN (t+ ·), BN (t+ ·)−BN (t), F 1,N (t+ ·)− F 1,N (t);N, t

}
.

The tightness holds for the set of F 1,N (t+ ·)− F 1,N (t) processes by the assumption
on boundedness of the derivative. The set {W i,N (Si,N (t+ ·))−W i,N (Si,N (t);N, t} is
tight due to the independence properties of the interarrival intervals, (2.2), the weak
convergence of the Si,N (t + ·)− Si,N (t), as N → ∞ and for any sequence t, and the
use of the criterion (2.14), (2.15).

A standard Liapunov function argument (using the Liapunov function |X1,N |2)
and the “R-derivative” restrictions on the controls can be used to prove directly that

(7.3) sup
t,N,F 1,N

E
∣∣X1,N (t)

∣∣2 <∞.
Here, the sup is over the F 1,N which satisfy the R-derivative restriction. Then, tight-
ness can be shown for the set of D̃i,N (t+ ·)−D̃i,N (t) processes by a direct application
of the criterion (2.14), (2.15) and the use of (7.3) to bound the expectation of the
Doob–Meyer processes associated with D̃i,N (t+·)−D̃i,N (t). The proof of the tightness
of the doubly indexed sequence {Xi,N (t + ·);N, t} is then the same as the proof of
tightness of {Xi,N (·), t}, where the initial conditions vary over a tight set (the X0,N (t)
are bounded by B+

0 ).
Given the tightness of (7.2) and the nondegeneracy of the limit system (3.2)

(the set of driving Wiener processes is nondegenerate; in fact, the components are
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mutually independent with positive variances), the following results follow by a direct
application of the results and ideas in [23]:

(7.4) γ̄NR (XN (0), T )→ γ̄R,

as T → ∞ and N → ∞ in any way at all, where γ̄R is the infimum of the costs for
the limit system over controls with derivatives bounded by R, and it does not depend
on the initial condition.

Furthermore, for any ε > 0,

(7.5) lim
N,T

P

{CN (XN (0), T, F 1,N )

T
≤ γ̄R − ε

}
= 0,

where N,T can go to their limits in any way at all, and F 1,N (·) is an arbitrary
sequence of controls. There is a converse to (7.5) which says that a good control for
the limit system is a good control for the physical system. Given ε > 0, let F ε,1(·) be
an ε-optimal control with smooth derivative uε(·) and an adaptation F ε,1,N (·) to the
physical system such that

(7.6) lim
N,T

P

{CN (XN (0), T, F ε,1,N )

T
≥ γ̄R + 2ε

}
= 0,

The results of the next section imply that we can replace γ̄R in (7.5) and (7.6) by γ̄.
The control uε(·) can be adapted for use on the physical system in many ways,

for large N . For example, by rejecting an arrival of class 1 at t with probability
(conditioned on the past system data) uε(XN (t))/[λ1,N

√
N ]. Alternatively, we need

not have the rejection choices being random, provided that
√
N times the number

rejected when the state is “near” x converges to uε(x) as N →∞.
Comments on the controls. Numerical data show that the derivative Ḟ (t) = u(t)

of the optimal control takes either the value R or zero, with the regions separated by
a piecewise linear or nearly linear switching curve. One applies this control to the
physical system as in the last paragraph. (This procedure is asymptotically equivalent
to rejecting all arrivals when the state is above the switching curve.) Equation (7.6)
holds for such discontinuous controls as well. This is important in applications since
such controls are easily implemented. Numerical data show that the switching curves
converge nicely to piecewise smooth (or even linear) curves as R → ∞. (7.6) holds
for this curve a well. Then we reject all arrivals of class 1 when the state is above the
switching curve. Analogous remarks hold for the discounted cost problem.

Comment. Note that both (7.5) and (7.6) deal with pathwise average costs, not
with average costs. Since any application is a single realization, the convergence of
pathwise average costs is more important than the convergence of expectations. The
inequalities (7.5) and (7.6) say that for large N , the optimal controls for the physical
problem are (asymptotically) only negligibly better than the use of a nice almost
optimal control for the limit system.

Finally, we simply note without further comment that the methods in [20, 22, 23]
can be adapted to prove that limN,β→0 βV

N
β (XN (0)) = γ̄.

8. The ergodic cost problem: The basic model: Arbitrary controls.
Now, return to the problem of bounded derivative controls. We will show that we
can approximate any optimal or nearly optimal control by a control which has a
“derivative” bounded by R, for large enough R.
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Theorem 8.1.

(8.1a) lim
R

[γ̄ − γ̄R] = 0.

(8.1b) lim
R

lim sup
N

[
γ̄N (x)− γ̄NR (x)

]
= 0.

Proof. A detailed outline of the steps will be given. Unlike as in Theorem 3.3,
we cannot restrict ourselves to a finite interval. We need to show that for any δ > 0,
there is Rδ <∞ such that there are δ-optimal controls for both the physical and the
limit system with bounded rate Rδ.

The development proceeds in several steps. The steps will be outlined (informally
to save space) for the physical system. The details are a little simpler for the limit
system.

1. Given ε > 0, show that there is a Bε < ∞ such that the optimal cost will
change by no more than ε if we do not reject when X1,N (t) < −Bε.

2. Let ε > 0. Allowing only controls which do not reject if X1,N (t) < −B, for
some given 0 < B < ∞, show that there is Kε < ∞ such that if we further restrict
the controls such that the increments F 1,N (n + 1) − F 1,N (n) are at most Kε for all
n,N , then the optimal cost will change by no more than ε.

3. Let ε > 0. Allowing only controls satisfying the restrictions of the first two
steps for some finite B,K, show that there is Rε <∞ such that the optimal cost will
change by at most ε if we further restrict the controls to have maximum “derivative”
Rε.

Step 1 is the least difficult to accept even without a proof, since it is quite rea-
sonable that there is a B < ∞ such that an optimal or nearly optimal control that
would not reject if X1,N (t) ≤ −B. The proof is a formalization of the following idea.

Given a control F 1,N (·) and a B > 0, define another control F 1,N
B (t) ≤ F 1,N (t), where

F 1,N
B (t) is as close as possible to F 1,N (t), but acts only when X1,N (t) ≥ −B. For large
B, the change in X0,N (·) is slight. To save space, we concentrate on the outline for
the other steps.

Thus, we start by supposing that there is 0 < B < ∞ such that there are
no rejections if X1,N (t) ≤ −B. We will show that, given ε > 0, there is Kε <
∞, such that we lose less than ε in the cost if we restrict the control to satisfy
F 1,N (n+ 1)− F 1,N (n) ≤ Kε for all N,n, ω.

Because we do not reject if X1,N (t) ≤ −B, a Liapunov function argument can be
used to get that there is C <∞ such that

(8.2) sup
N,t,F 1,N

E
∣∣X1,N (t)

∣∣2 ≤ C.
Also, the same −B restriction and (8.2) can be used to show that

(8.3) sup
n,N,F 1,N

E
[
F 1,N (n+ 1)− F 1,N (n)

]2
<∞.

The sup in (8.2) is over all controls satisfying our −B restriction. The proof of
(8.3) computes a worst case on each interval, which is a control taking X1,N (n)
satisfying only (8.2) to −B as quickly as possible, then keeping it there until the end
of the interval, and repeating on the next interval, etc. The uniform mean square
boundedness of the part due to keeping X1,N (·) at −B on [n, n+ 1] follows from the
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reflection mapping and the mean square bounds on the martingales driving (2.11b).
For the reflection mapping and the Lipschitz continuity of the reflection term as a
function of the driving processes, see [8], [7, Proposition 2.1].

Given any F 1,N (·) satisfying our restriction, we proceed to approximate it by

bounding the increments by K. The approximation will be denoted by F 1,N
K (·), and

the associated processes denoted by XN
K (·). Define F 1,N

K (·) such that it satisfies the

restriction F 1,N
K (n + 1) − F 1,N

K (n) ≤ K , it is no greater than F 1,N (·), and tries to

keep X1,N
K (·) as close as possible to X1,N (·).

We always have X1,N
K (t) ≥ X1,N (t) and hence X0,N

K (t) ≥ X0,N (t). It is not hard

to see that, for large enough K, X1,N
K (·) will repeatedly catch up to and equal X1,N (·).

We can decompose time into successive intervals where X1,N (t) < X1,N
K (t) and where

X1,N (t) = X1,N
K (t). The key to the proof of step 2 is the observation that, as K →∞,

a larger percentage of time will be taken up by the latter intervals. More precisely,
for any T0 <∞, it can be shown that

(8.4) lim
K

lim sup
N

sup
t,F 1,N

P
{
X1,N (s) 6= X1,N

K (s) for some s ∈ [t, t+ T0]
}

= 0.

Equation (8.4) follows from the observations made before it. Choose the control

F 1,N
K (·) as described. Then, starting at time t − k for large k, the probability that

X1,N
K (·) catches up to X1,N (·) and equals it on [t, t+ T0] goes to unity as K →∞.

Note that if X0,N
K (t) = 0, then X0,N (t) = 0. We next bound the “return times”

to the boundary x0 = 0. Indeed, it can be shown that

(8.5) lim
T→∞

lim sup
N

sup
t,F 1,N

K
,K

sup
ω
P
{
X0,N
K (t+ s) 6= 0, for some s ≤ T ∣∣data to t

}
= 0.

This can be shown by a weak convergence argument, using the fact that it holds for
the limit process, as follows. The worst case for proving (8.5) is where there is no
control since the control only decreases X0,N (t). Thus, suppose that there are ρ > 0,
tn and Nn →∞, Tn →∞ such that (no control)

(8.6a) lim
n

sup
ω
P
{
X0,Nn(tn + s) 6= 0, for some s ≤ Tn

∣∣data to tn
} ≥ ρ.

We will show a contradiction to (8.6a). Actually, it is more direct to show that the
assertion

(8.6b) lim
n

sup
ω
P
{
Y 0,Nn(tn + Tn)− Y 0,Nn(tn) = 0

∣∣data to tn
} ≥ ρ.

is false. The falsity of (8.6b) implies the falsity of (8.6a).
A Liapunov function argument using (7.1) and the fact that there is no control

can be used to prove that

(8.7) sup
n
E|X1,Nn(tn)|2 <∞.

Now, extract a weakly convergent subsequence of XNn(tn + ·), and note that its
limit X(·) satisfies (3.2). The distribution of X1(0) depends on the selected conver-
gent subsequence. But, due to (8.7), E|X1(0)|2 is bounded uniformly in the selected
convergent subsequence. Using this last fact, the properties of (3.2) and the weak
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convergence now imply that (8.6b) cannot hold unless ρ = 0. Now note that (a key

point) if X0,N
K (t) = 0 and X1,N (t) = X1,N

K (t), then the two processes start again at t
with equal initial values.

The above results imply the following. For any δ > 0, with a probability arbi-
trarily close to one, the fraction of time that |X0,N (t) − X0,N

K (t)| ≥ δ on any time
interval goes to zero as K →∞, uniformly in the time interval and in (large) N. This
implies that the change in the k(·) part of the cost can be made as small as desired

by making K large enough. By construction, F 1,N (t) ≥ F 1,N
K (t), hence the control

cost is no greater for the approximating control. We omit the details of the fact that

E[F 0,N
K (T )− F 0,N (T )]/T

can be made as small as desired by making K large. But it can be proved by a weak
convergence argument and the facts established above.

Thus for large enough K, we lose as little as desired by restricting F 1,N (·) such
that F 1,N (n+ 1)− F 1,N (n) ≤ K for all N,n. This completes step 2.

Now, we turn to step 3 and make a few comments concerning the k(·) component
of the cost. Given a control F 1,N (·) satisfying the restrictions of steps 1 and 2 (with
constants B and K, resp.), find a suitable approximation with a bounded “derivative.”

Let R denote the derivative bound. Define a control F 1,N
R (·) with derivative bounded

by R, such that F 1,N
R (t) ≤ F 1,N (t), but where the associated process X1,N

R (·) is
allowed to catch up with X1,N (·) when possible. It will catch up repeatedly, for large
enough R. This is because the maximum number of rejects on any time interval of unit
length is 2K/

√
N . SinceK is bounded andR large, except for an arbitrarily small time

subinterval the number of rejects on any time interval [n, n+ 1] can be made as close

as desired to what is needed, uniformly in N,n. Additionally, |X1,N (t) − X1,N
R (t)|

is uniformly (in N, t) bounded. Thus, the values of X1,N (t) and X1,N
R (t) will be

arbitrarily close when X0,N
R (t) (hence, X0,N (t)) hits zero, or very shortly thereafter

(at most a time K/R+O(1/
√
N) later).

Note that the approximation problem is more subtle than in step 2, since we
cannot guarantee that X1,N

R (·) will equal X1,N (·) on longer and longer intervals. For
example, if F 1,N (·) jumps periodically, or if the limit is singular with respect to
Lebesgue measure.

The following properties can be proved. First, by a Liapunov function argument,
it can be shown that

lim sup
N

sup
t,R,F 1,N

R

E
∣∣∣X1,N

R (t)
∣∣∣2 <∞.

Using this, it can be shown that

(8.8) lim sup
N

sup
n,R,F 1,N

R

E sup
n≤s≤n+1

∣∣∣X1,N
R (s)

∣∣∣2 <∞,
with a similar estimate holding for the X1,N (·). The above comments imply that

(8.9) lim
R

lim sup
N

sup
τ
E sup
t≤T

∫ τ+t

τ

∣∣∣X1,N (s)−X1,N
R (s)

∣∣∣ ds = 0,

for any T < ∞, and where τ are stopping times. Now use an argument based on
recurrence to X0,N (·) to zero analogous to what was done in step 2 to get that the
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k(·)-costs are close for large R. Obviously, the component of the cost due to F 1,N
R (·)

is no greater than that due to F 1,N (·). Again, by a weak convergence argument, it
can be shown that the overflow costs also converge, and the details are omitted.

9. Data. Some typical data is given in Table 1 below. The cost function is
c0EX

0(1) + EF 1(1) + 5EF 0(1), all stationary values. B0
+ = 6.4, and larger values

made little difference. The individual components of the cost function are tabulated,
and we write EF 0(1) = 0 if it is less than 10−4. The fraction of lost class 1 customers
is EF 1(1)/[λ1

√
N ], so it depends on N . The tables indicate the potential tradeoffs

between the time gained for class 0 and the lost class 1 customers.

Table 1.
Components of optimal cost for limit system.

Table A: µ1 = .5, µ0 = 1, λ1 = 1, λ0 = 1, σ2
1 = 1, σ2

0 = 1, b = 2.5

EX0 (1) EF 1(1) EF 0(1) % savings % Rejection of class 1

N=100 N=103 N=104

no cont. .555 0 .0032 na 0 0 0
c0 = 5 .267 .489 0 52% 4.89 1.55 .489
c0 = 10 .184 1.01 0 67% 1.01 .319 .101

Table B: µ1 = .25, µ0 = .25, λ1 = .5, λ0 = 1, σ2
1 = 1, σ2

0 = 1, b = 2.5

EX0 (1) EF 1(1) EF 0(1) % savings % Rejection of class 1

N=100 N=103 N=104

no cont. 1.57 0 .002 na 0 0 0
c0 = 5 .424 1.463 0 73% 1.463 .386 .1463
c0 = 10 .299 2.34 0 81% 2.34 .740 .234

Table C: µ1 = 1, µ0 = 1, λ1 = 1, λ0 = 1, σ2
1 = 1, σ2

0 = 3, b = 2.5

EX0 (1) EF 1(1) EF 0(1) % savings % Rejection of class 1

N=100 N=103 N=104

no cont. .853 0 .004 na 0 0 0
c0 = 5 .557 .750 0 35% .750 .237 .0750
c0 = 10 .415 1.77 0 51% 1.77 .316 .177

In the above examples and in all other cases that we tested numerically, a consid-
erable saving in the global performance is obtained. The price paid for this saving is
the rejection of class 1 customers. However, the fraction of rejected class 1 customers
is acceptable for large N. As is seen in the tables, it is of the order of 1% for N = 1000,
and less than 0.5% for N = 10000. We thus conclude that for large systems operating
at a heavy traffic regime, we may gain considerably in overall performance of the
system at the cost of rejection of a very small fraction of GP calls.
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Abstract. The new necessary and sufficient conditions, which are formulated in terms of conver-
gence of a certain sequence of operators involving the resolvent of the negative of the controllability
operator, are found for deterministic linear stationary control systems to be completely and ap-
proximately controllable, respectively. These conditions are applied to study the S-controllability
(a property of attaining an arbitrarily small neighborhood of each point in the state space with a
probability arbitrarily close to one) and C-controllability (the S-controllability fortified with some
uniformity) of stochastic systems. It is shown that the S-controllability (the C-controllability) of a
partially observable linear stationary control system with an additive Gaussian white noise distur-
bance on all the intervals [0, T ] for T > 0 is equivalent to the approximate (complete) controllability
of its deterministic part on all the intervals [0, T ] for T > 0.
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1. Introduction. Theory of controllability originates from the famous work [1]
done by Kalman. At present this theory is almost complete for deterministic linear
control systems (see, for example, Curtain and Pritchard [2]; Curtain and Zwart [3];
Balakrishnan [4]; Bensoussan et al. [5]; Zabczyk [6]).

The natural extension of the complete and approximate controllability concepts to
stochastic control systems is meaningless. In Bashirov [7] and Bashirov and Kerimov
[8] these concepts were weakened and, for stochastic control systems, the concept
of S-controllability was defined. Briefly, an S-controllable stochastic control system
is a system attaining an arbitrarily small neighborhood of each point in the state
space with a probability arbitrarily close to one. We also found it useful to define the
concept of C-controllability for stochastic control systems as S-controllability fortified
with some uniformity.

The main results of [7, 8] concern a partially observable linear stationary control
system with an additive Gaussian white noise disturbance (the system (S)) and its
deterministic part (the system (D)). From the results of [8] (the necessity part of The-
orems 4 and 5(b)), it follows that if the system (S) is C-controllable (S-controllable)
on the interval [0, T ], where T > 0 is fixed, then the system (D) is completely (ap-
proximately) controllable on the same interval [0, T ]. A sufficient condition of C-
controllability (which is a sufficient condition of S-controllability as well) for the
system (S) on the fixed interval [0, T ] is also found in [8]. This sufficient condition is
based on Lemma 7 in [8] which is proved under the complete controllability condition
of the system (D) on all the intervals [0, t] for 0 < t ≤ T . Thus, more precisely than
in [8], this sufficient condition is the complete controllability of the system (D) on all
the intervals [0, t] for 0 < t ≤ T .
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A discussion of an example presented in [8] leads us to expect that a weaker
sufficient condition of S-controllability on the interval [0, T ] for the system (S) could
exist as the approximate controllability of the system (D) on all the intervals [0, t] for
0 < t ≤ T . This was conjectured in [7, 8], wherein this conjecture is settled positively.

Discussing the S- and C-controllability concepts, we found the new necessary and
sufficient conditions for deterministic linear stationary control systems to be com-
pletely and approximately controllable. These conditions are formulated in terms of
uniform and strong convergence of a certain sequence of operators involving the re-
solvent of the negative of the controllability operator and clearly distinguish complete
and approximate controllabilities.

Studying sources about theory of controllability, we did not find the analogues of
these conditions which prompted us to consider them as new. For convenience, we call
the above-mentioned conditions the resolvent conditions of complete and approximate
controllabilities.

A verification of the resolvent conditions for a concrete control system requires
a computation of the respective resolvent and then studying the convergence of the
above-mentioned sequence involving this resolvent. This is illustrated in the examples
of controlled one-dimensional heat and wave equations. We expect that the resolvent
conditions will play a significant role in theoretical investigations of theory of control-
lability because after a first application, they have allowed us to settle the conjecture
mentioned above.

2. General notations. In this paper X and Y are real separable Hilbert spaces.
Rk denotes the k-dimensional real Euclidean space. As usual, R1 = R. The closure
of the set D is denoted by D. The space of all linear bounded operators from X to
Y is denoted by L(X,Y ). The brief notation L(X) = L(X,X) is used as well. A∗

denotes the adjoint of the operator A. The trace of the operator A is denoted by trA.
If A ∈ L(X) is self-adjoint and 〈h,Ah〉 ≥ 0 (respectively, 〈h,Ah〉 ≥ c‖h‖2, where
c = const. > 0) for all h∈X, then we write A≥ 0 (respectively, A> 0), where 〈· , · 〉
is an inner product and ‖· ‖ is a norm. For A≥0, the square root of A is denoted by
A1/2. The symbol I denotes an identity operator. Zero operator, zero vector, and the
number zero are denoted by 0; it is clear which is meant from the context.

It is always supposed that two time moments are given. The initial time moment is
identified with zero and is fixed. The terminal moment is denoted by T (T > 0) and is
considered variable. The notation T is used for the finite time interval [0, T ]. L2(T, X)
and L2(0, T ;X) denote the space of equivalence classes of all functions from T = [0, T ]
to X that are Lebesgue measurable and square integrable with respect to the Lebesgue
measure. As usual, we use the brief notation L2(0, T ) = L2(0, T ;R). The notation
∆ = {(t, s) : 0 ≤ s ≤ t ≤ T} is used for the triangular set over T. B2(∆,L(X,Y ))
denotes the class of all L(X,Y )-valued functions on ∆ that are strongly measurable
and square integrable with respect to the Lebesgue measure on ∆ (see, for example,
[2, 3]).

All integrals of vector-valued functions are considered in the Bochner sense. For
probability, expectation, and conditional expectation, the notations P, E, and E(· |· ),
respectively, are used. cov(x, y) is the covariance operator of the random variables x
and y. The brief notation cov x=cov(x, x) is used as well. The integrals of operator-
valued functions (except stochastic integrals) are in the strong Bochner sense.

3. Main definitions. Consider a control system on T. Let xut be its (random
or not) state value at time t ∈ T corresponding to the control u taken from the set
of the admissible controls U . If the control system under consideration is stochastic,
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then by Fu we denote the smallest σ-algebra generated by the observations on the
time interval T corresponding to the control u. Suppose that X is the state space.
For 0 ≤ ε <∞ and for 0 ≤ p ≤ 1, introduce the sets

D = {xuT : u ∈ U},(1)

S(ε, p) =
{
h ∈ X : ∃u ∈ U P

(‖E(xuT |Fu)− h‖2 > ε
) ≤ 1− p},(2)

C(ε, p) =
{
h ∈ X : ∃u ∈ U h = ExuT , P

(‖E(xuT |Fu)− h‖2 > ε
) ≤ 1− p}.(3)

Definition 1. A deterministic control system will be called
(a) Dc-controllable on T if D = X;
(b) Da-controllable on T if D = X.
It is clear that the Dc- and Da-controllabilities are the well-known complete and

approximate controllabilities for deterministic control systems, respectively. Orig-
inally, the Dc-controllability was introduced in Kalman [1] as a concept for finite
dimensional deterministic control systems, so the natural extension of this concept
is too strong for many infinite dimensional control systems. Therefore, the Da-
controllability was introduced as a weakened version of the Dc-controllability. It
is also clear that neither Dc- nor Da-controllabilities can be a property of stochastic
control systems, so there is a need to further weaken these concepts in order to extend
them to stochastic control systems.

The following definition will be used as a step in discussing the main concepts of
controllability for stochastic systems.

Definition 2. Given ε ≥ 0 and 0 ≤ p ≤ 1, a control system will be called
(a) Scε,p-controllable on T if S(ε, p) = X;

(b) Saε,p-controllable on T if S(ε, p) = X;
(c) Ccε,p-controllable on T if C(ε, p) = X;

(d) Caε,p-controllable on T if C(ε, p) = X;
(e) S0

ε,p-controllable on T if 0 ∈ S(ε, p).
The geometric interpretation of the Scε,p-controllability (Saε,p-controllability) is

as follows. If a control system with the initial state x0 is Scε,p-controllable (Saε,p-
controllable) on T, then with probability not less than p it can pass from x0 for
the time T into the

√
ε-neighborhood of an arbitrary point in the state space (in a

set that is dense in the state space). The geometric interpretation of the Ccε,p- and
Caε,p-controllabilities differs from the same of the Scε,p- and Saε,p-controllabilities since
among the controls, with the help of which the

√
ε-neighborhood of any point h is

achieved, there exists one with a property that the expectation of the target state,
corresponding to this control, coincides with h. Obviously, a Ccε,p-controllable (Caε,p-
controllable) control system is Scε,p-controllable (Saε,p-controllable), but the converse
is not true.

The smaller ε is and the larger p is for a control system, the more controllable
it is; i.e., it is possible to hit into a smaller neighborhood with a higher probability.
One can observe that all control systems are Scε,p-, S

a
ε,p-, C

c
ε,p-, and Caε,p-controllable

on any interval with ε ≥ 0 and p = 0 or ε = ∞ and 0 ≤ p ≤ 1, if we admit ∞ as
a value for ε. At the same time, it is clear that a Dc-controllable (Da-controllable)
deterministic system is Sc0,1- and Cc0,1-controllable (Sa0,1- and Ca0,1-controllable) with
parameters ε = 0 and p = 1 since, for deterministic systems, D = S(0, 1) = C(0, 1).
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Also, each kind of controllability from Definition 2 with a smaller ε and a greater p
implies the same kind of controllability with a greater ε and a smaller p.

Summarizing, we can give the following easy necessary and sufficient conditions
for the Dc- and Da-controllabilities.

Proposition 1. For a deterministic control system the following three conditions
are equivalent:

(a) Dc-controllability on T;
(b) Scε,p-controllability on T for all ε≥0 and for all 0≤p≤1;
(c) Ccε,p-controllability on T for all ε≥0 and for all 0≤p≤1.
Proposition 2. For a deterministic control system the following three conditions

are equivalent:
(a) Da-controllability on T;
(b) Saε,p-controllability on T for all ε≥0 and for all 0≤p≤1;
(c) Caε,p-controllability on T for all ε≥0 and for all 0≤p≤1.
Excepting the limit values ε = 0 and p = 1 from the above-mentioned necessary

and sufficient conditions for the Dc- and Da-controllabilities, one can obtain the
weakened versions of these concepts. For a moment call a given stochastic system

(a) Sc-controllable on T if it is Scε,p-controllable on T for all ε > 0 and for all
0 ≤ p < 1;

(b) Sa-controllable on T if it is Saε,p-controllable on T for all ε > 0 and for all
0 ≤ p < 1;

(c) Cc-controllable on T if it is Ccε,p-controllable on T for all ε > 0 and for all
0 ≤ p < 1;

(d) Ca-controllable on T if it is Caε,p-controllable on T for all ε > 0 and for all
0 ≤ p < 1.

In [7, 8] it is shown that the concepts of Sc- and Sa-controllabilities are equiv-
alent. It will also be shown that for partially observable linear stationary control
systems with additive Gaussian white noise disturbance the Ca-controllability on all
the intervals [0, T ] with T > 0 is equivalent to the Sc-and Sa-controllabilities on all
the intervals [0, T ] with T > 0. Thus, we can define two basic and one additional
concepts of controllability for stochastic systems.

Definition 3. A control system will be called
(a) S-controllable on T if it is Scε,p-controllable on T or, equivalently, Saε,p-

controllable on T for all ε > 0 and for all 0 ≤ p < 1;
(b) C-controllable on T if it is Ccε,p-controllable on T for all ε > 0 and for all

0 ≤ p < 1;
(c) S0-controllable on T if it is S0

ε,p-controllable on T for all ε > 0 and for all
0 ≤ p < 1.

Geometrically, the S-controllability can be interpreted as follows: an S-controllable
on T control system can attain for the time T an arbitrarily small neighborhood
of each point in the state space with a probability arbitrarily close to one. The
C-controllability is the S-controllability fortified with some uniformity. The S0-
controllability is useful in discussing S- and C-controllabilities.

Finally, notice that the abbreviations D, S, C, c, and a in the previously intro-
duced controllability concepts mean deterministic, stochastic, combined, complete,
and approximate, respectively.

4. Preliminaries. In this paper it is always supposed that A is the infinitesimal
generator of a strongly continuous semigroup U , B ∈ L(Y,X), C ∈ L(X,Rk); x0 is a
Gaussian random variable with cov x0 = P0; m and n are X- and Rk-valued Wiener
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processes, respectively; n0 = 0, m0 = 0, Ent = 0, Emt = 0, cov nt = It, covmt =
Mt, M is a nuclear operator on X; and x0, n, m are mutually independent. Let
f ∈ L2(T, X) and consider the linear partially observable stochastic control system{

dxut = (Axut +But + ft)dt+ dmt, 0 < t ≤ T, xu0 = x0,
dξut = Cxut dt+ dnt, 0 < t ≤ T, ξu0 = 0,

(4)

where x, u, and ξ are state, control, and observation processes. Under the set U of
admissible controls we consider the set of all controls in the linear feedback form

ut = ūt +

∫ t

0

Kt,s dξ
u
s ,

where K ∈ B2

(
∆,L(Rk, Y )) and ū ∈ L2(T, Y ).

To the system (4) one can associate two control systems. The first is the deter-
ministic control system

d

dt
yvt = Ayvt +Bvt + ft, 0 < t ≤ T, yv0 = y0 = Ex0,(5)

where v is a control in V = L2(T, Y ). The second is the partially observable stochastic
control system{

dzwt = (Azwt +Bwt)dt+ dmt, 0 < t ≤ T, zw0 = z0 = x0 −Ex0,
dηwt = Czwt dt+ dnt, 0 < t ≤ T, ηw0 = 0,

(6)

where w is a control in W consisting of all controls in the linear feedback form

wt =

∫ t

0

Kt,s dη
w
s ,

where K ∈ B2

(
∆,L(Rk, Y )).

Note that solutions of the equations in (4), (5), and (6) are meant in the mild
sense, i.e.,

xut = Utx0 +

∫ t

0

Ut−s(Bus + fs) ds+

∫ t

0

Ut−s dms, 0 ≤ t ≤ T,

yvt = Uty0 +

∫ t

0

Ut−s(Bvs + fs) ds, 0 ≤ t ≤ T,

zwt = Utz0 +

∫ t

0

Ut−sBws ds+

∫ t

0

Ut−s dms, 0 ≤ t ≤ T.

Denote

ΓT−t =

∫ T

t

UT−sBB∗U∗T−s ds, 0 ≤ t ≤ T.(7)

For 0 ≤ t < T , the operator ΓT−t is called a controllability operator. One can see
that ΓT−t ≥ 0 and, hence, the resolvent R(λ,−ΓT−t) = (λI + ΓT−t)−1 is well defined
for all λ > 0 and for all 0 ≤ t ≤ T . If ΓT−t > 0, then R(λ,−ΓT−t) is defined for λ = 0
as well.

We will use the following operator Riccati equations:

d

dt
Qt +QtA+A∗Qt − λ−1QtBB

∗Qt = 0, 0 ≤ t < T, QT = I, λ > 0,(8)
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d

dt
Pt −APt − PtA∗ −M + PtC

∗CPt = 0, 0 < t ≤ T, P0 = cov z0.(9)

Lemma 1. There exist the unique strongly continuous solutions (in scalar product
sense) Qλ and P of (8) and (9), respectively, satisfying Qλt ≥ 0 and Pt ≥ 0 for all
t ∈ T. Moreover, the solution of (8) has the explicit form

Qλt = λU∗T−tR(λ,−ΓT−t)UT−t, 0 ≤ t ≤ T, λ > 0.(10)

For the proof of existence and uniqueness part of this lemma, see [2]. For the
proof of representation (10), see [8, 9].

Consider the linear regulator problem consisting of minimizing the cost functional

J(v) = ‖yvT − h‖2 + λ

∫ T

0

‖vt‖2 dt,(11)

where yv is a state process, defined by (5); v is a control in V = L2(T, Y ); and h ∈ X
and λ > 0 are parameters.

Lemma 2. For given h ∈ X and λ > 0, there exists a unique optimal control vλ

in L2(T, Y ) at which the functional (11) takes on its minimum value and

vλt = −B∗U∗T−tR(λ,−ΓT )(UT y0 − h+ g) almost everywhere (a.e.) on T,(12)

yv
λ

T − h = λR(λ,−ΓT )(UT y0 − h+ g),(13)

where

g =

∫ T

0

UT−tft dt.

Proof. The existence and the uniqueness of an optimal control follows from a
general theorem about linear regulator problems (see [2]). We will prove the formulae
(12) and (13). By computing the variation of the functional (11), one can easily obtain

vλt = −λ−1B∗U∗T−t
(
yv

λ

T − h
)

a.e. on T.(14)

Using this in (5), we have

yv
λ

T = UT y0 +

∫ T

0

UT−t
(
Bvλt + ft

)
dt

= UT y0 + g − λ−1

∫ T

0

UT−tBB∗U∗T−t
(
yv

λ

T − h
)
dt

= UT y0 + g − λ−1ΓT

(
yv

λ

T − h
)
.

Hence,

λyv
λ

T = λ(UT y0 + g)− ΓT

(
yv

λ

T − h
)
,

which implies

(λI + ΓT )yv
λ

T = λ(UT y0 + g) + ΓTh
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and, consequently,

yv
λ

T = λ(λI + ΓT )−1(UT y0 + g) + (λI + ΓT )−1(λI + ΓT − λI)h

= λR(λ,−ΓT )(UT y0 + g − h) + h.

Thus, (13) holds. Substituting (13) in (14), we obtain (12). The lemma is proven.

5. Resolvent conditions for Dc- and Da-controllabilities. In this section,
the necessary and sufficient conditions of Dc - and Da -controllabilities are discussed.

Theorem 1. The following statements are equivalent:
(1a) the control system (5) is Dc-controllable on T;
(1b) the complete controllability condition for the system (5) holds, i.e., ΓT > 0;
(1c) R(λ,−ΓT ) converges as λ→ 0 in uniform operator topology;
(1d) R(λ,−ΓT ) converges as λ→ 0 in strong operator topology;
(1e) R(λ,−ΓT ) converges as λ→ 0 in weak operator topology;
(1f) λR(λ,−ΓT ) converges to zero operator as λ→ 0 in uniform operator topology.
Proof. The equivalence (1a) ⇔ (1b) is well known. For the implication (1b) ⇒

(1c), suppose ΓT > 0. Then for all x ∈ X and for all λ ≥ 0,

〈x, (λI + ΓT )x〉 ≥ (λ+ k)‖x‖2,
where k > 0 is a constant. Therefore, for all λ ≥ 0,

‖R(λ,−ΓT )‖ =
∥∥(λI + ΓT )−1

∥∥ ≤ 1

λ+ k
≤ 1

k
.

We obtain that ‖R(λ,−ΓT )‖ is bounded with respect to λ ≥ 0. Furthermore,∥∥R(λ,−ΓT )− Γ−1
T

∥∥ =
∥∥(λI + ΓT )−1 − Γ−1

T

∥∥
=
∥∥Γ−1

T (ΓT − λI − ΓT )(λI + ΓT )−1
∥∥

≤ λ∥∥Γ−1
T

∥∥∥∥(λI + ΓT )−1
∥∥

≤ λk−2.

Thus, R(λ,−ΓT ) converges to Γ−1
T as λ → 0 in uniform operator topology. The im-

plications (1c)⇒ (1d)⇒ (1e) are obvious. The implication (1e)⇒ (1f) follows from
the boundedness of a weakly convergent sequence of operators. For the implication
(1f)⇒ (1b), suppose

λ‖R(λ,−ΓT )‖ = λ
∥∥(λI + ΓT )−1

∥∥→ 0, λ→ 0.

Then λ1/2
∥∥(λI + ΓT )−1/2

∥∥→ 0 as λ→ 0. For sufficiently small λ0 > 0, we can write

λ
1/2
0

∥∥∥(λ0I + ΓT )−1/2
∥∥∥ ≤ 1/

√
2.

Thus, for all x ∈ X we have

‖x‖2 =
∥∥∥(λ1/2

0 (λ0I + ΓT )−1/2
)(

λ
−1/2
0 (λ0I + ΓT )1/2

)
x
∥∥∥2

≤ 1

2

∥∥∥λ−1/2
0 (λ0I + ΓT )1/2x

∥∥∥2

=
1

2

〈
λ−1

0 (λ0I + ΓT )x, x
〉
,
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which implies 〈
λ−1

0 (λ0I + ΓT )x, x
〉 ≥ 2‖x‖2

and, consequently,

〈ΓTx, x〉 ≥ λ0‖x‖2.
Thus, ΓT > 0. The theorem is proven.

Theorem 2. The following statements are equivalent:
(2a) the control system (5) is Da-controllable on T;
(2b) the approximate controllability condition for the system (5) holds, i.e., if

B∗U∗t x = 0 for all t ∈ T, then x = 0;
(2c) λR(λ,−ΓT ) converges to zero operator as λ→ 0 in strong operator topology;
(2d) λR(λ,−ΓT ) converges to zero operator as λ→ 0 in weak operator topology.

Proof. The equivalence (2a) ⇔ (2b) is well known. For the implication (2c) ⇒
(2a), suppose λR(λ,−ΓT ) → 0 as λ → 0 in strong operator topology. Consider
arbitrary h ∈ X and the functional (11) with this h. By (13), selecting λ sufficiently

small, we can make yv
λ

T close to h, so the control system (5) is Da-controllable. For
the implication (2a) ⇒ (2c), let the control system (5) be Da-controllable. Then for

arbitrary h ∈ X, there exists a sequence {v̄i} in L2(T, Y ) such that
∥∥yv̄iT −h∥∥→ 0 as

i→∞. We have∥∥∥yvλT − h∥∥∥2

≤
∥∥∥yvλT − h∥∥∥2

+ λ

∫ T

0

∥∥vλt ∥∥2
dt ≤

∥∥∥yv̄iT − h∥∥∥2

+ λ

∫ T

0

∥∥v̄it∥∥2
dt,

where vλ is the control at which the functional (11) takes on its minimum value. If

ε > 0 is given, then we can make ‖yv̄iT − h‖ < ε/
√

2 for some sufficiently large i and
then we can select δ > 0 to be sufficiently small so that for all 0 < λ < δ,

λ

∫ T

0

∥∥v̄it∥∥2
dt <

ε2

2
.

Thus,
∥∥yvλT − h

∥∥ < ε for all 0 < λ < δ. By (13) and the arbitrariness of h, the
convergence of λR(λ,−ΓT ) to zero operator is implied as λ → 0 in strong operator
topology. Finally, the equivalence (2c) ⇔ (2d) is a consequence of λR(λ,−ΓT ) ≥ 0.
The theorem is proven.

The conditions (1f) and (2c) in Theorems 1 and 2 clearly distinguish the Dc- and
Da-controllabilities of the control system (5) showing that the distinction between
them is in a kind of convergence of λR(λ,−ΓT ) to zero operator as λ → 0. We call
these conditions the resolvent conditions for the control system (5) to be Dc- and
Da-controllable, respectively.

An application of the resolvent conditions to a concrete system requires a compu-
tation of the respective resolvent and then a verification of the respective convergence.
These are illustrated below in the examples of controlled one-dimensional heat and
wave equations.

Example 1. Consider a controlled one-dimensional heat equation

∂

∂t
yt,θ =

∂2

∂θ2
yt,θ + vt,θ, 0 ≤ θ ≤ 1, 0 < t ≤ T,(15)

with the initial and boundary conditions

y0,θ = yt,0 = yt,1 = 0, 0 ≤ θ ≤ 1, 0 ≤ t ≤ T.(16)
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Let X = L2(0, 1). In the system (15)–(16), the second-order differential operator
d2/dθ2 stands for the operator A with the domain

D(A) =
{
h ∈ X :

(
d2/dθ2

)
h ∈ X, h0 = h1 = 0

}
,

and it generates the strongly continuous semigroup U defined by

[Uth]θ =
∞∑
i=1

2e−i
2π2t sin(iπθ)

∫ 1

0

hα sin(iπα) dα, 0 ≤ θ ≤ 1, t ≥ 0, h ∈ X.

If v is considered as a control action taken from the set of admissible controls V =
L2(T, X), then it is easily shown that B = B∗ = I and, since Ut is self-adjoint,

ΓT =

∫ T

0

UT−sBB∗U∗T−s ds =

∫ T

0

U2s ds.

Therefore, for h ∈ X,

[ΓTh]θ =

[∫ T

0

U2sh ds

]
θ

=
∞∑
i=1

∫ T

0

2e−2i2π2s sin(iπθ)

∫ 1

0

hα sin(iπα) dα ds

=
∞∑
i=1

1− e−2i2π2T

i2π2
sin(iπθ)

∫ 1

0

hα sin(iπα) dα.

The half-range Fourier sine expansion of h ∈ X is

hθ =
∞∑
i=1

2 sin(iπθ)

∫ 1

0

hα sin(iπα) dα, 0 ≤ θ ≤ 1.

Using this, we obtain

[(λI + ΓT )h]θ =
∞∑
i=1

2i2π2λ+ 1− e−2i2π2T

i2π2
sin(iπθ)

∫ 1

0

hα sin(iπα) dα.

Let (λI + ΓT )h = g. If we use the half-range Fourier sine expansion of g ∈ X, then

∞∑
i=1

2i2π2λ+ 1− e−2i2π2T

i2π2
sin(iπθ)

∫ 1

0

hα sin(iπα) dα

=
∞∑
i=1

2 sin(iπθ)

∫ 1

0

gα sin(iπα) dα,

which implies∫ 1

0

hα sin(iπα) dα

=
2i2π2

2i2π2λ+ 1− e−2i2π2T

∫ 1

0

gα sin(iπα) dα, i = 1, 2, . . . .
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Therefore,

hθ =
[
(λI + ΓT )−1g

]
θ

= [R(λ,−ΓT )g]θ

=
∞∑
i=1

4i2π2

2i2π2λ+ 1− e−2i2π2T
sin(iπθ)

∫ 1

0

gα sin(iπα) dα.

If gα ≡ 1, then by Parseval’s identity,

‖R(λ,−ΓT )g‖2X =
1

2

∞∑
i=1

(4i2π2)2

(2i2π2λ+ 1− e−2i2π2T )2

(∫ 1

0

sin(iπα) dα

)2

=
∞∑
i=1

8i2π2(1− (−1)i)2

(2i2π2λ+ 1− e−2i2π2T )2

≥
∞∑
i=1

8i2π2(1− (−1)i)2

(2i2π2λ+ 1)2
=

∑
i=1,3,5,...

32i2π2

(2i2π2λ+ 1)2
.

One can verify that the inequality

i

2i2π2λ+ 1
>

i+ 1

2(i+ 1)2π2λ+ 1

holds whenever i is an integer that is greater than the number 1/
√

2λπ. Let Nλ be
the smallest odd integer that is greater than 1/

√
2λπ. Then the sequence{

i2π2/
(
2i2π2λ+ 1

)2}
i=1,2,...

is decreasing for i ≥ Nλ. The following limits are obvious:

Nλ →∞ and λN2
λ →

1

2π2
as λ→ 0.

Using these, for gα ≡ 1, we obtain

‖R(λ,−ΓT )g‖2X ≥
∞∑

i=Nλ

16i2π2

(2i2π2λ+ 1)2
≥
∫ ∞
Nλ

16π2t2

(2π2λt2 + 1)2
dt

≥
∫ ∞
Nλ

4π2t

(2π2λt2 + 1)2
dt =

1

λ(2π2λN2
λ + 1)

→∞

as λ → 0. Therefore, by (1a) ⇔ (1d) in Theorem 1, the system (15)–(16) is not
Dc-controllable. At the same time, for all g ∈ X,

‖λR(λ,−ΓT )g‖2X

=
∞∑
i=1

8i4π4λ2

(2i2π2λ+ 1− e−2i2π2T )2

(∫ 1

0

gα sin(iπα) dα

)2

→ 0

as λ → 0 and hence, by (2a) ⇔ (2c) in Theorem 2, the system (15)–(16) is Da-
controllable.

Example 2. Consider a controlled wave equation

∂2

∂t2
ξt,θ =

∂2

∂θ2
ξt,θ + bθvt, 0 ≤ θ ≤ 1, 0 < t ≤ T,(17)
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with the initial and boundary conditions

ξ0,θ = fθ,
∂

∂t
ξt,θ

∣∣∣
t=0

= gθ, ξt,0 = ξt,1 = 0, 0 ≤ θ ≤ 1, 0 ≤ t ≤ T,(18)

where v is a control action taken from the set of admissible controls V = L2(0, T ),
i.e., Y = R. We assume that f , g, and b are functions in L2(0, 1). For these functions,
we will use the half-range Fourier sine expansions

fθ =

∞∑
i=1

αi sin(iπθ), gθ =

∞∑
i=1

βi sin(iπθ), bθ =

∞∑
i=1

γi sin(iπθ)

and suppose that

∞∑
i=1

i2α2
i <∞.

Let X be a Hilbert space of all functions

h =

[
f
g

]
: [0, 1]→ R,

where f and g satisfy the above-mentioned conditions endowed with the scalar product

〈h, h̃〉 =

〈[
f
g

]
,

[
f̃
g̃

]〉
=

∞∑
i=1

(
i2π2αiα̃i + βiβ̃i

)
,

where α̃i and β̃i are the respective Fourier coefficients of f̃ and g̃. This space X is
suitable for the problem (17)–(18) (see Curtain and Zwart [3, p. 149] and Zabczyk
[6, p. 180]). For the operator

A =

[
0 I

d2/dθ2 0

]
,(19)

where I is the identity operator on L2(0, 1) and d2/dθ2 has the domain

D
(
d2/dθ2

)
=
{
η ∈ L2(0, 1) :

(
d2/dθ2

)
η ∈ L2(0, 1), η0 = η1 = 0

}
,

and for B ∈ L(R,X) defined by

[Bv]θ =

[
0
bθv

]
, 0 ≤ θ ≤ 1, v ∈ R,

the problem (17)–(18) can be formulated in the abstract form

d

dt
yt = Ayt +Bvt, t > 0,(20)

where

[yt]θ =

[
ξt,θ

(∂/∂t)ξt,θ

]
, 0 ≤ θ ≤ 1, 0 < t ≤ T ; y0 =

[
f
g

]
.
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It is known that the operator A defined by (19) generates a continuous group U (see
Curtain and Zwart [3] and Zabczyk [6]) as defined by

[Uth]θ =
∞∑
i=1

[
cos(iπt) (iπ)−1 sin(iπt)
−iπ sin(iπt) cos(iπt)

] [
αi
βi

]
sin(iπθ), 0 ≤ θ ≤ 1, t ∈ R,

where

h =

[
f
g

]
∈ X

and αi and βi are Fourier coefficients of f and g, respectively. Since U is a group, we
have U∗t = U−t. Therefore, the controllability operator ΓT of the system (20) is

ΓTh =

∫ T

0

UT−tBB∗U∗T−th dt =

∫ T

0

UtBB∗U−th dt, h ∈ X.

We have

[U−th]θ =
∞∑
i=1

[
αi cos(iπt)− βi(iπ)−1 sin(iπt)
αiiπ sin(iπt) + βi cos(iπt)

]
sin(iπθ).

One can calculate that

B∗h =

∞∑
i=1

γiβi, h ∈ X.

Hence,

B∗U−th =

∞∑
i=1

γi(αiiπ sin(iπt) + βi cos(iπt))

and, consequently,

[UtBB∗U−th]θ =
∞∑
i=1

[
γi(iπ)−1 sin(iπt)

γi cos(iπt)

]
sin(iπθ)

×
∞∑
j=1

γj(αjjπ sin(jπt) + βj cos(jπt)).

Thus, for T = 2,

[Γ2h]θ =

∫ 2

0

[UtBB∗U−th]θ dt =
∞∑
i=1

[
γ2
i αi
γ2
i βi

]
sin(iπθ).

We obtain that

[(λI + Γ2)h]θ =
∞∑
i=1

(
λ+ γ2

i

) [αi
βi

]
sin(iπθ),

which implies

[R(λ,−Γ2)h]θ =
[
(λI + Γ2)−1h

]
θ

=
∞∑
i=1

(
λ+ γ2

i

)−1
[
αi
βi

]
sin(iπθ).
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Finally, for all h ∈ X,

‖λR(λ,−Γ2)h‖2 =
∞∑
i=1

λ2(
λ+ γ2

i

)2 (i2π2α2
i + β2

i

)→ 0

as λ→ 0 if γi 6= 0 for all i = 1, 2, . . .. Thus, by (2a) ⇔ (2c) in Theorem 2, we obtain
the following sufficient condition for the approximate controllability of the system
(17)–(18) which agrees with Theorem 2.10 in Zabczyk [6]: if T ≥ 2 and b is such that

γi = 2

∫ 1

0

bθ sin(iπθ) dθ 6= 0, i = 1, 2, . . . ,

then the system (17)–(18) is Da-controllable.

6. Necessary and sufficient conditions for C- and S-controllabilities.
The following two lemmas are proven in [7, 8].

Lemma 3. For ε > 0 and for 0 ≤ p < 1, the control system (4) is Ccε,p-controllable
(Caε,p-controllable) on T if and only if the control system (5) is Dc-controllable (Da-
controllable) on T and the control system (6) is S0

ε,p-controllable on T.
By this lemma, the study of the Ccε,p-controllability (the Caε,p-controllability) of

the control system (4) is separated into the study of the Dc-controllability (Da-
controllability) and the S0

ε,p-controllability of the control systems (5) and (6), re-
spectively.

Lemma 4. The following statements hold:
(a) there exists a finite limit

aT = lim
λ→0

∫ T

0

trCPsQ
λ
sPsC

∗ds,

where Qλ and P are solutions of (8) and (9), respectively;
(b) the control system (6) is S0

ε,p-controllable on T if aT < ε(1− p);
(c) the system (6) is S0-controllable on T if aT = 0.
It turns out that the condition aT = 0, which is sufficient for the system (6)

to be S0-controllable, is weaker than the Da-controllability (particularly, the Dc-
controllability) of the control system (5) on all the intervals [0, t] with 0 < t ≤ T .

Lemma 5. If the control system (5) is Da-controllable on all the intervals [0, t]
with 0 < t ≤ T , then aT = 0, where aT is defined in Lemma 4(a).

Proof. From (2a)⇔ (2c) (see Theorem 2), we obtain that λR(λ,−ΓT−t) strongly
converges to zero operator as λ → 0 for all 0 ≤ t < T . Hence, by Lemma 1, Qλt
strongly converges to zero operator as λ → 0 for all 0 ≤ t < T . Furthermore,
substituting h = λ1/2(λI + ΓT−t)−1/2x in〈

λ−1(λI + ΓT−t)h, h
〉 ≥ 〈h, h〉,

we obtain 〈
λ(λI + ΓT−t)−1x, x

〉 ≤ ‖x‖2.
Thus, λR(λ,−ΓT−t) ≤ I and by Lemma 1, Qλt ≤ U∗T−tUT−t for all λ > 0 and for all
0 ≤ t ≤ T . Hence, we can change the places of limit, integral, and trace in definition
of the number aT in Lemma 4(a) to obtain aT = 0. The lemma is proven.
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Theorem 3. The control system (4) is C-controllable on all the intervals [0, T ]
with T > 0 if and only if the control system (5) is Dc-controllable on all the intervals
[0, T ] with T > 0.

This follows from Lemmas 3, 4(c), and 5.
Theorem 4. The control system (4) is S-controllable on all the intervals [0, T ]

with T > 0 if and only if the control system (5) is Da-controllable on all the intervals
[0, T ] with T > 0.

The necessity follows from Theorem 5(b) in [8]. The sufficiency follows from
Lemmas 3, 4(c), and 5.

Corollary 1. The control system (4) is S-controllable on all the intervals [0, T ]
with T > 0 if it is Ca-controllable on all the intervals [0, T ] with T > 0.

Proof. From Lemmas 3 and 5 and Theorem 4, one can see that each of the S- and
Ca- controllabilities of the control system (4) on all the intervals [0, T ] with T > 0 is
equivalent to the Da-controllability of the control system (5) on all the intervals [0, T ]
with T > 0.

Example 3. Consider the control system (4) with the operators A and B as
defined in Example 1. It was shown that the deterministic part of this system is Da-
controllable on all the intervals [0, T ] with T > 0. Hence, this system is S-controllable
on all the intervals [0, T ] with T > 0.

Example 4. Consider the control system (4) with the operators A and B as
defined in Example 2. It was shown that the deterministic part of this system is Da-
controllable on all the intervals [0, T ] with T > 2 if some additional condition holds.
However, Theorem 4 does not guarantee the S-controllability of this system.
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Abstract. Central limit theorems are obtained for the perturbation analysis Robbins–Monro
single run (PARMSR) algorithm updated either after every regenerative cycle or after every fixed-
length observation period, and with averaging of the iterates, for one-dependent regenerative pro-
cesses. When the convergence to the optimizer is expressed in terms of the total observation time of
the system (or the total computing budget in the case of a simulation), the convergence rate and the
limit covariance matrix turn out to be the same for all updating schemes and are optimal within the
class of stochastic approximation-algorithms under certain assumptions. A bound on the strong con-
vergence rate of the usual PARMSR algorithm updated after every fixed-length observation period
is established using a limit theorem on double array martingales. This is the key step for obtaining
central limit theorems for the algorithms with averaging and has interest in its own right.

Key words. perturbation analysis, asymptotic efficiency, central limit theorems, stochastic
approximation, recursive estimation, queueing theory

AMS subject classifications. 62L20, 93E12, 93E23, 93E30, 60F05, 60K25

PII. S0363012997321243

1. Introduction. Consider a discrete-time stochastic process {Xi, i ≥ 0} which
follows the stochastic recurrence

Xi+1 = h(Xi, θ̃i, Ui)(1.1)

with initial state X0, where h is a measurable function, each θ̃i ∈ D is a decision (or
control), D is a compact subset of the l-dimensional real space Rl, and {Ui, i ≥ 0} is
a sequence of i.i.d. random vectors defined on a probability space {Ω, F , P}. In the
case of a simulation model, {Ui, i ≥ 0} can be interpreted as the sequence of U(0, 1)
random numbers that drive the simulation. A real-valued cost process {Ji, i ≥ 0}
is defined by Ji = φ(Xi, θ̃i) for some measurable mapping φ. Denote (Xi, Ji) by
(Xi(θ), Ji(θ)) when the control parameter θ̃i is fixed at θ for all i ≥ 0. The objective
function is the steady-state average cost

J(θ) = lim
t→∞

1

t

t∑
i=1

E[Ji(θ)],(1.2)

which is to be minimized with respect to θ for θ ∈ D.
To insure that (1.2) exists and to prove our results, we assume certain stabil-

ity conditions on the process {Ji, i ≥ 0}, expressed in the form of a regenerative
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structure. We suppose (roughly) that this process, as well as its stochastic gradient
(perturbation analysis) process, is one-dependent regenerative in an extended sense
(see the next section for details). One-dependent regenerative is a weakened version
of the classical notion of a regenerative stochastic process and covers a broad class of
systems [1, 29, 36]. The weakening is that adjacent regenerative cycles are allowed to
be dependent. The stochastic recursion model (1.1) is very general (it suffices to put
enough information into the state Xi), and it will permit us to define the perturbation
analysis gradient estimators (under some additional conditions).

We assume that no closed-form expression for J̄ is available, and we consider a

stochastic approximation (SA) approach to find a root of f(θ)
4
= Jθ(θ)

4
= d J(θ)/d θ.

(In this paper, a θ subscript means the gradient with respect to θ.) We suppose that
the root is the unique optimizer θ0 of J(θ). The Robbins–Monro [33] SA algorithm
has the general form

θn+1 = ΠD(θn − anfn+1)(1.3)

with an initial value θ0, where {an, n ≥ 0} is a deterministic sequence of matrices
called the step sizes, fn+1 = f(θn) + εn+1 is an unbiased estimator of f(θn), εn+1 is
the observation noise at the (n + 1)th step, ΠD : Rl → D is a projection operator
(which would disappear if D was Rl, as in the original Robbins–Monro formulation),
and θn is the nth estimate for the optimizer θ0. See, e.g., [7, 22, 24, 28]. It is well
known that under certain conditions on the regression function f(θ), on the noise
sequence {εn, n ≥ 1}, and on the matrix A∗ assuming that an = A∗/n,

√
n(θn − θ0)

is asymptotically N(0, S∗), where S∗ is a limiting covariance matrix. The trace of
S∗ is minimized by taking A∗ = M−1

1 , where M1 = fθ(θ
0) is the Hessian matrix of

J(θ) at θ0. This optimal covariance matrix is S∗ = M−1
1 S∗0 (M−1

1 )′, where the prime
means “transpose” and S∗0 is the asymptotic covariance matrix of (1/

√
n)
∑n
j=1 εj .

However, since M1 is generally unknown, this optimal SA scheme is usually im-
practical. This has motivated the introduction of SA algorithms with averaging of
the iterates, using a sequence of step sizes which decreases at a rate slower than 1/n
(see [3, 5, 24, 31, 32, 43]). One of these algorithms uses (1.3) as usual, then retains
the following estimator of θ0 at step n:

θn =
1

n

n∑
j=1

θj =
1

n
(θn + (n− 1)θ̄n−1).(1.4)

Under certain conditions,
√
n(θn−θ0) is asymptotically N(0, S∗). The major advan-

tage of this averaging algorithm is that there is no need to know M−1
1 .

Under appropriate smoothness conditions, infinitesimal perturbation analysis
(IPA) offers a viable means of estimating f(θ) by observing a single sample path
of the system (see section 2.2 and, e.g., [15, 21, 25] and other references therein). Go-
ing one step further, one can simultaneously optimize along that single sample path:
At successive epochs along the path, a (generally biased) estimator of f(θ) for the
current θ is put in the SA algorithm to recursively estimate θ0 while the system is
running (either on-line or via simulation). The general idea is as follows: Run the
system for a short period of time, say, Ln+1 steps of (1.1) with θ fixed at θn, and
use the collected information to compute the estimator fn+1 of f(θn); put fn+1 in
(1.3) to get θn+1; continue running the system (from its current state) for another
Ln+2 steps with θ = θn+1 to compute fn+2; and so on. Denoting Nn =

∑n
j=1 Lj

(with N0 = 0), one has θ̃i = θn for Nn ≤ i < Nn+1. In [38, 39], this is called
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the perturbation analysis Robbins–Monro single run (PARMSR) algorithm. Consid-
erable effort has been devoted, in recent years, to studying the convergence of the
PARMSR algorithm in the field of discrete event dynamic systems (DEDSs); see, e.g.,
[8, 9, 10, 14, 23, 26, 27, 40, 41], among others. The convergence rate results mentioned
previously for the SA algorithm, however, have been proved under conditions that do
not hold in the PARMSR setup.

In this paper we study the convergence rate, in the sense of central limit theo-
rems, for the PARMSR algorithm with averaging. Let Nn represent the cumulative
computing budget for the first n steps of the PARMSR algorithm. We express the
convergence speed of the algorithm in terms of Nn (as done, e.g., in [28]) instead of n.
When

√
Nn(θn−θ0) is asymptotically N(0, S∗), with S∗ = M−1

1 S∗0 (M−1
1 )′, where S∗0

is the asymptotic covariance matrix of (1/
√
Nn)

∑n
j=1 εj , we say that the PARMSR

algorithm is asymptotically optimal (see [3, 5, 43] for similar definitions in terms of
n). This must be understood as optimal only within the class of SA algorithms and
for the particular gradient estimator that is used. Another type of convergence rate,
in the sense of large-deviation bounds on the probability of exit of a neighborhood of
θ0 by the tail process {θn, n ≥ n0} for large n0, is studied in [12].

We analyze the following two cases:
• (R) The parameter θn is updated after each regenerative cycle of the process
{Ji, i ≥ 0} (so Ln is random and represents the length of the nth regenerative
cycle). In this regenerative case, we use θn−1 instead of θn to obtain fn+1, as
explained in section 3.
• (F) θn is updated after every L steps of the recurrence (1.1), so Ln = L, a

positive constant.
For case (R), the limiting behavior is relatively easy to analyze since the main part
of the observation noise can be decomposed into two martingale difference sequences.
Then, standard SA results are applicable. For case (F), the analysis is more difficult,
primarily because the standard conditions on the observation noise, assumed in, e.g.,
[3, 24, 31, 32, 43], do not hold. These authors require the observation noise to satisfy
the properties of martingale differences, or of stationary φ-mixing processes, or of
the infinite sum of a martingale difference sequence. For the PARMSR algorithm
with fixed-length observation period, the observation noise has a very complicated
dynamic, as shown in previous convergence studies; see, e.g., [9, 10, 23, 26, 40, 41].
In this paper, we first obtain a bound on the almost sure (a.s.) convergence rate of
the usual PARMSR algorithm (without averaging), using a limit theorem on double
array martingales borrowed from [6] and [19]. We then apply this result to obtain a
central limit theorem showing the asymptotic optimality of the PARMSR algorithm
with averaging for the case (F).

Our results imply that the PARMSR algorithm with averaging has the same
asymptotic efficiency, i.e., the same convergence rate and the same limiting covariance
matrix in terms of Nn, for both (R) and (F). Moreover, for (F), this limit covariance
is independent of the updating frequency L. Our emphasis in this paper is on the
case (F). This case is more difficult to analyze than (R), but its implementation is
much easier, because there is no need to recognize the regeneration points, so the
implementation depends much less on the structure of the system. For case (R), the
algorithm must identify the regeneration points explicitly, which is usually hard for
complex systems. See [34, 35] on the identification of regeneration points for closed
and open queueing networks.

A third approach, not considered here, is to have Ln → ∞ with n. This was
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studied in [28] for decreasing step sizes and in [13] for constant step sizes, without the
averaging of the iterates.

The rest of the paper is organized as follows. In the next section we specify the
regenerative structure of the model. We also define the IPA estimators and introduce
some assumptions to make sure that the IPA process shares a common regenerative
structure with the original process and is strongly consistent. The asymptotic effi-
ciency of the PARMSR algorithm with averaging for cases (R) and (F) is analyzed in
sections 3 and 4, respectively. All the proofs are collected in the appendix.

2. The model.

2.1. The regenerative structure. We now expand on the model introduced
at the beginning of section 1. The state process {Xi, i ≥ 0} takes values in some
Borel space X , and the initial state X0 ∈ X is a random variable. The stochastic
process {Xi, θ̃i, Ji), i ≥ 0} is defined on the same probability space {Ω, F , P} as
{X0, Ui, i ≥ 0}, via (1.1) and (1.3). Let Fi = σ(X0, . . . , Xi), the sigma field generated
by X0, . . . , Xi. We suppose that there is a sequence of integers 0 = k0 < k1 < k2 < · · ·
such that each km is a stopping time with respect to the filtration {Fi, i ≥ 0} and
such that the following condition (A0) is satisfied.

Suppose for a moment that until time km, the process is run as usual with θ̃i
varying according to the SA algorithm, but that from then on, the parameter is
fixed at θ; i.e., θ̃i = θ for i ≥ km. We denote this modified process starting at

time km by {X(m+1)
i (θ), i ≥ 0}, that is, X

(m+1)
i (θ) = Xkm+i for i ≥ 0, and put

J
(m+1)
i (θ) = φ(X

(m+1)
i (θ), θ) for i ≥ 0 and k

(m+1)
r (θ) = km+r−km for r ≥ 0. We also

denote Xi(θ) = X
(1)
i (θ), Ji(θ) = J

(1)
i (θ), and km(θ) = k

(1)
m (θ), which correspond to a

process where θ is fixed from the beginning.

(A0) For any fixed θ ∈ D and m ≥ 0, {J (m+1)
i (θ), i ≥ 0} and {k(m+1)

r (θ), r ≥ 0}
have the same joint distribution as {Ji(θ), i ≥ 0} and {kr(θ), r ≥ 0} and are
independent of Fkm−1−1 and km.

When this condition (A0) is satisfied, the controlled process {Ji, i ≥ 0} is called
(nondelayed) one-dependent regenerative. This extends the usual definition found,
e.g., in [29, 36]: For the process {Ji(θ), i ≥ 0}, for which θ is fixed from the beginning,
we get the usual definition of one-dependent regenerative, which we call in this paper
one-dependent regenerative for fixed θ. The km’s are called the regeneration points.

Denote ηm = km − km−1, the length of the mth regenerative cycle, η
(m+1)
r (θ) =

k
(m+1)
r (θ) − k(m+1)

r−1 (θ), and ηm(θ) = km(θ) − km−1(θ). If (A0) holds with Fkm−1−1

replaced by Fkm−1, the process is called classically regenerative. From the definition
of Ji and by Proposition V.1.1 of [1], if (A0) holds for {Xi, i ≥ 0}, it also holds for
{Ji, i ≥ 0} with the same regeneration points.

It is well known that Harris-recurrent Markov chains (HRMCs) are one-dependent
regenerative processes for fixed θ; this can be seen by applying the splitting technique
due to [2]. HRMCs cover a very large class of models. We refer the reader to [1, 29,
30, 36] for appropriate background.

If E[η1(θ)] <∞ and E[
∑η1(θ)
i=1 |Ji(θ)|] <∞ for all θ ∈ D, then J(θ) in (1.2) is well

defined on D and the renewal-reward theorem (see, e.g., [1] and [42]) implies that

J(θ) =
1

E[η1(θ)]
E

η1(θ)∑
i=1

Ji(θ)

 .(2.1)
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2.2. Gradient estimation via IPA and the PARMSR algorithm. We now
explain how IPA is used to estimate the gradient in this context. For fixed θ, the IPA
estimators are constructed from the recurrence

Jθ,i(θ) = φx(Xi(θ), θ)Xθ,i(θ) + φθ(Xi(θ), θ),

Xθ,i+1(θ) = hx(Xi(θ), θ, Ui)Xθ,i(θ) + hθ(Xi(θ), θ, Ui),

for i ≥ 0, where Xθ,0(θ) = 0, φx and φθ denote the partial derivatives of φ with
respect to its first and second components, and similarly for h. Assuming that these
stochastic derivatives exist and under appropriate uniform integrability conditions
(see [15, 25]), Jθ,i(θ) is an unbiased IPA estimator of the gradient of E[Ji(θ)].

Suppose now that θ is not fixed but takes the successive values {θ̃i, i ≥ 0} as in
(1.1). This is what happens when the PARMSR algorithm is applied. We then define
the IPA estimator as follows. Let

Jθ,i = φx(Xi, θ̃i)Xθ,i + φθ(Xi, θ̃i),

Xθ,i+1 = hx(Xi, θ̃i, Ui)Xθ,i + hθ(Xi, θ̃i, Ui).

The gradient estimator at the nth step of SA has the general form

fn+1 = K

Ln+1∑
i=1

Jθ,Nn+i(2.2)

for some constant K. In our context, we have Ln+1 = ηn+1 and K = 1 for case (R),
and Ln+1 = L and K = 1/L for case (F).

Equations (1.3) and (2.2) give the general form of the PARMSR algorithm. In
this paper, we define the projection operator ΠD of (1.3) as

ΠD(θn − anfn+1) =

 θn − anfn+1 if θn − anfn+1 ∈ D,

θn if θn − anfn+1 6∈ D.
If D is a convex set, we could also define ΠD(x) to be the nearest boundary point of
D whenever x 6∈ D.

For the analysis of the PARMSR algorithm, we need to assume that {Jθ,i, i ≥ 0}
is also one-dependent regenerative with the same regeneration points as {Ji, i ≥ 0}.
Glasserman [15, 16, 17] and Glasserman, Hu, and Strickland [18] give several sets of
sufficient conditions for this property to hold for fixed θ, for classically regenerative
systems (see, e.g., Theorem 8.3 in [15], Theorem 5.4 in [16], and Theorem 5.6 in [17]).
The following conditions ensure, among other things, that the IPA estimators are
strongly consistent for f(θ), in the sense that limt→∞(1/t)

∑t
i=1 Jθ,i(θ) = f(θ) a.s.

We denote J
(m+1)
θ,i (θ) = dJ

(m+1)
i (θ)/dθ. Later on, for our theorems, we will require

values of ξ0 larger than 2 in (A3).
(A1) For i ≥ 0, Ji(θ) is absolutely continuous with respect to θ on D.
(A2) {Ji, i ≥ 0} and {Jθ,i, i ≥ 0} are one-dependent regenerative in the sense of

(A0), with common regeneration points {km, m ≥ 0}.
(A3) There are two sequences of one-dependent and identically distributed random

variables (r.v.’s) {Zm, m ≥ 1} and {η∗m, m ≥ 1}, and a constant ξ0 ≥ 2,

such that E[Zξ01 ] < ∞ and E
[
(η∗1)ξ0

]
< ∞, and such that for all m ≥ 0,

1 ≤ i ≤ ηm+1, and θ ∈ D, max(‖Jθ,km+i‖, ‖Jθ,km+i(θ)‖, ‖J (m+1)
θ,i (θ)‖)

≤ Zm+1 and max(ηm+1, ηm+1(θ), η
(m+1)
1 (θ)) ≤ η∗m+1.
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A classical example where (A1) to (A3) are verified in the literature is that of the
GI/G/1 queue considered in [8, 9, 24, 26, 41].

Lemma 2.1. If conditions (A0)–(A3) hold, then for each θ ∈ D, the IPA deriva-
tive estimator is strongly consistent for f(θ) and

f(θ) =
1

E[η1(θ)]
E

η1(θ)∑
i=1

Jθ,i(θ)

 .(2.3)

Proof. The proof is along the same lines as in [15, 16, 17, 18]. In fact (A2) and
(A3) are needed only for fixed θ (uniformly in θ) to prove this lemma.

3. The PARMSR algorithm with averaging for case (R). Since η1(θ) ≥ 1,
finding a root of f(θ) is equivalent to finding a root of f(θ)η(θ), where η(θ) = E[η1(θ)],
i.e., to finding a root of the second expectation in (2.3). If regeneration points for
the model under consideration can be identified explicitly, one can use the sum of the
Jθ,i(θ) over any regenerative cycle as an unbiased estimator of f(θ)η(θ), where θ is the
(fixed) value of the parameter during that cycle. This motivates taking Ln+1 = ηn+1

and K = 1 in (2.2).
The PARMSR algorithm without averaging for case (R) is composed of (1.3) and

(2.2) (cf. [8, 14, 26, 27]), with θ̃i = θn−1 for kn < i ≤ kn+1, and where θ−1, θ0 ∈ D
are initial values. Thus, fn+1 is viewed as an estimator of f(θn−1)η(θn−1). It is
worth noticing that the decision parameter throughout the evolution of the (n+ 1)th
regenerative cycle is fixed at θn−1 rather than θn. This is because of the one-dependent
nature of our model, and it simplifies the convergence analysis.

The averaging version of this PARMSR algorithm works the same, but retains θn
instead of θn as an estimator of θ0. Our aim is to obtain a central limit theorem for
{θ̄n, n ≥ 1}. For this, we introduce the following conditions on the step sizes an and
the functions f and η̄.
(A4) There are constants a > 0 and ν ∈ (1/2, 1) such that 0 < an ≤ an−ν for all

n ≥ 1; aj = a for all j ≤ 0;
∑∞
n=1 an =∞; 0 ≤ a−1

n+1 − a−1
n → 0 as n→∞

(A5) The set D is compact and convex, and f(θ) is bounded on D. The optimizer
θ0 is an interior point of D. There are a stable matrix −M1 (all eigenvalues
of M1 have positive real parts) and positive constants r0 and c1 such that
‖f(θ)−M1(θ − θ0)‖ ≤ c1‖θ − θ0‖2, whenever ‖θ − θ0‖ ≤ r0.

(A6) There exists a continuously differentiable function v : Rl → R such that v(θ0) =
0 and for all ∆1 > 0, inf{(f(θ))′vθ(θ) : θ ∈ D, ‖θ − θ0‖ ≤ ∆1} > 0.

(A7) f(θ) is Lipschitz with modulus B1 on D; i.e., ‖f(x1) − f(x2)‖ ≤ B1‖x1 −
x2‖ ∀ x1, x2 ∈ D.

(A8) η(θ) and H(θ) are continuous at θ0, where H(θ) is defined as

H(θ) = E

η1(θ)∑
i=1

Jθ,i(θ)

η1(θ)∑
i=1

Jθ,i(θ)

′  .
Let us comment on conditions (A4)–(A8). Observe that ν < 1 in (A4), so the

classical choice of an = O(1/n) is not allowed. This (A4) is the usual condition
of slowly decreasing step sizes (e.g., as in [3, 24, 32]). Conditions (A5) and (A6)
are standard in the context of SA. (A5) asks the objective function to be locally
quadratic around the optimizer θ0, while (A6) says that θ0 should be an attractor
point from every other point of D. In the context of queueing systems, for example,
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the set D may represent a stability region where the standard load conditions are
fulfilled. In the case where D is unbounded, an SA procedure with randomly varying
truncations can be employed (see, e.g., [3, 4, 5] and [7]). Condition (A7) requires
that the regression function f(θ) is sufficiently smooth. We note that if the model
is classically regenerative, then the Lipschitz conditions on f(θ) and η(θ) required in
Theorem 3.1 can be dropped since in this situation, θ̃i = θn−1 can be replaced by
θ̃i = θn for kn < i ≤ kn+1, and we do not need to decompose the noise εn+1 into two
parts (see the proof of Theorem 3.1(i)). Condition (A8) requires the continuity of η(θ)
and H(θ) at the optimizer θ0. This is a mild condition. See [26] for the verification
in the context of a GI/G/1 queue.

The following theorem contains our main results for case (R).
Theorem 3.1.
(i) Suppose that the conditions (A0)–(A7) hold with ξ0 ≥ 4 in (A3) and that

η(θ) is Lipschitz with modulus B2. Then ‖θn − θ0‖ = o(aδn) a.s. for all
δ ∈ [0, 1− 1/(2ν)), where ν is given by condition (A4).

(ii) Suppose that conditions (A0)–(A8) hold with some ξ0 > 4/ν and that η(θ) is
Lipschitz on D. Then (θn − θ0)/

√
an → N(0, S1) in distribution as n→∞,

where

S1 =

∫ ∞
0

e−η(θ0)M1tSe−η(θ0)M ′1tdt, S = H(θ0).

(iii) Under the same conditions as in (ii) with ξ0 > 4/ν replaced by ξ0 > 4, the
PARMSR algorithm with averaging for case (R) satisfies

√
n(θn − θ0) →

N(0, S2) in distribution as n→∞, where S2 = η(θ0)−2M−1
1 S(M−1

1 )′.
For the first n iterations of the PARMSR algorithm for case (R), the total comput-

ing budget is Nn = kn =
∑n
i=1 ηi. By the continuity of η(θ) at θ0 and the law of large

numbers for martingales, it is seen that Nn/n → η(θ0) a.s. as n → ∞. Combining
this with Theorem 3.1, we obtain Corollary 3.1.

Corollary 3.1. Under the assumptions of Theorem 3.1 (iii), one has
√
Nn(θn−

θ0)→ N(0, S∗) in distribution as n→∞, where S∗ = η(θ0)−1M−1
1 S(M−1

1 )′.

4. Convergence of the PARMSR algorithm for case (F). The PARMSR
algorithm without averaging , with updating period L, is composed of (1.3) and (2.2)
with Ln = L, K = 1/L, and θ̃nL+i = θn for 0 ≤ i ≤ L− 1 and n ≥ 0. For L = 1, we
have θ̃i = θi for all i ≥ 0. The averaging version uses θ̄n as a final estimate of θ0.
(A9) There exists a sequence of one-dependent and identically distributed r.v.’s

{Z(0)
m+1, m ≥ 0}, with E[(Z

(0)
1 )6/ν ] < ∞, such that for all m ≥ 0 and

1 ≤ i ≤ ηm+1, ‖Jθ,km+i − J (m+1)
θ,i (θ̃km)‖ ≤ akmZ(0)

m+1 a.s.
(A10) There are two positive constants α0 and γ1 such that

P{ηm+1 6= k
(m+1)
1 (θ̃km) | Fkm} ≤ α0a

γ1

km
.

(A11) The constants ξ0 in (A3) and ν in (A4) satisfy ξ0 ≥ max{2/ζ, 4/ν, 2p1},
where p1 > 1 and ζ > 0 are other constants such that for γ1 in (A10),

ν (1 + γ1(1− 1/p1)) > 1, 0 < ζ < δ′ν, γ1(1− 1/p1) ≥ 1/2, δ′ ∈ (0, 1/2].

Chong and Ramadge [10] have checked conditions (A9) and (A10) for certain
classically regenerative systems, although the convergence rates of the PARMSR al-
gorithms have not been studied there. For example, (A9) and (A10) have been verified
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in [9, 10, 40, 41] in the context of a GI/G/1 queue, with some conditions on the service
time and the interarrival time distributions.

Theorem 4.1. For the PARMSR algorithm with fixed updating period Ln = L,
we have the following:

(i) If conditions (A0)–(A10) hold with ξ0 ≥ max{4, 2p1} and ν(1 + γ1(1 −
1/p1)) > 1, where p1 > 1 is some constant and γ1 is given in (A10), then
θn → θ0 a.s. as n→∞.

(ii) If (A0)–(A11) hold and the constant δ′ satisfies (A11), one has ‖θn − θ0‖ =

o(a
1/2−δ′
n ) a.s.

(iii) If (A0)–(A11) hold with νγ1(1 − 1/p1) > 1/2 and 0 < δ′ < 1/2(1 − 1/(2ν)),
then for the algorithm with averaging, one has

√
n(θn − θ0) → N(0, S3) in

distribution as n→∞, where S3 = L−1η(θ0)−1M−1
1 S(M−1

1 )′.
We note that δ′ in Theorem 4.1(ii) is independent of ν. Thus 1/2 − δ′ can be

arbitrarily close to 1/2 if condition (A3) is fulfilled with a very large ξ0. This is
different from our Theorem 3.1 and from Theorem 2.2 in [41], where ‖θn−θ0‖ = o(aδn)
a.s. with δ ∈ [0, 1− 1/(2ν)) depending on ν. In the latter setup, if ν is close to 1/2,
δ must be close to zero.

For the first n SA iterations, the total computing budget of the PARMSR algo-
rithm with updating period L is Nn = nL. The following corollary provides a central
limit theorem in terms of Nn.

Corollary 4.1. Suppose that the conditions of Theorem 4.1(ii) are satisfied.
Then the PARMSR algorithm with averaging and with updating period L satisfies√
Nn(θn−θ0)→ N(0, S∗) in distribution as n→∞, where S∗ is defined in Corollary

3.1.
It follows from Corollaries 3.1 and 4.1 that the PARMSR algorithms with averag-

ing, updated either after every regenerative cycle or after every L steps of the process
{Ji, i ≥ 0}, have the same convergence rate and the same limit covariance matrix, for
arbitrary L ≥ 1, as a function of the computing budget. It should be pointed out that
the small-sample or transient behavior of these algorithms generally differ. We also
recall that our analysis of the asymptotic behavior is based on what happens after no
projection of θn on D occurs anymore. Thus, our results do not apply if the optimizer
θ0 lies on the boundary of D. If θ0 is very close to the boundary, it may take a long
while before no projection occurs, and this may affect the convergence speed.

The choices of K = 1 for (R) and K = 1/L for (F) in (2.2) appear natural but
are not necessary for the convergence results to hold. The two theorems and their
corollaries are still valid for an arbitrary constant K > 0 in (2.2).

5. Appendix.

Proof of Theorem 3.1. We use the notation F (m) = Fkm for m > 0 and
F (m) = σ{X0, θ0, θ−1} for m ≤ 0. For case (R), the observation noise is εn+1 =
fn+1 − f(θn)η(θn).

(i) We first decompose εn+1 as εn+1 = ε
(1)
n+1 + ε

(2)
n+1, where

ε
(1)
n+1 =

ηn+1∑
i=1

Jθ,kn+i − f(θn−1)η(θn−1),(5.1)

ε
(2)
n+1 = (f(θn−1)− f(θn))η(θn−1) + f(θn)(η(θn−1)− η(θn)).(5.2)

By Lemma 2.1 and the one-dependence assumption, it is seen that {ε(1)
2n , F (2n), n ≥
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1} and {ε(1)
2n−1, F (2n−1), n ≥ 1} are martingale difference sequences. By (5.1) and

condition (A3),

‖ε(1)
n+1‖ ≤ η∗n+1Zn+1 + sup

θ∈D
‖f(θ)‖ sup

θ∈D
η(θ),(5.3)

which yields

sup
n

E
[
‖ε(1)
n+1‖2 | F (n−1)

]
<∞(5.4)

by the Schwarz inequality and (A3). Then, using the local convergence theorem

of martingales (see, e.g., [6, 20, 37]), it is seen that
∑∞
n=1 a

(1−δ)
2n−1 ε

(1)
2n < ∞ and∑∞

n=1 a
(1−δ)
2n−2 ε

(1)
2n−1 <∞ a.s., which implies that

∞∑
i=1

a1−δ
i−1 ε

(1)
i <∞ a.s.(5.5)

By Lemma 2 of [40] and condition (A3), one derives

a
(1−δ)/2
n−1 Zn−−−−→

n→∞
0 and a

(1−δ)/2
n−1 η∗n−−−−→

n→∞
0 a.s. ∀ δ ∈ [0, 1− 1/(2ν)).(5.6)

Using condition (A3) and (5.6), it follows from (1.3) and (2.2) that

‖θn − θn−1‖ ≤ an−1‖fn‖ ≤ aδn−1a
1−δ
n−1η

∗
nZn = o(aδn) a.s.,

which gives

‖ε(2)
n+1‖ ≤ ‖θn − θn−1‖

(
B1 sup

θ∈D
η(θ) +B2 sup

θ∈D
‖f(θ)‖

)
(5.7)

= O(‖θn − θn−1‖) = o(aδn) a.s.

via (5.2) and the Lipschitz conditions.
By (5.5) and (5.7), the a.s. convergence of the algorithm follows from Theorem

3.1 in [4] (see also Theorem 2.4.1 in [7]). Note that we are using a projection algorithm
in (1.3), rather than a randomly varying truncation procedure as in [4, 7]. But the
convergence analysis works the same way, since θ0 is assumed in (A5) to be in the
interior of D. After establishing the convergence, by (5.5), (5.7), and Theorem 3.2.1
of [7], it follows that ‖θn − θ‖ = o(aδn) a.s.

(ii) Since θn → θ0 a.s. as n→∞, there is a finite time n0 (which may depend on
the sample path) such that

θn+1 = θn − anfn+1 ∀ n ≥ n0.(5.8)

Define ϕ0, 0 = I, ϕn,n+1 = I, and

ϕn, k = (I + anAn) · · · (I + akAk) ∀ n ≥ k,(5.9)

where {An, n ≥ 0} is a sequence of deterministic matrices such that limn→∞An =
−η(θ0)M1. Then it is standard to derive that

‖ϕn, k‖ ≤ c0 exp

−c n∑
j=k

aj

 and sup
n

n∑
i=1

ai‖ϕn, i+1‖r1 <∞ ∀ r1 > 0,(5.10)
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where c0 and c are some positive constants. From (5.8) one derives

θn+1 − θ0

√
an+1

(5.11)

= ϕn,n0

θn0
− θ0

√
an0

−
n∑

i=n0

ϕn,i+1
√
aiε

(1)
i+1 −

n∑
i=n0

ϕn,i+1
√
aiε

(2)
i+1

−
n∑

i=n0

ϕn,i+1o(ai)
√
aiεi+1 −

n∑
i=n0

ϕn,i+1
√
ai(1 + o(ai))O(‖θi − θ0‖2).

In the proof of Theorem 2 of [3], it is shown that E[‖θn − θ0‖2] = O(an), so the last
term on the right side of (5.11) converges to zero in probability via (5.10). By the
conditions (A2), (A3), and Lemma 2 of [40], it is derived that

√
anεn+1 → 0 a.s. as

n → ∞, which yields that the fourth term on the right side of (5.11) converges to
zero a.s. Similarly, we can prove that the first and the third terms converge to zero
a.s. Then, the result follows from standard martingale arguments.

(iii) To prove (iii), we verify that all conditions of Theorem 2 in [3] are fulfilled.
Using (2.9) in [3], it is easy to see that condition (A4) on the step sizes is equivalent
to (1.5) and (1.6) in [3]. The condition on the existence of the Lyapunov function
v(θ) is put in (A6), which is weaker than (A1) in [3] but is consistent with (A2) in [4]
and (A4.3.3) in [7]. Note that we use a projection algorithm in (1.3) rather than a
randomly varying truncation procedure as in [3, 4, 7]. Condition (A2) in [3] is implied
by our condition (A5).

We now check conditions (A3) and (A4) in [3], concerning the observation noise

εn = ε
(1)
n + ε

(2)
n . Letting δ = 0 in (5.5), by the Kronecker lemma, we have that as

n → ∞, an
∑n
i=1 ε

(1)
i+1 → 0 a.s., which is (2.5) in [3]. Since {ε(1)

2n , F (2n), n ≥ 1} and

{ε(1)
2n−1, F (2n−1), n ≥ 1} are martingale difference sequences, by (5.3) and (5.4) it

is easy to derive that (2.6) and (2.7) in [3] are satisfied. From (5.7) it follows that

‖ε(2)
n+1‖ = O(‖θn − θn−1‖) = O(an−1‖fn‖). Then we derive that E[‖ε(2)

n+1‖2] = O(a2
n),

which satisfies (A4) in [3]. Thus we can apply Theorem 2 in [3] and this concludes
the proof.

Proof of Theorem 4.1. For Theorem 4.1, we first give the proof for L = 1
for simplicity of writing, then extend the results to L > 1. As in the proof of Theo-

rem 3.1, for the convergence of
∑∞
n=1 a

1−δ
n ε

(1)
n+1, it suffices to prove the convergence

of
∑∞
n=1 a

1−δ
2n−1ε

(1)
2n and

∑∞
n=1 a

1−δ
2n−2ε

(1)
2n−1, where {ε(1)

2n , F (2n), n ≥ 1} and {ε(1)
2n−1,

F (2n−1), n ≥ 1} are martingale difference sequences. Such a technique is standard
when one wants to extend some results on classically regenerative processes to the
one-dependent regenerative processes. Hence, no generality is lost by supposing that
{Jn(θ), n ≥ 1} is a classically regenerative process, which we now do for simplicity
of writing. We first give two lemmas.

Lemma 5.1. Suppose that {zi} is a sequence of r.v.’s with the same distribution.
Then for any r > 0, E|z1|r <∞ implies

lim
n→∞n

−1/rzn = 0 a.s.

Furthermore, if {zi, i ≥ 1} are mutually independent, then the converse is true.
Proof. The proof follows from the Borel–Cantelli lemma and Corollary 4.1.3 in

[11, pp. 90–91]. See also Lemma 2 in [40].
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Lemma 5.2. Suppose that {zn, B∗n} is an l-dimensional martingale difference
sequence satisfying

sup
n

E[‖zn+1‖2|B∗n] <∞, ‖zn‖ = o(h(n)) a.s., h(n) ≤ h(n+ 1) ∀ n ≥ 0,

and that gn,i is a B∗i -measurable l × l-dimensional random matrix, for 1 ≤ i ≤ n,
which satisfies

n∑
i=1

‖gn,i‖2 ≤ g <∞ a.s. ∀ n ≥ 1,

where h(n) and g are positive constants. Then, as n→∞,

max
1≤i≤n

∥∥∥∥∥
i∑

j=1

gn,jzj+1

∥∥∥∥∥ = o(h(n+ 1) log n) a.s.

Proof. The proof is in Guo, Huang, and Hannan [19]. See also [6].

Proof of Theorem 4.1(i) for L = 1. The key idea lies in verifying that∑∞
n=1 anεn+1 converges a.s. Then the desired result follows from Theorem 3.1 in

[4] (see also Theorem 2.4.1 in [7]). Recall that the observation noise here is

εn+1 = fn+1 − f(θn).(5.12)

Denote Dm,i = J
(m+1)
θ,i (θkm), the value of fkm+i obtained if θkm+j is fixed at θkm for

j ≥ 0.
(a) We first show that

∑∞
m=1

∑ηm+1

i=1 akm+i−1εkm+i converges a.s. From (2.2) and
(5.12) it is easy to see that

∞∑
m=1

ηm+1∑
i=1

akm+i−1εkm+i(5.13)

=
∞∑
m=1

ηm+1∑
i=1

(akm+i−1 − akm)εkm+i +
∞∑
m=1

akm

η
(m+1)
1 (θkm )∑

i=1

(Dm,i − f(θkm))

+
∞∑
m=1

akm

ηm+1∑
i=1

(f(θkm)− f(θkm+i−1)) +
∞∑
m=1

akm

ηm+1∑
i=1

(fkm+i −Dm,i)

+
∞∑
m=1

akm

ηm+1∑
i=η

(m+1)
1 (θkm )+1

(Dm,i − f(θkm))I{ηm+1 > η
(m+1)
1 (θkm)}

−
∞∑
m=1

akm

η
(m+1)
1 (θkm )∑
i=ηm+1+1

(Dm,i − f(θkm))I{ηm+1 < η
(m+1)
1 (θkm)}.

As in Lemma 3.4 of [41], we can prove that each term on the right-hand side of (5.13)
converges a.s.

(b) From the result of step (a), analogous to Lemma 3.5 of [41], we obtain the
a.s. convergence of

∑∞
n=1 anεn+1.
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Proof of Theorem 4.1(ii) for L = 1. We need the following definitions and
lemma. For n ≥ 0, let

ψn,i =

 (I − anM1) · · · (I − aiM1) for i ≤ n,
I for i = n+ 1,
0 for i ≥ n+ 2,

(5.14)

σ(n) = max{m : km ≤ n}, τ(n) = σ(n) + 1.(5.15)

Lemma 5.3. If conditions (A0)–(A11) are satisfied, with δ′ satisfying (A11),
then

a
δ′−1/2
n+1

n∑
j=0

ajψn,j+1εj+1−−−−→
n→∞

0 a.s.

Proof. Since −M1 is stable, it is standard to derive that (see, e.g., [3] and [7])

‖ψn,i‖ ≤ c0 exp

−c n∑
j=i

aj

 ,
ai
an

= exp

(
o(1)

n−1∑
s=i

as

)
∀ n ≥ i,(5.16)

sup
n

n∑
i=1

ai exp

−rc n∑
j=i+1

aj

 <∞, sup
n

n∑
i=1

ai‖ψn,i+1‖r <∞ ∀ r > 0,(5.17)

where c0 and c are some constants and o(1)→ 0 as i→∞.
Using (2.2), (5.12), and (5.15), we have

a
δ′−1/2
n+1

n∑
j=0

ajψn,j+1εj+1(5.18)

= a
δ′−1/2
n+1

n∑
j=kσ(n)+1

ajψn,j+1εj+1

+a
δ′−1/2
n+1

σ(n)−1∑
m=0

ηm+1∑
i=1

akm+i−1ψn,km+i(fkm+i − f(θkm+i−1))

= a
δ′−1/2
n+1

n∑
j=kσ(n)+1

ajψn,j+1εj+1

+a
δ′−1/2
n+1

σ(n)−1∑
m=0

ηm+1∑
i=1

akm+i−1ψn,km+i(f(θkm)− f(θkm+i−1))

+a
δ′−1/2
n+1

σ(n)−1∑
m=0

ηm+1∑
i=1

akm+i−1ψn,km+i(fkm+i −Dm,i)

+a
δ′−1/2
n+1

σ(n)−1∑
m=0

ηm+1∑
i=1

(akm+i−1 − akm)ψn,km+i(Dm,i − f(θkm))
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+a
δ′−1/2
n+1

σ(n)−1∑
m=0

ηm+1∑
i=1

akm(ψn,km+i − ψn,km)(Dm,i − f(θkm))

+a
δ′−1/2
n+1

σ(n)−1∑
m=0

akmψn,kmwm+1

+a
δ′−1/2
n+1

σ(n)−1∑
m=0

akmψn,km

ηm+1∑
i=η

(m+1)
1 (θkm )+1

(Dm,i − f(θkm))I{ηm+1 > η
(m+1)
1 (θkm)}

−aδ′−1/2
n+1

σ(n)−1∑
m=0

akmψn,km

η
(m+1)
1 (θkm )∑
i=ηm+1+1

(Dm,i − f(θkm))I{ηm+1 < η
(m+1)
1 (θkm)},

where

wm+1 =

η
(m+1)
1 (θkm )∑

i=1

(Dm,i − f(θkm)).(5.19)

We will show that each term on the right-hand side of the second equality in
(5.18) converges to zero a.s. Then the desired result follows from (5.18).

(i) By condition (A4), there is a constant α1 such that

max
1≤i≤ηm+1

(
akm
akm+i

)
≤ 1+α1akmη

∗
m+1 and max

1≤i≤ηm+1

|akm+i−akm | ≤ α1a
2
kmη

∗
m+1.

(5.20)
Using (A3), it follows from (5.12) that

‖εkm+i‖ ≤W (0)
m+1

4
= max

θ∈D
‖f(θ)‖+ Zm+1 for 1 ≤ i ≤ ηm+1.(5.21)

By Lemma 5.1 and conditions (A3) and (A11), one has

1√
mv

η∗m+1W
(0)
m+1−−−−→

m→∞
0 a.s.,(5.22)

which yields √
akσ(n)

ησ(n)+1(θ∗)W (0)
σ(n)+1−−−−→n→∞

0 a.s.(5.23)

By (5.16), (5.20), and (5.21), we have

aδ
′
n+1√
an+1

∥∥∥∥∥∥
n∑

j=kσ(n)+1

ajψn,j+1εj+1

∥∥∥∥∥∥ ≤ aδ
′
n+1√
an+1

c0akσ(n)
W

(0)
σ(n)+1ησ(n)+1(θ∗)

≤ c0aδ′n+1

(
akσ(n)

akσ(n)+1

)1/2

a
1/2
kσ(n)

ησ(n)+1(θ∗)W (0)
σ(n)+1

≤ c0aδ′n+1(1 + α1akσ(n)
ησ(n)+1(θ∗))1/2√akσ(n)

ησ(n)+1(θ∗)W (0)
σ(n)+1−−−−→n→∞

0 a.s.,
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which implies that the first term on the right-hand side of the second equality in
(5.18) converges to zero as n→∞ a.s.

(ii) Using (A3), it follows from (1.3) and (2.2) that

‖θkm+i − θkm‖ ≤
i∑

j=1

‖θkm+j − θkm+j−1‖ ≤ akmWm+1 for 1 ≤ i ≤ ηm+1,(5.24)

where Wm+1 = η∗m+1Zm+1.
By (A7), (5.20), and (5.24), one has

a
δ′−1/2
n+1

∥∥∥∥∥∥
σ(n)−1∑
m=0

ηm+1∑
i=1

akm+i−1ψn,km+i(f(θkm)− f(θkm+i−1))

∥∥∥∥∥∥(5.25)

≤ B1a
δ′
n+1

σ(n)−1∑
m=0

ηm+1∑
i=1

akm+i−1‖ψn,km+i‖ 1√
an+1

akmWm+1

≤ B1a
δ′
n+1

σ(n)−1∑
m=0

ηm+1∑
i=1

akm+i−1‖ψn,km+i‖
(
akm+i

an+1

)1/2

· max
1≤i≤ηm=1

(
akm
akm+i

)1/2√
akmWm+1

≤ B1c0a
δ′
n+1

σ(n)−1∑
m=0

ηm+1∑
i=1

akm+i−1 exp

−c n∑
j=km+i

aj

 exp

o(1)
n∑

j=km+i

aj


· (1 + α1akmη

∗
m+1)1/2√akmWm+1

−−−−→
n→∞

0 a.s.,

since by (5.16)–(5.17),

σ(n)−1∑
m=0

ηm+1∑
i=1

akm+i−1 exp

−c n∑
j=km+i

aj

 exp

o(1)
n∑

j=km+i

aj



≤
n∑
i=0

ai exp

−c n∑
j=i+1

aj

 exp

o(1)
n∑

j=i+1

aj

 = O(1) a.s.,

and by (5.22)

(1 + α1akmη
∗
m+1)1/2√akmWm+1−−−−→

m→∞
0 a.s.

Thus, the second term on the right-hand side of the second equality in (5.18)
converges to zero a.s. as n→∞.

(iii) By condition (A9) one has

‖fkm+i −Dm,i‖ ≤ akmZ(0)
m+1 a.s.(5.26)
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for 1 ≤ i ≤ ηm+1. Similar to (5.22), by Lemma 5.1 it follows that

√
akmZ

(0)
m+1−−−−→

m→∞
0 a.s.(5.27)

By the same argument as in (5.25), it is seen that

a
δ′−1/2
n+1

∥∥∥∥∥∥
σ(n)−1∑
m=0

ηm+1∑
i=1

akm+i−1ψn,km+i(fkm+i −Dm,i)

∥∥∥∥∥∥(5.28)

≤ aδ′n+1

σ(n)−1∑
m=0

ηm+1∑
i=1

akm+i−1‖ψn,km+i‖
(
akm+i

an+1

)1/2

max
1≤i≤ηm+1

(
akm
akm+i

)1/2

· √akmZ(0)
m+1

≤ c0aδ′n+1

σ(n)−1∑
m=0

ηm+1∑
i=1

akm+i−1 exp

−c n∑
j=km+i

aj

 exp

o(1)

n∑
j=km+i

aj


· (1 + α1akm)1/2√akmZ(0)

m+1

−−−−→
n→∞

0 a.s.,

which implies that the third term on the right-hand side of the second inequality in
(5.18) converges to zero as n→∞ a.s.

(iv) Analogous to (5.25), by (5.20) it is derived that the fourth term on the right-
hand side of the second inequality in (5.18) converges to zero as n→∞ a.s.

(v) By the definition (5.14), we have

ψn,km+i − ψn,km =
i∑

j=1

akm+j−1ψn,km+jM1(5.29)

= ψn,km+i

i∑
j=1

akm+j−1ψkm+i−1,km+jM1.

Similar to (5.25), we arrive at the conclusion that the fifth term on the right-hand
side of the second inequality in (5.18) converges to zero as n→∞ a.s.

(vi) We now consider the convergence of the sixth term. First, by the definition
(5.14),

τ(n)∑
m=0

ψn,kmakmwm+1 =
n+1∑
m=0

akmψn,kmwm+1.(5.30)

Let h(m) = mζ ∀ m ≥ 1, where ζ is some constant satisfying 0 < ζ < δ′ν. Then
by condition (A11) and Lemma 2.1 we have

‖wm+1‖
h(m)

≤ W
(0)
m+1η

∗
m+1

mζ
−−−−→
m→∞

0 a.s.(5.31)

By (5.16)–(5.17), it is derived that
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1

an+1

n+1∑
m=0

a2
km‖ψn,km‖2 ≤

1

an+1

n+1∑
m=0

akm−1akm‖ψn,km‖2(5.32)

≤ 1

an+1

n+1∑
i=0

ai−1‖ψn,i‖2ai

≤ c20
n+1∑
i=0

exp

−2c

n∑
j=i

aj

 ai−1 exp

o(1)

n∑
j=i

aj

 = O(1),

which, incorporating with (5.31) and Lemma 5.2, leads to

1√
an+1

n+1∑
m=0

ψn,kmakmwm+1 = O(1) + o(h(n) logn).(5.33)

By (5.33), it follows from (5.30) that

a
δ′−1/2
n+1

τ(n)∑
m=0

akmψn,kmwm+1 = O(aδ
′
n+1) + o

(
aδ
′
n+1h(n) logn

)
= o

(
1

nδ
′ν−ζ logn

)
= o(1) a.s.,

which implies that a
δ′−1/2
n+1

∑σ(n)−1
m=0 akmψn,kmwm+1 → 0 a.s. asn→∞, since by (5.16),

(5.20), and (5.22)–(5.23) we have

aδn+1√
an+1

‖ψn,kσ(n)
akσ(n)

wσ(n)+1 + ψn,kτ(n)
akτ(n)

wτ(n)+1‖

≤ c0aδn+1

(
(1 + α1akσ(n)

η∗σ(n)+1)1/2√akσ(n)
η∗σ(n)+1W

(0)
σ(n)+1

+
( an
an+1

)1/2√
akτ(n)

η∗τ(n)+1W
(0)
τ(n)+1

)
−−−−→
n→∞

0 a.s.

(vii) Set

V
(0)
m+1 =

ηm+1∑
i=η

(m+1)
1 (θkm )+1

(Dm,i − f(θkm))I{ηm+1 > η
(m+1)
1 (θkm)} ∀ m ≥ 0.

By (5.31), we get

V (0)
m − E[V (0)

m |F (m−1)]

h(m)
−−−−→
m→∞

0 a.s.,(5.34)

which incorporating with (5.32) and Lemma 5.2 yields

1√
an+1

n+1∑
m=0

ψn,kmakm(V
(0)
m+1 − E[V

(0)
m+1|F (m)])(5.35)

= O(1) + o(h(n) logn) = o(h(n) logn) a.s.

By Hölder’s inequality and condition (A10) for any p1 > 1 we have
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‖E[V
(0)
m+1|F (m)]‖(5.36)

≤ E[η∗m+1W
(0)
m+1I{ηm+1 > η

(m+1)
1 (θkm)}|F (m)]

≤
(

E
[
(W

(0)
m+1η

∗
m+1)p1

])1/p1

P{ηm+1 > η
(m+1)
1 (θkm)|F (m)}1−1/p1

≤ α1−1/p1

0

(
E
[
(W

(0)
m+1η

∗
m+1)p1

])1/p1

a
γ1(1−1/p1)
km

,

which leads to

1

a
1/2−δ′
n+1

∥∥∥∥∥
n+1∑
m=0

ψn,kmakmE[V
(0)
m+1|F (m)]

∥∥∥∥∥(5.37)

≤ α1−1/p1

0 sup
m

{(
E
[
(W

(0)
m+1η

∗
m+1)p1

])1/p1
}

· 1

a
1/2−δ′
n+1

n+1∑
m=0

‖ψn,km‖akm−1a
γ1(1−1/p1)
km

≤ O(1)aδ
′
n+1

n+1∑
i=−1

ai exp

−c n∑
j=i+1

aj

( ai+1

an+1

)1/2

a
γ1(1−1/p1)−1/2
i+1

= o(1) a.s.,

provided that γ1(1− 1/p1) ≥ 1/2. Combining (5.35) and (5.37) gives

1

a
1/2−δ′
n−1

∥∥∥∥∥
n+1∑
m=0

ψn,kmakmV
(0)
m+1

∥∥∥∥∥ = o(1) + o(aδ
′
n+1h(n) logn) = o(1) a.s.,

where 0 < ζ < δ′ν.
(viii) In the same way as in (vii), one shows that the last term on the right-hand

side of the second equality in (5.18) converges to zero a.s.

Proof of Theorem 4.1(ii) for L = 1. By Theorem 4.1(i), there is an a.s. finite
r.v. n∗0 such that no projection occurs after step n∗0; i.e.,

θn+1 = θn − an(f(θn) + εn+1) ∀ n ≥ n∗0.(5.38)

Then, for a deterministic integer n0, on the event {n ≥ n0 ≥ n∗0}, one has

θn+1 − θ0

a
1/2−δ′
n+1

= a
δ′−1/2
n+1 ψn,n0

(θn0
− θ0)− aδ′−1/2

n+1

n∑
j=n0

ψn,j+1ajεj+1(5.39)

−aδ′−1/2
n+1

n∑
j=n0

ψn,j+1aj(f(θj)−M1(θj − θ0)).

Let r ≤ r0, where r0 is given by condition (A5). Define

σ∗ =

{
0 if ‖θn0

− θ0‖ ≥ r,
inf{j : j > n0, ‖θj − θ0‖ ≥ r} otherwise.

(5.40)
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By (5.16), it is easy to see that

‖aδ′−1/2
n+1 ψn,n0(θn0 − θ0)‖(5.41)

≤ c0aδ′−1/2
n0

(
an0

an+1

)1/2−δ′
exp

−c n∑
j=n0

aj

 ‖θn0
− θ0‖

≤ O(1) exp

−c n∑
j=n0

aj

 exp

o(1)
n∑

j=n0

aj


= o(1) as n→∞.

Let c∗0 be a constant such that

sup
j≥1

{(
aj
aj+1

)1/2−δ′}
≤ c∗0.

By condition (A5) and (5.16), we have

a
δ′−1/2
n+1

∥∥∥∥∥∥
n∑

j=n0

ψn,j+1aj(f(θj)−M1(θj − θ0))I{σ∗ > n+ 1, n∗0 ≤ n0}
∥∥∥∥∥∥(5.42)

≤ c0c1aδ
′−1/2
n+1

n∑
j=n0

exp

−c n∑
s=j+1

as

 aj‖θj − θ0‖2I{σ∗ > j, n∗0 ≤ n0}

≤ c0c1r
n∑

j=n0

exp

−c n∑
s=j+1

as

 aj

(
aj
an+1

)1/2−δ′ ‖θj − θ0‖I{σ∗ > j, n∗0 ≤ n0}
a

1/2−δ′
j

≤ c∗0c0c1r
n∑

j=n0

exp

− c
2

n∑
s=j+1

as

 aj
‖θj − θ0‖I{σ∗ > j, n∗0 ≤ n0}

a
1/2−δ′
j

if n0 is large enough.
By Lemma 5.3 and (5.41)–(5.42), it follows from (5.39) that

‖θn+1 − θ0‖I{σ∗ > n+ 1, n∗0 ≤ n0}aδ
′−1/2
n+1

≤ o(1) + c∗0c0c1r
n∑

j=n0

exp

− c
2

n∑
s=j+1

as

 aj

·‖θj − θ0‖2I{σ∗ > j, n∗0 ≤ n0}aδ
′−1/2
j ,(5.43)

which, incorporating the Bellman–Gronwall inequality, leads to

‖θn − θ0‖I{σ∗ > n, n∗0 ≤ n0}aδ′−1/2
n(5.44)

≤ o(1) + o(1)

n−1∑
j=n0

exp

− c
2

n∑
s=j+1

as

 aj exp

c∗0c0c1r n−1∑
s=j+1

as
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≤ o(1) + o(1)
n−1∑
j=n0

aj exp

− c
4

n−1∑
s=j+1

as

 = o(1),

where r is sufficiently small such that c∗0c0c1r ≤ c/4. From (5.44), it is readily seen

that ‖θn − θ0‖ = o(a
1/2−δ′
n ) as n→∞ a.s.

Proof of Theorem 4.1(iii) for L = 1. In order to prove Theorem 4.1(iii), we
need several lemmas. From (5.14), we have

ψn,j = ψn−1,j − anM1ψn−1,j = I −M1

n∑
i=j

aiψi−1,j ,

which gives

aj−1

n∑
i=j

ψi−1,j =

n∑
i=j

aiψi−1,j +

n∑
i=j

(aj−1 − ai)ψi−1,j = M−1
1 +Gn,j ,(5.45)

where

Gn,j
4
= −M−1

1 ψn,j +
n∑
i=j

(aj−1 − ai)ψi−1,j ∀ n ≥ j.(5.46)

Lemma 5.4. Let the conditions of Theorem 4.1(iii) be satisfied. Then

lim
n→∞

1√
n

n−1∑
j=1

(M−1
1 +Gn,j+1)(f(θj)−M1(θj − θ0)) = 0 a.s.

Proof. For any δ′ ∈ (0, 1/2(1− 1/(2ν))), by condition (A4) and Theorem 4.1(ii)
it follows that

∞∑
i=1

1√
i
‖θi − θ0‖2 =

∞∑
i=1

1√
i
o(a1−2δ′

i ) =
∞∑
i=1

1√
i
o

(
1

iν(1−2δ′)

)
<∞ a.s.,

which gives

lim
n→∞

1√
n

n−1∑
j=1

‖θj − θ0‖2 = 0 a.s.(5.47)

via the Kronecker lemma (see, e.g., [11]).
It is shown in [3, Lemma 1] that for all n ≥ j ≥ 1, Gn,j defined by (5.46)

are bounded. From Theorem 4.1, condition (A5), and (5.47), the lemma follows
easily.

Lemma 5.5. Suppose that conditions (A0)–(A11) are satisfied. Then we have
that 1/

√
n
∑n
i=1 εi → N(0, S4) in distribution as n→∞, where S4 = η(θ0)−1S.

Proof. As in (5.13), we decompose
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1√
n

n∑
i=1

εi(5.48)

=
1√
n

n∑
j=kσ(n)+1

εj +
1√
n

σ(n)−1∑
m=0

ηm+1∑
i=1

(fkm+i −Dm,i)

+
1√
n

σ(n)−1∑
m=0

ηm+1∑
i=1

(f(θkm)− f(θkm+i−1))

+
1√
n

σ(n)−1∑
m=0

ηm+1∑
i=η

(m+1)
1 (θkm )+1

(Dm,i − f(θkm))I{ηm+1 > η
(m+1)
1 (θkm)}

− 1√
n

σ(n)−1∑
m=0

η
(m+1)
1 (θkm )∑
i=ηm+1+1

(Dm,i − f(θkm))I{ηm+1 < η
(m+1)
1 (θkm)}

+
1√
n

σ(n)−1∑
m=0

wm+1,

where σ(n) is defined by (5.15) and wm+1 is defined by (5.19).
Initially, we show that each of the first five terms on the right-hand side of (5.48)

converges to zero a.s. as n → ∞. Then we show that the last term converges to a
N(0, S4) in distribution. Hence the desired result follows.

(i) Similar to (5.23), it is easy to show that the first term on the right-hand side
of (5.48) converges to zero as n→∞ a.s.

(ii) By (5.26) it is derived that

∞∑
m=1

1√
m

E

[∥∥∥∥∥
ηm+1∑
i=1

(fkm+i −Dm,i)

∥∥∥∥∥
∣∣∣∣∣F (m)

]
≤
∞∑
m=1

1√
m
akmE

[
η∗m+1Z

∗
m+1Z

(0)
m+1

]

≤
∞∑
m=1

a

mν+1/2
E
[
η∗m+1Z

∗
m+1Z

(0)
m+1

]
<∞ a.s.,

which implies

∞∑
m=1

1√
m

ηm+1∑
i=1

(fkm+i −Dm,i) <∞ a.s.(5.49)

by the local convergence theorem of martingales (see, e.g., [6, 20, 37]). By the Kro-
necker lemma, it follows from (5.49) that

lim
n→∞

1√
n

n∑
m=0

ηm+1∑
i=1

(fkm+i −Dm,i) = 0 a.s.,

which gives

lim
n→∞

1√
n

σ(n)−1∑
m=0

ηm+1∑
i=1

(fkm+i −Dm,i) = 0 a.s.,(5.50)
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since σ(n) ≤ n ∀ n ≥ 1.
(iii) By (5.24), similar to (5.50) we can prove that the third term on the right-hand

side of (5.48) converges to zero as n→∞ a.s.
(iv) By (5.36) and condition (A4), we derive that

E

∥∥∥∥∥∥∥
∞∑
m=1

1√
m

ηm+1∑
i=η

(m+1)
1 (θkm )+1

(Dm,i − f(θkm))I{ηm+1 > η
(m+1)
1 (θkm)}

∥∥∥∥∥∥∥(5.51)

≤
∞∑
m=1

1√
m
α

1−1/p1

0

(
E
[
(W

(0)
m+1η

∗
m+1)p1

])1/p1

aγ1(1−1/p1)m−γ1(1−1/p1)ν <∞

if νγ1(1 − 1/p1) > 1/2. By (5.51), it is easy to prove that the fourth term on the
right-hand side of (5.48) converges to zero as n→∞ a.s.

(v) Similar to (iv), we can prove that the fifth term on the right-hand side of
(5.48) converges to zero a.s. as n→∞.

(vi) By the central limit theorem for martingales (see, e.g., [11] and [20]),

1√
n

n∑
m=0

wm+1

d−−−−→
n→∞

N(0, S).(5.52)

We now show that

σ(n)

n
−−−−→
n→∞

1

η(θ0)
a.s.(5.53)

One can decompose

1

n

n∑
i=1

ηi =
1

n

n∑
i=1

(ηi − η(i)
1 (θki−1

)) +
1

n

n∑
i=1

(η
(i)
1 (θki−1

)− η(θki−1
))(5.54)

+
1

n

n∑
i=1

(η(θki−1)− η(θ0)) + η(θ0).

By conditions (A9) and (A10), we have

E

[ ∞∑
i=1

1

i
‖ηi − η(i)

1 (θki−1
)‖
]
≤
∞∑
i=1

1

i
E
[
η∗i I{ηi 6= η

(i)
1 (θki−1

)}
]

≤
∞∑
i=1

1

i

√
E[(η∗1)2]

√
P{ηi 6= η

(i)
1 (θki−1

)} ≤ O(1)
∞∑
i=1

1

i
i−γ1ν/2 <∞,

which, combining with the Kronecker lemma, yields limn→∞ 1/n
∑n
i=1(ηi−η(i)

1 (θki−1))
<∞ a.s. By the local convergence theorem of martingales and the Kronecker lemma,

it is derived that limn→∞ 1/n
∑n
i=1 (η

(i)
1 (θki−1)− η(θki−1)) = 0 a.s. By Theorem 3.1,

θn → θ0 a.s. as n→∞, which implies 1/n
∑n
i=1(η(θki−1)− η(θ0))→ 0 as n→∞ a.s.

via the continuity of η(θ) at θ0. Thus it follows from (5.54) that

1

n

n∑
i=1

ηi−−−−→
n→∞

η(θ0) a.s.(5.55)
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From the definition (5.15), we have n <
∑σ(n)+1
i=1 ηi ≤ n+ ησ(n)+1, which gives

1 <

(
σ(n)

n
+

1

n

)
1

σ(n) + 1

σ(n)+1∑
i=1

ηi ≤ 1 +
σ(n) + 1

n

1

σ(n) + 1
η∗σ(n)+1.(5.56)

This yields (5.53) by (5.55) and Lemma 5.1.
To prove

1√
n

σ(n)−1∑
m=0

wm+1−−−−→
n→∞

N(0, S4),(5.57)

we need a central limit theorem for stopped martingales. We note that if the Kol-
mogorov inequality is replaced by Doob’s inequality (see, e.g., [11]), the proof of
Theorem 9.4.1 in [11] goes through for the stopped martingales. Then, by (5.52) and
(5.53), (5.57) follows.

Lemma 5.6. If the conditions of Theorem 4.1(iii) are fulfilled, then we have that
1/
√
n
∑n
j=1Gn,jεj → 0 in probability as n→∞.

Proof. Similar to (5.48), we have

1√
n

n∑
j=1

Gn,jεj(5.58)

=
1√
n

n∑
j=kσ(n)+1

Gn,jεj +
1√
n

σ(n)−1∑
m=0

ηm+1∑
i=1

Gn,km+i(fkm+i −Dm,i)

+
1√
n

σ(n)−1∑
m=0

ηm+1∑
i=1

Gn,km+i(f(θkm)− f(θkm+i−1))

+
1√
n

σ(n)−1∑
m=0

ηm+1∑
i=η

(m+1)
1 (θkm )+1

Gn,km+i(Dm,i − f(θkm))I{ηm+1 > η
(m+1)
1 (θkm)}

− 1√
n

σ(n)−1∑
m=0

η
(m+1)
1 (θkm )∑
i=ηm+1+1

Gn,km+i(Dm,i − f(θkm))I{ηm+1 < η
(m+1)
1 (θkm)}

+
1√
n

σ(n)−1∑
m=0

η
(m+1)
1 (θkm )∑

i=1

Gn,km(Dm,i − f(θkm))

+
1√
n

σ(n)−1∑
m=0

η
(m+1)
1 (θkm )∑

i=1

(Gn,km+i −Gn,km)(Dm,i − f(θkm)).

Since Gn,j is bounded for n ≥ j ≥ 1, it follows from the proof of Lemma 5.5 that each
of the first five terms on the right side of (5.58) converges to zero a.s. as n → ∞. In
what follows we prove that as n→∞ the sixth term converges to zero in probability,
while the last term converges to zero a.s.
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(i) By the definition (5.46), we get

E


∥∥∥∥∥∥ 1√

n

τ(n)∑
m=0

Gn,kmwm+1

∥∥∥∥∥∥
2
 ≤ 1

n
E

τ(n)∑
m=0

‖Gn,km‖2E[‖wm+1‖2|F (m)]

(5.59)

≤ E
[
(η∗1W

(0)
1 )2

] 1

n

n+1∑
i=0

‖Gn,i‖2−−−−→
n→∞

0

via Lemma 1 of [3]. By (5.59), it is easy to derive that 1/
√
n
∑σ(n)−1
m=0 Gn,kmwm+1 → 0

in probability as n→∞.
(ii) By (5.14) and (5.45), we have

‖Gn,j −Gn,j−1‖(5.60)

=

∥∥∥∥∥(aj−1 − aj−2)

n∑
s=j

ψs−1,j + aj−2

n∑
s=j

(ψs−1,j − ψs−1,j−1)− aj−2ψj−2,j−1

∥∥∥∥∥
≤ α1aj−1aj−2

n∑
s=j

‖ψs−1,j‖+ aj−2

n∑
s=j

aj−1‖M1‖ ‖ψs−1,j‖+ aj−2

≤ aj−1

(α1 + ‖M1‖) sup
j

{
aj−2

aj−1

}
sup
j

{
aj−1

n∑
s=j

‖ψs−1,j‖
}

+ sup
j

{
aj−2

aj−1

}
≤ c3aj−1 ∀ n ≥ j ≥ 1,

where α1 and c3 are some constants. By (5.60) and (5.26), it follows that

1√
n

∥∥∥∥∥∥
σ(n)−1∑
m=0

η
(m+1)
1 (θkm )∑

i=1

(Gn,km+i −Gn,km)(Dm,i − f(θkm))

∥∥∥∥∥∥
≤ 1√

n

σ(n)−1∑
m=0

η
(m+1)
1 (θkm )∑

i=1

∥∥∥∥∥∥
i∑

j=1

(Gn,km+j −Gn,km+j−1)

∥∥∥∥∥∥ · ‖Dm,i − f(θkm)‖

≤ c3√
n

σ(n)−1∑
m=0

akm(η∗m+1)2W
(0)
m+1−−−−→

n→∞
0 a.s.

via similar arguments as for (5.50). Thus, the proof of Lemma 5.6 is completed.

Proof of Theorem 4.1(iii) for L = 1. By (5.45), from (5.38) it follows that

√
n(θn − θ0) = o(1) +

1√
n

n∑
i=n∗0

(θi − θ0)(5.61)

= o(1) +
1√
n

1

an∗0−1
(M−1

1 +Gn,n∗0 )(θn∗0 − θ0)

− 1√
n

n−1∑
j=n∗0

(M−1
1 +Gn,j+1)(f(θj)−M1(θj − θ0))



STOCHASTIC APPROXIMATION WITH AVERAGING 1845

−M
−1
1√
n

n−1∑
j=n∗0

εj+1 − 1√
n

n−1∑
j=n∗0

Gn,j+1εj+1.

Since the Gn,j are bounded uniformly for n ≥ j ≥ 1, one has

1√
n

1

an∗0−1
(M−1

1 +Gn,n∗0 )(θn∗0 − θ0)−−−−→
n→∞

0 a.s.(5.62)

By (5.62) and Lemmas 5.4–5.6, the desired result follows from (5.61).

Proof of Theorem 4.1 for L > 1. Let ε̃n = βn − f(θ̃n−1) ∀ n ≥ 1. The proof

for the case L = 1 applies to the present setting if we replace θn, εn, fn by θ̃n, ε̃n,
and βn, respectively (cf. [40] and [41]). We mention only the key point for Theorem
4.1(iii). By the definitions (5.12) and (2.2),

1√
n

n∑
i=1

εi =
1√
n

n∑
i=0

 1

L

L∑
j=1

βiL+j − f(θi−1)

(5.63)

=
1

L
√
n

(n+1)L∑
i=1

(βi − f(θ̃i−1)) =
1

L
√
n

(n+1)L∑
i=1

ε̃i.

As in the proof of Lemma 5.5, one can show that 1/
√
n
∑n
i=1 ε̃i → N(0, S4) in

distribution as n → ∞. Combined with (5.63), this gives 1/
√
n
∑n
i=1 εi → N(0, S∗4 )

in distribution as n→∞, where S∗4 = L−1S4 = L−1η(θ0)−1S. The rest of the proof
works the same way as for L = 1.
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Abstract. The purpose of this paper is to provide sufficient conditions for asymptotic stabi-
lization in probability of nonlinear control stochastic differential systems by means of smooth state
feedback laws. In particular, we prove that, as in the case of stochastic differential systems affine in
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1. Introduction. The aim of this paper is to state sufficient conditions for
asymptotic stabilization in probability of some nonlinear control stochastic differen-
tial systems. In particular, we prove that stabilizing feedback laws can be computed
provided the unforced stochastic differential system is stable in probability and some
rank conditions are satisfied.

The stabilizability of nonlinear stochastic differential systems affine in the control
has been studied in the past years by means of the stochastic Lyapunov machinery
developed by Khasminskii [12]. Among several contributions to the subject, we wish
to outline those which are more closely related to the work of the present paper.

The pioneering work of Jurdjevic and Quinn [10] on the stabilization of nonlin-
ear deterministic systems affine in the control, the unforced dynamics of which are
linear, has been extended to nonlinear stochastic differential systems in [4]. Follow-
ing the method developed by Kalouptsidis and Tsinias [11] for deterministic systems,
Boulanger has given in [1], by using output feedback laws, an extension of the stochas-
tic version of Jurdjevic and Quinn’s theorem to stochastic systems, the unforced dy-
namics of which are stable in probability. Furthermore, the stabilizing feedback laws
computed in the latter work are smooth provided restrictive assumptions on the Lya-
punov function associated to the unforced dynamics of the system are satisfied. In
[5] and [7] the conditions proposed in [4] are weakened and more general sufficient
conditions for asymptotic stability in probability of nonlinear stochastic differential
systems are given, provided the unforced dynamics are Lyapunov stable in probability
and some rank condition is satisfied.

The problem of computing stabilizing state feedback laws for nonlinear stochastic
differential systems is much harder (see, for example, [5] or [3] and the references
therein). The purpose of this paper is to address this question and provide an easy
way to reach this goal in some specific cases.

The notion of “passivity” has been used in order to analyze the stability of some
deterministic interconnected nonlinear systems (see [17], for example). In [8] and
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21, 1998; published electronically October 8, 1999.

http://www.siam.org/journals/sicon/37-6/31748.html
†23 Allée des Oeillets, F 57160 Moulins les Metz, France (patrick.florchinger@wanadoo.fr).

1848



STABILIZATION OF PASSIVE NONLINEAR STOCHASTIC SYSTEMS 1849

[9], Hill and Moylan have combined the methodology of passive systems theory with
the Lyapunov stability theory in order to prove stabilization results for nonlinear
deterministic systems. Byrnes, Isidori, and Willems [2] have developed a framework
for studying the stabilizability of minimum-phase nonlinear deterministic systems,
and they have shown by means of techniques of passive systems theory that the
stabilization results proved in [10], [11], and [15] for deterministic systems can be
deduced from a basic stability property of passive systems affine in the control.

Noticing that passive systems theory has been developed by Willems [18] for
nonaffine nonlinear deterministic systems, Lin [16] extends the results proved in [2]
to a wider class of systems which are not necessarily affine in the control.

The purpose of this paper is to introduce the notion of “passivity” for nonlinear
control stochastic differential systems by using a method close to that developed
by Lin [16] in the deterministic case. With this aim, we show that the problem of
asymptotic stabilization in probability of nonlinear stochastic differential systems can
be solved by means of the stochastic passive systems theory developed in the following.
Furthermore, we will see that certain stabilization results proposed in the literature by
analytic methods can be recovered from the basic stabilizability property of passive
stochastic systems. This shows that a number of stabilization schemes reduce to
that of a passive stochastic system subject to pure gain feedback. Hence, the role
played by the concept of passivity in order to compute stabilizing state feedback laws
leads to the following question: when can a nonlinear stochastic differential system
be rendered passive via state feedback law? This question will be solved in this paper
in the particular case of interconnected stochastic differential systems.

This paper is divided into six sections and is organized as follows. In section 1,
we recall some basic facts concerning the asymptotic stability in probability of the
equilibrium solution of a stochastic differential equation proved by Khasminskii [12]
and we state the stochastic version of La Salle’s theorem proved by Kushner [13]. In
section 2, we introduce the class of stochastic differential systems we are dealing with
in this paper. In section 3, we introduce the notion of passivity for input/output
nonlinear stochastic differential systems and we prove a first stabilization result for
such systems and a nonlinear version of the Kalman–Yacubovitch–Popov lemma for
stochastic differential systems affine in the control. In section 4, we use the method-
ology for passive stochastic systems developed in section 3 in order to prove two
feedback stabilization results for nonlinear stochastic differential systems. In section
5, we study the particular case of interconnected stochastic differential systems which
are feedback equivalent to passive stochastic differential systems. In section 6, we
illustrate some results of the paper by design examples.

2. Stochastic stability. The purpose of this section is to recall the main results
concerning the asymptotic stability in probability of the equilibrium solution of a
stochastic differential equation that we need in the following as well as the stochastic
version of La Salle’s theorem.

For a complete presentation of the stochastic stability theory and the stochastic
Lyapunov machinery we refer the reader to the book of Khasminskii [12] for examples.

Let (Ω,F , P ) be a complete probability space and denote by w = {wt ; t ≥ 0} a
standard Rp-valued Wiener process defined on this space.

Consider the stochastic process solution xt ∈ Rn of the stochastic differential
equation written in the sense of Itô,

xt = x0 +

∫ t

0

f(xs) ds+

∫ t

0

g(xs) dws(2.1)
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where
(1) x0 is given in Rn,
(2) f and g are Lipschitz functions mapping Rn into Rn and Rn×p, respectively,

vanishing in the origin, and such that there exists a nonnegative constant K
such that for any x ∈ Rn,

|f(x)|+ |g(x)| ≤ K(1 + |x|).(2.2)

If for any s ≥ 0 and x ∈ Rn, xs,xt , t ≥ s, denotes the solution at time t of the
stochastic differential equation (2.1) starting from the state x at time s, one can
introduce the notion of stability in probability for the equilibrium solution of the
stochastic differential equation (2.1) as follows.

Definition 2.1. The equilibrium solution xt ≡ 0 of the stochastic differential
equation (2.1) is stable in probability if and only if for any s ≥ 0 and ε > 0,

lim
x→0

P

(
sup
s≤t
|xs,xt | > ε

)
= 0.

Furthermore, the equilibrium solution of the stochastic differential equation (2.1)
is (locally) asymptotically stable in probability if the following property is satisfied.

Definition 2.2. (1) The equilibrium solution of the stochastic differential equa-
tion (2.1) is locally asymptotically stable in probability if and only if it is stable in
probability and for any s ≥ 0,

lim
x→0

P

(
lim

t→+∞ |x
s,x
t | = 0

)
= 1.

(2) The equilibrium solution of the stochastic differential equation (2.1) is asymp-
totically stable in probability if and only if it is stable in probability and for any s ≥ 0,

P

(
lim

t→+∞ |x
s,x
t | = 0

)
= 1

for any x ∈ Rn.
Denote by L the infinitesimal generator of the stochastic process solution xt of the

stochastic differential equation (2.1). Then, by means of martingale theory arguments,
one can prove the following version of the Lyapunov theorem.

Theorem 2.3. Assume that there exists a Lyapunov function V defined on a
bounded open neighborhood D of the origin in Rn (i.e., a function V in C2(D;R)
which is positive definite) such that

LV (x) ≤ 0

(respectively , LV (x) < 0)

for any x ∈ D\{0}. Then, the equilibrium solution xt ≡ 0 of the stochastic differential
equation (2.1) is stable (respectively, locally asymptotically stable) in probability.

Moreover, if D = Rn and the Lyapunov function V is proper, then the equilibrium
solution xt ≡ 0 of the stochastic differential equation (2.1) is asymptotically stable in
probability provided

LV (x) < 0

for any x ∈ Rn \ {0}.
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For a detailed proof of Theorem 2.3 we refer the reader to Khasminskii [12].
The assumptions on the coefficients of the stochastic differential equation (2.1)

can be relaxed in the following way provided the equilibrium solution of the system
is asymptotically stable in probability (see [12, Theorem 4.1, p. 84]).

Theorem 2.4. Suppose that the functions f and g are locally Lipschitz and
satisfy inequality (2.2) on any ball B(0, R) = {x ∈ Rn / ||x|| ≤ R}. Suppose that
there exists a proper Lyapunov function V defined on Rn and a positive constant c
such that

LV (x) ≤ cV (x)

for every x in Rn. Then, the stochastic differential equation (2.1) has a unique solution
(xt)t≥0 with continuous trajectories.

To conclude this section, recall the stochastic version of La Salle’s theorem proved
by Kushner [13] which gives the ω-limit set for a stable in probability equilibrium
solution of the stochastic differential equation (2.1).

Theorem 2.5. Assume there exists a Lyapunov function V such that

LV (x) ≤ 0

for any x ∈ Rn. Then, the stochastic process solution xt of the stochastic differen-
tial equation (2.1) tends in probability to the largest invariant set whose support is
contained in the locus LV (xt) = 0 for any t ≥ 0.

Remark 2.6. If the equilibrium solution xt ≡ 0 of the stochastic differential
equation (2.1) is stable in probability, then the existence of a Lyapunov function V
such that LV (x) ≤ 0 for any x ∈ Rn is given by the converse Lyapunov theorem
proved by Kushner [14].

3. Problem setting. Denote by (Ω,F , P ) a complete probability space and by
w = {wt; t ≥ 0} a standard Rp-valued Wiener process defined on this space.

Consider the stochastic differential system in Rn written in the sense of Itô,

xt = x0 +

∫ t

0

f(xs, u)ds+

∫ t

0

g(xs)dws(3.1)

where
(1) x0 is given in Rn,
(2) u is an Rm-valued measurable control law,
(3) f and g are Lipschitz functions defined in C∞ (Rn × Rm;Rn) and C∞ (Rn;Rn×p),

respectively, vanishing in the origin, and such that there exists a nonnegative
constant K such that for any x ∈ Rn and u ∈ Rm,

|f(x, u)|+ |g(x)| ≤ K (1 + |x|+ |u|) .(3.2)

Furthermore, assume that the unforced stochastic differential system deduced from
(3.1), that is, the stochastic differential system

dxt = f(xt, 0)dt+ g(xt)dwt,(3.3)

is such that there exists a Lyapunov function V defined on Rn satisfying

L0V (x) ≤ 0(3.4)
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for every x ∈ Rn where L0 is the infinitesimal generator of the stochastic differential
equation (3.3).

Note that according to the stochastic Lyapunov Theorem (Theorem 2.3) the equi-
librium solution xt ≡ 0 of the stochastic differential system (3.3) is stable in proba-
bility.

Remark 3.1. If one assumes that the equilibrium solution xt ≡ 0 of the stochastic
differential system (3.3) is stable in probability, the existence of a Lyapunov function
V satisfying (3.4) is given by the converse Lyapunov theorem proved by Kushner [14].

The aim of this paper is to state sufficient conditions for the stochastic differential
system (3.1) to be (locally) asymptotically stabilizable in probability by means of a
smooth state feedback law.

4. Passive stochastic systems. Consider the input/output nonlinear stochas-
tic differential system in Rn × Rm written in the sense of Itô,dxt = f(xt, u)dt+ g(xt)dwt,

yt = h(xt, u),
(4.1)

where
(1) w = {wt; t ≥ 0} is an Rp-valued standard Wiener process defined on (Ω,F , P ),
(2) u is an Rm-valued measurable control law,
(3) f , g, and h are smooth functions mapping Rn × Rm, Rn, and Rn × Rm,

respectively, in Rn, Rn×p, and Rm, respectively, vanishing in the origin, and
satisfying a linear growth condition similar to (3.2).

First, we introduce the notion of “passivity” for the stochastic differential system (4.1)
as follows.

Definition 4.1. The input/output stochastic differential system (4.1) is said to
be passive if there exists a Lyapunov function V defined on Rn, called the storage
function, such that

LV (x) ≤ h(x, u)?u(4.2)

for every (x, u) ∈ Rn × Rm where L is the infinitesimal generator of the stochastic
process solution of the first equation in (4.1).

Then, necessary conditions for the input/output nonlinear stochastic differential
system (4.1) to be passive can be obtained as follows.

Proposition 4.2. Necessary conditions for the stochastic differential system
(4.1) to be passive with a storage function V are

(1) L0V (x) ≤ 0 for every x ∈ Rn,

(2)
∑n
i=1

∂fi
∂u (x, 0) ∂V∂xi (x) = h(x, 0)? for every x ∈ S1,

(3)
∑n
i=1

∂2fi
∂u2 (x, 0) ∂V∂xi (x) ≤ ∂h?

∂u (x, 0) + ∂h
∂u (x, 0) for every x ∈ S1

where L0 is, as in the previous section, the infinitesimal generator of the unforced
stochastic differential system deduced from the first equation in (4.1) and S1

= {x ∈ Rn/L0V (x) = 0}.
Proof of Proposition 4.2. Consider the auxiliary function F mapping Rn × Rm

into R defined for every (x, u) ∈ Rn × Rm by

F (x, u) = LV (x)− h(x, u)?u.

Since the stochastic differential system (4.1) is passive, it is obvious, according to
Definition 4.1, that F (x, u) ≤ 0 for every (x, u) ∈ Rn × Rm and hence, one gets (2.1)
by setting u = 0.



STABILIZATION OF PASSIVE NONLINEAR STOCHASTIC SYSTEMS 1853

Conversely, noticing that for all x ∈ S1, F (x, 0) = L0V (x) = 0, one can deduce
that

F (x, u) ≤ F (x, 0)

for every (x, u) ∈ S1 × Rm, which implies that the function F achieves its maximum
at u = 0 on the set S1.

Therefore, for any x ∈ S1, it yields

∂F

∂u
(x, 0) = 0 and

∂2F

∂u2
(x, 0) ≤ 0

which give (2.2) and (3.1) by easy computations similar to those in the proof of
Proposition 4.3 in [16].

Remark 4.3. If the stochastic differential system (4.1) is passive, property (2.1)
in the previous proposition implies, according to the stochastic Lyapunov theorem
(Theorem 2.3), that the equilibrium solution xt ≡ 0 of the unforced stochastic differ-
ential system (3.3) is stable in probability.

If the stochastic differential system is affine in the control and the function h does
not depend on the control, then one can prove that the system is passive provided it
satisfies a nonlinear version of the Kalman–Yacubovitch–Popov (KYP) criterion.

Definition 4.4. The stochastic differential systemdxt = (f(xt) + f̄(xt)u)dt+ g(xt)dwt,

yt = h(xt)
(4.3)

satisfies a KYP property if there exists a Lyapunov function V defined on Rn such
that

L0V (x) ≤ 0

and

∇V (x)f̄(x) = h(x)?

for every x ∈ Rn.
Then, one can prove the following criterion which extends Proposition 2.12 in [2]

(see also [8]) to stochastic differential systems.
Proposition 4.5. The stochastic differential system (4.3) is passive if and only

if it satisfies a KYP property.
Proof of Proposition 4.5. If the stochastic differential system (4.3) is passive, there

exists a Lyapunov function V defined on Rn such that

LV (x) ≤ h(x)?u

for every (x, u) ∈ Rn × Rm.
But, since for every (x, u) ∈ Rn × Rm,

LV (x) = L0V (x) +∇V (x)f̄(x)u(4.4)

one can easily deduce from the above estimates that the KYP property is satisfied by
the stochastic differential system (4.3).
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Conversely, if the KYP property is satisfied, there exists a Lyapunov function V
defined on Rn such that for every x in Rn,

L0V (x) ≤ 0

and

∇V (x)f̄(x) = h(x)?.

Then, since for every (x, u) ∈ Rn×Rm, (4.4) holds, one can deduce from the previous
estimates that

LV (x) ≤ h(x)?u(4.5)

and hence, the stochastic differential system (4.3) is passive.
Before stating a stabilization result for passive stochastic systems, we introduce

the following notations.
Denote by f̄i, 1 ≤ i ≤ m, the functions defined on Rn by

f̄i(x) =
∂f

∂ui
(x, 0)

and, if V is a C2r (r ≥ 1) Lyapunov function defined on Rn, introduce the space

Λ = span
{

adkL0
f̄i / 0 ≤ k ≤ n− 1, 1 ≤ i ≤ m

}
and the sets Γ and S associated with Λ defined by

Γ =
{
x ∈ Rn / Lk0V (x) = 0 , k = 1, . . . , r

}
and

S =
{
x ∈ Rn / Lk0Y V (x) = 0,∀Y ∈ Λ, k = 0, . . . , r − 2

}
,

where Y V denotes the Lie derivative of V with respect to Y .
Then, as in the case of stochastic differential systems affine in the control, a non-

affine passive stochastic differential system has the following stabilizability property
by output feedback.

Theorem 4.6. Assume that the stochastic differential system (4.1) is passive
with a C2r (r ≥ 1) storage function V , and let s : Rn → Rm be any first/third sector
function (i.e., y?s(y) > 0 ∀y 6= 0 and s(0) = 0). Then, the output feedback law

u = −s(y)(4.6)

renders the stochastic differential system (4.1) locally asymptotically stable in proba-
bility provided Γ ∩ S = {0}.

Moreover, if the Lyapunov function V is proper, the equilibrium solution of the
stochastic differential system (4.1) is asymptotically stable in probability.

Proof of Theorem 4.6. The proof of this theorem, which is an extension of Theorem
3.2 in [2] to stochastic differential systems, follows from passive inequality (4.2) with
the feedback law (4.6) and the stochastic version of La Salle’s theorem (Theorem 2.5).

Indeed, with the feedback law u given by (4.6) one can deduce from the passive
inequality (4.2) that

LV (x) ≤ −h(x, u)?s (h(x, u))(4.7)
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for every (x, u) ∈ Rn × Rm and, since s is a first/third sector function, yields

LV (x) ≤ 0

which implies according to the stochastic Lyapunov theorem (Theorem 2.3) that the
equilibrium solution of the stochastic differential system (4.1) is stable in probability.

Furthermore, according to the stochastic version of La Salle’s theorem (Theorem
2.5) the equilibrium solution of the stochastic differential system (4.1) tends in prob-
ability to the largest invariant set whose support is contained in the locus LV (xt) = 0
for all t ≥ 0.

But, if LV (xt) = 0 for all t ≥ 0, one can deduce from (4.7) and the fact that s
is a first/third sector function that yt = h(xt, u) = 0 for all t ≥ 0 which implies that
L0V (xt) = 0 for all t ≥ 0.

Therefore, by successive applications of Itô’s formula to the stochastic process
LV (xt), one gets that Lk0V (xt) = 0 ∀t ≥ 0 and k ∈ {1, . . . , r} and Lk0Y V (xt) =
0 ∀t ≥ 0, Y ∈ D, and k ∈ {0, . . . , r − 2} which implies, since Γ ∩ S = {0}, that the
stochastic process xt tends in probability to 0.

This proves, by the stochastic version of La Salle’s theorem, that the equilibrium
solution of the stochastic differential equation (4.1) is locally asymptotically stable in
probability.

Moreover, if the Lyapunov function V is proper, the equilibrium solution of the
stochastic differential system (4.1) is asymptotically stable in probability.

The following result, which is an easy consequence of the previous theorem, will
enable us to recover well-known results of the stochastic stabilization theory.

Corollary 4.7. Assume that the stochastic differential system (4.1) is passive
with a proper C2r (r ≥ 1) storage function V . If Γ ∩ S = {0}, then, for each k > 0,
the feedback law

u = −ky
renders the stochastic differential system (4.1) asymptotically stable in probability.

Remark 4.8. The result of the previous corollary can be interpreted as a gen-
eralization of the results proved in [1], [4], and [5] on the stabilization of stochastic
differential systems affine in the control

dxt = (f(xt) + f̄(xt)u)dt+ g(xt)dwt.(4.8)

For example, if the stochastic differential system (4.8) satisfies the hypotheses stated
in [4], then Theorem 3.2 in [4] is a particular case of Corollary 4.7.

Indeed, by taking the dummy output

yt = ∇V (xt)f̄(xt),

one can prove easily that the hypotheses stated in [4] imply those stated in the previous
corollary and hence, the feedback law

u(x) = −∇V (x)f̄(x)

renders the stochastic differential system (4.8) asymptotically stable in probability.

5. The main results. We are now ready to state the main results of the paper
on the stabilization of the class of systems introduced previously. The first result is
given by the following statement.
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Theorem 5.1. If the stochastic differential system (3.1) is such that Γ ∩ S =
{0}, then it is locally asymptotically stabilizable in probability by a local smooth state
feedback law u = α(x), α(0) = 0, which can be solved uniquely from the equation

u+

(
∂V

∂x
(x)k(x, u)

)?
= 0,(5.1)

where k is the smooth function mapping Rn × Rm into Rn×m defined by

f(x, u)− f(x, 0) = k(x, u)u.

Moreover, if V is proper and equation (5.1) has a solution u = α(x) which is well-
defined on Rn, then the stochastic differential system (3.1) is asymptotically stabiliz-
able in probability.

Proof of Theorem 5.1. Choosing the output y defined by

y = h(x, u) =

(
∂V

∂x
(x)k(x, u)

)?
,(5.2)

one can prove easily that the input/output stochastic differential system (3.1)–(5.2)
is passive.

Indeed, for every (x, u) ∈ Rn × Rm,

LV (x) = L0V (x) +

(
∂V

∂x
(x)k(x, u)

)
u

≤ h(x, u)?u.

Therefore, since Γ ∩ S = {0} one can deduce from Theorem 4.6 that the output
feedback control law

u = −y = −
(
∂V

∂x
(x)k(x, u)

)?
renders the stochastic differential system (3.1)–(5.2) locally asymptotically stable in
probability.

Hence, the state feedback law u = α(x) renders the equilibrium solution xt ≡ 0 of
the stochastic differential equation (3.1) locally asymptotically stable in probability
provided that there exists a C∞ function α, locally defined on a neighborhood of the
origin, such that (5.1) is satisfied.

This is indeed the case since the function H defined on Rn × Rm by

H(x, u) = u+

(
∂V

∂x
(x)k(x, u)

)?
satisfies the assumptions of the implicit function theorem.

Thus, the equilibrium solution of the stochastic differential equation (3.1) is locally
asymptotically stable in probability and, if V is proper and equation (5.1) has a
solution defined on all Rn, then the result also holds globally.

This completes the proof of Theorem 5.1.
Remark 5.2. In the case of nonlinear stochastic differential systems affine in

the control, (5.1) reduces to

u = −
(

n∑
i=1

∂fi
∂u

(x, 0)
∂V

∂xi
(x)

)?
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which implies that it always has a global solution on Rn. Hence, Theorem 5.1 covers
the stabilization result proved in [4].

The second result concerns stochastic differential systems in Rn written in the
sense of Itô in the form

xt = x0 +

∫ t

0

(
f(xs) + f̄(xs)u+

m∑
i=1

uiRi(xs)u

)
ds+

∫ t

0

g(xs)dws(5.3)

where
(1) x0 is given in Rn,
(2) u is an Rm-valued measurable control law,
(3) f and g are smooth Lipschitz functions defined in C∞ (Rn;Rn) and C∞ (Rn;Rn×p),

respectively, vanishing in the origin, and satisfying a linear growth condition
similar to (3.2),

(4) f̄ andRi, 1 ≤ i ≤ m, are smooth Lipschitz functions defined in C∞ (Rn;Rn×m),
vanishing in the origin, and satisfying a linear growth condition as in (3.2).

Furthermore, assume that the unforced stochastic differential system deduced from
(5.3), that is, the stochastic differential system

dxt = f(xt)dt+ g(xt)dwt,(5.4)

is such that there exists a Lyapunov function V defined on Rn satisfying

L0V (x) ≤ 0(5.5)

for every x ∈ Rn, where L0 is the infinitesimal generator of the stochastic differential
equation (5.4).

Note that according to the stochastic Lyapunov theorem (Theorem 2.3) the equi-
librium solution xt ≡ 0 of the stochastic differential system (5.4) is stable in proba-
bility.

The drift term of the stochastic differential system (5.3) can be regarded as “sec-
ond degree approximation” of the drift term of the stochastic differential system (3.1).

We are now ready to state the second result of the section.
Theorem 5.3. Assume that the stochastic differential system (5.3) is such that

Γ ∩ S = {0} and that for every x ∈ Rn, the matrix ∆(x) defined by

∆(x) = Idm×m +


∇V (x)R1(x)

..

..

..
∇V (x)Rm(x)


?

is invertible. Then, the stochastic differential system (5.3) is locally asymptotically
stabilizable in probability by the smooth state feedback law u defined by

u(x) = − (∆(x))
−1 (∇V (x)f̄(x)

)?
.(5.6)

Moreover, if in addition the Lyapunov function V is proper, then the state feedback
law u given by (5.6) renders the stochastic differential system (5.3) asymptotically
stable in probability.
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Proof of Theorem 5.3. Choosing the output y defined by

y =
(∇V (x)f̄(x)

)?
+


∇V (x)R1(x)

..

..

..
∇V (x)Rm(x)


?

u,(5.7)

one can prove easily that the input/output stochastic differential system (5.3)–(5.7)
is passive.

Indeed, a straightforward computation gives

LV (x) = L0V (x) +∇V (x)f̄(x)u+
m∑
i=1

ui (∇V (x)Ri(x))u

≤

∇V (x)f̄(x) + u?


∇V (x)R1(x)

..

..

..
∇V (x)Rm(x)


u

≤ y?u.
Therefore, since Γ ∩ S = {0} one can deduce from Theorem 4.6 that the output
feedback control law u = −y renders the stochastic differential system (5.3)–(5.7)
locally asymptotically stable in probability.

Hence, the state feedback law u given by (5.6) renders the equilibrium solution
xt ≡ 0 of the stochastic differential system (5.3) locally asymptotically stable in
probability.

If the Lyapunov function V is proper, the global stabilization result of the theorem
is obvious.

This completes the proof of Theorem 5.3.
Remark 5.4. Since ∇V (0) = 0, one has ∆(0) = Idm×m and hence, the matrix

∆(x) is always invertible on a neighborhood of the origin in Rn. Therefore, the state
feedback law u given by (5.6) is locally well-defined and smooth on a neighborhood of
the origin.

In the particular case of a single input, system (5.3) can be written as

xt = x0 +

∫ t

0

(
f(xs) + f̄(xs)u+ r(xs)u

2
)
ds+

∫ t

0

g(xs)dws(5.8)

and Theorem 5.3 leads to the following result.
Corollary 5.5. Assume that the stochastic differential system (5.8) is such that

Γ ∩ S = {0}. Then, the smooth state feedback law u defined by

u(x) = − 1

1 +∇V (x)r(x)
∇V (x)f̄(x)(5.9)

renders the stochastic differential system (5.8) locally asymptotically stable in proba-
bility.

Moreover, if the Lyapunov function V is proper and 1 +∇V (x)r(x) 6= 0 for every
x ∈ Rn, then the equilibrium solution of the stochastic differential system (5.8) is
asymptotically stabilized in probability by the state feedback law (5.9).
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Remark 5.6. In the case of stochastic differential systems affine in the control,
the matrix ∆(x) is invertible on all Rn since Ri(x) ≡ 0 for every i ∈ {1, . . . ,m}.
Therefore, the stabilization result proved in [4] and [1] can be deduced from the result
proved in Theorem 5.3.

6. Interconnected stochastic differential systems. Consider the input/output
interconnected nonlinear stochastic differential system in Rq × Rn × Rm written in
the sense of Itô,

dξt = (f̃(ξt) + f̃0(ξt, yt)yt)dt+ g̃(ξt)dw̃t,(6.1)

dxt = (f(xt) + f̄(xt)u)dt+ g(xt)dwt,(6.2)

yt = h(xt),(6.3)

where
(1) w = {wt, t ≥ 0} and w̃ = {w̃t, t ≥ 0} are independent standard Wiener

processes defined on (Ω,F , P ) with values in Rp and Rr, respectively,
(2) u is an Rm-valued measurable control law,
(3) f̃ and g̃ are smooth Lipschitz functions mapping Rq into Rq and Rq×r, re-

spectively, vanishing in the origin, and satisfying a linear growth condition
similar to (3.2),

(4) f̃0 is a smooth Lipschitz function mapping Rq × Rm into Rq×m,
(5) f , f̄ and g are smooth Lipschitz functions mapping Rn into Rn, Rn×m, and

Rn×p, respectively, vanishing in the origin, and satisfying a linear growth
condition similar to (3.2),

(6) h is a smooth function mapping Rn into Rm.
First, we discuss conditions under which the stochastic differential system (6.1)–

(6.3) is feedback equivalent to a passive stochastic differential system.
Proposition 6.1. Suppose that ξt ≡ 0 is an asymptotically stable in probability

equilibrium solution of the stochastic differential system

dξt = f̃(ξt)dt+ g̃(ξt)dw̃t,(6.4)

for which we know a C2r Lyapunov function U such that

L̃U(ξ) < 0

for every ξ in Rq (here, L̃ denotes the infinitesimal generator of the stochastic process
solution of (6.4)). Suppose that the stochastic differential system (6.2)–(6.3) is passive
with a C2r storage function. Then, the stochastic differential system (6.1)–(6.3) is
feedback equivalent to a passive system with a C2r storage function.

Proof of Proposition 6.1. Setting ζt = (ξt, xt), the stochastic differential system
(6.1)–(6.3) has the form

dζt = (F (ζt) + F̄ (ζt)u)dt+G(ζt)d

 w̃t

wt

 ,(6.5)

yt = H(ζt),(6.6)
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where

F (ζ) =

 f̃(ξ) + f̃0(ξ, h(x))h(x)

f(x)

 ,

F̄ (ζ) =

 0

f̄(x)

 ,

G(ζ) =

 g̃(ξ)

g(x)

 ,

and

H(ζ) = h(x).

In the following, we prove by means of Proposition 4.5 that the stochastic differ-
ential system (6.5)–(6.6) is rendered passive by the feedback law

u = −
(
∇U(ξ)f̃0(ξ, h(x))

)?
+ v.(6.7)

Indeed, denoting by W the C2r composite Lyapunov function defined on Rq ×Rn by

W (ζ) = U(ξ) + V (x)

yields

∇W (ζ)F̄ (ζ) = ∇V (x)f̄(x)

= h(x)?

= H(ζ)?.

Furthermore, denoting by L0 the infinitesimal generator of the unforced stochastic
differential system deduced from (6.5) when u is given by (6.7), one has

L0W (ζ) = L̃U(ξ) +∇U(ξ)f̃0(ξ, h(x))h(x) + LV (x) +∇V (x)f̄(x)u

= L̃U(ξ) + LV (x)

≤ 0.

Then, the stochastic differential system deduced from (6.5)–(6.6) when u is given by
(6.7) satisfies a KYP property and, according to Proposition 4.5, is passive.

Now, we apply some of the above results to the problem of asymptotic stabilization
in probability of interconnected nonlinear stochastic differential systems.

Theorem 6.2. Suppose that the equilibrium solution ξt ≡ 0 of the stochastic
differential system

dξt = f̃(ξt)dt+ g̃(ξt)dw̃t
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is asymptotically stable in probability and that we know a C2r Lyapunov function U
such that

L̃U(ξ) < 0

for every ξ in Rq. Suppose that the stochastic differential system (6.2)–(6.3) is passive
with a C2r storage function and Γ∩S = {0}. Then, the stochastic differential system
(6.1)–(6.2) is asymptotically stabilizable in probability by means of a smooth state
feedback law.

Proof of Theorem 6.2. By Proposition 6.1 the stochastic differential system (6.1)–
(6.3) is feedback equivalent to a passive stochastic differential system.

Then, setting v = −s(y) where s is a first/third sector function in this stochastic
differential system, one gets for every (ξ, x) ∈ Rq × Rn,

LW (ξ, x) ≤ −h(x)s(h(x)),

where L is the infinitesimal generator of the closed-loop system.
Therefore, the equilibrium solution (ξt, xt) ≡ (0, 0) of the closed-loop system is

stable in probability, and according to the stochastic version of La Salle’s theorem
(Theorem 2.5) it tends in probability to the largest invariant set whose support is
contained in the locus LW (ξt, xt) = 0 ∀t ≥ 0.

Arguing as in the proof of Theorem 4.6, the latter condition implies that L̃U(ξt) =
0 and LV (xt) = 0 ∀t ≥ 0.

Then, since ξt ≡ 0 is asymptotically stable in probability, the stochastic process ξt
tends in probability to 0 and, since Γ∩S = {0}, successive applications of Itô’s formula
to the process LV (xt) implies that the stochastic process xt tends in probability to 0.

This proves that the equilibrium solution (ξt, xt) ≡ (0, 0) of the closed-loop system
deduced from the equivalent passive system to (6.1)–(6.3) when v is an output feed-
back law given by a first/third sector function is asymptotically stable in probability.

Moreover, if (6.2) is linear, one can deduce as a corollary of the previous theorem,
the following result originally proven in [6].

Consider the stochastic process (ξt, xt) ∈ Rq × Rn solution of the interconnected
stochastic differential system written in the sense of Itô,

dξt = (f̃(ξt) + f̃0(ξt, xt)Dxt)dt+ g̃(ξt)dw̃t,(6.8)

dxt = (Axt +Bu)dt+

p∑
k=1

Ckxtdw
k
t ,(6.9)

where
(1) w = {wt, t ≥ 0} and w̃ = {w̃t, t ≥ 0} are independent standard Wiener

processes defined on (Ω,F , P ) with values in Rp and Rr, respectively,
(2) u is an Rm-valued measurable control law,
(3) f̃ and g̃ are smooth Lipschitz functions mapping Rq into Rq and Rq×r, re-

spectively, vanishing in the origin, and satisfying a linear growth condition
similar to (3.2),

(4) f̃0 is a smooth Lipschitz function mapping Rq × Rn into Rq×m,
(5) D is a matrix in Mm×n(R),
(6) A, B, and Ck, 1 ≤ k ≤ p, are matrices in Mn×n(R), Mn×m(R), and
Mn×n(R), respectively.
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Then, one can prove the following stabilization result for the stochastic differential
system (6.8)–(6.9).

Corollary 6.3. Assume that ξt ≡ 0 is an asymptotically stable in probability
equilibrium solution of the stochastic differential system

dξt = f̃(ξt)dt+ g̃(ξt)dw̃t,

for which we know a C2r Lyapunov function U such that

L̃U(ξ) < 0

for every ξ in Rq. Suppose that there exists a matrix K inMm×n(R) and a symmetric
and positive definite matrix P in Mn×n(R) such that

(A+BK)?P + P (A+BK) +

p∑
k=1

C?kPCk < 0

and

D = 2B?P.

Then, the stochastic differential system (6.8)–(6.9) is asymptotically stabilizable in
probability by means of a smooth state feedback law.

Proof. Choosing the output y defined by

yt = Dxt,(6.10)

one can prove easily that the input/output stochastic differential system (6.9)–(6.10)
is passive with the storage function V defined on Rn by V (x) = 〈Px, x〉 and satisfies
Γ ∩ S = {0}.

The conclusion follows immediately by application of Theorem 6.2.

7. Examples. Example 1. Consider the stochastic differential system defined
on R2 by dx1 =

(− 1
2x1 + x2 + x2

2u
3
)
dt+ x1dw

1
t ,

dx2 =
(−x1 − 1

2x2 + x1x2u
)
dt+ x2dw

2
t ,

(7.1)

where x0 is given in R2.
Then, denoting by V the Lyapunov function defined on R2 by

V (x) =
1

2

(
x2

1 + x2
2

)
,

one gets by routine calculations that L0V (x) = 0 for every x ∈ R2.
Furthermore,

∇V (x)f̄(x) = x1x
2
2,

adL0 f̄V (x) =
3

2
x1x

2
2 − 2x2

1x2 + x3
2,
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and

L0

(
adL0 f̄V

)
(x) = −25

4
x1x

2
2 − 6x2

1x2 + 2x3
1 + 3x2

2.

Then, one has S = {0} and since Γ = R2 one gets Γ ∩ S = {0}.
Hence, by Theorem 5.1, there exists a smooth state feedback law which renders

the stochastic differential system (7.1) asymptotically stable in probability.
Example 2. Consider the stochastic differential system with two inputs defined

on R3 by

dx1 =
(− 1

2x1 +−2x2

(
x2

2 + x4
3

)
+ ln

(
x2

1 + 1
)
u1 + cos(x2 + x3)u1u2

)
dt

+
(
x3

1u
2
2

)
dt+ x1dwt,

dx2 =
(
x1 − 2x3

3 + x2u2 + sinx1u1u2 − 2x3
3u

2
1

)
dt,

dx3 =
(
x2 + x3u2 + x2u

2
1

)
dt,

(7.2)

where x0 is given in R3.
Then, denoting by V the Lyapunov functional defined on R3 by

V (x) =
1

2

(
x2

1 +
(
x2

2 + x4
3

)2)
,

one can prove by routine calculations that the hypothesis of Theorem 5.3 is satisfied
and so the stochastic differential system (7.2) can be stabilized by the state feedback
law u given by

u(x) = − (∆(x))
−1

 x1ln
(
x2

1 + 1
)

(
2x2

2 + 4x4
3

) (
x2

2 + x4
3

)
 .

Example 3. Consider the stochastic differential system defined on R2 by dx1 =
(−x3

1 − 3
2x1x

2
2 + x1ex2u2

)
dt+ x1x2dw

1
t ,

dx2 =
(− 3

2x
3
2 + x2

2u
)
dt+ x2

2dw
2
t ,

(7.3)

where x0 is given in R2.
Then, denoting by V the Lyapunov functional defined on R2 by

V (x) =
1

4

(
x4

1 + x4
2

)
,

one gets by straightforward computations that L0V (x) = −x6
1 for every x ∈ R2.

Moreover, since for every x ∈ R2,

∇V (x)f̄(x) = x5
2,

one has Γ ∩ S = {0} and, according to Corollary 5.5, the smooth state feedback law
u defined by

u(x) = − x5
2

1 + x4
1ex2

is a global stabilizer for the stochastic differential system (7.3).
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Abstract. In this paper we present a methodology to obtain converging lower and upper bounds
to a multiple objective problem where an H2 performance objective is minimized subject to an `1
constraint. This methodology gives a computationally efficient synthesis procedure by avoiding many
of the problems that are present in methods that employ zero interpolation techniques to characterize
achievable closed loop maps.

Key words. robust control, `1 optimization, discrete time
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1. Notation.

(X, || · ‖) The set X endowed with the norm ‖ · ‖.
R The real number system.
Rn The n-dimensional Euclidean space.
x̂(λ) The λ transform of a right sided real sequence x = (x(k))∞k=0

defined as x̂(λ) :=
∑∞
k=0 x(k)λk.

` The vector space of sequences.
`m×n The vector space of matrix sequences of size m× n.
`1 The Banach space of right sided absolutely summable real

sequences with the norm given by ‖x‖1 :=
∑∞
k=0 |x(k)|.

`m×n1 The Banach space of matrix valued right sided real sequences
with the norm ‖x‖1 := max1≤i≤m

∑n
j=1 ‖xij‖1, where

x ∈ `m×n1 is the matrix (xij) and each xij is in `1.
c0 The subspace of `∞ with elements x that satisfy limk→∞ x(k) = 0.
`2 The Banach space of right sided square summable sequences with

the norm given by ‖x‖2 := (
∑∞
k=0 x(k)2)1/2.

H2 The isometric isomorphic image of `2 under the λ transform x̂(λ)
with the norm given by ‖x̂(λ)‖2 = ‖x‖2.

Pn The truncation operator on the space of sequences;
Pn(x(0)x(1) . . .) = (x(0) x(1) . . . x(n)0 0 . . .).

X∗ The dual space of the Banach space X. 〈x, x∗〉 denotes the value
of the bounded linear functional x∗ at x ∈ X.

W (X∗, X) The weak star topology on X∗ induced by X.
D The closed unit disc in the complex plane.
A′ The transpose of the matrix A.
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2. Introduction. Consider Figure 3.1, where a generalized linear time-invariant
plant G is depicted with a controller K connected in a feedback arrangement. Also
shown are exogenous inputs w1 and w2 and regulated variables z1 and z2. The con-
troller determines the control effort based on the measured variable y. A number of
control objectives can be cast into the setup shown in Figure 3.1. The controller’s
objective is to stabilize the system and enhance its performance with respect to ex-
ternal inputs. The nature of the exogenous inputs and the particular characteristics
of the regulated variables determine the appropriate systems’ “measures” that must
be used to quantify performance. The H2, H∞, and `1 measures are frequently used
as objectives for control synthesis. The H2 measure of a system is the variance of
the regulated output when the exogenous input is modeled as white noise, whereas
the H∞ measure is the maximum energy (the `2 norm) of the regulated variable
when the exogenous signal is any signal with unit energy. Another measure of a sys-
tem is the `1 measure, which is the maximum magnitude of the regulated variable
when the exogenous input is allowed to be any signal with unity maximum magni-
tude. The design of controllers which minimize these measures have been extensively
studied [1].

It is known that performance with respect to a measure (usually the `1, H2, or
the H∞ norm of the closed loop) is not a guarantee of good performance with respect
to some other measure. For example, in Figure 3.1 a control design objective may
be stated in terms of the `1 performance between w1 and z1 and the minimization of
the variance of z2 with w2 as white noise. A standard `1 solution or a standard H2

solution might fail to address such multiobjective concerns. Motivated by such issues
researchers have focused their attention on multiobjective problems that incorporate
two or more different measures in their problem definition.

An important class of problems that falls under this category is the one that
incorporates time domain objectives and the H2 objective. In [5] it was shown that
the single-input single-output problem of minimizing the `1 norm of the closed loop
subject to an H2 constraint can be solved via finite-dimensional convex programming.
In a related result it was shown in [6] that problems that incorporate the `1 norm and
theH2 norm of the various transfer functions in a closed loop map of a multiple-input–
multiple-output (MIMO) system can be formulated and solved via finite-dimensional
quadratic programming. In [2] a method based on positive cones was used to minimize
an H2 measure of the closed loop map subject to an `1 constraint.

Most approaches that incorporate the `1 objective characterize the achievabil-
ity of a closed loop map through a stabilizing controller by using zero interpolation
conditions on the closed loop map [1]. Computation of the zeros and the zero direc-
tions can be done by finding the nullspaces of certain Toeplitz-like matrices. Once
the optimal closed loop map is determined, the task of determining the controller
still remains. The closed loop map needs to satisfy the zero interpolation conditions
exactly to guarantee that the correct cancellations take place while solving for the
controller. However, numerical errors are always present and there exists a need to
determine which poles and zeros cancel. These difficulties exist even for the pure
MIMO `1 problem when zero interpolation methods are employed. However, recently
in [3] it was shown that converging upper and lower bounds can be determined to the
`1 problem by solving an auxiliary problem that does not require zero interpolation
and thus avoids the above mentioned problems.

In this paper we formulate an auxiliary problem to the one given in [6]. We show
that converging upper and lower bounds can be computed without zero interpolation
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Fig. 3.1. Closed loop system.

for the most general MIMO case. This provides an attractive method for solving the
problem.

The paper is organized as follows. In section 3 we present the preliminary ma-
terial. In section 4 we formulate the multiobjective control problem and an auxil-
iary problem which regularizes it. In section 5 we solve the problem through lower
and upper bound approximations. Section 6 contains conclusions and future direc-
tions.

3. Preliminaries. In this section we present a brief summary of mathematical
and system results that will be utilized later in the paper.

3.1. System preliminaries. Consider the system in Figure 3.1, where w :=
(w1 w2)′ is the exogenous disturbance, z := (z1 z2)′ is the regulated output, u is the
control input, and y is the measured output. In feedback control design the objective
is to design a controller K such that with u = Ky the resulting closed loop map Φzw
from w to z is stable (see Figure 3.1) and satisfies certain performance criteria. In [7] a
parametrization of all closed loop maps that are achievable via stabilizing controllers
was derived. A good treatment of the issues involved is presented in [1]. Following the
notation used in [1] we denote by nu, nw, nz, and ny the number of control inputs,
exogenous inputs, regulated outputs, and measured outputs, respectively, of the plant
G. We represent by Θ the set of impulse responses of closed loop maps of the plant
G that are achievable through stabilizing controllers. H ∈ `nz×n3

1 , U ∈ `nz×nu1 , and

V ∈ `ny×nw1 characterize the Youla parametrization of the plant [7]. The following
theorem follows from the Youla parametrization.

Theorem 3.1. Θ = {Φ ∈ `nz×nw1 : there exists a Q ∈ `
nu×ny
1 with Φ̂ = Ĥ −

ÛQ̂V̂ }, where f̂ denotes the λ transform (see [1]) of f .
If Φ is in Θ we say that Φ is an achievable closed loop map. We assume throughout

the paper that Û has normal rank nu and V̂ has normal rank ny. There is no loss of
generality in making this assumption [1].

3.2. Mathematical preliminaries. In this subsection we summarize the math-
ematical results that are relevant to the paper. An exhaustive treatment of the subject
matter of this subsection is given in [4]. The reader may skip this part of the paper
and refer to this subsection whenever required.

Definition 3.2 (convex sets). A subset Ω of a vector space X is said to be
convex if for any two elements c1 and c2 in Ω and for a real number λ with 0 < λ < 1
the element λc1 + (1− λ)c2 ∈ Ω.

Lemma 3.3. Let Ω be a convex subset of a Banach space X and f : Ω → R be
strictly convex. If f achieves its minimum on Ω, then the minimizer is unique.
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Theorem 3.4 (Banach–Alaoglu). Let (X, ‖ · ‖x) be a normed vector space with
X∗ as its dual. The set

(3.1) B∗ := {x∗ ∈ X∗ : ‖x∗‖ ≤M}
is compact in the weak-star topology for any M ∈ R.

Lemma 3.5. Suppose φk is a sequence in `2φ ∈ `2 and φk(t) → φ0(t) for all t.
Suppose also that ‖φk‖2 ↗ ‖φ0‖2. Then ‖φk − φ0‖2 → 0.

Proof. Given ε > 0 choose n such that

(3.2) ‖(I − Pn)φ0‖22 ≤ min

{
ε

8
,

(
ε

8(‖φ0‖2 + 1)

)2
}
,

where Pn is the truncation operator. As φk(t)→ φ0(t) we can choose K2 such that

(3.3) k > K2 ⇒ ‖Pn(φk − φ0)‖22 ≤
ε

4
.

We know that ‖Pn(φk)‖2 → ‖Pn(φ0)‖2 as k → ∞. From the above and the fact
that ‖φk‖2 → ‖φ0‖2 it follows that we can choose K3 such that

(3.4) k > K3 ⇒ |‖(I − Pn)φk‖22 − ‖(I − Pn)φ0‖22 | ≤
ε

4
.

Let K ≥ max{K2,K3}; then k > K implies

‖φk − φ0‖22 = ‖Pn(φk − φ0)‖22 + ‖(I − Pn)(φk − φ0)‖22

≤ ε

4
+ ‖(I − Pn)(φk)‖22 + ‖(I − Pn)(φ0)‖22 + 2

∞∑
t=n+1

|φk(t)| |φ0(t)|

≤ ε

4
+ 2‖(I − Pn)(φ0)‖22 +

ε

4
+ 2

∞∑
t=n+1

|φk(t)| |φ0(t)|

≤ ε

4
+ 2

ε

8
+
ε

4
+ 2‖(I − Pn)φk‖2 ‖(I − Pn)φ0‖2

≤ ε

4
+ 2

ε

8
+
ε

4
+ 2‖φ0‖2 ε

8(‖φ0‖2 + 1)

≤ ε.
4. Problem statement. Let H, U , and V in the Youla parametrization be

partitioned into submatrices according to the equation

H − U ∗Q ∗ V =

(
H11 H12

H21 H22

)
−
(
U1

U2

)
∗Q ∗ (V 1 V 2),

where Q ∈ `
nu×ny
2 . The problem statement is as follows: Given a plant G and a

positive real number γ solve the problem

inf
Q∈`nu×ny1

‖H22 − U2 ∗Q ∗ V 2‖22
subject to

‖H11 − U1 ∗Q ∗ V 1‖1 ≤ γ.
We denote by µ the optimal value obtained from the above problem.
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Now we define an auxiliary problem that is intimately related to the one defined
above. The auxiliary problem statement is: Given a plant G and positive real numbers
α and γ solve the problem

(4.1)

inf
Q∈`nu×ny1

‖H22 − U2 ∗Q ∗ V 2‖22
subject to

‖H11 − U1 ∗Q ∗ V 1‖1 ≤ γ,
‖Q‖1 ≤ α.

The optimal value obtained from the above problem is denoted by ν.
Note that in the problem statement of µ the allowable Youla parameter Q, which

is in `
nu×ny
1 , needs to satisfy ‖H11 − U1 ∗ Q ∗ V 1‖1 ≤ γ. Therefore, it follows that

‖U1 ∗Q ∗ V 1‖1 = ‖H11 − U1 ∗Q ∗ V 1 −H11‖1 ≤ ‖H11 − U1 ∗Q ∗ V 1‖1 + ‖H11‖1 ≤
‖H11‖1 +γ. Suppose Û1 has more rows than columns and V̂ 1 has more columns than
rows and both have full normal rank. Thus the left inverse of Û1 exists (given by
(Û1)−1) and the right inverse of V̂ 1 exists (given by (V̂ 1)−r). Further, suppose that
Û1 and V̂ 1 have no zeros on the unit circle. Then it can be shown (see Lemma 4.2
and the discussion below) that there exists a β (which depends only on (Û1)−1 and
(V̂ 1)−r) such that ‖Q‖1 ≤ β. Thus if in the auxiliary problem we choose α ≥ β, then
the constraint ‖Q‖1 ≤ α is redundant in the problem statement of ν and we get µ = ν.
The extra constraint in the problem statement of ν is useful because it regularizes the
problem (as will be seen). The following lemma is useful in estimating β.

Lemma 4.1 (see [1]). Let int(D) denote the interior of the unit disc in the complex

plane. Given a function f̂( . ) of the complex variable λ analytic in int(D), then
dkf
dλ |λ0 = 0 for k = 0, 1, . . . , (σ−1) and λ0 ∈ int(D) if and only if f̂(λ) = (λ−λ0)σ ĝ(λ),

where g( . ) is analytic in int(D).
Lemma 4.2. Let φ be an element of `1 such that ‖φ‖1 ≤ γ for some γ > 0. Let

φ̂(λ) be the λ transform of φ. Suppose, φ̂(λ) has a zero at λ = a with |a| < 1. If

φ̂(λ) = (λ− a)ψ̂(λ), then ‖ψ̂(λ)‖1 ≤ γ
1−|a| .

Proof. As ‖φ‖1 ≤ γ it follows that ‖(λ − a)ψ̂(λ)‖1 ≤ γ. This implies that∑∞
t=−∞ |ψ(t−1)−aψ(t)| ≤ γ. This is true only if

∑∞
t=−∞(|ψ(t−1)|− |a| |ψ(t)|) ≤ γ,

which implies that ‖ψ‖1(1− |a|) ≤ γ. Therefore, ‖ψ‖1 ≤ γ
1−|a| .

In the discussion above we have obtained an upper bound on the one norm of
R := U1 ∗Q ∗ V 1 for any Q ∈ `nu×ny1 , which satisfies ‖H11 − U1 ∗Q ∗ V 1‖1 ≤ γ. As

U1 and V 1 are left and right invertible it follows that Q̂ = (Û1)−lR̂(V̂ 1)−r. As Q is

in `
nu×ny
1 it is true that R̂ interpolates the unstable poles of (Û1)−l and (V̂ 1)−r none

of which are on the unit circle by assumption. Using Lemma 4.2 one can obtain an
upper bound on the one norm of Q that depends only on the upper bound of the one
norm of R, (U1)−l, and (V 1)−r.

The following lemma is a result on the uniqueness of the solution to (4.1).

Lemma 4.3. Let Q0 ∈ `nu×ny1 be a solution to (4.1). Let Φ0 = H − U ∗ Q0 ∗ V
with Φ22,o = H22−U2∗Q0∗V 2 and Φ11,o = H11−U1∗Q0∗V 1. Then Φ22,o is unique.
Furthermore, if Û2 and V̂ 2 have full normal column and row ranks, respectively, then
Q0 is unique.

Proof. Note that the problem statement of ν given by (4.1) can be recast as

(4.2) ν = inf{‖Φ22‖22 : Φ22 ∈ Aal},
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where Aal is the following set:

{Φ22 : there exists Q ∈ `nu×ny1 with Φ22 = H22 − U2 ∗Q ∗ V 2,

‖H11 − U1 ∗Q ∗ V 1‖1 ≤ γ, and ‖Q‖1 ≤ α}.

Its clear that Aal is a convex set. It is also true that ‖ . ‖22 is a strictly convex
function. It follows from Lemma 3.3 that the minimizer of (4.2) given by Φ22,o, if it
exists, is unique. If Û2 and V̂ 2 have full column and row ranks, then it follows that

Q̂0 = (Û2)−lΦ̂22,o(V̂ 2)−r,

where (Û2)−l and (V̂ 2)−r represent the left and the right inverses of Û2 and V̂ 2,

respectively. Thus Q̂0 is unique. This proves the lemma.

5. Converging lower and upper bounds.

5.1. Converging lower bounds. Let νn be defined by

(5.1)

inf
Q∈`nu×ny1

‖Pn(H22 − U2 ∗Q ∗ V 2)‖22
subject to

‖Pn(H11 − V 1 ∗Q ∗ V 1)‖1 ≤ γ,
‖Q‖1 ≤ α.

It is clear that only the parameters of Q(0), . . . , Q(n) enter into the optimization
problem and therefore (5.1) is a finite-dimensional quadratic programming problem.
Once optimal Q(0), . . . , Q(n) are found, Q = {Q(0), . . . , Q(n), 0, . . .} will be a finite
impulse response (FIR) optimal solution to (5.1).

Theorem 5.1. Suppose the constraint set in problem (4.1) is nonempty. Then

problem (4.1) always has an optimal solution Q0 ∈ `nu×ny1 . Furthermore,

νn ↗ ν.

Also, if Φ22,o := H22 − U2 ∗Q0 ∗ V 2 and Φ22,n := H22 − U2 ∗Qn ∗ V 2, where Qn is
a solution to (5.1), then there exists a subsequence {Φ22,nm} of the sequence {Φ22,n}
such that

‖Φ22,nm − Φ22,o‖2 → 0 as m→∞.
If Û2 and V̂ 2 have full normal column and row ranks, respectively, then Q0 is unique
and

‖Φ22,n − Φ22,o‖2 → 0 as n→∞.

Proof. We know that for anyQ ∈ `nu×ny1 , ‖Pn(H11−U1∗Q∗V 1)‖1 ≤ ‖Pn+1(H11−
U1∗Q∗V 1)‖1, and ‖Pn(H22−U2∗Q∗V 2)‖22 ≤ ‖Pn+1(H22−U2∗Q∗V 2)‖22. Therefore,
νn ≤ νn+1 for all n = 1, 2, . . . . Thus {νn} forms an increasing sequence. Similarly it
can be shown that for all n, νn ≤ ν.

For n = 1, 2, . . ., let {Qn} ∈ `nu×ny1 be FIR solutions of (5.1). As the sequence

{Qn} is uniformly bounded by α in `
nu×ny
1 it follows from the Banach–Alaoglu the-

orem that there exists a subsequence {Qnm} of {Qn} and Q0 ∈ `
nu×ny
1 such that
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Qnmij → Q0
ij in the W (c∗0, c0) topology. This implies that Qnm(t) → Q0(t) for all

t = 0, 1, . . . . Therefore, for all n, Pn(U ∗ Qnm ∗ V ) converges to Pn(U ∗ Q0 ∗ V ) as
m→∞. Now for any n > 0 and for any nm > n, ‖Pn(H11 − U1 ∗Qnm ∗ V 1)‖1 ≤ γ.
This implies that ‖Pn(H11 − U1 ∗Q0 ∗ V 1)‖1 ≤ γ. Since n is arbitrary, we have

‖H11 − U1 ∗Q0 ∗ V 1‖1 ≤ γ.
Similarly for any n > 0 and for any nm > n, ‖Pn(H22−U2 ∗Qnm ∗V 2)‖22 ≤ ν. Again,
this implies that ‖Pn(H22 −U2 ∗Q0 ∗ V 2)‖22 ≤ ν. Since n is arbitrary, it follows that

‖H22 − U2 ∗Q0 ∗ V 2‖22 ≤ ν.
It follows that Q0 is an optimal solution for (4.1).

To prove that νn ↗ ν, we note that

‖Pn(H22 − U2 ∗Qnm ∗ V 2)‖22 ≤ ‖Pnm(H22 − U2 ∗Qnm ∗ V 2)‖22 = νnm

∀n > 0, ∀nm > n.

Taking the limit as m goes to infinity we have

‖Pn(H22 − U2 ∗Q0 ∗ V 2)‖22 ≤ lim
m→∞ νnm ∀n > 0.

It follows that

‖H22 − U2 ∗Q0 ∗ V 2‖22 ≤ lim
m→∞ νnm .

Thus we have shown that limm→∞ νnm = ν. Since νn is a monotonically increasing
sequence, it follows that νn ↗ ν.

It is clear from Lemma 4.3 that Φ22,o := H22 − U2 ∗ Q0 ∗ V 2 is unique. If
Φ22,n := Pn(H22 − U2 ∗ Qn ∗ V 2), then from the discussion above it follows that
νnm = ‖φ22,nm‖22 converges to ν = ‖Φ22,o‖22. Also, Φ22,nm(t) converges to Φ22,o(t). It
follows from Lemma 3.5 that

‖Φ22,nm − Φ22,o‖2 → 0 as m→∞.
From Lemma 4.3 we also have that if Û2 and V̂ 2 have full normal column and row
ranks, respectively, then Q0 is unique. From the uniqueness of Q0 it follows that
the original sequence {Φ22,n} converges to Φ22,o in the two norm. This proves the
theorem.

5.2. Converging upper bounds. Let νn(γ) be defined by

(5.2)

inf
Q∈`nu×ny1

‖H22 − U2 ∗Q ∗ V 2‖22
subject to

‖H11 − U1 ∗Q ∗ V 1‖1 ≤ γ,
‖Q‖1 ≤ α,
Q(k) = 0 if k > n.

We will assume that γ, which characterizes the `1 constraint level, is in the interior
of the domain of the function ν. The following theorem shows that {νn(γ)} defines a
sequence of upper bounds to ν(γ) which converge to ν(γ).
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Theorem 5.2. For all n, νn(γ) ≥ νn+1(γ) ≥ ν(γ). Also

νn(γ)↘ ν(γ).

Proof. It is clear that νn(γ) ≥ νn+1(γ) because any Q ∈ `
nu×ny
1 that satisfies

the constraints in the problem definition of νn(γ) will satisfy the constraints in the
problem definition of νn+1(γ). For the same reason we also have νn(γ) ≥ ν(γ) for all
relevant n.

Thus {νn(γ)} is a decreasing sequence of real numbers bounded below by ν(γ).
It can be shown that ν(γ) is a continuous function of γ (see Theorem 6.5 in [5]).

Given ε > 0 choose δ > 0 such that

(5.3) ν(γ − δ)− ν(γ) <
ε

2
.

Such a δ exists from the continuity of ν(γ) in γ. Let Qγ−δ be a solution to the problem
ν(γ − δ), which is guaranteed to exist from Theorem 5.1. Let M be large enough so
that m ≥M implies that

(5.4) | ‖H22 − U2 ∗ Pm(Qγ−δ) ∗ V 2‖22 − ‖H22 − U2 ∗Qγ−δ ∗ V 2‖22| <
ε

2

and

(5.5) | ‖H11 − U1 ∗ Pm(Qγ−δ) ∗ V 1‖1 − ‖H11 − U1 ∗Qγ−δ ∗ V 1‖1| < δ

2
.

As Qγ−δ is a solution to the problem ν(γ − δ) it is also true that

‖H22 − U2 ∗Qγ−δ ∗ V 2‖22 = ν(γ − δ),
‖H11 − U1 ∗Qγ−δ ∗ V 1‖1 ≤ γ − δ,

and

‖Qγ−δ‖1 ≤ α.
From the above and (5.4), (5.5) it follows that for all m ≥M ,

(5.6) ‖H22 − U2 ∗ Pm(Qγ−δ) ∗ V 2‖22 − ν(γ − δ) ≤ ε

2
,

(5.7) ‖H11 − U1 ∗ Pm(Qγ−δ) ∗ V 1‖1 ≤ γ,
and

(5.8) ‖Pm(Qγ−δ)‖1 ≤ α.
From (5.3) and the above it follows that for all m ≥ M , Pm(Qγ−δ) satisfies all the
constraints of problem νm(γ) and

‖H22 − U2 ∗ Pm(Qγ−δ) ∗ V 2‖22 −
ε

2
− ν(γ) ≤ ε

2
.

Thus for all m ≥M it follows that

νm(γ)− ν(γ) ≤ ε.
This proves the theorem.
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6. Conclusions. In this paper, we have formulated a problem that incorporates
the H2 performance measure and the `1 measure. It is shown that converging upper
and lower bounds can be obtained via finite-dimensional convex programming prob-
lems. This methodology avoids many of the problems of the zero interpolation based
methods previously employed.

Ongoing research has indicated that the method developed here can be generalized
to solve multiple-objective problems that involve the H2 measure and various time
domain measures (including the `1 norm). Future research involves implementation
of the method developed.
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Abstract. We study the asymptotic stabilization of the origin for the two-dimensional (2-D)
Euler equation of incompressible inviscid fluid in a bounded domain. We assume that the controls act
on an arbitrarily small nonempty open subset of the boundary. We prove the null global asymptotic
stabilizability by means of explicit feedback laws if the domain is connected and simply connected.
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1. Introduction. In previous papers [2, 3] we have considered the problem of the
controllability of the two-dimensional (2-D) Euler equation of incompressible inviscid
fluid in a bounded domain. In particular, we have proved that, if the controls act
on an arbitrarily small open subset of the boundary which meets every connected
component of this boundary, then the 2-D Euler equation is exactly controllable.
This result has been extended recently by Glass to the three-dimensional (3-D) Euler
equation in [9, 10].

For linear control systems, the exact controllability implies the asymptotic sta-
bilizability by means of feedback laws. This is well known for linear control systems
of finite dimension and, by Slemrod [22], J.-L. Lions [17], Lasiecka–Triggiani [16],
and Komornik [15], it also holds in infinite dimension in very general cases. But, as
pointed out by Sussmann in [24], Sontag–Sussman in [23], and Brockett in [1], this
is no longer true for nonlinear control systems, even of finite dimension. Let us also
notice that, as in the counterexample of [1], the linearized control system of the Euler
equation around the origin is not controllable.

Therefore it is natural to ask what is the situation for the asymptotic stabiliz-
ability of the origin for the 2-D Euler equation of incompressible inviscid fluid in a
bounded domain when the controls act on an arbitrarily small open subset of the
boundary which meets any connected component of this boundary. In this paper
we prove the null global asymptotic stabilizability by means of feedback laws if the
domain is simply connected.

Our paper is organized as follows.
• In section 2, we give explicit feedback laws which globally asymptotically

stabilize the origin and state our main results.
• In sections 3 and 4, we give the proofs of our main results.

2. Explicit stabilizing feedbacks. Let Ω be a nonempty bounded connected
and simply connected subset of R2 of class C∞ and let γ be a nonempty open subset of
the boundary ∂Ω of Ω. This set γ is the location of the control. Let y be the velocity
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field of the inviscid fluid contained in Ω. We assume that the fluid is incompressible,
so that

div y = 0.(2.1)

Since Ω is simply connected, y is completely characterized by ω := curl y and y ·
n on ∂Ω, where n denotes the unit outward normal to ∂Ω. For the problem of
controllability, one does not really need to specify the control and the state: one
considers the “Euler control system” as an underdetermined system by requiring y·n =
0 on ∂Ω \ γ instead of y · n = 0 on ∂Ω as for the uncontrolled usual Euler equation.
For the stabilization problem, one needs to specify more precisely the control and the
state. In this paper the state is ω. For the control there are at least two natural
possibilities:

(a) The control is y ·n on γ and the time derivative ∂ω/∂t of the vorticity at the
points of γ where y · n < 0, i.e., at the points where the fluid enters into the
domain Ω.

(b) The control is y · n on γ and the vorticity ω at the points where y · n < 0.
Let us point out that, by (2.1), in both cases y · n has to satisfy

∫
∂Ω
y · n = 0.

2.1. Case where one controls the time derivative of the vorticity of
the incoming flow. In this subsection we concentrate on case (a); for case (b), see
subsection 2.2.

Let us give our stabilizing feedback laws. Let g ∈ C∞(∂Ω) be such that

Support g ⊂ γ,(2.2)

γ+ := {g > 0} and γ− := {g < 0} are connected,(2.3)

g 6= 0,(2.4)

γ+ ∩ γ− = ∅,(2.5) ∫
∂Ω

g = 0.(2.6)

For any compact set K of Rq and any f ∈ C0(K;Rm), we denote

|f |0,K = Max {|f(x)| ;x ∈ K}.
For simplicity, we write |f |0 instead of |f |0,Ω. Our stabilizing feedback laws are

y · n = M |ω|0 g on γ,

∂ω

∂t
= −M |ω|0 ω on γ− if |ω|0 6= 0,

where M > 0 is large enough. With these feedback laws, a function ω : I × Ω → R,
where I is an interval, is a solution of the closed loop system Σ if

∂ω

∂t
+ div (ωy) = 0 in

◦
I × Ω,(2.7)

div y = 0 in
◦
I × Ω,(2.8)

curl y = ω in
◦
I × Ω,(2.9)

y(t) · n = M |ω(t)|0 g on ∂Ω ∀t ∈ I,(2.10)

∂ω

∂t
= −M |ω(t)|0 ω on {t; ω(t) 6= 0} × γ−,(2.11)
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where, for t ∈ Ω, ω(t) : Ω→ R and y(t) : Ω→ R2 are defined by requiring ω(t)(x) =
ω(t, x), y(t)(x) = y(t, x),∀x ∈ Ω. More precisely, the definition of a solution of system
Σ is as follows.

Definition 2.1. Let I be an interval. A function ω : I → C0(Ω) is a solution of
system Σ if

(i) ω ∈ C0(I;C0(Ω))(∼= C0(I × Ω)),
(ii) for y ∈ C0(I × Ω;R2) defined by requiring (2.8) and (2.9) in the sense of

distributions and (2.10), one has (2.7) in the sense of distributions,

(iii) in the sense of distributions on the open manifold {t ∈
◦
I; ω(t) 6= 0}× γ− one

has ∂ω/∂t = −M |ω(t)|0 ω.
Our first theorem says that, for M large enough, the Cauchy problem for system

Σ has at least one solution defined on [0,+∞) for any initial data in C0(Ω). More
precisely one has the following.

Theorem 2.2. There exists M0 > 0 such that, for any M > M0, the following
two properties hold:

(i) For any ω0 ∈ C0(Ω), there exists a solution of system Σ defined on [0,+∞)
such that ω(0) = ω0.

(ii) Any maximal solution of system Σ defined at time 0 is defined on [0,+∞) (at
least).

Remark 2.3. (a) In this theorem, property (i) is in fact implied by property (ii)
and Zorn’s lemma. We state (i) in order to emphasize the existence of a solution to
the Cauchy problem for system Σ. (b) We do not know if the solution to the Cauchy
problem is unique for positive time. (For negative time, one does not have unique-
ness since there are solutions ω of system Σ defined on [0,+∞) such that ω(0) 6= 0
and ω(T ) = 0 for T ∈ [0,+∞) large enough.) But let us emphasize that, already for
control systems in finite dimension, one considers feedback laws which are merely con-
tinuous; with these feedback laws, the Cauchy problem for the closed loop system may
have many solutions. It turns out that this lack of uniqueness is not a real problem.
Indeed, in finite dimension at least, if a point is asymptotically stable for a continu-
ous vector field, then there exists, as in the case of regular vector fields, a (smooth)
strict Lyapunov function. This result is due to Kurzweil [13]. It is tempting to con-
jecture that a similar result holds in infinite dimension under reasonable assumptions.
The existence of this Lyapunov function ensures some robustness to perturbations.
It is precisely this robustness which makes the interest of feedback laws compared to
open loop controls. We will see that, for our feedback laws, there exists also a strict
Lyapunov—see Proposition 3.6 below—and therefore our feedback laws provide some
kind of robustness.

Our next theorem shows that, at least for M large enough, our feedback laws
globally and strongly asymptotically stabilize the origin in C0(Ω) for system Σ.

Theorem 2.4. There exists a positive constant M1 > M0 such that, for any
ε ∈ (0, 1], any M > M1/ε, and any maximal solution ω of system Σ defined at time
0,

|ω(t)|0 6 Min
{
|ω(0)|0, ε

t

}
∀t > 0.(2.12)

Remark 2.5. Due to the term |ω(t)|0 appearing in (2.10) and in (2.11) our
feedback laws do not depend only on the value of ω on γ. Let us point out that there is
no asymptotically stabilizing feedback law depending only on the value of ω on γ such
that the origin is asymptotically stable for the closed loop system. In fact, given a
nonempty open subset Ω0 of Ω, there is no feedback law which does not depend on the
values of ω on Ω0. This phenomenon is due to the existence of “phantom vortices”:
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there are smooth stationary solutions ȳ : Ω→ R2 of the 2-D Euler equations such that
Support ȳ ⊂ Ω0 and ω̄ := curl ȳ 6= 0; see, e.g., [20]. Then ω(t) = ω̄ is a solution of
the closed loop system if the feedback law does not depend on the values of ω on Ω0

and vanishes for ω = 0.
Remark 2.6. Let us emphasize that (2.12) implies that

|ω(t)|0 6 ε ∀t > 1,(2.13)

for any maximal solution ω of system Σ defined at time 0 (whatever ω(0) is). It
would be interesting to know if one could have a similar result for the 2-D Navier–
Stokes equations of viscous incompressible flows, that is, if given ε > 0, does there
exist a feedback law such that (2.13) holds for any solution of the closed loop Navier–
Stokes control system? Note that y = 0 on γ is a feedback which leads to asymptotic
stabilization of the null solution of the Navier–Stokes control system. But this feedback
does not have the required property. For recent results on the controllability of the
Navier–Stokes control system, see the papers by Imanuvilov and Fursikov [6, 7, 8] and
the paper by Imanuvilov [12] as well as [4, 5].

2.2. Case where one controls the vorticity of the incoming flow. In
this subsection one does no longer control the time-derivative of the vorticity of the
incoming flow but the vorticity of the incoming flow itself. Therefore the control is
y · n on γ with the constraint

∫
∂Ω
y · n = 0 (as above) and the vorticity ω at the

points where y · n < 0. Of course in this new situation one cannot take the state ω in
C0(Ω): if the state ω is in C0(Ω), then it will determine part of the control, namely,
the vorticity of the incoming flow. It is therefore natural to consider the state ω as
being in L∞(Ω).

For any measurable subset B of Rq and any f ∈ L∞(B;Rm), we denote by |f |∞,B
the essential supremum of f on B. For simplicity, we write |f |∞ instead of |f |∞,Ω.
Our stabilizing feedback laws are

y · n = M |ω|∞ g on γ,(2.14)

ω = 0 on γ− if |ω|∞ 6= 0,(2.15)

where, again, M > 0 is large enough. With these feedback laws, a function ω : I×Ω→
R, where I is an interval, is a solution of the closed loop system that we call Σ1, if
one has (2.7), (2.8), (2.9) and

y(t) · n = M |ω(t)|∞ g on ∂Ω for almost every t ∈ I,(2.16)

ω = 0 on {t; ω(t) 6= 0} × γ−.(2.17)

Since ω(t) is only in L∞(Ω), the meaning of (2.17) has to be specified. As usual,
(2.17) has to be understood in a “weak sense,” which is obtained by multiplying (2.7)
by suitable smooth test functions, integrating on I × Ω, and performing integration
by parts. More precisely, the definition of a solution of system Σ1 is as follows.

Definition 2.7. Let I be an interval. A function ω : I → L∞(Ω) is a solution
of system Σ1 if

(i) ω ∈ C0(I;H−1(Ω)),
(ii) ω ∈ L∞loc(I;L∞(Ω)) ∼= L∞loc(I × Ω),

(iii) for any ϕ ∈ C1(I × Ω) with compact support such that

Support ϕ ⊂
(◦
I × Ω

)
∪
(
{t ∈

◦
I; |ω(t)|∞ > 0} × γ−

)
,(2.18)
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one has ∫
I×Ω

(
ω
∂ϕ

∂t
+ ω(y · ∇)ϕ

)
= 0,(2.19)

where y ∈ L∞ (I;C0
(
Ω
))

is defined by requiring (2.16) and, in the sense of

distributions on
◦
I × Ω, (2.8) and (2.9).

Our first theorem says that, for M large enough, the Cauchy problem for system
Σ1 has at least one solution defined on [0,+∞) for any initial data in L∞(Ω). More
precisely, one has the following.

Theorem 2.8. There exists M2 > 0 such that, for any M > M2, the following
two properties hold.

(i) For any ω0 ∈ L∞(Ω), there exists a solution of system Σ1 defined on [0,+∞)
such that ω(0) = ω0.

(ii) Any maximal solution of system Σ1 defined at time 0 is defined on [0,+∞)
(at least).

Our next theorem, which is analogous to Theorem 2.4, tells us that, at least for M
large enough, feedbacks laws (2.14) and (2.15) globally and strongly asymptotically
stabilize the origin in L∞(Ω) for system Σ1.

Theorem 2.9. There exists a positive constant M3 > 0 such that, for any
ε ∈ (0, 1], any M >M3/ε, and any maximal solution of system Σ1 defined at time 0,
one has

|ω(t)|∞ 6 Min
{
|ω(0)|∞, ε

t

}
∀t > 0.

The proof of Theorem 2.9 is very similar to the proof of Theorem 2.4 and therefore
is omitted. The end of this paper is organized as follows.

• In section 3, we prove Theorems 2.2 and 2.4.
• In section 4, we prove Theorem 2.8.

3. Proof of Theorems 2.2 and 2.4.

3.1. Proof of Theorem 2.2. For a compact subset K and a function y ∈
C0(K;R2), we let

qK(y) := |y|0 + sup{|y(x)− y(x′)|/r(|x− x′|); (x, x′) ∈ K2, x 6= x′},
where

r(s) = s+ s ln(1/s) ∀s ∈ (0, 1), and r(s) = s ∀s > 1.(3.1)

For simplicity, we write q instead of qΩ. For technical reasons, it is useful to extend

y ∈ C0(Ω) outside Ω. Let R > 0 be such that

Ω ⊂ BR/2 := {x ∈ R2; |x| < R/2}.
Let BR := {x ∈ R2; |x| < R}. Let P : C0(Ω;R2) → C0(BR;R2) be a continuous
linear map such that

P(y)(x) = y(x) ∀x ∈ Ω ∀y ∈ C0(Ω;R2),(3.2)

Support P(y) ⊂ BR/2 ∀y ∈ C0(Ω;R2),(3.3)

and such that, for some C0 > 0,

qBR (P (y)) 6 C0q(y) ∀y ∈ C0(Ω;R2).(3.4)
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Let us recall the following important theorem, due to Wolibner [25] and Yudovich [26]
(see also [14, Lemma 2.6]).

Theorem 3.1 (see Wolibner [25] and Yudovich [26]). Let T be a positive real
number and let y ∈ L∞ ((0, T ) ;C0

(
BR;R2

))
be such that

y(t, x) := y(t)(x) = 0 for almost everywhere (a.e.) (t, x) ∈ (0, T )× (BR \BR/2) ,(3.5)

and, for some constant K ∈ (0,+∞),

qBR(y(t)) 6 K for a.e. t ∈ (0, T ).(3.6)

Then there exists one and only one map Φy ∈ C0([0, T ]× [0, T ]×BR;BR), (t, s, x)→
Φy(t, s, x) such that

Φy(t, s, x) = x+

∫ t

s

y(t′,Φy(t′, s, x))dt′ ∀(t, s, x) ∈ [0, T ]× [0, T ]×BR.

Moreover there exist two constants C1 = C1(K,R, T ) > 0 and δ = δ(K,R, T ) > 0,

depending on K,R, T , such that, for any (x, x′) ∈ BR2
, for any (t, t′, s, s′) ∈ [0, T ]4,

and for any y ∈ L∞ ((0, T ) ;C0
(
BR;R2

))
satisfying (3.5) and (3.6),

|Φy(t′, s′, x′)− Φy(t, s, x)| 6 C1(|s′ − s|δ + |t′ − t|δ + |x′ − x|δ).(3.7)

Our proof of Theorem 2.2 is divided in two parts.
• We first prove the existence of a solution to the Cauchy problem for small

positive time.
• Then we prove that any maximal solution to Σ defined at time 0 is defined

on [0,+∞).
So let us first start with the proof of the following proposition.

Proposition 3.2. There exists M0 > 0 such that, for any M >M0 and for any
ω0 ∈ C0(Ω), there exists T > 0 and a solution of system Σ defined on [0, T ] such that
ω(0) = ω0.

Of course if ω0 = 0 one can take arbitrary T > 0 and choose ω = 0. Therefore we
may assume that ω0 6= 0. Then there exists a point x0 in Ω such that

ω0(x0) 6= 0.(3.8)

Let M > 0 . Let C2 > 0 (depending on M) be such that

|y|0 6 C2(3.9)

for any y ∈ C0(Ω;R2) such that

|curl y|0 6 |ω0|0, div y = 0,

|y · n| 6M |ω0|0|g|0,∂Ω on ∂Ω.

Let ρ > 0 be such that

B(x0, ρ) := {x ∈ R2; |x− x0| < ρ} ⊂ Ω(3.10)

and let

T = ρ/C2.(3.11)
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Let us denote by | |H−1(Ω) one of the usual norm of the Sobolev space H−1(Ω). Let

C3 > 0 be such that, for any f ∈ L∞(Ω;R2),

|div f |H−1(Ω) 6 C3 |f |L∞(Ω) .(3.12)

Let also C4 > 0 be such that, for any divergence free f ∈ C0(Ω;R2) with a bounded
curl,

|f |0 6 C4

(
| curl f |L∞(Ω) + |f · n|0,∂Ω

)
.(3.13)

We are going to construct a solution ω ∈ C0([0, T ] × Ω) of system Σ satisfying the
initial condition ω(0) = ω0 as a fixed point of a map F : X → X, where X is the set
of functions ω ∈ C0([0, T ]× Ω) such that

ω(0) = ω0,(3.14)

t ∈ [0, T ]→ |ω(t)|0 is nonincreasing,(3.15) ∣∣∣∣∂ω∂t
∣∣∣∣
L∞((0,T );H−1(Ω))

6 C3C4|ω0|20 (M |g|0,∂Ω + 1) .(3.16)

Note that X is a closed convex subset of C0([0, T ]× Ω) equipped with the sup-norm
| |0,[0,T ]×Ω. Let us define F . For ω ∈ X, let us define ỹω ∈ C0([0, T ] × Ω;R2) by
requiring

div ỹω = 0 in (0, T )× Ω,(3.17)

curl ỹω = ω in (0, T )× Ω,(3.18)

ỹω(t, ·) · n = M Max {|ω(t)|0, |ω0(x0)|}g on ∂Ω ∀t ∈ [0, T ].(3.19)

Note that, by (3.15), (3.14), (3.17), (3.18), (3.19), and a theorem due to Wolibner [25]
(see also [14, Lemma 1.4]), there exists a constant C5 such that

q(ỹω(t, ·)) 6 C5 ∀t ∈ [0, T ] ∀ω ∈ X.(3.20)

Let yω ∈ C0([0, T ]×BR;R2) be defined by

yω(t, ·) = P(ỹω(t, ·)) ∀t ∈ [0, T ].(3.21)

By (3.4) and (3.20),

qBR(yω(t, ·) 6 C0C5 ∀ω ∈ X.(3.22)

In particular, by the Wolibner–Yudovich theorem (Theorem 3.1), there exists a flow
Φyω associated with yω. For any interval I containing 0 such that 0 = MinI and for
any y ∈ L∞loc

(
I;C0

(
BR;R2

))
satisfying (3.5) and such that qBR(y) ∈ L∞loc(I), let us

define sy : I × Ω→ I by

sy(t, x) = Max {t′ ∈ [0, t]; Φy(t′, t, x) ∈ γ−},(3.23)

with the convention Max ∅ = 0. Let us also define ay : I × Ω→ Ω by

ay(t, x) = Φy(sy(t, x), t, x).(3.24)

With these notations, we can now define our map F (ω) : [0, T ]× Ω→ R by

F (ω)(t, x) = ω0 (ayω (t, x)) exp

(
−M

∫ syω (t,x)

0

|ω(t′)|0 dt′
)
.(3.25)
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It follows from our construction of F (recall also (3.17)) that, in the sense of distri-
butions,

∂F (ω)

∂t
+ div (F (ω)yω) = 0 in (0, T )× Ω.(3.26)

Indeed, let t̄ ∈ (0, T ) and x̄ ∈ Ω. Then, for (t, x) close enough to (t̄, x̄), one has

syω (t,Φyω (t, t̄, x)) = syω (t̄, x),

ayω (t,Φyω (t, t̄, x)) = ayω (t̄, x),

which imply that

F (ω)(t,Φyω (t, t̄, x)) = F (ω)(t̄, x).(3.27)

But (3.27), together with (3.2), (3.17), (3.21), and standard smoothing procedures,
gives (3.26) in the sense of distributions.

Let us now check that if ω ∈ X is a fixed point of F , then ω is a solution of
system Σ which, by (3.14), satisfies the Cauchy initial data ω(0) = ω0. Indeed, let ω
be a fixed point of F and let y = ỹω. Then, from (3.17) and (3.18), we get (2.8) and
(2.9). From (3.26), we get (2.7). Let us also point out that, by (3.23),

syω (t, x) = t ∀t ∈ [0, T ]∀x ∈ γ−.(3.28)

From (3.24), (3.25), and (3.28), one gets

ω(t, x) = F (ω)(t, x) = ω0(x) exp

(
−M

∫ t

0

|ω(t′)|0 dt′
)
∀(t, x) ∈ [0, T ]× γ−,

which implies (2.11). It remains only to verify that (2.10) holds. By (3.19), it suffices
to check that ∣∣ω0(x0)

∣∣ 6 |ω(t)|0 ∀t ∈ [0, T ].(3.29)

From the definition of C2, (3.2), (3.14), (3.15), (3.17), (3.18), (3.19), and (3.21), one
gets that |yω(t)|0 6 C2 for any t ∈ [0, T ], which, with (3.10) and (3.11), gives

Φyω (t, 0, x0) ∈ Ω ∀t ∈ [0, T ].

Therefore syω (t,Φyω (t, 0, x0)) = 0 for any t ∈ [0, T ], which implies that

F (ω)(t,Φyω (t, 0, x0)) = ω0(x0) ∀t ∈ [0, T ].(3.30)

From (3.30), one has

(|ω(t)|0 =) |F (ω(t))|0 >
∣∣ω0(x0)

∣∣ ∀t ∈ [0, T ].

Therefore (3.29) holds and the fixed point ω of F is indeed a solution of system Σ.
By the Leray–Schauder fixed point theorem, in order to prove the existence of a

fixed point to F , it suffices to check that

F (X) ⊂ X,(3.31)

F is continuous,(3.32)

F (X) is relatively compact in C0([0, T ]× Ω).(3.33)

Let us first check (3.31). Let ω ∈ X. It follows directly from (3.25) that

|F (ω)|L∞(Ω×[0,T ]) 6 |ω0|0 .
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Clearly

F (ω)(0) = ω(0) = ω0.(3.34)

Let us check that

t ∈ [0, T ]→ |F (ω(t))|0 is nonincreasing.(3.35)

Let 0 6 t1 6 t2 6 T and let x ∈ Ω. If syω (t2, x) 6 t1, one has

F (ω)(t2, x) = F (ω) (t1,Φ
yω (t1, t2, x)) .

If syω (t2, x) > t1, one has

F (ω)(t2, x) = F (ω) (ayω (t2, x) , t1) exp−
(
M

∫ syω (t2,x)

t1

|ω(t′)|0dt′
)
.

In both cases

|F (ω)(t2, x)| 6 |F (ω)(t1)|0,
which shows (3.35). From (3.12), (3.13), (3.17), (3.18), (3.19), (3.26), (3.34), and
(3.35), one gets that∣∣∣∣∂F (ω)

∂t

∣∣∣∣
L∞((0,T );H−1(Ω))

6 C3C4|ω0|20 (M |g|0,∂Ω + 1) .

Therefore, in order to prove (3.31), it suffices to check that F (ω) is continuous on
[0, T ]×Ω. From the continuity of Φyω and the definition (3.23) of syω , it is clear that

syω is upper semicontinuous on [0, T ]× Ω.(3.36)

Since the continuity of syω implies the continuity of F , it remains only to check that

syω is lower semicontinuous on [0, T ]× Ω.(3.37)

In order to prove this lower semicontinuity, let us assume that the following lemma,
proved in Appendix B, holds.

Lemma 3.3. There exists M0 > 0 such that, for any T > 0 and for any
y ∈ L∞ ((0, T ) ;C0

(
BR;R2

))
satisfying (3.5), (3.6) for some K > 0, and for some

function α ∈ L∞ ((0, T ) ; (0,+∞)),

y(t, ·) · n = α(t)g on ∂Ω for a.e. t ∈ (0, T ),(3.38)

M0|curl y(t)|L∞(Ω) 6 α(t) for a.e. t ∈ (0, T ),(3.39)

div y = 0 in (0, T )× Ω(3.40)

for any (t̃, x̃) ∈ (0, T ]× γ− and for any ν ∈ (0, t̃), there exists t ∈ (t̃− ν, t̃), such that

Φy
(
t, t̃, x̃

) 6∈ Ω.

Let us also point out that, by the definition of γ−, (3.2), (3.19), (3.21), and (3.22),
for any x̃ ∈ Ω, if for 0 6 t′ 6 t 6 T Φyω (t′, t, x̃) is not in Ω, then

∃t′′ ∈ [t′, t] such that Φyω (t′, t, x̃) ∈ γ−.(3.41)
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This is indeed clear if yω is smooth enough, for example, locally Lipschitz with respect
to x. The case where y is not smooth follows from the main ingredient, due to Wolibner
[25], to prove the uniqueness of Φy in Theorem 3.1. Let us briefly sketch the proof.
Let W ∈ C∞(R2) be such that {W = 0} = ∂Ω, W > 0 in Ω, W < 0 in R2 \ Ω and
∇W does not vanish on ∂Ω. Let w(s) = W (Φyω (s, t, x̃)). If (3.41) does not hold one
easily sees, using (3.2), (3.19), (3.21), and (3.22), that there exists C6 > 0 such that

dw

ds
6 C6r(|w|) on [t′, t],(3.42)

where r is defined in (3.1). Since w(t′) < 0 6 w(t), there exists t1 ∈ (t′, t] such that

w(t1) = 0. Then, using (3.42) and the fact that
∫ 1

0
/r(s)ds = +∞, one gets that

w > 0 on [t′, t1], which is in contradiction with the fact that w(t′) < 0. Hence we
have (3.41). Using (3.2), (3.17), (3.18), (3.19), (3.21), and (3.22), one easily sees that
y = yω satisfies the assumptions of Lemma 3.3 if M > M0. From now on we assume
that M > M0 with M0 as in Lemma 3.3. From the continuity of Φyω , the definition
(3.23) of syω and Lemma 3.3, one easily sees that (3.37) holds. Hence we have (3.31).
The continuity of F can be proved with the same type of arguments used to prove
the continuity of F (ω). We omit the proof.

Let us now turn to the proof of (3.33). By Wolibner–Yudovich’s theorem (Theo-
rem 3.1), (3.22), (3.24), (3.25), and Ascoli’s theorem, it suffices to check that

syω is relatively compact in C0([0, T ]× Ω).(3.43)

Let (ωk; k ∈ N) be a sequence of functions in X. We want to prove the existence of
a subsequence of the (ωk; k ∈ N) converging in C0([0, T ] × Ω). By Ascoli’s theorem
and Wolibner–Yudovich’s theorem, (Theorem 3.1), the set {Φyωk ; k ∈ N} is relatively
compact in C0([0, T ] × [0, T ] × BR;BR). Hence, without loss of generality, we may
assume the existence of Φ ∈ C0([0, T ] × [0, T ] × BR;BR) such that the sequence
(Φyωk ; k ∈ N) is converging to Φ in C0([0, T ] × [0, T ] × BR;BR). Associated with Φ
is the function s : [0, T ]× Ω :→ R defined by (see (3.23))

s(t, x) = Max {t′ ∈ [0, t]; Φ(t′, t, x) ∈ γ−}.
(Let us recall the convention Max ∅ =0.) Let (tk; k ∈ N) be a sequence of real numbers
in [0, T ] converging to some t̄ as k goes to +∞. Let (xk; k ∈ N) be a sequence of
points in Ω converging to some x̄ as k goes to +∞. It is clear that

s(t̄, x̄) > lim sup
k→+∞

syωk (tk, xk).(3.44)

Therefore in order to prove (3.43) it suffices to check that

s(t̄, x̄) 6 lim inf
k→+∞

syωk (tk, xk).(3.45)

Indeed, from (3.44) and (3.45), one gets that the sequence (syωk ; k ∈ N) converges

uniformly to s on [0, T ]×Ω as k → +∞. Let us again point out that Φ has the following
property: for any x ∈ Ω, if for 0 6 t′ 6 t 6 T Φ(t′, t, x) is not in Ω, then there exists
t′′ ∈ [t′, t] such that Φ(t′′, t, x) ∈ γ−. Indeed, it follows from the fact that the Φyωk

have this property (see above) and converge to Φ in C0([0, T ] × [0, T ] × BR;BR)
as k goes to +∞. From this property and the convergence of the Φyωk to Φ in
C0([0, T ] × [0, T ] × BR;BR) one easily sees, as above, that (3.45) holds if Φ satisfies
the following property:

∀0 < ν < t 6 T ∀x ∈ γ−, Φ([t− ν, t], t, x) 6⊂ Ω.(3.46)
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Let us prove this property. Let θ ∈ C∞(Ω) be defined by

∆θ = 0 in Ω,(3.47)

∂θ

∂n
= g on ∂Ω.(3.48)

Let us point out that the existence of θ follows from (2.6). Let us write

ỹωk = αk(t)∇θ + z̃k,

where αk ∈ C0([0, T ]) and z̃k ∈ C0([0, T ]× Ω;R2) are defined by

αk(t) = M Max {|ωk(t)|0, |ω0(x0)|} ∀t ∈ [0, T ],(3.49)

div z̃k = 0 in (0, T )× Ω,(3.50)

curl z̃k = ωk in (0, T )× Ω,(3.51)

z̃k · n = 0 on [0, T ]× ∂Ω.(3.52)

Using (3.14) and (3.15) for ω = ωk and using (3.49), one gets

M |ω0(x0)| 6 αk(t) 6M |ω0|0,(3.53)

t ∈ [0, T ]→ αk(t) is nonincreasing.(3.54)

From (3.53) and (3.54), we get the existence of α ∈ L∞(0, T ) such that, extracting
subsequences if necessary, one has

0 < M |ω0(x0)| 6 α(t) for a.e. t ∈ (0, T ),(3.55)

αk(t)→ α(t) as k → +∞ for a.e. t ∈ (0, T ).(3.56)

Let us now turn to the sequence (z̃k; k ∈ N). Let us fix r ∈ (2,+∞). Using (3.14),
(3.15), and (3.16) with ω = ωk, using also (3.50), (3.51), and (3.52), one gets that

z̃k is bounded in C0([0, T ];W 1,r(Ω;R2)),(3.57)

∂z̃k
∂t

is bounded in L∞([0, T ];H−1(Ω;R2)).(3.58)

Then, by a compactness lemma due to P.-L. Lions [18, Lemma C1, Appendix C]
(take, with the notations of [18], X = W 1,r(Ω;R2) and Y = H−1(Ω;R2)) and by the
Rellich–Kondrakov theorem, (3.57) and (3.58) imply that the sequence (z̃k; k ∈ N) is
relatively compact in C0([0, T ]×Ω;R2). Hence, extracting subsequences if necessary,
we may assume the existence of z̃ ∈ C0([0, T ] × Ω;R2) such that z̃k tends to z̃ in
C0([0, T ]× Ω;R2) as k tends to +∞. Let y : (0, T )×BR → R2 be defined by

y(t, ·) = α(t)P(∇θ) + P(z̃(t, ·))∀t ∈ (0, T ).(3.59)

Let us check that, if M > M0, y satisfies the assumptions of Lemma 3.3. By (3.3)
and (3.59), one has (3.5). It follows easily from (3.22) that

qBR(yω(t, ·) 6 C0C5 for a.e. t ∈ (0, T ),

which implies (3.5). Passing to the limit in (3.52), one gets z · n = 0, which with
(3.59) gives (3.38). Finally, if M >M0, (3.39) follows easily from the fact that

|curl y(t)|L∞(Ω) 6 lim inf
k→+∞

|curl yk(t)|L∞(Ω).
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Hence y satisfies the assumptions of Lemma 3.3, and, by this lemma, we have (3.46)
if one has

Φ = Φy.(3.60)

But, by the definition of Φyωk ,

Φyωk (t, s, x) = x+

∫ t

s

yωk(t′,Φyωk (t′, s, x))dt′.(3.61)

Letting k → +∞ in (3.61), we get, by the dominated convergence theorem,

Φ(t, s, x) = x+

∫ t

s

y(t′,Φyωk (t′, s, x))dt′,

for any (t, s, x) ∈ [0, T ] × [0, T ] × BR, which implies (3.60). This ends the proof of
Proposition 3.2.

Let us now prove the next proposition.
Proposition 3.4. For any M >M0, any maximal solution of system Σ defined

at time 0 is defined on [0,+∞) (at least).
Let us recall that ω : I → C0(Ω) is a maximal solution of system Σ if, for any

interval J containing I but not equal to I, there exists no solution of system Σ which
is equal to ω on the interval I. The existence of a maximal solution follows, as usual,
from Zorn’s lemma; hence Theorem 2.2 is a corollary of Propositions 3.2 and 3.4.

Until the end of this paper, for any ω ∈ L∞(Ω), one defines ỹω ∈ C0(Ω) and
yω ∈ C0(BR) by requiring

div ỹω = 0 and curl ỹω = ω in Ω,

ỹω · n = M |ω|L∞(Ω)g on ∂Ω,

yω = P(ỹω).

Of course if, for some interval I, ω is a map from I into L∞(Ω), the above conditions
specified at any time in I, give maps ỹω : I → C0(Ω) and yω : I → C0(BR). With
these notations, let us start the proof of Proposition 3.4 by the following simple
observation.

Lemma 3.5. Let T > 0 and let ω ∈ C0([0, T ];C0(Ω)) be a solution of system Σ.
Then, for any t ∈ [0, T ] and for any x ∈ Ω,

ω(t, x) = ω(0, ayω (t, x)) exp

(
−M

∫ syω (t,x)

0

|ω(t′)|0dt′
)
.(3.62)

In particular,

t→ |ω(t)|0 is nonincreasing.(3.63)

Indeed, for t ∈ (0, T ] and x ∈ Ω, let ω∗ : [0, t] → R be defined by ω∗(t′) =
ω(t′,Φyω (t′, t, x)). Using (2.7), (2.8), and standard smoothing procedures, one gets
that, in the sense of distributions,

dω∗

dt′
= 0 on (syω (t, x), t).

In particular,

ω(syω (t, x), ayω (t, x)) = ω∗(syω (t, x)) = ω∗(t) = ω(t, x).(3.64)



1886 JEAN-MICHEL CORON

If syω (t, x) = 0, this gives (3.62). Let us study the case where 0 < syω (t, x). It follows
directly from (2.11) that, in the sense of distributions,

∂ω

∂t′
(t′, a) = −M |ω(t′)|0ω(t′, a) on {t′ ∈ (0, T )} ∀a ∈ γ−.

In particular,

ω∗(syω (t, x)) = ω(0, ayω (t, x)) exp

(
−M

∫ syω (t,x)

0

|ω(t′)|0dt′
)
,

which, with (3.64), gives again (3.62). Property (3.63) follows from (3.62) (see the
proof of (3.35)) or note that, if 0 6 t1 6 T , t ∈ [0, T − t1]→ ω(t+ t1) is a solution of
system Σ and apply, for t = t2 − t1 ∈ [0, T − t1], (3.62) to this solution.

Let ω ∈ C0(I × Ω) ∼= C0(I;C0(Ω)) be a maximal solution to Σ such that I is an
interval containing 0. Let T = Sup I. We want to prove that T = +∞. Let us assume
that T < +∞. From Proposition 3.2, it follows that T > 0 and T 6∈ I. Therefore, in
order to get a contradiction with the maximal property of ω, it suffices to check that

ω(t) converges in C0(Ω) as t→ T−.(3.65)

Indeed, if (3.65) holds, then ω̄ : I ∪ {T} → C0(Ω) defined by ω̄ = ω on I and
ω̄(T ) = limt→T ω(t) is also a solution to system Σ.

If |ω(t)|0 → 0 as t→ T−, (3.65) holds. Therefore, by (3.63), we may assume that,
for some η > 0,

|ω(t)|0 > η ∀t ∈ [0, T ).(3.66)

As above, using, in particular, Lemma 3.3 and (3.66), one gets that syω is continuous
on [0, T ] × Ω. Therefore F (ω) defined by (3.25) is continuous on [0, T ] × Ω. But, by
Lemma 3.5, this function is equal to ω on [0, T )×Ω. This proves (3.65) and therefore
ends the proof of Theorem 2.2.

3.2. Proof of Theorem 2.4. Let V : C0(Ω)→ [0,+∞) be defined by

V (ω) = |ω exp(−θ)|0,
where θ ∈ C∞(Ω) satisfies (3.47) and (3.48). Theorem 2.4 is an easy consequence of
the following proposition.

Proposition 3.6. There exists M4 >M0 and µ > 0 such that, for any M >M4

and any solution ω : [0,+∞)→ C0(Ω) of system Σ, one has, for any t ∈ [0,+∞),

[−∞, 0] 3 V̇ (t) :=
d

dt+
V (ω(t)) 6 −µMV 2(ω(t)),(3.67)

where d/dt+V (ω(t)) := limε→0+(V (ω(t+ ε))− V (ω(t)))/ε.
Let us check that this proposition indeed implies Theorem 2.4. Let ω : [0,+∞)→

C0(Ω) be a solution of system Σ with ω(0) 6= 0 and M >M4. Integrating (3.67), one
gets

V (ω(t)) 6 V (ω(0))

1 + µMtV (ω(0))
∀t > 0.

In particular,

V (ω(t)) 6 1

µMt
∀t > 0.(3.68)
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But

|ω(t)|0 6 | exp(θ)|0V (ω(t))∀t > 0,

which, with (3.68), gives

|ω(t)|0 6 | exp(θ)|0
µMt

∀t > 0.

Since, by (3.63), |ω(t)|0 6 |ω(0)|0 for any t > 0, we get (2.12) if one takes M >
| exp(θ)|0/(µε). Therefore Theorem 2.4 holds with

M1 = Max {M4, | exp(θ)|0/µ}.
Let us now turn to the proof of Proposition 3.6. Clearly, since system Σ is

autonomous, it suffices to check that (3.67) holds for t = 0. Let us also assume that
the following lemma, which is proved in Appendix A, holds.

Lemma 3.7. For any x in Ω,

∇θ(x) 6= 0.(3.69)

From this lemma and standard elliptic estimates, we get the existence of µ0 ∈ (0, 1]
such that

∇θ · (∇θ + z) > µ0 on Ω(3.70)

for any z ∈ C0(Ω;R2) such that div z = 0, |curl z|0 6 µ0, and z · n = 0 on ∂Ω. For
t > 0, let x(t) ∈ Ω be such that

V (ω(t)) = |ω(t, x(t))| exp(−θ(x(t))).

For simplicity, we assume that ω(t, x(t)) > 0; the case where ω(t, x(t)) < 0 can be
treated in a similar way. We have

V (ω(t))− V (ω(0)) 6 κ(t),(3.71)

with

κ(t) = ω(t, x(t)) exp(−θ(x(t)))− ω(0, ayω (t, x(t))) exp(−θ(ayω (t, x(t))))

= V (ω(t))

(
1− exp

(
θ(x(t))− θ(ayω (t, x(t))) +M

∫ syω (t,x(t))

0

|ω(t′)|0dt′
))

.

(3.72)

We choose M4 = Max {1/µ0,M0} and take any M > M4. Let us again decompose
yω in the following way:

yω = M |ω(t)|0(∇θ + z),(3.73)

with div z = 0, curl z = ω/(M |ω(t)|0) (= 0 if ω(t) = 0), and z · n = 0 on ∂Ω. For
any x in Ω and for any s in [syω (t, x), t], one has

∂

∂s
(θ (Φyω (s, t, x))) = ∇θ(Φyω (s, t, x))yω (s,Φyω (s, t, x)) ,

which, with (3.70), (3.73), gives

∂

∂s
(θ (Φyω (s, t, x))) > µ0M |ω(t)|0.
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In particular,

θ(x(t))− θ (ayω (t, x(t))) > µ0M |ω(t)|0(t− syω (t, x(t))),

which, with (3.63) and (3.72), implies that

κ(t) 6MV (ω(t))|ω(t)|0 (−µ0 (t− syω (t, x (t)))− syω (t, x (t)))

6 −µ0MV (ω(t))|ω(t)|0t
6 −µ0M Min {exp(θ(x)); x ∈ Ω}V (ω(t))2t

Hence, one gets Proposition 3.6 by taking µ = µ0 Min {exp(θ(x)); x ∈ Ω}.
4. Proof of Theorem 2.8. Let us first prove (i) of Theorem 2.8. We are going

to deduce (i) of Theorem 2.8 from (the proof of) Theorem 2.2. Roughly speaking the
idea is that, if we replace (2.11) with

∂ω

∂t
= −kM |ω(t)|0 ω on {t; ω(t) 6= 0} × γ−,

then, as k → +∞, the solutions of the Cauchy problem for system Σ converge to a
solution of the Cauchy problem for system Σ1.

Reversing time in the proof of Lemma 3.3, one easily gets the following.
Lemma 4.1. There exists M5 > M0 such that, for any T > 0 and for any

y ∈ L∞ ((0, T ) ;C0
(
BR;R2

))
satisfying (3.5), (3.6) for some K > 0, and for some

function α ∈ L∞ ((0, T ) ; (0,+∞)),

y(t, ·) · n = α(t)g on ∂Ω for a.e. t ∈ (0, T ),(4.1)

M5| curl y(t)|L∞(Ω) 6 α(t) for a.e. t ∈ (0, T ),(4.2)

div y = 0 in (0, T )× Ω(4.3)

for any (t̃, x̃) ∈ [0, T )× γ+ and for any ν ∈ (0, T − t̃), there exists t ∈ (t̃, t̃+ ν), such
that

Φy
(
t, t̃, x̃

) 6∈ Ω.

We choose M2 = Max {M0,M5}, where M0 is defined in the proof of Lemma
3.3; see (B.3). Let M >M2. Let ω0 ∈ L∞(Ω). There exists a sequence (ω0,k; k ∈ N∗)
of functions in C0(Ω) such that

|ω0,k(x)| 6 |ω0|∞,Ω∩B(x,1/k) ∀k ∈ N∗ ∀x ∈ Ω,(4.4)

ω0,k(x) −→
k→+∞

ω0(x) for a.e. x ∈ Ω.(4.5)

By (the proof of) Theorem 2.2, there exists a solution ωk ∈ C0([0,∞);C0(Ω)) of
system Σ, with (2.11) replaced by

∂ωk
∂t

= −kM |ωk(t)|0 ωk on {t; ωk(t) 6= 0} × γ−,(4.6)

such that ωk(0) = ω0,k. Let ỹk = ỹωk ∈ C0([0,+∞) × Ω;R2) and let yk = yωk ∈
C0([0,+∞) × BR;R2). Let αk ∈ C0([0,+∞)) and z̃k ∈ C0([0,+∞) × Ω;R2) be
defined by

αk(t) = M |ωk(t)|0 ∀t ∈ [0,+∞),(4.7)

div z̃k = 0, curl z̃k = ωk in (0,+∞)× Ω,

z̃k · n = 0 on [0,+∞)× ∂Ω.
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One has ỹk = αk∇θ + z̃k. As in the proof of (3.43), extracting subsequences if
necessary, one gets the existence of ω in L∞((0,+∞);L∞(Ω))∩C0([0,+∞);H−1(Ω)),
of a nonincreasing function α in L∞((0,+∞), [0,+∞)) and of z̃ in C0([0,+∞) × Ω)
with t→ q(z̃(t, ·)) ∈ L∞loc(0,+∞) such that, for any T ∈ [0,+∞), one has, as k → +∞

ωk → ω in C0([0, T ];H−1(Ω)),(4.8)

ωk ⇀ ω in σ(L1((0,+∞)× Ω), L∞((0,+∞)× Ω)),(4.9)

z̃k → z̃ in C0([0, T ]× Ω;R2),(4.10)

αk(t)→ α(t) for a.e. t ∈ (0,+∞).(4.11)

Let ỹ(t) = α(t)∇θ + z̃. One has (2.8) and (2.9) for y = ỹ and I = [0, T ]. Let y ∈
L∞([0,+∞);C0(BR;R2)) be defined by y(t, ·) = P(ỹ(t, ·)). Let ϕ ∈ C1((0,+∞)×Ω)
with compact support such that

Support ϕ ⊂ ((0,+∞)× Ω) ∪ ({t ∈ (0,+∞) ; α(t) > 0} × γ−) .(4.12)

Let us check that (2.19) holds. Since αk, k ∈ N∗, and α are nonincreasing, one gets
from (4.11) and (4.12) that, for some k0 ∈ N∗, one has, for any k > k0,

Support ϕ ⊂ ((0,+∞)× Ω)× ({t ∈ (0,+∞); |ωk(t)|0 > 0} × γ−).

Hence, for any k > k0,∫
(0,+∞)×Ω

(
ωk
∂ϕ

∂t
+ ω(ỹk · ∇)ϕ

)
=

∫
(0,+∞)×Ω

αkωkgϕ.(4.13)

Let t0 > 0 be such that

α(t0) > 0,(4.14)

Support ϕ ⊂ [0, t0]× (Ω ∪ γ−).(4.15)

Since αk, k ∈ N∗, and α are nonincreasing, it follows again from (4.12) that there
exists a positive integer k1 > k0 such that, for any k > k1 and any t ∈ [0, t0],
αk(t) > α(t0)/2. Hence, by (4.4) and (4.6), one has, for any (t, x) ∈ [0, t0]× γ−,

|ωk(t, x)| 6 |ω|∞ exp

(
−kα(t0)t

2

)
.(4.16)

Hence, letting k go to +∞ in (4.13), and using (4.14), (4.15), and (4.16), one gets
(2.19).

It remains to check that

M |ω(t)|∞ = α(t) for a.e. t ∈ (0,+∞).(4.17)

By (4.7), (4.8), and (4.11),

M |ω(t)|∞ 6 α(t) for a.e. t ∈ (0,+∞).

Hence, in order to prove (4.17), it suffices to check that, if for some 0 < t1 < t2, for
some χ > 0, and for some k2 > 0,

αk(t2) > χ∀k > k2,(4.18)

then

M |ω(t1)|∞ > χ.(4.19)
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Let xk ∈ Ω be such that

M |ωk(t2, xk)| = αk(t2).(4.20)

Still extracting subsequences if necessary, we may assume that, for some x∞ ∈ Ω,

xk → x∞ as k →∞.(4.21)

Let x̄∞ = Φy(0, t2, x∞). Let us assume for the moment that the following lemma
holds.

Lemma 4.2. There exists ρ > 0 and k3 > k2 such that, for any k > k3 and for
any t ∈ [0, t1],

Φyk(t, 0, x̄) ∈ Ω ∀x̄ ∈ Ω ∩B(x̄∞, ρ).(4.22)

Letting k → +∞ in (4.22), one gets

Φy(t1, 0,Ω ∩B(x̄∞, ρ)) ⊂ Ω.(4.23)

From Lemma 3.3 and (4.22), it follows that, for any x̄ ∈ Ω∩B(x̄∞, ρ) and any k > k3,

sωk(t1,Φ
yk(t1, 0, x̄)) = 0,

so that, by (3.62),

ωk(t1,Φ
yk(t1, 0, x̄)) = ω0(x̄).(4.24)

Let us point out that (4.24) implies that

ω(t1, x) = ω0(Φy(0, t1, x)) for a.e. x ∈ Φy(t1, 0,Ω ∩B(x̄∞, ρ)).(4.25)

Indeed, let us first notice that, since Φy(t, 0, ·) is a homeomorphism of BR—its inverse
is Φy(0, t, ·)—it follows from (4.23) and the invariance of domain theorem (see, e.g.,
[19, Theorem 3.3.2]) that

Φy(t, 0,Ω ∩B(x̄∞, ρ)) ⊂ Ω ∀t ∈ [0, t1].(4.26)

Let ψ ∈ C∞(Ω), the support of which is included in the open subset Φy(t1, 0,Ω ∩
B(x̄∞, ρ)) ⊂ Ω. Then, by (4.8),

< ω(t1, x), ψ >H−1(Ω),H1
0 (Ω)= lim

k→+∞
Ik,(4.27)

with

Ik =

∫
Φy(t1,0,Ω∩B(x̄∞,ρ))

ωk(t1, x)ψ(x)dx.

Since div ỹk = 0, one gets, using also (4.22) and (4.24), the existence of k4 > k3 such
that, for any k > k4,

Ik =

∫
Φyk (t,0,Ω∩B(x̄∞,ρ))

ωk(t1, x)ψ(x)dx

=

∫
Ω∩B(x̄∞,ρ)

ωk(t1,Φ
yk(t1, 0, x̄)ψ(Φyk(t1, 0, x̄))dx̄

=

∫
Ω∩B(x̄∞,ρ)

ω0(x̄)ψ(Φyk(t1, 0, x̄))dx̄.
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Note that, by (4.26) and the fact that div y = 0 in (0, T ) × Ω, Φy(t1, 0, ·) restricted
to Ω ∩B(x̄∞, ρ) preserves the Lebesgue measure. Hence

lim
k→+∞

Ik =

∫
Ω∩B(x̄∞,ρ)

ω0(x̄)ψ(Φy(t1, 0, x̄))dx̄

=

∫
Φy(t1,0,Ω∩B(x̄∞,ρ))

ω0(Φy(0, t1, x))ψ(x)dx,

which, with (4.27), implies (4.25). From Lemma 3.5, with kM instead of M in (3.62),
(4.18), and (4.20), one has

(4.28) χ 6M |ωk(t2, xk)| 6M |ω0,k(Φyk(syk(t2, xk), t2, xk)|
× (exp (−kMχsyk(t2, xk))) .

In particular, by (4.4),

syk(t2, xk)→ 0 as k → +∞,
which, with (4.4), (4.18), (4.20), and (4.28), implies that

M |ω0|∞,Ω∩B(x̄∞,ρ) > χ.(4.29)

This inequality, together with (4.25) and the fact that Φy(t1, 0, ·) restricted to Ω ∩
B(x̄∞, ρ) preserves the Lebesgue measure, implies that

M |ω(t1)|∞,Φy(t1,0,Ω∩B(x̄∞,ρ)) > χ,(4.30)

which gives (4.19).
It remains to prove Lemma 4.2. Let us first point out that

Φy(t, t2, x∞) ∈ Ω ∀t ∈ [0, t2].(4.31)

Indeed, if (4.31) does not hold, there exists t3 ∈ (0, t2] such that Φy(t3, t2, x∞) 6∈ Ω.
Then, for some k5 > 0,

syk(t2, xk) > t3/2 ∀k > k5,

which, with (4.4) and (4.6), implies that

χ 6M |ωk(t2, xk)| 6M |ω0|∞ exp (−kMχt3/2) .(4.32)

Letting k go to +∞ in (4.32), we get a contradiction. This ends the proof of (4.31).
One easily checks that y satisfies the assumption of Lemma 4.1. Since Φy(t, t2, x∞)

= Φ(t, 0, x̄∞), Lemma 4.1 and (4.31) give that

Φy(t, 0, x̄∞) ∈ Ω \ γ+ ∀t ∈ [0, t1],

which implies Lemma 4.2.
Let us now prove (ii) of Theorem 2.8. One needs the following lemma, which is

analogous to Lemma 3.5 but requires a different proof.
Lemma 4.3. Let T > 0, let ω ∈ C0([0, T ];H−1(Ω)) ∩ L∞([0, T ];L∞(Ω)) be a so-

lution of system Σ1, and let t ∈ [0, T ]. Then the closed set S(t) := {x ∈ ω; ayω (t, x) ∈
∂Ω and syω (t, x) = 0} has measure 0 and, for a.e. x ∈ Ω,

ω(t, x) = ω(0,Φyω (0, t, x)) if syω (t, x) = 0,(4.33)

ω(t, x) = 0 if syω (t, x) > 0,(4.34)



1892 JEAN-MICHEL CORON

where syω is defined by (3.23)—recall the convention Max ∅ = 0. In particular, (3.62)
again holds (for a.e. (t, x) ∈ (0, T )× Ω).

With this lemma, which is proved at the end of this section, one gets easily (ii) of
Theorem 2.8. Indeed, let ω be a maximal solution of system Σ1 defined on an interval
I containing 0 and let us assume that T := Sup I < +∞. Again, it follows from (i)
of Theorem 2.8 that

T 6∈ I.(4.35)

Using (3.62), which holds by Lemma 4.3, one gets that |ω(t)|∞ 6 |ω(0)|∞ for any
t in [0, T ). Then, using the fact that ∂ω/∂t = − div (ωy), one gets that ω ∈
H1((0, T );H−1(Ω)). Hence

ω(t) converges in H−1(Ω) as t→ T−.(4.36)

Then ω̄ : I ∪ {T} → C0(Ω) defined by ω̄ = ω on I and ω̄(T ) = limt→T ω(t) is also a
solution of system Σ1, a contradiction with the maximal property of ω and (4.35).

Finally, we briefly sketch the proof of Lemma 4.3. Let us first check that S(t) has
measure 0. One has

S(t) ⊂ {Φyω (t, 0, x̄); x̄ ∈ γ−, Φyω (s, 0, x̄) ∈ Ω ∀s ∈ (0, T ]}.
Hence, since div yω = 0 in (0, T )× Ω, S(t) has measure 0.

Let us now prove (4.33). Let U = {(t, x) ∈ (0, T ) × Ω; ayω (t, x) ∈ Ω}. Let
us consider the linear hyperbolic equation that we call L, where f : U → R is the
unknown,

∂f

∂t
+ div (fyω) = 0 in U,(4.37)

f(0, ·) = ω(0, ·) on {0} × Ω,(4.38)

where (4.37) and (4.38) have to be understood in a weak sense. More precisely a
function f : U → R is a solution of L if f ∈ L∞(U) and is such that, for any
ψ ∈ C1

0 (U ∪ ({0} × Ω)),∫
U

f

(
∂ψ

∂t
+ (yω · ∇)ψ

)
= −

∫
Ω

ω(0, ·)ψ(0, ·).

Clearly ω is a solution of L. Moreover ω̄ : U → R, defined by

ω̄(t, x) = ω(0,Φyω (0, t, x))∀(t, x) ∈ U,
is also a solution of L. Hence, in order to prove (4.33), it suffices to check that L has
a unique solution. When yω is of class C1, this is a classical result due to Olĕınik [21];
see also [11, Theorem 2.2.1]. When yω ∈ L∞

(
[0, T ];C0

(
BR;R2

))
—satisfying (3.5)—

and such that t → qBR(y(t, ·)) ∈ L∞(0, T ) one needs a (very slight) modification of
the proof since, for example, (2.2.10) in [11] is no longer true. Let us briefly describe
the modification. By standard smoothing procedures, one can construct, for ε ∈ (0, 1],
yε ∈ C1([0, T ]×BR;BR) be such that, for some C7 > 0,

|yε − yω|0,[0,T ]×BR 6 C7ε
3/4 ∀ε ∈ (0, 1],(4.39)

Support yε ⊂ [0, T ]×BR/2 ∀ε ∈ (0, 1],(4.40)

|∇yε|0,[0,T ]×BR 6 C7ε
−1/4 ∀ε ∈ (0, 1].(4.41)
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Let ϕ ∈ C1([0, T ] × BR), the support of which is included in U . Let, for ε ∈ (0, 1],
ψε ∈ C1([0, T ]×BR) be defined by

ψε(t, x) = −
∫ T

t

ϕ(s,Φy
ε

(s, t, x))ds.

One has

ψε(T, ·) = 0,

∂ψε

∂t
+ (yε · ∇)ψε = ϕ,

and one easily checks that, at least for ε small enough, Support ψε ⊂ U ∪ ({0} × Ω).
Therefore, at least for ε small enough,∫

U

(ω − ω̄)ϕ =

∫
U

(ω − ω̄)((yε − yω) · ∇)ψε.(4.42)

But, with (4.41), one gets the existence of C8 such that

|∇Φy
ε |0,[0,T ]×BR×BR 6 C8ε

−1/4 ∀ε ∈ (0, 1].

This gives the existence of C9 such that

|∇ψε|0,[0,T ]×BR 6 C9ε
−1/4 ∀ε ∈ (0, 1],

which, with (4.39), implies that

lim
ε→0
|((yε − yω) · ∇)ψε|0,[0,T ]×BR = 0.(4.43)

From (4.42) and (4.43), one gets ∫
U

(ω − ω̄)ϕ = 0,

and therefore ω = ω̄ on U . The proof of (4.34) is similar to the proof of (4.33):
consider U ′ = {(t, x) ∈ (0, T ) × Ω; syω (t, x) > 0} and the linear hyperbolic equation
L′ (∂f/∂t) + div (fyω) = 0 on U ′ with, instead of (4.38), the boundary condition
f = 0 on (0, T )×γ−; as above, one shows that this equation L′ has a unique solution;
but ω and 0 are solutions of L′ on U ′, which proves (4.34). We omit the details.

Appendix A. Proof of Lemma 3.7. Since θ is harmonic on Ω, which is simply
connected, it admits a harmonic conjugate ψ ∈ C∞(Ω). One has, with x = (x1, x2),

∂ψ

∂x1
=

∂θ

∂x2
,
∂ψ

∂x2
= − ∂θ

∂x1
.(A.1)

Let τ ∈ C∞(∂Ω;R2) be the unit tangent vector field on ∂Ω such that (τ, n) is a direct
basis of R2 at any point of ∂Ω. From (A.1) one gets

∂ψ

∂τ
=
∂θ

∂n
on ∂Ω,(A.2)

∂ψ

∂n
= −∂θ

∂τ
on ∂Ω.(A.3)

By (2.3), the closed set ∂Ω \ (γ+ ∪ γ−) has two connected components, that we call
Γ+ and Γ−. By (3.48) and (A.2), there are two constants C+ and C− such that

ψ = C+ on Γ+, ψ = C− on Γ−.(A.4)
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Relabeling, if necessary, Γ+ and Γ−, we may assume that

C− 6 C+.(A.5)

By (3.48) and (A.2),

∂ψ

∂τ
< 0 on γ−,

∂ψ

∂τ
> 0 on γ+,

which, with (A.4) and (A.5), implies that

C− < C+,(A.6)

ψ(x) ∈ [C−, C+] ∀x ∈ ∂Ω.(A.7)

Using (A.4), (A.6), and (A.7), together with the strong maximum principle applied
to the harmonic function ψ, one gets that

∂ψ

∂n
< 0 on Γ−,

∂ψ

∂n
> 0 on Γ+,(A.8)

which, with (A.3), implies that

∂θ

∂τ
> 0 on Γ−,

∂θ

∂τ
< 0 on Γ+.(A.9)

From (2.3), (3.48), and (A.9), one gets that

∇θ(x) 6= 0 ∀x ∈ ∂Ω,(A.10)

degree (∇θ,Ω, 0) = 0.(A.11)

Let f : Ω ⊂ R2 ∼= C→ C ∼= R2 be defined by

f(x1 + ix2) =
∂θ

∂x1
(x1, x2)− i ∂θ

∂x2
(x1, x2).(A.12)

Then f is holomorphic and, by (A.10), does not vanish on ∂Ω; therefore the degree
deg (f,Ω, 0) is well defined and is equal to the number of zeros of f , counted according
to their multiplicity. But, by (A.11) and (A.12), degree (f,Ω, 0) = − degree (∇θ,Ω, 0)
= 0. Therefore f does not vanish on Ω, which proves Lemma 3.7.

Appendix B. Proof of Lemma 3.3. Let τ− ∈ C∞(Γ+ ∪ Γ−;R2) be defined
by requiring

τ−(x) ∈ {τ(x),−τ(x)} ∀x ∈ Γ+ ∪ Γ−,(B.1)

τ−(x) is pointing outside Γ+ ∪ Γ− ∀x ∈ ∂γ−.(B.2)

Note that ∂γ− has two elements and is included in Γ+ ∪ Γ−. It follows from (A.9)
that

(∇θ(x)) · τ−(x) < 0 ∀x ∈ ∂γ−,
which, with standard elliptic estimates, implies the existence of M0 > 0 such that, for
any z ∈ C0(Ω;R2) and for any x ∈ Γ+ ∪ Γ− such that dist (x, ∂γ−) 6 1/M0,


z · n = g on ∂Ω

div z = 0 in ∂Ω

M0| curl z|L∞(Ω) 6 1

⇒ (
z(x) · τ−(x) 6 − 1

M0

)
.(B.3)
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Finally, let us remark that M0 has the property required by Lemma 3.3. Indeed, let
y ∈ L∞ ((0, T ) ;C0

(
BR;R2

))
satisfying (3.5), (3.6) for some K > 0, (3.38)–(3.39) for

some α ∈ L∞ ((0, T ) ; (0,+∞)), and (3.40). We argue by contradiction and therefore
assume the existence of (t̃, x̃) ∈ (0, T ]× γ−, and ν ∈ (0, t̃) such that

Φy
(
t, t̃, x̃

) ∈ Ω ∀t ∈ (t̃− ν, t̃).(B.4)

For t ∈ [t̃−ν, t̃], let k(t) = Φy
(
t, t̃, x̃

)
. We claim that there exists ν1 ∈ (0, ν] such that

k(t) ∈ ∂Ω ∀t ∈ [t̃− ν1, t̃].(B.5)

Indeed, (B.5) follows easily from (3.38) and (B.4) if y is smooth enough, e.g., locally
Lipschitz with respect to x. As in the proof of (3.41), the case where y is not smooth
follows from the main ingredient, due to Wolibner [25], to prove the uniqueness of Φy

in Theorem 3.1; since the proof is very similar to the proof of (3.41) given above, we
omit it. From (3.38) and (B.5), we get that

k(t) ∈ Γ+ ∪ Γ− ∀t ∈ [t̃− ν1, t̃].(B.6)

By (3.38), (3.39), (3.40), and (B.3), there exists ν2 ∈ (0, ν1] such that

k̇(t) · τ−(k(t)) 6 − 1

M0
α(t) ∀t ∈ [t̃− ν2, t̃].(B.7)

Since k(t̃) ∈ γ−, and α(t) > 0 for a.e. t ∈ (0, T ), (B.6) and (B.7) are in contradiction—
recall (B.2).
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Abstract. Certain shift operator induced finite-dimensional approximations of an important
class of delay systems are studied. H∞, H2, and L1 error bounds are given for stable delay systems.
Furthermore, a multiple shift formula, generated by a second-order Padé shift, is analyzed further,
and an exact asymptotic H∞ error formula is derived. The studied class of shift operator induced
approximations provides an appealing and most transparent approach for determining good finite-
dimensional models of delay systems.
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1. Introduction. This paper studies certain shift operator induced approxima-
tions of a class of stable delay systems. This belongs to the classic topic of approxima-
tion of stable systems by exponentials (i.e., by finite-dimensional systems); see, e.g.,
Wiener [38], Kautz [15], Horowitz [13], McDonough and Huggins [26], and Kammler
[14]. The new approximation approach studied here provides the most transparent
approximations of delay systems with minimum effort, which makes it ideally suited
for control engineering textbooks and courses. The studied approach should make
it possible to reintroduce delay systems as a main type of plant model in modern
undergraduate and graduate level control engineering textbooks, as once was the case
in classical textbooks on process control.

There are several norms that are of interest as a measure of the approximation
accuracy, especially the L1 norm (see Glover, Curtain, and Partington [7], Mäkilä
[19, 20], Partington [28], and Mäkilä [22]), the L2 norm (see Glover, Curtain, and
Partington [7], Glover, Lam, and Partington [10], Mäkilä [20], Wahlberg and Mäkilä
[36]), and the H∞ norm (see Glover, Lam, and Partington [8, 9], Lam [17], Mäkilä
[20], Partington [28, 29], and Wahlberg and Mäkilä [36]).

Classically, most of the interest in approximation by exponentials has been as-
sociated with certain orthonormal exponential bases, especially exponential Laguerre
and Legendre functions (see Szegő [35], Wiener [38], and Horowitz [13]). The classical
theory of orthonormal polynomials has been very useful in analyzing Laguerre, Leg-
endre, and Kautz approximations of linear systems, especially of delay systems (see
Glader et al. [6], Wahlberg and Mäkilä [36], and Mäkilä [21]).

In the Laplace transform domain the above-mentioned orthonormal basis approx-
imations produce rational approximations with fixed poles. Walsh [37] is a classical
reference on fixed pole rational approximation, which has many applications to H2

and H∞ approximation and to identification of systems (see Mäkilä and Parting-
ton [23], Mäkilä, Partington, and Gustafsson [25], Ninness and Gustafsson [27], and
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Heuberger, Van den Hof, and Bosgra [11]).
More recently there has been growing interest in rational approximations based

on rational wavelets (see Pati [31], Pati and Krishnaprasad [32], Dudley, Ward, and
Partington [2, 3, 4], and Partington [30]), which allow the choice of the pole locations
from certain infinite sets. Rational wavelets are examples of redundant, rich, model
sets, or dictionaries, which offer the potential for better degree of approximation than
expansions in a single orthonormal basis.

Shift operators are very important in operator theory and in its many applications
(see Rosenblum and Rovnyak [34]). It turns out that shift operator techniques are
also very useful in approximation of linear systems by finite-dimensional systems (see
Wahlberg and Mäkilä [36]). This is true partly because many important orthonormal
bases, such as Laguerre and Kautz bases, are known to be induced by corresponding
shift operators. It is also known that the delay operator is a shift operator. Certain
Padé approximations of delay systems are also known to be associated with shift
operators (for general material on Padé approximations see, e.g., Petrushev and Popov
[33]). Therefore, shift operator techniques carry much potential for the purpose of
modeling linear systems. Very detailed and strong results can be derived for certain
shift operator approximations of delay systems. In Mäkilä and Partington [24], certain
multiple Laguerre and Kautz shift induced approximations were studied in detail. In
the present work a more general class of shift operator induced approximations of a
class of delay systems is studied. The studied approach allows one to determine good
low-order approximations of delay systems in a most transparent manner without
any computations. Due to the elegant simplicity of the approximations, their error
behavior can be analyzed to an unusual degree of completeness.

The rest of this paper is organized as follows. In section 2 some mathematical
background material is reviewed briefly. Section 3 introduces the class of shift operator
induced approximations of delay systems that will be studied in the present work.
This approximation technique can also be interpreted in terms of all-pass rational
approximations of the Laplace domain delay operator. H∞ and H2 error bounds
for this technique are given here, too. In addition, L1 error bounds are derived. In
section 4 a special case of the general technique is studied in detail, namely, the so-
called Padé-2 shift formula. Some very detailed H∞ error bounds are given here and
an asymptotically exact H∞ error formula is derived. Section 5 provides a numerical
example. Finally some conclusions are drawn in section 6.

2. Mathematical preliminaries. Let Hp denote the Hardy space of functions
f , over the real field, which are analytic in the open right half complex plane such that
|f(σ + jω)|p is integrable for each σ > 0, and supσ>0[

∫∞
−∞ |f(σ + jω)|p dω]1/p < ∞,

where 1 ≤ p <∞. Here f is defined over the real field, meaning that f(s) = f(s̄) (f
has real-valued coefficients only). Of special interest to us are the Hardy spaces H2 and
H∞. In H2 we shall use the norm ‖f‖2 ≡

√
1/(2π) supσ>0[

∫∞
−∞ |f(σ + jω)|2 dω]1/2.

The choice of the coefficient
√

1/(2π) in the definition of the H2 norm is convenient
as this makes the Laplace transform operator L an isometry from L2(0,∞) onto H2.
Finally, the Hardy space H∞ of bounded analytic functions f in the right half plane
is equipped with the norm ‖f‖∞ = supRe s>0 |f(s)| < ∞. (Note that the notation
‖ · ‖p is used to denote both the Lp norm and the Hp norm.)

Let H be a Hilbert space with inner product (·, ·). The norm for x ∈ H is defined
as ‖x‖ ≡ (x, x)1/2. Let A denote a bounded linear operator from the Hilbert space
H into H. Let A∗ denote the adjoint operator of A, that is, (Ax, y) = (x,A∗y) for
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all x, y ∈ H. A bounded operator S : H → H is said to be a shift operator if S is an
isometry and S∗n → 0 strongly (that is, ‖S∗nx‖ → 0 for any x in H). A subspace E
of H is called cyclic for the bounded operator A if

∨
k≥0A

kE = H. (Here
∨

denotes
linear envelope.) The multiplicity of a shift operator S is the minimum dimension
of a cyclic subspace for S. Multiplicity of a shift operator is important as two shift
operators are unitarily equivalent if and only if they have the same multiplicity. (Uni-
tarily equivalent operators are indistinguishable for many purposes.) Rosenblum and
Rovnyak [34] give more mathematical background material on shift operators.

An example of a shift operator on H2 is the so-called Laguerre shift SL, defined by
SL : G(s)→ G(s)(s−1/2)/(s+1/2) for any G ∈ H2. (This shift is simply the Laplace
transform of the (unitarily equivalent) Laguerre shift on L2(0,∞); see Rosenblum and
Rovnyak [34].) The multiplicity of the Laguerre shift is one as

∨
k≥0 S

k
L1/(s+ 1/2) =

H2 by a classical closure result based on Laguerre functions (see Szegő [35]).
A fundamental shift operator is the delay operator. Let Sh denote the shift

operator on H2, defined by (Shf)(s) = e−hsf(s), f ∈ H2. Here h > 0 corresponds to
the time delay. Therefore, this operator corresponds to multiplication with e−hs. The
presence of this operator in most real problems makes control and systems theory a
highly nontrivial theory. Note that the multiplicity of the shift Sh on H2 is infinite.

Thus the delay operator on H2 is in a certain sense a complex shift operator.
The corresponding right shift operator, Sd, defined on the space of square summable
sequences `2 by Sd(x1, x2, . . .) = (0, x1, x2, . . .), for any x ∈ `2, is clearly of multiplicity
one and so has mathematically a rather simple structure. It is for this reason that
the theory of the shift operator is rather more difficult in continuous time control and
systems theory than in discrete time.

More generally it can be shown that any operator of multiplication onH2 by a non-
constant inner function u gives rise to a shift operator, which has finite multiplicity
if and only if u is a Blaschke product. See, for example, [1, Chapter 1].

Finally, the standard notation sn = O(fn) means that the nonnegative sequences
{sn}, {fn}n≥1 satisfy sn ≤ Cfn, for some constant C > 0, for n large enough.

3. A general multiple shift formula. In this section we consider approxima-
tion of stable delay systems by certain multiple shift formulas.

Recall that multiplication with e−hs is a shift operator on H2. Note that the best
rational H∞ approximation, of any degree, of e−hs is the zero function. The transfer
function e−hs corresponds to the pure transmission line, the so-called delay line, for
which many classical approximation methods such as Padé approximations and Bessel
approximations have been used (see Kuo [16], Glover, Lam, and Partington [10], and
Glader et al. [6]).

We shall study delay systems of the form G(s) = e−hsR(s), where h > 0 and
R 6= 0 is a stable, strictly proper, rational transfer function. Let m ≥ 1 denote the
relative degree of R(s). (Recall that the relative degree of a rational transfer function
R(s) is defined as the difference between the degrees of the denominator polynomial
and the numerator polynomial of R(s).)

An even simpler approximation technique than the full Padé approximation is
based on the relationship

e−hs = lim
n→∞

(
1− hs

2n

1 + hs
2n

)n
.(3.1)
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Note that the shift operator S
(n)
L defined by

S
(n)
L f ≡

(
1− hs

2n

1 + hs
2n

)n
f, f ∈ H2,(3.2)

is essentially a multiple Laguerre shift of multiplicity n. Thus this approximation
procedure involves approximating the shift operator corresponding to multiplication

with e−hs by the shift operator S
(n)
L .

This suggests a Laguerre shift type approximation of a stable delay system of the

earlier mentioned form G(s) = e−hsR(s), namely, the approximation S
(n)
L R(s). This

type of approximation has been studied in Lam [18] and Mäkilä and Partington [24].
Such approximations are easy to compute and also easy to implement using analog
filters.

The Laguerre formula is an example of a much more general construction, which
we now analyze.

Let u(s) be an inner function (a stable all-pass function) that lies in H∞ on the
right-hand half plane and is analytic in a neighborhood of the origin. For physical
reasons we shall assume that u(s) = u(s), and for the purposes of rational approxi-
mation we shall normally require u to be rational. We shall choose the normalization
u(0) = 1.

One simple way to construct examples of such functions is to write

u(s) =
p(−s)
p(s)

,(3.3)

where p is a real polynomial with no zeroes in the closed right-hand half plane. An
example analyzed in Mäkilä and Partington [24] is p(s) = 1 + s/2; another important
example (based on Padé approximation) is p(s) = 1+s/2+s2/12. This latter example
will be studied in more detail in the next section.

The intention is to approximate an exponential e−hs by the inner function

un(hs) := (u(hs/n))n.(3.4)

Note first that, using the Taylor expansion, there is an index k ≥ 1 and constants A,
B, and C > 0 such that

A|ω|k ≤ ∣∣e−jω − u(jω)
∣∣ ≤ B|ω|k for |ω| ≤ C.(3.5)

We also have

‖e−jω − u(jω)‖∞ ≤ 2,(3.6)

since both functions are inner.
Note that for nonzero R(s) with relative degree m(≥ 1), there exist positive

constants D, E, and F , such that

E|ω|−m ≤ |R(jω)| ≤ F |ω|−m for |ω| ≥ D.(3.7)

The following lemma shows that dilations of u provide approximations to the
exponential function with, in general, improved error bounds.

Lemma 3.1. Under the hypotheses above,

|e−jhω − un(jhω)| ≤ min

(
2, B

hk|ω|k
nk−1

)
for |ω| ≤ nC/h.(3.8)
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Proof. We use the formula (an− bn) = (a− b)(an−1 +an−2b+ · · ·+abn−2 + bn−1),
with a = e−jhω/n and b = u(jhω/n). Since |a − b| ≤ B|hω/n|k for |hω/n| ≤ C, and
|a| = |b| = 1, we obtain the result.

The following general result shows how the dilations of u provide shift operators
which converge strongly to the exponential shift. For a function G defined on the right
half plane, we define ShG by (ShG)(s) = e−hsG(s) and Su,n,hG by (Su,n,hG)(s) =
un(hs)G(s). We write A0 for the closed subspace of H∞ consisting of functions G
continuous on the closed right half plane, such that G(jω)→ 0 as ω → ±∞.

Corollary 3.1. Let u be a rational inner function satisfying (3.5) with k > 1.
Then for every G ∈ H2 one has ‖Su,n,hG − ShG‖2 → 0 as n → ∞; and for every
G ∈ A0 one has ‖Su,n,hG− ShG‖∞ → 0 as n→∞.

Proof. By Lemma 3.1 we see that un(jhω) → e−jhω pointwise as n→∞, and
hence, since e−hs and un(hs) are inner, Lebesgue’s dominated convergence theo-
rem implies that ‖Su,n,hG − ShG‖2 → 0 when G ∈ H2. Moreover the bound in
Lemma 3.1 shows that Su,n,hG tends uniformly to ShG on the imaginary axis, since,
if ε > 0 is given, there is an M such that |G(jω)| < ε/2, whenever |ω| ≥M , and
hence |(e−jhω − un(jhω))G(jω)| < ε if |ω| ≥ M . It is now necessary to show only
that the same applies for |ω| < M , if n is sufficiently large, and this follows from
Lemma 3.1.

We define ωn and ω∗n to be the solutions of the equations

Bhkωkn/n
k−1 = 2 and Bhkω∗n

k/nk−1 =
√

2,(3.9)

so that ωn and ω∗n grow as n(k−1)/k.
Let R be a stable rational function satisfying (3.7). We may choose D large

enough that FD−m ≤ ‖R‖∞.
Theorem 3.1. Under the hypotheses above, provided that D ≤ ωn ≤ Cn/h, one

has

‖R(s)e−sh −R(s)un(sh)‖∞ ≤ max

{
‖R‖∞Bh

kDk

nk−1
, max
ω∈{D,ωn}

FBhkωk−m

nk−1
, 2Fω−mn

}
.

(3.10)

Proof. This follows by considering the intervals [0, D], [D,ωn], and [ωn,∞) sepa-
rately, using the estimates in Lemma 3.1.

Similar analyses can be performed for small n, if D ≤ ωn ≤ Cn/h is no longer
satisfied, by considering intervals in the same way. We shall see specific examples of
this later.

To establish some lower bounds, we need an estimate corresponding to that in
Lemma 3.1.

Lemma 3.2. Under the hypotheses above,

|e−jhω − un(jhω)| ≥ 2
√

2A

π

hk|ω|k
nk−1

, for |ω| ≤ min{ω∗n, Cn/h}.(3.11)

Proof. Without loss of generality we can take ω ≥ 0. We consider the argument
of un(jhω) and use the standard inequalities

2
√

2

π
|θ| ≤ ∣∣1− eiθ∣∣ ≤ |θ| for |θ| ≤ π/2,(3.12)

implying that

2
√

2

π
| arg z − argw| ≤ |z − w| ≤ | arg z − argw|(3.13)
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whenever |z| = |w| = 1 and | arg z − argw| ≤ π/2. Hence

A

(
hω

n

)k
≤
∣∣∣∣arg(u(jωh/n))− hω

n

∣∣∣∣ ≤ π

2
√

2
B

(
hω

n

)k
≤ π

2n
(3.14)

for |hω/n| ≤ C and |ω| ≤ ω∗n, and hence

| arg(un(jωh))− hω| ≥ nA
(
hω

n

)k
,(3.15)

which implies the asserted inequality.
We can now derive a lower bound, corresponding to the upper bound in Theorem

3.1.
Theorem 3.2. Under the hypotheses above, provided that D ≤ ω∗n ≤ Cn/h, one

has

‖R(s)e−sh −R(s)un(sh)‖∞ ≥ max
ω∈{D,ω∗n}

2
√

2AE

π

hkωk−m

nk−1
.(3.16)

Proof. This follows at once from Lemma 3.2, using (3.7).
Corollary 3.2. Under the hypotheses of Theorem 3.1, the asymptotic rate of

H∞ convergence of R(s)un(sh) to R(s)e−sh as n→∞ is of order exactly n−λ, where
λ = (k − 1) min(1,m/k).

Proof. This follows immediately from Theorems 3.1 and 3.2, on considering the
cases m ≤ k and m ≥ k separately.

For example, if k = 3, which is the case with the function u(s) = (1− s/2)/(1 +
s/2), analyzed in Mäkilä and Partington [24], then the exact H∞ convergence rates
for m = 1, 2, 3, 4, . . ., are of orders n−2/3, n−4/3, n−2, n−2, . . ..

The bounds given in Theorems 3.1 and 3.2 can also be used to determine the
exact H2 convergence rates.

Theorem 3.3. Under the hypotheses of Theorem 3.1, the asymptotic rate of H2

convergence of R(s)un(sh) to R(s)e−sh as n → ∞ is of order exactly n−µ, where
µ = (k − 1) min(1, (2m− 1)/(2k)).

Proof. Writing K1,K2, . . . for positive constants which we do not need to write
down explicitly, we find that the estimates used in Lemma 3.1 and Theorem 3.1 show
that the square of an upper H2 bound is

K1

∫ D

0

ω2k

n2k−2
dω +K2

∫ ωn

D

ω2k−2m

n2k−2
dω +K3

∫ ∞
ωn

ω−2m dω,(3.17)

which, using the fact that ωn is of order n(k−1)/k, gives three terms, each of order at
most the greater of n−(2k−2) or n−(k−1)(2m−1)/k.

Likewise a lower bound can be obtained by using the estimates in Lemma 3.2 and
Theorem 3.2 and integrating from D to ω∗n. This gives as the square of a lower bound
the quantity

K4

∫ ω∗n

D

ω2k−2m

n2k−2
dω,(3.18)

which, since ω∗n is of order n(k−1)/k, produces a lower bound the same as the upper
bound (to within a factor independent of n).

For example, if k = 3, as for the function u(s) = (1 − s/2)/(1 + s/2), discussed
above, the exact H2 convergence rates for m = 1, 2, 3, 4, 5, . . ., are of orders n−1/3,
n−1, n−5/3, n−2, n−2, . . ., which is a result given in Mäkilä and Partington [24].
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We now turn our attention to L1 error bounds for the corresponding impulse
response functions. The following lemma shows that they are not very much worse
than the H∞ bounds, and it applies in a very general setting. We let L denote the
Laplace transform operator, which maps L1(0,∞) contractively into H∞.

Lemma 3.3. Let g ∈ L1(0,∞) and let (gn) be any sequence of degree-n approx-
imants in L1(0,∞) such that ‖Lgn − Lg‖∞ = O(n−λ) as n → ∞, for some λ > 1.
Then ‖gn − g‖1 = O(n1−λ) as n→∞.

Proof. It is well known (see also Partington [29]) that for functions f ∈ L1 whose
Laplace transforms are rational of degree n the inequality ‖g‖1 ≤ 2n‖Lg‖∞ holds.
We therefore see that

‖g2r − g2r+1‖1 ≤ 2(2r + 2r+1)‖Lg2r − Lg2r+1‖∞ = O(2r−λr),(3.19)

implying that (g2r ) is a Cauchy sequence in L1 whose limit must be g. Hence ‖g2r −
g‖1 = O(2r−λr). To obtain the result for general n we choose r such that 2r ≤ n <
2r+1 and use the inequality ‖gn−g2r‖1 ≤ 2(n+ 2r)‖Lgn−Lg2r‖∞ = O(n1−λ).

A rather better bound can be obtained by using the continuous-time version of
the Hardy–Littlewood inequality

‖g‖1 ≤ K1‖(Lg)′‖H1
(3.20)

(see also [5, Ex. 11.3], Hille and Tamarkin [12]). (In this and the following calculation,
we shall use K1, K2, etc., to denote positive constants that we do not estimate.) To
do this, we need to bound the H1 norm of the derivative of R(s)(e−hs−un(hs)). Note
that it follows from (3.5) that |−e−s−u′(s)| ≤ K2|s|k−1 for |s| sufficiently small. It is
also clear that u′(s) ∈ H∞ if u is rational and inner. Moreover we have the following
bound: for n ≥ 2,

|e−jhω(n−1)/n − u(jhω/n)n−1| ≤ min

(
2,K3

hk|ω|k
nk−1

)
for |ω| ≤ nK4/h,(3.21)

analogous to Lemma 3.1. Putting these inequalities together and using the inequality

|an − bn−1c| ≤ |an−1(a− c)|+ |(an−1 − bn−1)c|(3.22)

with a = e−jhω/n, b = u(jhω/n), and c = −u′(jhω/n), we obtain a bound

| − he−jhω − hu(jhω/n)n−1u′(jhω/n)|

≤ min

(
K5,K6

hk|ω|k−1

nk−1

)
+ min

(
K7,K8

hk+1|ω|k
nk−1

)
,(3.23)

valid for |ω| ≤ nK9/h.
Theorem 3.4. Under the hypotheses of Theorem 3.1, provided that m, the rel-

ative degree of R(s), is at least 2, then the L1 errors between the impulse responses
corresponding to R(s)e−hs and R(s)un(hs) are of order at most n−ν as n→∞, where
ν = (k − 1) min{1, (m− 1)/k}.

Proof. We bound the H1 norm of the derivative of Q(s) := R(s)(e−hs − un(hs)),
as above. Since the calculation is similar to several others in this section, we shall
give only a brief summary of it. Now

‖Q′(s)‖H1 ≤ ‖R′(s)(e−hs−un(hs))‖H1 + ‖R(s)(−he−hs−hu(hs/n)n−1u′(hs/n))‖H1 .

(3.24)
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Note that R′(s) is rational with relative degree m+ 1, since R(s) is rational with
relative degree m. For the first term in (3.24), we have pointwise bounds of orders
ωk/nk−1, ωk−m−1/nk−1, and ω−m−1, valid for various eventually overlapping ranges
of ω, as in Theorem 3.1 with m replaced by (m + 1); for the second they become
ωk−1/nk−1, ωk−m/nk−1, and ω−m. Performing the integrals along the imaginary
axis, we obtain the H1 bounds n−ν1 and n−ν2 , where ν1 = (k − 1) min{1,m/k} and
ν2 = (k − 1) min{1, (m − 1)/k} ≤ ν1. Finally, using (3.20) we obtain the desired
result.

Thus, for the case k = 3 discussed above, the L1 convergence rates when m takes
the values 2, 3, 4, 5, . . . are at worst O(n−2/3), O(n−4/3), O(n−2), O(n−2), . . . , which is
an improvement on the bounds that one would obtain from Corollary 3.2 and Lemma
3.3.

4. The multiple Padé-2 shift formula. An important shift operator is the
Kautz shift, SK : H2 → H2 (see Wahlberg and Mäkilä [36]), defined by

SKf =

(
s2 − bs+ c

s2 + bs+ c

)
f, f ∈ H2,(4.1)

where b > 0 and b2−4c < 0. This shift operator has multiplicity 2 and corresponds to
multiplication by a second-order rational all-pass function with two complex (strictly
nonreal) stable poles.

Analogous to the Laguerre formula for e−hs, the Kautz shift gives the following
(Kautz) formula for e−hs:

e−hs = lim
n→∞

(
1− hs

2n + 1
3

(
hs
2n

)2
1 + hs

2n + 1
3

(
hs
2n

)2
)n

.(4.2)

The shift operator S
(n)
P : H2 → H2 defined by

S
(n)
P f =

(
1− hs

2n + 1
3

(
hs
2n

)2
1 + hs

2n + 1
3

(
hs
2n

)2
)n

f, f ∈ H2,(4.3)

is a multiple Kautz shift of multiplicity 2n. As this shift is motivated by the second-
order Padé approximation of e−hs, we shall call it the multiple Padé-2 shift.

Introduce the monotonically increasing continuous function

ϕk(ν) = sup
0≤ω≤ν

ωk|R(jω)|, ν ≥ 0.(4.4)

Note that for nonzero R(s) with relative degree m(≥ 1)

|R(jω)| ≤ ‖R‖∞Cmω−m, ω > C,(4.5)

for some constant C > 0. We shall next study the approximation of G(s) = e−hsR(s)

by S
(n)
P R(s).
Theorem 4.1. Let G(s) = e−hsR(s), where h > 0 and R(s) 6≡ 0 is a stable

rational transfer function with relative degree m ≥ 1. Then

‖G− S(n)
P R‖∞ ≥ h5

1080π
ϕ5(ωn(h))× n−4, n ≥ 1,(4.6)

where ωn(h) = 2h−1n4/5 and ϕ5 is defined in (4.4).
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Hence, for m = 1, 2, 3, 4 if n < (Dh/2)5/4, and for m ≥ 5 for any n ≥ 1,

‖G− S(n)
P R‖∞ ≥ h5

1080π
ϕ5(ω1(h))× n−4.(4.7)

Finally, for m = 1, 2, 3, 4 if n ≥ (Dh/2)5/4,

‖G− S(n)
P R‖∞ ≥ 4

135π
(h/2)mE × n−(4m/5).(4.8)

Proof. Clearly,

‖G− S(n)
P R‖∞ = sup

ω≥0
|R(jω)|

∣∣∣∣∣∣∣e−jhω −
1− jhω

2n + 1
3

(
jhω
2n

)2

1 + jhω
2n + 1

3

(
jhω
2n

)2


n∣∣∣∣∣∣∣ .(4.9)

Furthermore, 1− jhω
2n + 1

3

(
jhω
2n

)2

1 + jhω
2n + 1

3

(
jhω
2n

)2


n

= e
−j2n arctan

(hω/2n)

1−(1/3)(hω/2n)2(4.10)

for (1/3)(hω/2n)2 < 1, that is, for (0 ≤)ω < 2
√

3h−1n. (Note that the range of arctan
is (−π/2, π/2).)

It follows immediately from the formula |ejθ − 1| = 2| sin θ
2 | that∣∣∣∣ e−jhω − e

−j2n arctan
(hω/2n)

1−(1/3)(hω/2n)2

∣∣∣∣
= 2

∣∣∣∣sin [hω2 − n arctan
(hω/2n)

1− (1/3)(hω/2n)2

]∣∣∣∣(4.11)

for (0 ≤)ω < 2
√

3h−1n.
We shall need the auxiliary inequalities

0 ≤ y − arctan

(
y

1− (1/3)y2

)
≤ 1

45
y5 for 0 ≤ y <

√
3.(4.12)

To prove the right-hand side inequality consider the function

g(y) = y − arctan
y

1− (1/3)y2
− γy5.(4.13)

Then clearly g(0) = 0 and

g′(y) = y4[(1/9)− 5γ − (5/3)γy2 − (5/9)γy4]/(1 + (1/3)y2 + (1/9)y4).(4.14)

Hence γ = (1/45) is the best (smallest) constant to get g(y) ≥ 0 for all y ≥ 0 up to
the first discontinuity of g at y =

√
3. The proof of the left-hand inequality follows

by using in g above γ = 0 and noting that then g′(y) ≥ 0 for 0 ≤ y < √3.
Denote now y = hω/(2n). Then

2

∣∣∣∣sin [hω2 − n arctan
(hω/2n)

1− (1/3)(hω/2n)2

]∣∣∣∣ = 2

∣∣∣∣sinn(y − arctan
y

1− (1/3)y2

)∣∣∣∣
≥ 2(2/π)n

[
y − arctan

(
y

1− (1/3)y2

)]
,(4.15)
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if 0 ≤ n[y − arctan( y
1−(1/3)y2 )] ≤ (π/2) and 0 ≤ y < √3. (The latter condition means

that 0 ≤ ω < 2
√

3h−1n.) By (4.12) it is seen that (4.15) holds if

1

45
y5 ≤ π

2

1

n
and 0 ≤ y <

√
3.(4.16)

That is, (4.15) holds if

y ≤ (45π/2)1/5n−1/5 and 0 ≤ y <
√

3.(4.17)

Next we show that the auxiliary inequality

y − arctan

(
y

1− (1/3)y2

)
≥ 1

135
y5(4.18)

is valid for 0 ≤ y <
√

3. Consider the function g(y) as above. From the expression
of g′(y) we see that γ = 1/135 is actually the largest constant for which g′(y) ≥ 0 for
0 ≤ y < √3. This proves the inequality (4.18).

Using (4.18) in (4.15) gives that

2

∣∣∣∣sin [hω2 − n arctan
(hω/2n)

1− (1/3)(hω/2n)2

]∣∣∣∣ ≥ 2× (2/π)× n× 1

135

(
hω

2n

)5

,(4.19)

for any n ≥ 1 when 0 ≤ ωh ≤ n−1/5 × 2n = 2n4/5. Therefore

‖G− S(n)
P R‖∞ ≥ h5

1080π
sup

0≤ω≤ωn(h)

ω5|R(jω)| × n−4

=
h5

1080π
ϕ5(ωn(h))× n−4,(4.20)

where ωn(h) = 2h−1n4/5. This proves the first part of the theorem.
Note that, for any m ≥ 1,

‖G− S(n)
P R‖∞ ≥ h5

1080π
ϕ5(ω1(h))× n−5, n ≥ 1,(4.21)

by the first part of the theorem. This gives the second bound of the theorem. (Observe
that clearly ϕ5(ω1(h)) > 0 as R is a nonzero rational function by assumption.) Also,
as ϕ5(ν)→∞ when ν →∞ for m = 1, 2, 3, 4, we can get a tighter bound, at least for
large n, in that case, as follows.

By (3.7) we get that

ϕ5(ν) ≥ Eν5−m for ν ≥ D,(4.22)

where E > 0. Thus ϕ5(ν) grows without limit for m = 1, 2, 3, 4 when ν →∞. Clearly,
for m ≥ 5

lim
ν→∞ϕ5(ν) <∞.(4.23)

Therefore, for m ≥ 5, ϕ5(ωn(h)) remains finite even for large n and so the order of
magnitude n−2 is the tightest order we can get here. However, for m = 1, 2, 3, 4, we
see that when D ≤ ωn(h) then

ϕ5(ωn(h)) ≥ Eωn(h)5−m = (2h−1)5−mEn4n−(4m/5).(4.24)
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Thus the first part of the theorem now gives the last (third) bound of the theorem
with the coefficient (4/135π)(h/2)mE in front of n−(4m/5). This completes the proof
of the theorem.

Next we shall give some upper bounds for the H∞ error of the Padé-2 formula.
Theorem 4.2. Let G(s) = e−hsR(s), where h > 0 and R(s) 6≡ 0 is a stable

rational transfer function with relative degree m ≥ 1. Let C > 0 be a constant
such that (4.5) is satisfied. Furthermore, let n ≥ max{(2√3)−1Ch, 3}. Then, for
m = 1, 2, 3, 4 if C < 14401/5h−1n4/5,

‖G− S(n)
P R‖∞ ≤ 2

(
Ch

14401/5

)m
‖R‖∞n−4m/5.(4.25)

Finally, for m ≥ 5 if n ≥ [1440(Ch)m−5/(2
√

3)m]1/(m−4), and for m = 1, 2, 3, 4 if
C ≥ 14401/5h−1n4/5,

‖G− S(n)
P R‖∞ ≤ (Ch)5

720
‖R‖∞n−4.(4.26)

Hence,

‖G− S(n)
P R‖∞ = max{O(n−4m/5), O(n−4)}.(4.27)

Proof. Now

‖G− S(n)
P R‖∞ ≤ 2 max

{
sup

0≤ω≤ωn
|R(jω)sn(ω)|, sup

ω>ωn

|R(jω)sn(ω)|
}

(4.28)

where

sn(ω) = sin

(
hω

2
− n arctan

(hω/2n)

1− (1/3)(hω/2n)2

)
,(4.29)

and C < ωn < 2
√

3h−1n is at this point an otherwise unspecified parameter. Clearly,

sup
ω>ωn

|R(jω)sn(ω)| ≤ sup
ω>ωn

|R(jω)| ≤ ‖R‖∞Cmω−mn ,(4.30)

where the last inequality follows by (4.5).
Also by (4.12)

sup
0≤ω≤ωn

|R(jω)sn(ω)| ≤ sup
0≤ω≤ωn

|R(jω)| × n× 1

45

(
ωh

2n

)5

,(4.31)

for ωn < 2
√

3h−1n. It follows by (4.5) that

sup
0≤ω≤ωn

|R(jω)sn(ω)| ≤ ‖R‖∞C
mh5

1440
sup

C≤ω≤ωn
ω−m+5n−4.(4.32)

Then, for m ≥ 5,

sup
0≤ω≤ωn

|R(jω)sn(ω)| ≤ ‖R‖∞C
mh5

1440
C−m+5n−4.(4.33)

This gives (4.26) for m ≥ 5 when

Cmω−mn ≤ (Ch)5

1440
n−4,(4.34)
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that is, when

n ≥
(

1440(Ch)m−5

(2
√

3)m

)1/(m−4)

.(4.35)

Therefore, it remains to consider the case m = 1, 2, 3, 4. Then (4.31), (4.28), and
(4.30) give that

‖G− S(n)
P R‖∞ ≤ 2 max

{ ‖R‖∞Cmh5

1440
ω−m+5
n n−4, ‖R‖∞Cmω−mn

}
.(4.36)

To determine the smallest upper bound, consider

inf
C<ωn<2

√
3h−1n

max

{
h5

1440
ω−m+5
n n−4, ω−mn

}
.(4.37)

Note that here the first expression is a monotone increasing function of ωn ≥ 0 and the
second a monotone decreasing function of ωn ≥ 0. These expressions attain the same
value at the unique point ω∗n = (14401/5/h)n4/5, which is the global minimizer of the
maximum of these two expressions for C < ωn < 2

√
3h−1n if C < ω∗n < 2

√
3h−1n.

As the case ω∗n ≥ 2
√

3h−1n cannot occur for large n, we have treated this case by
the condition n ≥ 3 in the statement of the theorem. (It is easy to check that
n ≥ 3 guarantees that ω∗n <

√
3h−1n.) Hence only two cases remain. The first

occurs when ω∗n > C, which gives (4.25). If ω∗n ≤ C, then the infimum above is
given by [(h5)/1440]C−m+5n−4, which gives (4.26). This completes the proof of the
theorem.

The above two results mean that the Padé-2 formula achieves the tight order of
magnitude O(n−4m/5) for m = 1, 2, 3, 4, and O(n−4) for m ≥ 5, for H∞ approximation
of delay systems of the form e−hsR(s), where h > 0 and R 6= 0 is a stable strictly
proper rational transfer function with relative degree m. These order of magnitude
estimates are easier to derive with the general result from the previous section, but
the above bounds have independent interest. The Padé-2 formula has a surprisingly
good degree of approximation when compared with the optimal degree of rational
approximation O(n−m) (see Glover, Lam, and Partington [9]) and noting that the
Padé-2 formula involves no computations to get the approximations! Some explicit
(but rather complicated) bounds for the error in Padé (2n, 2n) approximation are
given by Lam [17]. These are asymptotically optimal, but other methods may be
preferred in practice.

Theorem 4.3. Let G(s) = e−hsR(s) be as in Theorem 4.2. Let R(s) have relative
degree m ≥ 5 . Then

‖G− S(n)
P R‖∞ ≤ h5

720
lim
ν→∞ϕ5(ν)× n−4, n ≥ 3.(4.38)

Furthermore,

lim
n→∞ ‖G− S

(n)
P R‖∞ × n4 =

h5

720
lim
ν→∞ϕ5(ν).(4.39)

Proof. Clearly,

‖G− S(n)
P R‖∞ ≤ 2 max

{
sup

0≤ωn
|R(jω)sn(ω)|, sup

ω>ωn

|R(jω)|
}

(4.40)
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where sn is defined in (4.29) and 0 < ωn < 2
√

3h−1n. Clearly, by the definition of ϕ5

2 sup
ω>ωn

|R(jω)| ≤ 2ϕ5(∞)

ω5
n

,(4.41)

where ϕ5(∞) = limν→∞ ϕ5(ν). Note that ϕ5(∞) is well defined as m ≥ 5 by assump-
tion.

Also by (4.12)

2 sup
0≤ω≤ωn

|R(jω)sn(ω)| ≤ h5

720
sup

0≤ω≤ωn
|R(jω)|ω5 × n−4

≤ h5

720
ϕ5(∞)× n−4.

(4.42)

Take ωn = 2α
√

3h−1n, where 0 < α < 1. Hence if n is such that

h5

720
n−4 >

2

(2α
√

3h−1n)5
,(4.43)

then the upper bound in the theorem follows. This gives n > 5/(α
√

3). But as α < 1
can be taken arbitrarily close to 1, we see that the upper bound of the theorem is
indeed valid for n ≥ 3.

To prove the asymptotically exact error formula, it suffices to show that asymp-
totically the upper bound of the theorem is also a lower bound for the approximation
error. Recall the Taylor series expansions

y − arctan
y

1− ( 1
3 )y2

=
1

45
y5 + · · · ,(4.44)

valid for |y| < 2/(1 +
√

7/3)(higher order terms in y than y5 have not been explicitly
indicated above), and sinx = x+ (higher order terms in x). Let M > 0 and 0 < β <
4/5. Now clearly

‖G− S(n)
P R‖∞ × n4 ≥ 2 sup

0≤ω≤Mnβ
|R(jω)|

∣∣∣∣∣sin
(
ωh

2
− n arctan

ωh
2n

1− ( 1
3

) (
ωh
2n

)2
)∣∣∣∣∣× n4

→ lim
n→∞ 2 sup

0≤ω≤Mnβ
|R(jω)| × n× 1

45

(
ωh

2n

)5

× n4 =
h5

720
ϕ5(∞),(4.45)

when n→∞. (Here we have utilized the fact that, when taking above the supremum
over ω, the argument of the sine function as well as of the arctan function both tend
to zero when n → ∞. Hence the indicated Taylor series expansions become exact
using the first term of both of the series only.) This completes the proof.

Thus the function ϕ5 appears in a fundamental manner in the H∞ error of the
Padé-2 formula for approximating delay systems of the considered form for m ≥ 5.

The asymptotically accurate formula ‖G−S(n)
P R‖∞ ≈ (h5/720)ϕ5(∞)×n−4 provides

an elegant way to determine what n value suffices to achieve some given approximation
accuracy.

5. Numerical example. We shall consider the linear system with a transfer
function given by

G(s) =
exp(−hs)
(Ts+ 1)5

,(5.1)
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Table 5.1
H∞ errors (all times 10−3).

Formula/` 1 2 4 6 8 10
Laguerre 15.49 3.874 0.968 0.430 0.242 0.155
Kautz - 7.747 1.937 0.861 0.484 0.310
Padé-2 - 1.389 0.087 0.017 0.005 0.002

of which one physical example is that of five perfectly mixed identical tanks with
transportation delay, all coupled in series. To fix ideas we take T = 1 and h = 1.

Table 5.1 shows the H∞ errors as given by the respective asymptotic error for-
mulae produced by approximating the delay e−hs by, respectively, the Laguerre shift
formula

e−hs ∼ (1− hs/(2n))n

(1 + hs/(2n))n
,(5.2)

the particular Kautz shift formula

e−hs ∼ (1− hs/(2n) + h2s2/(8n2))n

(1 + hs/(2n) + h2s2/(8n2))n
,(5.3)

and the Padé-2 based shift formula

e−hs ∼ (1− hs/(2n) + h2s2/(12n2))n

(1 + hs/(2n) + h2s2/(12n2))n
.(5.4)

Specifically, we give in Table 5.1 the values for the asymptotic H∞ error formulas
for multiplicity-` Laguerre, Kautz, and Padé-2 shift formulas, so that ` = n for the
Laguerre shift and ` = 2n for the others. The corresponding approximations of the
delay systems have degree 5 + ` as rational functions.

In this example it is easy to determine the asymptotic H∞ error formulas for
the Laguerre, Kautz, and Padé-2 shift formulas. We note that the function ϕ5(ν) in
(4.4) is now given as ϕ5(ν) = ν5|R(jν)|, ν ≥ 0, so that ϕ5(∞) = limν→∞ ϕ5(ν) = 1.
Furthermore, we get that ϕ3(∞) = (2/5)× (3/5)3/2 ≈ 0.4648. Hence the asymptotic

H∞ error formula for the Laguerre shift formula is ‖G−S(n)
L R‖∞ ≈ 15.49·10−3n−2, for

the Kautz shift formula ‖G−S(n)
K R‖∞ ≈ 30.99 · 10−3n−2 (see Mäkilä and Partington

[24]), and for the Padé-2 shift formula ‖G− S(n)
P R‖∞ ≈ 1.389 · 10−3n−4.

Note that in this example the Laguerre formula provides a fairly small H∞ er-
ror even for ` = 1, i.e., the sixth-order approximation of G so obtained might be
satisfactory for many practical purposes (e.g., for robust H∞ control design). The
eleventh-order approximation provided by the Padé-2 formula for ` = 6 would most
likely be satisfactory for all practical purposes (e.g., even for simulating time responses
of the system).

6. Conclusions. Certain shift operator induced finite-dimensional approxima-
tions of a class of delay systems have been studied. The studied approach provides
the most transparent way of approximating delay systems. H∞, H2, and L1 approx-
imation error bounds have been derived for the studied class of delay systems. A
special feature of the studied approximation approach is that the approximations can
be written down without any computations and that their H∞ error behavior can
also be often determined reliably by simple hand computations. Hence this approach
should provide an ideal technique for the purpose of treating approximate modeling
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and control of delay systems in control engineering courses and text books. Further-
more, it provides good low-order models for rapid low-order controller design for this
important class of delay systems.

It is possible to use the studied approach for general delay systems, not just for
the class of delay systems studied here. Certain generalizations of the error analysis
made here are obvious; e.g., removing the restriction to a stable (strictly proper)
rational part R(s) in the system transfer function G(s) = e−hsR(s) is easy. If R(s)
is strictly proper with no poles on the imaginary axis, then it is clear that instead of
H∞ error bounds, one gets completely analogous L∞ error bounds on the imaginary
axis. The approximations have the same number of unstable poles as G(s). Hence,
L∞ convergence of the frequency responses is enough to guarantee convergence of the
studied approximations in the gap metric and in the chordal metric. Therefore the
studied approach is also most useful for unstable delay systems.

The case of relative degree m = 1 is hard for analyzing the L1 error behavior of
the shift operator induced approximation method. This case is known to be difficult
for the L1 error analysis of several other approximation methods as well.

Acknowledgment. Financial support to one of the authors (P. M. Mäkilä) from
the Academy of Finland is gratefully acknowledged.
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[25] P. M. Mäkilä, J. R. Partington, and T. K. Gustafsson, Worst-case control-relevant

identification, Automatica J. IFAC, 31 (1995), pp. 1799–1819.
[26] R. N. McDonough and W. H. Huggins, Best least-squares representation of signals by

exponentials, IEEE Trans. Automat. Control, AC-13 (1968), pp. 408–412.
[27] B. Ninness and F. Gustafsson, A unifying construction of orthonormal bases for system

identification, IEEE Trans. Automat. Control, 42 (1997), pp. 515–521.
[28] J. R. Partington, Approximation of delay systems by Fourier–Laguerre series, Automatica

J. IFAC, 27 (1991), pp. 569–572.
[29] J. R. Partington, Approximation of unstable infinite-dimensional systems using coprime

factors, Systems Control Lett., 16 (1991), pp. 89–96.
[30] J. R. Partington, Interpolation, Identification and Sampling, Oxford University Press, Ox-

ford, UK, 1997.
[31] Y. C. Pati, Wavelets and Time-Frequency Methods in Linear Systems and Neural Networks,

Ph.D. thesis, University of Maryland, College Park, MD, 1992.
[32] Y. C. Pati and P. S. Krishnaprasad, Rational wavelets in approximation and identification

of stable linear systems, in Proceedings 31st IEEE Conf. Dec. Control, Tucson, AZ, 1992,
pp. 1502–1507.

[33] P. P. Petrushev and V. A. Popov, Rational Approximation of Real Functions, Cambridge
University Press, Cambridge, UK, 1987.

[34] M. Rosenblum and J. Rovnyak, Hardy Classes and Operator Theory, Oxford University
Press, Oxford, UK, 1985.
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Abstract. We present some systematic approaches to the mathematical analysis and numerical
approximation of the time dependent optimal control problem of tracking the velocity for Navier–
Stokes flows in bounded two-dimensional domains with bounded distributed controls. We study
the existence of optimal solutions and derive an optimality system from which optimal solutions
may be determined. We also define and analyze semidiscrete-in-time and fully space-time discrete
approximations of the optimality system and a gradient method for the solution of the fully discrete
system. The results of some computational experiments are provided.

Key words. optimal control, Navier–Stokes equations, fluid mechanics
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1. Introduction. The possibility of steering a velocity field to a target velocity
field over time has a wide range of applications in engineering and science. In the
literature, examples are found related to combustion, chemical reacting flows, design
problems, reduction of turbulence, controllability, drag reduction, etc.; see, e.g., [5],
[7], [17], [27], and [31].

The controls are some physical parameters or functions that can be adjusted in
practice, e.g., the velocity at the boundary or the body force in some special settings.
Here, we will consider distributed or body force controls ~f. One method for effecting
such control is through a magnetic field acting on an ionized fluid or on a liquid
metal. Although such controls are technologically difficult and sometimes impossible
to realize in practice, they are mathematically more tractable and thus serve as a
first setting for the study of optimal control problems for the nonlinear Navier–Stokes
system.

A common means for effecting the velocity tracking is to monitor the quadratic
functional

J (~u(~f)) =
α

2

∫ T

0

∫
Ω

|~u− ~U |2 d~xdt+
γ

2

∫
Ω

∣∣~u(T )− ~U(T )
∣∣2 d~x ,(1.1)

where ~u denotes the velocity field of the flow and ~U the desired velocity field, i.e.,
the velocity field that we would like to match. Also, Ω denotes the flow domain and
(0, T ) denotes the time interval over which the tracking is to be affected. The α and γ
constants can be chosen to adjust the relative importance of the two terms appearing
in (1.1). The first term in (1.1) measures, in the L2-norm in space and time, the

distance between the given target velocity ~U and the state velocity ~u over the interval
(0, T ). The second term measures this distance, in the L2(Ω)-norm, at the time t = T .
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The inclusion of the second term is found to be useful in practice since otherwise the
flow field ~u may be driven far from the target velocity ~U near t = T .

The state of the system is described by the velocity-pressure pair (~u, p), which is
the solution of the Navier–Stokes system

∂t~u+ (~u · ∇)~u− ν∆~u+∇p = ~f in (0, T )× Ω ,

∇ · ~u = 0 in (0, T )× Ω ,

~u = ~0 on (0, T )× Γ ,

~u = ~u0 on Ω ,∫
Ω

p d~x = 0 on (0, T ) ,

(1.2)

where Γ denotes the boundary of the flow domain Ω, ∂t the partial derivative with
respect to time, and ~u0 a given initial velocity field. For simplicity, we have chosen
homogeneous velocity boundary conditions; our results can be easily extended, with
some notational complications, to other boundary conditions. In (1.2), ~f denotes the
distributed control; thus, in our study, the distributed control is the body force per
unit mass.

The size of the control is limited by technological constraints such as the amount
of energy available for controlling the system. The simplest way to define such a
constraint on the size of the control is to explicitly require that some norm of the
control be bounded by a given constant, e.g., for all t,(∫

Ω

|~f |2 d~x
)1/2

≤ K ,(1.3)

where the positive constant K represents, e.g., a measure of the maximum power that
is available to control the system.

The velocity tracking will be effected by minimizing the cost functional (1.1)
subject to the constraints (1.2) and (1.3). In this paper, we present and analyze a
precise mathematical formulation of this problem and its numerical approximation for
bounded, two-dimensional domains. We prove the existence of optimal controls and
states and characterize such optimal solutions by deriving the first-order necessary
condition associated with the problem. We formulate and analyze semidiscrete and
fully discrete finite element-based approximations of the optimality system and study
a gradient method for the solution of the discrete equations. We also present the
results of some computational experiments. The results presented in this paper may
be extended, with little difficulty, to many other objective functionals; however, the
extension to boundary controls is more difficult and will be the subject of a separate
paper.

Mathematical theories and approximation techniques for optimal control problems
for the Navier–Stokes equations have been developed in various settings; see, e.g., [1],
[10], [11], [12], [13], [14], [15], [21], [25], [26], [29], [30], and [32]. Some numerical
methods for solving control problems for unsteady flows have been proposed and
tested; see, e.g., [21], [24], [25], [26], [28], and [30]. Many of these deal with distributed
controls and take a different approach to limiting the size of the control. Instead of
imposing the explicit bound (1.3), the size of the control is limited by introducing a
penalty term into the functional, e.g., instead of (1.1), a functional such as

J (~u(~f)) +
β

2

∫ T

0

∫
Ω

|~f |2 d~xdt(1.4)
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is minimized subject to (1.2). Such an approach has been shown to be effective.
However, it is obvious that the minimizer of (1.3) does not in general minimize (1.4),
which is the real objective. Furthermore, when one minimizes (1.4) one does not
know what the actual size of the control will be; one merely knows that by adjusting
the constant β relative to α and γ, one can make more or less control available for
effecting the velocity tracking; i.e., reducing β allows for more control and vice versa.
However, unlike the explicit bound (1.3), one cannot ever be sure that the size of
the control will indeed be within the technological constraints. For this reason, the
approach taken in this paper is the more practical one; the penalty approach is easier
to treat mathematically, which accounts for its popularity in the literature.

2. The optimal control problem for velocity tracking. Let Ω ⊂ R2 be a
bounded, open set. We shall use the standard notations for the Sobolev spaces (and
their vector-valued, i.e., R2-valued, counterparts) Hm(Ω) with norm ‖ · ‖m; we also
use the notations L2(Ω) = H0(Ω) and ‖ · ‖ = ‖ · ‖0. Let Hm

0 (Ω) denote the closure
of C∞0 (Ω) under the norm ‖ · ‖m and H−m0 (Ω) denote the dual space of Hm

0 (Ω). We
introduce the solenoidal spaces

V(Ω) = {~u ∈ C∞0 (Ω) : ∇ · ~u = 0},
V (Ω) = {~u ∈ H1

0 (Ω) : ∇ · ~u = 0},
W (Ω) = {~u ∈ L2(Ω) : ∇ · ~u = 0} .

The spaces V (Ω) and W (Ω) are the closures of V(Ω) in L2(Ω) and H1(Ω), respectively.
The dual space of V (Ω) is denoted by V (Ω)∗ while the dual space of W (Ω) can be
identified with itself. Also, we define

L2
0(Ω) = {p ∈ L2(Ω) :

∫
Ω

p d~x = 0} .

For details about these spaces, see, e.g., [2] and [16]. Given T , we introduce the nota-
tion Lp((0, T );Hm(Ω)) for the temporal-spatial function spaces defined on (0, T )×Ω
with the norm

‖~u‖Lp((0,T );X) =

(∫ T

0

‖~u‖pX dt
)1/p

.

In order to define the weak form of the Navier–Stokes equations we introduce two
continuous bilinear forms,

a(~u,~v) = 2ν

n∑
i,j=1

∫
Ω

Dij(~u)Dij(~v) d~x ∀ ~u,~v ∈ H1(Ω) ,(2.1)

b(~v, q) = −
∫

Ω

q∇ · ~v d~x ∀q ∈ L2(Ω), ∀~v ∈ H1(Ω),(2.2)

where Dij(~v) = 1
2 (∂vi/∂xj + ∂vj/∂xi) and the continuous trilinear form

c(~w; ~u,~v) =
n∑

i,j=1

∫
Ω

wj

(
∂ui
∂xj

)
vid~x ∀ ~w, ~u,~v ∈ H1(Ω) .

We set ~g = ~f/K so that the constraint (1.3) on the control can be written in the
form

‖~g‖2(t) =

∫
Ω

|~g|2(t) d~x ≤ 1 for t ∈ [0, T ] .(2.3)
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We denote by B the set of ~g ∈ L2((0, T );L2(Ω)) that satisfies the constraint (2.3)
which implies that ‖~g‖L∞((0,T );L2(Ω)) ≤ 1. The set B is a convex closed set in
L2((0, T );L2(Ω)). The constraint choice (2.3) reflects the many practical situations in
which at any time one can or must, due to technological constraints, limit the total
size of the control.

Other types of constraints can also be handled by the techniques used in this
paper. For example, one can choose ‖~g‖L2((0,T );L2(Ω)) ≤ K. However, constraints
such as this are not very useful in practice since they allow for forces whose size, at
any given time, can exceed technological limits. Also, they reflect a situation similar to
that encountered when one seeks optimal controls that minimize the functional (1.4).
The regularization parameter β in (1.4) can be interpreted as a Lagrange multiplier
corresponding to a constraint such as ‖~g‖L2((0,T );L2(Ω)) ≤ K with some K = K(β).
In the context of infinite-dimensional parameter identification problems, this duality
is explored by, e.g., [4] and [36]. The effect of using such constraints would be very
similar to that for the case in which one optimizes with respect to the penalized
functional (1.4), a case that has already been treated in [21]. For these reasons, it
seems that the constraint choice (2.3) is more appropriate.

A weak formulation of the Navier–Stokes problem is defined as follows: seek
(~u, p) ∈ L2((0, T );H1

0 (Ω)) ×L2((0, T );L2
0(Ω)) satisfying


〈∂t~u,~v〉+ a(~u,~v) + c(~u; ~u,~v) + b(~u, p) = K〈~g,~v〉 ∀~v ∈ H1

0 (Ω),

b(~u, p) = 0 ∀ q ∈ L2
0(Ω),

~u(0, ·) = ~u0(·) ∈ V (Ω) ,

(2.4)

where 〈·, ·〉 denotes the duality pairing betweenH−1(Ω) andH1
0 (Ω). The homogeneous

boundary conditions for the velocity and the zero-mean condition for the pressure are
satisfied due to the choice of spaces in which solutions are sought. For a simulation
problem, ~g ∈ H−1(Ω) as well as ~u0(·) are given functions; in our optimal control
setting, ~g ∈ L2(Ω) is the control to be determined through the optimization process.

In terms of our current notation, the functional (1.1) can be expressed as

J (~u(~g)) =
α

2

∫ T

0

‖~u− ~U‖2 dt+
γ

2
‖~u(T )− ~U(T )‖2 ,(2.5)

where ~U is the desired target velocity. The set of all possible target velocities
L∞((0, T );L2(Ω)) is denoted by Uad. There are no particular requirements on the

target velocity ~U other than the fact that the functional must be bounded. The tar-
get velocity field need not be a solution of the Navier–Stokes equations. In particular,
nonsolenoidal fields or fields that satisfy initial and boundary conditions different from
those in (1.2) can be used as desired target velocities.
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Given K > 0, T > 0, ~u0 ∈ V (Ω), and ~U ∈ Uad, the set of admissible states and
controls is defined by

Aad =
{

(~u,~g) ∈ L2((0, T );H1
0 (Ω))× L2((0, T );L2(Ω))

such that J (~u(~g)) <∞, (2.3) is satisfied, and

there exists p ∈ L2((0, T );L2
0(Ω)) such that (2.4) is satisfied

}
.

Actually, our notion of optimality will be a local one; i.e., we will have to be
content to find optimal solutions (~u,~g) defined as follows:

given K > 0, T > 0, ~u0 ∈ V (Ω), and ~U ∈ Uad, find (~u,~g) ∈ Aad
such that J (~u(~g)) ≤ J (~w(~h)) ∀ (~w,~h) ∈ Aad satisfying

‖~h− ~g‖L2((0,T );L2(Ω)) ≤ ε for some ε > 0.

(2.6)

2.1. Existence of the optimal solutions. In the following theorem we prove
the existence of solutions for the optimal control problem. First, a few words should
be said concerning known results about the unique solvability of the Navier–Stokes
system. If Γ is Lipschitz continuous, ~u0 ∈ W (Ω), and ~g ∈ L2((0, T );B(Ω)), where
B(Ω) is the closed unit ball in L2(Ω), then the unique solution ~u of (2.4) belongs
to C([0, T ];W (Ω)) ∩ L2((0, T );V (Ω)) and ~ut ∈ L2((0, T );H−1(Ω)). Furthermore,
if Γ ∈ C2 and ~u0 ∈ V (Ω), then the unique solution belongs to C([0, T ];V (Ω)) ∩
L2((0, T );H2 ∩H1

0 ) and ~ut ∈ L2((0, T );W (Ω)). See, e.g., [9] or [33].

Theorem 2.1. Given K > 0, T > 0, ~u0 ∈ V (Ω), and ~U ∈ Uad, there exists
a solution ĝ ∈ L2((0, T );B(Ω)) and û ∈ C([0, T ];W (Ω)) ∩ L2((0, T );V (Ω)) of the
optimal control problem (2.6).

Proof. The admissible set Aad is bounded and not empty, e.g., the Navier–Stokes
system has a solution for ~g = ~0. Let {~un, ~gn} be a minimizing sequence in Aad. Let
pn be the corresponding pressure such that (~un, pn, ~gn) satisfies (2.4). The sequence
{~gn} is uniformly bounded in L2((0, T );L2(Ω)) by T . From well-known theorems
for solutions of the two-dimensional, unsteady Navier–Stokes equations (see, e.g.,
[33]), it follows that the corresponding sequence ~un is bounded in C([0, T ];W (Ω)) ∩
L2((0, T );V (Ω)) and the corresponding sequence pn is bounded in L2((0, T );L2

0(Ω)).
Thus, there exist a (û, p̂, ĝ) and a subsequence of (~un, pn, ~gn) that converges weakly
to (û, p̂, ĝ). We abuse the notation and write again that

~gn → ĝ in L2((0, T );L2(Ω)) weakly ,

~un → û in L2((0, T );V (Ω)) weakly ,

~un → û in L∞((0, T );W (Ω)) *-weakly ,

pn → p̂ in L2((0, T );L2
0(Ω)) weakly .

The sequence {~gn} ∈ B converges weakly in the topology of L2((0, T );L2(Ω)) to an
element of L2((0, T );L2(Ω)), and now we must prove that the limit ĝ belongs to B.
If we prove that the set B is weakly closed in the topology of L2((0, T );L2(Ω)), then
this implies that the sequence {~gn} converges in B. We recall that every closed convex
set is also weakly closed. The set B is convex and closed in L2((0, T );L2(Ω)) and thus
is weakly closed in this topology; then we have that ĝ ∈ B.

Now the pair (û, ĝ) satisfies the Navier–Stokes equations (2.4) and minimizes the
functional (2.5). In fact, by the lower semicontinuity of the functional (2.5) we have

J (~u(ĝ)) ≤ lim inf
n→∞ J (~un(~gn)) .
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Furthermore, a priori estimates (see [9] or [33]) for ~u in a fractional time-order Sobolev
space yields in our case that ~un converges strongly to ~u ∈ L2((0, T );W (Ω)). Now we
consider the weak Navier–Stokes system (2.4) with state (~un, pn) and control ~gn. We
let ~v = ψ(t)~w in that system, where ~w ∈ V(Ω) and ψ(t) is a continuously differentiable
function on (0, T ) such that ψ(T ) = 0. We then integrate the result with respect to
time over the interval (0, T ). Then, integrating by parts with respect to time, we
obtain

−
∫ T

0

〈~un, ψ′(t)~w〉 dt+ ν

∫ T

0

a(~un, ψ(t)~w) dt+

∫ T

0

c(~un; ~un, ψ(t)~w) dt

+

∫ T

0

b(ψ(t)~w, pn) dt = (~u0, ψ(0)~w) +

∫ T

0

(~gn, ψ(t)~w) dt .

We can pass to the limit inside the linear and the nonlinear terms. In fact, if ~un
converges to û in L2((0, T );V (Ω)) weakly and L2((0, T );W (Ω)) strongly, then for any
~z ∈ C1((0, T );D(Ω)), we have

lim
n→∞

∫ T

0

c(~un; ~un, ~z(t)) dt =

∫ T

0

c(û; û, ~z(t)) dt ;

see, e.g., [33]. If ψ ∈ D(0, T ), then (û, p̂, ĝ) satisfies the Navier–Stokes equation (2.4)
in the distribution sense. Since V(Ω) is dense in V (Ω), then this is still true for any
~w ∈ V (Ω) by a continuity argument.

We remark that this theorem implies the existence of a global optimal solution
but it does not preclude the existence of other local optimal solutions. How such local
optimal solutions are determined is discussed in the next section.

2.2. First-order necessary condition. In this section we derive the first-order
necessary condition associated with the optimal control problem (2.6). If the Gateaux
derivative of the functional exists, then the optimal solution must satisfy this standard
first-order necessary condition; see, e.g., [3] or [35].

Theorem 2.2. Let ~u0 ∈ V (Ω). If (û, ĝ) is an optimal pair and the functional
J (~u(~g)) is Gateaux differentiable, then the necessary condition for ĝ to be a minimizer
of J (~u(~g)) is (

dJ (~u(ĝ))

d~g
· (~h− ĝ)

)
≥ 0 ∀~h ∈ B .(2.7)

It is clear that the set B is in L∞((0, T );L2(Ω)); however, it is usual and conve-
nient to work with the standard topology of L2((0, T );L2(Ω)) in order to use well-
known results. We recall that the solution of the Navier–Stokes system defines a
mapping ~u = ~u(~g) from L2((0, T );L2(Ω)) to L2((0, T );W (Ω)) which is Gateaux dif-
ferentiable, and thus Theorem 2.2 can be applied.

Theorem 2.3. Let ~u0 ∈ V (Ω). The mapping ~u = ~u(~g) from L2((0, T );L2(Ω)) to
L2((0, T );V (Ω)) has a Gateaux derivative (d~u/d~g) ·~z for every ~z in L2((0, T );L2(Ω)).
Furthermore, w̃(~z) = (d~u/d~g) · ~z is the solution of the problem

〈∂tw̃, ~v〉+ νa(w̃, ~v) + c(~u(~g); w̃, ~v) + c(w̃, ~u(~g), ~v)

+ b(w̃, r̃) = K(~z,~v) ∀~v ∈ H1
0 (Ω) ,

b(w̃, q) = 0 ∀ q ∈ L2
0(Ω) ,

w̃(t, ~x) = 0 on (0, t)× Γ ,

w̃(0, ~x) = 0 on Ω

(2.8)
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for some r̃ ∈ L2((0, T );L2
0(Ω)). Furthermore, we have that w̃ ∈ L∞((0, T );W (Ω)) ∩

L2((0, T );V (Ω)).
Proof. See, e.g., [1] or [21].
Of course, ~g + B ⊂ L2((0, T );L2(Ω)) so that the mapping ~u = ~u(~g) is Gateaux

differentiable for all ~h−~g with ~h in the admissible set B. Note that r̃ may be interpreted
as the derivative (dp/d~g) · ~z of the pressure p(~g).

In order to characterize optimal solutions, we introduce the adjoint problem to
the linearized Navier–Stokes equations.

Theorem 2.4. Let ~u0 ∈ V (Ω) and let (û, ĝ) be a solution of the optimal control
problem. Let ~w ∈ L2((0, T ), V (Ω)) ∩ L∞((0, T ), L2(Ω)), and r ∈ L2((0, T );L2

0(Ω))
denote the solution of the adjoint problem

−〈∂t ~w,~v〉+ νa(~v, ~w) + c(û;~v, ~w) + c(~v; û, ~w)

+ b(~v, r) = α(~u− ~U,~v) ∀~v ∈ H1
0 (Ω) ,

b(~w, q) = 0 ∀ q ∈ L2
0(Ω) ,

~w(T, ·) = γ(û(T, ·)− ~U(T, ·)) in Ω ,

~w = ~0 on (0, T )× Γ .

(2.9)

Let S ⊂ (0, T ) be the set in which ~w is different from zero. Then, we have

‖~w‖ĝ = −~w for t ∈ S .(2.10)

On (0, T )\S, û = ~U and ĝ is uniquely determined up to a gradient by (1/K)~F , where
~F = ∂t~U + (~u · ∇)~U − ν∆~U.

Proof. Let (û, ĝ) be a solution of the optimal control problem. We can compute
the Gateaux derivative of the functional J (~u(ĝ)) in the direction of ~z. We have

dJ (~u(ĝ))

d~g
· ~z = α

∫ T

0

∫
Ω

(û− ~U) · w̃ d~xdt+ γ

∫
Ω

(û(T )− ~U(T )) · w̃(T ) d~x,

where w̃ = (d~u/d~g) · ~z. Now, using (2.8) and (2.9) and then integrating the result by
parts with respect to time, we obtain

dJ (~u(ĝ))

d~g
· ~z =

∫ T

0

(
−〈∂t ~w, w̃〉+ νa(w̃, ~w) + c(û; w̃, ~w) + c(w̃; û, ~w)

)
dt

+

∫
Ω

~ww̃ d~x
∣∣T
0

=

∫ T

0

(
〈∂tw̃, ~w〉+ νa(w̃, ~w) + c(û; w̃, ~w) + c(w̃; û, ~w)

)
dt .

Hence, again using (2.8) and (2.9), we obtain

dJ (~u(ĝ))

d~g
· ~z = K

∫ T

0

∫
Ω

~w · ~z dt = K(~w, ~z)L2((0,T );L2(Ω)) ,(2.11)

where ~w is the solution of the system (2.9).
In order to show (2.10), we use the first-order necessary condition (2.7) which, as

a result of (2.11), is equivalent to

(~w,~h− ĝ)L2((0,T );L2(Ω)) ≥ 0 ∀~h ∈ B .(2.12)
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Let J ⊂ S be the subset on which ‖ĝ‖ < 1. Let

ε =
1

2

∫
Ω

ĝ
~w

‖~w‖ d~x+

√(∫
Ω

ĝ
~w

‖~w‖ d~x
)2

+ 1− ‖ĝ‖2
 > 0 .

We choose ~h = −ε(~w/‖~w‖) + ĝ on J and ~h = ĝ elsewhere. In this case, ‖~h‖ ≤ 1

and (~w,~h− ĝ)L2((0,T );L2(Ω)) = −ε‖~w‖L2((0,T );L2) < 0, which contradicts the first-order
necessary condition (2.12). Thus, the set J has zero measure and ‖ĝ‖ = 1 a.e. on S.

Next, again let ĝ be an optimal control for t almost everywhere (a.e.) in S; we have
already determined that ‖ĝ‖ = 1. Let I ⊂ S be the subset on which ĝ 6= −~w/‖~w‖.
Choosing ~h = −~w/‖~w‖ in (2.12) implies that

−
∫
I

(~w, ĝ) dt ≥
∫
I

‖~w‖ dt .(2.13)

By contradicting (2.13), we will show that I has zero measure so that ‖~w‖ĝ = −~w on
S.

First, we show that ĝ 6= ~w/‖~w‖ on the set I so that, together with its definition,

we conclude that ĝ is not proportional to ~w on I. If we set ~h = 0 in (2.12) we have
that (~w,−ĝ)L2((0,T );L2(Ω)) ≥ 0 and thus ĝ cannot be equal to ~w/‖~w‖. Therefore, the
control ĝ is not proportional to ~w on the set I, and thus the strict Schwarz inequality
|(~w, ĝ)| < ‖~w‖ holds for t a.e. I.

From the strict Schwarz inequality, we then have that

−
∫
I

∫
Ω

~w · ĝ d~xdt ≤
∫
I

|(~w, ĝ)| dt <
∫
I

‖~w‖ dt .

But this contradicts (2.13) so that the set I must have zero measure. Hence, if ~w 6= 0,
we have ‖~w‖ĝ = −~w for t a.e. in S.

On (0, T )\S, we need only concern ourselves with sets of positive measure on
which ~w = ~0, since otherwise we can define ĝ by continuity from neighboring times
at which ~w 6= ~0. Now ~w = ~0 on a set of positive measure in (0, T ) if and only if

û = ~U a.e. on that set. Consequently, on that set there must exist P (which is not

necessarily the same as p̂) such that ĝ = (1/K)(~F +∇P ) and ‖ĝ‖ ≤ 1.
Remark 2.5. Clearly, even if there exists a measurable set in (0, T ) such that

there exists a P such that ‖~gU‖ ≤ 1, where ~gU = (1/K)(~F +∇P ), we may not have

that ~w = ~0 on that set. For this to be true, we also need a requirement on (û − ~U)

sometime on that set, e.g., û = ~U at some point in that set.
Remark 2.6. It is also clear that it is indeed possible for ~w = ~0 on measurable

sets. For example, if ~u0(·) = ~U(0, ·) and if there exists a P such that ‖~F +∇P‖ ≤ K,

then we have that û = ~U , ~w = ~0, and ĝ = (1/K)(~F +∇P ) for almost all t.
Remark 2.7. Clearly, a joint rescaling of α and γ does not affect the optimal

solution. Indeed, if we multiply both of these parameters by the same positive number,
then the adjoint variable ~w is scaled by that same multiple, but, from (2.10), the
optimal control ĝ remains unchanged as does, by (2.4), the optimal state (û, p̂). Of
course, this is to be expected since multiplying the functional J (~u(~g)) of (2.5) by a
positive number cannot change its extremal points.
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2.3. The optimality system. We have seen that all local optimal solutions are
among the solutions of the optimality system (neglecting the possibility of ~w = ~0)



〈∂tû, ~v〉+ νa(û, ~v) + c(û; û, ~v) + b(~v, p̂) = K(ĝ, ~v) ∀ v ∈ H1
0 (Ω) ,

b(û, q) = 0 ∀ q ∈ L2
0(Ω)

−〈∂t ~w,~v〉+ νa(~w,~v) + c(~w; û, ~v) + c(û; ~w,~v)

+b(~v, r) = α(û− ~U,~v) ∀ v ∈ H1
0 (Ω) ,

b(~w, q) = 0 ∀ q ∈ L2
0(Ω) ,

‖~w‖~g = −~w in (0, T )× Ω

(2.14)

with initial velocity û(0, ~x) = ~u0(~x), final condition ~w(T, ~x) = γ(û(T )− ~U(T )) on Ω,
and homogeneous boundary condition on (0, T ) × Γ for both û and ~w. The above
system of equations is a weak formulation of the system



∂tû− ν∆û+ (û · ∇)û+∇p̂ = Kĝ ,

∇ · û = 0 ,

−∂t ~w − ν∆~w + (∇û)T ~w − (û · ∇)~w +∇r = α(û− ~U) ,

∇ · ~w = 0 ,

‖~w‖ĝ = −~w

in (0, T )× Ω with the same initial, final, and boundary conditions.
Remark 2.8. From a computational standpoint, this is a very difficult system to

solve and, among the solutions of the above system, there might be solutions which
do not have the property of local optimality. Therefore, how one solves this system
and determines an optimal solution is a rather important question. In the following
sections, we will discretize in time and then in space-time.

3. Semidiscrete-in-time approximation.

3.1. Formulation of the semidiscrete optimal control problem. Let σN =
{tn}Nn=0 be a partition of [0, T ] into equal intervals of duration ∆t = T/N with t0 = 0
and tN = T . We will denote by q the vector (q(1), q(2), . . . , q(N)) of functions be-
longing to X = XN and defined discretely with respect to time. Note that only
the time levels tn, n = 1, 2, . . . , N , enter into this definition. The associated contin-
uous, piecewise (with respect to t) linear function qN = qN (t, ~x) is defined by the
interpolating conditions qN (tn, ~x) = q(n)(~x) for n = 1, 2, . . . , N . For each fixed ∆t
(or N) and for every function ψ(t, ·) defined over (0, T ), we can associate the cor-
responding set {ψ(n)(·)}Nn=1, where ψ(n)(~x) = ψ(tn, ~x). Thus, we may define, for

example, ~UN to be a continuous, piecewise linear function with respect to t defined
by ~UN (tn, ~x) = ~U (n)(~x) = ~U(tn, ~x) for all n = 1, 2, . . . , N .

The vector r of functions in the dual space X∗ are defined with respect to
the dual grid tn, n = 0, 1, . . . , N − 1, i.e., r = (r(0), r(1), . . . , r(N−1)). 〈r,p〉 =∑N
n=1〈r(n−1), p(n)〉 denotes a duality pairing between elements of the spaces X and

its dual X∗ defined with respect to the discrete-time grid.
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The state variables ~u(n) ∈ H1
0 (Ω) and p(n) ∈ L2

0(Ω) are constrained to satisfy the
semidiscrete Navier–Stokes equations,

1

∆t
(~u(n) − ~u(n−1), ~v) + νa(~u(n), ~v) + c(~u(n); ~u(n), ~v)

+b(~v, p(n)) = K(~g(n), ~v) ∀~v ∈ H1
0 (Ω), for n = 1, 2, . . . , N ,

b(~u(n), q) = 0 ∀ q ∈ L2
0(Ω), for n = 1, 2, . . . , N ,

~u(n) = 0 on Γ, for n = 1, 2, . . . , N ,

~u(0) = ~u0(~x) ∈ V (Ω),

(3.1)

obtained from (1.2) by a backward Euler discretization in time.

Since we are requiring the exact control ~f to be bounded in norm by a real positive
number K, we again require that

‖~g(n)‖ ≤ 1 for n = 1, 2, . . . , N .(3.2)

If we denote the unit ball of L2(Ω) by B, then the above constraint simply implies
that g ∈ B.

Optimization is achieved by means of the minimization of the discretized-in-time
functional

JN (u(g)) =
α∆t

2

N∑
n=1

‖~u(n) − ~U (n)‖2 +
γ

2
‖~u(N) − ~U (N)‖2 .(3.3)

This functional results from applying the right-point discretization rule in time to the
continuous functional (2.5). We also introduce the admissibility set

ANad =
{

(u,g) ∈ H1
0(Ω))× L2(Ω)) such that JN (u(g)) <∞, g ∈ B,

and there exists p ∈ L2
0(Ω)) such that (3.1) is satisfied

}
.

The formulation of the semidiscrete-in-time optimal control problem is then given by

given K > 0, T > 0, ~u0 ∈ V (Ω), ~U ∈ Uad, and N , find (u,g) ∈ ANad
such that the functional (3.3) is minimized.

Of course, we really seek local minimizers of the functional (3.3) in the same sense as
(2.6).

The value of ~g(0) is not defined by this formulation; it can be arbitrarily chosen.
For example, one could simply set ~g(0) = ~g(1) or use some other extension of the
continuous, piecewise linear (with respect to time) function ~gN in C((0, T );L2(Ω)).
More complicated discretizations of the functional can explicitly involve the value
~g(0). Note that this is exactly the same situation as is encountered for the pressure
in the backward Euler semidiscretization of the Navier–Stokes equations, i.e., p(0) is
not defined by (3.1).

3.2. Existence and first-order necessary condition. Now we state and
prove the existence of solutions of the semidiscrete optimal control problem in an
open, bounded, two-dimensional domain Ω with Lipschitz-continuous boundary Γ.

Theorem 3.1. Given K > 0, T > 0, ∆t = T/N, ~u0 ∈ V (Ω), and ~U ∈ Uad,
there exists at least one solution, (û, ĝ) ∈ V(Ω)× L2(Ω), of the semidiscrete-in-time
optimal control problem.



VELOCITY TRACKING WITH BOUNDED CONTROLS 1923

Proof. Given N , let {gk}∞k=1 be a minimizing sequence. Each component of the
minimizing sequence is uniformly bounded by 1, and the corresponding solution ~uk
is uniformly bounded in V(Ω). Now we can proceed with a weakly convergent subse-
quence for each component and show that these subsequences converge to the solution
of the optimal control problem in the semidiscrete approximation. Using the fact that
the injection of V (Ω) into L2(Ω) is compact, the subsequence uk converges strongly.
This allows us to pass to the limit in the semidiscrete Navier–Stokes equation, and
the proof follows as in the continuous case. The components of gk are bounded in the
unit ball, and so the weak limit satisfies the bound imposed on the control.

In the rest of this section we derive the first-order necessary condition that optimal
solutions of the semidiscrete-in-time optimal control problem must satisfy. We will
follow standard procedures. First, we introduce auxiliary variables that allow us
to transform the inequality constraints into equalities and then invoke well-known
derivations for equality constrained minimization problems; see, e.g., [3] or [35].

We begin by replacing (3.2) with

‖~g(n)‖2 − 1 + (s(n))2 = 0 for n = 1, 2, . . . , N ,(3.4)

for some s ∈ R = RN . Clearly, if (3.4) is satisfied, so is (3.2). Then, the constraints in
the semidiscrete-in-time optimal control problem are all equality constraints and are
given by (3.1) and (3.4). Also, note that if (û, p̂, ĝ) is a solution of the semidiscrete-
in-time optimal control problem, then there exists ŝ such that ĝ and ŝ satisfy (3.4).

Remark 3.2. It is worthwhile pointing out that the variables s(n) are introduced
only as a theoretical tool and not for computational purposes. Computationally, these
variables are known to be a poor tool since they may introduce many local minima.

Let B1 = H1
0(Ω)×L2

0(Ω)×L2(Ω)×R and B2 = H−1(Ω)×L2
0(Ω)×R. We equip

these product spaces with the usual graph norms. We define the nonlinear mapping
M : B1 → B2 by M(u,p,g, s) = (f , z, l) for (u,p,g, s) ∈ B1 and (f , z, l) ∈ B2 if and
only if

1

∆t
(~u(n) − ~u(n−1), ~v) + νa(~u(n), ~v) + c(~u(n), ~u(n), ~v) + b(~v, p(n))

−K(~g(n), ~v) = (~f (n), ~v) ∀~v ∈ H1
0 (Ω) , for n = 1, 2, . . . , N ,

b(~u(n), q) = (z(n), q) ∀ q ∈ L2
0(Ω) , for n = 1, 2, . . . , N ,

1
2 [(~g(n), ~g(n))− 1 + (s(n))2] = l(n), for n = 1, 2, . . . , N ,

~u(n) = 0 on Γ , for n = 1, 2, . . . , N ,

~u(0) = ~u0(~x) ∈ V (Ω) .

(3.5)

Thus, the constraint equations (3.1) and (3.4) in the semidiscrete-in-time optimal
control problem can be expressed as M(u,p,g, s) = (0,0,0).

For any fixed ĝ ∈ L2(Ω) and u(ĝ) ∈ H1
0(Ω), we define another nonlinear mapping

Q : B1 → R×B2 by Q(u,p,g, s) = (a, f , z, l) if and only if(
JN (u(g))− JN (u(ĝ))

M(u,p,g, s)

)
=

(
a

(f , z, l)

)
.(3.6)

These mappings are strictly differentiable, as is shown in the following lemma.
We recall the notion of a strict differentiability, which is a slightly stronger concept
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than Frechet differentiability; see [35]. Let X and Y denote Banach spaces, and let the
mapping ϕ(x) : X → Y be Frechet differentiable at x. Denote its Frechet derivative
by D; of course, D is a bounded, linear mapping from X to Y . Then, ϕ(x) is strictly
differentiable at x ∈ X if for any ε > 0 there exists a δ > 0 such that whenever
‖x− x1‖X < δ and ‖x− x2‖X < δ for x1, x2 ∈ X,

‖ϕ(x1)− ϕ(x2)−D(x1 − x2)‖Y ≤ ε‖x1 − x2‖X .

The strict derivative D at the point x ∈ X, if it exists, will often be denoted by
D = ϕ′(x). The value of this mapping on an element x̃ ∈ X will often be denoted by
ϕ′(x) · x̃.

Lemma 3.3. Let the nonlinear mappings M : B1 → B2 and Q : B1 → R×B2 be
defined by (3.5) and (3.6), respectively. Then, these mappings are strictly differentiable
on all of B1. Furthermore, the strict derivative of M at a point (u,p,g, s) ∈ B1 is
given by the bounded linear operator M ′(u,p,g, s) : B1 → B2, where M ′(u,p,g, s) ·
(w̃, r̃, h̃, s̃) = (f , z, l) for (w̃, r̃, h̃, s̃) ∈ B1 and (f , z, l) ∈ B2 if and only if

1

∆t
(w̃(n) − w̃(n−1), ~v) + νa(w̃(n), ~v) + c(w̃(n), ~u(n), ~v)

+c(~u(n), w̃(n), ~v) + b(~v, r̃(n))−K(h̃(n), ~v) = (f
(n)
, ~v)

∀~v ∈ H1
0 (Ω) , for n = 1, 2, . . . , N ,

b(w̃(n), q) = (z(n), q) ∀ q ∈ L2
0(Ω) , for n = 1, 2, . . . , N ,

2(h̃(n), ~g(n)) + 2s(n)s̃(n) = l
(n)
, for n = 1, 2, . . . , N ,

w̃(n) = ~0 on Γ , for n = 1, 2, . . . , N ,

w̃(0) = ~0 on Ω .

(3.7)

Moreover, the strict derivative of Q at a point (u,p,g, s) ∈ B1 is given by the bounded

linear operator Q′(u,p,g, s) : B1 → R × B2, where Q′(u,p,g, s) · (w̃, r̃, h̃, s̃) =

(a, f , z, l) for (w̃, r̃, h̃, s̃) ∈ B1 and (a, f , z, l) ∈ R×B2 if and only if(
(JN )′(u(ĝ)) · (w̃, r̃, h̃, s̃)

M ′(u,p,g, s) · (w̃, r̃, h̃, s̃)

)
=

(
a

(f , z, l)

)
,(3.8)

where

(JN )′(u(ĝ))·(w̃, r̃, h̃, s̃) = α∆t
N∑
n=1

∫
Ω

(~u(n)−~U (n))·w̃(n) d~x+γ

∫
Ω

(~u(N)−~U (N))·w̃(N) d~x.

Proof. The linearity of the operator M ′(u,p,g, s) is obvious and its boundedness
follows easily from the continuity of the forms a(·, ·), b(·, ·), and c(·, ·, ·). Likewise, the
linearity and boundedness of the operator Q′(u,p,g, s) are obvious.

The fact that M ′(u,p,g, s) is the strict derivative of the mapping M(u,p,g, s)
follows also from the continuity of the trilinear form c(·, ·, ·). Indeed, we have that for
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any (u,p,g, s) ∈ X = B1 and for all (w, r, βββ) ∈ B∗2 = H1
0(Ω)× L2

0(Ω)× R,〈
(w, r, βββ),M(u1,p1,g1, s1)−M(u2,p2,g2, s2)

−M ′(u,p,g, s) · (u1 − u2,p1 − p2,g1 − g2, s1 − s2)
〉

=

N∑
n=1

β(n)
(

(g
(n)
1 , g

(n)
1 ) + (s

(n)
1 )2 − (g

(n)
2 , g

(n)
2 )− (s

(n)
2 )2

−2(g(n), g
(n)
1 − g(n)

2 )− 2s(n)(s
(n)
1 − s(n)

2 )
)

+

N∑
n=1

(
c(~u

(n)
1 , ~u

(n)
1 , ~w(n))− c(~u(n)

2 , ~u
(n)
2 , ~w(n))

−c(~u(n)
1 − ~u(n)

2 , ~u(n), ~w(n))− c(~u(n), ~u
(n)
1 − ~u(n)

2 , ~w(n))
)

= −
N∑
n=1

(
c(~u

(n)
1 − ~u(n)

2 , ~u(n) − ~u(n)
1 , ~w(n)) + c(~u(n) − ~u(n)

2 , ~u
(n)
1 − ~u(n)

2 , ~w(n))
)

−
N∑
n=1

β(n)
(

(g
(n)
1 − g(n)

2 , g(n) − g(n)
1 ) + (g

(n)
1 − g(n)

2 , g(n) − g(n)
2 )

+(s
(n)
1 − s(n)

2 )(s(n) − s(n)
1 ) + (s

(n)
1 − s(n)

2 )(s(n) − s(n)
2 )
)
,

so that using the continuity of the form c(·, ·, ·), we have, for some constants C1, C2 >
0,

‖M(u1,p1,g1, s1)−M(u2,p2,g2, s2)

−M ′(u,p,g, s) · (u1 − u2,p1 − p2,g1 − g2, s1 − s2)‖B2

≤ C1

(
‖u1 − u2‖1(‖u− u1‖1 + ‖u− u2‖1)

+‖g1 − g2‖(‖g − g1‖+ ‖g − g2‖)
+|s1 − s2|(|s− s1|+ |s− s2|)

)
≤ C2‖(u1 − u2,p1 − p2,g1 − g2, s1 − s2)‖B1(

‖(u− u1,p− p1,g − g1, s− s1)‖B1

+‖(u− u2,p− p2,g − g2, s− s2)‖B1

)
.

Then, for any ε > 0, by choosing δ = ε/(2C2) we have that whenever ‖(u − u1,p −
p1,g − g1, s− s1)‖B1

< δ and ‖(u− u2,p− p2,g − g2, s− s2)‖B1
< δ,

‖M(u1,p1,g1, s1)−M(u2,p2,g2, s2)

−M ′(u,p,g, s) · (u1 − u2,p1 − p2,g1 − g2, s1 − s2)‖B2

≤ ε‖(u1 − u2,p1 − p2,g1 − g2, s1 − s2)‖B1 .

Thus, the mapping M is strictly differentiable on all of B1 and its strict derivative is
given by M ′.

Using the strict differentiability of the mapping M , it is then easy to show that
the mapping Q is also strictly differentiable and that its strict derivative is given by
Q′.

Next, we prove some further properties of the derivatives of the mappings M and
Q. We will be assuming that the optimal control does not vanish, i.e., that ĝ(n) 6= 0 for
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all n = 1, . . . , N . This is permissible since if ĝ(n) = 0 for some n, then it is clear that
the constraint ‖~g(n)‖ ≤ 1 is satisfied everywhere in a neighborhood of ĝ(n) ∈ L2(Ω).
Since in any case our notion of an optimal control is a local one, see, e.g., (2.6), we
can delete that constraint since it is automatically satisfied.

Lemma 3.4. Given T > 0, K > 0, ∆t = T/N for N > 0, ~u0 ∈ V (Ω), and
~U ∈ Uad. Let (û, p̂, ĝ, ŝ) ∈ B1 denote a solution of the semidiscrete-in-time optimal
control problem. Then, if ĝ(n) 6= 0 for all n = 1, . . . , N , we have

(i) the operator M ′(û, p̂, ĝ, ŝ) has closed range in B2;
(ii) the operator Q′(û, p̂, ĝ, ŝ) has closed range in R×B2;
(iii) the operator Q′(û, p̂, ĝ, ŝ) is not onto R×B2;
(iv) for ∆t sufficiently small the operator M ′(û, p̂, ĝ, ŝ) is onto B2.
Proof. Let the bounded linear operator S : B1 → B2 be defined as follows:

S · (w̃, r̃, h̃, s̃) = (f , z, l) for (w̃, r̃, h̃, s̃) ∈ B1 and (f , z, l) ∈ B2 if and only if

1

∆t
(w̃(n) − w̃(n−1), ~v) + νa(w̃(n), ~v)

+b(~v, r̃(n))−K(h̃(n), ~v) = (f
(n)
, ~v)

∀~v ∈ H1
0 (Ω) , for n = 1, 2, . . . , N ,

b(w̃(n), q) = (z(n), q) ∀ q ∈ L2
0(Ω) , for n = 1, 2, . . . , N ,

2(h̃(n), ĝ(n)) + 2ŝ(n)s̃(n) = l
(n)
, for n = 1, 2, . . . , N ,

w̃(n) = ~0 on Γ , for n = 1, 2, . . . , N ,

w̃(0) = ~0 on Ω .

(3.9)

The third equation poses no difficulty. In fact, for all n = 1, 2, . . . , N , we may choose

s̃(n) = 0 and h̃(n) = l
(n)
ĝ(n)/(2‖ĝ(n)‖2) which is permissible since, by hypothesis,

‖ĝ(n)‖ 6= 0. Then the third equation in (3.9) is satisfied for any choice of l
(n) ∈ R.

Thus, the question of the closeness of the range of the operator S : B1 → B2 reduces
to the like question for the inhomogeneous semidiscrete-in-time Stokes operator S̃ :
H1

0(Ω)× L2
0(Ω)→ H−1(Ω)× L2

0(Ω) defined as follows: S̃ · (w̃, r̃) = (f̃ , r) for (w̃, r̃) ∈
H1

0(Ω)× L2
0(Ω) and (f̃ , r) ∈ H−1(Ω)× L2

0(Ω) if and only if

1

∆t
(w̃(n) − w̃(n−1), ~v) + νa(w̃(n), ~v) + b(~v, r̃(n))

= (f̃ (n), ~v) ∀~v ∈ H1
0 (Ω) , for n = 1, 2, . . . , N ,

b(w̃(n), q) = (z(n), q) ∀ q ∈ L2
0(Ω) , for n = 1, 2, . . . , N ,

w̃(n) = ~0 on Γ , for n = 1, 2, . . . , N ,

w̃(0) = ~0 on Ω .

The fact that the operator S̃ has closed range in H−1(Ω)×L2
0(Ω) follows easily form

well-known results for the semidiscrete-in-time Stokes equations; see, e.g., [33]. We
can then conclude that the operator S has closed range in B2, and since the operator
M ′(û, p̂, ĝ, ŝ) is a compact perturbation of the operator S, we have, from the Fredholm
theory, that M ′(û, p̂, ĝ, ŝ) itself has closed range in B2.

Starting from (i), the proof of (ii) and (iii) can be found in [18], [19], or [20].
For (iv), we must show that (3.7), with (u,p,g, s) = (û, p̂, ĝ, ŝ), has a solution

(w̃, r̃, h̃, s̃) ∈ B1 for all (f , z, l) ∈ B2. Since by (i) we have that Ran(M ′(û, p̂, ĝ, ŝ))
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is closed in B2 and since then Ran(M ′(û, p̂, ĝ, ŝ)) = Ker(M ′∗(û, p̂, ĝ, ŝ))⊥, we can
instead show that Ker(M ′∗(û, p̂, ĝ, ŝ)) = {0}, i.e., that (w, r, βββ) = (0,0,0) is the only
solution of

− 1

∆t
(~w(n) − ~w(n−1), ~v) + νa(~w(n−1), ~v) + c(~w(n−1), û(n), ~v)

+ c(û(n), ~w(n−1), ~v) + b(~v, r(n−1)) = 0

∀~v ∈ H1
0 (Ω) , for n = 1, 2, . . . , N ,

b(~w(n−1), q) = 0 ∀ q ∈ L2
0(Ω) , for n = 1, 2, . . . , N ,

β(n−1)(ĝ(n), h)−K(~w(n−1), h) = 0

∀h ∈ L2(Ω) , for n = 1, 2, . . . , N ,

ŝ(n)β(n−1) = 0, for n = 1, 2, . . . , N ,

~w(n−1) = ~0 on Γ , for n = 1, 2, . . . , N ,

~w(N) = ~0 on Ω .

(3.10)

It is well known (see, e.g., [34]) that in two dimensions, the trilinear form c(·, ·, ·)
satisfies, for some constant K > 0 depending only on Ω,

c(~w, ~u,~v) ≤ K‖~u‖1‖~w‖1/2‖~w‖1/21 ‖~v‖1/2‖~v‖1/21 ∀ ~w, ~u,~v ∈ H1(Ω) .

Then, from (3.10), one obtains, for n = 1, 2, . . . , N ,(
1− K2∆t

ε
‖û(n)‖21

)
‖~w(n−1)‖2 − ‖~w(n)‖2 + (2ν − ε)∆t‖~w(n−1)‖21 ≤ 0 .(3.11)

Let

G(n) = 1−∆t

(
K2

ε
‖û(n)‖21

)
so that (3.11) yields that

G(n)‖~w(n−1)‖2 + (2ν − ε)∆t‖~w(n−1)‖21 ≤ ‖~w(n)‖2 .(3.12)

We choose ε sufficiently small so that (2ν − ε) > 0. Now, if

∆t ≤ ε

K2‖û(n)‖21
for n = 1, 2, . . . , N ,(3.13)

then G(n) > 0 and thus, from (3.12) and ~w(N) = ~0, we have that ‖~w(n−1)‖ =
0 for n = 1, 2, . . . , N . Then, it follows that βββ and r must also vanish so that
Ker(M ′∗(û, p̂, ĝ, ŝ))⊥ = 0, and thus the operator M ′(û, p̂, ĝ, ŝ) is onto B2.

The first-order necessary condition follows easily from the fact that the operator
Q′(û, p̂, ĝ, ŝ) is not onto R×B2; see, e.g., [18], [19], or [20].

Theorem 3.5. Given T > 0, K > 0, ∆t = T/N for N > 0, ~u0 ∈ V (Ω), and
~U ∈ Uad. If (û, p̂, ĝ, ŝ) ∈ B1 is a solution of the semidiscrete-in-time optimal control
problem, then if ĝ(n) 6= 0 for all n = 1, . . . , N , we have that

(i) there exists a nonzero Lagrange multiplier (λ,w, r, βββ) ∈ R×H1
0(Ω)×L2

0(Ω)×R
satisfying the Euler equations

λ (JN )′(û) · (w̃, r̃, h̃, s̃) +
〈

(w, r, βββ),M ′(û, p̂, ĝ, ŝ) · (w̃, r̃, h̃, s̃)
〉

= 0

∀ (w̃, r̃, h̃, s̃) ∈ B1 ,
(3.14)

where 〈·, ·〉 denotes the duality pairing between B2 and B∗2;
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(ii) if (M ′(û, p̂, ĝ, ŝ)) is onto B2, e.g., if ∆t is sufficiently small so that (3.13)
holds, then λ 6= 0.

Remark 3.6. If λ 6= 0, then it is clear that we may assign an arbitrary value to
it.

Remark 3.7. If λ = 0, then we have, from (3.14), that M ′∗(û, p̂, ĝ, ŝ)·(w, r, βββ) =
0; i.e., 0 6= (w, r, βββ) ∈ Ker(M ′∗(û, p̂, ĝ, ŝ)).

3.3. The optimality system. Next, we examine the first-order necessary con-
dition (3.14) to derive an optimality system from which semidiscrete-in-time optimal
states and controls may be determined. We will find, as in the continuous case, that
the optimal control ĝ is proportional to the solution of an adjoint system of equations.

Theorem 3.8. Given T > 0, K > 0, ∆t = T/N for N > 0, ~u0 ∈ V (Ω), and
~U ∈ Uad. Let (û, p̂, ĝ, ŝ) ∈ B1 denote a solution of the semidiscrete-in-time optimal
control problem. Assume that ĝ(n) 6= 0 for all n = 1, . . . , N and Ker(M ′∗(û, p̂, ĝ, ŝ)) =
0. Then, if ~w(n−1) 6= ~0,

‖~w(n−1)‖ĝ(n) = −~w(n−1) for n = 1, 2, . . . , N ,(3.15)

where (w, r) ∈ H1
0(Ω)× L2

0(Ω) satisfies the adjoint problem

− 1

∆t
(~w(n) − ~w(n−1), ~v) + νa(~v, ~w(n−1)) + c(~v, û(n), ~w(n−1))

+ c(û(n), ~v, ~w(n−1)) + b(~v, r(n−1)) = α(û(n) − ~U (n), ~v)

∀~v ∈ H1
0 (Ω) , for n = 1, , . . . , N ,

b(~w(n−1), q) = 0 ∀ q ∈ L2
0(Ω) , for n = 1, . . . , N ,

~w(n−1) = ~0 on Γ , for n = 1, . . . , N ,

~w(N) = γ(~u(N) − ~U (N)) in Ω .

(3.16)

Proof. The first-order necessary condition (3.14) is equivalent to

λ

(
α∆t

N∑
n=1

(
(û(n) − ~U (n)), w̃(n)

)
+ γ

(
(û(N) − ~U (N)), w̃(N)

))

+∆t
N∑
n=1

β(n−1)
[(
ĝ(n), h̃(n)

)
+ ŝ(n)s̃(n)

]
+ ∆t

N∑
n=1

[ 1

∆t
(w̃(n) − w̃(n−1), ~w(n−1))

+ νa(w̃(n), ~w(n−1)) + c(w̃(n), û(n), ~w(n−1)) + c(û(n), w̃(n), ~w(n−1))

+ b(~w(n−1), r̃(n))−K(h̃(n), ~w(n−1)) + b(w̃(n), r(n−1))
]

= 0

for all (w̃, r̃, h̃, s̃) ∈ B1. Since (iv) of Lemma 3.4 holds, we have, by Theorem 3.5,
that λ 6= 0. We are free to choose λ = −1 (see Remark 3.6.)

Choosing w̃(n) = 0, s̃(n) = 0, and h̃(n) = 0 for all n in the first-order necessary
condition yields, since r̃(n) is arbitrary in L2

0(Ω), the second equation in (3.16).
Choosing w̃(0) = ~0, we have that

N∑
n=1

(w̃(n) − w̃(n−1), ~w(n−1)) = −
N∑
n=1

(w̃(n), ~w(n) − ~w(n−1)) + (w̃(N), ~w(N))
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so that choosing r̃(n) = 0, s̃(n) = 0, and h̃(n) = 0 for all n in the first-order necessary
condition yields (recalling that λ = −1), for all n = 1, 2, . . . , N ,(
−γ(û(N) − ~U (N)) + ~w(N), w̃(N)

)
−∆t

N∑
n=1

[
− 1

∆t
(w̃(n), ~w(n) − ~w(n−1)) + νa(w̃(n), ~w(n−1)) + c(w̃(n), û(n), ~w(n−1))

+ c(û(n), w̃(n), ~w(n−1)) + b(w̃(n), r(n−1))− α
(

(û(n) − ~U (n)), w̃(n)
)]

= 0

from which the first and last equations in (3.16) follow. The third equation in (3.16)
holds trivially since w ∈ H1

0(Ω). Thus, we have shown that (3.16) holds.

Choosing w̃(n) = 0, r̃(n) = 0, and h̃(n) = 0 for all n in the first-order necessary
condition yields, since s̃(n) is arbitrary in R,

β(n−1)ŝ(n) = 0 for n = 1, 2, . . . , N .(3.17)

Choosing w̃(n) = 0, r̃(n) = 0, and s̃(n) = 0 in the first-order necessary condition
yields, since h̃(n) is arbitrary in L2(Ω),

β(n−1)ĝ(n) = K~w(n−1) for n = 1, 2, . . . , N .(3.18)

If ~wn−1 6= ~0, then (3.18) requires that β(n−1) 6= 0 (since ĝ(n) 6= ~0) and then
(3.17) yields ŝ(n) = 0. Then the third equation in (3.5) yields that ‖ĝ(n)‖ = 1 and
then (3.18) yields |β(n−1)| = K‖~w(n−1)‖, i.e., ĝ(n) = ± ~w(n−1)/‖~w(n−1)‖. The first-
order necessary condition cannot determine the sign since one corresponds to a local
maximum and the other to a local minimum. To determine the sign, we examine the
functional JN (u(g)) in the neighborhood of an optimal point ĝ. Let g = ĝ + εh̃ for

ε > 0, where h̃ ∈ L2(Ω) is an arbitrary admissible variation. Since the admissible
states and controls satisfy the discretized Navier–Stokes equations, we must have that
the corresponding variations, i.e., the sensitivities, (w̃, r̃) satisfy

1

∆t
(w̃(n) − w̃(n−1), ~v) + νa(w̃(n), ~v) + c(w̃(n), û(n), ~v)

+ c(û(n), w̃(n), ~v) + b(~v, r̃(n)) = K(h̃(n), ~v)

∀~v ∈ H1
0 (Ω) , for n = 1, 2, . . . , N ,

b(w̃(n), q) = 0 ∀ q ∈ L2
0(Ω) , for n = 1, 2, . . . , N ,

w̃(n) = ~0 on Γ , for n = 1, 2, . . . , N ,

w̃(0) = ~0 on Ω .

(3.19)

Note that so far we have not imposed the requirement that admissible variations h̃
keep g = ĝ + εh̃ within the constraint set ‖g‖ ≤ 1. The gradient of the functional

JN (u(ĝ)) in the direction of h̃ is then given by

(JN )′(u(ĝ)) · h̃ = α∆t
N∑
n=1

∫
Ω

(û(n) − ~U (n)) · w̃(n) d~x

+ γ

∫
Ω

(û(N) − ~U (N)) · w̃(N) d~x .

(3.20)
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Combining (3.16), (3.19), and (3.20) yields

(JN )′(u(ĝ)) · h̃ = K〈w, h̃〉 .(3.21)

Now, choose h̃(j) = −ĝ(j) for some j such that ~w(j−1) 6= ~0 and h̃(n) = ~0 for n 6= j
so that, since ‖ĝ(j)‖ = 1, for ε small enough we have that if ~g(j) = ĝ(j) + εh̃(j), then

‖~g(j)‖ ≤ 1 so that ~g(j) is admissible. (Note that h̃(j) = ĝ(j) would take us out of the

constraint set so that we need not consider that case here.) With h̃(j) = −ĝ(j) and

h̃(n) = ~0 otherwise, we have from (3.18) and (3.21), that

(JN )′(u(ĝ) · h̃ = K〈w, h̃〉 = K
N∑
n=1

(~w(n−1), h̃(n))

= −K(~w(j−1), ĝ(j)) = −β(j−1))‖ĝ(j)‖2 = −β(j−1) .

But, since we are entering the admissibility set from the optimal solution ĝ(j), we must
have that (JN )′(u(ĝ)) · h̃ ≥ 0 for this choice of h̃ so that β(j−1) < 0 and therefore
ĝ(j) = −~w(j−1)/‖~w(j−1)‖. Since j is arbitrary such that ~w(j−1) 6= 0, we have that
(3.15) holds.

Remark 3.9. If ~w(n−1) = ~0 and ~w(n) = ~0 for some n, then û(n) = ~U (n) and we
can determine ĝ(n) from the semidiscrete Navier–Stokes equations, i.e., there must
exist a P (n) such that (~U (n), P (n)) satisfy (3.1) for that particular value of n. If

~w(n−1) = ~0 and ~w(n) 6= ~0, then û(n) 6= ~U (n) and we can extend the control from the
right and set ĝ(n) = ĝ(n+1) or, if n = N , ĝ(N) = −~w(N)/‖~w(N)‖.

Remark 3.10. Again, a joint rescaling of α and γ does not affect the solution of
the semidiscrete-in-time optimal control problem.

We have seen that one may obtain a solution of the semidiscrete-in-time optimal
control problem by solving the coupled system (if ~w(n−1) 6= ~0 for n = 1, 2, . . . , N)



1

∆t
(û(n) − û(n−1), ~v) + νa(û(n), ~v) + c(û(n), û(n), ~v) + b(~v, p̂(n))

= K(ĝ(n), ~v) ∀~v ∈ H1
0 (Ω) , for n = 1, 2, . . . , N ,

b(û(n), q) = 0 ∀ q ∈ L2
0(Ω) , for n = 1, 2, . . . , N ,

û(n) = 0 on Γ , for n = 1, 2, . . . , N ,

û(0) = û0(~x) ∈ V (Ω) ,

‖~w(n−1)‖ĝ(n) = −~w(n−1) in Ω , for n = 1, 2, . . . , N ,

− 1

∆t
(~w(n) − ~w(n−1), ~v) + νa(~v, ~w(n−1)) + c(~v, û(n), ~w(n−1))

+ c(û(n), ~v, ~w(n−1)) + b(~v, r(n−1)) = α(û(n) − ~U (n), ~v)

∀~v ∈ H1
0 (Ω) , for n = 1, . . . , N ,

b(~w(n−1), q) = 0 ∀ q ∈ L2
0(Ω) , for n = 1, . . . , N ,

~w(n−1) = ~0 on Γ , for n = 1, . . . , N ,

~w(N) = γ(û(N) − ~U (N)) in Ω .

(3.22)
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The above system of equations is a weak formulation of the system

1

∆t
(û(n) − û(n−1)) + (û(n) · ∇)û(n) − ν∆û(n) +∇p̂(n)

= Kĝ(n) in Ω , for n = 1, 2, . . . , N ,

∇ · û = 0 in Ω , for n = 1, 2, . . . , N ,

û(n) = 0 on Γ , for n = 1, 2, . . . , N ,

û(0) = û0 in Ω ,

‖~w(n−1)‖ĝ(n) = −~w(n−1) in Ω , for n = 1, 2, . . . , N ,

− 1

∆t
(~w(n) − ~w(n−1))− ν∆~w(n−1) + (∇û(n))T ~w(n−1) − (û(n) · ∇)~w(n−1)

+∇r(n−1) = α(û(n) − ~U (n)) in Ω , for n = 1, 2, . . . , N ,

∇ · ~w(n−1) = 0 in Ω , for n = 1, 2, . . . , N ,

~w(n−1) = ~0 on Γ , for n = 1, . . . , N ,

~w(N) = γ(û(N) − ~U (N)) in Ω .

Remark 3.11. If λ = 0, then (3.15) still holds where ~w is any nontrivial solution
of the homogeneous system

− 1

∆t
(~w(n) − ~w(n−1), ~v) + νa(~v, ~w(n−1)) + c(~v, û(n), ~w(n−1))

+ c(û(n), ~v, ~w(n−1)) + b(~v, r(n−1)) = ~0

∀~v ∈ H1
0 (Ω) , for n = 1, , . . . , N ,

b(~w(n−1), q) = 0 ∀ q ∈ L2
0(Ω) , for n = 1, . . . , N ,

~w(n−1) = ~0 on Γ , for n = 1, . . . , N ,

~w(N) = ~0 in Ω ;

see Remark (3.7).
We now examine the convergence of solutions of the semidiscrete-in-time optimal

control system.
Theorem 3.12. Given K > 0, T > 0, ∆t = T/N , ~u0 ∈ V (Ω), and ~U ∈ Uad.

Then, for ∆T → 0, i.e., N → ∞, the solution {(û(n), ĝ(n))}Nn=1 of the system (3.22)
converges to the solution (û, ĝ) of the system (2.14).

Proof. Let ∆t = T/N, and let ~u ′N denote the piecewise linear function such
that ~u ′(n) = (~u(n) − ~u(n−1))/∆t for n = 1, 2, . . . , N . From the well-known the-
ory on semidiscrete-in-time approximations of the Navier–Stokes equations (see, e.g.,
[33]), the sequences {ûN}∞N=1, {ĝN}∞N=1, and {û ′N}∞N=1 are uniformly bounded in
L2((0, T );V (Ω))∩L∞((0, T );W (Ω)), B, and L2((0, T );V ∗(Ω)), respectively. Then we
can extract subsequences, which we again denote by {ûN} and {ĝN} such that

ûN → ~u L2(0, T, V (Ω)) weakly ,

ûN → ~u L∞(0, T,H(Ω)) *-weakly ,

ĝN → ~g L2(0, T,B(Ω)) weakly ,

û ′N → ~u ′ L2(0, T, V ∗(Ω)) weakly .
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The set B is a convex, closed set and thus weakly closed so that the limit ~g satisfies
the bound ‖~g‖ ≤ 1 a.e on (0, T ). Let H((0, T );n,m;V, V ∗) = {~v ∈ Ln((0, T );V ) :
~v ′ ∈ Lm((0, T );V ∗)}. We have that V (Ω) ⊂ W (Ω) ⊂ V ∗(Ω), where V and V ∗ are
reflexive, the injections are continuous, and, from the Sobolev imbedding theorem, the
imbedding V (Ω)→ W (Ω) is compact. Then, the injection from H((0, T ); 2, 2, V, V ∗)
into L2((0, T );W ) is compact. We note that if the sequence ~uk converges weakly
in L2((0, T );V (Ω)) and the sequence ~u ′k converges weakly in L2((0, T );V ∗(Ω)), then
the sequence ~uk converges strongly in L2((0, T );W (Ω)). (A proof of this result can
be found in, e.g., [33].) As a consequence, the sequence ûN converges strongly in
L2((0, T );W (Ω)). Now we can pass to the limit in the system of equations and in the
functional using standard techniques. The fact that the sequence ûN converges weakly
in L2((0, T );V (Ω)) and strongly in L2((0, T );W (Ω)) allows us to pass to the limit in
the nonlinear term and thus show that the limit (~u,~g) is a solution of the continuous
optimal control problem. Thus, as N → ∞, the solution of the semidiscrete optimal
control problem converges to the corresponding solution of the continuous optimal
control problem.

4. Fully discrete time-space approximation.

4.1. Preliminaries. We consider only conforming finite element approxima-
tions. Let Xh ⊂ H1(Ω) and Sh ⊂ L2(Ω) be two families of finite dimensional sub-
spaces parameterized by h that tends to zero. We also denote Xh

0 = Xh ∩ H1
0 (Ω),

Sh0 = Sh ∩ L2
0(Ω), and ShB = Sh ∩ B(Ω). We make the following assumptions on Xh

and Sh.
Approximation hypotheses: there exist an integer l and a constant C, independent

of h, ~u, and p, such that for 1 ≤ k ≤ l we have

inf
~uh∈Xh0

‖~uh − ~u‖1 ≤ Chk‖~u‖k+1 ∀~u ∈ Hk+1(Ω) ∩H1
0 (Ω) ,(4.1)

inf
ph∈Sh0

‖p− ph‖ ≤ Chk‖p‖k ∀p ∈ Hk(Ω) ∩ L2
0(Ω) .(4.2)

The inf-sup condition or LBB condition: there exists a constant C ′, independent
of h, such that

inf
06=qh∈Sh0

sup
06=~uh∈Xh0

∫
Ω
qh∇ · ~uh

‖~uh‖1‖qh‖ ≥ C
′ > 0 .(4.3)

This condition assures the stability of the Navier–Stokes discrete solutions.
To preserve the antisymmetry of the trilinear form c(~u;~v, ~w) on the finite element

spaces we introduce the modified trilinear form (see [33])

c̃(~u;~v, ~w) =
1

2
{c(~u;~v, ~w)− c(~u; ~w,~v)} ∀~u,~v, ~w ∈ H1

0 (Ω).

We can recall some useful formulas and inequalities that hold in a two-dimensional
domain Ω :

c̃(~u;~v, ~w) = −c̃(~u; ~w,~v) ,

c̃(~u;~v,~v) = 0

}
∀ ~u;~v, ~w ∈ H1(Ω)

and (see, e.g., [33])

|c̃(~u;~v, ~w)| ≤ K1‖∇~u‖ · ‖~v‖L4(Ω)‖∇~w(n)‖ ,
|c̃(~u;~v, ~w)| ≤ K2‖~u‖ 1

2 ‖∇~u‖ 1
2 ‖∇~v‖ · ‖~w‖ 1

2 ‖∇~w‖ 1
2

}
∀ ~u;~v, ~w ∈ H1(Ω) .
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We remark that the last inequality is true in the framework of the conforming finite
element approximation and only in the two-dimensional case; see [33].

4.2. Formulation of the fully discrete optimal control approximation.
Let σN = {tn}Nn=0 be a partition of [0, T ] into equal intervals ∆t = T/N with t0 = 0
and tN = T . On the finite element spaces Xh

0 ⊂ H1
0 (Ω) and Sh0 ⊂ L2

0(Ω) we assume
that the hypotheses (4.1)–(4.3) hold. For each fixed ∆t (or N ) and for every involved

quantity q(t, ~x) we associate the corresponding set {q(n)
h }Nn=1 and a continuous linear

function ~qNh (t, ~x) such that ~qNh (tn, ~x) = qh(tn, ~x) for all n = 1, 2, . . . , N . We denote
by q the vector (q(1), q(2), . . . , q(N)) of the discrete-time components. We assume that

the control ~f
(n)
h is bounded by K so that ‖~g(n)

h ‖ ≤ 1 for all n = 1, 2, . . . , N .

Given ∆t = T/N, {~g(n)
h }Nn=1 ∈ B(Ω), and ~u0 ∈ V (Ω), then (~uh,ph) ∈ (Xh

0×Sh0 )
is said to be generalized solution for the fully discrete time-space approximation of

the Navier–Stokes equations if (u
(n)
h , p

(n)
h ) satisfies


1

∆t
(~u

(n)
h − ~u(n−1)

h , ~vh) + νa(~u
(n)
h , ~vh) + c̃(~u

(n)
h ; ~u

(n)
h , ~vh)

+ b(~vh, p
(n)) = K(~g

(n)
h , ~vh) ∀~vh ∈ Xh

0 (Ω) ,

b(~v
(n)
h , qh) = 0 ∀qh ∈ Sh0 (Ω)

(4.4)

for n = 1, 2, . . . , N with initial velocity ~u
(0)
h = Πh~u0(~x), where Πh denotes the projec-

tion of the initial data ~u0 onto Xh.
The fully discretized functional is given by

JNh (uh(g)) =
α

2
∆t

N∑
n=1

‖~u(n)
h − ~U (n)‖2 +

γ

2
‖~u(N)

h − ~U (N)‖2 .(4.5)

The formulation of the optimal problem in the fully discrete approximation is
then given by

given ∆t = T/N, ~u0 ∈ V (Ω), and ~U ∈ Uad, find (uh,ph,gh), a se-
quence in (Xh

0 (Ω)×Sh0 (Ω)×ShB(Ω)), such that (uh,ph) is the solution
of (4.4) and minimizes the cost function in (4.5).

The existence and convergence of the solution of the fully discrete optimal control
problem can be proved in the same way as for semidiscrete-in-time case if we limit our
analysis to conforming finite element methods. We can state that the fully discrete
optimal solution (ûh, ĝh) converges to the optimal solution (û, ĝ) of the continuous
problem as ∆t → 0, i.e., as N → ∞ and h → 0. The well-known corresponding
theorems on fully discrete approximations of the Navier–Stokes equations can be
found in, e.g., [33]. The optimal necessary condition can be found using the same
techniques that were used for the semidiscrete-in-time case. Finally for completeness
we can state the theorem that gives the control as a solution of the adjoint equation

Theorem 4.1. Let ~u0 ∈ V (Ω), ~U ∈ Uad, and ∆t = T/N. If (ûh, ĝh) is a solution
of the fully discrete optimal control problem, then, if ∆t is sufficiently small and if

~w
(n−1)
h 6= 0 or all n = 1, 2, . . . , N , we have that ‖~w(n−1)

h ‖~g(n)
h = −~w(n−1)

h for all

n = 1, 2, . . . , N, where, for n = 1, 2 . . . , N , the functions ~w
(n−1)
h ∈ Xh

0 are the solution
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of the discrete adjoint problem

− 1

∆t
(~w

(n)
h − ~w

(n−1)
h , ~vh) + νa(~vh, ~w

(n−1)
h ) + c̃(~vh; û

(n)
h , ~w

(n−1)
h )

+ c̃(û
(n)
h ;~vh, ~w

(n−1)
h ) + b(~vh, r

(n−1)
h )

= α(û
(n)
h − ~U (n), ~vh) ∀~vh ∈ Xh

0 (Ω)

b(~w
(n−1)
h , qh) = 0 ∀qh ∈ Sh0 (Ω)

(4.6)

for n = 1, 2, . . . , N along with the terminal condition ~w
(N)
h = γ(û

(N)
h − ~U (N)).

5. A projected gradient method. An approximation to the optimal control,
state, and adjoint variable may be obtained by solving the fully discrete optimality
system which consists of the following (after dropping the (̂·) notation to denote the
optimal solution):

The discrete Navier–Stokes system
1

∆t
(~u

(n)
h − ~u(n−1)

h , ~vh) + νa(~u
(n)
h , ~vh) + c(~u

(n)
h ; ~u

(n)
h , ~vh)

+ b(~vh, p
(n)
h ) = K(~g

(n)
h , ~vh) ∀~vh ∈ Xh

0 (Ω) ,

b(~u
(n)
h , qh) = 0 ∀ qh ∈ Sh0 (Ω)

(5.1)

for n = 1, 2, . . . , N , with initial velocity ~u
(0)
h = πh~u0 and homogeneous boundary

condition.
The discrete adjoint system

− 1

∆t
(~w

(n)
h − ~w

(n−1)
h , ~vh) + νa(~w

(n−1)
h , ~vh)

+ c(~u
(n)
h ;~vh, ~w

(n−1)
h ) + c(~vh; ~u

(n)
h ; ~w

(n−1)
h )

+ b(~vh, r
(n−1)
h ) = α(~u

(n)
h − ~U (n), ~vh) ∀~vh ∈ Xh

0 (Ω) ,

b(~w
(n−1)
h , qh) = 0 ∀ qh ∈ Sh0 (Ω)

(5.2)

for n = 1, 2, . . . , N , with final condition ~w
(N)
h = γ(~u

(N)
h − πh~U (N)) and homogeneous

boundary condition.
The discrete optimality condition

‖~w(n−1)
h ‖~g(n)

h = −~w(n−1)
h(5.3)

for n = 1, 2, . . . , N .
In practice, one cannot solve the systems (5.1)–(5.3) simultaneously; note that

not only are all three systems coupled to each other, but the discrete Navier–Stokes
system (5.1) marches forward in time starting from an initial condition, while the
adjoint system (5.2) marches backward in time starting from a terminal condition.

We now consider a gradient method for the solution of the discrete optimality
system (5.1)–(5.3). At each iteration the method requires the sequential solution of
(5.1) and (5.2).

Let JNh (k) = JNh (uh(gh(k))), where JNh (·, ·) is given by (4.5), k is the iteration
counter of the gradient algorithm, and gh(k) is the kth iterate for the optimal control.
In the algorithm, τ will denote a prescribed tolerance used to test for the convergence
of the functional. The gradient algorithm proceeds as follows.
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(a) initialization:
(i) choose τ and ~gh(0); set k = 0 and ε = 1;
(ii) solve for the starting velocity field uh(0) from (5.1) with gh = gh(0);

(iii) evaluate JNh (0);.
(b) main loop:

(iv) set k = k + 1;
(v) solve for wh(k) from (5.2) with uh = uh(k − 1);

(vi) for n = 1, 2, . . . , N ,

– set ~q = ~g
(n)
h (k − 1)− ε ~w

(n−1)
h (k)

‖~w(n−1)
h (k)‖

;

– if ‖~g(n)
h (k)‖ ≤ 1, set ~g

(n)
h (k) = ~q ;

– if ‖~g(n)
h (k)‖ > 1, set ~g

(n)
h (k) =

~q

‖~q‖ ;

(vii) solve for uh(k) from (5.1) with gh = gh(k);
(viii) evaluate JNh (k);
(ix) if JNh (k) ≥ JNh (k − 1), set ε = .5ε and go to (vi); otherwise continue;
(x) if |JNh (k) − JNh (k − 1)|/|JNh (k)| > τ , set ε = 1.5ε and go to (iv);

otherwise stop.
Remark 5.1. The bulk of the computational costs are found in the backward-

in-time solution of the discrete adjoint system in step (v) and the forward-in-time
solution of the discrete state system in step (vii).

Remark 5.2. The gradient of the fully discrete functional (4.5) is given by, for
n = 1, 2, . . . , N ,

dJNh
d~g

(n)
h

∣∣∣∣
gh

= K~w
(n−1)
h ;

this follows from the equation analogous to (3.21) for the semidiscrete functional.
Then it is clear that the above algorithm is based on the iteration

~g
(n)
h (k + 1) = ΠB

(
~g

(n)
h (k)− ρk dJ

N
h

d~g
(n)
h

∣∣∣
gh(k)

)
(5.4)

for n = 1, 2, . . . , N , where ΠB denotes the projection onto the unit ball in Xh, viewed
as a subspace of L2(Ω).

The convergence property of the projected gradient algorithm is given in the
following result.

Theorem 5.3. Let (uh(k),wh(k),ph(k), rh(k),gh(k)) denote the kth iterate of
the projected gradient algorithm, and let (ûh, ŵh, p̂h, r̂h, ĝh) denote a solution of the
fully discrete optimality system (5.1)–(5.3). Let Bh = (Bh)N , where Bh denotes the
unit ball in Xh (with respect to L2(Ω).) Then, for ∆t sufficiently small, K sufficiently
large, and any gh(0) ∈ Bh,

(uh(k),wh(k),ph(k), rh(k),gh(k))→ (ûh, ŵh, p̂h, r̂h, ĝh) as k →∞ .

Proof. We will make use of the following classical result; see, e.g., [1], [6], [22], or [8].
Let X be a Hilbert space with norm ‖ · ‖, and let K(·) be a real-valued functional
on X. Suppose that K(·) is of class C2; suppose that x̂ is a local minimizer of K(·);
suppose that there exists a ball B of X, centered at x̂, such that there exist two real
numbers c1 and c2 such that for all g̃ ∈ B and all δx1, δx2 ∈ X,

J ′′(x̃)(δx1, δx2) ≤ c1‖δx1‖‖δx2‖ and c2‖δx1‖2 ≤ J ′′(x̃)(δx1, δx1) ,(5.5)



1936 M. D. GUNZBURGER AND S. MANSERVISI

where J ′′(x̃)(δx1, δx2) is the bilinear form associated with the second derivatives of
J (·); and suppose that ρk is chosen so that

0 < a ≤ ρk ≤ b < 2c2
c1

for all k(5.6)

for some positive numbers a and b. Then the iterates of the gradient algorithm

x(k + 1) = x(k)− ρk∇K(x(k)) k = 0, 1, 2, . . . ,

converge to x̂ for any initial iterate x(0) ∈ B.
For our setting, let ∆t = T/N and let

KNh (u,g, βββ, s) = JNh (u)−
N∑
n=1

β(n)

2

(
‖~g(n)
h ‖2 − 1 + (s(n))2

)
.

The functional KNh could have more minimizers than JNh , but every optimal solution

of our problem is also a minimizer of KNh . If (û
(n)
h , ĝ

(n)
h ) is an optimal solution, then

it minimizes JNh with ‖ĝ(n)
h ‖ = 1, β̂(n) = (ĝ

(n)
h , ŵ

(n−1)
h ) = −K‖ŵ(n−1)

h ‖, and ŝ(n) = 0
for all n = 1, . . . , N and KNh = JNh so that the optimal solution minimizes KNh . Since
we are looking for a minimum point, we search for β(n) ≤ 0. The first variation of KNh
can be written as

DKNh (uh(gh),gh, βββ, s)(δgh, δβββ, δs) = ∆t
N∑
n=1

∫
Ω

(K~w
(n−1)
h − β(n)~g

(n)
h ) · δ~g(n)

h d~x

−∆t
N∑
n=1

(
β(n)s(n)δs(n) +

(‖~g(n)
h ‖2 − 1 + (s(n))2

)
δβ(n)

)
.(5.7)

The search could be in the g, βββ, and s direction with the gradient given by

dKNh
d~g

(n)
h

∣∣∣∣
(gh,βββ,s)

= K~w
(n−1)
h − β(n)~g

(n)
h ,

dKNh
dβ(n)

∣∣∣∣
(gh,βββ,s)

= ‖~g(n)
h ‖2 − 1 + (s(n))2 ,

dKNh
ds(n)

∣∣∣∣
(gh,βββ,s)

= β(n)s(n)

for n = 1, 2, . . . , N. We can reduce the number of the directions to only one if we set
‖~g(n)(k)‖2 − 1 + s2(n)(k) = 0 and s(n)(k) = 0 if ‖g̃(n)(k − 1)‖2 ≥ 1 or β(n)(k) = 0
if ‖g̃(n)‖2(k − 1) < 1, where k is the kth iteration of the gradient algorithm. If

s(n)(k) = 0, we can fix β(n)(k) equal to (~g
(n)
h (k), ~w

(n)
h (k)), assuming that ~g

(n)
h (k)

is orthogonal to the gradient direction dKNh /d~g(n)
h . The variation δgh can be set

proportional to the adjoint solution and KNh decreases for all iterations.
Now the gradient algorithm can be applied to KNh only in the g direction. For

each g̃h ∈ L2((0, T ); Xh), the nonvanishing terms of the second Frechet derivative of
KNh (ũh(g̃h), g̃h) are given by

D2KNh (ũh(g̃h), g̃h)(δg1h, δg2h) = −∆t
N∑
n=1

β̃(n)

∫
Ω

δ~g
(n)
1h · δ~g(n)

2h d~x,
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α∆t

N∑
n=1

∫
Ω

w̃
(n)
1h · w̃(n)

2h d~x+ γ

∫
Ω

w̃
(N)
1h · w̃(N)

2h d~x(5.8)

+α∆t
N∑
n=1

∫
Ω

(~u
(n)
h − ~U

(n)
h ) · z̃(n)

h d~x+ γ

∫
Ω

(~u
(N)
h − ~U

(N)
h ) · z̃(N)

h d~x ,

where w̃
(n)
h ∈ Xh

0 , ũ
(n)
h ∈ Xh

0 , w̃
(n)
ih ∈ Xh

0 , and z̃
(n)
h ∈ Xh

0 are the solution of the
adjoint equations, the solution of the Navier–Stokes equations, and the first and the

second variation of ~u
(n)
h , respectively. By following arguments similar to those used

in [21], we have that, for some constants C1, C2 > 0,

|D2KNh (ũh(g̃h), g̃h)(δg1h, δg2h)|
≤
(
αf2(‖g̃h − ĝh‖)

+
(
α+ γ + αC1f2(‖g̃h − ĝh‖)

)
f2

1 (‖g̃h − ĝh‖)
)
‖δg1h‖‖δg2h‖

(5.9)

and

|D2KNh (ũh(g̃h), g̃h)(δg1h, δg1h)|

≥ ∆t
N∑
n=1

(
−β̃(n) − C2αf2(‖g̃h − ĝh‖)f2

1 (‖g̃h − ĝh‖)
)
‖δg1h‖2 ,

(5.10)

where f1(·) and f1(·) are continuous functions. Equation (5.10) can give the correct

estimate only if β̂(n) 6= 0, which means ŝ(n) = 0 and ‖ĝ(n)‖ = 1. Hence, let ŵ(n−1) be
different from zero for all n = 1, . . . , N and define η = min{‖ŵ(n−1)‖ : n = 1, . . . , N}.
We can write

β̃(n) = (g̃
(n)
h , w̃

(n−1)
h ) = β̂(n) − (ĝ

(n)
h − g̃(n)

h , ŵ
(n−1)
h )− (g̃

(n)
h , ŵ

(n−1)
h − w̃(n−1)

h ),

and, for K large enough, the estimate

|β̃(n)| ≥ Kη − α(f2(0)‖g̃h − ĝh‖+ f2(‖g̃h − ĝh‖) + f2(0)) .

Now, assume that ‖ĝh − g̃h‖ ≤ ξ so that, consequently, f1(‖ĝh − g̃h‖) ≤ ξ1 and
αf2(‖ĝh − g̃h‖) ≤ ξ2 for some ξ1, ξ2 ≤ ∞ and choose K large enough. Then, we may
choose

c1 = ξ2 + (α+ γ + αC1ξ2)ξ2
1 and c2 = Kη − ξ2ξ − 2ξ2 − C2ξ2ξ

2
1 .

Remark 5.4. Steps (ix) and (x) of the algorithm automate the choice of ρk
satisfying (5.6).

Remark 5.5. Under the hypotheses of Theorem 5.3 one can also prove that an
appropriately defined conjugate gradient algorithm converges.

6. Computational examples. The optimality system presents a formidable
computational challenge even for relatively simple geometries and relatively coarse
grids. It involves the forward-in-time Navier–Stokes system coupled to the backward-
in-time adjoint system.

One can split the optimality system into its two constituent systems of equations.
At any step of the iteration, the Navier–Stokes system can be solved by marching
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forward in time from the initial condition; at any time, the body force must be
determined, through the gradient algorithm, from the adjoint solution obtained in
the previous step. At every time step, the nonlinearity of the Navier–Stokes system is
treated with a modified Newton–Raphson method. The adjoint equations can then be
solved marching backward in time, starting from the final condition, which along with
the right-hand side and coefficients, are determined from the Navier–Stokes solution.
Thus, both the state and adjoint variables must be available and stored over the entire
space-time domain. The iterative procedure, i.e., the forward Navier–Stokes sweeps
followed by the backward adjoint sweeps, is repeated until convergence is achieved.
The projected gradient algorithm with variable step, described in the previous section,
is a slowly convergent method and many iterations are necessary, even for the simple
test cases discussed below.

The solution globally consists of eight fields: three for the state of the fluid, three
for the adjoint state, and two for the control. As was mentioned above, this solution
must be available over the whole time-space domain and cannot be stored in the
computer memory, even for simple test cases that use a 20× 20 spatial mesh and 100
time steps. Therefore, these fields must be stored out of core and be accessible during
the matrix and right-hand side assemblies.

The scheme employed for solving linear systems is the frontal method described
in [23]. The implementation of the method we use employs out-of-core storage. Since
there are not limitations on the storage of the solver matrix with this method, many
engineering problems can be adequate treated. The primary disadvantage of the
frontal method is the effort necessary to access and store the matrix.

Of course, our solution strategy and its implementation is a straightforward one.
Other more sophisticated strategies and implementations can be devised that require
less storage and perhaps less central processing resources. This is a subject that is
currently of substantial interest to us and the flow control community.

6.1. Test 1. We consider a unit square domain (0, 1)× (0, 1) ⊂ R2. We assume
that the time interval [0,1] is divided into equal intervals of duration ∆t = 1/N. The
finite element spaces are chosen to be continuous piecewise biquadratic polynomials
for the velocity and continuous piecewise bilinear polynomials for the pressure, i.e., the
Taylor–Hood finite element pair, with respect to a rectangular mesh. The mesh size is
denoted by h, and calculations with varying mesh sizes have been performed. In this
first test we are interested in the convergence history with respect to the parameters
involved, so a simple stationary target velocity ~U(x, y) = (U(x, y), V (x, y)) is chosen;
e.g.,

U = 10
d

dy

(
φ(0.4, x)φ(0.4, y)

)
and V = −10

d

dx

(
φ(0.4, x)φ(0.4, y)

)
,(6.1)

where

φ(t, z) = (1− z)2
(
1− cos(2πtz)) .

Velocity tracking evolution. For the first example we choose the initial velocity

u0(x, y) = −U(x, y) and v0(x, y) = −V (x, y)

so that the initial flow rotates in an opposite sense from the target flow. The flow
evolution is given in Figure 6.1. The controlled fluid is on the left, and the desired
flow is on the right. (In the figures, all values are normalized by the maximum value.)

Figure 6.2 shows the error ‖û − ~U‖ between the optimally controlled flow û and the
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Fig. 6.1. Test 1. Controlled (left) and target (right) flows at t = 0, .05, .1, .125, .135, .2, .5, 1.
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Fig. 6.2. Test 1. Error ‖û− ~U‖ vs. time.
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Fig. 6.3. Test 1. Error ‖û − ~U‖ vs. time for different values of the bound K for the control;
K = 3.0 (a), 3.2 (b), 3.4 (c), 3.6 (d), 3.8 (e).

target flow ~U . As we can see, the error does not go to zero very rapidly due to the
fact that we have a bounded control. For this calculation, by t = 0.15 we achieve a
match in shape of the flow and at t = 0.6 we achieve a match in magnitude as well.
For this calculation, ∆t = 0.025, h = 1/16, α = 1, γ = 0.5, and K = 3.2.

Velocity tracking with different control norm. We want to analyze what happens
if we change K, the a priori bound for the norm of control ~f . The values ∆t = 0.025,
h = 1/16, α = 1, and γ = 0.5 are used in all cases. We now set the initial velocity of
the controlled flow to zero and the target flow is still given by (6.1). In Figure 6.3, we

give the error ‖û− ~U‖ between the controlled flow û and the target flow ~U for different
value of K. (We are really giving information about the solution of the fully discrete
optimal control problem.) We have K = 3.0 (a), 3.2 (b), 3.4 (c) and 3.4 (c), 3.6 (d),
3.8 (e), respectively. We observe that for K ≤ 3.4, as K increases, the controlled
flow matches better over the whole time interval. However, for K > 3.4, there is a
better match only up to some time t∗ < T = 1, but for t > t∗, the performance
of the controlled flow gets worse as K increases. Of course, we are minimizing the
functional (4.5) that involves a sum over the time steps; it does not follow that the

error ‖û− ~U‖ necessarily decreases with increasing K at every time step. The norm
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Fig. 6.4. Test 1. Adjoint function norm ‖~w‖ vs. time for different values of the bound K for
the control; K = 3.0 (a), 3.2 (b), 3.4 (c), 3.6 (d), 3.8 (e).
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Fig. 6.6. Test 2. Controlled (left) and target (right) flows at t = .1, .2, .3, .4, .5, .6, .7, .8, .9, 1.

‖~w‖ of the adjoint variable agrees with the intuitive behavior of the error between
the controlled and target flows. That norm is given in Figure 6.4 for the different
values of K. In Figure 6.5, we display the value of the functional (4.5), evaluated at
the optimal solution, vs. K. As is expected, the functional decreases as K increases.

6.2. Test 2. We consider a unit square domain (0, 1)× (0, 1) ⊂ R2. We assume
that the time interval [0,1] is divided in equal intervals of time ∆t = 1/N. The
Taylor–Hood finite element pair is used with respect to a rectangular mesh. We
report only results for h = 1/16; however, calculations with varying mesh sizes have
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Fig. 6.7. Test 2. Error ‖û− ~U‖ vs. time.
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Fig. 6.8. Test 2. Adjoint function norm ‖~w‖ vs. time.

been performed. The target velocity ~U(x, y) is chosen to be

U(x, y) = a(1, .4, x, y) + a(2, t, x, y)/(4πt+ 1),

V (x, y) = b(1, .4, x, y) + b(2, t, x, y)/(4πt+ 1) ,

where

φ(k, t, z) = (1− zt)2
(
1− cos(2kπtz)),

a(k, t, x, y) =
d

dy

(
φ(k, t, x)φ(k, t, y)

)
,

b(k, t, x, y) = − d

dx

(
φ(k, t, x)φ(k, t, y)

)
.

This velocity field is a superposition of two flows, one having a vortex at the center
of the domain and another flow with four vortices. Each of these flows prevails at
different times of the evolution. The initial velocity for the controlled flow is chosen
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to be

u0(x, y) = −8U(1/4, x, y) and v0(x, y) = −8V (1/4, x, y)

so that it has an opposite rotational sense and magnitude from that of the target
flow. For this computation, α = 1, γ = 0.5, and K = 1.6. The evolutionary history is
given in Figure 6.6. The controlled fluid is on the right, the desired flow is on the left,
and all the pictures are normalized. We can see that by t = 0.3, the controlled flow
looks very much like the desired flow. Figure 6.7 shows the error ‖û− ~U‖ between the

controlled flow û and the target flow ~U . At the beginning, the error rapidly decreases
but after this initial interval of time the error increases due to changes in the desired
flow which cannot be followed well by a control with the bound we have chosen. The
norm of the control is forced to be less then 1.6. Evidently, this does not allow enough
power to well-match the time evolution of the desired flow. For the same flow, Figure
6.8 shows the values of the norm of the adjoint variable ~w.
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Abstract. This paper is concerned with approximations to nonlinear filtering problems that are
of interest over a very long time interval. Since the optimal filter can rarely be constructed, one needs
to compute with numerically feasible approximations. The signal model can be a jump-diffusion or
just a process that is approximated by a jump-diffusion. The observation noise can be either white
or of wide bandwidth. The observations can be taken in either discrete or continuous time. The
cost of interest is the pathwise error per unit time over a long time interval. It is shown under quite
reasonable conditions on the approximating filter and the signal and noise processes that (as time,
bandwidth, process, and filter approximation, etc.) go to their limit in any way at all, the limit of the
pathwise average costs per unit time is just what one would get if the approximating processes were
replaced by their ideal values and the optimal filter were used. Analogous results are obtained (with
appropriate scaling) if the observations are taken in discrete time, and the sampling interval also
goes to zero. For these cases, the approximating filter is a numerical approximation to the optimal
filter for the presumed limit (signal, observation noise) problem.

Key words. nonlinear filters, approximations to nonlinear filters, infinite time filtering, occu-
pation measures, pathwise average error criteria
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1. Introduction. This paper is concerned with approximations to nonlinear
filtering problems that are of interest over a very long time interval. Consider the
simplest such problem where the observation is a function of the state of a diffusion
process and either or both the function or the process is nonlinear. Then, except in
a few cases which on the whole are not of much practical value, it is not feasible to
compute the truly optimal filter. Then one must approximate in some way.

Suppose that the approximation is parameterized by a parameter h such that as
h→ 0, the approximation converges to the true filter in the sense that the computed
expectations of any bounded and continuous function converge to the true conditional
expectation; equivalently, the computed approximating conditional distribution con-
verges weakly to the true conditional distribution. Now suppose that the filter is of
interest over an arbitrarily large interval T and the errors of concern are the pathwise
average (not the mean value) “prediction” errors per unit time for some rather ar-
bitrary definition of prediction. Pathwise errors are a main item of interest in many
such applications since we work with only one long path, and the law of large numbers
argument which justifies the use of mean values is inappropriate.

Now there are two parameters: h and T . The convergence of the filter over any
fixed finite interval says nothing about the behavior of the pathwise average errors as
h→ 0 and T →∞ arbitrarily. We will show that, under quite reasonable conditions,
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the pathwise errors converge in probability to an optimal deterministic limit in a very
natural sense. This limit is what one would get if one used the true optimal filter
and not an approximation. In fact, the limit is also what one would get for the true
optimal filter if the expectation of the pathwise average replaced the pathwise average.
The convergence is independent of how h→ 0 or T →∞. The error function is quite
general and can even be an (appropriate) path functional. This is quite a strong
result. Note that it is important that we allow h → 0 and T → ∞ in an arbitrary
way. If, for example, we required that the time required to get a good approximation
by the “ergodic limit” depends on h, for small h, then the approximating filter would
not be good for large time, since the better the filter is (i.e., the smaller h is), the
more time is required for the pathwise average to be well approximated by the ergodic
limit.

Actually, our interest is in more general problems as well. We let the signal pro-
cess be replaced by a “pre-jump-diffusion,” which is only approximated by a jump-
diffusion. The discrete time case is also treated. Also, we allow wide bandwidth
observation noise. Much (perhaps most) of the theoretical work in nonlinear filtering
is in continuous time, and white observation noise is the usual one. But most appli-
cations are in discrete time. If the interval between observations becomes small so
that one is tempted to use a continuous time model, then one is confronted with the
very real presence of wide bandwidth and not white noise. One usually constructs
a numerical approximation to a filter which assumes white observation noise and a
diffusion model. Then the wide bandwidth observation noise, combined with all of
the other approximations, can conceivably lead to serious errors when T is large.

The last part of the paper deals with this general problem. The observations are
in discrete time with a small time interval between the observations, the observation
noise is wide bandwidth, the signal is only approximated by a sampled diffusion,
and the pathwise average errors over a long time interval T are of interest. Under
reasonable conditions we show that the desired limit result holds here as well, as all
the parameters go to their limits simultaneously (observation interval, observation
noise bandwidth, h, the signal converging to a jump-diffusion, T , etc.). This is a true
justification of filtering work in continuous time.

Some work on this problem was done in [21], where the pathwise average error
was replaced by an expectation of the pathwise average error, and which contains
much additional material on the wide bandwidth observation noise problem. In [12],
the asymptotics of the filter alone was dealt with, and it was presumed that the filter
was the true optimal filter, not an approximation. The approach taken here uses
an adaptation of the occupation measure approach which was used successfully on a
variety of control and limit problems in [19, 22].

2. Problem formulation and occupation measures. Let h parameterize the
approximating filter. Until section 5, we work with observations in continuous time.
Let X(·) denote the basic signal process, which is the solution to an Itô equation. The
process can be a jump-diffusion with time independent coefficient functions, with only
notational changes required in the development. But for notational simplicity, we work
with a simple diffusion, which takes values in a compact set in Rr, Euclidean r-space.
Where continuity is used in the current proof, for the jump-diffusion case it is replaced
by the fact that we have continuity at each time with probability one, and uniform
(in t) right continuity in probability. Similarly, under appropriate conditions on the
boundary and reflection directions, the results hold for a reflected jump-diffusion. Our
basic condition on the signal process is the following.
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Assumption 2.1. X(·) takes values in a compact subset G of Rr for all X(0) ∈ G
and satisfies the Itô equation

(2.1) dX = p(X)dt+ σ(X)dW,

where W (·) is a standard vector-valued Wiener process and p(·) and σ(·) are continu-
ous. The solution of the above Itô equation is unique in the weak sense for each initial
condition.

The uniqueness assumption imposes rather mild requirements on p(·) and σ(·),
while the compactness of the state space will hold if, say, σ(·) vanishes outside a
compact set and 0 is a global attractor for the deterministic equation obtained by
substituting σ = 0 in (2.1). Alternatively, compactness of the state space can be
achieved by constraining a diffusion in a bounded region by appropriately reflecting
it at the boundary. Then the model is represented as the solution to the Skorohod
problem, and the techniques of the current paper can be used to cover this case as
well. In many applications, the state spaces are inherently compact; for example,
where the state is the phase of a signal. Additionally, unbounded signal models are
often used for mathematical convenience, while the true process does take values in a
compact set.

The observation process is Y (·), defined by

(2.2) Y (t) =

∫ t

0

g(X(s))ds+B(t),

where g(·) is a continuous vector-valued function and B(·) is a standard vector-valued
Wiener process, independent of W (·) and X(0).

Unless otherwise stated all statements of the form, “with probability one (w.p.1),”
“almost surely (a.s.)”, “convergence in probability,” etc., will correspond to the basic
probability space which supports X(·), Y (·),W (·), B(·).

The optimal filter process. We will use the representation of the optimal filter
as it was originally developed in [15]. This is most convenient for our purposes and
it is completely equivalent to the forms used later, as in [8, 11, 23]. Let X̃(·) be a
process satisfying (2.1), and one which (loosely speaking) is conditionally independent
of (X(·),W (·), B(·)) given its initial condition. We formalize this as follows: X̃(·)
is a process satisfying (2.1) such that there exists a (possibly random) probability
measure Π∗ on Rr with the properties that conditioned on Π∗, X̃(·) is independent of
(X(·),W (·), B(·)), and the conditional distribution of X̃(0) given Π∗ is Π∗. We will
call Π∗ the “random initial distribution” of X̃(·) (i.e., the distribution of X̃(0)). It
will vary depending on the need and will be specified when needed.

Let Ya,b, a < b, denote the values of Y (·)− Y (a) in the time interval [a, b]. Until
further notice, let Π(0) denote the distribution of X(0) and Π(t) the distribution of
X(t), given the data Y0,t and Π(0). Let X̃0,a denote the values of X̃(·) in the time
interval [0, a]. Define the function

(2.3) R(X̃0,t, Y0,t) = exp

[∫ t

0

g′(X̃(s))dY (s)− 1

2

∫ t

0

∣∣∣g(X̃(s))
∣∣∣2 ds] .

Let EZf denote the expectation of a function f given the data Z. Then the optimal
filter Π(·) satisfies the following relation (which defines the inner product notation).
For each bounded and measurable real-valued function φ(·)

(2.4)

∫
φ(x)Π(t, dx) ≡ 〈Π(t), φ〉 =

E{Π(0),Y0,t}
[
φ(X̃(t))R(X̃0,t, Y0,t)

]
E{Π(0),Y0,t}R(X̃0,t, Y0,t)

,
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where Π(0) is the distribution of the initial condition X̃(0).
Owing to the Markov property of X(·), the optimal filter defined by (2.4) satisfies

the following semigroup relation: For 0 < s < t

(2.5) 〈Π(t), φ〉 =
E{Π(t−s),Yt−s,t}

[
φ(X̃(s))R(X̃0,s, Yt−s,t)

]
E{Π(t−s),Yt−s,t}R(X̃0,s, Yt−s,t)

.

In (2.5), Π(t− s) is the (possibly random) distribution of the initial condition X̃(0).
Throughout the paper, we use the notation E{Π(a),Ya,b}F (X̃0,s, Ya,b) for the condi-
tional expectation, given the data Ya,b and where the random initial distribution for

X̃(·) is Π(a). The analogous notation will be used when approximations to X̃(·) are
used.

Since Π(t) is nearly always hard (if not impossible) to compute for nonlinear
problems, in applications one uses various approximations. Let Πh(·) denote the
actual measure-valued process, to be specified more precisely below (see (2.7)), which
is the “numerical” filter used in the application. Thus, Πh(t) (with values Πh(t, dx))
is the approximation at time t.

As discussed earlier, Π(0) and Πh(0), which represent the initial condition of the
auxiliary process used in the filter formula, will be allowed to be random (i.e., they can
be measure-valued random variables, although always nonanticipative with respect to
the Wiener processes. In this case, we can still write PΠ(0){X(0) ∈ A} = Π(0, A),
random or not.

Defining Π(0) arbitrarily. Equation (2.4) defines a measure-valued process
Π(·), with initial condition Π(0). This process Π(·) is well defined even if Π(0) is not
the distribution of X(0), although it would not then be the optimal filter. Keep in
mind the following important fact: In what follows, we allow Π(0) to be arbitrary but
with support in G, and we will note it explicitly if it is the distribution of X(0). Then,
the semigroup property in equation (2.5) shows that the pair (X(·),Π(·)) is Markov.

An approximating auxiliary process and approximate filter. A common
way to approximate the optimal filter is to find a process which suitably approximates
X(·) but for which the optimal filter is feasible. We then construct the optimal filter
for the approximating process but use the actual observations (2.2). This was the
motivation for the Markov chain approximation filter in [16, 20]. The approximating
filter Πh(·), which will be defined later in this section, will be constructed by replacing
the auxiliary process X̃(·) in (2.4) by X̃h(·), where X̃h(·) approximates the auxiliary
process X̃(·) but is “simpler” than it. Thus, this filter is built under the assumption
that the true signal process is X̃h(·), not X(·). The process X̃h(·) might be Markov;
for example, a continuous time Markov chain on a finite state space. More commonly,
it is an interpolation of a discrete parameter process; i.e, there is δh > 0 and which
goes to zero as h → 0 such that X̃h(·) is constant on the intervals [nδh, nδh + δh)
and X̃h(nδh), n = 0, . . . , is Markov. When the signal process is defined in continuous
time, we always assume that X̃h(·) is of one of these two forms. Furthermore, we
always suppose (without loss of generality) that X̃h(t) takes values in G.

To quantify the sense in which X̃h(·) approximates X̃(·), we will assume the
following basic consistency condition.

Assumption 2.2. For any sequence {Πh} of probability measures converging
weakly to some probability measure Π, X̃h(·) with the initial distribution Πh converges
weakly to X̃(·) with the initial distribution Π.

This is a very weak assumption on the approximating filter. It holds, for example,
when X̃h(·) is a finite state Markov chain, which is “asymptotically consistent” with
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X(·), as defined in [16, 20]. Indeed, the convergence (as h → 0 and for an arbitrary
finite time) of filters based on this approximating model has been proved in [16, 20],
and the approximation performs well if the state dimension is not higher than four.
Another possibility is to use an appropriate discrete time approximation to X̃(·). One
might discretize time, but not space, provided that the computation is feasible. In
either case, Assumption 2.2 will be satisfied if the approximating process satisfies the
minimal consistency conditions in [16, 20].

Similar to the construction of X̃(·), we will take X̃h(·) to be independent of
(X(·),W (·), B(·)), given the initial condition. The distribution of the initial condition
X̃h(0) will be a measure-valued random variable, analogous to what was done in (2.4)
and (2.5), when X̃(·) was used. Define

(2.6) R(X̃h
0,t, Y0,t) = exp

[∫ t

0

g′(X̃h(s))dY (s)− 1

2

∫ t

0

∣∣∣g(X̃h(s))
∣∣∣2 ds] .

For Markov X̃h(·), the approximating filter Πh(·) is defined by

(2.7) 〈Πh(t), φ〉 =
E{Πh(0),Y0,t}

[
φ(X̃h(t))R(X̃h

0,t, Y0,t)
]

E{Πh(0),Y0,t}R(X̃h
0,t, Y0,t)

and Πh(·) satisfies the semigroup equation

(2.8) 〈Πh(t+ s), φ〉 =
E{Πh(t),Yt,t+s}

[
φ(X̃h(s))R(X̃h

0,s, Yt,t+s)
]

E{Πh(t),Yt,t+s}R(X̃h
0,s, Yt,t+s)

, s > 0, t ≥ 0.

According to our standard notation, the initial distribution of X̃h(·) in (2.7) is Πh(0)
and in (2.8) it is Πh(t).

When X̃h(·) is piecewise constant with {X̃h(nδh);n ≥ 1} being Markov, then
the approximating filter is defined by (2.7) and (2.8), but where t and s are integral
multiples of δh and Πh(·) is constant on the intervals [nδh, nδh + δh). Thus, the
evolution of Πh(·) can be written in recursive form in general.

From the Feller–Markov property ofX(·), it follows easily that the pair (X(·),Π(·))
is Feller–Markov. Since X(t) takes values in a compact set G, and the samples of
Π(t) are measures with support in G, we have at least one invariant measure for
the Markov family determined by (X(·),Π(·)). When initialized at this measure, the
process (X(·),Π(·)) is stationary; i.e., the distribution of

(X(t+ ·),Π(t+ ·))
does not depend on t. Let Q̄(·) denote the measure of the joint process

Ψ(·) = (X(·),Π(·), Y (·), B(·),W (·)),
where (X(·),Π(·)) is stationary. Let Q̄f (·) denote the measure of the stationary joint
process (X(·),Π(·)). We will make the following fundamental assumption throughout
this paper.

Assumption 2.3. There is a unique invariant measure for (X(·),Π(·)).
In section 7 we provide conditions for the uniqueness of the invariant measure to

hold and provide some examples for which these conditions can be verified. The criti-
cal importance of the uniqueness of the stationary joint process was first raised in [21].
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The stationary process and associated measure will be given a filtering interpretation
later in this section.

In the following, lower case letters x(·), π(·), etc., are used for the canonical sample
paths. Letters such as x, y, . . . are used to denote vectors such as x(t), y(t), etc.
Define ψf (·) = (x(·), π(·)), Ψf (·) = (X(·),Π(·)), and ψ(·) = (x(·), π(·), y(·), b(·), w(·)),
although we will not always need the component w(·).

For each t ≥ 0, define the process

Ψh(t, ·) =
(
X(t+ ·),Πh(t+ ·), Y (t+ ·)− Y (t), B(t+ ·)−B(t),W (t+ ·)−W (t)

)
.

Define Ψh
f (t, ·) similarly. In sections 4 and 6 in which we consider more general

approximate filtering problems, we will consider modifications to the Ψh(t, ·) process
by replacing X(·), Y (·), B(·) with h-parametrized processes Xh(·), Y h(·), Bh(·).

The path spaces. The path space D[Rk; 0,∞) of Rk-valued functions which
are right continuous and have left hand limits (CADLAG), endowed with the Skoro-
hod topology [3, 9], will be used for the vector-valued processes such as X(·), Y (·),
B(·), X̃(·), etc., for the appropriate value of k. Let M(G) denote the space of mea-
sures on G with the weak topology. Let mn(·) and m(·) be in M(G). Recall that
mn(·) converges weakly to m(·) if for each bounded and continuous function φ(·) on
G, 〈mn, φ〉 → 〈m,φ〉. Equivalently, for a set of continuous functions {φi(·)} which are
dense (in the topology of uniform convergence) in the set of bounded and continuous
functions on G, we have the metric

d(mn,m) =
∑
i

2−i|〈mn −m,φi〉| → 0.

Owing to the fact that the values of X(t) and X̃h(t) are in G, the samples of
the Π(t) and its approximations Πh(·) take values in M(G). The path Π(·) and its
approximations will take values in the CADLAG space D[M(G); 0,∞), also with the
Skorohod topology used. The measure-valued random variables Qh,T (·) defined by
(2.9) below take values in the space of measures on the product path space

M (
D[Rk; 0,∞)×D[M(G); 0,∞)

)
for the appropriate value of k (which is the sum of the dimensions of x, y, b, w).

A “prediction error” function. We start with a special case of the error or
performance function in order to fix ideas. Let φ(·) be a bounded, continuous, and
real-valued function of x and consider the pathwise average error per unit time

(2.9) Gh,T (φ) ≡ 1

T

∫ T

0

[〈Πh(t), φ〉 − φ(X(t))
]2
dt.

We will show that, under quite broad conditions on the approximate filter,

(2.10) Gh,T (φ)→
∫

[〈π(0), φ〉 − φ(x(0))]
2
Q̄f (dψf (·))

in the sense of probability, as h → 0 and T → ∞, in any way at all. Later in this
section, it will be seen that the right side of (2.10) is what one would also get as
the limit if the true optimal filter were used and not the approximation. In this
sense there is pathwise asymptotic optimality. The result will actually be much more
general. The errors will be written in terms of the following occupation measure.
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The occupation measures. For a random variable Z and set A, let IA(Z)
denote the indicator function of the event that Z ∈ A. Let C and C ′ be measurable
sets in the product path spaces of Ψh(t, ·) and Ψh

f (t, ·), resp. Define the occupation

measures Qh,T (·) and Qh,Tf (·) as

(2.11) Qh,T (C) =
1

T

∫ T

0

IC(Ψh(t, ·))dt

and

(2.12) Qh,Tf (C ′) =
1

T

∫ T

0

IC′(Ψ
h
f (t, ·))dt.

We can write (2.9), in terms of Qh,Tf (·), as

(2.13) Gh,T (φ) =

∫
[〈π(0), φ〉 − φ(x(0))]

2
Qh,Tf (dψf (·)).

A more general error or performance function. It will be shown that for
any (bounded, measurable, and continuous w.p.1 with respect to the measure Q̄f (·))
real-valued function F (·)

(2.14)
1

T

∫ T

0

F (Ψh
f (t))dt =

∫
F (ψf (·))Qh,Tf (dψf (·))→

∫
F (ψf (·))Q̄f (dψ(·))

in probability. This says that sample mean errors of many types (see the example in
the next paragraph) will converge to the stationary value, which is the same value
that one would get if the true optimal filter were used, and the pathwise occupation
measure replaced by its expected value. The convergence is in the sense of probability,
and holds as T →∞ and h→ 0 in any way at all. The arbitrariness of the way that
T →∞ and h→ 0 is crucial in applications. It is important that the approximation
is good for all small h, not depending on T , if T is large enough. Results such as
(2.14) are the main contributions of this paper.

The function F (·) can be quite general. In (2.10), F (ψf (·)) depends only on
ψf (0), since it equals |〈π(0), φ〉 − φ(x(0))|2. But, F (·) might have a more complex
dependence on ψf (·). For example, consider the case where we are interested in

1

T

∫ T

0

[
max

s∈[t−1,t]

∣∣φ(X(s))− 〈Πh(s), φ〉∣∣] dt.
Here

F (ψf (·)) = max
s≤1
|φ(x(s))− 〈π(s), φ〉|.

Comment on the stationary process. Let us deviate a little and discuss the mean-
ing of a stationary process (X(·),Π(·)). Recall that we assume that the measure Q̄f (·)
of the stationary pair (X(·),Π(·)) is unique. Now, consider the correctly initialized fil-
ter, i.e., the true optimal filter, which we denote by Π0(·), i.e., Π0(B) = P{X(0) ∈ B}
for each Borel set B ∈ Rr. Define the mean occupation measure QTf (·) by

(2.15) QTf (C) =
1

T

∫ T

0

P ((X(t+ ·),Π0(t+ ·)) ∈ C) dt,
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for measurable sets C in the product path space. Note that QTf (·) is a measure but it is

not random. It follows from the proofs of Theorems 3.1 and 3.2 that {QTf (·);T <∞}
is tight and converges to Q̄f (·), the measure of the unique stationary process. Thus,
the limit in (2.14) is the same as if the optimal filter were used (with probability one)
and the pathwise occupation measure were replaced by the mean occupation measure.

Note that the integrand in (2.14) is the measure of the (system, filter) pair on the
time interval [t,∞), and the integral is equivalent to choosing t at random in [0, T ].
This gives a loose interpretation of Q̄f (·) in terms of a random initial time.

3. Tightness and weak convergence. The following lemma will be used in
the tightness arguments to follow.

Lemma 3.1 (see [14, Theorem 2.7b]). Let Zn,s(·), n = 1, 2, . . . ; s > 0 be a family
of processes with paths in the Skorohod space D[S0; 0,∞), where S0 is a complete and
separable metric space with metric γ(·). For each δ > 0 and each t in a dense set, let
there be a compact set Sδ,t ⊂ S0 such that

(3.1) sup
n,s

P{Zn,s(t) /∈ Sδ,t} ≤ δ.

Let Fn,st denote the minimal σ-algebra which measures {Zn,s(u), u ≤ t}, and Tn,s(T )
the set of Fn,st -stopping times which are less than T > 0. Suppose that for each T

(3.2) lim
δ→0

lim sup
n

sup
s

sup
τ∈Tn(T )

E [γ (Zn,s(τ + δ), Zn,s(τ)) ∧ 1] = 0.

Then to every ε > 0 there exists a compact set Kε such that

lim sup
n

sup
s
P (Zn,s(·) ∈ Kε) > 1− ε.

We will apply the above theorem for the doubly parametrized process {Πh(t+ ·);
h > 0, t > 0}. Condition (3.1) will hold trivially due to the compactness of the space
and we will concentrate on verifying (3.2).

Theorem 3.1. Assume that Assumptions 2.1, 2.2, and 2.3 hold. Then

(3.3a) {X(t+ ·); t ≥ 0} is tight,

(3.3b)
{
X̃h(·);h, all possible initial conditions

}
is tight.

To every ε > 0 there exists a compact set Kε such that

(3.3c) lim sup
h→0

sup
t
P (Πh(t+ ·) ∈ Kε) > 1− ε.

Also for every sequence hk → 0, Tk →∞,

(3.4)
{
Qhk,Tk(·); k ≥ 1

}
is tight.

Let Q(·) denote a weak sense limit of the set in (3.4), as k → ∞. Let ω be the
canonical variable on the probability space on which Q(·) is defined, and denote the
samples by Qω(·). Then, for each ω, Qω(·) is a measure on the product path space
D[Rk; 0,∞)×D[M(G); 0,∞) for appropriate k. It induces a process

(3.5) Ψω(·) = (Xω(·),Πω(·), Y ω(·), Bω(·),Wω(·)) .
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For almost all ω, (Xω(·),Πω(·)) is stationary.
Proof. The set {X(t + ·), t ≥ 0} is tight, by the fact that the set of “initial

conditions” {X(t), t > 0} are confined to a compact set and the properties of the
diffusion (2.1). The set in (3.3b) is tight by the assumptions on X̃h(·) concerning
weak convergence, which (using the fact that the possible values of X̃h(0) are confined
to some compact set) implies that every subsequence of the set in (3.3b) has a further
subsequence which converges weakly.

To prove (3.3c) we will apply Lemma 3.1. For a real number ρ > 0 and each fixed
h and t, let T h,t(ρ) denote the set of stopping times with respect to the filtration
σ{Πh(t+ s) : s ≤ u}u≥0, bounded by ρ. Then, by Lemma 3.1, it is sufficient to show
that

(3.6) lim
δ→0

sup
h→0

sup
t

sup
τ∈T h,t(ρ)

E
∣∣〈Πh(t+ τ + δ), φ〉 − 〈Πh(t+ τ), φ〉∣∣ = 0

for each continuous, bounded, and real-valued φ(·). Define the function

K(h, t, τ, δ) =
E{Πh(t+τ),Yt+τ,t+τ+δ}

[
φ(X̃h(δ))R(X̃h

0,δ, Yt+τ,t+τ+δ)
]

E{Πh(t+τ),Yt+τ,t+τ+δ}R(X̃h
0,δ, Yt+τ,t+τ+δ)

.

Owing to the use of the weak topology, the boundedness of φ(·), and the semigroup
property (2.18), proving that (3.6) is equivalent to proving that

lim
δ→0

sup
h→0

sup
t

sup
τ∈T h,t(ρ)

E
∣∣K(h, t, τ, δ)− 〈Πh(t+ τ), φ〉∣∣ = 0.

But showing this is straightforward, owing to the convergence to unity of the expo-
nential function R(X̃h

0,δ, Yt+τ,t+τ+δ) as δ → 0. In particular, it is sufficient to show
that (where ds denoted the differential with respect to the s variable)

E{Πh(t+τ),Yt+τ,t+τ+δ}φ(X̃h(δ))

×
{

exp

[∫ δ

0

g′(X̃h(s))dsY (t+ τ + s)− 1

2

∫ δ

0

∣∣∣g(X̃h(s))
∣∣∣2 ds]− 1

}

goes to zero in mean as δ → 0, uniformly in (h, t, τ), for each bounded and continuous
function φ(·). But this follows from the boundedness of g(·). This proves (3.3c).

Since

{B(t+ ·)−B(t),W (t+ ·)−W (t), Y (t+ ·)− Y (t), t > 0}
is always tight, (3.3c) implies that to every ε > 0 there exists a compact set Kε such
that

lim sup
h

sup
t
P (Ψh(t+ ·) ∈ Kε) > 1− ε.

Now standard arguments show that the family in (3.4) is tight; for more detail see
[19, Chapter 1, section 6] or [22, section 5], where there are general results on getting
the tightness of occupation measures from the tightness of the set of time shifted
processes.

The proofs in [22, Theorem 6.3, part 2] or in [19, Chapter 5, Theorem 2.2] can

be adapted to show the stationarity. We work with the marginals Qh,Tf (·) and a
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subsequence (h, T ) such that {Qh,Tf (·)} converges weakly. Let H be a Borel set in the
product (x(·), π(·)) path space. For c > 0, define the left shift Hc by Hc = {ψf (·) :
ψf (c, ·) ∈ H}. Then

Qh,Tf (Hc) =
1

T

∫ T

0

IHc(Ψ
h
f (t, ·))dt =

1

T

∫ T

0

IH(Ψh
f (t+ c, ·))dt,

(3.7) Qh,Tf (Hc)−Qh,Tf (H) =
1

T

∫ T+c

T

IH(Ψh
f (t, ·))dt− 1

T

∫ c

0

IH(Ψh
f (t, ·))dt.

The difference goes to zero as T → ∞ for all ω, c, h, and H. This and the weak
convergence yields the stationarity of the limit processes (Xω(·),Πω(·)) for almost all
ω.

We now need to identify the processes associated with the limits of the occupation
measures and prove the main result (2.10).

Theorem 3.2. Assume that Assumptions 2.1, 2.2, and 2.3 hold. Then, for almost
all ω, the following hold.

(i) (Bω(·),Wω(·)) are standard Wiener processes, with respect to which (Xω(·),
Πω(·), Y ω(·)) are nonanticipative.

(ii)

(3.8) dY ω = g(Xω)dt+ dBω,

(iii)

(3.9) dXω = p(Xω)dt+ σ(Xω)dWω.

(iv) For each bounded and measurable real-valued function φ(·)

(3.10) 〈Πω(t), φ〉 =
E{Πω(0),Y ω0,t}

[
φ(X̃(t))R(X̃0,t, Y

ω
0,t)
]

E{Πω(0),Y ω0,t}R(X̃0,t, Y ω0,t)
.

(v) (Xω(·),Πω(·)) is the unique stationary process, and hence its distribution does
not depend on ω.

Finally, for any bounded and measurable real-valued function F (·) which is con-
tinuous almost everywhere with respect to the unique measure Q̄f (·) of the stationary
process,

(3.11)
1

T

∫ T

0

F (Ψh
f (t+ ·))dt→

∫
F (ψf (·))Q̄f (dψf (·))

in probability as h→ 0 and T →∞ in any way at all.
Proof. Let hk → 0, Tk →∞. Fix a weakly convergent subsequence of {Qhk,Tk(·)}k≥1,

and index it by hk, Tk also, abusing the notation. It will turn out that all convergent
subsequences have the same limit.

The processes Bω(·),Wω(·). Let us demonstrate the Wiener and mutual inde-
pendence properties (for almost all ω). Let fi(·) and q(·) be real-valued and continuous
functions of their arguments and with compact support, with the fi(·) being twice
continuously differentiable. Let φj(·) be an arbitrary finite collection of bounded and
continuous real-valued functions. Let ρ and τ be arbitrary nonnegative numbers, and
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let ui ≤ ρ be (a finite collection of) arbitrary nonnegative real numbers. Define the
function

F (ψ(·)) = q(x(ui), 〈π(ui), φj〉, b(ui), w(ui); i, j)

×
[
f1(b(ρ+ τ))f2(w(ρ+ τ))− f1(b(ρ))f2(w(ρ))−

∫ ρ+τ

ρ

A0f1(b(s))f2(w(s)))ds

]
,

where A0 = (1/2)
[∑

i ∂
2/∂b2i +

∑
i ∂

2/∂w2
i

]
. The bi (resp., wi) are the scalar com-

ponents of b (resp., w).
We will show that

(3.12)

∫
Qω(dψ(·))F (ψ(·)) = 0

for almost all ω. The arbitrariness of the functions and of ρ, τ, ui ≤ ρ and (3.12) imply
that Wω(·) and Bω(·) are standard vector-valued and independent Wiener processes,
and martingales with respect to the filtration generated by {Ψh(s), s ≤ t}, hence the
nonanticipativity.

To get (3.12), we will show that the mean square value

(3.13) E

[∫
Qhk,Tk(dψ(·))F (ψ(·))

]2

goes to zero as h, T go to their limits. This and the weak convergence imply (3.12)

since they imply that E
[∫
Q(dψ(·))F (ψ(·))]2 = 0. (An analogous calculation for

a queueing problem is in [22].) By the definition of the occupation measure, the
expression

(3.14a)

∫
Qhk,Tk(dψ(·))F (ψ(·))

equals

(3.14b)
1

Tk

∫ Tk

0

F1(t)dt,

where F1(t) equals F2(t)F3(t), and where

F2(t) = q
(
X(t+ ui), 〈Πhk(t+ ui), φj〉, B(t+ ui)−B(t),W (t+ ui)−W (t); i, j

)
,

F3(t) =

[
f1(B(t+ ρ+ τ)−B(t))f2(W (t+ ρ+ τ)−W (t))

−f1(B(t+ ρ)−B(t))f2(W (t+ ρ)−W (t))

−
∫ t+ρ+τ

t+ρ

A0f1(B(t+ s)−B(t))f2(W (t+ s)−W (t)))ds

]
.

The mean square value of (3.14b) equals

(3.15)
1

T 2
k

∫ Tk

0

∫ Tk

0

EF2(t)F2(v)F3(t)F3(v)dtdv.
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Now, using the fact that (the martingale property)

(3.16) E [F3(v)|W (u), B(u), u ≤ t+ ρ] = 0 for v ≥ t,

we see that (3.15) is of the order of O(1/Tk), which yields the desired result.
Identifying the limits Xω(·), Y ω(·). For a vector z, define |z|21 = |z|2 ∧ 1. To

identify the Y ω(·) process, we will prove that

(3.17) E

∫
Qω(dψ(·))

∣∣∣∣y(s)−
∫ s

0

g(x(u))du− b(s)
∣∣∣∣2
1

= 0

for each s. This is equivalent to

EEω
∣∣∣∣Y ω(s)−

∫ s

0

g(Xω(u))du−Bω(s)

∣∣∣∣2
1

= 0,

which implies (3.8) for almost all ω.
Equation (3.17) is shown by using the definition of the occupation measure and

the weak convergence, i.e., by using the fact that (2.2) implies

E

∫
Qhk,Tk(dψ(·))

∣∣∣∣y(s)−
∫ s

0

g(x(u))du− b(s)
∣∣∣∣2
1

= E
1

Tk

∫ Tk

0

∣∣∣∣Y (t+ s)− Y (t)−
∫ t+s

t

g(X(u))du− (B(t+ s)−B(t))

∣∣∣∣2
1

dt = 0.

Now use the weak convergence and the fact that the integrand in the first integral is
a bounded and continuous function of ψ(·).

We deal with X(·) by a process approximation method. Recall the definitions of
p(·) and σ(·) from (2.1). For each ε > 0 and t ≥ 0, there is ∆0 > 0 such that for
∆ ≤ ∆0 we have (uniformly in u ≥ 0)

(3.18)

E

∣∣∣∣X(u+ t)−X(u)−
∫ u+t

u

p(X(s))ds

−
∑
i:i∆<t

σ(X(u+ i∆)) [W (u+ i∆ + ∆)−W (u+ i∆)]

∣∣∣∣2 = O(ε).

We have shown above that (Wω(·), Bω(·)) are Wiener processes, and that (Xω(·),
Πω(·)) is nonanticipative with respect to them. Suppose that we can show that for
each ε > 0 and t ≥ 0 there is ∆ε > 0 such that for ∆ ≤ ∆ε,

(3.19)

E

∫ [
x(t)− x(0)−

∫ t

0

p(x(s))ds

−
∑
i:i∆<t

σ(x(i∆))[w(i∆ + ∆)− w(i∆)]

]2

1

Qω(dψ(·)) = O(ε).

Then, analogous to what was done for Y ω(·) above, we have, for almost all ω,

Xω(t) = Xω(0) +

∫ t

0

p(Xω(s))ds+
∑
i:i∆<t

σ(Xω(i∆))[Wω(i∆ + ∆)−Wω(i∆)]
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modulo O(ε) in mean square. This and the arbitrariness of ε and ∆ imply (3.9).
The reason for using the finite sum approximation to the stochastic integral is that
now the integrand in (3.19) is a bounded and continuous function of ψ(·), w.p.1 for
each ω, since the Qω(·) must induce continuous processes. (If X(·) is jump-diffusion,
the continuity w.p.1 still holds since the probability that a jump occurs at any given
(nonrandom) time point is zero.) Thus, the weak convergence can be used.

Consider now

E

∫ ∣∣∣∣∣x(t)− x(0)−
∫ t

0

p(x(s))ds−
∑
i:i∆<t

σ(x(i∆))[w(i∆ + ∆)− w(i∆)]

∣∣∣∣∣
2

1

Qhk,Tk(dψ(·)).

The h index is irrelevant in this calculation. By the definition of the occupation
measure, the above expression is equivalent to

E
1

Tk

∫ Tk

0

∣∣∣∣X(t+ u)−X(u)−
∫ t+u

u

p(X(s))ds

−
∑
i:i∆<t

σ(X(u+ i∆))[W (u+ i∆ + ∆)−W (u+ i∆)]

∣∣∣∣2
1

du.

But, (3.18) implies that, for small enough ∆ > 0, the expectation of this is O(ε)
uniformly in T . This and the weak convergence of Qh,T (·) to Q(·) imply (3.19).

The Πω(·) component. Now we turn our attention to Πh(·) and the sample
value Πω(·) component of the weak sense limit. For small ∆ > 0, define R∆(X̃h

0,s, Y0,s)

by approximating the stochastic integral
∫ s

0
g′(X̃h(u))dY (u) in the exponent by the

sum ∑
i:i∆<s

g′(X̃h(i∆)) [Y (i∆ + ∆)− Y (i∆)]

analogously to what was done in (3.18). For arbitrary t define R∆(X̃h
0,s, Yt,t+s) anal-

ogously. For each h, t, define the difference Ẑh,∆(t, ·) by

Ẑh,∆(t, s) =
E{Πh(t),Yt,t+s}

[
φ(X̃h(s))R(X̃h

0,s, Yt,t+s)
]

E{Πh(t),Yt,t+s}R(X̃h
0,s, Yt,t+s)

−
E{Πh(t),Yt,t+s}

[
φ(X̃h(s))R∆(X̃h

0,s, Yt,t+s)
]

E{Πh(t),Yt,t+s}R∆(X̃h
0,s, Yt,t+s)

.

We note that {X̃h(·)} is equicontinuous in probability in the following sense. For
each positive ρ and t, there is h0 > 0 and α > 0 such that

sup
h≤h0

P

{
sup

u≤α, s≤t

∣∣∣X̃h(s+ u)− X̃h(s)
∣∣∣ ≥ ρ} ≤ ρ.

By the properties of the approximation of the stochastic integral by a sum, for each
ε′ > 0 and ε

′′
> 0, there is ∆0 such that for ∆ < ∆0, and small h > 0, we have

(3.20) sup
Πh(t),t

P
{∣∣∣Ẑh,∆(t, s)

∣∣∣ ≥ ε′} ≤ ε′′ .
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This is due to the just-cited equicontinuity in probability, keeping in mind that the
state space is compact, and where the sup is over all possible values. Next we verify
that (3.10) holds. We would like to show that, for each s,

(3.21) E

∫
Qω(dψ(·))

∣∣∣∣∣∣〈π(s), φ〉 −
E{π(0),y0,s}

[
φ(X̃(s))R(X̃0,s, y0,s)

]
E{π(0),y0,s}R(X̃0,s, y0,s)

∣∣∣∣∣∣
2

1

= 0.

But the integrand function is not well defined, since y(·) is an arbitrary path function
and the stochastic integral in R(·) in (3.21) is not defined. The problem is resolved
by working with an approximation.

It will actually be shown that

(3.22) E

∫
Qω(dψ(·))

∣∣∣∣∣∣〈π(s), φ〉 −
E{π(0),y0,s}

[
φ(X̃(s))R∆(X̃0,s, y0,s)

]
E{π(0),y0,s}R∆(X̃0,s, y0,s)

∣∣∣∣∣∣
2

1

goes to zero as ∆ → 0, which implies (3.10). Here the X̃(·) is a process with initial
distribution π(0) and the law of evolution of X(·). Note that the integrand function
in (3.22) does not depend on this process, only on its initial condition. Also it is
bounded and continuous w.p.1 (with respect to Qω(·)) for almost all ω.

By the weak convergence, (3.22) is the limit of

E

∫
Qhk,Tk(dψ(·))

∣∣∣∣∣∣〈π(s), φ〉 −
E{π(0),y0,s}

[
φ(X̃hk(s))R∆(X̃hk

0,s, y0,s)
]

E{π(0),y0,s}R∆(X̃hk
0,s, y0,s)

∣∣∣∣∣∣
2

1

.

Thus, we need only show that, for each s > 0 and each bounded and continuous
function φ(·), this expression is small for small ∆ > 0, hk > 0 and large Tk <∞. By
the definition of the measure Qh,T (·), this expression equals

(3.23) E
1

Tk

∫ Tk

0

∣∣∣Ẑhk,∆(t, s)
∣∣∣2
1
dt.

Now, the fact that (3.23) is small for small hk,∆ follows from (3.20).
Theorem 3.1 yields the stationarity of (Xω(·),Πω(·)) for almost all ω. The mea-

sure Q̄f (·) of the stationary (Xω(·),Πω(·)) process is unique by assumption. Thus

Qhk,Tkf (·) converges weakly to Q̄f (·) along the chosen subsequence. The uniqueness

also implies that the subsequence is irrelevant and that Qh,Tf (·) converges weakly to

Q̄f (·) along any (h, T ) subsequence. This implies (3.11).

4. Non-Markov signal processes. In actual physical applications, the signal
process would not generally be a diffusion or jump-diffusion, but rather some non-
Markov process which is only approximated by a diffusion or jump-diffusion. For
example, the physical process might be a dynamical system which is driven by a
wide bandwidth noise process and not a Wiener process. To quantify the connection,
we need to parameterize the physical process, and suppose that it converges weakly
to some “ideal” signal process, a diffusion or jump-diffusion, as the approximation
parameter h goes to its limit. We would construct an approximation to the optimal
filter for the ideal signal process, but use the physical observations. Thus, we are
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concerned with the convergence of the pathwise average errors as the time interval
goes to its infinite limit; the physical process is better and better approximated by
its ideal limit and the filter approximation converges to the optimal filter for that
ideal limit. Thus, we have a physical process Xh(·), with values on the same compact
range space G and which is approximated by the diffusion X(·), defined by (2.1), and
a filter Πh(·) which is a numerical approximation to the optimal filter for (2.1) with
observations (2.2), but where the actual physical observations defined by

(4.1) dY h = g(Xh(t))dt+ dB

are used. We could use another parameter rather than h to index the “prediffusion”
process and then let this go to its limit together with h, T , but there is no loss of
generality in using h to index this process as well.

The filter to be built is as in section 2. This would be a filter constructed under the
assumption that the system is (2.1) and observations (2.2). But, with (4.1) actually
used. The approximating filter uses the auxiliary process X̃h(·), which satisfies (A2.2).
Thus the approximating filter takes the form (2.7), but with Y h(·) replacing Y (·). The
process Xh(·) is not to be confused with X̃h(·). The former is the actual physical
signal process. The latter continues to play the role that it had in the previous
sections; i.e., it is an approximation to the ideal limit, which is used only to get a
numerical approximation to the optimal filter for (2.1) and (2.2). The following is the
basic assumption on the physical process Xh(·).

Assumption 4.1. Xh(t) ∈ G for all t, h > 0. The family {Xh(t+·);h > 0, t ≥ 0}
is tight and whenever for some subsequence (hk, tk)k≥1, where hk → 0 as k → ∞,
the distribution of Xhk(tk) converges weakly to some measure Π and the sequence
{Xhk(tk + ·)}k≥1 is weakly convergent, then the limit of the latter is X(·) with initial
distribution Π.

If the filter is to operate over some fixed finite time interval, then convergence
results are relatively easy to obtain, since the criteria of interest in that case are
mean values. Many such results are in [21]. In the definition of Ψh(·), drop the
W -component and replace X(·), Y (·), by Xh(·), Y h(·), resp. Redefine the Ψ(·), ψ(·),
Qh,T (·) analogously. In Theorem 4.1 we obtain the analog of Theorems 3.1 and 3.2
for this approximate filtering problem. Theorem 3.1 continues to hold, with the same
proof. In the proof of the analog of Theorem 3.2, there is no new problem with the
identification of the limit processes Y ω(·) and Πω(·). But there is a problem in the
identification of the limit Xω(·). The assumption of weak convergence on Xh(t + ·)
made above is not enough. The problem is that the Qh,T (·) are occupation measures,
whose values depend on the samples of the paths. Owing to this we need to make
a (quite unrestrictive) assumption so that a martingale type method can be used to
identify Xω(·). Theorem 3.2 can be viewed as an ergodic theorem or weak law of large
numbers, and it works partly due to the ergodic properties of X(·), as reflected in the
uniqueness of the stationary process. But the assumed weak convergence of Xh(t+ ·)
is not enough in itself to get such a weak law of large numbers. It says little about
“long range dependence.” This is the main issue that we will need to deal with.

A note on the martingale problem method. In order to motivate the assumptions
to be used, we first recall the classical martingale problem formulation of the existence
of a solution to (2.1). Let φj(·), q(·) and ρ, τ, ui ≤ ρ, satisfy the conditions above (3.12)
and let f(·) be real-valued with compact support and with partial derivatives up to
third order being continuous. Let A denote the differential generator of X(·). To
identify the process Xω(·) as that satisfying (3.9) for an appropriate Wiener process
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Wω(·), it is sufficient to show that X(·) solves the martingale problem of Stroock and
Varadhan; namely, for all such f(·), q(·), etc.,

(4.2)

∫
Qω(dψ(·))q(x(ui), 〈π(ui), φj〉, b(ui); i, j)

×
[
f(x(ρ+ τ))− f(x(ρ))−

∫ ρ+τ

ρ

Af(x(s))ds

]
= 0.

To show (4.2), it is natural to try to evaluate

(4.3)

E

[ ∫
Qh,T (dψ(·))q(x(ui), 〈π(ui, φj〉, b(ui); i, j, )

×
[
f(x(ρ+ τ))− f(x(ρ))−

∫ ρ+τ

ρ

Af(x(s))ds

]]2

1

and show that it goes to zero as h, T go to their limits, analogous to the procedure
used in connection with (3.12) and (3.13). This and the weak convergence imply (4.2);
equivalently, there exists Xω(·) and Wω(·), with Xω(·) nonanticipative, satisfying
(3.9) for almost all ω.

It is hard to show (4.3) directly. We take an approach which has been one of the
most powerful tools to date for functional limit theorems for convergence to diffusion
type processes, namely, the perturbed test function method [5, 13, 17, 18, 19, 26]. This
method uses a perturbation fh(·) to the test function f(·) in (4.2). To simplify the
development, and preserve the generality of the results, we will simply assume that a
suitable perturbation exists, but methods for constructing it in many important cases
are in the references.

The perturbed test function method. Given a test function f(·), which is
three times continuously differentiable and with compact support, we seek a process
fh(·) which is close to f(Xh(·)) and an extension Âh of the operator A such that,
loosely speaking,

fh(·)− f(Xh(·))→ 0,

Âhfh(·)−Af(Xh(·))→ 0.

With such perturbed test functions fγ(·) available, simple adaptations of the martin-
gale method can be used to identify Xω(·).

The operator Âh. Let Fht be a filtration on the probability space, where Fht
measures at least {Ψh(s), s ≤ t}, and where Ψh(s) = (Xh(s),Πh(s), Y h(s), B(s)). Let
u(·) and v(·) denote measurable processes which are Fht -adapted and progressively
measurable and satisfy the following conditions:

sup
t
E|u(t)| <∞, sup

t
E|v(t)| <∞,

(4.4) sup
0<δ,t

E|E[u(t+ δ)|Fht ]− u(t)|
δ

<∞,

lim
δ→0

E

∣∣∣∣E[u(t+ δ)|Fht ]− u(t)

δ
− v(t)

∣∣∣∣ = 0 almost all t.
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Then we say that u(·) ∈ D(Âh), the domain of the operator Âh, and write Âhu = v.
This operator was introduced originally in [13, 27]. The most important property of
the operator Âh is given by Lemma 4.1.

The usefulness of the operator Âh for proving weak convergence depends on the
choice of the conditioning σ-algebra Fht . Suppose that Xh(·) is driven by a wide
bandwidth noise process ξh(·). Then, we would normally set Fht to be the minimal
σ-algebra which measures {Ψh(s), ξh(s), s ≤ t}. See the references for more detail.

Lemma 4.1 (see [13; 18, section 3.2; 19, section 7.2]). Let u(·) ∈ D(Âh). Then
the process defined by

(4.5a) Mu(t) = u(t)−
∫ t

0

Âhu(s)ds

is an Fht -martingale and, w.p.1,

(4.5b) E[u(t+ s)|Fht ] = u(t) +

∫ t+s

t

E[Âhu(r)|Fht ]dr.

Equation (4.5) continues to hold if the t and t+s are replaced by any bounded stopping
times τ1 and τ2 with τ1 ≤ τ2, and which take countably many values. If u(·) is right
continuous, then the τi can be any bounded stopping times with τ1 ≤ τ2.

In order to apply the perturbed test function method we need that the domain
of the operator Âh is sufficiently rich and as h→ 0 the operator Âh is consistent with
A. This is made precise in the following assumption.

Assumption 4.2. For every continuous real-valued function f(·), with compact
support and whose partial derivatives up to third order are continuous, there exists
fh(·) ∈ D(Âh) which is right continuous w.p.1 and which satisfies (4.6) and (4.7) for
each T1 > 0:

(4.6) lim
h

sup
t
E|fh(t)− f(Xh(t))| = 0,

(4.7) lim
h

sup
t

sup
τ≤T1

E

∣∣∣∣∫ t+τ

t

[
Âhfh(s)−Af(Xh(s))

]
ds

∣∣∣∣ = 0.

General methods of construction of fh(·) are in [18] under quite broad condi-
tions on the processes involved, and the reader is referred to that reference for more
information. See also [19]. The key result for applications is the following lemma.

Lemma 4.2 (see [18]). Let the sequence {Xh(·), h > 0} converge weakly in
D[Rr; 0,∞) to a process X(·). Assume that Assumption 4.2 holds. Then, X(·) solves
the martingale problem for operator A.

The following theorem essentially says that under the above assumptions Theo-
rems 3.1 and 3.2 continue to hold for this approximate filtering problem.

Theorem 4.1. Assume that Assumptions 2.1, 2.2, 2.3, 4.1, and 4.2 hold. Then
(3.3a) holds with X(·) replaced by Xh(·). Also, (3.3b), (3.3c), and (3.4) continue to
hold with the modified definitions of Πh(·) and Qh,T (·) stated at the beginning of this
section.

Let Q be a weak limit as in Theorem 3.1; then Qω induces a process

Ψω(·) = (Xω(·),Πω(·), Y ω(·), Bω(·)) .
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For almost all ω the following hold.

(i) The pair (Xω(·),Πω(·)) is stationary.

(ii) There exists a Wiener process Wω for which statements (i) through (v) in
Theorem 3.2 hold.

Finally the last conclusion of Theorem 3.2 also holds; i.e., (3.11) is true.

Comment on the proof. The only difference from the proofs of Theorems 3.1 and
3.2 concern the proof of (4.2). As noted, this is to be done by showing that (4.3) goes
to zero as h, T go to their limits. Thus, we confine our remarks to an evaluation of
(4.3).

Let h→ 0, T →∞ index a weakly convergent subsequence. The expression

(4.8)

∫
Qh,T (dψ(·))q(x(ui), 〈π(ui), φj〉, b(ui); i, j)

×
[
f(x(ρ+ τ))− f(x(ρ))−

∫ ρ+τ

ρ

Af(x(s))ds

]
equals

(4.9)

1

T

∫ T

0

q(Xh(t+ ui), 〈Πh(t+ ui), φj〉, B(t+ ui)−B(t); i, j)

×
[
f(Xh(t+ τ + ρ))− f(Xh(t+ ρ))−

∫ t+ρ+τ

t+ρ

Af(Xh(s))ds

]
dt.

Define

Mh
f (t) = fh(t)−

∫ t

0

Âhfh(s)ds.

Rewrite the bracketed term in (4.9) as[
Mh
f (t+ τ + ρ)−Mh

f (t+ ρ)
]

+ [V h(t+ τ + ρ)− V h(t+ ρ)],

where

V h(t) = [f(Xh(t))− fh(t)]−
∫ t

0

[Af(Xh(s))− Âhfh(s)]ds.

By (4.6) and (4.7), limh suptE|V h(t+ τ + ρ)− V h(t+ ρ)| = 0. The weak sense limits
of (4.9) are then the same as those of

(4.10)

1

T

∫ T

0

q(Xh(t+ui), 〈Πh(t+ ui), φj〉, B(t+ui)−B(t); i, j)
[
Mh
f (t+ τ + ρ)−Mh

f (t+ τ)
]
dt.

Now, square (4.10), take expectations and use the martingale properties of Mh
f (·) to

get that the mean square value is O(1/T ). This and the weak convergence imply
(4.2).
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5. Discrete time observations.

5.1. A Markov signal process. Now, let all processes be defined in discrete
time. The idea is fully analogous to what was done in the continuous time case. The
following is the basic assumption on the signal process.

Assumption 5.1. The signal process X(·) = {X(n), n < ∞} is Feller–Markov
and takes values in a compact subset G of Rr.

The observations are defined by Y (0) = 0 and

(5.1) Y (n)− Y (n− 1) = g(X(n)) + ξ(n), n = 1, . . . ,

where {ξ(n)} are mutually independent (0, I) Gaussian random variables which are
independent of X(·), and g(·) is continuous.

The Bayes’ rule formula for the true conditional distribution of X(n) given Y0,n

can be represented in terms of an auxiliary process X̃(·) as in section 2, where X̃(·) has
the probability law of X(·) but, conditioned on its (possibly random) initial condition,
is independent of all the other processes. Analogous to the notation used for the
continuous time problem, let Y0,n denote the set {Y (i); i ≤ n}. Define

R(X̃0,n, Y0,n) = exp

[
n∑
i=1

g′(X̃(i))[Y (i)− Y (i− 1)]− 1

2

n∑
i=1

∣∣∣g(X̃(i))
∣∣∣2] .

Then as in section 2, the optimal filter Π(·) can be defined by its moments:

(5.2) 〈Π(n), φ〉 =
E{Π(0),Y0,n}

[
φ(X̃(n))R(X̃0,n, Y0,n)

]
E{Π(0),Y0,n}R(X̃0,n, Y0,n)

,

where Π(0) is the distribution of X(0) and X̃(0). As before (X(·),Π(·)) is Feller–
Markov. Henceforth, as in the previous sections, when discussing Π(·), we allow Π(0)
to be arbitrary, and not necessarily the distribution of X(0).

Analogous to the case in section 2, it is generally necessary to approximate the
optimal filter in some way. For example, the sequence X(·) might be samples of a
diffusion process taken at discrete instants, and the transition function must then be
computed approximately. In order to approximate the transition function we might
try to solve the corresponding Fokker–Planck equation on [0, 1] by the Markov chain
approximation method and also appropriately approximate the initial condition. Or
we might try to solve it by some other numerical method (e.g., finite elements, spec-
tral method, etc.) which yields approximations to the one step transition density
(assuming that there is a density) which converge in L2 to the true transition density
as the approximation parameter goes to its limit. If this approximation is not non-
negative, we can take its positive part and renormalize to get a transition probability.
Finally, even if the original processes were given in discrete time, i.e., no approxima-
tions of a p.d.e. were needed, it might be too hard to perform the integrations with
the true transition function and we might have to use an appropriate approximation
instead. These considerations lead to a formulation analogous to what led to the
approximating form (2.7), which we now develop.

Analogous to for the continuous time case, the approximating filter can often be
represented in terms of a discrete parameter auxiliary Markov process X̃h(·), with
values in a compact subset of Rr, and which is independent of the other processes,
given its initial condition. As in the continuous time case we will assume the following
condition on the auxiliary process.
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Assumption 5.2. If X̃h(0) converges weakly (for any subsequence of values of
h→ 0) with limit distribution Π(0), then the sequence X̃h(·) converges weakly to X(·)
with initial distribution Π(0).

Define, for n = 1, . . . ,

R(X̃h
0,n, Y0,n) = exp

[
n∑
i=1

g′(X̃h(i))[Y (i)− Y (i− 1)]− 1

2

n∑
i=1

∣∣∣g(X̃h(i))
∣∣∣2] .

Again, define the approximating filter Πh(·) by its moments as follows:

(5.3) 〈Πh(n), φ〉 =
E{Πh(0),Y0,n}

[
φ(X̃h(n))R(X̃h

0,n, Y0,n)
]

E{Πh(0),Y0,n}R(X̃h
0,n, Y0,n)

.

Equation (5.3) is just the Bayes’ rule formula for the filter for the signal process X̃h(·),
but with the actual observations Y (n)− Y (n− 1) used.

The analog of the semigroup relation (2.8) holds, but where time is discrete.
The semigroup property stems from the fact that the filter is that for the discrete
parameter Markov process X̃h(·), but with the actual physical observations used.

Define the sequences B(n) =
∑n
i=1 ξ

i and

Ψh(n, ·) =
{
X(n+ ·),Πh(n+ ·), B(n+ ·)−B(n), Y (n+ ·)− Y (n)

}
,

Ψh
f (n, ·) = {X(n+ ·),Πh(n+ ·)}

. Define ψ(·) and ψf (·) analogously.
The Skorohod topology is replaced by a “sequence” topology as follows: The

Πh(n) still take values in M(G) and the weak topology is still used on this space.
Let dπ(·) and dk(·) denote the metrics on the space of measures and on Euclidean-k
space, resp., where k is the sum of the dimensions of Y (n), B(n), and X(n). Let d0(·)
denote the product metric. Then the metric on the product path (sequence) space is

d(a(·), b(·)) =

∞∑
n=0

2−n [d0(a(n), b(n)) ∧ 1] .

Define the occupation measure Qh,N (·) by: For a Borel set C in the product sequence
space,

(5.4) Qh,N (C) =
1

N

N∑
n=1

IC(Ψh(n, ·)).

Finally we impose the following basic condition.
Assumption 5.3. There is a unique stationary measure Q̄f (·) of the Ψf (·) =

(X(·),Π(·)) process.
Let F (·) be a real-valued bounded and continuous (w.p.1 with respect to Q̄f (·))

function of ψf (·). Then, analogous to (2.10) and (2.14), we are concerned with the
convergence (in probability)

(5.5)
1

N

N∑
n=1

F (Ψh
f (n+ ·))→

∫
F (ψf (·))Q̄f (dψf (·)),
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where h→ 0 and N →∞ in any way at all.
The analogs of Theorems 3.1 and 3.2 hold, and the proof is close to those proofs.

But owing to the discrete time some of the details are simpler, and others slightly
different.

Theorem 5.1. Assume that Assumptions 5.1, 5.2, and 5.3 hold. Then {Qh,N (·);h >
0, N > 0} is tight. Let Q(·) denote a weak sense limit, always as h→ 0 and N →∞.
Let ω be the canonical variable on the probability space on which Q(·) is defined, and
denote the sample values by Qω(·). Then, for each ω, Qω(·) is a measure on the
product path (sequence) space. It induces a process

Ψω(·) = (Xω(·),Πω(·), Y ω(·), Bω(·)) .
For almost all ω, the following hold:

(i) (Xω(·),Πω(·)) is stationary.
(ii) Bω(·) is the sum if mutually independent N(0, I) random variables {ξω(n)}

which are independent of Xω(·).
(iii)

Y ω(n)− Y ω(n− 1) = g(Xω(n)) + ξω(n).

(iv) Xω(·) has the transition function of X(·).
Finally, for each integer n and each bounded and measurable real-valued function

φ(·),

〈Πω(n), φ〉 =
E{Πω(0),Y ω0,n}

[
φ(X̃(n))R(X̃0,n, Y

ω
0,n)
]

E{Πω(0),Y ω0,n}R(X̃0,n, Y ω0,n)
.

Remark on the proof. The details are essentially the same as those of the proofs of
Theorems 3.1 and 3.2 and are omitted. We note only two differences. First, owing to
the use of discrete time, the martingale method cannot be used to characterize Bω(·),
as done in the first part of the proof of Theorem 3.2. But an analogous method, using
a direct computation of the (conditional) characteristic function, can be used instead,
as follows. Replace the expression F (·) defined above (3.12) by the following. For
arbitrary integers m,n, k, let ui ≤ m and vp; p ≤ n, be arbitrary integers. Let νi be
vectors (with the dimension of ξ(n)), and replace the expression by

F (ψ(·)) = q(x(vp), 〈π(ui), φj〉, b(ui); i ≤ m, p ≤ n, j)

×
[

exp

[
m+k∑
l=m

ν′l [b(l + 1)− b(l)]
]
− exp

[
m+k∑
l=m

|νl|2/2
]

We need to show that, for almost all ω,

(5.6a)

∫
F (ψ(·))Qω(dψ(·)) = 0,

which will imply that

(5.6b)

∫
Qω(dψ(·))q(x(vp), 〈π(ui), φj〉, b(ui); i ≤ m, p ≤ n, j)e

∑m+k

l=m
ν′l [b(l+1)−b(l)]

=

∫
Qω(dψ(·))q(x(vp), 〈π(ui), φj〉, b(ui); i ≤ m, p ≤ n, j)e

∑m+k

l=m
|νl|2/2.
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This, in turn, implies that (for almost all ω) the ξω(l) are mutually independent, nor-
mally distributed with mean zero and with the covariance being the identity matrix,
and are independent of the Xω(·) and of the “past” of the Πω(·) process. The proof
of (5.6a) is analogous to the arguments below (3.12), and the details are omitted.

We need to characterize Xω(·). In particular, we need to show that it is Markov
with the transition function of X(·). A characteristic function and “weak law of large
numbers type” argument can be used. The goal is to show that, for any integer m,
any bounded and continuous real-valued function q(·), and any vector λ,

(5.7)

∫
Qω(dψ(·))q(x(uj);uj ≤ m)

[
eλ
′x(m+1) −

∫
eiλ
′vP (dv, 1|x(m))

]
= 0,

where P (dv, 1|x) is the one step transition function of X(·). Equation (5.7) says that
Xω(·) is Markov with the transition function of X(·) since it says that the conditional
expectation of eiλ

′Xω(m+1), given the “past” and the current state, can be computed
by use of the transition function.

Rewrite (5.7) as the weak sense limit of

(5.8)
1

N

N∑
n=1

q(X(n+ uj);uj ≤ m)

[
eiλ
′X(n+m+1) −

∫
eiλ
′vP (dv, 1|X(n+m))

]
.

Note that by the Markov property the expectation of the nth summand (conditioned
on the data to time n+m) in (5.8) is zero. Now, use this last fact to show that the
mean square value is O(1/N). The rest of the details are as in the proofs of Theorems
3.1 and 3.2.

5.2. A non-Markov signal process. Recall the model of section 4, where the
underlying signal process, called Xh(·) there, was not Markov. We supposed that it
converged weakly to the process of section 2 as h → 0. We can do a similar analysis
in the discrete time case, and it is worthwhile since the actual signal process will not
usually be Markov and it is not a priori obvious that even small errors per step will
not lead to large errors as the time interval goes to infinity. As noted in section 4, we
could use a symbol other than h to index this process, but there is no loss of generality
in using h. In lieu of the perturbed test function method introduced in section 4, we
will follow the procedure of the previous subsection as closely as possible. We keep
the assumptions on X̃h(·) and the filter form (5.3), which uses instead of Y (·) the
following modified observation process:

Y h(n)− Y h(n− 1) = g(Xh(n)) + ξ(n).

The main new problem is the identification of the Xω(·). We concentrate on that and
make the assumptions of the last subsection.

Some assumption on the convergence of Xh(·) to X(·) is needed. The procedure
of the last subsection requires that we show that

(5.9)
1

N

N∑
n=1

q(Xh(n+ uj);uj ≤ m)

[
eiλ
′Xh(n+m+1) −

∫
eiλ
′vP (dv, 1|Xh(n+m))

]
converges to zero in probability as N →∞. The convergence in (5.9) is not guaranteed
by the weak convergence of Xh(·) to X(·), since the property (5.9) involves the “long
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range dependencies” of the Xh(·) processes. We will take an approach that is quite
flexible and whose conditions are not stringent.

We make the following assumptions. Define the process X(·|x) to have the law of
evolution of X(·), but with initial condition x.

Assumption 5.4. For an arbitrary integer m and any bounded and continuous
real-valued function f(·) of m arguments,

(5.10) lim
h

sup
n

[
Ef(Xh(n+ uj);uj ≤ m)− E [f(X(uj |Xh(n));uj ≤ m)

]]
= 0.

Assumption 5.5. For an arbitrary integer m and any bounded and continuous
real-valued function f(·) of m arguments and any µ > 0, there is mµ <∞ such that

(5.11)
lim sup

h
sup

|n−ν|≥mµ
E
([
f(Xh(n+ uj);uj ≤ m)− Ef(Xh(n+ uj);uj ≤ m)

]
× [f(Xh(ν + uj);uj ≤ m)− Ef(Xh(ν + uj);uj ≤ m)

]) ≤ µ.
Condition (5.10) can be interpreted as follows: It is equivalent to saying that if

for any sequence nh, Xh(nh) converges weakly to a random variable X̂(0) as h →
0, then {Xh(nh + ·)} converges weakly to X(·) with initial condition X̂(0). It is
unrestrictive since the usual choices for Xh(·) are Markov with time independent
transition functions. Condition (5.11) deals with long-range dependence. It basically
says that if we take increments of the Xh(·) process which are separated by a large
time interval which does not depend on h), then their correlation is small for small
h. This does not appear to be restrictive. It is guaranteed by appropriate mixing
conditions [9]. Actually, (5.11) is needed only for the types of functions which appear
in (5.9). In the definition of Ψh(·) replace X(·), Y (·) by Xh(·), Y h(·), resp. Redefine
Πh(·) by replacing Y (·) by Y h(·) in (5.3). Modify the definitions of Ψh

f (·) and Qh,N (·)
in a similar manner.

Theorem 5.2. Assume that Assumptions 5.1, 5.2, 5.3, 5.4, and 5.5 hold. Then
the conclusions of Theorem 5.1 hold with the above modified definitions of Πh(·) and
Qh,N (·).

Comments on the proof. All of the details are as in Theorem 5.1, except for the
characterization of Xω(·) and we concentrate on this. Return to the proof of (5.7)
via an evaluation of the limit of (5.9). For a bounded and continuous function q(·),
define

q1(x(uj), x(m+ 1);uj ≤ m) = q(x(uj);uj ≤ m)eiλ
′x(m+1),

q2(x(uj);uj ≤ m) = q(x(uj);uj ≤ m)

∫
eiλ
′vP (dv, 1|x(m)).

We will show that

(5.12)

∣∣∣∣∫ QN,h(dψ(·)) [q1(x(uj), x(m+ 1);uj ≤ m)− q2(x(uj);uj ≤ m)]

∣∣∣∣→ 0

in mean as N →∞ and h→ 0. This, together with the weak convergence, yields (5.7)
for almost all ω. Evaluate the integral in (5.12) by first rewriting it as

(5.13)
1

N

N∑
n=1

[
q1(Xh(n+ uj), X

h(n+m+ 1);uj ≤ m)− q2(Xh(n+ uj);uj ≤ m)
]
.
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Now, split (5.13) into the difference of the two sums

(5.14)

1

N

N∑
n=1

[
q1(Xh(n+ uj), X

h(n+m+ 1);uj ≤ m)

−Eq1(Xh(n+ uj), X
h(n+m+ 1);uj ≤ m)

]
and

(5.15)

1

N

N∑
n=1

[
q2(Xh(n+ uj), X

h(n+m+ 1);uj ≤ m)

−Eq1(Xh(n+ uj), X
h(n+m+ 1);uj ≤ m)

]
.

By Assumption 5.5, (5.14) goes to zero in mean square as N → ∞ and h → 0. By
Assumption 5.4, the term Eq1(Xh(n+ uj), X

h(n+m+ 1);uj ≤ m) in (5.15) can be
replaced by Eq1(X(uj |Xh(n)), X(m+ 1|Xh(n));uj ≤ m) in the sense that the mean
square limits as N → ∞ and h → 0 are the same. By the Markov property of X(·),
for any initial condition

Eq1(X(uj), X(m+ 1);uj ≤ m) = Eq2(X(uj);uj ≤ m).

By the last two sentences, we can replace the expected value in (5.15) by

Eq2(X(uj |Xh(n));uj ≤ m)

without changing the limits. Using Assumption 5.4 again, we can replace Eq2(X(uj |Xh(n));
uj ≤ m) by Eq2(Xh(n+uj);uj ≤ m) in (5.15) in that the mean square limits are the
same. Now, use Assumption 5.5 again to get that the mean square limit of (5.15) with
this last replacement is zero. We have shown that the mean square limit of (5.13) is
zero, as N →∞ and h→ 0, which implies (5.7).

6. Discrete to continuous time: White or wideband observation noise.
The most appropriate justification of the classical continuous time filter is as an
approximation to the discrete time model for small sampling intervals. Quite often,
one has wide bandwidth rather than white noise and the signal is not a diffusion but
only an approximation to a diffusion. One still might wish to use some sort of ideal
filter, which is built on the assumption that the signal is a particular diffusion and that
the observation noise is white. If the filter is to be used for a very long time interval
and one is interested in pathwise prediction errors or other performance measures
(see section 2 for an example), questions arise concerning the asymptotic quality,
as the time, the bandwidth of the observation noise, the parameter in the diffusion
approximation to the actual signal process, etc., all go to their respective limits.
We will see that the previous robustness results continue to hold under reasonable
conditions.

Asymptotic, large time results were obtained in [21] for mean value criteria. De-
pending on how the filter with wide bandwidth observation noise is constructed, there
might be the so-called correction terms [21]. In the present context, we suppose that
either the basic Bayes’ rule formulas such as (2.7) or its later analogs are used or that
the constructed filter is equivalent to these formulas, at least asymptotically. There
is no need to introduce correction terms into the Bayes’ rule formulas as written here.

The problem formulation. The signal process Xh(·) is assumed to satisfy the
conditions used in Theorem 4.1 and is sampled at intervals of width ∆h → 0. The
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observation noise is wide bandwidth in the sense to be made precise below. There is a
process Bh(·) satisfying Assumptions 6.1, 6.2, and 6.3 below, such that the observation
process, {Y h(n∆h);n ≥ 0} satisfies the equation

(6.1) Y h(n∆h)− Y h(n∆h −∆h) = ∆hg(Xh(n∆h)) +Bh(n∆h)−Bh(n∆h −∆h).

The assumptions on the process Bh(·) are as follows.

Assumption 6.1. The process Bh(·) is independent of Xh(·). The set

(6.2) {Bh(t+ ·)−Bh(t);h > 0, t ≥ 0}

is tight and any weakly convergent subsequence of the form {Bhk(tk+·)−Bhk(tk)}k≥1,
such that hk → 0 as k → ∞ converges to the standard Wiener process B(·) as k →
∞.

Assumption 6.2. For every family of random variables of the form {µ∆,h
n , n ≥

1, h > 0,∆ > 0} which satisfies (i)–(iii) below, we have that for each T > 0 and ε > 0,

(6.3) lim
∆→0

lim sup
h

sup
n
P

sup
s≤T

∣∣∣∣∣∣
n+s/∆h∑
i=n

µ∆,h
i

[
Bh(i∆h + ∆h)−Bh(i∆h)

]∣∣∣∣∣∣ ≥ ε
 = 0.

(i) µ∆,h
n is bounded uniformly in n,∆, and h.

(ii) For each fixed h and ∆, the family {µ∆,h
n , n <∞} is independent of Bh(·).

(iii)

(6.4) lim
∆→0

lim sup
h

sup
n
P

{
sup

n≤i≤n+T/∆h

∣∣∣µ∆,h
i

∣∣∣ ≥ δ} = 0, for each δ > 0.

The requirement (6.3) is mainly a condition on how fast the conditional depen-
dence of the “future,” given the “past,” goes to zero. Owing to the independence of
{µhn, n < ∞} and Bh(·), the condition is not stringent. Various sufficient conditions
for (A6.2) to hold will be given at the end of the section.

Now for the final assumption.

Assumption 6.3. For every positive integer m, real numbers ρ > 0, uj ≤ ρ, j ≤
m, and real-valued bounded and continuous function f(·)

(6.5)
Ef(Bh(t+ uj)−Bh(t); j)f(Bh(s+ uj)−Bh(s); j)

−Ef(Bh(t+ uj)−Bh(t); j)Ef(Bh(s+ uj)−Bh(s); j)→ 0

as h→ 0, uniformly in (s, t), such that s > t+ ρ+ 1.

This condition essentially says that the correlation between intervals that are
separated in time by at least some constant goes to zero as h→ 0, uniformly in time.

The process Bh(·) could be white, but not necessarily Gaussian. In this case, the
verification of the conditions in Assumptions 6.2 and 6.3 is usually trivial.

We define Y h(s) = Bh(s) = 0 for s < 0. The filter is denoted by {Πh(n∆h)}, and
we define the continuous time interpolations Y h(·), Bh(·),Πh(·), and X̃h(·) so that
they are constant on the intervals [n∆h, n∆h + ∆h).

In what follows, we use the convention that if a limit of summation is not an
integer, take the integer part. We represent the filter as in the previous sections, in
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terms of an auxiliary process X̃h(·) which satisfies the assumptions imposed on it in
section 2. At the sampling times, the filter takes the form

(6.6) 〈Πh(n∆h), φ〉 =
E{Πh(0),Y h

0,n∆h
}
[
φ(X̃h(n∆h))R(X̃h

0,n∆h
, Y h0,n∆h

)
]

E{Πh(0),Y h
0,n∆h

}R(X̃h
0,n∆h

, Y h0,n∆h
)

,

where we use the definition

(6.7) R(X̃h
0,n∆h

, Y hk∆h,(n+k)∆h
) = eZ ,

where Z is defined by
(6.8)
n∑
i=1

g′(X̃h(i∆h))[Y h(k∆h + i∆h)− Y h(k∆h + i∆h −∆h)]− ∆h

2

n∑
i=1

∣∣∣g(X̃h(i∆h)
∣∣∣2 .

The definition (6.6), with (6.8) used, satisfies the semigroup property over the discrete
time mesh: {n∆h;n ≥ 1}.

Instead of constant interpolation of Πh(·) over the interval [n∆h, n∆h + ∆h), one
may use the following different definition for the approximate filter.

(6.9) 〈Πh(t), φ〉 =
E{Πh(0),Y h0,t}

[
φ(X̃h(t))R(X̃h

0,t, Y
h
0,t)
]

E{Πh(0),Y h0,t}R(X̃h
0,t, Y

h
0,t)

.

The forms (6.6) and (6.9) are equal at the sampling times. Theorem 6.1 continues to
hold for the form of filter in (6.9); however, for the sake of brevity we will only prove
the constant interpolation case.

Define Ψh(·) =
(
Xh(·),Πh(·), Y h(·), Bh(·)), Ψh

f (·) =
(
Xh(·),Πh(·)), and define

Qh,T , ψ(·) and ψf (·) analogously.
Theorem 6.1. Assume that Assumptions 2.1, 2.2, 2.3, 4.1, 4.2, 6.1, 6.2, and 6.3

hold. Then all the conclusions of Theorem 4.1 hold with the above modified definitions
of Πh(·) (see (6.6)) and Qh,T (·).

Comments on the proof. The proof is similar to those of Theorems 3.1, 3.2, and
4.1. The main differences concern the characterization of the limit Xω(·), the proof
for (3.3c), the proof that Bω(·) is a standard Wiener process which is independent of
Xω(·), and the proof of the representation of Πω(·).

The characterization of Xω(·) as X(·), with the appropriate initial condition, is
analogous to what was done in section 4, with only minor notational differences, which
are due to the replacement of B(·) by Bh(·), and so we omit the details.

Proof of (3.3c). It is difficult to prove (3.3c) directly. We will actually prove the
tightness of an approximation to the family {Πh(t + ·);h > 0, t > 0} and use the
following useful fact. Let the sequence {Zn(·)} have paths in some Skorohod space
with metric denoted by d(·, ·). Suppose that for each positive real numbers ε1, ε2 and
T0, there is a process Zε1,ε2,T0

n (·) such that

(6.10) lim sup
n

P

{
sup
s≤T0

d(Zn(s), Zε1,ε2,T0
n (s)) ≥ ε1

}
≤ ε2,

and {Zε1,ε2,T0
n (·), n < ∞} is tight for each ε1, ε2, T0. Then {Zn(·)} is tight. The

approximations generally simplify the characterization of the weak sense limits as
well.
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Note that for our case the process index is the pair (h, t) instead of n. Pursuing
this idea, let ε1, ε2, T0 be as above. Then, for each h and t, we seek a process Π̂h(t, ·)
(dropping the affixes ε1, ε2, T0) such that

(6.11) lim sup
h

sup
t
P

{
sup
s≤T0

∣∣∣〈Πh(t+ s), φ〉− < Π̂h(t, s), φ >
∣∣∣ ≥ ε1} ≤ ε2

and {Π̂h(t, ·);h > 0, t ≥ 0} is tight. If we can find such processes, then (3.3c) holds.
We now show (6.11). We can work with each φ(·) separately due to the definition of
the weak topology.

Keep in mind that we can have a different modification for each (h, t). We first
consider the case where t = n∆h for some n. Fix φ(·). Let ∆ > 0 be small but fixed.
Assume that h is small enough such that ∆ >> ∆h. The idea is to break the sum

(6.12)

s/∆h∑
j=1

g′(X̃h(j∆h))
[
Y h(t+ j∆h)− Y h(t+ j∆h −∆h)

]
in (6.8) as a sum of

(6.13)

s/∆−1∑
i=0

g′(X̃h(i∆))
[
Y h(t+ i∆ + ∆)− Y h(t+ i∆)

]
and the “error”

(6.14)
V h,∆(t, s) =

s/∆−1∑
i=0

(i+1)∆/∆h∧s/∆h∑
j=i∆/∆h+1[

g′(X̃h(j∆h))− g′(X̃h(i∆))
] [
Y h(t+ j∆h)− Y h(t+ j∆h −∆h)

]
.

Note that if we concatenate the sums in (6.14), we get

n+s/∆h∑
i=n

µh,∆i
[
Y h(i∆h + ∆h)− Y h(i∆h)

]
for an obvious definition of µh,∆i , which clearly satisfies (i), (ii), and (iii) in Assumption
6.2, in view of weak convergence properties of X̃h(·). The case where t/∆h is not an
integer is dealt with in a completely analogous way and we omit the details. Now
we use Assumption 6.2 for the family {µh,∆i ;h,∆, i}. For an arbitrary small ε3 > 0,
define τh,∆,t = min{s : |V h,∆(t, s)| ≥ ε3}. Then Assumption 6.2 yields that, for small
ε > 0 and small enough ε3 > 0,

(6.15) lim
∆→0

lim sup
h

sup
t
P
{
P{Πh(0),Y h

t,t+s
}
{
τh,∆,t < T0

} ≥ ε} = 0.

Define R̂h,∆(X̃h
0,s, Y

h
t,t+s) to be R(X̃h

0,s, Y
h
t,t+s) with (6.13) replacing (6.12). Now define

Π̂h(t, ·) by

(6.16) 〈Π̂h(t, s), φ〉 =
E{Πh(0),Y h0,t}

[
φ(X̃h(t))R̂h,∆(X̃h

0,s, Y
h
0,s)
]

E{Πh(0),Y h0,t}R̂
h,∆(X̃h

0,s, Y
h
0,s)

.
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We have

R̂h,∆(X̃h
0,s, Y

h
t,t+s)e

V h(t,s) = R(X̃h
0,s, Y

h
t,t+s)

and, except on as a (h, t-dependent) set of arbitrarily small measure, τh,∆,t ≥ T0

for small h and ∆. Hence, we can suppose that, asymptotically, |eV h(t,s) − 1| ≤ ε4,
arbitrary. Thus, (6.11) holds.

The tightness of the set {Π̂h(t, ·);h, t} for each ∆ > 0 is clear. This follows
by noting that the exponential contains the sum (6.13), hence Π̂h(t, ·) contains only
simple discontinuities at deterministic times i∆. This proves (3.3c). Thus in view of
the tightness assumptions on the set {Xh(t+ ·), Bh(t+ ·)−Bh(t);h > 0, t}, we have
that (3.4) holds. We can extract a weakly convergent subsequence of the set in (3.4),
indexed again by (h, t), and with limit denoted by Q(·), with sample values Qω(·).

The independence of Bω(·) and Xω(·). We will only do a simple calculation
to illustrate the general procedure. Let fi(·) be bounded and continuous real-valued
functions of their arguments, and with compact support. We wish to show that, for
almost all ω and any nonnegative u, v,

∫
Qω(dψ(·))f1(b(v))f2(x(u)) =

∫
Qω(dψ(·))f1(b(v))

∫
Qω(dψ(·))f2(x(u)).

Write the prelimit forms of the difference between the two sides:

(6.17)

1

T

∫ T

0

f1(Bh(t+ v)−Bh(t))f2(Xh(t+ u))dt

− 1

T 2

∫ T

0

f1(Bh(t+ v)−Bh(t))dt

∫ T

0

f2(Xh(s+ u))ds.

The rest of the procedure is to square, take expectations, and use the fact that Bh(·)
is independent of Xh(·) and Assumption 6.3 to show that the difference goes to zero
in mean square as h → 0, T → ∞. Define C = Ef1(B(v)). Let us first evaluate the
expectation of the square of the first term; namely, evaluate

1

T 2

∫ T

0

∫ T

0

Ef1(Bh(t+v)−Bh(t))f2(Xh(t+u))f1(Bh(s+v)−Bh(s))f2(Xh(s+u))dtds.

Now, use Assumption 6.3, the weak convergence of Bh(t + ·) − Bh(t), and the inde-
pendence of Bh(·) and Xh(·) to show that the limits are the same as those of

C2 1

T 2

∫ T

0

∫ T

0

Ef2(Xh(t+ u))f2(Xh(s+ u))dtds.

A similar procedure shows that the limits of the expectation of the square of the second
term and of the product of the first and second terms in (6.17) is also the same. Thus,
the limit is zero, as desired. The same procedure works if the functions fi(·) depend
on the processes at an arbitrary finite number of times. Hence the independence of
Xω(·) and Bω(·).

The Wiener property of Bω(·) for almost all ω. The proof is similar to
what was done to prove the independence of the Xω(·) and Bω(·). We need to show
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characteristic function results such as the following. Let λq be arbitrary vectors (of
the dimension of b). Show that, for almost all ω,∫

Qω(dψ(·))eiλ′1(b(u+s)−b(u))eiλ
′
2b(u)

=

∫
Qω(dψ(·))eiλ′1(b(u+s)−b(u))

∫
Qω(dψ(·))eiλ′2b(u)

= e−s|λ1|2/2e−u|λ2|2/2.

To show this, work with the difference of the prelimit forms of the two sides:

1

T

∫ T

0

[
eiλ
′
1(Bh(t+u+s)−Bh(t+u))eiλ2B

h(t+u)−Bh(t))
]
dt− e−s|λ1|2/2e−u|λ2|2/2.

Square, take expectations, and use the weak convergence and Assumption 6.3, anal-
ogous to what was done to show the independence property.

Characterization of the process Πω(·). Given the tightness of {Πh(·)} and
the discussion in that section, the fact that (3.10) holds is essentially a property of
the asymptotic smoothness of X̃h(·). It can be proved by working with Π̂h(t, ·) in lieu
of Πh(t+ ·), and then letting ∆→ 0, and the details are omitted.

Sufficient conditions for Assumption 6.2 to hold. Define ξhi = Bh(i∆h +
∆h)−Bh(i∆h). The simplest case satisfying (6.3) is where the ξhi are martingale differ-
ences with variances bounded by some constant times ∆h), i.e., where the observation
noise is white but not necessarily Gaussian.

Correlated noise can be treated by the perturbed test function method [18] of
the type introduced in section 4. Here we will construct a particular perturbation
which serves our present purposes. Let En denote the expectation conditioned on
{µh,∆i , ξhi , i ≤ n}. Fix T > 0. Define

Sh,∆,ni =
n+i∑
j=n

µh,∆j ξhj , i ≤ T/∆h.

Assume that

(6.18) sup
i,h

E
∣∣ξhi ∣∣2 <∞.

Define the “perturbation”

(6.19) δSh,∆,n,Ti =

n+T/∆h−1∑
j=n+i

En+iµ
h,∆
j+1ξ

h
j+1, i ≤ T/∆h.

Suppose that

(6.20)

n+T/∆h∑
j=n+i

E
∣∣En+iξ

h
j+1

∣∣ = O(∆h),

where O(∆h) is uniform in i, and that

(6.21) lim sup
h

sup
n
E

n+T/∆h∑
i=n

|ξhi |2 +

∣∣∣∣∣∣
n+T/∆h∑
i=n

n+T/∆h∑
j=i+1

Eξhi ξ
h
j

∣∣∣∣∣∣ <∞.
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These conditions are rather mild. They would be satisfied, for example, if Bh(·) were

a sufficiently “nonanticipatively smoothed” Wiener process; e.g., Bh(t) =
∫ t
−∞ qh(t−

s)B(s)ds for an appropriate kernel qh(·) which converges to a delta function as h→ 0.
Noting that the index i is in the upper limit in (6.8) and in the lower limit in

(6.9), we have

En+i

[
Sh,∆,ni+1 − Sh,∆,ni

]
= En+iµ

h,∆
n+i+1ξ

h
n+i+1,

En+i

[
δSh,∆,n,Ti+1 − δSh,∆,n,Ti

]
= −En+iµ

h,∆
n+i+1ξ

h
n+i+1.

Thus the perturbed function

S̃h,∆,n,Ti = Sh,∆,ni + δSh,∆,n,Ti

is a martingale, and martingale inequalities can be used to get (6.3). The desire
to get this martingale property is the key motivation behind the way the perturba-
tion δSh,∆,n,Ti was constructed. It was constructed specifically to effect the desired
cancellation.

Recall that if Mi is a square integrable martingale, then

(6.22) P

{
sup
i≤N
|Mi| ≥ ε

}
≤ EM2

N

ε2
.

Condition (6.20) and the fact that the µh,∆i can be taken to be arbitrarily small implies
that, for any ε > 0,

(6.23) lim
∆→0

lim sup
h

sup
n
P

{
sup

i≤T/∆h

∣∣∣δSh,∆,n,Ti

∣∣∣ ≥ ε} = 0.

This is a consequence of the facts that the µ-terms are bounded and small in proba-
bility and independent of the ξ terms, and that (6.20) implies that∑

i≤T/∆h

E
∣∣∣δSh,∆,n,Ti

∣∣∣ = O(1).

Since δSh,∆,n,TT/∆h
= 0,

E|S̃h,∆,n,TT/∆h
|2 = E|Sh,∆,nT/∆h

|2.

Also, a direct computation using (6.21), (6.22), and the boundedness and smallness
in probability of the µ-terms (and their independence of the ξ) yields

lim
∆→0

lim sup
h

sup
n
E|Sh,∆,nT/∆h

|2 = 0.

The last two equations and (6.22) yield

(6.24) lim
∆→0

lim sup
h

sup
n
P

{
sup

i≤T/∆h

∣∣∣S̃h,∆,n,Ti

∣∣∣ ≥ ε} = 0.

This and (6.23) imply (6.3).
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7. Uniqueness of the invariant measure of (X(·),Π(·)). In this section we
address the question of uniqueness of the invariant measure for the pair (X(·),Π(·)). It
is known from Kunita [12] that if X(·) is a time homogeneous Feller–Markov process
with a compact state space, such that it admits a unique invariant measure and
the corresponding stationary flow is purely nondeterministic, then the true optimal
filtering process Π(·) taken by itself has a unique invariant measure. The results in [12],
however, do not provide any information concerning the uniqueness of the stationary
joint distribution of (X(·),Π(·)). Uniqueness for the joint problem is considerably
harder to prove and to date the only known result, excepting the linear filtering case,
is for a discrete time filtering problem where the signal is a finite state Markov chain
(see also Stettner [28]). We provide in Theorem 7.1 a sufficient condition under which
the uniqueness for the joint problem holds. The theorem roughly says that if the signal
process has a unique invariant measure and the filter “forgets its initial condition,”
in the sense to be made precise below, then the pair (X(·),Π(·)) has at most one
invariant measure. We refer the reader to [1, 2, 6, 7, 10, 24, 25] for some recent results
on forgetting of the initial condition. Finally, we discuss some examples in which the
sufficient condition can be seen to hold.

Let (S,S) be a Polish space, S being the Borel sigma-field on S. Let X(·) be an
S-valued Markov process with0 CADLAG paths and Y (·) be given via (2.2), where,
as before, B(·) is independent of X(·). As in section 2, we will consider the process
(X(·), Y (·)) on the path space, D(S × Rm; 0,∞), where m denotes the dimension
of the observation vector. Let Pµ be the probability measure on the path space of
(X(·), Y (·)) under which X(0) has the distribution µ. With an abuse of notation, we
will use the notation Px when µ is a point mass concentrated at x ∈ S. If the filter is
initialized at Π(0) = ν (whether or not it is the distribution of X(0)), we denote the
process by Πν(·). Following the notation of section 2, Πν(·) is defined by

〈Πν(t), φ〉 =
Eν,Y0,t

[
φ(X̃(t))R(X̃0,t, Y0,t)

]
Eν,Y0,t

[
R(X̃0,t, Y0,t)

] ,

where φ(·) is a bounded and measurable real-valued function, and X̃(·) is as in section
2. Recall that Πν(0) = ν is the distribution of X̃(0).

Definition 7.1. We say that the “filter forgets its initial condition” if for all
ν1, ν2 ∈M(S), for all x ∈ S and continuous bounded real valued functions φ(·) on S:

|〈Πν1(t), φ〉 − 〈Πν2(t), φ〉|

converges to zero in Px-probability as t→∞.
Theorem 7.1. Suppose that X(t) has a unique invariant measure and the filter

forgets its initial condition. Then the pair (X(·),Π(·)) has at most one invariant
measure.

Proof. Suppose ρ1 and ρ2 are two invariant measures for the pair (X(·),Π(·)).
We will show that for all continuous and bounded functions f on S ×M(S)

(7.1)

∫
f(x, α)ρ1(dx, dα) =

∫
f(x, α)ρ2(dx, dα),

where (x, α) denotes a generic element of S×M(S). Let µ denote the unique invariant
measure of X(·) and let µ1, µ2 be regular conditional probability functions such that
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ρi(dx, dα) = µi(x, dα)µ(dx); i = 1, 2. The left side of (7.1) equals, for all t > 0,∫ [∫
Ex [f(X(t),Πα(t))]µ1(x, dα)

]
µ(dx),

while the right hand side of (7.1) equals, for all t > 0,∫ [∫
Ex
[
f(X(t),Πβ(t))

]
µ2(x, dβ)

]
µ(dx).

Thus
(7.2)∣∣∫ f(x, α)ρ1(dx, dα)− ∫ f(x, α)ρ2(dx, dα)

∣∣
≤
∫ ∫ ∫

Ex
∣∣f(X(t),Πα(t))− f(X(t),Πβ(t))

∣∣µ1(x, dα)µ2(x, dβ)µ(dx).

The assumption on forgetting the initial condition implies that for all x ∈ S and
α, β ∈M(S), as t→∞,

Ex
∣∣f(X(t),Πα(t))− f(X(t),Πβ(t))

∣∣→ 0.

Now an application of dominated convergence theorem shows that the right side of
(7.2) converges to 0 as t→∞. This proves (7.1).

Remark. Although we have stated and proved the above theorem for a signal
evolving continuously in time and observations taken continuously, the result holds
for discrete time models such as in section 5, where the signal can evolve either
continuously or discretely in time, but the observations are taken at discrete time
instants. (The paper [6] also allowed a point process observation model.) The proof,
excepting some minor notational changes, remains unchanged.

We now give some examples, in the following two theorems, where the sufficient
condition in the above theorem is seen to hold. The theorems below are fairly straight-
forward consequences of the results proved in Atar and Zeitouni [2] and LeGland [10],
in view of which details of the proofs are omitted.

Theorem 7.2. Let the signal X(·) (indexed either by a continuous or discrete
time parameter) be a Feller time homogeneous Markov process taking values in a
compact Polish space S. Suppose that the observations are in discrete time and given
by (5.1), Suppose that there exists a finite measure µ on (S,S) and an integer n ≥ 1
such that for all x ∈ S:

(7.2) c1µ(dχ) ≤ P (dχ, n|x) ≤ c2µ(dχ),

where P (dχ, n|x) is the n-step transition probability function for X(·) and c1, c2 are
some finite positive constants. Then the process {X(k),Π(k), k <∞} has at most one
stationary measure.

Remarks on the Proof. The proof is based on the properties of Hilbert’s projective
metric (see [4]) on the space of finite measures. It can be shown that for x, ν1, ν2 as
in the beginning of the section, the Hilbert distance between Πν1(m) and Πν2(m)
converges to zero a.s. Px as m → ∞. This fact is proved for n = 1 in [2] and for
n ≥ 1, in the special case of finite state Markov chains in [10]. The case of general
compact state space follows by similar arguments. The convergence in the Hilbert
metric implies the convergence in total variation norm which in turn implies the
property of the filter forgetting its initial condition in the sense of Definition 7.1.
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Since X(·) is Feller with a compact state space, it has at least one invariant
measure. Finally, if µ1, µ2 are two such invariant measures, we have, using the prop-
erties of Hilbert metric and (7.2), that the Hilbert distance between

∫
P (·, n|x)µ1(dx)

and
∫
P (·, n|x)µ2(dx) converges to zero as n → ∞. This implies that µ1 = µ2 and

therefore Theorem 7.1 can be applied.

Theorem 7.3. Let the signal be given via (2.1) and suppose that it takes values in
a compact Riemannian manifold. Suppose that p(·) and σ(·) are Lipschitz continuous
and that the generator of the Markov process is strictly elliptic. Assume that the
observation process is given via (2.2) with g(·) a twice continuously differentiable real-
valued function. Then (X(·),Π(·)) has a unique stationary measure.

Remarks on the Proof. Arguments as in Theorems 3.1 and 3.2 show that (X(·),Π(·))
has at least one invariant measure. Furthermore, upper and lower bounds on the tran-
sition probability kernel of a Markov diffusion process on a compact manifold (see [2])
yield that if µ1 and µ2 are two invariant measures for X(·), then the Hilbert dis-
tance between

∫
P (·, t|x)µ1(dx) and

∫
P (·, t|x)µ2(dx) converges to 0 as t→∞, where

P (·, t|x) is the transition probability kernel of X(·). This proves the uniqueness of
the invariant measure for X(·). Let h(·) denote the Hilbert distance between the
measures. Next, the results in [2] show that, for the additive white noise corrupted
observation case, where x, ν1, ν2 are as in the beginning of this section and satisfy
h(ν1, ν2) < ∞, a.s. Px, we have that h(Πν1(t),Πν2(t)) converges to zero a.s. Px as
t → ∞. The constraint, h(ν1, ν2) < ∞, can be removed using techniques similar
to those of [7, Theorem 3.2] on first proving that the Px-probability of the event,
h(Πν1(t),Πν2(t)) <∞ for some t, is one.
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